WorldWideScience

Sample records for strong nir absorption

  1. Strong saturable absorption of black titanium oxide nanoparticle films

    Science.gov (United States)

    Zhang, Rong-Fang; Guo, Deng-Zhu; Zhang, Geng-Min

    2017-12-01

    Nonlinear optical materials with strong saturable absorption (SA) properties play an essential role in passive mode-locking generation of ultrafast lasers. Here we report black TiO2-x nanoparticles are promising candidate for such an application. Black TiO2-x nanoparticles are synthesized by using cathodic plasma electrolysis, and nanoparticle films are deposited on optical glass plates via natural sedimentation and post annealing. Characterization of the samples with TEM, SEM, XRD and XPS reveal that nanoparticles have diameters of 8-70 nm, and are in polycrystalline structure and co-existence of anatase, rutile and abundant oxygen-deficient phases. Optical transmittance and reflectance measurements with a UV/VIS/NIR spectrophotometer evidence an excellent wide-spectral optical absorption property. The nonlinear optical properties of the samples were measured by using open-aperture Z-scan technique with picosecond 532-nm laser, and verified by direct transmission measurements using nanosecond 1064-nm laser. Strong SA behavior was detected, and the nonlinear absorption coefficient is as high as β = - 4.9 × 10-8 m/W, at least two orders larger than most previous reports on ordinary TiO2. The strong SA behaviors are ascribed to the existence of plenty surface states and defect states within bandgap, and the relaxation rates of electrons from upper energy levels to lower ones are much slower than excitation rates.

  2. Enhanced performance of dye-sensitized solar cells based on TiO{sub 2} with NIR-absorption and visible upconversion luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Li [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Yulin, Yang, E-mail: ylyang@hit.edu.cn [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Mi, Zhou; Ruiqing, Fan; LeLe, Qiu [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Xin, Wang [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Department of Food and Environmental Engineering, Heilongjiang, East University, Harbin 150086 (China); Lingyun, Zhang [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); School of Chemical Engineering, Northeast Dianli University, Jilin 132012 (China); Xuesong, Zhou; Jianglong, He [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2013-02-15

    TiO{sub 2} with NIR-absorption and visible upconversion luminescence (UC-TiO{sub 2}) is prepared by a sol-gel method and calcined at 700 Degree-Sign C for 6 h. The material broadens the response region of dye sensitized solar cells (DSSCs) from an ultraviolet-visible region to the whole region of the solar spectrum. It shifts NIR sunlight to visible light which matches the strong absorbing region of the dye (N719). DSSCs based on UC-TiO{sub 2} achieved higher conversion efficiency than that on raw TiO{sub 2}. UC-TiO{sub 2} was mixed with commercial raw TiO{sub 2} as additive, and the short-circuit current density, open-circuit voltage and conversion efficiency of the DSSC reached to the optimum values 13.38 mA/cm{sup 2}, 0.78 V and 6.63% (AM1.5 global), comparing with the blank values: 7.99 mA/cm{sup 2}, 0.75 V and 4.07%, respectively. Also the mechanisms of upconversion by multiphoton absorption and energy transfer processes are interpreted in this paper. - Graphical abstract: By introducing TiO{sub 2} with NIR-absorption and visible up-conversion luminescence into DSSC, a signal reflection was explored from ultra-violet region to visible region, and to near-IR region. Highlights: Black-Right-Pointing-Pointer TiO{sub 2} with NIR-absorption and visible up-conversion luminescence (UC-TiO{sub 2}) was prepared by a sol-gel method. Black-Right-Pointing-Pointer A systematic characterization and analysis was carried out to discuss the mechanism. Black-Right-Pointing-Pointer A significantly enhanced performance of DSSC was explored by using UC-TiO{sub 2} as an additive.

  3. Dual mode NIR long persistent phosphorescence and NIR-to-NIR Stokes luminescence in La{sub 3}Ga{sub 5}GeO{sub 14}: Cr{sup 3+}, Nd{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yiling; Li, Yang, E-mail: msliyang@scut.edu.cn; Qin, Xixi; Chen, Ruchun; Wu, Dakun; Liu, Shijian; Qiu, Jianrong, E-mail: qjr@scut.edu.cn

    2015-11-15

    Recently, long persistent phosphors (LPPs) have been considered to be the most prominent candidates for biomedical applications. However, the LPPs suffer from a dramatic decrease in luminescence intensity after incorporation into the tissue. Therefore, it is very necessary to develop the more competitive LPPs and acquire the reproducible tissue imaging. Here, we propose and experimentally demonstrate an effective bifunctional La{sub 3}Ga{sub 5}GeO{sub 14}: Cr{sup 3+}, Nd{sup 3+} phosphor with the interesting characteristic of near-infrared long persistent phosphorescence and NIR-to-NIR Stokes luminescence. Cr{sup 3+} and Nd{sup 3+} ions are simultaneously selected as the emission centers in order to take advantage of the remarkable phosphorescence properties of Cr{sup 3+}, and the appropriate energy level characteristic of NIR-excitation band (808 nm) and NIR-emission (1064 nm), and the ability as the brilliant auxiliary to create more efficient defects of Nd{sup 3+}. The efficient dual-modal emission is, accordingly utilized to realize the convenient, high-resolution global detection and local imaging. - Highlights: • Dual mode phosphor with NIR long afterglow and NIR-to-NIR Stokes luminescence. • Increasing the persistent duration due to the codoping of Nd. • Avoiding the noteworthy overheating effect due to the strong absorption at 980 nm.

  4. [Induction and analysis for NIR features of frequently-used mineral traditional Chinese medicines].

    Science.gov (United States)

    Chen, Long; Yuan, Ming-Yang; Chen, Ke-Li

    2016-10-01

    In order to provide theoretical basis for the rapid identification of mineral traditional Chinese medicines(TCM) with near infrared (NIR)diffuse reflectance spectroscopy, Characteristic NIR spectra of 51 kinds of mineral TCMs were generalized and compared on the basis of the previous research, and the characteristic spectral bands were determined and analyzed by referring to mineralogical and geological literatures. It turned out that the NIR features of mineral TCMs were mainly at 8 000-4 000 cm ⁻¹ wavebands, which can be assigned as the absorption of water, -OH and[CO3 ²⁻] and so on. Absorption peaks of water has regularity as follows, the structure water and -OH had a combined peak which was strong and keen-edged around 7 000 cm ⁻¹, the crystal water had two strong peak around 7 000 cm ⁻¹ and 5 100 cm ⁻¹, and water only has a broad peak around 5 100 cm ⁻¹. Due to the differences in the crystal form and the contents of water in mineral TCMs, NIR features of water in mineral TCMs which could be used for identification were different. Mineral TCMs containing sulfate are rich in crystal water, mineral TCMs containing silicate generally had structure water, and mineral TCMs containing carbonate merely had a little of water, so it was reasonable for the use of NIR spectroscopy to classify mineral TCMs with anionic type. In addition, because of the differences in cationic type, impurities, crystal form and crystallinity, mineral TCMs have exclusive NIR features at 4 600-4 000 cm ⁻¹, which can be assigned as Al-OH, Mg-OH, Fe-OH, Si-OH,[CO3 ²⁻] and so on. Calcined mineral TCMs are often associated with water and main composition changes, also changes of the NIR features, which could be used for the monitoring of the processing, and to provide references for the quality control of mineral TCMs. The adaptability and limitation of NIR analysis for mineral TCMs were also discussed:the majority of mineral TCMs had noteworthy NIR features which could be

  5. Using Massive Multivariate NIRS Data in Ryegrass

    DEFF Research Database (Denmark)

    Edriss, Vahid; Greve-Pedersen, Morten; Jensen, Christian S

    2015-01-01

    Near infrared spectroscopy (NIRS) analytical techniques is a simple, fast and low cost method of high dimensional phenotyping compared to usual chemical techniques. To use this method there is no need for special sample preparation. The aim of this study is to use NIRS data to predict plant traits...... (e.g. dry matter, protein content, etc.) for the next generation. In total 1984 NIRS data from 995 ryegrass families (first cut) were used. The Absorption of radiation in the region of 960 – 1690 nm in every 2 nm distance produced 366 bins to represent the NIRS spectrum. The amount of genetic...

  6. Shape-controlled synthesis of NIR absorbing branched gold nanoparticles and morphology stabilization with alkanethiols

    International Nuclear Information System (INIS)

    Van de Broek, B; Frederix, F; Bonroy, K; Jans, H; Jans, K; Borghs, G; Maes, G

    2011-01-01

    Gold nanoparticles are ideal candidates for clinical applications if their plasmon absorption band is situated in the near infrared region (NIR) of the electromagnetic spectrum. Various parameters, including the nanoparticle shape, strongly influence the position of this absorption band. The aim of this study is to produce stabilized NIR absorbing branched gold nanoparticles with potential for biomedical applications. Hereto, the synthesis procedure for branched gold nanoparticles is optimized varying the different synthesis parameters. By subsequent electroless gold plating the plasmon absorption band is shifted to 747.2 nm. The intrinsic unstable nature of the nanoparticles' morphology can be clearly observed by a spectral shift and limits their use in real applications. However, in this article we show how the stabilization of the branched structure can be successfully achieved by exchanging the initial capping agent for different alkanethiols and disulfides. Furthermore, when using alkanethiols/disulfides with poly(ethylene oxide) units incorporated, an increased stability of the gold nanoparticles is achieved in high salt concentrations up to 1 M and in a cell culture medium. These achievements open a plethora of opportunities for these stabilized branched gold nanoparticles in nanomedicine.

  7. New NIR Absorbing DPP-based Polymer for Thick Organic Solar Cells

    KAUST Repository

    Oklem, Gulce

    2018-02-05

    infrared region (NIR) for better photon harvesting in organic solar cells. It has been shown that copolymers compromising diketopyrrolopyrrole based acceptors and simple donors (thiophene or furan) achieve absorption maximum around 800 nm. In this study, the selenophene based donor units coupled with diketopyrrolopyrrole acceptor unit based polymer (PFDPPSe) was synthesized with an absorption maximum at 830 nm and absorption onset of 930 nm. The optimized organic solar cells with PFDDPSe: PC71BM active layer blends of 210 nm showed maximum PCE of 6.16 % (ave. 6.02 %) via solvent additive engineering with inverted device structure. Charge transport, recombination loss mechanism, and morphology are systematically studied. These results demonstrate that highly efficient NIR polymer can be achieved by the introduction of selenophene and a suitable solvent additive process suitable for NIR organic solar cells. PFDPPSe is also one of the rare examples of a polymer with a PCE over 6% that does not contain any thiophene-based unit in its backbone.

  8. Relative Contribution of nirK- and nirS- Bacterial Denitrifiers as Well as Fungal Denitrifiers to Nitrous Oxide Production from Dairy Manure Compost.

    Science.gov (United States)

    Maeda, Koki; Toyoda, Sakae; Philippot, Laurent; Hattori, Shohei; Nakajima, Keiichi; Ito, Yumi; Yoshida, Naohiro

    2017-12-19

    The relative contribution of fungi, bacteria, and nirS and nirK denirifiers to nitrous oxide (N 2 O) emission with unknown isotopic signature from dairy manure compost was examined by selective inhibition techniques. Chloramphenicol (CHP), cycloheximide (CYH), and diethyl dithiocarbamate (DDTC) were used to suppress the activity of bacteria, fungi, and nirK-possessing denitrifiers, respectively. Produced N 2 O were surveyed to isotopocule analysis, and its 15 N site preference (SP) and δ 18 O values were compared. Bacteria, fungi, nirS, and nirK gene abundances were compared by qPCR. The results showed that N 2 O production was strongly inhibited by CHP addition in surface pile samples (82.2%) as well as in nitrite-amended core samples (98.4%), while CYH addition did not inhibit the N 2 O production. N 2 O with unknown isotopic signature (SP = 15.3-16.2‰), accompanied by δ 18 O (19.0-26.8‰) values which were close to bacterial denitrification, was also suppressed by CHP and DDTC addition (95.3%) indicating that nirK denitrifiers were responsible for this N 2 O production despite being less abundant than nirS denitrifiers. Altogether, our results suggest that bacteria are important for N 2 O production with different SP values both from compost surface and pile core. However, further work is required to decipher whether N 2 O with unknown isotopic signature is mostly due to nirK denitrifiers that are taxonomically different from the SP-characterized strains and therefore have different SP values rather than also being interwoven with the contribution of the NO-detoxifying pathway and/or of co-denitrification.

  9. Cermet based metamaterials for multi band absorbers over NIR to LWIR frequencies

    International Nuclear Information System (INIS)

    Pradhan, Jitendra K; Behera, Gangadhar; Anantha Ramakrishna, S; Agarwal, Amit K; Ghosh, Amitava

    2017-01-01

    Cermets or ceramic-metals are known for their use in solar thermal technologies for their absorption across the solar band. Use of cermet layers in a metamaterial perfect absorber allows for flexible control of infra-red absorption over the short wave infra-red, to long wave infra-red bands, while keeping the visible/near infra-red absorption properties constant. We design multilayered metamaterials consisting of a conducting ground plane, a low metal volume fraction cermet/ZnS as dielectric spacer layers, and a top structured layer of an array of circular discs of metal/high volume metal fraction cermet that give rise to specified absorption bands in the near-infra-red (NIR) frequencies, as well as any specified band at SWIR–LWIR frequencies. Thus, a complete decoupling of the absorption at optical/NIR frequencies and the infra-red absorption behaviour of a structured metamaterial is demonstrated. (paper)

  10. Femtosecond laser irradiation-induced infrared absorption on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Qinghua Zhu

    2015-04-01

    Full Text Available The near-infrared (NIR absorption below band gap energy of crystalline silicon is significantly increased after the silicon is irradiated with femtosecond laser pulses at a simple experimental condition. The absorption increase in the NIR range primarily depends on the femtosecond laser pulse energy, pulse number, and pulse duration. The Raman spectroscopy analysis shows that after the laser irradiation, the silicon surface consists of silicon nanostructure and amorphous silicon. The femtosecond laser irradiation leads to the formation of a composite of nanocrystalline, amorphous, and the crystal silicon substrate surface with microstructures. The composite has an optical absorption enhancement at visible wavelengths as well as at NIR wavelength. The composite may be useful for an NIR detector, for example, for gas sensing because of its large surface area.

  11. Improving NIR snow pit stratigraphy observations by introducing a controlled NIR light source

    Science.gov (United States)

    Dean, J.; Marshall, H.; Rutter, N.; Karlson, A.

    2013-12-01

    Near-infrared (NIR) photography in a prepared snow pit measures mm-/grain-scale variations in snow structure, as reflectivity is strongly dependent on microstructure and grain size at the NIR wavelengths. We explore using a controlled NIR light source to maximize signal to noise ratio and provide uniform incident, diffuse light on the snow pit wall. NIR light fired from the flash is diffused across and reflected by an umbrella onto the snow pit; the lens filter transmits NIR light onto the spectrum-modified sensor of the DSLR camera. Lenses are designed to refract visible light properly, not NIR light, so there must be a correction applied for the subsequent NIR bright spot. To avoid interpolation and debayering algorithms automatically performed by programs like Adobe's Photoshop on the images, the raw data are analyzed directly in MATLAB. NIR image data show a doubling of the amount of light collected in the same time for flash over ambient lighting. Transitions across layer boundaries in the flash-lit image are detailed by higher camera intensity values than ambient-lit images. Curves plotted using median intensity at each depth, normalized to the average profile intensity, show a separation between flash- and ambient-lit images in the upper 10-15 cm; the ambient-lit image curve asymptotically approaches the level of the flash-lit image curve below 15cm. We hypothesize that the difference is caused by additional ambient light penetrating the upper 10-15 cm of the snowpack from above and transmitting through the wall of the snow pit. This indicates that combining NIR ambient and flash photography could be a powerful technique for studying penetration depth of radiation as a function of microstructure and grain size. The NIR flash images do not increase the relative contrast at layer boundaries; however, the flash more than doubles the amount of recorded light and controls layer noise as well as layer boundary transition noise.

  12. Theory of strong-field attosecond transient absorption

    International Nuclear Information System (INIS)

    Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2016-01-01

    Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser–matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption

  13. New laser design for NIR lidar applications

    Science.gov (United States)

    Vogelmann, H.; Trickl, T.; Perfahl, M.; Biggel, S.

    2018-04-01

    Recently, we quantified the very high spatio-temporal short term variability of tropospheric water vapor in a three dimensional study [1]. From a technical point of view this also depicted the general requirement of short integration times for recording water-vapor profiles with lidar. For this purpose, the only suitable technique is the differential absorption lidar (DIAL) working in the near-infrared (NIR) spectral region. The laser emission of most water vapor DIAL systems is generated by Ti:sapphire or alexandrite lasers. The water vapor absorption band at 817 nm is predominated for the use of Ti:sapphire. We present a new concept of transversely pumping in a Ti:Sapphire amplification stage as well as a compact laser design for the generation of single mode NIR pulses with two different DIAL wavelengths inside a single resonator. This laser concept allows for high output power due to repetitions rates up to 100Hz or even more. It is, because of its compactness, also suitable for mobile applications.

  14. Is there Place for Perfectionism in the NIR Spectral Data Reduction?

    Science.gov (United States)

    Chilingarian, Igor

    2017-09-01

    "Despite the crucial importance of the near-infrared spectral domain for understanding the star formation and galaxy evolution, NIR observations and data reduction represent a significant challenge. The known complexity of NIR detectors is aggravated by the airglow emission in the upper atmosphere and the water absorption in the troposphere so that up until now, the astronomical community is divided on the issue whether ground based NIR spectroscopy has a future or should it move completely to space (JWST, Euclid, WFIRST). I will share my experience of pipeline development for low- and intermediate-resolution spectrographs operated at Magellan and MMT. The MMIRS data reduction pipeline became the first example of the sky subtraction quality approaching the limit set by the Poisson photon noise and demonstrated the feasibility of low-resolution (R=1200-3000) NIR spectroscopy from the ground even for very faint (J=24.5) continuum sources. On the other hand, the FIRE Bright Source Pipeline developed specifically for high signal-to-noise intermediate resolution stellar spectra proves that systematics in the flux calibration and telluric absorption correction can be pushed down to the (sub-)percent level. My conclusion is that even though substantial effort and time investment is needed to design and develop NIR spectroscopic pipelines for ground based instruments, it will pay off, if done properly, and open new windows of opportunity in the ELT era."

  15. Designing and testing a wearable, wireless fNIRS patch.

    Science.gov (United States)

    Abtahi, Mohammadreza; Cay, Gozde; Saikia, Manob Jyoti; Mankodiya, Kunal

    2016-08-01

    Optical brain monitoring using near infrared (NIR) light has got a lot of attention in order to study the complexity of the brain due to several advantages as oppose to other methods such as EEG, fMRI and PET. There are a few commercially available functional NIR spectroscopy (fNIRS) brain monitoring systems, but they are still non-wearable and pose difficulties in scanning the brain while the participants are in motion. In this work, we present our endeavors to design and test a low-cost, wireless fNIRS patch using NIR light sources at wavelengths of 770 and 830nm, photodetectors and a microcontroller to trigger the light sources, read photodetector's output and transfer data wirelessly (via Bluetooth) to a smart-phone. The patch is essentially a 3-D printed wearable system, recording and displaying the brain hemodynamic responses on smartphone, also eliminates the need for complicated wiring of the electrodes. We have performed rigorous lab experiments on the presented system for its functionality. In a proof of concept experiment, the patch detected the NIR absorption on the arm. Another experiment revealed that the patch's battery could last up to several hours with continuous fNIRS recording with and without wireless data transfer.

  16. H2 emission and CO absorption in Centaurus A : Evidence for a circumnuclear molecular disk

    NARCIS (Netherlands)

    Israel, F.P.; Dishoeck, van E.F.; Baas, F.; Koornneef, J.; Black, J.H.; Graauw, de Th.

    1990-01-01

    Emission and absorption lines of H2 and CO in nuclei of several galaxies with strong NIR emission, including Centaurus A (NGC 5128), were studied at the La Silla observatory to obtain constraints on the physical parameters of molecular material close to the nucleus of the NGC 5128 galaxy. Results

  17. Probing the Behaviors of Gold Nanorods in Metastatic Breast Cancer Cells Based on UV-vis-NIR Absorption Spectroscopy

    Science.gov (United States)

    Zhang, Weiqi; Ji, Yinglu; Meng, Jie; Wu, Xiaochun; Xu, Haiyan

    2012-01-01

    In this work, behaviors of positively-charged AuNRs in a highly metastatic tumor cell line MDA-MB-231 are examined based on UV-vis-NIR absorption spectroscopy in combination with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and dark-field microscopic observation. It is found that characteristic surface plasmon resonance (SPR) peaks of AuNRs can be detected using spectroscopic method within living cells that have taken up AuNRs. The peak area of transverse SPR band is shown to be proportionally related to the amount of AuNRs in the cells determined with ICP-MS, which suggests a facile and real time quantification method for AuNRs in living cells. The shape of longitudinal SPR band in UV-vis-NIR spectrum reflects the aggregation state of AuNRs in the cells during the incubation period, which is proved by TEM and microscopic observations. Experimental results reveal that AuNRs are internalized by the cells rapidly; the accumulation, distribution and aggregation of AuNRs in the cells compartments are time and dose dependent. The established spectroscopic analysis method can not only monitor the behaviors of AuNRs in living cells but may also be helpful in choosing the optimum laser stimulation wavelength for anti-tumor thermotherapy. PMID:22384113

  18. Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.

    Science.gov (United States)

    Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M

    2016-09-27

    Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.

  19. Qubit absorption refrigerator at strong coupling

    Science.gov (United States)

    Mu, Anqi; Agarwalla, Bijay Kumar; Schaller, Gernot; Segal, Dvira

    2017-12-01

    We demonstrate that a quantum absorption refrigerator (QAR) can be realized from the smallest quantum system, a qubit, by coupling it in a non-additive (strong) manner to three heat baths. This function is un-attainable for the qubit model under the weak system-bath coupling limit, when the dissipation is additive. In an optimal design, the reservoirs are engineered and characterized by a single frequency component. We then obtain closed expressions for the cooling window and refrigeration efficiency, as well as bounds for the maximal cooling efficiency and the efficiency at maximal power. Our results agree with macroscopic designs and with three-level models for QARs, which are based on the weak system-bath coupling assumption. Beyond the optimal limit, we show with analytical calculations and numerical simulations that the cooling efficiency varies in a non-universal manner with model parameters. Our work demonstrates that strongly-coupled quantum machines can exhibit function that is un-attainable under the weak system-bath coupling assumption.

  20. Outflow and hot dust emission in broad absorption line quasars

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaohua; Zhou, Hongyan [Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136 (China); Wang, Huiyuan; Wang, Tinggui; Xing, Feijun; Jiang, Peng [Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Zhang, Kai, E-mail: zhangshaohua@pric.gov.cn, E-mail: whywang@mail.ustc.edu.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2014-05-01

    We have investigated a sample of 2099 broad absorption line (BAL) quasars with z = 1.7-2.2 built from the Sloan Digital Sky Survey Data Release Seven and the Wide-field Infrared Survey. This sample is collected from two BAL quasar samples in the literature and is refined by our new algorithm. Correlations of outflow velocity and strength with a hot dust indicator (β{sub NIR}) and other quasar physical parameters—such as an Eddington ratio, luminosity, and a UV continuum slope—are explored in order to figure out which parameters drive outflows. Here β{sub NIR} is the near-infrared continuum slope, which is a good indicator of the amount of hot dust emission relative to the accretion disk emission. We confirm previous findings that outflow properties moderately or weakly depend on the Eddington ratio, UV slope, and luminosity. For the first time, we report moderate and significant correlations of outflow strength and velocity with β{sub NIR} in BAL quasars. It is consistent with the behavior of blueshifted broad emission lines in non-BAL quasars. The statistical analysis and composite spectra study both reveal that outflow strength and velocity are more strongly correlated with β{sub NIR} than the Eddington ratio, luminosity, and UV slope. In particular, the composites show that the entire C IV absorption profile shifts blueward and broadens as β{sub NIR} increases, while the Eddington ratio and UV slope only affect the high and low velocity part of outflows, respectively. We discuss several potential processes and suggest that the dusty outflow scenario, i.e., that dust is intrinsic to outflows and may contribute to the outflow acceleration, is most likely.

  1. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Mingying; Zollfrank, Cordt; Wondraczek, Lothar [Lehrstuhl fuer Glas und Keramik, WW3, Friedrich Alexander Universitaet Erlangen-Nuernberg, Martensstrasse 5, D-91058 Erlangen (Germany)], E-mail: mingying.peng@ww.uni-erlangen.de, E-mail: lothar.wondraczek@ww.uni-erlangen.de

    2009-07-15

    Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi{sub 2}O{sub 3} into elementary Bi. Darkening of bismuthate glass melted at 1300 deg. C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi{sup 3+} is formed. By comparing with atomic spectral data, absorption bands at {approx}320 , {approx}500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi{sup 0} transitions {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 3/2}, {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 1/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 5/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(2) and {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(1), respectively, and broadband NIR emission is assigned to the transition {sup 2}D{sub 3/2}(1){yields}{sup 4}S{sub 3/2}.

  2. Quantitative analysis of trivalent uranium and lanthanides in a molten chloride by absorption spectrophotometry

    International Nuclear Information System (INIS)

    Toshiyuki Fujii; Akihiro Uehara; Hajimu Yamana

    2013-01-01

    As an analytical application for pyrochemical reprocessing using molten salts, quantitative analysis of uranium and lanthanides by UV/Vis/NIR absorption spectrophotometry was performed. Electronic absorption spectra of LiCl-KCl eutectic at 773 K including trivalent uranium and eight rare earth elements (Y, La, Ce, Pr, Nd, Sm, Eu, and Gd as fission product elements) were measured in the wavenumber region of 4,500-33,000 cm -1 . The composition of the solutes was simulated for a reductive extraction condition in a pyroreprocessing process for spent nuclear fuels, that is, about 2 wt% U and 0.1-2 wt% rare earth elements. Since U(III) possesses strong absorption bands due to f-d transitions, an optical quartz cell with short light path length of 1 mm was adopted in the analysis. The quantitative analysis of trivalent U, Nd, Pr, and Sm was possible with their f-f transition intensities in the NIR region. The analytical results agree with the prepared concentrations within 2σ experimental uncertainties. (author)

  3. Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption

    Science.gov (United States)

    Guo, Chongshen; Yin, Shu; Yu, Haijun; Liu, Shaoqin; Dong, Qiang; Goto, Takehiro; Zhang, Zhiwen; Li, Yaping; Sato, Tsugio

    2013-06-01

    Recently, photothermal ablation therapy (PTA) employing near-infrared radiation (NIR) has been extensively investigated as an emerging modality for cancer management. However, the clinical translation of this promising approach is limited by the lack of PTA agents with broad NIR absorption, low cost and high photothermal conversion efficiency. Herein, we have developed PEGylated homogeneous CsxWO3 nanorods (a mean size ~69.3 nm × 12.8 nm) with broad photo-absorption (780-2500 nm) as a novel NIR absorbent for PTA treatment of human cancer. The prepared CsxWO3 nanocrystals displayed strong near-infrared optical absorption with a high molar extinction coefficient (e.g. 4.8 × 1010 M-1 cm-1 at 980 nm), thus generated significant amounts of heat upon excitation with near-infrared light. The PTA study in two human carcinoma cell lines (i.e. A549 lung cancer cells and HeLa ovarian cancer cells) demonstrated that CsxWO3 nanorods can efficiently cause cell death via hyperthermia induced lysosome destruction, cytoskeleton protein degradation, DNA damage and thereafter cellular necrosis or apoptosis. Our study also confirmed the migration of healthy cells migrated from unirradiated areas to dead cell cycle, which is essential for tissue reconstruction and wound healing after photodestruction of tumor tissue. The prompted results reported in the current study imply the promising potential of CsxWO3 nanorods for application in PTA cancer therapy.Recently, photothermal ablation therapy (PTA) employing near-infrared radiation (NIR) has been extensively investigated as an emerging modality for cancer management. However, the clinical translation of this promising approach is limited by the lack of PTA agents with broad NIR absorption, low cost and high photothermal conversion efficiency. Herein, we have developed PEGylated homogeneous CsxWO3 nanorods (a mean size ~69.3 nm × 12.8 nm) with broad photo-absorption (780-2500 nm) as a novel NIR absorbent for PTA treatment of human

  4. New NIR Absorbing DPP-based Polymer for Thick Organic Solar Cells

    KAUST Repository

    Oklem, Gulce; Song, Xin; Toppare, Levent; Baran, Derya; Gunbas, Gorkem

    2018-01-01

    infrared region (NIR) for better photon harvesting in organic solar cells. It has been shown that copolymers compromising diketopyrrolopyrrole based acceptors and simple donors (thiophene or furan) achieve absorption maximum around 800 nm

  5. In vivo near infrared (NIRS) sensor attachment using fibrin bioadhesive

    Science.gov (United States)

    Macnab, Andrew; Pagano, Roberto; Kwon, Brian; Dumont, Guy; Shadgan, Babak

    2018-02-01

    Background: `Tisseel' (Baxter Healthcare, Deerfield, IL) is a fibrin-based sealant that is commonly used during spine surgery to augment dural repairs. We wish to intra-operatively secure a near infrared spectroscopy (NIRS) sensor to the dura in order to monitor the tissue hemodynamics of the underlying spinal cord. To determine if `Tisseel' sealant adversely attenuates NIR photon transmission. Methods: We investigated `Tisseel' in both an in vitro and in vivo paradigm. For in vitro testing, we used a 1 mm pathlength cuvette containing either air or `Tisseel' interposed between a NIR light source (760 and 850 nm) and a photodiode detector and compared transmittance. For in vivo testing, a continuous wave (760 and 850 nm) spatiallyresolved NIRS device was placed over the triceps muscle using either conventional skin apposition (overlying adhesive bandage) or bioadhesion with `Tisseel'. Raw optical data and tissue saturation index (TSI%) collected at rest were compared. Results: In-vitro NIR light absorption by `Tisseel' was very high, with transmittance reduced by 95% compared to air. In-vivo muscle TSI% values were 80% with conventional attachment and 20% using fibrin glue. Conclusion: The optical properties of `Tisseel' significantly attenuate NIR light during in-vitro transmittance and critically compromise photon transmission in-vivo.

  6. Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field

    International Nuclear Information System (INIS)

    Chajkovskij, I.A.

    1974-01-01

    A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers

  7. Visible-NIR Spectroscopic Evidence for the Composition of Low-Albedo Altered Soils on Mars

    Science.gov (United States)

    Murchie, S.; Merenyi, E.; Singer, R.; Kirkland, L.

    1996-03-01

    Spectroscopic studies of altered Martian soils at visible and at NIR wavelengths have generally supported the canonical model of the surface layer as consisting mostly of 2 components, bright red hematite-containing dust and dark gray pyroxene-containing sand. However several of the studies have also provided tantalizing evidence for distinct 1 micrometer Fe absorptions in discrete areas, particularly dark red soils which are hypothesized to consist of duricrust. These distinct absorptions have been proposed to originate from one or more non-hematitic ferric phases. We have tested this hypothesis by merging high spatial resolution visible- and NIR-wavelength data to synthesize composite 0.44-3.14 1lm spectra for regions of western Arabia and Margaritifer Terra. The extended wavelength coverage allows more complete assessment of ferric, ferrous, and H2O absorptions in both wavelength ranges. The composite data show that, compared to nearby bright red soil in Arabia, dark red soil in Oxia has a lower albedo, a more negative continuum slope, and a stronger 3 micrometer H2O absorption . However Fe absorptions are closely similar in position and depth. These results suggest that at least some dark red soils may differ from "normal" dust and mafic sand more in texture than in Fe mineralogy, although there appears to be enrichment in a water-containing phase and/or a dark, spectrally neutral phase. In contrast, there is clear evidence for enrichment of a low-albedo ferric mineral in dark gray soils composing Sinus Meridiani. These have visible- and NIR-wavelength absorptions consistent with crystalline hematite with relatively little pyroxene, plus a very weak 3 micrometer H2O absorption. These properties suggest a Ethology richer in crystalline hematite and less hydrated than both dust and mafic-rich sand.

  8. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, H; Olesen, J

    2001-01-01

    , brain and connective tissue, and more recently it has been used in the clinical setting to assess circulatory and metabolic abnormalities. Quantitative measures of blood flow are also possible using NIRS and a light-absorbing tracer, which can be applied to evaluate circulatory responses to exercise......Near infrared spectroscopy (NIRS) is becoming a widely used research instrument to measure tissue oxygen (O2) status non-invasively. Continuous-wave spectrometers are the most commonly used devices, which provide semi-quantitative changes in oxygenated and deoxygenated hemoglobin in small blood...... vessels (arterioles, capillaries and venules). Refinement of NIRS hardware and the algorithms used to deconvolute the light absorption signal have improved the resolution and validity of cytochrome oxidase measurements. NIRS has been applied to measure oxygenation in a variety of tissues including muscle...

  9. Near-infrared radiation absorption properties of covellite (CuS using first-principles calculations

    Directory of Open Access Journals (Sweden)

    Lihua Xiao

    2016-08-01

    Full Text Available First-principles density functional theory was used to investigate the electronic structure, optical properties and the origin of the near-infrared (NIR absorption of covellite (CuS. The calculated lattice constant and optical properties are found to be in reasonable agreement with experimental and theoretical findings. The electronic structure reveals that the valence and conduction bands of covellite are determined by the Cu 3d and S 3p states. By analyzing its optical properties, we can fully understand the potential of covellite (CuS as a NIR absorbing material. Our results show that covellite (CuS exhibits NIR absorption due to its metal-like plasma oscillation in the NIR range.

  10. NirN Protein from Pseudomonas aeruginosa is a Novel Electron-bifurcating Dehydrogenase Catalyzing the Last Step of Heme d1 Biosynthesis*

    Science.gov (United States)

    Adamczack, Julia; Hoffmann, Martin; Papke, Ulrich; Haufschildt, Kristin; Nicke, Tristan; Bröring, Martin; Sezer, Murat; Weimar, Rebecca; Kuhlmann, Uwe; Hildebrandt, Peter; Layer, Gunhild

    2014-01-01

    Heme d1 plays an important role in denitrification as the essential cofactor of the cytochrome cd1 nitrite reductase NirS. At present, the biosynthesis of heme d1 is only partially understood. The last step of heme d1 biosynthesis requires a so far unknown enzyme that catalyzes the introduction of a double bond into one of the propionate side chains of the tetrapyrrole yielding the corresponding acrylate side chain. In this study, we show that a Pseudomonas aeruginosa PAO1 strain lacking the NirN protein does not produce heme d1. Instead, the NirS purified from this strain contains the heme d1 precursor dihydro-heme d1 lacking the acrylic double bond, as indicated by UV-visible absorption spectroscopy and resonance Raman spectroscopy. Furthermore, the dihydro-heme d1 was extracted from purified NirS and characterized by UV-visible absorption spectroscopy and finally identified by high-resolution electrospray ionization mass spectrometry. Moreover, we show that purified NirN from P. aeruginosa binds the dihydro-heme d1 and catalyzes the introduction of the acrylic double bond in vitro. Strikingly, NirN uses an electron bifurcation mechanism for the two-electron oxidation reaction, during which one electron ends up on its heme c cofactor and the second electron reduces the substrate/product from the ferric to the ferrous state. On the basis of our results, we propose novel roles for the proteins NirN and NirF during the biosynthesis of heme d1. PMID:25204657

  11. Field detection of CO and CH4 by NIR 2f modulation laser spectroscopy

    Directory of Open Access Journals (Sweden)

    A Khorsandi

    2011-12-01

    Full Text Available   A novel compact fiber-coupled NIR system based on a DFB diode laser source is employed as a portable and sensitive gas sensor for trace detection of combustion pollutant molecules. We demonstrate the performance of such an NIR gas sensor by tracing the absorption lines of CO and CH4 using 2f-WMS technique at moderate temperature of T ~ 600°C in the recuperator channel of an industrial furnace provided by Mobarakeh steel company. This measurement shows the excellent sensitivity of the applied NIR gas sensor to the on-line and in-situ monitoring of such molecular species.

  12. Deep nirS amplicon sequencing of San Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition.

    Science.gov (United States)

    Lee, Jessica A; Francis, Christopher A

    2017-12-01

    Denitrification is a dominant nitrogen loss process in the sediments of San Francisco Bay. In this study, we sought to understand the ecology of denitrifying bacteria by using next-generation sequencing (NGS) to survey the diversity of a denitrification functional gene, nirS (encoding cytchrome-cd 1 nitrite reductase), along the salinity gradient of San Francisco Bay over the course of a year. We compared our dataset to a library of nirS sequences obtained previously from the same samples by standard PCR cloning and Sanger sequencing, and showed that both methods similarly demonstrated geography, salinity and, to a lesser extent, nitrogen, to be strong determinants of community composition. Furthermore, the depth afforded by NGS enabled novel techniques for measuring the association between environment and community composition. We used Random Forests modelling to demonstrate that the site and salinity of a sample could be predicted from its nirS sequences, and to identify indicator taxa associated with those environmental characteristics. This work contributes significantly to our understanding of the distribution and dynamics of denitrifying communities in San Francisco Bay, and provides valuable tools for the further study of this key N-cycling guild in all estuarine systems. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Analytical modeling of light transport in scattering materials with strong absorption.

    Science.gov (United States)

    Meretska, M L; Uppu, R; Vissenberg, G; Lagendijk, A; Ijzerman, W L; Vos, W L

    2017-10-02

    We have investigated the transport of light through slabs that both scatter and strongly absorb, a situation that occurs in diverse application fields ranging from biomedical optics, powder technology, to solid-state lighting. In particular, we study the transport of light in the visible wavelength range between 420 and 700 nm through silicone plates filled with YAG:Ce 3+ phosphor particles, that even re-emit absorbed light at different wavelengths. We measure the total transmission, the total reflection, and the ballistic transmission of light through these plates. We obtain average single particle properties namely the scattering cross-section σ s , the absorption cross-section σ a , and the anisotropy factor µ using an analytical approach, namely the P3 approximation to the radiative transfer equation. We verify the extracted transport parameters using Monte-Carlo simulations of the light transport. Our approach fully describes the light propagation in phosphor diffuser plates that are used in white LEDs and that reveal a strong absorption (L/l a > 1) up to L/l a = 4, where L is the slab thickness, l a is the absorption mean free path. In contrast, the widely used diffusion theory fails to describe this parameter range. Our approach is a suitable analytical tool for industry, since it provides a fast yet accurate determination of key transport parameters, and since it introduces predictive power into the design process of white light emitting diodes.

  14. Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR-excitable cyanine probe

    Science.gov (United States)

    Liu, Chang-hui; Qi, Feng-pei; Wen, Fu-bin; Long, Li-ping; Liu, Ai-juan; Yang, Rong-hua

    2018-04-01

    Cyanine has been widely utilized as a near infrared (NIR) fluorophore for detection of glutathione (GSH). However, the excitation of most of the reported cyanine-based probes was less than 800 nm, which inevitably induce biological background absorption and lower the sensitivity, limiting their use for detection of GSH in blood samples. To address this issue, here, a heptamethine cyanine probe (DNIR), with a NIR excitation wavelength at 804 nm and a NIR emission wavelength at 832 nm, is employed for the detection of GSH and its oxidized form (GSSG) in blood. The probe displays excellent selectivity for GSH over GSSG and other amino acids, and rapid response to GSH, in particular a good property for indirect detection of GSSG in the presence of enzyme glutathione reductase and the reducing agent nicotinamideadenine dinucleotide phosphate, without further separation prior to fluorescent measurement. To the best of our knowledge, this is the first attempt to explore NIR fluorescent approach for the simultaneous assay of GSH and GSSG in blood. As such, we expect that our fluorescence sensors with both NIR excitation and NIR emission make this strategy suitable for the application in complex physiological systems.

  15. 2D Vis/NIR correlation spectroscopy of cooked chicken meats

    Science.gov (United States)

    Liu, Yongliang; Chen, Yud-Ren; Ozaki, Yukihiro

    2000-03-01

    Cooking of chicken meats was investigated by the generalized two-dimensional visible/near-infrared (2D Vis/NIR) correlation spectroscopy. Synchronous and asynchronous spectra in the 400-700 nm visible region suggested that the 445 and 560 nm bands be ascribed to deoxymyoglobin and oxymyoglobin, and at least one of the 475, 520, and 585 nm bands is assignable to the denatured species (metmyoglobin). The asynchronous 2D NIR correlation spectrum showed that CH bands change their spectral intensities before the OH/NH groups during the cooking process, indicating that CH fractions are easily oxidized and degraded. In addition, strong correlation peaks were observed correlating the bands in the visible and NIR spectral regions.

  16. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging

    Science.gov (United States)

    Hemmer, Eva; Venkatachalam, Nallusamy; Hyodo, Hiroshi; Hattori, Akito; Ebina, Yoshie; Kishimoto, Hidehiro; Soga, Kohei

    2013-11-01

    In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near-infrared (NIR) range under NIR excitation may overcome those problems. Due to the outstanding optical and magnetic properties of lanthanide ions (Ln3+), nanoscopic host materials doped with Ln3+, e.g. Y2O3:Er3+,Yb3+, are promising candidates for NIR-NIR bioimaging. Ln3+-doped gadolinium-based inorganic nanostructures, such as Gd2O3:Er3+,Yb3+, have a high potential as opto-magnetic markers allowing the combination of time-resolved optical imaging and magnetic resonance imaging (MRI) of high spatial resolution. Recent progress in our research on over-1000 nm NIR fluorescent nanoprobes for in vivo NIR-NIR bioimaging will be discussed in this review.In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near

  17. Instrumentation and method for measuring NIR light absorbed in tissue during MR imaging in medical NIRS measurements

    Science.gov (United States)

    Myllylä, Teemu S.; Sorvoja, Hannu S. S.; Nikkinen, Juha; Tervonen, Osmo; Kiviniemi, Vesa; Myllylä, Risto A.

    2011-07-01

    Our goal is to provide a cost-effective method for examining human tissue, particularly the brain, by the simultaneous use of functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). Due to its compatibility requirements, MRI poses a demanding challenge for NIRS measurements. This paper focuses particularly on presenting the instrumentation and a method for the non-invasive measurement of NIR light absorbed in human tissue during MR imaging. One practical method to avoid disturbances in MR imaging involves using long fibre bundles to enable conducting the measurements at some distance from the MRI scanner. This setup serves in fact a dual purpose, since also the NIRS device will be less disturbed by the MRI scanner. However, measurements based on long fibre bundles suffer from light attenuation. Furthermore, because one of our primary goals was to make the measuring method as cost-effective as possible, we used high-power light emitting diodes instead of more expensive lasers. The use of LEDs, however, limits the maximum output power which can be extracted to illuminate the tissue. To meet these requirements, we improved methods of emitting light sufficiently deep into tissue. We also show how to measure NIR light of a very small power level that scatters from the tissue in the MRI environment, which is characterized by strong electromagnetic interference. In this paper, we present the implemented instrumentation and measuring method and report on test measurements conducted during MRI scanning. These measurements were performed in MRI operating rooms housing 1.5 Tesla-strength closed MRI scanners (manufactured by GE) in the Dept. of Diagnostic Radiology at the Oulu University Hospital.

  18. NIR-emitting molecular-based nanoparticles as new two-photon absorbing nanotools for single particle tracking

    Science.gov (United States)

    Daniel, J.; Godin, A. G.; Clermont, G.; Lounis, B.; Cognet, L.; Blanchard-Desce, M.

    2015-07-01

    In order to provide a green alternative to QDs for bioimaging purposes and aiming at designing bright nanoparticles combining both large one- and two-photon brightness, a bottom-up route based on the molecular engineering of dedicated red to NIR emitting dyes that spontaneously form fluorescent organic nanoparticles (FONs) has been implemented. These fully organic nanoparticles built from original quadrupolar dyes are prepared using a simple, expeditious and green protocol that yield very small molecular-based nanoparticles (radius ~ 7 nm) suspension in water showing a nice NIR emission (λem=710 nm). These FONs typically have absorption coefficient more than two orders larger than popular NIR-emitting dyes (such as Alexa Fluor 700, Cy5.5 ….) and much larger Stokes shift values (i.e. up to over 5500 cm-1). They also show very large two-photon absorption response in the 800-1050 nm region (up to about 106 GM) of major promise for two-photon excited fluorescence microscopy. Thanks to their brightness and enhanced photostability, these FONs could be imaged as isolated nanoparticles and tracked using wide-field imaging. As such, thanks to their size and composition (absence of heavy metals), they represent highly promising alternatives to NIR-emitting QDs for use in bioimaging and single particle tracking applications. Moreover, efficient FONs coating was achieved by using a polymeric additive built from a long hydrophobic (PPO) and a short hydrophilic (PEO) segment and having a cationic head group able to interact with the highly negative surface of FONs. This electrostatically-driven interaction promotes both photoluminescence and two-photon absorption enhancement leading to an increase of two-photon brightness of about one order of magnitude. This opens the way to wide-field single particle tracking under two-photon excitation

  19. Determination of NIR informative wavebands for transmission non-invasive blood glucose measurement using a Fourier transform spectrometer

    Science.gov (United States)

    Yang, Wenming; Liao, Ningfang; Cheng, Haobo; Li, Yasheng; Bai, Xueqiong; Deng, Chengyang

    2018-03-01

    Non-invasive blood glucose measurement using near infrared (NIR) spectroscopy relies on wavebands that provide reliable information about spectral absorption. In this study, we investigated wavebands which are informative for blood glucose in the NIR shortwave band (900˜1450 nm) and the first overtone band (1450˜1700 nm) through a specially designed NIR Fourier transform spectrometer (FTS), which featured a test fixture (where a sample or subject's finger could be placed) and all-reflective optics, except for a Michelson structure. Different concentrations of glucose solution and seven volunteers who had undergone oral glucose tolerance tests (OGTT) were studied to acquire transmission spectra in the shortwave band and the first overtone band. Characteristic peaks of glucose absorption were identified from the spectra of glucose aqueous solution by second-order derivative processing. The wavebands linked to blood glucose were successfully estimated through spectra of the middle fingertip of OGTT participants by a simple linear regression and correlation coefficient. The light intensity difference showed that glucose absorption in the first overtone band was much more prominent than it was in the shortwave band. The results of the SLR model established from seven OGTTs in total on seven participants enabled a positive estimation of the glucose-linked wavelength. It is suggested that wavebands with prominent characteristic peaks, a high correlation coefficient between blood glucose and light intensity difference and a relatively low standard deviation of predicted values will be the most informative wavebands for transmission non-invasive blood glucose measurement methods. This work provides a guidance for waveband selection for the development of non-invasive NIR blood glucose measurement.

  20. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  1. Systematics of interaction and strong absorption radii determined from heavy-ion elastic scattering

    International Nuclear Information System (INIS)

    Birkelund, J.R.; Huizenga, J.R.

    1977-01-01

    Various methods for determining the strong absorption radius for light and intermediate mass nuclei are discussed. It is found that this determination in terms of the half-density radii of the target and projectile is more accurate over the whole range of available data than the other simple parametrizations. 62 references

  2. N-Annulated perylene-substituted and fused porphyrin dimers with intense near-infrared one-photon and two-photon absorption

    KAUST Repository

    Luo, Jie

    2015-01-21

    Fusion of two N-annulated perylene (NP) units with a fused porphyrin dimer along the S0-S1 electronic transition moment axis has resulted in new near-infrared (NIR) dyes 1a/1b with very intense absorption (ε>1.3×105M-1cm-1) beyond 1250nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10-6 and 6.0×10-6 for 1a and 1b, respectively. The NP-substituted porphyrin dimers 2a/2b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited-state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer-like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two-photon absorption cross-sections in the NIR region due to extended π-conjugation. Time-dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.

  3. Relationship between high-energy absorption cross section and strong gravitational lensing for black hole

    International Nuclear Information System (INIS)

    Wei Shaowen; Liu Yuxiao; Guo Heng

    2011-01-01

    In this paper, we obtain a relation between the high-energy absorption cross section and the strong gravitational lensing for a static and spherically symmetric black hole. It provides us a possible way to measure the high-energy absorption cross section for a black hole from strong gravitational lensing through astronomical observation. More importantly, it allows us to compute the total energy emission rate for high-energy particles emitted from the black hole acting as a gravitational lens. It could tell us the range of the frequency, among which the black hole emits the most of its energy and the gravitational waves are most likely to be observed. We also apply it to the Janis-Newman-Winicour solution. The results suggest that we can test the cosmic censorship hypothesis through the observation of gravitational lensing by the weakly naked singularities acting as gravitational lenses.

  4. Strongly correlated quasi-one-dimensional bands: Ground states, optical absorption, and phonons

    International Nuclear Information System (INIS)

    Campbell, D.K.; Gammel, J.T.; Loh, E.Y. Jr.

    1989-01-01

    Using the Lanczos method for exact diagonalization on systems up to 14 sites, combined with a novel ''phase randomization'' technique for extracting more information from these small systems, we investigate several aspects of the one-dimensional Peierls-Hubbard Hamiltonian, in the context of trans-polyacetylene: the dependence of the ground state dimerization on the strength of the electron-electron interactions, including the effects of ''off-diagonal'' Coulomb terms generally ignored in the Hubbard model; the phonon vibrational frequencies and dispersion relations, and the optical absorption properties, including the spectrum of absorptions as a function of photon energy. These three different observables provide considerable insight into the effects of electron-electron interactions on the properties of real materials and thus into the nature of strongly correlated electron systems. 29 refs., 11 figs

  5. A comparative computational study of Csbnd N and Csbnd C bonding visible to NIR absorbing croconines

    Science.gov (United States)

    Chetti, Prabhakar; Tripathi, Anuj

    2018-03-01

    The lowest electronic excitations and charge transfer properties in two series of croconine dyes; 1) molecules with Csbnd N bonding, having an absorption in the visible region (400-600 nm) and 2) molecules with Csbnd C bonding, showing absorption in visible to near infrared (NIR) region (600-1100 nm) are analyzed by quantum-chemical calculations. The absorption maxima in Csbnd C bonding croconines (CCR) are always having 200-300 nm red shifted than its corresponding Csbnd N bonding croconines (NCR). The reason for this drastic red shift in CCR series than its corresponding NCR has been systematically studied by DFT, TDDFT and SAC-CI methods. It is found that, CCR series are with less charge transfer in nature and are having larger diradical character, whereas NCR series molecules showing larger charge transfer with lower diradical character. The change in bonding mode of central five membered croconate ring, from Csbnd N to Csbnd C, destabilization and/stabilization of HOMO LUMO levels were observed. This study may helpful in the design and synthesis of new visible to NIR absorbing croconine dyes which are useful in materials applications.

  6. The Utility of Using a Near-Infrared (NIR) Camera to Measure Beach Surface Moisture

    Science.gov (United States)

    Nelson, S.; Schmutz, P. P.

    2017-12-01

    Surface moisture content is an important factor that must be considered when studying aeolian sediment transport in a beach environment. A few different instruments and procedures are available for measuring surface moisture content (i.e. moisture probes, LiDAR, and gravimetric moisture data from surface scrapings); however, these methods can be inaccurate, costly, and inapplicable, particularly in the field. Near-infrared (NIR) spectral band imagery is another technique used to obtain moisture data. NIR imagery has been predominately used through remote sensing and has yet to be used for ground-based measurements. Dry sand reflects infrared radiation given off by the sun and wet sand absorbs IR radiation. All things considered, this study assesses the utility of measuring surface moisture content of beach sand with a modified NIR camera. A traditional point and shoot digital camera was internally modified with the placement of a visible light-blocking filter. Images were taken of three different types of beach sand at controlled moisture content values, with sunlight as the source of infrared radiation. A technique was established through trial and error by comparing resultant histogram values using Adobe Photoshop with the various moisture conditions. The resultant IR absorption histogram values were calibrated to actual gravimetric moisture content from surface scrapings of the samples. Overall, the results illustrate that the NIR spectrum modified camera does not provide the ability to adequately measure beach surface moisture content. However, there were noted differences in IR absorption histogram values among the different sediment types. Sediment with darker quartz mineralogy provided larger variations in histogram values, but the technique is not sensitive enough to accurately represent low moisture percentages, which are of most importance when studying aeolian sediment transport.

  7. On children's dyslexia with NIRS

    Science.gov (United States)

    Gan, Zhuo; Li, Chengjun; Gong, Hui; Luo, Qingming; Yao, Bin; Song, Ranran; Wu, Hanrong

    2003-12-01

    Developmental dyslexia is a kind of prevalent psychologic disease. Some functional imaging technologies, such as FMRI and PET, have been used to study the brain activities of dyslexics. NIRS is a kind of novel technology which is more and more widely being used for study of the cognitive psychology. However, there aren"t reports about the dyslexic research using NIRS to be found until now. This paper introduces a NIRS system of four measuring channels. Brain activities of dyslexic subjects and normal subjects during reading task were studied with the NIRS system. Two groups of subjects, the group of dyslexia and the group of normal, were appointed to perform two reading tasks. At the same time, their cortical activities were measured with the NIRS system. This experimental result indicates that the brain activities of the dyslexic group were significantly higher than the control group in BA 48 and that NIRS can be used for the study of human brain activity.

  8. Assessment of Transition Element Speciation in Glasses Using a Portable Transmission Ultraviolet-Visible-Near-Infrared (UV-Vis-NIR) Spectrometer.

    Science.gov (United States)

    Hunault, Myrtille; Lelong, Gérald; Gauthier, Michel; Gélébart, Frédéric; Ismael, Saindou; Galoisy, Laurence; Bauchau, Fanny; Loisel, Claudine; Calas, Georges

    2016-05-01

    A new low-cost experimental setup based on two compact dispersive optical spectrometers has been developed to measure optical absorption transmission spectra over the 350-2500 nm energy range. We demonstrate how near-infrared (NIR) data are essential to identify the coloring species in addition to ultraviolet visible data. After calibration with reference glasses, the use of an original sample stage that maintains the window panel in the vertical position enables the comparison of ancient and modern glasses embedded in a panel from the Sainte-Chapelle of Paris, without any sampling. The spectral resolution enables to observe fine resonances arising in the absorption bands of Cr(3+), and the complementary information obtained in the NIR enables to determine the contribution of Fe(2+), a key indicator of glassmaking conditions. © The Author(s) 2016.

  9. Strong water absorption in the dayside emission spectrum of the planet HD 189733b.

    Science.gov (United States)

    Grillmair, Carl J; Burrows, Adam; Charbonneau, David; Armus, Lee; Stauffer, John; Meadows, Victoria; van Cleve, Jeffrey; von Braun, Kaspar; Levine, Deborah

    2008-12-11

    Recent observations of the extrasolar planet HD 189733b did not reveal the presence of water in the emission spectrum of the planet. Yet models of such 'hot-Jupiter' planets predict an abundance of atmospheric water vapour. Validating and constraining these models is crucial to understanding the physics and chemistry of planetary atmospheres in extreme environments. Indications of the presence of water in the atmosphere of HD 189733b have recently been found in transmission spectra, where the planet's atmosphere selectively absorbs the light of the parent star, and in broadband photometry. Here we report the detection of strong water absorption in a high-signal-to-noise, mid-infrared emission spectrum of the planet itself. We find both a strong downturn in the flux ratio below 10 microm and discrete spectral features that are characteristic of strong absorption by water vapour. The differences between these and previous observations are significant and admit the possibility that predicted planetary-scale dynamical weather structures may alter the emission spectrum over time. Models that match the observed spectrum and the broadband photometry suggest that heat redistribution from the dayside to the nightside is weak. Reconciling this with the high nightside temperature will require a better understanding of atmospheric circulation or possible additional energy sources.

  10. Photochromic Polyurethanes Showing a Strong Change of Transparency and Refractive Index

    Directory of Open Access Journals (Sweden)

    Luca Oggioni

    2017-09-01

    Full Text Available Photochromic polymers have been studied as rewritable systems for optical elements with tunable transparency in the visible and refractive index in the NIR. Six diarylethene monomers have been synthesized to give thin films of photochromic polyurethanes. The absorption properties of the monomers in solution and of the corresponding polymeric films have been evaluated showing that a transparency contrast in the visible spectrum of the order of 10 3 can be obtained by a suitable choice of the chemical structure and illumination wavelength. The change in the refractive index in the NIR have been determined by ellipsometry showing changes larger than 10 − 2 . A trend of this variation with the absorption properties has been also highlighted. Fresnel lenses working on the basis of both a change of the transparency and the refractive index (amplitude and phase have been demonstrated.

  11. Dominance of strong absorption in 9Be + 28Si elastic scattering

    International Nuclear Information System (INIS)

    Zisman, M.S.; Cramer, J.G.; DeVries, R.M.; Goldberg, D.A.; Watson, J.W.

    1979-07-01

    Because the character of the scattering changes markedly from 6 Li to 12 C projectiles, a study of the 9 Be + 28 Si system was undertaken to examine the transition region. Data were measured at 121.0 and 201.6 MeV. Low-energy data of other investigators were used to carry out global optical model searches. It was found that the elastic scattering of 9 Be from 28 Si is dominated at all energies by relatively strong absorption. This removes much of the sensitivity to the real potential, and even elastic scattering data spanning a range of energies from 13 to 201 MeV do not allow a unique determination of the potential parameters. There is at least circumstantial evidence that 6 Li scattering at low energies (and by implication also 9 Be scattering) may be strongly influenced by breakup processes, although it is not clear that the mechanism is the same. 3 figures, 1 table

  12. Cytochrome cd1-containing nitrite reductase encoding gene nirS as a new functional biomarker for detection of anaerobic ammonium oxidizing (Anammox) bacteria.

    Science.gov (United States)

    Li, Meng; Ford, Tim; Li, Xiaoyan; Gu, Ji-Dong

    2011-04-15

    A newly designed primer set (AnnirS), together with a previously published primer set (ScnirS), was used to detect anammox bacterial nirS genes from sediments collected from three marine environments. Phylogenetic analysis demonstrated that all retrieved sequences were clearly different from typical denitrifiers' nirS, but do group together with the known anammox bacterial nirS. Sequences targeted by ScnirS are closely related to Scalindua nirS genes recovered from the Peruvian oxygen minimum zone (OMZ), whereas sequences targeted by AnnirS are more closely affiliated with the nirS of Candidatus 'Kuenenia stuttgartiensis' and even form a new phylogenetic nirS clade, which might be related to other genera of the anammox bacteria. Analysis demonstrated that retrieved sequences had higher sequence identities (>60%) with known anammox bacterial nirS genes than with denitrifiers' nirS, on both nucleotide and amino acid levels. Compared to the 16S rRNA and hydrazine oxidoreductase (hzo) genes, the anammox bacterial nirS not only showed consistent phylogenetic relationships but also demonstrated more reliable quantification of anammox bacteria because of the single copy of the nirS gene in the anammox bacterial genome and the specificity of PCR primers for different genera of anammox bacteria, thus providing a suitable functional biomarker for investigation of anammox bacteria.

  13. Gold/Chitosan Nanocomposites with Specific Near Infrared Absorption for Photothermal Therapy Applications

    Directory of Open Access Journals (Sweden)

    Guandong Zhang

    2012-01-01

    Full Text Available Gold/chitosan nanocomposites were synthesized and evaluated as a therapeutic agent for the photothermal therapy. Gold nanoparticles (Au NPs with controllable optical absorption in the near infrared (NIR region were prepared by the reaction of chloroauric acid and sodium thiosulfate. To apply these particles to cancer therapy, the bare Au NPs were coated with chitosan (CS, O-carboxymethyl chitosan (CMCS, and a blend of CS and CMCS for utilizations in physiologic conditions. The surface properties, optical stability, and photothermal ablation efficiency on hepatocellular carcinoma cells (HepG2 and human dermal fibroblast cells (HDF demonstrate that these gold nanocomposites have great potential as a therapeutic agent in in vitro tests. The CS-coated nanocomposites show the highest efficiency for the photo-ablation on the HepG2 cells, and the CS and CMCS blended coated particles show the best discrimination between the cancer cell and normal cells. The well-controlled NIR absorption and the biocompatible surface of these nanocomposites allow low-power NIR laser activation and low-dosage particle injection for the cancer cell treatment.

  14. NIR detection of honey adulteration reveals differences in water spectral pattern.

    Science.gov (United States)

    Bázár, György; Romvári, Róbert; Szabó, András; Somogyi, Tamás; Éles, Viktória; Tsenkova, Roumiana

    2016-03-01

    High fructose corn syrup (HFCS) was mixed with four artisanal Robinia honeys at various ratios (0-40%) and near infrared (NIR) spectra were recorded with a fiber optic immersion probe. Levels of HFCS adulteration could be detected accurately using leave-one-honey-out cross-validation (RMSECV=1.48; R(2)CV=0.987), partial least squares regression and the 1300-1800nm spectral interval containing absorption bands related to both water and carbohydrates. Aquaphotomics-based evaluations showed that unifloral honeys contained more highly organized water than the industrial sugar syrup, supposedly because of the greater variety of molecules dissolved in the multi-component honeys. Adulteration with HFCS caused a gradual reduction of water molecular structures, especially water trimers, which facilitate interaction with other molecules. Quick, non-destructive NIR spectroscopy combined with aquaphotomics could be used to describe water molecular structures in honey and to detect a rather common form of adulteration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. [Rapid assessment of critical quality attributes of Chinese materia medica (II): strategy of NIR assignment].

    Science.gov (United States)

    Pei, Yan-Ling; Wu, Zhi-Sheng; Shi, Xin-Yuan; Zhou, Lu-Wei; Qiao, Yan-Jiang

    2014-09-01

    The present paper firstly reviewed the research progress and main methods of NIR spectral assignment coupled with our research results. Principal component analysis was focused on characteristic signal extraction to reflect spectral differences. Partial least squares method was concerned with variable selection to discover characteristic absorption band. Two-dimensional correlation spectroscopy was mainly adopted for spectral assignment. Autocorrelation peaks were obtained from spectral changes, which were disturbed by external factors, such as concentration, temperature and pressure. Density functional theory was used to calculate energy from substance structure to establish the relationship between molecular energy and spectra change. Based on the above reviewed method, taking a NIR spectral assignment of chlorogenic acid as example, a reliable spectral assignment for critical quality attributes of Chinese materia medica (CMM) was established using deuterium technology and spectral variable selection. The result demonstrated the assignment consistency according to spectral features of different concentrations of chlorogenic acid and variable selection region of online NIR model in extract process. Although spectral assignment was initial using an active pharmaceutical ingredient, it is meaningful to look forward to the futurity of the complex components in CMM. Therefore, it provided methodology for NIR spectral assignment of critical quality attributes in CMM.

  16. Integration of Absorption Feature Information from Visible to Longwave Infrared Spectral Ranges for Mineral Mapping

    Directory of Open Access Journals (Sweden)

    Veronika Kopačková

    2017-09-01

    Full Text Available Merging hyperspectral data from optical and thermal ranges allows a wider variety of minerals to be mapped and thus allows lithology to be mapped in a more complex way. In contrast, in most of the studies that have taken advantage of the data from the visible (VIS, near-infrared (NIR, shortwave infrared (SWIR and longwave infrared (LWIR spectral ranges, these different spectral ranges were analysed and interpreted separately. This limits the complexity of the final interpretation. In this study a presentation is made of how multiple absorption features, which are directly linked to the mineral composition and are present throughout the VIS, NIR, SWIR and LWIR ranges, can be automatically derived and, moreover, how these new datasets can be successfully used for mineral/lithology mapping. The biggest advantage of this approach is that it overcomes the issue of prior definition of endmembers, which is a requested routine employed in all widely used spectral mapping techniques. In this study, two different airborne image datasets were analysed, HyMap (VIS/NIR/SWIR image data and Airborne Hyperspectral Scanner (AHS, LWIR image data. Both datasets were acquired over the Sokolov lignite open-cast mines in the Czech Republic. It is further demonstrated that even in this case, when the absorption feature information derived from multispectral LWIR data is integrated with the absorption feature information derived from hyperspectral VIS/NIR/SWIR data, an important improvement in terms of more complex mineral mapping is achieved.

  17. Hemodynamic Response to Interictal Epileptiform Discharges Addressed by Personalized EEG-fNIRS Recordings

    Science.gov (United States)

    Pellegrino, Giovanni; Machado, Alexis; von Ellenrieder, Nicolas; Watanabe, Satsuki; Hall, Jeffery A.; Lina, Jean-Marc; Kobayashi, Eliane; Grova, Christophe

    2016-01-01

    Objective: We aimed at studying the hemodynamic response (HR) to Interictal Epileptic Discharges (IEDs) using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG) and functional Near InfraRed Spectroscopy (fNIRS) recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF) and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (seven patients), followed by oxy-hemoglobin decreases (six patients). HR was lateralized in six patients and lasted from 8.5 to 30 s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result). The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30 s. Conclusions: (i) EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; (ii) cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function (iii) the HR is often bilateral and lasts up to 30 s. PMID:27047325

  18. Hemodynamic response to Interictal Epileptiform Discharges addressed by personalized EEG-fNIRS recordings

    Directory of Open Access Journals (Sweden)

    Giovanni ePellegrino

    2016-03-01

    Full Text Available Objective: We aimed at studying the hemodynamic response (HR to Interictal Epileptic Discharges (IEDs using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG and functional Near InfraRed Spectroscopy (fNIRS recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (7 patients, followed by oxy-hemoglobin decreases (6 patients. HR was lateralized in 6 patients and lasted from 8.5 to 30s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result. The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30s. Conclusions: i EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; ii cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function iii the HR is often bilateral and lasts up to 30s.

  19. Spectrum of absorption of a weak signal by an atom in a strong field

    International Nuclear Information System (INIS)

    Bakaev, D.S.; Vdovin, Y.A.; Ermachenko, V.M.; Yakovlenko, S.I.

    1985-01-01

    An analysis is made of the spectrum of absorption of a weak probe electromagnetic field by two-level atoms in a strong resonant laser field, undergoing collision with buffer gas atoms. The analysis is made using an approach that allows for the direct influence of a strong electromagnetic field on the dynamics of an elastic collision between an active atom and a buffer gas atom. Rate equations are analyzed for a combined ''atom--strong electromagnetic field'' system (an atom ''dressed'' by the field) allowing for spontaneous and optical collisional transitions, and also for the interaction with the probe field. In the steady-state case, an expression is derived for the electric susceptibility of the medium at the small-signal frequency. This expression contains the rates of the optical collisional transitions that depend nontrivially on the parameters of the strong electromagnetic field. The phenomenological characteristics of optical collisional transitions generally used are only valid at low intensities and for small frequency detunings of the strong electromagnetic field, i.e., in the impact limit

  20. NIRS in Space?

    Science.gov (United States)

    Peterson, David L.; Condon, Estelle (Technical Monitor)

    2000-01-01

    Proponents of near infrared reflectance spectroscopy (NIRS) have been exceptionally successful in applying NIRS techniques to many instances of organic material analyses. While this research and development began in the 1950s, in recent years, stimulation of advancements in instrumentation is allowing NIRS to begin to find its way into the food processing systems, into food quality and safety, textiles and much more. And, imaging high spectral resolution spectrometers are now being evaluated for the rapid scanning of foodstuffs, such as the inspection of whole chicken carcasses for fecal contamination. The imaging methods are also finding their way into medical applications, such as the non-intrusive monitoring of blood oxygenation in newborns. Can these scientific insights also be taken into space and successfully used to measure the Earth's condition? Is there an analog between the organic analyses in the laboratory and clinical settings and the study of Earth's living biosphere? How are the methods comparable and how do they differ?

  1. Investigation of the effects of different carotenoids on the absorption and CD signals of light harvesting 1 complexes

    NARCIS (Netherlands)

    Georgakopoulou, S.; van der Zwan, G.; Olsen, J.D.; Hunter, C.N.; Niederman, R.A.; van Grondelle, R.

    2006-01-01

    Absorption and circular dichroism (CD) spectra of light-harvesting (LH)1 complexes from the purple bacteria Rhodobacter (Rba.) sphaeroides and Rhodospirillum (Rsp.) rubrum are presented. The complexes exhibit very low intensity, highly nonconservative, near-infrared (NIR) CD spectra. Absorption and

  2. High performance of visible-NIR broad spectral photocurrent application of monodisperse PbSe nanocubes decorated on rGO sheets

    Science.gov (United States)

    Ghorban Shiravizadeh, A.; Elahi, S. M.; Sebt, S. A.; Yousefi, Ramin

    2018-02-01

    In this work, the photoresponse performance of monodisperse PbSe nanocubes in the range of visible and near-infrared (NIR) (400-1500 nm) regions was enhanced by reduced graphene oxide (rGO). A simple cost-effective method is presented to synthesize monodisperse PbSe nanocubes (NCs) that are decorated on the rGO sheets. By the addition of PbSe/rGO nanocomposites with different rGO concentrations, pristine PbSe NCs were synthesized with the same method. Microscopy images showed that the size of NCs was smaller than the exciton Bohr radius (46 nm) of PbSe bulk. Therefore, the UV-Vis-IR spectroscopy result revealed that the PbSe/rGO samples had absorption peaks in the NIR region around 1650 nm and showed a blue shift compared to the absorption peak of the PbSe bulk. J-V measurements of the samples indicated that monodisperse PbSe/rGO nanocomposites had a higher resistance than the other samples under dark condition. On the other hand, the resistance of the monodisperse PbSe/rGO nanocomposites decreased under different light source illuminations while the resistance of the other samples was increased under illumination. Photodetector measurements indicated that the monodisperse morphology of the PbSe NCs enhanced the photoresponse speed and photocurrent intensity. In addition, responsivity (R) and detectivity (D*) of the samples were higher in the NIR region.

  3. Greenhouse cooling by NIR-reflection

    NARCIS (Netherlands)

    Hemming, S.; Kempkes, F.; Braak, van der N.; Dueck, T.A.; Marissen, A.

    2007-01-01

    Wageningen UR investigated the potential of several NIR-filtering methods to be applied in horticulture. In this paper the analysis of the optical properties of available NIR-filtering materials is given including a calculation method to quantify the energy reduction under these materials and to

  4. Ionization and dissociation dynamics of vinyl bromide probed by femtosecond extreme ultraviolet transient absorption spectroscopy

    International Nuclear Information System (INIS)

    Lin, Ming-Fu; Neumark, Daniel M.; Gessner, Oliver; Leone, Stephen R.

    2014-01-01

    Strong-field induced ionization and dissociation dynamics of vinyl bromide, CH 2 =CHBr, are probed using femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy. Strong-field ionization is initiated with an intense femtosecond, near infrared (NIR, 775 nm) laser field. Femtosecond XUV pulses covering the photon energy range of 50-72 eV probe the subsequent dynamics by measuring the time-dependent spectroscopic features associated with transitions of the Br (3d) inner-shell electrons to vacancies in molecular and atomic valence orbitals. Spectral signatures are observed for the depletion of neutral C 2 H 3 Br, the formation of C 2 H 3 Br + ions in their ground (X ~ ) and first excited (A ~ ) states, the production of C 2 H 3 Br ++ ions, and the appearance of neutral Br ( 2 P 3/2 ) atoms by dissociative ionization. The formation of free Br ( 2 P 3/2 ) atoms occurs on a timescale of 330 ± 150 fs. The ionic A ~ state exhibits a time-dependent XUV absorption energy shift of ∼0.4 eV within the time window of the atomic Br formation. The yield of Br atoms correlates with the yield of parent ions in the A ~ state as a function of NIR peak intensity. The observations suggest that a fraction of vibrationally excited C 2 H 3 Br + (A ~ ) ions undergoes intramolecular vibrational energy redistribution followed by the C–Br bond dissociation. The C 2 H 3 Br + (X ~ ) products and the majority of the C 2 H 3 Br ++ ions are relatively stable due to a deeper potential well and a high dissociation barrier, respectively. The results offer powerful new insights about orbital-specific electronic processes in high field ionization, coupled vibrational relaxation and dissociation dynamics, and the correlation of valence hole-state location and dissociation in polyatomic molecules, all probed simultaneously by ultrafast table-top XUV spectroscopy

  5. Prediction of Caffeine Content in Java Preanger Coffee Beans by NIR Spectroscopy Using PLS and MLR Method

    Science.gov (United States)

    Budiastra, I. W.; Sutrisno; Widyotomo, S.; Ayu, P. C.

    2018-05-01

    Caffeine is one of important components in coffee that contributes to the coffee beverages flavor. Caffeine concentration in coffee bean is usually determined by chemical method which is time consuming and destructive method. A nondestructive method using NIR spectroscopy was successfully applied to determine the caffeine concentration of Arabica gayo coffee bean. In this study, NIR Spectroscopy was assessed to determine the caffeine concentration of java preanger coffee bean. A hundred samples, each consist of 96 g coffee beans were prepared for reflectance and chemical measurement. Reflectance of the sample was measured by FT-NIR spectrometer in the wavelength of 1000-2500 nm (10000-4000 cm-1) followed by determination of caffeine content using LCMS method. Calibration of NIR spectra and the caffeine content was carried out using PLS and MLR methods. Several spectra data processing was conducted to increase the accuracy of prediction. The result of the study showed that caffeine content could be determined by PLS model using 7 factors and spectra data processing of combination of the first derivative and MSC of spectra absorbance (r = 0.946; CV = 1.54 %; RPD = 2.28). A lower accuracy was obtained by MLR model consisted of three caffeine and other four absorption wavelengths (r = 0.683; CV = 3.31%; RPD = 1.18).

  6. Gold nanoflowers with mesoporous silica as "nanocarriers" for drug release and photothermal therapy in the treatment of oral cancer using near-infrared (NIR) laser light

    Science.gov (United States)

    Song, Wenzhi; Gong, Junxia; Wang, Yuqian; Zhang, Yan; Zhang, Hongmei; Zhang, Weihang; Zhang, Hu; Liu, Xin; Zhang, Tianfu; Yin, Wanzhong; Yang, Wensheng

    2016-04-01

    In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO2) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO2@mSiO2), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150-200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO2 and AuNFs@SiO2@mSiO2 exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.

  7. Study the effects of varying interference upon the optical properties of turbid samples using NIR spatial light modulation

    Science.gov (United States)

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David

    2018-03-01

    Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.

  8. Decoding vigilance with NIRS.

    Science.gov (United States)

    Bogler, Carsten; Mehnert, Jan; Steinbrink, Jens; Haynes, John-Dylan

    2014-01-01

    Sustained, long-term cognitive workload is associated with variations and decrements in performance. Such fluctuations in vigilance can be a risk factor especially during dangerous attention demanding activities. Functional MRI studies have shown that attentional performance is correlated with BOLD-signals, especially in parietal and prefrontal cortical regions. An interesting question is whether these BOLD-signals could be measured in real-world scenarios, say to warn in a dangerous workplace whenever a subjects' vigilance is low. Because fMRI lacks the mobility needed for such applications, we tested whether the monitoring of vigilance might be possible using Near-Infrared Spectroscopy (NIRS). NIRS is a highly mobile technique that measures hemodynamics in the surface of the brain. We demonstrate that non-invasive NIRS signals correlate with vigilance. These signals carry enough information to decode subjects' reaction times at a single trial level.

  9. Pharmaceutical applications using NIR technology in the cloud

    Science.gov (United States)

    Grossmann, Luiz; Borges, Marco A.

    2017-05-01

    NIR technology has been available for a long time, certainly more than 50 years. Without any doubt, it has found many niche applications, especially in the pharmaceutical, food, agriculture and other industries due to its flexibility. There are a number of advantages over other existing analytical technologies we can list, for example virtually no need for sample preparation; usually NIR does not demand sample destruction and subsequent discard; NIR provides fast results; NIR does not require extensive operator training and carries small operating costs. However, the key point about NIR technology is the fact that it's more related to statistics than chemistry or, in other words, we are more concerned about analyzing and distinguishing features within the data than looking deep into the chemical entities themselves. A simple scan reading in the NIR range usually involves huge inflows of data points. Usually we decompose the signals into hundreds of predictor variables and use complex algorithms to predict classes or quantify specific content. NIR is all about math, especially by converting chemical information into numbers. Easier said than done. A NIR signal is a very complex one. Usually the signal responses are not specific to a particular material, rather, each grouṕs responses add up, thus providing low specificity of a spectral reading. This paper proposes a simple and efficient method to analyze and compare NIR spectra for the purpose of identifying the presence of active pharmaceutical ingredients in finished products using low cost NIR scanning devices connected to the internet cloud.

  10. A novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) specifically detects CXCR4 expressing tumors.

    Science.gov (United States)

    Santagata, Sara; Portella, Luigi; Napolitano, Maria; Greco, Adelaide; D'Alterio, Crescenzo; Barone, Maria Vittoria; Luciano, Antonio; Gramanzini, Matteo; Auletta, Luigi; Arra, Claudio; Zannetti, Antonella; Scala, Stefania

    2017-05-31

    C-X-C chemokine receptor 4 (CXCR4) is over-expressed in multiple human cancers and correlates with tumor aggressiveness, poor prognosis and increased risk for distant metastases. Imaging agents for CXCR4 are thus highly desirable. We developed a novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) conjugating the new developed CXCR4 peptidic antagonist Peptide R with the NIR fluorescent dye VivoTag-S750. Specific CXCR4 binding was obtained in cells overexpressing human CXCR4 (B16-hCXCR4 and human melanoma cells PES43), but not in CXCR4 low expressing cells (FB-1). Ex vivo evaluation demonstrated that PepR-NIR750 specifically detects B16-hCXCR4-derived subcutaneous tumors and lung metastases. Fluorescence Molecular Tomography (FMT) in vivo imaging was performed on mice carrying subcutaneous CHO and CHO-CXCR4 tumors. PepR-NIR750 accumulates only in CXCR4-positive expressing subcutaneous tumors. Additionally, an intense NIR fluorescence signal was detected in PES43-derived lung metastases of nude mice injected with PepR-NIR750 versus mice injected with VivoTag-S750. With a therapeutic intent, mice bearing PES43-derived lung metastases were treated with Peptide R. A the dramatic reduction in PES43-derived lung metastases was detected through a decrease of the PepR-NIR750 signal. PepR-NIR750 is a specific probe for non-invasive detection of human high CXCR4-expressing tumors and metastatic lesion and thus a valuable tool for cancer molecular imaging.

  11. Violet-green excitation for NIR luminescence of Yb3+ ions in Bi2O3-B2O3-SiO2-Ga2O3 glasses.

    Science.gov (United States)

    Li, Weiwei; Cheng, Jimeng; Zhao, Guoying; Chen, Wei; Hu, Lili; Guzik, Malgorzata; Boulon, Georges

    2014-04-21

    60Bi(2)O(3)-20B(2)O(3)-10SiO(2)-10Ga(2)O(3) glasses doped with 1-9 mol% Yb(2)O(3) were prepared and investigated mainly on their violet-green excitation for the typical NIR emission of Yb(3+), generally excited in the NIR. Two violet excitation bands at 365 nm and 405 nm are related to Yb(2+) and Bi(3+). 465 nm excitation band and 480 nm absorption band in the blue-green are assigned to Bi(0) metal nanoparticles/grains. Yb-content-dependence of the excitation and absorption means that Bi(0) is the reduced product of Bi(3+), but greatly competed by the redox reaction of Yb(2+) ↔ Yb(3+). It is proved that the violet-green excitations result in the NIR emission of Yb(3+). On the energy transfer, the virtual level of Yb(3+)-Yb(3+) as well as Bi(0) dimers probably plays an important role. An effective and controllable way is suggested to achieve nano-optical applications by Bi(0) metal nanoparticles/grains and Yb(3+).

  12. Determination of the Neutron Flux in the Reactor Zones with the Strong Neutron Absorption and Leakage

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milosevic, M.

    2004-11-01

    The procedures for the numerical and experimental determination of the neutron flux in the zones with the strong neutron absorption and leakage are described in this paper. Numerical procedure is based on the application of the SCALE-4.4a code system where the Dancoff factors are determined by the VEGA2DAN code. Two main parts of the experimental methodology are measurement of the activity of irradiated foils and determination of the averaged neutron absorption cross-section in the foils by the SCALE-4.4a calculation procedure. The proposed procedures have been applied for the determination of the neutron flux in the internal neutron converter used with the RB reactor core configuration number 114. (author)

  13. The Effect of Motion Artifacts on Near-Infrared Spectroscopy (NIRS Data and Proposal of a Video-NIRS System

    Directory of Open Access Journals (Sweden)

    Masayuki Satoh

    2017-11-01

    Full Text Available Aims: The aims of this study were (1 to investigate the influence of physical movement on near-infrared spectroscopy (NIRS data, (2 to establish a video-NIRS system which simultaneously records NIRS data and the subject’s movement, and (3 to measure the oxygenated hemoglobin (oxy-Hb concentration change (Δoxy-Hb during a word fluency (WF task. Experiment 1: In 5 healthy volunteers, we measured the oxy-Hb and deoxygenated hemoglobin (deoxy-Hb concentrations during 11 kinds of facial, head, and extremity movements. The probes were set in the bilateral frontal regions. The deoxy-Hb concentration was increased in 85% of the measurements. Experiment 2: Using a pillow on the backrest of the chair, we established the video-NIRS system with data acquisition and video capture software. One hundred and seventy-six elderly people performed the WF task. The deoxy-Hb concentration was decreased in 167 subjects (95%. Experiment 3: Using the video-NIRS system, we measured the Δoxy-Hb, and compared it with the results of the WF task. Δoxy-Hb was significantly correlated with the number of words. Conclusion: Like the blood oxygen level-dependent imaging effect in functional MRI, the deoxy-Hb concentration will decrease if the data correctly reflect the change in neural activity. The video-NIRS system might be useful to collect NIRS data by recording the waveforms and the subject’s appearance simultaneously.

  14. Quantitative interpretations of Visible-NIR reflectance spectra of blood.

    Science.gov (United States)

    Serebrennikova, Yulia M; Smith, Jennifer M; Huffman, Debra E; Leparc, German F; García-Rubio, Luis H

    2008-10-27

    This paper illustrates the implementation of a new theoretical model for rapid quantitative analysis of the Vis-NIR diffuse reflectance spectra of blood cultures. This new model is based on the photon diffusion theory and Mie scattering theory that have been formulated to account for multiple scattering populations and absorptive components. This study stresses the significance of the thorough solution of the scattering and absorption problem in order to accurately resolve for optically relevant parameters of blood culture components. With advantages of being calibration-free and computationally fast, the new model has two basic requirements. First, wavelength-dependent refractive indices of the basic chemical constituents of blood culture components are needed. Second, multi-wavelength measurements or at least the measurements of characteristic wavelengths equal to the degrees of freedom, i.e. number of optically relevant parameters, of blood culture system are required. The blood culture analysis model was tested with a large number of diffuse reflectance spectra of blood culture samples characterized by an extensive range of the relevant parameters.

  15. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies.

    Science.gov (United States)

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming

    2018-02-01

    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Decoding vigilance with NIRS.

    Directory of Open Access Journals (Sweden)

    Carsten Bogler

    Full Text Available Sustained, long-term cognitive workload is associated with variations and decrements in performance. Such fluctuations in vigilance can be a risk factor especially during dangerous attention demanding activities. Functional MRI studies have shown that attentional performance is correlated with BOLD-signals, especially in parietal and prefrontal cortical regions. An interesting question is whether these BOLD-signals could be measured in real-world scenarios, say to warn in a dangerous workplace whenever a subjects' vigilance is low. Because fMRI lacks the mobility needed for such applications, we tested whether the monitoring of vigilance might be possible using Near-Infrared Spectroscopy (NIRS. NIRS is a highly mobile technique that measures hemodynamics in the surface of the brain. We demonstrate that non-invasive NIRS signals correlate with vigilance. These signals carry enough information to decode subjects' reaction times at a single trial level.

  17. Optical properties of La2CuO4 and La2−xCaxCuO4 crystallites in UV–vis–NIR region synthesized by sol–gel process

    International Nuclear Information System (INIS)

    Li Yifeng; Huang Jianfeng; Cao Liyun; Wu Jianpeng; Fei Jie

    2012-01-01

    La 2 CuO 4 and La 2−x Ca x CuO 4 crystallites were prepared via a simple sol–gel process. The as-prepared La 2 CuO 4 and La 2 −x Ca x CuO 4 crystallites were characterized by X-ray diffraction, transmission electron microscope and UV–vis–NIR spectra. Results show that the grain size of La 2 CuO 4 crystallites increases with the increase of heat treatment temperature from 600 °C to 800 °C. Optical properties show that La 2 CuO 4 crystallites have broad absorption both in the UV–vis region and in the NIR region. The band gap of the as-prepared crystallites decreases from 1.367 eV to 1.284 eV with the increase of calcination temperature from 600 °C to 800 °C. In the series of La 2−x Ca x CuO 4 compounds (x = 0.05, 0.08, 0.10, 0.12, 0.15 and 0.20), all of the samples exhibit an orthogonal crystal structure and the solubility limit of Ca 2+ in La 2 CuO 4 is within the range of x = 0.12–0.15. In the whole UV–vis–NIR region, La 2−x Ca x CuO 4 crystallites exhibit a broad absorption and the corresponding band gap first increases and then decreases with increasing of Ca 2+ content. - Highlights: ► The optical band gap can be tuned by adjusting the grain size and Ca 2+ content. ► La 2 CuO 4 crystallites exhibit a broad absorption band both in the UV–vis region and in the NIR region. ► The band gap increases from 1.284 eV to 1.319 eV with the decrease of heat treatment temperature. ► In the whole UV–vis–NIR region, the La 2−x Ca x CuO 4 crystallites displayed a broad absorption. ► The band gap of La 2−x Ca x CuO 4 increases linearly with doping level when 0 ≤ x ≤ 0.12.

  18. Synthesis, characterization and optical properties of a high NIR reflecting yellow inorganic pigment: Mo6+ doped Y2Ce2O7 as a cool colorant

    International Nuclear Information System (INIS)

    Vishnu, V.S.; Reddy, M.L.P.

    2010-01-01

    Full text: Pigments possessing the ability to confer high solar reflectance have received considerable attention in recent years. The inorganic class of NIR reflective pigments are mainly metal oxides and are primarily employed in two applications: (i) visual camouflage and (ii) reducing heat build up. More than half of the solar radiation consists of near-infrared radiation (52%), the remaining being 43% visible light and 5% ultraviolet radiation. Over heating due to solar radiation negatively affects comfort in the built environment and contributes substantially to electrical consumption for air conditioning and release of green house gases. A pigment which has strong reflections in the NIR region (780-2500 nm) can be referred to as a 'cool' pigment. However, most of the NIR reflective inorganic pigments particularly yellow (eg. cadmium yellow, lead chromate, chrome titanate yellow etc.) contain toxic metals and hence their consumption is being limited. Replacing them with environmentally benign cool pigments that absorb less NIR radiation can yield coatings similar in color, but with higher NIR reflectance. A new class of yellow inorganic pigments possessing high near-infrared reflectance (above 90% at 1100 nm), having the general formula Y 2 Ce 2-x Mo x O 7+δ (x ranges from 0 to 0.5) were synthesized by traditional solid state route. The synthesized samples were characterized by powder X-ray diffraction, Scanning Electron Microscopy, UV-Vis-NIR Diffuse Reflectance Spectroscopy, CIE 1976Lab color scales and TG/DTA analysis. XRD analysis reveals the existence of a major cubic fluorite phase for the pigment samples. The diffuse reflectance analysis of the pigments shows a significant shift in the absorption edge towards higher wavelengths (from 410 nm to 506 nm) for the molybdenum doped samples in comparison with the parent compound. The band gap of the designed pigments changes from 3.01 to 2.44 eV and displays colors varying from ivory white to yellow. The

  19. Automatic moisture content determination on biomass with NIR and radio frequency spectroscopy; Automatisk fukthaltsmaetning paa biobraenslen med NIR samt radiofrekvent spektroskopi

    Energy Technology Data Exchange (ETDEWEB)

    Dahlquist, Erik; Nystroem, Jenny; Thorin, Eva; Paz, Ana de la [Maelardalen Univ. (Sweden). Dept. of Public Technology; Axrup, Lars [Stora Enso AB (Sweden)

    2005-08-01

    The goal with the project has been to evaluate two methods for determination of moisture content in biomass fuels and to determine if these methods can be used in practice in connection with delivery control of biomass at power plants. Tests have been performed with different biomass qualities and with two different measurement methods within a large moisture span, 0.6-72%. The two methods have been NIR (Near Infrared spectroscopy), and RF (Radio Frequency spectroscopy). The NIR-method is a surface analysis method, where hydro-carbons like wood have a different absorption pattern than water. The RF-method is a bulk method and utilizes that wood and water have different dielectric constants. Radio waves thus are affected differently by transportation through wet and dry biomass. In this project we have studied how representative sampling can be achieved from a large volume of delivered biomass fuel. We also have performed calibration with mixtures of the different fuels. Sampling has been performed by extracting biomass in a four meter long screw from the large volume as it is poured into a storage vessel. A conveyor belt is then transporting the material to the measurement systems. Two different NIR-instruments, DA (Diod Array) -NIR respective FT (Fourier Transform)- NIR, were placed above the conveyor belt. The material was collected from the belt into the measuring vessel for the RF, a 200 liter 'oil barrel'. The radio waves were sent from the transceiver into the sample from above without direct contact between the biomass and the transceiver antenna. Six different fuels were studied separately. Calibration was performed where the moisture content was varied by mixing relatively dry fuel with humidified biomass in different proportions a day before the measurements. Samples were taken from each mixture in connection with the measurements, from the conveyor belt. The samples were made in such a way that they represented the whole volume as good as

  20. Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes

    Science.gov (United States)

    Funane, Tsukasa; Sato, Hiroki; Yahata, Noriaki; Takizawa, Ryu; Nishimura, Yukika; Kinoshita, Akihide; Katura, Takusige; Atsumori, Hirokazu; Fukuda, Masato; Kasai, Kiyoto; Koizumi, Hideaki; Kiguchi, Masashi

    2015-01-01

    Abstract. It has been reported that a functional near-infrared spectroscopy (fNIRS) signal can be contaminated by extracerebral contributions. Many algorithms using multidistance separations to address this issue have been proposed, but their spatial separation performance has rarely been validated with simultaneous measurements of fNIRS and functional magnetic resonance imaging (fMRI). We previously proposed a method for discriminating between deep and shallow contributions in fNIRS signals, referred to as the multidistance independent component analysis (MD-ICA) method. In this study, to validate the MD-ICA method from the spatial aspect, multidistance fNIRS, fMRI, and laser-Doppler-flowmetry signals were simultaneously obtained for 12 healthy adult males during three tasks. The fNIRS signal was separated into deep and shallow signals by using the MD-ICA method, and the correlation between the waveforms of the separated fNIRS signals and the gray matter blood oxygenation level–dependent signals was analyzed. A three-way analysis of variance (signal depth×Hb kind×task) indicated that the main effect of fNIRS signal depth on the correlation is significant [F(1,1286)=5.34, pdeep and shallow signals, and the accuracy and reliability of the fNIRS signal will be improved with the method. PMID:26157983

  1. THE INTRINSIC FRACTIONS AND RADIO PROPERTIES OF LOW-IONIZATION BROAD ABSORPTION LINE QUASARS

    International Nuclear Information System (INIS)

    Dai Xinyu; Shankar, Francesco; Sivakoff, Gregory R.

    2012-01-01

    Low-ionization (Mg II, Fe II, and Fe III) broad absorption line quasars (LoBALs) probe a relatively obscured quasar population and could be at an early evolutionary stage for quasars. We study the intrinsic fractions of LoBALs using the Sloan Digital Sky Survey (SDSS), Two Micron All Sky Survey, and Faint Images of the Radio Sky at Twenty cm survey. We find that the LoBAL fractions of the near-infrared (NIR) and radio samples are approximately 5-7 times higher than those measured in the optical sample. This suggests that the fractions measured in the NIR and radio bands are closer to the intrinsic fractions of the populations, and that the optical fractions are significantly biased due to obscuration effects, similar to high-ionization broad absorption line quasars (HiBALs). Considering a population of obscured quasars that do not enter the SDSS, which could have a much higher LoBAL fraction, we expect that the intrinsic fraction of LoBALs could be even higher. We also find that the LoBAL fractions decrease with increasing radio luminosities, again, similarly to HiBALs. In addition, we find evidence for increasing fractions of LoBALs toward higher NIR luminosities, especially for FeLoBALs with a fraction of ∼18% at M K s < -31 mag. This population of NIR-luminous LoBALs may be at an early evolutionary stage of quasar evolution. To interpret the data, we use a luminosity-dependent model for LoBALs that yields significantly better fits than those from a pure geometric model.

  2. Gold nanoflowers with mesoporous silica as “nanocarriers” for drug release and photothermal therapy in the treatment of oral cancer using near-infrared (NIR) laser light

    International Nuclear Information System (INIS)

    Song, Wenzhi; Gong, Junxia; Wang, Yuqian; Zhang, Yan; Zhang, Hongmei; Zhang, Weihang; Zhang, Hu; Liu, Xin; Zhang, Tianfu; Yin, Wanzhong; Yang, Wensheng

    2016-01-01

    In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO_2) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO_2@mSiO_2), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150–200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO_2 and AuNFs@SiO_2@mSiO_2 exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.

  3. Gold nanoflowers with mesoporous silica as “nanocarriers” for drug release and photothermal therapy in the treatment of oral cancer using near-infrared (NIR) laser light

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wenzhi; Gong, Junxia [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Wang, Yuqian [Jilin University, China-Japan Union Hospital, Scientific Research Center (China); Zhang, Yan [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Zhang, Hongmei [Jilin University, China-Japan Union Hospital, Scientific Research Center (China); Zhang, Weihang; Zhang, Hu; Liu, Xin; Zhang, Tianfu [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Yin, Wanzhong, E-mail: yinwanzhong88@hotmail.com [First Clinical Hospital of Jilin University, Department of Otorhinolaryngology (China); Yang, Wensheng, E-mail: wsyang@mail.jlu.edu.cn [College of Chemistry, The Key Laboratory of Surface and Interface Chemistry of Jilin Province (China)

    2016-04-15

    In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO{sub 2}) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO{sub 2}@mSiO{sub 2}), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150–200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO{sub 2} and AuNFs@SiO{sub 2}@mSiO{sub 2} exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.

  4. NIR Ratiometric Luminescence Detection of pH Fluctuation in Living Cells with Hemicyanine Derivative-Assembled Upconversion Nanophosphors.

    Science.gov (United States)

    Li, Haixia; Dong, Hao; Yu, Mingming; Liu, Chunxia; Li, Zhanxian; Wei, Liuhe; Sun, Ling-Dong; Zhang, Hongyan

    2017-09-05

    It is crucial for cell physiology to keep the homeostasis of pH, and it is highly demanded yet challenging to develop luminescence resonance energy transfer (LRET)-based near-infrared (NIR) ratiometric luminescent sensor for the detection of pH fluctuation with NIR excitation. As promising energy donors for LRET, upconversion nanoparticles (UCNPs) have been widely used to fabricate nanosensors, but the relatively low LRET efficiency limits their application in bioassay. To improve the LRET efficiency, core/shell/shell structured β-NaGdF 4 @NaYF 4 :Yb,Tm@NaYF 4 UCNPs were prepared and decorated with hemicyanine dyes as an LRET-based NIR ratiometric luminescent pH fluctuation-nanosensor for the first time. The as-developed nanosensor not only exhibits good antidisturbance ability, but it also can reversibly sense pH and linearly sense pH in a range of 6.0-9.0 and 6.8-9.0 from absorption and upconversion emission spectra, respectively. In addition, the nanosensor displays low dark toxicity under physiological temperature, indicating good biocompatibility. Furthermore, live cell imaging results revealed that the sensor can selectively monitor pH fluctuation via ratiometric upconversion luminescence behavior.

  5. [In hospital and mid-term outcome of patients with NIR stent implantation: multicenter ESPORT-NIR registry].

    Science.gov (United States)

    Iñiguez, A; García, E; Seabra, R; Bordes, P; Bethencourt, A; Rigla, J

    2001-05-01

    Despite improvements in the results and techniques of catheter-based revascularization, few studies have evaluated the clinical results of the application of new stent designs. We describe the in-hospital and mid-term outcome of patients undergoing a stent NIR implantation. At least 1 Stent NIR was implanted in 1.004 patients (1.136 lesions) recruited from 50 centers in an international, multicenter, prospective, registry (Spain and Portugal NIR stent registry). Inclusion criteria were objective coronary ischemia related to a severe de novo lesion or first restenosis in native vessels with a reference diameter >= 2.75 mm. The primary end-point was the incidence of major adverse cardiac events within the first 7 months of follow-up. The mean age of the patients was 60 years and 82% were male. Angioplasty was indicated due to unstable angina in 61% of the cases. Stent implantation was successfully achieved in 99.6%. Clinical success (angiographic success without in-hospital major events) was achieved in 98.6% of patients. The rate of angiographic restenosis (> 50% stenosis narrowing) was 16% (CI 95%; 11.7-21.2). The accumulated major cardiac adverse event rate at seven months of follow-up was 8.7%: death (0.9%), acute myocardial infarction (1.2%) and target lesion revascularization (6.6%). In the wide setting of the population included in the ESPORT-NIR registry, stent NIR implantation was a highly effective therapy with a good mid-term clinical and angiographic outcome.

  6. Time domain functional NIRS imaging for human brain mapping.

    Science.gov (United States)

    Torricelli, Alessandro; Contini, Davide; Pifferi, Antonio; Caffini, Matteo; Re, Rebecca; Zucchelli, Lucia; Spinelli, Lorenzo

    2014-01-15

    This review is aimed at presenting the state-of-the-art of time domain (TD) functional near-infrared spectroscopy (fNIRS). We first introduce the physical principles, the basics of modeling and data analysis. Basic instrumentation components (light sources, detection techniques, and delivery and collection systems) of a TD fNIRS system are described. A survey of past, existing and next generation TD fNIRS systems used for research and clinical studies is presented. Performance assessment of TD fNIRS systems and standardization issues are also discussed. Main strengths and weakness of TD fNIRS are highlighted, also in comparison with continuous wave (CW) fNIRS. Issues like quantification of the hemodynamic response, penetration depth, depth selectivity, spatial resolution and contrast-to-noise ratio are critically examined, with the help of experimental results performed on phantoms or in vivo. Finally we give an account on the technological developments that would pave the way for a broader use of TD fNIRS in the neuroimaging community. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. NIRS - Near infrared spectroscopy - investigations in neurovascular diseases

    DEFF Research Database (Denmark)

    Schytz, Henrik Winther

    2015-01-01

    The purpose of this thesis was to explore and develop methods, where continuous wave near infrared spectroscopy (CW-NIRS) can be applied in different neurovascular diseases, in order to find biological markers that are useful in clinical neurology. To develop a new method to detect changes...... tomography (133Xe-SPECT) and the corrected BFI value. It was concluded, that it was not possible to obtain reliable BFI data with the ICG CW-NIRS method. NIRS measurements of low frequency oscillations (LFOs) may be a reliable method to investigate vascular alterations in neurovascular diseases......, but this requires an acceptable LFOs variation between hemispheres and over time in the healthy brain. The second study therefore investigated day-to-day and hemispheric variations in LFOs with NIRS. It was shown that NIRS might be useful in assessing LFOs between hemispheres, as well as interhemispheric phase...

  8. Remote Estimation of Chlorophyll-a in Inland Waters by a NIR-Red-Based Algorithm: Validation in Asian Lakes

    Directory of Open Access Journals (Sweden)

    Gongliang Yu

    2014-04-01

    Full Text Available Satellite remote sensing is a highly useful tool for monitoring chlorophyll-a concentration (Chl-a in water bodies. Remote sensing algorithms based on near-infrared-red (NIR-red wavelengths have demonstrated great potential for retrieving Chl-a in inland waters. This study tested the performance of a recently developed NIR-red based algorithm, SAMO-LUT (Semi-Analytical Model Optimizing and Look-Up Tables, using an extensive dataset collected from five Asian lakes. Results demonstrated that Chl-a retrieved by the SAMO-LUT algorithm was strongly correlated with measured Chl-a (R2 = 0.94, and the root-mean-square error (RMSE and normalized root-mean-square error (NRMS were 8.9 mg∙m−3 and 72.6%, respectively. However, the SAMO-LUT algorithm yielded large errors for sites where Chl-a was less than 10 mg∙m−3 (RMSE = 1.8 mg∙m−3 and NRMS = 217.9%. This was because differences in water-leaving radiances at the NIR-red wavelengths (i.e., 665 nm, 705 nm and 754 nm used in the SAMO-LUT were too small due to low concentrations of water constituents. Using a blue-green algorithm (OC4E instead of the SAMO-LUT for the waters with low constituent concentrations would have reduced the RMSE and NRMS to 1.0 mg∙m−3 and 16.0%, respectively. This indicates (1 the NIR-red algorithm does not work well when water constituent concentrations are relatively low; (2 different algorithms should be used in light of water constituent concentration; and thus (3 it is necessary to develop a classification method for selecting the appropriate algorithm.

  9. Shed a light of wireless technology on portable mobile design of NIRS

    Science.gov (United States)

    Sun, Yunlong; Li, Ting

    2016-03-01

    Mobile internet is growing rapidly driven by high-tech companies including the popular Apple and Google. The wireless mini-NIRS is believed to deserve a great spread future, while there is sparse report on wireless NIRS device and even for the reported wireless NIRS, its wireless design is scarcely presented. Here we focused on the wireless design of NIRS devices. The widely-used wireless communication standards and wireless communication typical solutions were employed into our NIRS design and then compared on communication efficiency, distance, error rate, low-cost, power consumption, and stabilities, based on the requirements of NIRS applications. The properly-performed wireless communication methods matched with the characteristics of NIRS are picked out. Finally, we realized one recommended wireless communication in our NIRS, developed a test platform on wireless NIRS and tested the full properties on wireless communication. This study elaborated the wireless communication methods specified for NIRS and suggested one implementation with one example fully illustrated, which support the future mobile design on NIRS devices.

  10. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films.

    Science.gov (United States)

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-08-01

    Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

  11. The action of NIR (808nm) laser radiation and gold nanorods labeled with IgA and IgG human antibodies on methicillin-resistant and methicillin sensitive strains of Staphylococcus aureus

    Science.gov (United States)

    Tuchina, Elena S.; Petrov, Pavel O.; Ratto, Fulvio; Centi, Sonia; Pini, Roberto; Tuchin, Valery V.

    2015-03-01

    The effect of NIR laser radiation (808 nm) on methicillin-sensitive and methicillin resistant strains of Staphylococcus aureus incubated with gold nanorods is studied. Nanorods having length of 44 (± 4) nm and diameter of 10 (± 3) nm with the absorption maximum in the NIR (800 nm), functionalized with human immunoglobulins IgA and IgG, were synthesized and used in the studies. The killing ability up to 97% of the microorganism populations by using this nanotechnology was shown.

  12. Ultrafast transient-absorption of the solvated electron in water

    International Nuclear Information System (INIS)

    Kimura, Y.; Alfano, J.C.; Walhout, P.K.; Barbara, P.F.

    1994-01-01

    Ultrafast near infrared (NIR)-pump/variable wavelength probe transient-absorption spectroscopy has been performed on the aqueous solvated electron. The photodynamics of the solvated electron excited to its p-state are qualitatively similar to previous measurements of the dynamics of photoinjected electrons at high energy. This result confirms the previous interpretation of photoinjected electron dynamics as having a rate-limiting bottleneck at low energies presumably involving the p-state

  13. Epoch making NIRS studies seen through citation trends

    International Nuclear Information System (INIS)

    Dan, Ippeita

    2009-01-01

    Near-infrared spectroscopy (NIRS) studies through citation trends are investigated of literature concerning only the brain function measurement and its methodology together with NIRS principle, technological development, present state and future view. Investigation is conducted firstly for the survey of important author name of those concerned papers in Web of Science and Google Scholar with search words of NIRS, brain and optical topography as an option. Second, >100 papers of those authors citing any of them are picked up and their papers are ranked in accordance with Web of Science citation number, of which top-nineteen are presented here. Impact and epoch making papers are reviewed with explanations of: the establishment of measuring technology of cerebral blood flow change and subsequent brain function by NIRS; development with multi-channel detection; simultaneous measurement with other imaging modalities; examination of NIRS validity; spatial analysis of NIRS; and measurement of brain function. The highest times of citation are 1,238 of the paper by F. F. Jobsis in 'Science' (1977). It should be noted that 10 of top 19 papers are those by Japanese authors. However, review articles omitted in the present literature survey are mostly described by foreign authors: an effort to systemize the concerned fields might be required in this country. (K.T.)

  14. DSC, FT-IR, NIR, NIR-PCA and NIR-ANOVA for determination of chemical stability of diuretic drugs: impact of excipients

    Directory of Open Access Journals (Sweden)

    Gumieniczek Anna

    2018-03-01

    Full Text Available It is well known that drugs can directly react with excipients. In addition, excipients can be a source of impurities that either directly react with drugs or catalyze their degradation. Thus, binary mixtures of three diuretics, torasemide, furosemide and amiloride with different excipients, i.e. citric acid anhydrous, povidone K25 (PVP, magnesium stearate (Mg stearate, lactose, D-mannitol, glycine, calcium hydrogen phosphate anhydrous (CaHPO4 and starch, were examined to detect interactions. High temperature and humidity or UV/VIS irradiation were applied as stressing conditions. Differential scanning calorimetry (DSC, FT-IR and NIR were used to adequately collect information. In addition, chemometric assessments of NIR signals with principal component analysis (PCA and ANOVA were applied.

  15. N-Annulated perylene-substituted and fused porphyrin dimers with intense near-infrared one-photon and two-photon absorption

    KAUST Repository

    Luo, Jie; Lee, Sangsu; Son, Minjung; Zheng, Bin; Huang, Kuo-Wei; Qi, Qingbiao; Zeng, Wangdong; Li, Gongqiang; Kim, Dongho; Wu, Jishan

    2015-01-01

    . These new chromophores also exhibited good nonlinear optical susceptibility with large two-photon absorption cross-sections in the NIR region due to extended π-conjugation. Time-dependent density functional theory calculations have been performed to aid our

  16. Rheo-optical two-dimensional (2D) near-infrared (NIR) correlation spectroscopy for probing strain-induced molecular chain deformation of annealed and quenched Nylon 6 films

    Science.gov (United States)

    Shinzawa, Hideyuki; Mizukado, Junji

    2018-04-01

    A rheo-optical characterization technique based on the combination of a near-infrared (NIR) spectrometer and a tensile testing machine is presented here. In the rheo-optical NIR spectroscopy, tensile deformations are applied to polymers to induce displacement of ordered or disordered molecular chains. The molecular-level variation of the sample occurring on short time scales is readily captured as a form of strain-dependent NIR spectra by taking an advantage of an acousto-optic tunable filter (AOTF) equipped with the NIR spectrometer. In addition, the utilization of NIR with much less intense absorption makes it possible to measure transmittance spectra of relatively thick samples which are often required for conventional tensile testing. An illustrative example of the rheo-optical technique is given with annealed and quenched Nylon 6 samples to show how this technique can be utilized to derive more penetrating insight even from the seemingly simple polymers. The analysis of the sets of strain-dependent NIR spectra suggests the presence of polymer structures undergoing different variations during the tensile elongation. For instance, the tensile deformation of the semi-crystalline Nylon 6 involves a separate step of elongation of the rubbery amorphous chains and subsequent disintegration of the rigid crystalline structure. Excess amount of crystalline phase in Nylon 6, however, results in the retardation of the elastic deformation mainly achieved by the amorphous structure, which eventually leads to the simultaneous orientation of both amorphous and crystalline structures.

  17. Automatic determination of moisture content in biofuels based on NIR-measurements; Automatisk fukthaltsbestaemning av biobraenslen med NIR-metoden

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Magnus; Wiklund, Sven Erik [AaF-Process AB, Stockholm (Sweden); Karlsson, Mikael; Tryzell, Robert [Bestwood AB, Sundbyberg (Sweden)

    2005-07-01

    The determination of moisture content of biofuel is of large importance for the energy sector. The used methods for moisture determination are based on fuels samples taken from the bulk followed by drying and weighing. To be able to instead determine the moisture content based on a method with good accuracy and with a short response time would be a large improvement. Both for the fuel sampling and the following analysis there are Swedish standards but concerning the fuel sampling the standards are often not followed. The main reason is the difficulties to sample fuel samples from different depth from a delivery. This is one of the reasons that some plants have installed mechanical samplers but the investment cost for these is relatively high. The aim of this project was to investigate the use of the NIR-method for automatic moisture determination in biofuels. Within the project the NIR-method was used to determine the moisture content on withdrawn fuel samples, in addition the possibility to integrate the NIR-method in an automatic sampling system is also described. A large number of samples, in total over 200 samples, have been evaluated with the NIR-method and compared with the reference method, oven drying and gravimetric determination of moisture content. That the NIR-method can be used to determine moisture content in a number of well defined materials have previously been shown. In this report it has moreover been shown that the method can be used under the conditions at the fuel delivery station and for a large spectrum of biofuels. The accuracy that can be achieved with the NIR-method is in the same magnitude as the standard method, i.e. the reference method used for the measurements. Altogether this shows that the NIR-method is an interesting alternative for integration in an automatic measurement system for determination of fuel moisture content in biofuels. To be able to use the NIR-method for automatic determination of fuel moisture content at the

  18. Estimation of Anthocyanin Content of Berries by NIR Method

    International Nuclear Information System (INIS)

    Zsivanovits, G.; Ludneva, D.; Iliev, A.

    2010-01-01

    Anthocyanin contents of fruits were estimated by VIS spectrophotometer and compared with spectra measured by NIR spectrophotometer (600-1100 nm step 10 nm). The aim was to find a relationship between NIR method and traditional spectrophotometric method. The testing protocol, using NIR, is easier, faster and non-destructive. NIR spectra were prepared in pairs, reflectance and transmittance. A modular spectrocomputer, realized on the basis of a monochromator and peripherals Bentham Instruments Ltd (GB) and a photometric camera created at Canning Research Institute, were used. An important feature of this camera is the possibility offered for a simultaneous measurement of both transmittance and reflectance with geometry patterns T0/180 and R0/45. The collected spectra were analyzed by CAMO Unscrambler 9.1 software, with PCA, PLS, PCR methods. Based on the analyzed spectra quality and quantity sensitive calibrations were prepared. The results showed that the NIR method allows measuring of the total anthocyanin content in fresh berry fruits or processed products without destroying them.

  19. Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems

    International Nuclear Information System (INIS)

    He, Qinbo; Wang, Shuangfeng; Zeng, Shequan; Zheng, Zhaozhi

    2013-01-01

    Highlights: • The factors affecting the transmittance of Cu–H 2 O nanofluids were studied with UV–Vis–NIR spectrophotometer. • The optical properties of Cu–H 2 O nanofluids were studied through the theoretical model. • The Cu–H 2 O nanofluids can enhance the absorption ability for solar energy. - Abstract: In this article, Cu–H 2 O nanofluids were prepared through two-step method. The transmittance of nanofluids over solar spectrum (250–2500 nm) was measured by the UV–Vis–NIR spectrophotometer based on integrating sphere principle. The factors influencing transmittance of nanofluids, such as particle size, mass fraction and optical path were investigated. The extinction coefficients measured experimentally were compared with the theoretical calculation value. Meanwhile, the photothermal properties of nanofluids were also investigated. The experimental results show that the transmittance of Cu–H 2 O nanofluids is much less than that of deionized water, and decreases with increasing nanoparticle size, mass fraction and optical depth. The highest temperature of Cu–H 2 O nanofluids (0.1 wt.%) can increased up to 25.3% compared with deionized water. The good absorption ability of Cu–H 2 O nanofluids for solar energy indicates that it is suitable for direct absorption solar thermal energy systems

  20. NIR detects, destroys insect pests

    International Nuclear Information System (INIS)

    McGraw, L.C.

    1998-01-01

    What’s good for Georgia peanuts may also be good for Kansas wheat. An electric eye that scans all food-grade peanuts for visual defects could one day do the same for wheat kernels. For peanuts, it’s a proven method for monitoring quality. In wheat, scanning with near-infrared (NIR) energy can reveal hidden insect infestations that lower wheat quality. ARS entomologists James E. Throne and James E. Baker and ARS agricultural engineer Floyd E. Dowell are the first to combine NIR with an automated grain-handling system to rapidly detect insects hidden in single wheat kernels

  1. Strong Electro-Absorption in GeSi Epitaxy on Silicon-on-Insulator (SOI

    Directory of Open Access Journals (Sweden)

    John E. Cunningham

    2012-04-01

    Full Text Available We have investigated the selective epitaxial growth of GeSi bulk material on silicon-on-insulator substrates by reduced pressure chemical vapor deposition. We employed AFM, SIMS, and Hall measurements, to characterize the GeSi heteroepitaxy quality. Optimal growth conditions have been identified to achieve low defect density, low RMS roughness with high selectivity and precise control of silicon content. Fabricated vertical p-i-n diodes exhibit very low dark current density of 5 mA/cm2 at −1 V bias. Under a 7.5 V/µm E-field, GeSi alloys with 0.6% Si content demonstrate very strong electro-absorption with an estimated effective ∆α/α around 3.5 at 1,590 nm. We compared measured ∆α/α performance to that of bulk Ge. Optical modulation up to 40 GHz is observed in waveguide devices while small signal analysis indicates bandwidth is limited by device parasitics.

  2. Perylene-fused BODIPY dye with near-IR absorption/emission and high photostability

    KAUST Repository

    Jiao, Chongjun

    2011-02-18

    A N-annulated perylene unit was successfully fused to the meso-and β-positions of a boron dipyrromethene (BODIPY) core. The newly synthesized BODIPY dye 1b exhibits intensified near-infrared (NIR) absorption and the longest emission maximum ever observed for all BODIPY derivatives. In addition, this dye possesses excellent solubility and photostability, beneficial to practical applications. © 2011 American Chemical Society.

  3. Perylene-fused BODIPY dye with near-IR absorption/emission and high photostability

    KAUST Repository

    Jiao, Chongjun; Huang, Kuo-Wei; Wu, Jishan

    2011-01-01

    A N-annulated perylene unit was successfully fused to the meso-and β-positions of a boron dipyrromethene (BODIPY) core. The newly synthesized BODIPY dye 1b exhibits intensified near-infrared (NIR) absorption and the longest emission maximum ever observed for all BODIPY derivatives. In addition, this dye possesses excellent solubility and photostability, beneficial to practical applications. © 2011 American Chemical Society.

  4. Patterning of graphite nanocones for broadband solar spectrum absorption

    Directory of Open Access Journals (Sweden)

    Yaoran Sun

    2015-06-01

    Full Text Available We experimentally demonstrate a broadband vis-NIR absorber consisting of 300-400 nm nanocone structures on highly oriented pyrolytic graphite. The nanocone structures are fabricated through simple nanoparticle lithography process and analyzed with three-dimensional finite-difference time-domain methods. The measured absorption reaches an average level of above 95% over almost the entire solar spectrum and agrees well with the simulation. Our simple process offers a promising material for solar-thermal devices.

  5. Standardization from a benchtop to a handheld NIR spectrometer using mathematically mixed NIR spectra to determine fuel quality parameters

    DEFF Research Database (Denmark)

    da Silva, Neirivaldo Cavalcante; Cavalcanti, Claudia Jessica; Honorato, Fernanda Araujo

    2017-01-01

    spectral responses of fuel samples (gasoline and biodiesel blends) from a high-resolution benchtop Frontier FT-NIR (PerkinElmer) spectrometer and a handheld MicroNIR™1700 (JDSU). These virtual standards can be created by mathematically mixing spectra from the pure solvents present in gasoline or diesel...... to the handheld MicroNIR using virtual standards as transfer samples...

  6. Theory of Transient Excited State Absorptions in Pentacene and Derivatives: Triplet-Triplet Biexciton versus Free Triplets.

    Science.gov (United States)

    Khan, Souratosh; Mazumdar, Sumit

    2017-12-07

    Recent experiments in several singlet-fission materials have found that the triplet-triplet biexciton either is the primary product of photoexcitation or has a much longer lifetime than believed until now. It thus becomes essential to determine the difference in the spectroscopic signatures of the bound triplet-triplet and free triplets to distinguish between them optically. We report calculations of excited state absorptions (ESAs) from the singlet and triplet excitons and from the triplet-triplet biexciton for a pentacene crystal with the herringbone structure and for nanocrystals of bis(triisopropylsilylethynyl) (TIPS)-pentacene. The triplet-triplet biexciton absorbs in both the visible and the near-infrared (NIR), while the monomer free triplet absorbs only in the visible. The intensity of the NIR absorption depends on the extent of intermolecular coupling, in agreement with observations in TIPS-pentacene nanocrystals. We predict additional weak ESA from the triplet-triplet but not from the triplet, at still lower energy.

  7. Sensitivity of fNIRS to cognitive state and load

    Directory of Open Access Journals (Sweden)

    Frank Anthony Fishburn

    2014-02-01

    Full Text Available Functional near-infrared spectroscopy (fNIRS is an emerging low-cost noninvasive neuroimaging technique that measures cortical bloodflow. While fNIRS has gained interest as a potential alternative to fMRI for use with clinical and pediatric populations, it remains unclear whether fNIRS has the necessary sensitivity to serve as a replacement for fMRI. The present study set out to examine whether fNIRS has the sensitivity to detect linear changes in activation and functional connectivity in response to cognitive load, and functional connectivity changes when transitioning from a task-free resting state to a task. Sixteen young adult subjects were scanned with a continuous-wave fNIRS system during a 10-minute resting-state scan followed by a letter n-back task with three load conditions. Five optical probes were placed over frontal and parietal cortices, covering bilateral dorsolateral PFC (dlPFC, bilateral ventrolateral PFC (vlPFC, frontopolar cortex (FP, and bilateral parietal cortex. Activation was found to scale linearly with working memory load in bilateral prefrontal cortex. Functional connectivity increased with increasing n-back loads for fronto-parietal, interhemispheric dlPFC, and local connections. Functional connectivity differed between the resting state scan and the n-back scan, with fronto-parietal connectivity greater during the n-back, and interhemispheric vlPFC connectivity greater during rest. These results demonstrate that fNIRS is sensitive to both cognitive load and state, suggesting that fNIRS is well-suited to explore the full complement of neuroimaging research questions and will serve as a viable alternative to fMRI.

  8. NIRS inaugurated as IAEA Collaborating Centre. Its presence and function

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Watanabe, Naoyuki; Sakai, Kazuo; Kamada, Tadashi; Imai, Reiko; Fujibayashi, Yasuhisa; Nakane, Takeshi; Burkart, W.; Chhem, R.; Matsuura, Shojiro

    2010-01-01

    The feature article is the collection of documents commemorating the 2010 designation of National Institute of Radiological Sciences (NIRS) as one of International Atomic Energy Agency (IAEA) Collaborating Centres (CC) again, involving 4 introductory chapters containing 9 sections in total. The IAEA-CC concept, essentially for the 4-year project, started to globally give shape by designating 3 organizations in some countries in 2004, NIRS as a CC worked from 2006 and the present designation is the renewed one. There are 17 IAEA-CCs at present. The title of Chapter 1 of the article is the same as above title by NIRS President and of Chapter 2, ''IAEA-CC scheme'' by NIRS Senior Specialist/ professor of Gunma Pref. College of Health Sciences/ former IAEA staff. Chapter 3 entitled ''Research Development of Next Four Years in Three Collaboration Areas'', contains 3 topics of the very areas mainly responsible to the project, of biological effect and mechanism of low dose radiation by NIRS Director of Res. Center for Radiation Protection, IAEA-CC plan (radiotherapy) by the Director for Charged Particle Therapy, and IAEA-CC activity and research at Molecular Imaging Center by its Director. Chapter 4 entitled ''Expectation to NIRS'' contains four topics; Expectations for the reinforcement of collaboration with IAEA whose new priority is cancer control by the Japanese Ambassador Extraordinary and Plenipotentiary in Vienna; Welcoming NIRS to join IAEA-CC network (an interview with IAEA Deputy Director General and Head of Nuclear Sciences and Applications); Honoured to invite NIRS to establish a new partnership with IAEA (an interview with IAEA Director of Division of Human Health, Dept. of Nuclear Sciences and Applications); Expectation to NIRS in peaceful use of nuclear and radiation by President of the Nuclear Safety Research Association. (T.T.)

  9. Brain Functional Connectivity in MS: An EEG-NIRS Study

    Science.gov (United States)

    2015-10-01

    1 AWARD NUMBER: W81XWH-14-1-0582 TITLE: Brain Functional Connectivity in MS: An EEG -NIRS Study PRINCIPAL INVESTIGATOR: Heather Wishart...Functional Connectivity in MS: An EEG -NIRS Study 5b. GRANT NUMBER W81XWH-14-1-0582 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Heather...electrical ( EEG ) and blood volume and blood oxygen-based (NIRS and fMRI) signals, and to use the results to help optimize blood oxygen level

  10. NIRS-Based Hyperscanning Reveals Inter-brain Neural Synchronization during Cooperative Jenga Game with Face-to-Face Communication.

    Science.gov (United States)

    Liu, Ning; Mok, Charis; Witt, Emily E; Pradhan, Anjali H; Chen, Jingyuan E; Reiss, Allan L

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying social cognition. In particular, fNIRS permits simultaneous measurement of hemodynamic activity in two or more individuals interacting in a naturalistic setting. Here, we used fNIRS hyperscanning to study social cognition and communication in human dyads engaged in cooperative and obstructive interaction while they played the game of Jenga™. Novel methods were developed to identify synchronized channels for each dyad and a structural node-based spatial registration approach was utilized for inter-dyad analyses. Strong inter-brain neural synchrony (INS) was observed in the posterior region of the right middle and superior frontal gyrus, in particular Brodmann area 8 (BA8), during cooperative and obstructive interaction. This synchrony was not observed during the parallel game play condition and the dialog section, suggesting that BA8 was involved in goal-oriented social interaction such as complex interactive movements and social decision-making. INS was also observed in the dorsomedial prefrontal cortex (dmPFC), in particular Brodmann 9, during cooperative interaction only. These additional findings suggest that BA9 may be particularly engaged when theory-of-mind (ToM) is required for cooperative social interaction. The new methods described here have the potential to significantly extend fNIRS applications to social cognitive research.

  11. Towards NIRS-based hand movement recognition.

    Science.gov (United States)

    Paleari, Marco; Luciani, Riccardo; Ariano, Paolo

    2017-07-01

    This work reports on preliminary results about on hand movement recognition with Near InfraRed Spectroscopy (NIRS) and surface ElectroMyoGraphy (sEMG). Either basing on physical contact (touchscreens, data-gloves, etc.), vision techniques (Microsoft Kinect, Sony PlayStation Move, etc.), or other modalities, hand movement recognition is a pervasive function in today environment and it is at the base of many gaming, social, and medical applications. Albeit, in recent years, the use of muscle information extracted by sEMG has spread out from the medical applications to contaminate the consumer world, this technique still falls short when dealing with movements of the hand. We tested NIRS as a technique to get another point of view on the muscle phenomena and proved that, within a specific movements selection, NIRS can be used to recognize movements and return information regarding muscles at different depths. Furthermore, we propose here three different multimodal movement recognition approaches and compare their performances.

  12. Acquisition of reproducible transmission near-infrared (NIR) spectra of solid samples with inconsistent shapes by irradiation with isotropically diffused radiation using polytetrafluoroethylene (PTFE) beads.

    Science.gov (United States)

    Lee, Jinah; Duy, Pham Khac; Yoon, Jihye; Chung, Hoeil

    2014-06-21

    A bead-incorporated transmission scheme (BITS) has been demonstrated for collecting reproducible transmission near-infrared (NIR) spectra of samples with inconsistent shapes. Isotropically diffused NIR radiation was applied around a sample and the surrounding radiation was allowed to interact homogeneously with the sample for transmission measurement. Samples were packed in 1.40 mm polytetrafluoroethylene (PTFE) beads, ideal diffusers without NIR absorption, and then transmission spectra were collected by illuminating the sample-containing beads using NIR radiation. When collimated radiation was directly applied, a small portion of the non-fully diffused radiation (NFDR) propagated through the void space of the packing and eventually degraded the reproducibility. Pre-diffused radiation was introduced by placing an additional PTFE disk in front of the packing to diminish NFDR, which produced more reproducible spectral features. The proposed scheme was evaluated by analyzing two different solid samples: density determination for individual polyethylene (PE) pellets and identification of mining locality for tourmalines. Because spectral collection was reproducible, the use of the spectrum acquired from one PE pellet was sufficient to accurately determine the density of nine other pellets with different shapes. The differentiation of tourmalines, which are even more dissimilar in appearance, according to their mining locality was also feasible with the help of the scheme.

  13. Computational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral Responses-An Application in Ischemic Stroke.

    Science.gov (United States)

    Guhathakurta, Debarpan; Dutta, Anirban

    2016-01-01

    Transcranial direct current stimulation (tDCS) modulates cortical neural activity and hemodynamics. Electrophysiological methods (electroencephalography-EEG) measure neural activity while optical methods (near-infrared spectroscopy-NIRS) measure hemodynamics coupled through neurovascular coupling (NVC). Assessment of NVC requires development of NIRS-EEG joint-imaging sensor montages that are sensitive to the tDCS affected brain areas. In this methods paper, we present a software pipeline incorporating freely available software tools that can be used to target vascular territories with tDCS and develop a NIRS-EEG probe for joint imaging of tDCS-evoked responses. We apply this software pipeline to target primarily the outer convexity of the brain territory (superficial divisions) of the middle cerebral artery (MCA). We then present a computational method based on Empirical Mode Decomposition of NIRS and EEG time series into a set of intrinsic mode functions (IMFs), and then perform a cross-correlation analysis on those IMFs from NIRS and EEG signals to model NVC at the lesional and contralesional hemispheres of an ischemic stroke patient. For the contralesional hemisphere, a strong positive correlation between IMFs of regional cerebral hemoglobin oxygen saturation and the log-transformed mean-power time-series of IMFs for EEG with a lag of about -15 s was found after a cumulative 550 s stimulation of anodal tDCS. It is postulated that system identification, for example using a continuous-time autoregressive model, of this coupling relation under tDCS perturbation may provide spatiotemporal discriminatory features for the identification of ischemia. Furthermore, portable NIRS-EEG joint imaging can be incorporated into brain computer interfaces to monitor tDCS-facilitated neurointervention as well as cortical reorganization.

  14. Optical absorption in recycled waste plastic polyethylene

    Science.gov (United States)

    Aji, M. P.; Rahmawati, I.; Priyanto, A.; Karunawan, J.; Wati, A. L.; Aryani, N. P.; Susanto; Wibowo, E.; Sulhadi

    2018-03-01

    We investigated the optical properties of UV spectrum absorption in recycled waste plastic from polyethylene polymer type. Waste plastic polyethylene showed an optical spectrum absorption after it’s recycling process. Spectrum absorption is determined using spectrophotometer UV-Nir Ocean Optics type USB 4000. Recycling method has been processed using heating treatment around the melting point temperature of the polyethylene polymer that are 200°C, 220°C, 240°C, 260°C, and 280°C. In addition, the recycling process was carried out with time variations as well, which are 1h, 1.5h, 2h, and 2.5h. The result of this experiment shows that recycled waste plastic polyethylene has a spectrum absorption in the ∼ 340-550 nm wavelength range. The absorbance spectrum obtained from UV light which is absorbed in the orbital n → π* and the orbital π → π*. This process indicates the existence of electron transition phenomena. This mechanism is affected by the temperature and the heating time where the intensity of absorption increases and widens with the increase of temperature and heating time. Furthermore this study resulted that the higher temperature affected the enhancement of the band gap energy of waste plastic polyethylene. These results show that recycled waste plastic polyethylene has a huge potential to be absorber materials for solar cell.

  15. Laser generated gold nanocorals with broadband plasmon absorption for photothermal applications

    Science.gov (United States)

    Poletti, Annamaria; Fracasso, Giulio; Conti, Giamaica; Pilot, Roberto; Amendola, Vincenzo

    2015-08-01

    Gold nanoparticles with efficient plasmon absorption in the visible and near infrared (NIR) regions, biocompatibility and easy surface functionalization are of interest for photothermal applications. Herein we describe the synthesis and photothermal properties of gold ``nanocorals'' (AuNC) obtained by laser irradiation of Au nanospheres (AuNS) dispersed in liquid solution. AuNC are formed in two stages: by photofragmentation of AuNS, followed by spontaneous unidirectional assembly of gold nanocrystals. The whole procedure is performed without chemicals or templating compounds, hence the AuNC can be coated with thiolated molecules in one step. We show that AuNC coated with thiolated polymers are easily dispersed in an aqueous environment or in organic solvents and can be included in polymeric matrixes to yield a plasmonic nanocomposite. AuNC dispersions exhibit flat broadband plasmon absorption ranging from the visible to the NIR and unitary light-to-heat conversion. Besides, in vitro biocompatibility experiments assessed the absence of cytotoxic effects even at a dose as high as 100 μg mL-1. These safe-by-designed AuNC are promising for use in various applications such as photothermal cancer therapy, light-triggered drug release, antimicrobial substrates, optical tomography, obscurant materials and optical coatings.

  16. Broadband and wide angle near-unity absorption in graphene-insulator-metal thin film stacks

    Science.gov (United States)

    Zhang, H. J.; Zheng, G. G.; Chen, Y. Y.; Xu, L. H.

    2018-05-01

    Broadband unity absorption in graphene-insulator-metal (GIM) structures is demonstrated in the visible (VIS) and near-infrared (NIR) spectra. The spectral characteristics possess broadband absorption peaks, by simply choosing a stack of GIM, while no nanofabrication steps and patterning are required, and thus can be easily fabricated to cover a large area. The electromagnetic (EM) waves can be entirely trapped and the absorption can be greatly enhanced are verified with the finite-difference time-domain (FDTD) and rigorous coupled wave analysis (RCWA) methods. The position and the number of the absorption peak can be totally controlled by adjusting the thickness of the insulator layer. The proposed absorber maintains high absorption (above 90%) for both transverse electric (TE) and transverse magnetic (TM) polarizations, and for angles of incidence up to 80°. This work opens up a promising approach to realize perfect absorption (PA) with ultra-thin film, which could implicate many potential applications in optical detection and optoelectronic devices.

  17. NIRS Characterization of Paper Pulps to Predict Kappa Number

    Directory of Open Access Journals (Sweden)

    Ana Moral

    2015-01-01

    Full Text Available Rice is one of the most abundant food crops in the world and its straw stands as an important source of fibres both from an economic and an environmental point of view. Pulp characterization is of special relevance in works involving alternative raw materials, since pulp properties are closely linked to the quality of the final product. One of the analytical techniques that can be used in pulp characterization is near-infrared spectroscopy (NIRS. The use of NIRS has economic and technical advantages over conventional techniques. This paper aims to discuss the convenience of using NIRS to predict Kappa number in rice straw pulps produced under different conditions. We found that the resulting Kappa number can be acceptably estimated by NIRS, as the errors obtained with that method are similar to those found for other techniques.

  18. fNIRS-based brain-computer interfaces: a review

    Directory of Open Access Journals (Sweden)

    Noman eNaseer

    2015-01-01

    Full Text Available A brain-computer interface (BCI is a communication system that allows the use of brain activity to control computers or other external devices. It can, by bypassing the peripheral nervous system, provide a means of communication for people suffering from severe motor disabilities or in a persistent vegetative state. In this paper, brain-signal generation tasks, noise removal methods, feature extraction/selection schemes, and classification techniques for fNIRS-based BCI are reviewed. The most common brain areas for fNIRS BCI are the primary motor cortex and the prefrontal cortex. In relation to the motor cortex, motor imagery tasks were preferred to motor execution tasks since possible proprioceptive feedback could be avoided. In relation to the prefrontal cortex, fNIRS showed a significant advantage due to no hair in detecting the cognitive tasks like mental arithmetic, music imagery, emotion induction, etc. In removing physiological noise in fNIRS data, band-pass filtering was mostly used. However, more advanced techniques like adaptive filtering, independent component analysis, multi optodes arrangement, etc. are being pursued to overcome the problem that a band-pass filter cannot be used when both brain and physiological signals occur within a close band. In extracting features related to the desired brain signal, the mean, variance, peak value, slope, skewness, and kurtosis of the noised-removed hemodynamic response were used. For classification, the linear discriminant analysis method provided simple but good performance among others: support vector machine, hidden Markov model, artificial neural network, etc. fNIRS will be more widely used to monitor the occurrence of neuro-plasticity after neuro-rehabilitation and neuro-stimulation. Technical breakthroughs in the future are expected via bundled-type probes, hybrid EEG-fNIRS BCI, and through the detection of initial dips.

  19. Correlations between in situ denitrification activity and nir-gene abundances in pristine and impacted prairie streams

    International Nuclear Information System (INIS)

    Graham, David W.; Trippett, Clare; Dodds, Walter K.; O'Brien, Jonathan M.; Banner, Eric B.K.; Head, Ian M.; Smith, Marilyn S.; Yang, Richard K.; Knapp, Charles W.

    2010-01-01

    Denitrification is a process that reduces nitrogen levels in headwaters and other streams. We compared nirS and nirK abundances with the absolute rate of denitrification, the longitudinal coefficient of denitrification (i.e., K den , which represents optimal denitrification rates at given environmental conditions), and water quality in seven prairie streams to determine if nir-gene abundances explain denitrification activity. Previous work showed that absolute rates of denitrification correlate with nitrate levels; however, no correlation has been found for denitrification efficiency, which we hypothesise might be related to gene abundances. Water-column nitrate and soluble-reactive phosphorus levels significantly correlated with absolute rates of denitrification, but nir-gene abundances did not. However, nirS and nirK abundances significantly correlated with K den , as well as phosphorus, although no correlation was found between K den and nitrate. These data confirm that absolute denitrification rates are controlled by nitrate load, but intrinsic denitrification efficiency is linked to nirS and nirK gene abundances. - Denitrification efficiency best correlated to nirS and nirK gene abundances.

  20. NIR techniques create added values for the pellet and biofuel industry.

    Science.gov (United States)

    Lestander, Torbjörn A; Johnsson, Bo; Grothage, Morgan

    2009-02-01

    A 2(3)-factorial experiment was carried out in an industrial plant producing biofuel pellets with sawdust as feedstock. The aim was to use on-line near infrared (NIR) spectra from sawdust for real time predictions of moisture content, blends of sawdust and energy consumption of the pellet press. The factors varied were: drying temperature and wood powder dryness in binary blends of sawdust from Norway spruce and Scots pine. The main results were excellent NIR calibration models for on-line prediction of moisture content and binary blends of sawdust from the two species, but also for the novel finding that the consumption of electrical energy per unit pelletized biomass can be predicted by NIR reflectance spectra from sawdust entering the pellet press. This power consumption model, explaining 91.0% of the variation, indicated that NIR data contained information of the compression and friction properties of the biomass feedstock. The moisture content model was validated using a running NIR calibration model in the pellet plant. It is shown that the adjusted prediction error was 0.41% moisture content for grinded sawdust dried to ca. 6-12% moisture content. Further, although used drying temperatures influenced NIR spectra the models for drying temperature resulted in low prediction accuracy. The results show that on-line NIR can be used as an important tool in the monitoring and control of the pelletizing process and that the use of NIR technique in fuel pellet production has possibilities to better meet customer specifications, and therefore create added production values.

  1. Mercaptosuccinic acid-coated NIR-emitting gold nanoparticles for the sensitive and selective detection of Hg2.

    Science.gov (United States)

    Xiong, Xiaodong; Lai, Xiaoqi; Liu, Jinbin

    2018-01-05

    A sensitive fluorescent detection platform for Hg 2+ was constructed based on mercaptosuccinic acid (MSA) coated near-infrared (NIR)-emitting gold nanoparticles (AuNPs). The thiolated mercaptosuccinic acid was employed as both reducing agent and surface coating ligand in a one-step synthesis of NIR-emitting AuNPs (MSA-AuNPs), which exhibited stable fluorescence with the maximum wavelength at 800nm and a wide range of excitation (220-650nm) with the maxima at 413nm. The MSA coated NIR-emitting AuNPs showed a rapid fluorescence quenching toward Hg 2+ over other metal ions with a limit of detection (LOD, 3δ) as low as 4.8nM. The sensing mechanism investigation revealed that the AuNPs formed aggregation due to the "recognition" of Hg 2+ from the MSA, and the resultant strong coupling interaction between Hg 2+ and Au (I) to further quench the fluorescence of the AuNPs, which synergistically resulted in a highly sensitive and selective fluorescence response toward Hg 2+ . This proposed strategy was also demonstrated the possibility to be used for Hg 2+ detection in water samples. Copyright © 2017. Published by Elsevier B.V.

  2. Mercaptosuccinic acid-coated NIR-emitting gold nanoparticles for the sensitive and selective detection of Hg2 +

    Science.gov (United States)

    Xiong, Xiaodong; Lai, Xiaoqi; Liu, Jinbin

    2018-01-01

    A sensitive fluorescent detection platform for Hg2 + was constructed based on mercaptosuccinic acid (MSA) coated near-infrared (NIR)-emitting gold nanoparticles (AuNPs). The thiolated mercaptosuccinic acid was employed as both reducing agent and surface coating ligand in a one-step synthesis of NIR-emitting AuNPs (MSA-AuNPs), which exhibited stable fluorescence with the maximum wavelength at 800 nm and a wide range of excitation (220-650 nm) with the maxima at 413 nm. The MSA coated NIR-emitting AuNPs showed a rapid fluorescence quenching toward Hg2 + over other metal ions with a limit of detection (LOD, 3δ) as low as 4.8 nM. The sensing mechanism investigation revealed that the AuNPs formed aggregation due to the "recognition" of Hg2 + from the MSA, and the resultant strong coupling interaction between Hg2 + and Au (I) to further quench the fluorescence of the AuNPs, which synergistically resulted in a highly sensitive and selective fluorescence response toward Hg2 +. This proposed strategy was also demonstrated the possibility to be used for Hg2 + detection in water samples.

  3. NIR emission and Ce{sup 3+}–Nd{sup 3+} energy transfer in LaCaAl{sub 3}O{sub 7} phosphor prepared by combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, A.A. [National Power Training Institute, South Ambazari Road, Nagpur 440022 (India); Talewar, R.A., E-mail: talewarrupesh@gmail.com [Physics Department, Shri Ramdeobaba College of Engineering and Management, Katol Road, Nagpur 440013 (India); Joshi, C.P. [Physics Department, Shri Ramdeobaba College of Engineering and Management, Katol Road, Nagpur 440013 (India); Moharil, S.V. [Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440010 (India)

    2016-11-15

    Near infrared (NIR) emitting phosphor, LaCaAl{sub 3}O{sub 7}:Ce{sup 3+},Nd{sup 3+} was synthesized by one step combustion synthesis and characterized with scanning electron microscope, photoluminescence emission, photoluminescence excitation spectra and fluorescence decay measurements. When excited with UV, the phosphor gives broadband emission at 410 nm, which corresponds to the allowed 5d→4f transition of Ce{sup 3+} ions and an intense NIR emissions in the range 800–1400 nm, which are assigned to the characteristic transitions from {sup 4}I{sub 9/2,11/2,13/2} states of Nd{sup 3+} ions. The dependences of visible and NIR emissions, decay lifetime and the energy transfer efficiency (η{sub ETE}) on dopant concentrations were investigated in detail. The luminescence spectra, both in visible (VIS) and NIR regions, and decay curves of Ce{sup 3+} have been measured to prove energy transfer (ET) from Ce{sup 3+} to Nd{sup 3+}. These results demonstrate the possibility for enhancing the photovoltaic conversion efficiency of c-Si solar cell by modifying the absorption and utilizing the UV part of the solar spectrum where the efficiency of c-Si solar cell is low.

  4. Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms.

    Science.gov (United States)

    Malegori, Cristina; Nascimento Marques, Emanuel José; de Freitas, Sergio Tonetto; Pimentel, Maria Fernanda; Pasquini, Celio; Casiraghi, Ernestina

    2017-04-01

    The main goal of this study was to investigate the analytical performances of a state-of-the-art device, one of the smallest dispersion NIR spectrometers on the market (MicroNIR 1700), making a critical comparison with a benchtop FT-NIR spectrometer in the evaluation of the prediction accuracy. In particular, the aim of this study was to estimate in a non-destructive manner, titratable acidity and ascorbic acid content in acerola fruit during ripening, in a view of direct applicability in field of this new miniaturised handheld device. Acerola (Malpighia emarginata DC.) is a super-fruit characterised by a considerable amount of ascorbic acid, ranging from 1.0% to 4.5%. However, during ripening, acerola colour changes and the fruit may lose as much as half of its ascorbic acid content. Because the variability of chemical parameters followed a non-strictly linear profile, two different regression algorithms were compared: PLS and SVM. Regression models obtained with Micro-NIR spectra give better results using SVM algorithm, for both ascorbic acid and titratable acidity estimation. FT-NIR data give comparable results using both SVM and PLS algorithms, with lower errors for SVM regression. The prediction ability of the two instruments was statistically compared using the Passing-Bablok regression algorithm; the outcomes are critically discussed together with the regression models, showing the suitability of the portable Micro-NIR for in field monitoring of chemical parameters of interest in acerola fruits. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. ON THE DISTANCE OF THE MAGELLANIC CLOUDS USING CEPHEID NIR AND OPTICAL-NIR PERIOD-WESENHEIT RELATIONS

    International Nuclear Information System (INIS)

    Inno, L.; Bono, G.; Buonanno, R.; Genovali, K.; Matsunaga, N.; Caputo, F.; Laney, C. D.; Marconi, M.; Piersimoni, A. M.; Primas, F.; Romaniello, M.

    2013-01-01

    We present the largest near-infrared (NIR) data sets, JHKs, ever collected for classical Cepheids in the Magellanic Clouds (MCs). We selected fundamental (FU) and first overtone (FO) pulsators, and found 4150 (2571 FU, 1579 FO) Cepheids for Small Magellanic Cloud (SMC) and 3042 (1840 FU, 1202 FO) for Large Magellanic Cloud (LMC). Current sample is 2-3 times larger than any sample used in previous investigations with NIR photometry. We also discuss optical VI photometry from OGLE-III. NIR and optical-NIR Period-Wesenheit (PW) relations are linear over the entire period range (0.0 FU ≤ 1.65) and their slopes are, within the intrinsic dispersions, common between the MCs. These are consistent with recent results from pulsation models and observations suggesting that the PW relations are minimally affected by the metal content. The new FU and FO PW relations were calibrated using a sample of Galactic Cepheids with distances based on trigonometric parallaxes and Cepheid pulsation models. By using FU Cepheids we found a true distance moduli of 18.45 ± 0.02(random) ± 0.10(systematic) mag (LMC) and 18.93 ± 0.02(random) ± 0.10(systematic) mag (SMC). These estimates are the weighted mean over 10 PW relations and the systematic errors account for uncertainties in the zero point and in the reddening law. We found similar distances using FO Cepheids (18.60 ± 0.03(random) ± 0.10(systematic) mag (LMC) and 19.12 ± 0.03(random) ± 0.10(systematic) mag (SMC)). These new MC distances lead to the relative distance, Δμ = 0.48 ± 0.03 mag (FU, log P = 1) and Δμ = 0.52 ± 0.03 mag (FO, log P = 0.5), which agrees quite well with previous estimates based on robust distance indicators.

  6. NIR: optimerer produktionen af gammeldags modnede sild

    DEFF Research Database (Denmark)

    Svensson, T.; Bro, Rasmus; Nielsen, Henrik Hauch

    2005-01-01

    Måling med nærinfrarødt (NIR) lys er et godt supplement til de nuværende metoder til at følge modningen af sild saltede i tønder. Det viser resultaterne af et forskningsprojekt udført i samarbejde mellem Lykkeberg A/S, Danmarks Fiskeriundersøgelser og Den Kgl Veterinær- og Landbohøjskole. Ved hjælp...... af avanceret matematik er det nemt og hurtigt at bestemme modningsgraden af sild direkte fra en NIR måling....

  7. Fluorescence properties of novel near-infrared phosphor CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J.X., E-mail: tmjx@jnu.edu.c [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Zhang, F.J.; Peng, W.F.; Wan, W.J.; Xiao, Q.L.; Chen, Q.Q.; Cao, L.W. [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Wang, Z.L. [School of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming 650031 (China)

    2010-10-15

    Research highlights: Novel near-infrared (NIR) phosphor, CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}, was synthesized. The phosphor gives strong Nd{sup 3+} characteristic NIR emissions in the range of 880-930 nm. The NIR emission intensity gets a 200 times enhancement benefited from the efficient energy transfer from a co-doped Ce{sup 3+}. The energy transfer mechanism was also briefly based on detailed investigation on spectrum and fluorescence lifetime. - Abstract: Novel near-infrared (NIR) phosphor, CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}, was synthesized by co-precipitation method followed by firing at 1300 {sup o}C in reduced atmosphere. When irradiated with blue light, the phosphor gives strong Nd{sup 3+} characteristic NIR emissions in the range of 880-930 nm. The NIR emission intensity gets a 200 times enhancement by co-doping of Ce{sup 3+}. Detailed investigation on spectrum and fluorescence lifetimes indicated the NIR luminescence enhancement is obtained from an energy transfer process. The process initiates with efficient absorption of blue light by Ce{sup 3+} ions via an allowed 4f-5d transition, follow by efficient energy transfer from Ce{sup 3+} to Nd{sup 3+}, and emitting strong Nd{sup 3+} characteristic fluorescence.

  8. Signs of strong Na and K absorption in the transmission spectrum of WASP-103b

    Science.gov (United States)

    Lendl, M.; Cubillos, P. E.; Hagelberg, J.; Müller, A.; Juvan, I.; Fossati, L.

    2017-09-01

    Context. Transmission spectroscopy has become a prominent tool for characterizing the atmospheric properties on close-in transiting planets. Recent observations have revealed a remarkable diversity in exoplanet spectra, which show absorption signatures of Na, K and H2O, in some cases partially or fully attenuated by atmospheric aerosols. Aerosols (clouds and hazes) themselves have been detected in the transmission spectra of several planets thanks to wavelength-dependent slopes caused by the particles' scattering properties. Aims: We present an optical 550-960 nm transmission spectrum of the extremely irradiated hot Jupiter WASP-103b, one of the hottest (2500 K) and most massive (1.5 MJ) planets yet to be studied with this technique. WASP-103b orbits its star at a separation of less than 1.2 times the Roche limit and is predicted to be strongly tidally distorted. Methods: We have used Gemini/GMOS to obtain multi-object spectroscopy throughout three transits of WASP-103b. We used relative spectrophotometry and bin sizes between 20 and 2 nm to infer the planet's transmission spectrum. Results: We find that WASP-103b shows increased absorption in the cores of the alkali (Na, K) line features. We do not confirm the presence of any strong scattering slope as previously suggested, pointing towards a clear atmosphere for the highly irradiated, massive exoplanet WASP-103b. We constrain the upper boundary of any potential cloud deck to reside at pressure levels above 0.01 bar. This finding is in line with previous studies on cloud occurrence on exoplanets which find that clouds dominate the transmission spectra of cool, low surface gravity planets while hot, high surface gravity planets are either cloud-free, or possess clouds located below the altitudes probed by transmission spectra. The spectrophotometric time series data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http

  9. Novel self-assembled sandwich nanomedicine for NIR-responsive release of NO

    Science.gov (United States)

    Fan, Jing; He, Qianjun; Liu, Yi; Ma, Ying; Fu, Xiao; Liu, Yijing; Huang, Peng; He, Nongyue; Chen, Xiaoyuan

    2015-01-01

    A novel sandwich nanomedicine (GO-BNN6) for near-infrared (NIR) light responsive release of nitric oxide (NO) has been constructed by self-assembling of graphene oxide (GO) nanosheets and a NO donor BNN6 through the π-π stacking interaction. GO-BNN6 nanomedicine has an extraordinarily high drug loading capacity (1.2 mg BNN6 per mg GO), good thermal stability, and high NIR responsiveness. The NO release from GO-BNN6 can be easily triggered and effectively controlled by adjusting the switching, irradiation time and power density of NIR laser. The intracellular NIR-responsive release of NO from GO-BNN6 nanomedicine causes a remarkable anti-cancer effect. PMID:26568270

  10. Present status of the NIRS-ECR ion source for the HIMAC

    International Nuclear Information System (INIS)

    Kitagawa, A.; Matsushita, H.; Shibuya, S.

    1995-01-01

    The present status of NIRS-ECR ion source for the Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS) is reported. The beam intensity of the NIRS-ECR was increased by modifications on the magnetic field structure, chamber cooling system, vacuum conductance and the extraction configuration. The output current of Ar 6+ reached 365 eμA after improvements. The good stability, easy operation, and good reproducibility were realized. (author)

  11. Evaluation of combined near-IR spectroscopic (NIRS)-IVUS imaging as a means to detect lipid-rich plaque burden in human coronary autopsy specimens

    Science.gov (United States)

    Su, Jimmy L.; Grainger, Stephanie J.; Greiner, Cherry A.; Hendricks, Michael J.; Goode, Meghan M.; Saybolt, Matthew D.; Wilensky, Robert L.; Madden, Sean P.; Muller, James E.

    2016-02-01

    Intracoronary near-infrared spectroscopy (NIRS) can identify lipid in the coronary arteries, but lacks depth resolution. A novel catheter is currently in clinical use that combines NIRS with intravascular ultrasound (IVUS), which provides depth-resolved structural information via the IVUS modality. A measure designated as lipid-rich plaque burden (LRPB) has been proposed as a means to interpret the combined acoustic and optical information of NIRS-IVUS. LRPB is defined as the area created by the intersection of the NIRS lipid-rich arc with the corresponding IVUS-measured plaque burden. We determined the correlation in human coronary autopsy specimens between LRPB, a measure of lipid presence and extent available via intravascular imaging in patients, and the area of lipid-rich plaque as determined by the gold-standard of histology. Fifteen artery segments from 8 human autopsy hearts were imaged with the NIRS-IVUS system (TVC Imaging System, Infraredx Inc., Burlington, MA). Arteries were imaged in a specialty fixture that assured accurate co-registration between imaging and histology. The arteries were then fixed and divided into 2 mm blocks for histological staining. Pathological contouring of lipid-rich areas was performed on the stained thin sections for 54 lipid-rich blocks. Computation of LRPB was performed on transverse NIRS-IVUS frames corresponding to the histologic sections. The quantified LRPB was frequently higher than the lipid-rich plaque area determined by histology, because the region denoted by the EEL and lumen within the NIRS lipid-rich arc is not entirely comprised of lipid. Overall, a moderate to strong correlation (R = 0.73) was found between LRPB determined by NIRS-IVUS imaging and the lipid-rich plaque area determined by histology. LRPB, which can be measured in patients with NIRS-IVUS imaging, corresponds to the amount of lipid-rich plaque in a coronary artery. LRPB should be evaluated in prospective clinical trials for its ability to

  12. Visible and NIR image fusion using weight-map-guided Laplacian ...

    Indian Academy of Sciences (India)

    Ashish V Vanmali

    fusion perspective, instead of the conventional haze imaging model. The proposed ... Image dehazing; Laplacian–Gaussian pyramid; multi-resolution fusion; visible–NIR image fusion; weight map. 1. .... Tan's [8] work is based on two assumptions: first, images ... responding colour image, since NIR can penetrate through.

  13. The Development of Novel Near-Infrared (NIR Tetraarylazadipyrromethene Fluorescent Dyes

    Directory of Open Access Journals (Sweden)

    Young-Tae Chang

    2013-05-01

    Full Text Available Novel structures of an near-infrared (NIR tetraarylazadipyrromethene (aza-BODIPY series have been prepared. We designed the core structure containing two amido groups at the para-position of the aromatic rings. The amido group was incorporated to secure insensitivity to pH and to ensure a bathochromic shift to the NIR region. Forty members of aza-BODIPY compounds were synthesized by substitution of the acetyl group with commercial amines on the alpha bromide. The physicochemical properties and photostability were investigated and the fluorescence emission maxima (745~755 nm were found to be in the near infrared (NIR range of fluorescence.

  14. A New Platform for Investigating In-Situ NIR Reflectance in Snow

    Science.gov (United States)

    Johnson, M.; Taubenheim, J. R. L.; Stevenson, R.; Eldred, D.

    2017-12-01

    In-situ near infrared (NIR) reflectance measurements of the snowpack have been shown to have correlations to valuable snowpack properties. To-date many studies take these measurements by digging a pit and setting up a NIR camera to take images of the wall. This setup is cumbersome, making it challenging to investigate things like spatial variability. Over the course of 3 winters, a new device has been developed capable of mitigating some of the downfalls of NIR open pit photography. This new instrument is a NIR profiler capable of taking NIR reflectance measurements without digging a pit, with most measurements taking less than 30 seconds to retrieve data. The latest prototype is built into a ski pole and automatically transfers data wirelessly to the users smartphone. During 2016-2017 winter, the device was used by 37 different users resulting in over 4000 measurements in the Western United States, demonstrating a dramatic reduction in time to data when compared to other methods. Presented here are some initial findings from a full winter of using the ski pole version of this device.

  15. Determination of mixture valence plutonium and multicomponent by computer resolution analysis of absorption spectrum (UV/VIS/NIR) (CRAAS)

    International Nuclear Information System (INIS)

    Zhuang Weixin; Ye Guoan; Huang Lifeng; Sun Hongfang; Zhao Yanju

    1996-09-01

    A spectrophotometry has been developed which can directly determine a multi-component sample by spectrophotometry without any chemical separation. CRAAS (Computer Resolution Analysis of Absorption Spectrum) has been reported. It is different from the previous spectrophotometry depending on only one or several special absorption peak. The CRAAS deals with the whole region of absorption spectrum by mathematical statistics. So CRAAS has higher accuracy, stronger power and very high resolution. The trouble comes from overlap of different spectrum in each other has been solved because CRAAS depends on the whole spectrum. As long as two spectra have different shape, their concentrations can be determined even their special absorption peaks are seriously overlapped. The accuracy is about +-5%. (2 refs., 7 figs., 8 tabs.)

  16. [Advances of NIR spectroscopy technology applied in seed quality detection].

    Science.gov (United States)

    Zhu, Li-wei; Ma, Wen-guang; Hu, Jin; Zheng, Yun-ye; Tian, Yi-xin; Guan, Ya-jing; Hu, Wei-min

    2015-02-01

    Near infrared spectroscopy (NIRS) technology developed fast in recent years, due to its rapid speed, less pollution, high-efficiency and other advantages. It has been widely used in many fields such as food, chemical industry, pharmacy, agriculture and so on. The seed is the most basic and important agricultural capital goods, and seed quality is important for agricultural production. Most methods presently used for seed quality detecting were destructive, slow and needed pretreatment, therefore, developing one kind of method that is simple and rapid has great significance for seed quality testing. This article reviewed the application and trends of NIRS technology in testing of seed constituents, vigor, disease and insect pests etc. For moisture, starch, protein, fatty acid and carotene content, the model identification rates were high as their relative contents were high; for trace organic, the identification rates were low as their relative content were low. The heat-damaged seeds with low vigor were discriminated by NIRS, the seeds stored for different time could also been identified. The discrimination of frost-damaged seeds was impossible. The NIRS could be used to identify health and infected disease seeds, and did the classification for the health degree; it could identify parts of the fungal pathogens. The NIRS could identify worm-eaten and health seeds, and further distinguished the insect species, however the identification effects for small larval and low injury level of insect pests was not good enough. Finally, in present paper existing problems and development trends for NIRS in seed quality detection was discussed, especially the single seed detecting technology which was characteristic of the seed industry, the standardization of its spectral acquisition accessories will greatly improve its applicability.

  17. Natural gas pipeline leak detector based on NIR diode laser absorption spectroscopy.

    Science.gov (United States)

    Gao, Xiaoming; Fan, Hong; Huang, Teng; Wang, Xia; Bao, Jian; Li, Xiaoyun; Huang, Wei; Zhang, Weijun

    2006-09-01

    The paper reports on the development of an integrated natural gas pipeline leak detector based on diode laser absorption spectroscopy. The detector transmits a 1.653 microm DFB diode laser with 10 mW and detects a fraction of the backscatter reflected from the topographic targets. To eliminate the effect of topographic scatter targets, a ratio detection technique was used. Wavelength modulation and harmonic detection were used to improve the detection sensitivity. The experimental detection limit is 50 ppmm, remote detection for a distance up to 20 m away topographic scatter target is demonstrated. Using a known simulative leak pipe, minimum detectable pipe leak flux is less than 10 ml/min.

  18. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.; Campillay, Abdo; Contreras, Carlos [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Simon, Joshua D.; Burns, Christopher R.; Persson, Sven E.; Thompson, I. B.; Freedman, Wendy L. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Cox, Nick L. J. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D bus 2401, 3001 Leuven (Belgium); Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Karakas, Amanda I. [Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611 (Australia); Patat, F. [European Southern Observatory (ESO), Karl Schwarschild Strasse 2, D-85748, Garching bei München (Germany); Sternberg, A. [Max Planck Institute for Astrophysics, Karl Schwarzschild Strasse 1, D-85741 Garching bei München (Germany); Williams, R. E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gal-Yam, A. [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Leonard, D. C. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Folatelli, Gastón, E-mail: mmp@lco.cl [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8583 (Japan); and others

    2013-12-10

    High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with the progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.

  19. Toward Adaptation of fNIRS Instrumentation to Airborne Environments

    Science.gov (United States)

    Adamovsky, Grigory; Mackey, Jeffrey; Harrivel, Angela; Hearn, Tristan; Floyd, Bertram

    2014-01-01

    The paper reviews potential applications of functional Near-Infrared Spectroscopy (fNIRS), a well-known medical diagnostic technique, to monitoring the cognitive state of pilots with a focus on identifying ways to adopt this technique to airborne environments. We also discuss various fNIRS techniques and the direction of technology maturation of associated hardware in view of their potential for miniaturization, maximization of data collection capabilities, and user friendliness.

  20. Variable Emittance Electrochromics Using Ionic Electrolytes and Low Solar Absorptance Coatings

    Science.gov (United States)

    Chandrasekhar, Prasanna

    2011-01-01

    One of the last remaining technical hurdles with variable emittance devices or skins based on conducting polymer electrochromics is the high solar absorptance of their top surfaces. This high solar absorptance causes overheating of the skin when facing the Sun in space. Existing technologies such as mechanical louvers or loop heat pipes are virtually inapplicable to micro (solar absorption to Alpha(s) of between 0.30 and 0.46. Coupled with the emittance properties of the variable emittance skins, this lowers the surface temperature of the skins facing the Sun to between 30 and 60 C, which is much lower than previous results of 100 C, and is well within acceptable satellite operations ranges. The performance of this technology is better than that of current new technologies such as microelectromechanical systems (MEMS), electrostatics, and electrophoretics, especially in applications involving micro and nano spacecraft. The coatings are deposited inside a high vacuum, layering multiple coatings onto the top surfaces of variable emittance skins. They are completely transparent in the entire relevant infrared region (about 2 to 45 microns), but highly reflective in the visible-NIR (near infrared) region of relevance to solar absorptance.

  1. Linear regression models and k-means clustering for statistical analysis of fNIRS data.

    Science.gov (United States)

    Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro

    2015-02-01

    We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets.

  2. NIR Techniques Create Added Values for the Pellet and Biofuel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Lestander, Torbjoern A. [Swedish Univ of Agricultural Science, Umeaa (Sweden). Unit of Biomass Technology and Chemistry; Johnsson, Bo; Grothage, Morgan [Casco Adhesives AB, Sundsvall (Sweden)

    2006-07-15

    Pelletizing of biomass as biofuels increases energy density, improves storability and reduces transport costs. This process is a major key factor in the transition from fossil fuels to renewable biomass refined as solid biofuels. The fast growing pellet industry is today producing more than 1.2 Gg wood Pellets in Sweden - one of the leading nations to utilize bioenergy in its energy mix. The multitude of raw biomaterials available for fuel pellet production and their widely different characteristics stress the need for rapid characterization methods. A suitable technique for characterization of variation in biomaterials is near infrared (NIR) spectrometry. NIR radiation interacts with polar molecules and especially with structural groups O-H as in water, C-H as in biomass, but also with C-O bonds and C=C double bonds frequently found in biomass. Biomass contains mostly the atoms C, O and H. This means that transmittance or reflectance in the NIR wavelength region covers most of the covalent bonds in biomass, except for the C-C bonds in carbon chains. The NIR technique is also developed for on-line measurement in harsh industrial conditions. Thus, NIR techniques can be applied for on-line and real time characterization of raw biomass as well as in the refinement process of biomass into standardized solid biofuels. Spectral patterns in the NIR region contain chemical and physical information structure that together with reference parameters can be modeled by multivariate calibration methods to obtain predictions. These predictions can be presented to the operators in real time on screens as charts based on multivariate statistical process controls. This improves the possibilities to overview the raw biomass variation and to control the responses of the treatments the biomass undergo in the pelletizing process. The NIR-technique is exemplified by a 23-factorial experiment that was carried out in a pellet plant using sawdust as raw material to produce wood Pellets as

  3. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.

    Directory of Open Access Journals (Sweden)

    Alessio Paolo Buccino

    Full Text Available Non-invasive Brain-Computer Interfaces (BCI have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG and functional Near-Infrared Spectroscopy (fNIRS in an asynchronous Sensory Motor rhythm (SMR-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm-Left-Arm-Right-Hand-Left-Hand tasks. Previous studies demonstrated the benefit of EEG-fNIRS combination. However, since normally fNIRS hemodynamic response shows a long delay, we investigated new features, involving slope indicators, in order to immediately detect changes in the signals. Moreover, Common Spatial Patterns (CSPs have been applied to both EEG and fNIRS signals. 15 healthy subjects took part in the experiments and since 25 trials per class were available, CSPs have been regularized with information from the entire population of participants and optimized using genetic algorithms. The different features have been compared in terms of performance and the dynamic accuracy over trials shows that the introduced methods diminish the fNIRS delay in the detection of changes.

  4. Heterologous expression of the Aspergillus nidulans regulatory gene nirA in Fusarium oxysporum.

    Science.gov (United States)

    Daboussi, M J; Langin, T; Deschamps, F; Brygoo, Y; Scazzocchio, C; Burger, G

    1991-12-20

    We have isolated strains of Fusarium oxysporum carrying mutations conferring a phenotype characteristic of a loss of function in the regulatory gene of nitrate assimilation (nirA in Aspergillus nidulans, nit-4 in Neurospora crassa). One of these nir- mutants was successfully transformed with a plasmid containing the nirA gene of A. nidulans. The nitrate reductase of the transformants is still inducible, although the maximum activity is lower than in the wild type. Single and multiple integration events were found, as well as a strict correlation between the presence of the nirA gene and the Nir+ phenotype of the F. oxysporum transformants. We also investigated how the A. nidulans structural gene (niaD) is regulated in F. oxysporum. Enzyme assays and Northern experiments show that the niaD gene is subject to nitrate induction and that it responds to nitrogen metabolite repression in a F. oxysporum genetic background. This indicates that both the mechanisms of specific induction, mediated by a gene product isofunctional to nirA, and nitrogen metabolite repression, presumably mediated by a gene product isofunctional to the homologous gene of A. nidulans, are operative in F. oxysporum.

  5. Estimation of Sensory Analysis Cupping Test Arabica Coffee Using NIR Spectroscopy

    Science.gov (United States)

    Safrizal; Sutrisno; Lilik, P. E. N.; Ahmad, U.; Samsudin

    2018-05-01

    Flavors have become the most important coffee quality parameters now day, many coffee consuming countries require certain taste scores for the coffee to be ordered, the currently used cupping method of appraisal is the method designed by The Specialty Coffee Association Of America (SCAA), from several previous studies was found that Near-Infrared Spectroscopy (NIRS) can be used to detect chemical composition of certain materials including those associated with flavor so it is possible also to be applied to coffee powder. The aim of this research is to get correlation between NIRS spectrum with cupping scoring by tester, then look at the possibility of testing coffee taste sensors using NIRS spectrum. The coffee samples were taken from various places, altitudes and postharvest handling methods, then the samples were prepared following the SCAA protocol, for sensory analysis was done in two ways, with the expert tester and with the NIRS test. The calibration between both found that Without pretreatment using PLS get RMSE cross validation 6.14, using Multiplicative Scatter Correction spectra obtained RMSE cross validation 5.43, the best RMSE cross-validation was 1.73 achieved by de-trending correction, NIRS can be used to predict the score of cupping.

  6. Strong crystal field effect in ? - optical absorption study

    Science.gov (United States)

    Gajek, Z.; Krupa, J. C.

    1998-12-01

    =-1 Results of optical absorption measurements in polarized light on tetravalent neptunium diluted in a 0953-8984/10/50/021/img6 single crystal are reported. The recorded spectra are complex, pointing to the presence of an 0953-8984/10/50/021/img7 impurity. The electronic transitions assigned to the 0953-8984/10/50/021/img8 ion are interpreted in terms of the usual model, following the actual understanding of the neptunium electronic structure and independent theoretical predictions. R.m.s. deviations of the order of 0953-8984/10/50/021/img9 have been obtained for 42 levels fitted with 11 free parameters. The crystal field effect resulting from the fitting is considerably larger than that observed for the uranium ion in the same host.

  7. Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research

    Science.gov (United States)

    Kopton, Isabella M.; Kenning, Peter

    2014-01-01

    Over the last decade, the application of neuroscience to economic research has gained in importance and the number of neuroeconomic studies has grown extensively. The most common method for these investigations is fMRI. However, fMRI has limitations (particularly concerning situational factors) that should be countered with other methods. This review elaborates on the use of functional Near-Infrared Spectroscopy (fNIRS) as a new and promising tool for investigating economic decision making both in field experiments and outside the laboratory. We describe results of studies investigating the reliability of prototype NIRS studies, as well as detailing experiments using conventional and stationary fNIRS devices to analyze this potential. This review article shows that further research using mobile fNIRS for studies on economic decision making outside the laboratory could be a fruitful avenue helping to develop the potential of a new method for field experiments outside the laboratory. PMID:25147517

  8. Nonlinear effects in collective absorption

    International Nuclear Information System (INIS)

    Uenoyama, Takeshi; Mima, Kunioki; Watanabe, Tsuguhiro.

    1981-01-01

    The collective absorption of high intensity laser radiation is analyzed numerically. Density profile modification due to the ponderomotive force associating laser radiation and the excited electron plasma waves is self-consistently taken into account, and the intensity dependences of the absorption efficiency are obtained. In the high intensity regime, the absorption efficiency is found to be strongly enhanced in the plasma without flow, but reduced with supersonic flow. (author)

  9. Design, construction, and testing of an automated NIR in-line analysis system for potatoes. Part I: Off-line NIR feasibility study for the characterization of potato composition

    NARCIS (Netherlands)

    Brunt, K.; Drost, W.C.

    2010-01-01

    An off-line near-infrared reflectance (NIR) feasibility study was conducted to explore the critical steps in the NIR determination of the major potato constituents (dry matter, starch, and protein) in relatively large (10 kg) potato samples. The results were important for the design of an automated

  10. Autoclave growth, magnetic, and optical properties of GdB6 nanowires

    Science.gov (United States)

    Han, Wei; Wang, Zhen; Li, Qidong; Liu, Huatao; Fan, Qinghua; Dong, Youzhong; Kuang, Quan; Zhao, Yanming

    2017-12-01

    High-quality single crystalline gadolinium hexaboride (GdB6) nanowires have been successfully prepared at very low temperatures of 200-240 °C by a high pressure solid state (HPSS) method in an autoclave with a new chemical reaction route, where Gd, H3BO3, Mg and I2 were used as raw materials. The crystal structure, morphology, valence, magnetic and optical absorption properties were investigated using XRD, FESEM, HRTEM, XPS, SQUID magnetometry and optical measurements. HRTEM images and SAED patterns reveal that the GdB6 nanowires are single crystalline with a preferred growth direction along [001]. The XPS spectrum suggests that the valence of Gd ion in GdB6 is trivalent. The effective magnetic momentum per Gd3+ in GdB6 is about 6.26 μB. The optical properties exhibit weak absorption in the visible light range, but relatively strong absorbance in the NIR and UV range. Low work function and high NIR absorption can make GdB6 nanowires a potential solar radiation shielding material for solar cells or other NIR blocking applications.

  11. Beer fermentation: monitoring of process parameters by FT-NIR and multivariate data analysis.

    Science.gov (United States)

    Grassi, Silvia; Amigo, José Manuel; Lyndgaard, Christian Bøge; Foschino, Roberto; Casiraghi, Ernestina

    2014-07-15

    This work investigates the capability of Fourier-Transform near infrared (FT-NIR) spectroscopy to monitor and assess process parameters in beer fermentation at different operative conditions. For this purpose, the fermentation of wort with two different yeast strains and at different temperatures was monitored for nine days by FT-NIR. To correlate the collected spectra with °Brix, pH and biomass, different multivariate data methodologies were applied. Principal component analysis (PCA), partial least squares (PLS) and locally weighted regression (LWR) were used to assess the relationship between FT-NIR spectra and the abovementioned process parameters that define the beer fermentation. The accuracy and robustness of the obtained results clearly show the suitability of FT-NIR spectroscopy, combined with multivariate data analysis, to be used as a quality control tool in the beer fermentation process. FT-NIR spectroscopy, when combined with LWR, demonstrates to be a perfectly suitable quantitative method to be implemented in the production of beer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry.

    Science.gov (United States)

    Marciniak, Lukasz; Pilch, Aleksandra; Arabasz, Sebastian; Jin, Dayong; Bednarkiewicz, Artur

    2017-06-22

    The current frontier in nanomaterials engineering is to intentionally design and fabricate heterogeneous nanoparticles with desirable morphology and composition, and to integrate multiple functionalities through highly controlled epitaxial growth. Here we show that heterogeneous doping of Nd 3+ ions following a core-shell design already allows three optical functions, namely efficient (η > 72%) light-to-heat conversion, bright NIR emission, and sensitive (S R > 0.1% K -1 ) localized temperature quantification, to be built within a single ca. 25 nm nanoparticle. Importantly, all these optical functions operate within the transparent biological window of the NIR spectral region (λ exc ∼ 800 nm, λ emi ∼ 860 nm), in which light scattering and absorption by tissues and water are minimal. We find NaNdF 4 as a core is efficient in absorbing and converting 808 nm light to heat, while NaYF 4 :1%Nd 3+ as a shell is a temperature sensor based on the ratio-metric luminescence reading but an intermediate inert spacer shell, e.g. NaYF 4 , is necessary to insulate the heat convertor and thermometer by preventing the possible Nd-Nd energy relaxation. Moreover, we notice that while temperature sensitivity and luminescence intensity are optically stable, increased excitation intensity to generate heat above room temperature may saturate the sensing capacity of temperature feedback. We therefore propose a dual beam photoexcitation scheme as a solution for possible light-induced hyperthermia treatment.

  13. Tissue oxygenation and haemodynamics measurement with spatially resolved NIRS

    Science.gov (United States)

    Zhang, Y.; Scopesi, F.; Serra, G.; Sun, J. W.; Rolfe, P.

    2010-08-01

    We describe the use of Near Infrared Spectroscopy (NIRS) for the non-invasive investigation of changes in haemodynamics and oxygenation of human peripheral tissues. The goal was to measure spatial variations of tissue NIRS oxygenation variables, namely deoxy-haemoglobin (HHb), oxy-haemoglobin (HbO2), total haemoglobin (HbT), and thereby to evaluate the responses of the peripheral circulation to imposed physiological challenges. We present a skinfat- muscle heterogeneous tissue model with varying fat thickness up to 15mm and a Monte Carlo simulation of photon transport within this model. The mean partial path length and the mean photon visit depth in the muscle layer were derived for different source-detector spacing. We constructed NIRS instrumentation comprising of light-emitting diodes (LED) as light sources at four wavelengths, 735nm, 760nm, 810nm and 850nm and sensitive photodiodes (PD) as the detectors. Source-detector spacing was varied to perform measurements at different depths within forearm tissue. Changes in chromophore concentration in response to venous and arterial occlusion were calculated using the modified Lambert-Beer Law. Studies in fat and thin volunteers indicated greater sensitivity in the thinner subjects for the tissue oxygenation measurement in the muscle layer. These results were consistent with those found using Monte Carlo simulation. Overall, the results of this investigation demonstrate the usefulness of the NIRS instrument for deriving spatial information from biological tissues.

  14. Acrylamide inverse miniemulsion polymerization: in situ, real-time monitoring using nir spectroscopy

    Directory of Open Access Journals (Sweden)

    M. M. E. Colmán

    2014-12-01

    Full Text Available In this work, the ability of on-line NIR spectroscopy for the prediction of the evolution of monomer concentration, conversion and average particle diameter in acrylamide inverse miniemulsion polymerization was evaluated. The spectral ranges were chosen as those representing the decrease in concentration of monomer. An increase in the baseline shift indicated that the NIR spectra were affected by particle size. Multivariate partial least squares calibration models were developed to relate NIR spectra collected by the immersion probe with off-line conversion and polymer particle size data. The results showed good agreement between off-line data and values predicted by the NIR calibration models and these latter were also able to detect different types of operational disturbances. These results indicate that it is possible to monitor variables of interest during acrylamide inverse miniemulsion polymerizations.

  15. Amorphization-induced strong localization of electronic states in CsPbBr3 and CsPbCl3 studied by optical absorption measurements

    Science.gov (United States)

    Kondo, S.; Sakai, T.; Tanaka, H.; Saito, T.

    1998-11-01

    Optical absorption spectra of amorphous CsPbX3 films (X=Br,Cl) are characterized by two Gaussian bands near the fundamental edge, with the optical energy gap largely blueshifted and the absorption intensity strongly reduced as compared with the crystalline films. The peak energies of the bands are close to those of the A and C bands of Pb-doped alkali halides. The spectral features are discussed in terms of a molecular orbital theory based on a quasicomplex Pb2+(X-)6 model similar to the complex model for the doped alkali halides. It is shown that not only Pb2+ 6s and 6p extended states near the band edges but also X- p states contributing to upper valence bands are localized by amorphization. The transitions from the localized Pb2+ 6s to 6p states produce the spin-orbit allowed 3P1 and dipole allowed 1P1 states responsible for the two Gaussians. The localized X- p states lie deeper in energy than the localized Pb2+ 6s state and only contribute to higher-energy absorption above the Gaussian bands, giving the reason for the reduced absorption near the fundamental edge. The blueshift of the optical energy gap is attributed to the disappearance of k dispersions for these one-electron states.

  16. The role of cell hydration in realization of biological effects of non-ionizing radiation (NIR).

    Science.gov (United States)

    Ayrapetyan, Sinerik

    2015-09-01

    The weak knowledge on the nature of cellular and molecular mechanisms of biological effects of NIR such as static magnetic field, infrasound frequency of mechanical vibration, extremely low frequency of electromagnetic fields and microwave serves as a main barrier for adequate dosimetry from the point of Public Health. The difficulty lies in the fact that the biological effects of NIR depend not only on their thermodynamic characteristics but also on their frequency and intensity "windows", chemical and physical composition of the surrounding medium, as well as on the initial metabolic state of the organism. Therefore, only biomarker can be used for adequate estimation of biological effect of NIR on organisms. Because of the absence of such biomarker(s), organizations having the mission to monitor hazardous effects of NIR traditionally base their instruction on thermodynamic characteristics of NIR. Based on the high sensitivity to NIR of both aqua medium structure and cell hydration, it is suggested that cell bathing medium is one of the primary targets and cell hydration is a biomarker for NIR effects on cells and organisms. The purpose of this article is to present a short review of literature and our own experimental data on the effects of NIR on plants' seeds germination, microbe growth and development, snail neurons and heart muscle, rat's brain and heart tissues.

  17. Radioecological studies in early period of NIRS

    International Nuclear Information System (INIS)

    Ichikawa, Ryushi

    2004-01-01

    Japanese tuna-fishing boat Fukuryumaru No.5 was exposed to heavy radioactive fallout due to the nuclear test explosion carried out by U.S.A. at Bikini Atoll of Marshal Islands in the central part of Pacific Ocean on March 1, 1954. Following this accident, radioactivity was detected in various environmental samples including rain, marine fishes and agricultural crops. Science Council of Japan organized the new research group of many scientists in the field of fisheries, agricultural, medical and biological studies and radiation protection studies. Government of Japan established National Institute of Radiological Sciences (NIRS) in 1957. In this Institute various radioecological studies have been carried out. In this paper, some of these radioecological studies carried out in early period of NIRS are described. (author)

  18. Near-infrared (NIR) optogenetics using up-conversion system

    Science.gov (United States)

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Yawo, Hiromu

    2015-03-01

    Non-invasive remote control technologies designed to manipulate neural functions for a comprehensive and quantitative understanding of the neuronal network in the brain as well as for the therapy of neurological disorders have long been awaited. Recently, it has become possible to optically manipulate the neuronal activity using biological photo-reactive molecules such as channelrhodopsin-2 (ChR2). However, ChR2 and its relatives are mostly reactive to visible light which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light penetrates deep into the tissues because biological systems are almost transparent to light within this so-called `imaging window'. Here we used lanthanide nanoparticles (LNPs), which are composed of rare-earth elements, as luminous bodies to activate channelrhodopsins (ChRs) since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Neuron-glioma-hybrid ND-7/23 cells were cultured with LNP(NaYF4:Sc/Yb/Er) particles (peak emission, 543 nm) and transfected to express C1V1 (peak absorbance, 539 nm), a chimera of ChR1 and VChR1. The photocurrents were generated in response to NIR laser light (976 nm) to a level comparable to that evoked by a filtered Hg lamp (530-550 nm). NIR light pulses also evoked action potentials in the cultured neurons that expressed C1V1. It is suggested that the green luminescent light emitted from LNPs effectively activated C1V1 to generate the photocurrent. With the optimization of LNPs, acceptor photo-reactive biomolecules and optics, this system could be applied to non-invasively actuate neurons deep in the brain.

  19. Suitability of faecal near-infrared reflectance spectroscopy (NIRS) predictions for estimating gross calorific value

    Energy Technology Data Exchange (ETDEWEB)

    De la Roza-Delgado, B.; Modroño, S.; Vicente, F.; Martínez-Fernández, A.; Soldado, A.

    2015-07-01

    A total of 220 faecal pig and poultry samples, collected from different experimental trials were employed with the aim to demonstrate the suitability of Near Infrared Reflectance Spectroscopy (NIRS) technology for estimation of gross calorific value on faeces as output products in energy balances studies. NIR spectra from dried and grounded faeces samples were analyzed using a Foss NIRSystem 6500 instrument, scanning over the wavelength range 400-2500 nm. Validation studies for quantitative analytical models were carried out to estimate the relevance of method performance associated to reference values to obtain an appropriate, accuracy and precision. The results for prediction of gross calorific value (GCV) of NIRS calibrations obtained for individual species showed high correlation coefficients comparing chemical analysis and NIRS predictions, ranged from 0.92 to 0.97 for poultry and pig. For external validation, the ratio between the standard error of cross validation (SECV) and the standard error of prediction (SEP) varied between 0.73 and 0.86 for poultry and pig respectively, indicating a sufficiently precision of calibrations. In addition a global model to estimate GCV in both species was developed and externally validated. It showed correlation coefficients of 0.99 for calibration, 0.98 for cross-validation and 0.97 for external validation. Finally, relative uncertainty was calculated for NIRS developed prediction models with the final value when applying individual NIRS species model of 1.3% and 1.5% for NIRS global prediction. This study suggests that NIRS is a suitable and accurate method for the determination of GCV in faeces, decreasing cost, timeless and for convenient handling of unpleasant samples.. (Author)

  20. Diseno y construccion de un espectrometro NIR; Design and construction of a NIR spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Barcala Riveira, J M; Fernandez Marron, J L; Alberdi Primicia, J; Molero Menendez, F; Navarrete Marin, J J; Oller Gonzalez, J C

    2003-07-01

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs.

  1. Community Structure of Denitrifiers, Bacteria, and Archaea along Redox Gradients in Pacific Northwest Marine Sediments by Terminal Restriction Fragment Length Polymorphism Analysis of Amplified Nitrite Reductase (nirS) and 16S rRNA Genes

    Science.gov (United States)

    Braker, Gesche; Ayala-del-Río, Héctor L.; Devol, Allan H.; Fesefeldt, Andreas; Tiedje, James M.

    2001-01-01

    Steep vertical gradients of oxidants (O2 and NO3−) in Puget Sound and Washington continental margin sediments indicate that aerobic respiration and denitrification occur within the top few millimeters to centimeters. To systematically explore the underlying communities of denitrifiers, Bacteria, and Archaea along redox gradients at distant geographic locations, nitrite reductase (nirS) genes and bacterial and archaeal 16S rRNA genes (rDNAs) were PCR amplified and analyzed by terminal restriction fragment length polymorphism (T-RFLP) analysis. The suitablility of T-RFLP analysis for investigating communities of nirS-containing denitrifiers was established by the correspondence of dominant terminal restriction fragments (T-RFs) of nirS to computer-simulated T-RFs of nirS clones. These clones belonged to clusters II, III, and IV from the same cores and were analyzed in a previous study (G. Braker, J. Zhou, L. Wu, A. H. Devol, and J. M. Tiedje, Appl. Environ. Microbiol. 66:2096–2104, 2000). T-RFLP analysis of nirS and bacterial rDNA revealed a high level of functional and phylogenetic diversity, whereas the level of diversity of Archaea was lower. A comparison of T-RFLPs based on the presence or absence of T-RFs and correspondence analysis based on the frequencies and heights of T-RFs allowed us to group sediment samples according to the sampling location and thus clearly distinguish Puget Sound and the Washington margin populations. However, changes in community structure within sediment core sections during the transition from aerobic to anaerobic conditions were minor. Thus, within the top layers of marine sediments, redox gradients seem to result from the differential metabolic activities of populations of similar communities, probably through mixing by marine invertebrates rather than from the development of distinct communities. PMID:11282647

  2. Distraction decreases prefrontal oxygenation: A NIRS study.

    Science.gov (United States)

    Ozawa, Sachiyo; Hiraki, Kazuo

    2017-04-01

    When near-infrared spectroscopy (NIRS) is used to measure emotion-related cerebral blood flow (CBF) changes in the prefrontal cortex regions, the functional distinction of CBF changes is often difficult because NIRS is unable to measure neural activity in deeper brain regions that play major roles in emotional processing. The CBF changes could represent cognitive control of emotion and emotional responses to emotional materials. Supposing that emotion-related CBF changes in the prefrontal cortex regions during distraction are emotional responses, we examined whether oxygenated hemoglobin (oxyHb) decreases. Attention-demanding tasks cause blood flow decreases, and we thus compared the effects of visually paced tapping with different tempos, on distraction. The results showed that the oxyHb level induced by emotional stimulation decreased with fast-tempo tapping significantly more than slow-tempo tapping in ventral medial prefrontal cortex regions. Moreover, a Global-Local task following tapping showed significantly greater local-minus-global response time (RT) difference scores in the fast- and mid-tempo condition compared with those in the slow-tempo, suggesting an increased attentional focus, and decreased negative emotion. The overall findings indicate that oxyHb changes in a relatively long distraction task, as measured by NIRS, are associated with emotional responses, and oxyHb can be decreased by successfully performing attention-demanding distraction tasks. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. New GasB-based single-mode diode lasers in the NIR and MIR spectral regime for sensor applications

    Science.gov (United States)

    Milde, Tobias; Hoppe, Morten; Tatenguem, Herve; Honsberg, Martin; Mordmüller, Mario; O'Gorman, James; Schade, Wolfgang; Sacher, Joachim

    2018-02-01

    The NIR/MIR region between 1.8μm and 3.5μm contains important absorption lines for gas detection. State of the art are InP laser based setups, which show poor gain above 1.8μm and cannot be applied beyond 2.1μm. GaSb laser show a significantly higher output power (100mW for Fabry-Perot, 30mW for DFB). The laser design is presented with simulation and actual performance data. The superior performance of the GaSb lasers is verified in gas sensing applications. TDLAS and QEPAS measurements at trace gases like CH4, CO2 and N2O are shown to prove the spectroscopy performance.

  4. THz induced nonlinear absorption in ZnTe

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Jepsen, Peter Uhd

    2015-01-01

    Absorption spectra of ZnTe during strong-field THz interaction are investigated. Bleaching of the difference phonon modes below the fundamental TO mode is observed when field strengths higher than 4 MV/cm are applied.......Absorption spectra of ZnTe during strong-field THz interaction are investigated. Bleaching of the difference phonon modes below the fundamental TO mode is observed when field strengths higher than 4 MV/cm are applied....

  5. Mercury absorption in aqueous hypochlorite

    International Nuclear Information System (INIS)

    Zhao, L.L.; Rochelle, G.T.

    1999-01-01

    The absorption of elemental Hg vapor into aqueous hypochlorite was measured in a stirred tank reactor at 25 and 55C. NaOCl strongly absorbs Hg even at high pH. Low pH, high Cl - and high-temperature favor mercury absorption. Aqueous free Cl 2 was the active species that reacted with mercury. However, chlorine desorption was evident at high Cl - and pH 15 M -1 s -1 at 25C and 1.4x10 17 M -1 s -1 at 55C. Gas-phase reaction was observed between Hg and Cl 2 on apparatus surfaces. Strong mercury absorption in water was also detected with Cl 2 present. Results indicate that the chlorine concentration, moisture, and surface area contribute positively to mercury removal. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. Fuji apple storage time rapid determination method using Vis/NIR spectroscopy

    Science.gov (United States)

    Liu, Fuqi; Tang, Xuxiang

    2015-01-01

    Fuji apple storage time rapid determination method using visible/near-infrared (Vis/NIR) spectroscopy was studied in this paper. Vis/NIR diffuse reflection spectroscopy responses to samples were measured for 6 days. Spectroscopy data were processed by stochastic resonance (SR). Principal component analysis (PCA) was utilized to analyze original spectroscopy data and SNR eigen value. Results demonstrated that PCA could not totally discriminate Fuji apples using original spectroscopy data. Signal-to-noise ratio (SNR) spectrum clearly classified all apple samples. PCA using SNR spectrum successfully discriminated apple samples. Therefore, Vis/NIR spectroscopy was effective for Fuji apple storage time rapid discrimination. The proposed method is also promising in condition safety control and management for food and environmental laboratories. PMID:25874818

  7. PAT: From Western solid dosage forms to Chinese materia medica preparations using NIR-CI.

    Science.gov (United States)

    Zhou, Luwei; Xu, Manfei; Wu, Zhisheng; Shi, Xinyuan; Qiao, Yanjiang

    2016-01-01

    Near-infrared chemical imaging (NIR-CI) is an emerging technology that combines traditional near-infrared spectroscopy with chemical imaging. Therefore, NIR-CI can extract spectral information from pharmaceutical products and simultaneously visualize the spatial distribution of chemical components. The rapid and non-destructive features of NIR-CI make it an attractive process analytical technology (PAT) for identifying and monitoring critical control parameters during the pharmaceutical manufacturing process. This review mainly focuses on the pharmaceutical applications of NIR-CI in each unit operation during the manufacturing processes, from the Western solid dosage forms to the Chinese materia medica preparations. Finally, future applications of chemical imaging in the pharmaceutical industry are discussed. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Association of Concurrent fNIRS and EEG Signatures in Response to Auditory and Visual Stimuli.

    Science.gov (United States)

    Chen, Ling-Chia; Sandmann, Pascale; Thorne, Jeremy D; Herrmann, Christoph S; Debener, Stefan

    2015-09-01

    Functional near-infrared spectroscopy (fNIRS) has been proven reliable for investigation of low-level visual processing in both infants and adults. Similar investigation of fundamental auditory processes with fNIRS, however, remains only partially complete. Here we employed a systematic three-level validation approach to investigate whether fNIRS could capture fundamental aspects of bottom-up acoustic processing. We performed a simultaneous fNIRS-EEG experiment with visual and auditory stimulation in 24 participants, which allowed the relationship between changes in neural activity and hemoglobin concentrations to be studied. In the first level, the fNIRS results showed a clear distinction between visual and auditory sensory modalities. Specifically, the results demonstrated area specificity, that is, maximal fNIRS responses in visual and auditory areas for the visual and auditory stimuli respectively, and stimulus selectivity, whereby the visual and auditory areas responded mainly toward their respective stimuli. In the second level, a stimulus-dependent modulation of the fNIRS signal was observed in the visual area, as well as a loudness modulation in the auditory area. Finally in the last level, we observed significant correlations between simultaneously-recorded visual evoked potentials and deoxygenated hemoglobin (DeoxyHb) concentration, and between late auditory evoked potentials and oxygenated hemoglobin (OxyHb) concentration. In sum, these results suggest good sensitivity of fNIRS to low-level sensory processing in both the visual and the auditory domain, and provide further evidence of the neurovascular coupling between hemoglobin concentration changes and non-invasive brain electrical activity.

  9. [Determination of wine original regions using information fusion of NIR and MIR spectroscopy].

    Science.gov (United States)

    Xiang, Ling-Li; Li, Meng-Hua; Li, Jing-Mingz; Li, Jun-Hui; Zhang, Lu-Da; Zhao, Long-Lian

    2014-10-01

    Geographical origins of wine grapes are significant factors affecting wine quality and wine prices. Tasters' evaluation is a good method but has some limitations. It is important to discriminate different wine original regions quickly and accurately. The present paper proposed a method to determine wine original regions based on Bayesian information fusion that fused near-infrared (NIR) transmission spectra information and mid-infrared (MIR) ATR spectra information of wines. This method improved the determination results by expanding the sources of analysis information. NIR spectra and MIR spectra of 153 wine samples from four different regions of grape growing were collected by near-infrared and mid-infrared Fourier transform spe trometer separately. These four different regions are Huailai, Yantai, Gansu and Changli, which areall typical geographical originals for Chinese wines. NIR and MIR discriminant models for wine regions were established using partial least squares discriminant analysis (PLS-DA) based on NIR spectra and MIR spectra separately. In PLS-DA, the regions of wine samples are presented in group of binary code. There are four wine regions in this paper, thereby using four nodes standing for categorical variables. The output nodes values for each sample in NIR and MIR models were normalized first. These values stand for the probabilities of each sample belonging to each category. They seemed as the input to the Bayesian discriminant formula as a priori probability value. The probabilities were substituteed into the Bayesian formula to get posterior probabilities, by which we can judge the new class characteristics of these samples. Considering the stability of PLS-DA models, all the wine samples were divided into calibration sets and validation sets randomly for ten times. The results of NIR and MIR discriminant models of four wine regions were as follows: the average accuracy rates of calibration sets were 78.21% (NIR) and 82.57% (MIR), and the

  10. Field Measurements of Water Continuum and Water Dimer Absorption by Active Long Path Differential Optical Absorption Spectroscopy (DOAS)

    OpenAIRE

    Lotter, Andreas

    2006-01-01

    Water vapor plays an important role in Earth's radiative budget since water molecules strongly absorb the incoming solar shortwave and the outgoing thermal infrared radiation. Superimposed on the water monomer absorption, a water continuum absorption has long been recognized, but its true nature still remains controversial. On the one hand, this absorption is explained by a deformation of the line shape of the water monomer absorption lines as a consequence of a molecular collision. One the o...

  11. Estimation of crosstalk in LED fNIRS by photon propagation Monte Carlo simulation

    Science.gov (United States)

    Iwano, Takayuki; Umeyama, Shinji

    2015-12-01

    fNIRS (functional near-Infrared spectroscopy) can measure brain activity non-invasively and has advantages such as low cost and portability. While the conventional fNIRS has used laser light, LED light fNIRS is recently becoming common in use. Using LED for fNIRS, equipment can be more inexpensive and more portable. LED light, however, has a wider illumination spectrum than laser light, which may change crosstalk between the calculated concentration change of oxygenated and deoxygenated hemoglobins. The crosstalk is caused by difference in light path length in the head tissues depending on wavelengths used. We conducted Monte Carlo simulations of photon propagation in the tissue layers of head (scalp, skull, CSF, gray matter, and white matter) to estimate the light path length in each layers. Based on the estimated path lengths, the crosstalk in fNIRS using LED light was calculated. Our results showed that LED light more increases the crosstalk than laser light does when certain combinations of wavelengths were adopted. Even in such cases, the crosstalk increased by using LED light can be effectively suppressed by replacing the value of extinction coefficients used in the hemoglobin calculation to their weighted average over illumination spectrum.

  12. WIRELESS DISTRIBUTED ACQUISITION SYSTEM FOR NEAR INFRARED SPECTROSCOPY – WDA-NIRS

    Directory of Open Access Journals (Sweden)

    J. SAFAIE

    2013-07-01

    Full Text Available The wireless distributed acquisition system for near infrared spectroscopy (WDA-NIRS is a portable, ultra-compact, continuous wave (CW NIRS system. Its main advantage is that it allows continuous synchronized multi-site hemodynamic monitoring. The WDA-NIRS system calculates online changes in hemoglobin concentration based on modified Beer–Lambert law and the tissue oxygenation index based on the spatial-resolved spectroscopy method. It consists of up to seven signal acquisition units, sufficiently small to be easily attached to any part of the body. These units are remotely synchronized by a PC base station for independent acquisition of NIRS signals. Each acquisition module can be freely adapted to individual requirements such as local skin properties and the microcirculation of interest, e.g., different muscles, brain, skin, etc. For this purpose, the light emitted by each LED can be individually, interactively or automatically adjusted to local needs. Furthermore, the user can freely create an emitter time-multiplexing protocol and choose the detector sensitivity most suitable to a particular situation. The potential diagnostic value of this advanced device is demonstrated by three typical applications.

  13. Ultrafast THz Saturable Absorption in Doped Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields.......We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields....

  14. Ultrafast THz Saturable Absorption in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate THz saturable absorption in n-doped semiconductors GaAs, GaP, and Ge in a nonlinear THz time-domain spectroscopy experiment. Saturable absorption is caused by sample conductivity modulation due to electron heating and satellite valley scattering in the field of a strong THz pulse....

  15. Prediction of pH and color in pork meat using VIS-NIR Near-infrared Spectroscopy (NIRS

    Directory of Open Access Journals (Sweden)

    Elton Jhones Granemann FURTADO

    2018-06-01

    Full Text Available Abstract The potential of near-infrared spectroscopy (NIRS to predict the physicochemical characteristics of the porcine longissimus dorsi (LD muscle was evaluated in comparison to the standard methods of pH and color for meat quality analysis compared to the pH results with Colorimeter and pH meter. Spectral information from each sample (n = 77 was obtained as the average of 32 successive scans acquired over a spectral range from 400 - 2498 nm with a 2 - nm gap for calibration and validation models. Partial least squares (PLS regression was used for each individual model. An R2 and a residual predictive deviation (RPD of 0.67/1.7, 0.86/2, and 0.76/1.9 were estimated for color parameters L*, a *, and b*, respectively. Final pH had an R2 of 0.67 and a RPD of 1.6. NIRS showed great potential to predict color parameter a * of porcine LD muscle. Further studies with larger samples should help improve model quality.

  16. Near-infrared (NIR) emitting conjugated polymers for biomedical applications (Presentation Recording)

    Science.gov (United States)

    Repenko, Tatjana; Kuehne, Alexander J. C.

    2015-10-01

    Fluorescent biomedical markers of today such as dye-infiltrated colloids, microgels and quantum dots suffer from fast bleaching, lack surface functionality (for targets or pharmaceutical agents) and potentially leach heavy metals in case of quantum dots (e.g. Cd). By contrast, conjugated polymer particles are non-cytotoxic, exhibit reduced bleaching, as the entire particle consists of fluorophore, they are hydrophobic and show high quantum yields. Consequently, conjugated polymer particles represent ideal materials for biological applications and imaging. However currently, conjugated polymer particles for biomedical imaging usually lack near-infrared (NIR) emission and are polydisperse. Fluorescent agents with emission in the NIR spectrum are interesting for biomedical applications due to their low photo-damage towards biological species and the ability of NIR radiation to penetrate deep into biological tissue.. I will present the development and synthesis of new conjugated polymers particles with fluorescence in the NIR spectral region for bio-imaging and clinical diagnosis. The particle synthesis proceeds in a one-step Pd or Ni-catalyzed dispersion polymerization of functional NIR emitters. The resulting monodisperse conjugated polymer particles are obtained as a dispersion in a non-hazardous solvent. Different sizes in the sub-micrometer range with a narrow size distribution can be produced. Furthermore biological recognition motifs can be easily attached to the conjugated polymers via thiol-yne click-chemistry providing specific tumor targeting without quenching of the fluorescence. References [1] Kuehne AJC, Gather MC, Sprakel J., Nature Commun. 2012, 3, 1088. [2] Repenko T, Fokong S, De Laporte L, Go D, Kiessling F, Lammers T, Kuehne AJC.,Chem Commun 2015, accepted.

  17. Relationship between muscle oxygenation by NIRS and blood lactate

    International Nuclear Information System (INIS)

    Xu Guodong; Mao Zongzhen; Ye Yanjie; Lv Kunru

    2011-01-01

    The aim of the study was to investigate the relationship of muscle oxygenation in term of oxy-hemoglobin concentration change (ΔHbO 2 ) by NIRS and blood lactate (BLA) in local skeletal muscle and evaluate the capability of NIRS in the research of exercise physiology Twenty-three athlete in the national fin-swimming team took the increasing load training on the power bicycle while their ΔHbO 2 and BLA were simultaneously recorded. The initial powers used in the training were set as 100 w for males and 40 w for females. During the experiment, the power kept constant for 3 min before each abrupt increment of 30 w until the limit of the athlete's capability. Statistical analysis and data visualization were performed. Following the increasing load training, ΔHbO 2 step-likely increased in the phase of aerobic metabolism but linearly decreased in the phase of anaerobic metabolism. The variation tendency of BLA was the same as ΔHbO 2 and the concurrency of crucial turning points between ΔHbO 2 and BLA was revealed. This relationship between ΔHbO 2 and BLA presented in the increasing load training suggested that ΔHbO 2 might be capable for taking the place of the invasively measured parameter BLA. Considering that ΔHbO 2 can be noninvasively measured by NIRS, ΔHbO 2 has the potential in the evaluation of athletes' physiological function and training effect on the athletes and accordingly NIRS can be well used in this field.

  18. Study of Vis/NIR spectroscopy measurement on acidity of yogurt

    Science.gov (United States)

    He, Yong; Feng, Shuijuan; Wu, Di; Li, Xiaoli

    2006-09-01

    A fast measurement of pH of yogurt using Vis/NIR-spectroscopy techniques was established in order to measuring the acidity of yogurt rapidly. 27 samples selected separately from five different brands of yogurt were measured by Vis/NIR-spectroscopy. The pH of yogurt on positions scanned by spectrum was measured by a pH meter. The mathematical model between pH and Vis/NIR spectral measurements was established and developed based on partial least squares (PLS) by using Unscramble V9.2. Then 25 unknown samples from 5 different brands were predicted based on the mathematical model. The result shows that The correlation coefficient of pH based on PLS model is more than 0.890, and standard error of calibration (SEC) is 0.037, standard error of prediction (SEP) is 0.043. Through predicting the pH of 25 samples of yogurt from 5 different brands, the correlation coefficient between predictive value and measured value of those samples is more than 0918. The results show the good to excellent prediction performances. The Vis/NIR spectroscopy technique had a significant greater accuracy for determining the value of pH. It was concluded that the VisINIRS measurement technique can be used to measure pH of yogurt fast and accurately, and a new method for the measurement of pH of yogurt was established.

  19. NIR spectroscopic properties of aqueous acids solutions.

    Science.gov (United States)

    Omar, Ahmad Fairuz; Atan, Hanafi; Matjafri, Mohd Zubir

    2012-06-15

    Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R² above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918-925 nm and 990-996 nm, while at 975 nm for water.

  20. Dynamic Filtering Improves Attentional State Prediction with fNIRS

    Science.gov (United States)

    Harrivel, Angela R.; Weissman, Daniel H.; Noll, Douglas C.; Huppert, Theodore; Peltier, Scott J.

    2016-01-01

    Brain activity can predict a person's level of engagement in an attentional task. However, estimates of brain activity are often confounded by measurement artifacts and systemic physiological noise. The optimal method for filtering this noise - thereby increasing such state prediction accuracy - remains unclear. To investigate this, we asked study participants to perform an attentional task while we monitored their brain activity with functional near infrared spectroscopy (fNIRS). We observed higher state prediction accuracy when noise in the fNIRS hemoglobin [Hb] signals was filtered with a non-stationary (adaptive) model as compared to static regression (84% +/- 6% versus 72% +/- 15%).

  1. [Real-time detection of quality of Chinese materia medica: strategy of NIR model evaluation].

    Science.gov (United States)

    Wu, Zhi-sheng; Shi, Xin-yuan; Xu, Bing; Dai, Xing-xing; Qiao, Yan-jiang

    2015-07-01

    The definition of critical quality attributes of Chinese materia medica ( CMM) was put forward based on the top-level design concept. Nowadays, coupled with the development of rapid analytical science, rapid assessment of critical quality attributes of CMM was firstly carried out, which was the secondary discipline branch of CMM. Taking near infrared (NIR) spectroscopy as an example, which is a rapid analytical technology in pharmaceutical process over the past decade, systematic review is the chemometric parameters in NIR model evaluation. According to the characteristics of complexity of CMM and trace components analysis, a multi-source information fusion strategy of NIR model was developed for assessment of critical quality attributes of CMM. The strategy has provided guideline for NIR reliable analysis in critical quality attributes of CMM.

  2. Study on feasibility of determination of glucosamine content of fermentation process using a micro NIR spectrometer.

    Science.gov (United States)

    Sun, Zhongyu; Li, Can; Li, Lian; Nie, Lei; Dong, Qin; Li, Danyang; Gao, Lingling; Zang, Hengchang

    2018-08-05

    N-acetyl-d-glucosamine (GlcNAc) is a microbial fermentation product, and NIR spectroscopy is an effective process analytical technology (PAT) tool in detecting the key quality attribute: the GlcNAc content. Meanwhile, the design of NIR spectrometers is under the trend of miniaturization, portability and low-cost nowadays. The aim of this study was to explore a portable micro NIR spectrometer with the fermentation process. First, FT-NIR spectrometer and Micro-NIR 1700 spectrometer were compared with simulated fermentation process solutions. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal FT-NIR and Micro-NIR 1700 models were 0.999, 0.999, 3.226 g/L, 1.388 g/L and 0.999, 0.999, 1.821 g/L, 0.967 g/L. Passing-Bablok regression method and paired t-test results showed there were no significant differences between the two instruments. Then the Micro-NIR 1700 was selected for the practical fermentation process, 135 samples from 10 batches were collected. Spectral pretreatment methods and variables selection methods (BiPLS, FiPLS, MWPLS and CARS-PLS) for PLS modeling were discussed. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal GlcNAc content PLS model of the practical fermentation process were 0.994, 0.995, 2.792 g/L and 1.946 g/L. The results have a positive reference for application of the Micro-NIR spectrometer. To some extent, it could provide theoretical supports in guiding the microbial fermentation or the further assessment of bioprocess. Copyright © 2018. Published by Elsevier B.V.

  3. Optical transmittance investigation of 1-keV ion-irradiated sapphire crystals as potential VUV to NIR window materials of fusion reactors

    Directory of Open Access Journals (Sweden)

    Keisuke Iwano

    2016-10-01

    Full Text Available We investigate the optical transmittances of ion-irradiated sapphire crystals as potential vacuum ultraviolet (VUV to near-infrared (NIR window materials of fusion reactors. Under potential conditions in fusion reactors, sapphire crystals are irradiated with hydrogen (H, deuterium (D, and helium (He ions with 1-keV energy and ∼ 1020-m-2 s-1 flux. Ion irradiation decreases the transmittances from 140 to 260 nm but hardly affects the transmittances from 300 to 1500 nm. H-ion and D-ion irradiation causes optical absorptions near 210 and 260 nm associated with an F-center and an F+-center, respectively. These F-type centers are classified as Schottky defects that can be removed through annealing above 1000 K. In contrast, He-ion irradiation does not cause optical absorptions above 200 nm because He-ions cannot be incorporated in the crystal lattice due to the large ionic radius of He-ions. Moreover, the significant decrease in transmittance of the ion-irradiated sapphire crystals from 140 to 180 nm is related to the light scattering on the crystal surface. Similar to diamond polishing, ion irradiation modifies the crystal surface thereby affecting the optical properties especially at shorter wavelengths. Although the transmittances in the VUV wavelengths decrease after ion irradiation, the transmittances can be improved through annealing above 1000 K. With an optical transmittance in the VUV region that can recover through simple annealing and with a high transparency from the ultraviolet (UV to the NIR region, sapphire crystals can therefore be used as good optical windows inside modern fusion power reactors in terms of light particle loadings of hydrogen isotopes and helium.

  4. Strong Impact of an Axial Ligand on the Absorption by Chlorophyll a and b Pigments Determined by Gas-Phase Ion Spectroscopy Experiments

    DEFF Research Database (Denmark)

    Kjaer, Christina; Stockett, Mark H.; Pedersen, Bjarke Møller

    2016-01-01

    The microenvironments in photosynthetic proteins affect the absorption by chlorophyll (Chl) pigments. It is, however, a challenge to disentangle the impact on the transition energies of different perturbations, for example, the global electrostatics of the protein (nonbonded environmental effects......), exciton coupling between Chl's, conformational variations, and binding of an axial ligand to the magnesium center. This is needed to distinguish between the two most commonly proposed mechanisms for energy transport in photosynthetic proteins, relying on either weakly or strongly coupled pigments. Here...

  5. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS)

    International Nuclear Information System (INIS)

    Brunet, Didier; Woignier, Thierry; Lesueur-Jannoyer, Magalie; Achard, Raphael; Rangon, Luc; Barthes, Bernard G.

    2009-01-01

    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q 2 = 0.75, R 2 = 0.82 for the total set), especially for samples with chlordecone content -1 or when the sample set was rather homogeneous (Q 2 = 0.91, R 2 = 0.82 for the Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg -1 , nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone. - Soil content in chlordecone, an organochlorine insecticide, can be determined time- and cost-effectively using near infrared reflectance spectroscopy (NIRS).

  6. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS)

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Didier, E-mail: didier.brunet@ird.f [IRD - Institut de Recherche pour le Developpement, UMR Eco and Sols (Ecologie Fonctionnelle et Biogeochimie des Sols), Montpellier SupAgro, Batiment 12, 2 place Viala, 34060 Montpellier Cedex 1 (France); Woignier, Thierry [IRD, UMR Eco and Sols, PRAM (Pole de Recherche Agronomique de la Martinique), BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); CNRS - Centre National de la Recherche Scientifique, Universite Montpellier 2, place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Lesueur-Jannoyer, Magalie; Achard, Raphael [CIRAD (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement), PRAM, BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); Rangon, Luc [IRD, UMR Eco and Sols, PRAM (Pole de Recherche Agronomique de la Martinique), BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); Barthes, Bernard G. [IRD - Institut de Recherche pour le Developpement, UMR Eco and Sols (Ecologie Fonctionnelle et Biogeochimie des Sols), Montpellier SupAgro, Batiment 12, 2 place Viala, 34060 Montpellier Cedex 1 (France)

    2009-11-15

    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q{sup 2} = 0.75, R{sup 2} = 0.82 for the total set), especially for samples with chlordecone content <12 mg kg{sup -1} or when the sample set was rather homogeneous (Q{sup 2} = 0.91, R{sup 2} = 0.82 for the Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg{sup -1}, nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone. - Soil content in chlordecone, an organochlorine insecticide, can be determined time- and cost-effectively using near infrared reflectance spectroscopy (NIRS).

  7. Anterior temporal artery tap to identify systemic interference using short-separation NIRS measurements

    DEFF Research Database (Denmark)

    Sood, Mehak; Jindal, Utkarsh; Chowdhury, Shubhajit Roy

    2015-01-01

    that are also affected by tDCS. An approach may be to use short optode separations to measure systemic hemodynamic fluctuations occurring in the superficial layers which can then be used as regressors to remove the systemic contamination. Here, we demonstrate that temporal artery tap may be used to better...... of neural activity is possible with a measure of cerebral hemoglobin oxygenation using near-infrared spectroscopy (NIRS). In principal accordance, NIRS can capture the hemodynamic response to tDCS but the challenge remains in removing the systemic interference occurring in the superficial layers of the head...... identify systemic interference using this short-separation NIRS. Moreover, NIRS-EEG joint-imaging during anodal tDCS was used to measure changes in mean cerebral haemoglobin oxygen saturation (rSO2) along with changes in the log-transformed mean-power of EEG within 0.5 Hz-11.25 Hz. We found that percent...

  8. Fluorescence enhancing under UV-NIR simultaneous-excitation in ZnS:Cu,Mn phosphors

    Directory of Open Access Journals (Sweden)

    L. J. Xie

    2012-12-01

    Full Text Available The fluorescence properties of a long-lasting phosphor, ZnS:Cu,Mn was studied for the first time under simultaneously excitation of both UV and NIR light. Up to 20% fluorescence enhancement of the phosphor was observed. In the present simultaneously-excitation process, broad-band NIR light was absorbed and converted to visible photons via a single-photon upconversion path. We propose that a novel kind of spectral-conversion material with the unique ability to simultaneously convert both UV and NIR photons can be developed and is promising in the application of enhancing the EQE of solar cells.

  9. Ambiguities in strong absorption parametrisations of nuclear scattering data

    International Nuclear Information System (INIS)

    Steward, C.; Fiedeldey, H.; Amos, K.; Allen, L.J.

    1994-01-01

    Fixed energy inverse scattering methods have been applied to extract 12 C - 208 Pb inversion potentials from measured differential cross sections. A semiclassical (WKB) inversion scheme was used to ascertain those complex, local interactions for the data taken at 1449 MeV. The first step was to fit the differential cross section data with a McIntyre form for the S-function. Then each McIntyre S-function was mapped into a rational function representation with which the inversion was performed. The inversion potentials vary significantly in their absorption components within the sensitive radial regions. The results highlight the crucial importance of making more extensive and accurate measurements of cross section data before a much further understanding can be made of heavy ion collisions. 18 refs., 3 tabs., 3 figs

  10. Single-trial lie detection using a combined fNIRS-polygraph system

    Science.gov (United States)

    Bhutta, M. Raheel; Hong, Melissa J.; Kim, Yun-Hee; Hong, Keum-Shik

    2015-01-01

    Deception is a human behavior that many people experience in daily life. It involves complex neuronal activities in addition to several physiological changes in the body. A polygraph, which can measure some of the physiological responses from the body, has been widely employed in lie-detection. Many researchers, however, believe that lie detection can become more precise if the neuronal changes that occur in the process of deception can be isolated and measured. In this study, we combine both measures (i.e., physiological and neuronal changes) for enhanced lie-detection. Specifically, to investigate the deception-related hemodynamic response, functional near-infrared spectroscopy (fNIRS) is applied at the prefrontal cortex besides a commercially available polygraph system. A mock crime scenario with a single-trial stimulus is set up as a deception protocol. The acquired data are classified into “true” and “lie” classes based on the fNIRS-based hemoglobin-concentration changes and polygraph-based physiological signal changes. Linear discriminant analysis is utilized as a classifier. The results indicate that the combined fNIRS-polygraph system delivers much higher classification accuracy than that of a singular system. This study demonstrates a plausible solution toward single-trial lie-detection by combining fNIRS and the polygraph. PMID:26082733

  11. Single-trial lie detection using a combined fNIRS-polygraph system

    Directory of Open Access Journals (Sweden)

    M. Raheel eBhutta

    2015-06-01

    Full Text Available Deception is a human behavior that many people experience in daily life. It involves complex neuronal activities in addition to several physiological changes in the body. A polygraph, which can measure some of the physiological responses from the body, has been widely employed in lie-detection. Many researchers, however, believe that lie detection can become more precise if the neuronal changes that occur in the process of deception can be isolated and measured. In this study, we combine both measures (i.e., physiological and neuronal changes for enhanced lie-detection. Specifically, to investigate the deception-related hemodynamic response, functional near-infrared spectroscopy (fNIRS is applied at the prefrontal cortex besides a commercially available polygraph system. A mock crime scenario with a single-trial stimulus is set up as a deception protocol. The acquired data are classified into true and lie classes based on the fNIRS-based hemoglobin-concentration changes and polygraph-based physiological signal changes. Linear discriminant analysis is utilized as a classifier. The results indicate that the combined fNIRS-polygraph system delivers much higher classification accuracy than that of a singular system. This study demonstrates a plausible solution toward single-trial lie-detection by combining fNIRS and the polygraph.

  12. Monitoring of whey quality with NIR spectroscopy

    DEFF Research Database (Denmark)

    Kucheryavskiy, Sergey; Lomborg, Carina

    2015-01-01

    The possibility of using near-infrared (NIR) spectroscopy for monitoring of liquid whey quality parameters during protein production process has been tested. The parameters included total solids, lactose, protein and fat content. The samples for the experiment were taken from real industrial...

  13. Relationship between muscle oxygenation by NIRS and blood lactate

    Energy Technology Data Exchange (ETDEWEB)

    Xu Guodong [School of Physical Education, Jianghan University, Hubei Wuhan 430056 (China); Mao Zongzhen; Ye Yanjie; Lv Kunru, E-mail: xguodong@wipe.edu.cn [School of Health Sciences, Wuhan Institute of Physical Education, Hubei Wuhan 430079 (China)

    2011-01-01

    The aim of the study was to investigate the relationship of muscle oxygenation in term of oxy-hemoglobin concentration change ({Delta}HbO{sub 2}) by NIRS and blood lactate (BLA) in local skeletal muscle and evaluate the capability of NIRS in the research of exercise physiology Twenty-three athlete in the national fin-swimming team took the increasing load training on the power bicycle while their {Delta}HbO{sub 2} and BLA were simultaneously recorded. The initial powers used in the training were set as 100 w for males and 40 w for females. During the experiment, the power kept constant for 3 min before each abrupt increment of 30 w until the limit of the athlete's capability. Statistical analysis and data visualization were performed. Following the increasing load training, {Delta}HbO{sub 2} step-likely increased in the phase of aerobic metabolism but linearly decreased in the phase of anaerobic metabolism. The variation tendency of BLA was the same as {Delta}HbO{sub 2} and the concurrency of crucial turning points between {Delta}HbO{sub 2} and BLA was revealed. This relationship between {Delta}HbO{sub 2} and BLA presented in the increasing load training suggested that {Delta}HbO{sub 2} might be capable for taking the place of the invasively measured parameter BLA. Considering that {Delta}HbO{sub 2} can be noninvasively measured by NIRS, {Delta}HbO{sub 2} has the potential in the evaluation of athletes' physiological function and training effect on the athletes and accordingly NIRS can be well used in this field.

  14. PENENTUAN BAHAN KERING BUAH SAWO SECARA TIDAK MERUSAK MENGGUNAKAN NIR SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Diding Suhandy

    2012-12-01

    Full Text Available This work was conducted to develop a new measuring system for nondestructive dry matter prediction in sawo fruit using short wavelength near infrared (SW-NIR spectroscopy. In this research, a number of 100 sawo fruits were used as samples. Spectra were acquired using a portable spectrometer (VIS-NIR USB4000, The Ocean Optics, USA with 100 ms integration time and 50 scans for number of scanning. Dry matter was measured using oven drying. The calibration and validation model was developed using the partial least squares (PLS regression method. The result showed that the best calibration model could be developed for original spectra in the wavelength range of  700-990 nm with F= 8, r = 0.92, SEC = 0.68 and  SEP = 0.86. Keywords:   Absorbance mode, dry matter, nondestructive method, sawo fruit, SW-NIR spectroscopy.

  15. NIR hyperspectral compressive imager based on a modified Fabry–Perot resonator

    Science.gov (United States)

    Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Stern, Adrian

    2018-04-01

    The acquisition of hyperspectral (HS) image datacubes with available 2D sensor arrays involves a time consuming scanning process. In the last decade, several compressive sensing (CS) techniques were proposed to reduce the HS acquisition time. In this paper, we present a method for near-infrared (NIR) HS imaging which relies on our rapid CS resonator spectroscopy technique. Within the framework of CS, and by using a modified Fabry–Perot resonator, a sequence of spectrally modulated images is used to recover NIR HS datacubes. Owing to the innovative CS design, we demonstrate the ability to reconstruct NIR HS images with hundreds of spectral bands from an order of magnitude fewer measurements, i.e. with a compression ratio of about 10:1. This high compression ratio, together with the high optical throughput of the system, facilitates fast acquisition of large HS datacubes.

  16. Quantification of fructan concentration in grasses using NIR spectroscopy and PLSR

    DEFF Research Database (Denmark)

    Shetty, Nisha; Gislum, Rene

    2011-01-01

    Near-infrared reflectance (NIR) spectroscopy combined with chemometrics was used to quantify fructan concentration in samples from seven grass species. Savitzky-Golay first derivative with filter width 7 and polynomial order 2 with mean centering was applied as a spectral pre-treatment method...... to remove unimportant baseline signals. In order to model the NIR spectroscopy data the partial least squares regression (PLSR) approach was used on the full spectra. Variable selection based on PLSR by jack-knifing within a cross-model validation (CMV) framework was applied in order to remove non...... quantification of fructans by NIR spectroscopy is possible and that jack-knifing PLSR within a CMV framework is an effective way to eliminate the wavelengths of no interest. Jack-knifing PLSR did not improve the predictive ability because the root mean square error of prediction (RMSEP) increased (1.37) compared...

  17. Non-contact finger vein acquisition system using NIR laser

    Science.gov (United States)

    Kim, Jiman; Kong, Hyoun-Joong; Park, Sangyun; Noh, SeungWoo; Lee, Seung-Rae; Kim, Taejeong; Kim, Hee Chan

    2009-02-01

    Authentication using finger vein pattern has substantial advantage than other biometrics. Because human vein patterns are hidden inside the skin and tissue, it is hard to forge vein structure. But conventional system using NIR LED array has two drawbacks. First, direct contact with LED array raise sanitary problem. Second, because of discreteness of LEDs, non-uniform illumination exists. We propose non-contact finger vein acquisition system using NIR laser and Laser line generator lens. Laser line generator lens makes evenly distributed line laser from focused laser light. Line laser is aimed on the finger longitudinally. NIR camera was used for image acquisition. 200 index finger vein images from 20 candidates are collected. Same finger vein pattern extraction algorithm was used to evaluate two sets of images. Acquired images from proposed non-contact system do not show any non-uniform illumination in contrary with conventional system. Also results of matching are comparable to conventional system. We developed Non-contact finger vein acquisition system. It can prevent potential cross contamination of skin diseases. Also the system can produce uniformly illuminated images unlike conventional system. With the benefit of non-contact, proposed system shows almost equivalent performance compared with conventional system.

  18. Determination of Pu Oxidation states in the HCl Media Using with UV-Visible Absorption Spectroscopic Techniques

    International Nuclear Information System (INIS)

    Lee, Myung Ho; Suh, Mu Yeol; Park, Kyoung Kyun; Park, Yeong Jae; Kim, Won Ho

    2006-01-01

    The spectroscopic characteristics of Pu (III, IV, V, VI) in the HCl media were investigated by measuring Pu oxidation states using a UV-Vis-NIR spectrophotometer (400-1200 nm) after adjusting Pu oxidation states with oxidation/reduction reagents. Pu in stock solution was reduced to Pu(III) with NH 2 OH · HCl, and oxidized to Pu(IV) and Pu(VI) with NaNO 2 and HCIO 4 , respectively. Also, Pu(V) was adjusted in the Pu(VI) solution with NH 2 OH · HCl. The major absorption peaks of Pu (IV) and Pu(III) were measured in the 470 nm and 600 nm, respectively. The major absorption peaks of Pu (VI) and Pu(V) were measured in the 830 nm and 1135 nm, respectively. There was not found to be significant changes of UV-V is absorption spectra for Pu(III), Pu(IV) and Pu(VI) with aging time, except that an unstable Pu(V) immediately reduced to Pu(III).

  19. Filtering natural light at the greenhouse covering - better greenhouse climate and higher production by filtering out NIR?

    NARCIS (Netherlands)

    Hemming, S.; Kempkes, F.; Braak, van der N.; Dueck, T.A.; Marissen, A.

    2006-01-01

    Wageningen UR investigated the potentials of several NIR-filtering methods to be applied in Dutch horticulture. NIR-filtering can be done by the greenhouse covering or by internal or external moveable screens. The objective of this investigation was to quantify the effect of different NIR-filtering

  20. Potable NIR spectroscopy predicting soluble solids content of pears based on LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yande; Liu Wei; Sun Xudong; Gao Rongjie; Pan Yuanyuan; Ouyang Aiguo, E-mail: jxliuyd@163.com [School of Mechatronics Engineering, East China Jiaotong University, Changbei Open and Developing District, Nanchang, 330013 (China)

    2011-01-01

    A portable near-infrared (NIR) instrument was developed for predicting soluble solids content (SSC) of pears equipped with light emitting diodes (LEDs). NIR spectra were collected on the calibration and prediction sets (145:45). Relationships between spectra and SSC were developed by multivariate linear regression (MLR), partial least squares (PLS) and artificial neural networks (ANNs) in the calibration set. The 45 unknown pears were applied to evaluate the performance of them in terms of root mean square errors of prediction (RMSEP) and correlation coefficients (r). The best result was obtained by PLS with RMSEP of 0.62{sup 0}Brix and r of 0.82. The results showed that the SSC of pears could be predicted by the portable NIR instrument.

  1. Potable NIR spectroscopy predicting soluble solids content of pears based on LEDs

    International Nuclear Information System (INIS)

    Liu Yande; Liu Wei; Sun Xudong; Gao Rongjie; Pan Yuanyuan; Ouyang Aiguo

    2011-01-01

    A portable near-infrared (NIR) instrument was developed for predicting soluble solids content (SSC) of pears equipped with light emitting diodes (LEDs). NIR spectra were collected on the calibration and prediction sets (145:45). Relationships between spectra and SSC were developed by multivariate linear regression (MLR), partial least squares (PLS) and artificial neural networks (ANNs) in the calibration set. The 45 unknown pears were applied to evaluate the performance of them in terms of root mean square errors of prediction (RMSEP) and correlation coefficients (r). The best result was obtained by PLS with RMSEP of 0.62 0 Brix and r of 0.82. The results showed that the SSC of pears could be predicted by the portable NIR instrument.

  2. Effect of Sn on the optical band gap determined using absorption spectrum fitting method

    Energy Technology Data Exchange (ETDEWEB)

    Heera, Pawan, E-mail: sramanb70@mailcity.com [Department of Physics, Himachal Pradesh University, Shimla, INDIA, 171005 (India); Govt. College Amb, Himachal Pradesh, INDIA,177203 (India); Kumar, Anup, E-mail: kumar.anup.sml@gmail.com [Department of Physics, Himachal Pradesh University, Shimla, INDIA, 171005 (India); Physics Department, Govt. College, Kullu, H. P., INDIA, 175101 (India); Sharma, Raman, E-mail: pawanheera@yahoo.com [Department of Physics, Himachal Pradesh University, Shimla, INDIA, 171005 (India)

    2015-05-15

    We report the preparation and the optical studies on tellurium rich glasses thin films. The thin films of Se{sub 30}Te{sub 70-x} Sn{sub x} system for x= 0, 1.5, 2.5 and 4.5 glassy alloys prepared by melt quenching technique are deposited on the glass substrate using vacuum thermal evaporation technique. The analysis of absorption spectra in the spectral range 400nm–4000 nm at room temperature obtained from UV-VIS-NIR spectrophotometer [Perkin Elmer Lamda-750] helps us in the optical characterization of the thin films under study. The absorption spectrum fitting method is applied by using the Tauc’s model for estimating the optical band gap and the width of the band tail of the thin films. The optical band gap is calculated and is found to decrease with the Sn content.

  3. Integration of Semiconducting Sulfides for Full-Spectrum Solar Energy Absorption and Efficient Charge Separation.

    Science.gov (United States)

    Zhuang, Tao-Tao; Liu, Yan; Li, Yi; Zhao, Yuan; Wu, Liang; Jiang, Jun; Yu, Shu-Hong

    2016-05-23

    The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. INVISIBLE ACTIVE GALACTIC NUCLEI. II. RADIO MORPHOLOGIES AND FIVE NEW H i 21 cm ABSORPTION LINE DETECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ting; Stocke, John T.; Darling, Jeremy [Center for Astrophysics and Space Astronomy, UCB 389, University of Colorado, Boulder, CO 80309-0389 (United States); Momjian, Emmanuel [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Sharma, Soniya [Research School of Astronomy and Astrophysics, The Australian National University, Mt Stromlo Observatory, ACT 2611 (Australia); Kanekar, Nissim [National Centre for Radio Astrophysics, TIFR, Post Bag 3, Ganeshkhind, Pune 411 007 (India)

    2016-03-15

    This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5 and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by

  5. NIRS of body and tissues in growing rabbits fed diets with different fat sources and supplemented with Curcuma longa

    Directory of Open Access Journals (Sweden)

    Pier Giorgio Peiretti

    2013-06-01

    Full Text Available A portable Near Infrared Reflectance Spectroscopy (NIRS instrument was applied to 40 growing rabbits to determine body and tissue differences induced by experimental factors. The rabbits were examined at 2 live sites, in 7 warm carcass tissues and in longissimus dorsi muscle samples prepared in ethanol. For this purpose, the method was applied in a bi-factorial experiment concerning the dietary oil source (O (maize vs. palm oil and Curcuma longa (C supplementation (0 and 3 g/kg, respectively. Significant chemical differences emerged for palmitic, oleic and linoleic acids in the longissimus dorsi muscle due to the O factor and for linolenic acid due to the C factor. The NIRS spectra and chemical analyses were elaborated by the Partial Least Squares (PLS method, and the rsquares in cross-validation (R2cv were retained as measure of the unoriented differentiation between the levels of the planned factor for each landmark and fatty acid (FA profile. Multivariate PLS analysis of the FA muscular fat showed that the O factor induced strong differentiation (R2cv: 0.96, while less influence (0.33 was observed for the C factor. The model based on the NIRS radiation of the landmarks clearly shows the O factor effects, not only in the perirenal (0.90 and scapular (0.85 fats, but also in the belly (0.76, liver (0.73 and hind legs (0.72. Whereas the C effects were only expressed in the live animals (ears: 0.66 and abdominal wall: 0.58 and in post-mortem (liver: 0.60. It was concluded that a preliminary NIRS scan of the carcass and of live rabbits can point out the presence of intrinsic experimental effects concerning the lipid metabolism of polyunsaturated FA of the n-6 series (O factor and n-3 series (C factor.

  6. Slow-light enhancement of Beer-Lambert-Bouguer absorption

    DEFF Research Database (Denmark)

    Mortensen, Asger; Xiao, Sanshui

    2007-01-01

    We theoretically show how slow light in an optofluidic environment facilitates enhanced light-matter interactions, by orders of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized chemical absorbance cells for Beer-Lambert-Bouguer absorption measureme......We theoretically show how slow light in an optofluidic environment facilitates enhanced light-matter interactions, by orders of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized chemical absorbance cells for Beer-Lambert-Bouguer absorption...

  7. An image analysis system for near-infrared (NIR) fluorescence lymph imaging

    Science.gov (United States)

    Zhang, Jingdan; Zhou, Shaohua Kevin; Xiang, Xiaoyan; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2011-03-01

    Quantitative analysis of lymphatic function is crucial for understanding the lymphatic system and diagnosing the associated diseases. Recently, a near-infrared (NIR) fluorescence imaging system is developed for real-time imaging lymphatic propulsion by intradermal injection of microdose of a NIR fluorophore distal to the lymphatics of interest. However, the previous analysis software3, 4 is underdeveloped, requiring extensive time and effort to analyze a NIR image sequence. In this paper, we develop a number of image processing techniques to automate the data analysis workflow, including an object tracking algorithm to stabilize the subject and remove the motion artifacts, an image representation named flow map to characterize lymphatic flow more reliably, and an automatic algorithm to compute lymph velocity and frequency of propulsion. By integrating all these techniques to a system, the analysis workflow significantly reduces the amount of required user interaction and improves the reliability of the measurement.

  8. Optical absorptions in ZnO/a-Si distributed Bragg reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aqing, E-mail: aqchen@hdu.edu.cn; Chen, Zhian [Hangzhou Dianzi University, College of Materials & Environmental Engineering (China); Zhu, Kaigui [Beihang University, Department of physics (China); Ji, Zhenguo [Hangzhou Dianzi University, College of Materials & Environmental Engineering (China)

    2017-01-15

    The distributed Bragg reflectors (DBRs) consisting of alternating layers of ZnO and heavy doped amorphous silicon (a-Si) have been fabricated by magnetron sputtering. It is novel to find that the optical absorptions exist in the stopband of the DBRs, and that many discrete strong optical absorption peaks exist in the wavelength range of visible to near-infrared. The calculated results by FDTD show that the absorptions in the stopband mainly exist in the first a-Si layer, and that the light absorbed by other a-Si layers inside contributes to the two absorption peaks in near-infrared range. The strong absorptions ranged from visible to infrared open new possibilities to the enhancement of the performance of amorphous silicon solar cells.

  9. Determination of the Mechanical Properties of Rubber by FT-NIR

    Directory of Open Access Journals (Sweden)

    Rattapol Pornprasit

    2016-01-01

    Full Text Available Mechanical tests, for example, tensile and hardness tests, are usually used to evaluate the properties of rubber materials. In this work, mechanical properties of selected rubber materials, that is, natural rubber (NR, styrene butadiene rubber (SBR, nitrile butadiene rubber (NBR, and ethylene propylene diene monomer (EPDM, were evaluated using a near infrared (NIR spectroscopy technique. Here, NR/NBR and NR/EPDM blends were first prepared. All of the samples were then scanned using a FT-NIR spectrometer and fitted with an integration sphere working in a diffused reflectance mode. The spectra were correlated with hardness and tensile properties. Partial least square (PLS calibration models were built from the spectra datasets with preprocessing techniques, that is, smoothing and second derivative. This indicated that reasonably accurate models, that is, with a coefficient of determination [R2] of the validation greater than 0.9, could be achieved for the hardness and tensile properties of rubber materials. This study demonstrated that FT-NIR analysis can be applied to determine hardness and tensile values in rubbers and rubber blends effectively.

  10. Determination of Aluminium Content in Aluminium Hydroxide Formulation by FT-NIR Transmittance Spectroscopy

    DEFF Research Database (Denmark)

    Lai, Xuxin; Zheng, Yiwu; Søndergaard, Ib

    2007-01-01

    A method for determining the aluminium content of an aluminium hydroxide suspension using near infrared (NIR) transmittance spectroscopy has been developed. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used as reference method. The factors influencing the NIR analysis...... aluminium content in aluminium hydroxide suspension. (c) 2007 Elsevier Ltd. All rights reserved....

  11. Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper

    2012-01-01

    We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption.......We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption....

  12. Age determination of bottled Chinese rice wine by VIS-NIR spectroscopy

    Science.gov (United States)

    Yu, Haiyan; Lin, Tao; Ying, Yibin; Pan, Xingxiang

    2006-10-01

    The feasibility of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining wine age (1, 2, 3, 4, and 5 years) of Chinese rice wine was investigated. Samples of Chinese rice wine were analyzed in 600 mL square brown glass bottles with side length of approximately 64 mm at room temperature. VIS-NIR spectra of 100 bottled Chinese rice wine samples were collected in transmission mode in the wavelength range of 350-1200 nm by a fiber spectrometer system. Discriminant models were developed based on discriminant analysis (DA) together with raw, first and second derivative spectra. The concentration of alcoholic degree, total acid, and °Brix was determined to validate the NIR results. The calibration result for raw spectra was better than that for first and second derivative spectra. The percentage of samples correctly classified for raw spectra was 98%. For 1-, 2-, and 3-year-old sample groups, the sample were all correctly classified, and for 4- and 5-year-old sample groups, the percentage of samples correctly classified was 92.9%, respectively. In validation analysis, the percentage of samples correctly classified was 100%. The results demonstrated that VIS-NIR spectroscopic technique could be used as a non-invasive, rapid and reliable method for predicting wine age of bottled Chinese rice wine.

  13. [A review on studies and applications of near infrared spectroscopy technique(NIRS) in detecting quality of hay].

    Science.gov (United States)

    Ding, Wu-Rong; Gan, You-Min; Guo, Xu-Sheng; Yang, Fu-Yu

    2009-02-01

    The quality of hay can directly affect the price of hay and also livestock productivity. Many kinds of methods have been developed for detecting the quality of hay and the method of near infrared spectroscopy (NIRS) has been widely used with consideration of its fast, effective and nondestructive characteristics during detecting process. In the present paper, the feasibility and effectiveness of application of NIRS to detecting hay quality were expounded. Meanwhile, the advance in the study of using NIRS to detect chemical compositions, extent of incursion by epiphyte, amount of toxicant excreted by endogenetic epiphyte and some minim components that can not be detected by using chemical methods were also introduced detailedly. Based on the review of the progresses in using NIRS to detect the quality of hay, it can be concluded that using NIRS to detect hay quality can avoid the disadvantages of time wasting, complication and high cost when using traditional chemical method. And for better utilization of NIRS in practice, some more studies still need to be implemented to further perfect and improve the utilization of NIRS for detecting forage quality, and more accurate modes and systematic analysis software need to be established in times to come.

  14. A New Framework for the Assessment of Cerebral Hemodynamics Regulation in Neonates Using NIRS

    NARCIS (Netherlands)

    Caicedo, Alexander; Alderliesten, Thomas; Naulaers, Gunnar; Lemmers, Petra; van Bel, Frank; Van Huffel, Sabine

    2016-01-01

    We present a new framework for the assessment of cerebral hemodynamics regulation (CHR) in neonates using near-infrared spectroscopy (NIRS). In premature infants, NIRS measurements have been used as surrogate variables for cerebral blood flow (CBF) in the assessment of cerebral autoregulation (CA).

  15. Colorless to purple-red switching electrochromic anthraquinone imides with broad visible/near-IR absorptions in the radical anion state: simulation-aided molecular design.

    Science.gov (United States)

    Chen, Fengkun; Zhang, Jie; Jiang, Hong; Wan, Xinhua

    2013-07-01

    The large redshift of near-infrared (NIR) absorptions of nitro-substituted anthraquinone imide (Nitro-AQI) radical anions, relative to other AQI derivatives, is rationalized based on quantum chemical calculations. Calculations reveal that the delocalization effects of electronegative substitution in the radical anion states is dramatically enhanced, thus leading to a significant decrease in the HOMO-LUMO band gap in the radical anion states. Based on this understanding, an AQI derivative with an even stronger electron-withdrawing dicyanovinyl (di-CN) substituent was designed and prepared. The resulting molecule, di-CN-AQI, displays no absorption in the Vis/NIR region in the neutral state, but absorbs intensively in the range of λ=700-1000 (λmax ≈860 nm) and λ=1100-1800 nm (λmax ≈1400 nm) upon one-electron reduction; this is accompanied by a transition from a highly transmissive colorless solution to one that is purple-red. The relationship between calculated radical anionic HOMO-LUMO gaps and the electron-withdrawing capacity of the substituents is also determined by employing Hammett parameter, which could serve as a theoretical tool for further molecular design. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. [The NIR spectra based variety discrimination for single soybean seed].

    Science.gov (United States)

    Zhu, Da-Zhou; Wang, Kun; Zhou, Guang-Hua; Hou, Rui-Feng; Wang, Cheng

    2010-12-01

    With the development of soybean producing and processing, the quality breeding becomes more and more important for soybean breeders. Traditional sampling detection methods for soybean quality need to destroy the seed, and does not satisfy the requirement of earlier generation materials sieving for breeding. Near infrared (NIR) spectroscopy has been widely used for soybean quality detection. However, all these applications were referred to mass samples, and they were not suitable for little or single seed detection in breeding procedure. In the present study, the acousto--optic tunable filter (AOTF) NIR spectroscopy was used to measure the single soybean seed. Two varieties of soybean were measured, which contained 60 KENJIANDOU43 seeds and 60 ZHONGHUANG13 seeds. The results showed that NIR spectra combined with soft independent modeling of class analogy (SIMCA) could accurately discriminate the soybean varieties. The classification accuracy for KENJIANDOU43 seeds and ZHONGHUANG13 was 100%. The spectra of single soybean seed were measured at different positions, and it showed that the seed shape has significant influence on the measurement of spectra, therefore, the key point for single seed measurement was how to accurately acquire the spectra and keep their representativeness. The spectra for soybeans with glossy surface had high repeatability, while the spectra of seeds with external defects had significant difference for several measurements. For the fast sieving of earlier generation materials in breeding, one could firstly eliminate the seeds with external defects, then apply NIR spectra for internal quality detection, and in this way the influence of seed shape and external defects could be reduced.

  17. Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows.

    Science.gov (United States)

    Cortelletti, P; Skripka, A; Facciotti, C; Pedroni, M; Caputo, G; Pinna, N; Quintanilla, M; Benayas, A; Vetrone, F; Speghini, A

    2018-02-01

    Lanthanide-activated SrF 2 nanoparticles with a multishell architecture were investigated as optical thermometers in the biological windows. A ratiometric approach based on the relative changes in the intensities of different lanthanide (Nd 3+ and Yb 3+ ) NIR emissions was applied to investigate the thermometric properties of the nanoparticles. It was found that an appropriate doping with Er 3+ ions can increase the thermometric properties of the Nd 3+ -Yb 3+ coupled systems. In addition, a core containing Yb 3+ and Tm 3+ can generate light in the visible and UV regions upon near-infrared (NIR) laser excitation at 980 nm. The multishell structure combined with the rational choice of dopants proves to be particularly important to control and enhance the performance of nanoparticles as NIR nanothermometers.

  18. FT-NIR: A Tool for Process Monitoring and More.

    Science.gov (United States)

    Martoccia, Domenico; Lutz, Holger; Cohen, Yvan; Jerphagnon, Thomas; Jenelten, Urban

    2018-03-30

    With ever-increasing pressure to optimize product quality, to reduce cost and to safely increase production output from existing assets, all combined with regular changes in terms of feedstock and operational targets, process monitoring with traditional instruments reaches its limits. One promising answer to these challenges is in-line, real time process analysis with spectroscopic instruments, and above all Fourier-Transform Near Infrared spectroscopy (FT-NIR). Its potential to afford decreased batch cycle times, higher yields, reduced rework and minimized batch variance is presented and application examples in the field of fine chemicals are given. We demonstrate that FT-NIR can be an efficient tool for improved process monitoring and optimization, effective process design and advanced process control.

  19. Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves.

    Science.gov (United States)

    Kume, Atsushi

    2017-05-01

    Terrestrial green plants absorb photosynthetically active radiation (PAR; 400-700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO 2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density distribution and leaf anatomical structures.

  20. The application of near infrared spectroscopy (NIR technique for

    Directory of Open Access Journals (Sweden)

    Sandor Barabassy

    2001-06-01

    Full Text Available The production of cow’s milk in Hungary fluctuates by 15-20 % annualy. Surplus milk is dried into powder and can also be converted to modified milk powders using techniques such as ultra filtration. From approximetely 20.000 tonnes, of all milk powder types, 3.000 tonnes, is converted using ultra filtration technology. Multivariable near infrared (NIR calibration was performed on powder mixtures of whole milk, skimmed milk, whey, retenate (protein concentrate and lactose for rapid fat, protein, lactose, water and ash content determination. More than 150 samples were prepared and measured in two NIRS labs (Scottish Agriculture College – SAC – Aberdeen and University of Horticulture and Food Science - UHFS – Budapest. The results obtained from the same samples were compared. The aims of the study were: 1. Rapid quantitative and qualitative determination of mixtures of milk powder products using NIR technique. 2. Comparison of the results achieved in Aberdeen (SAC and Budapest (UHFS institutes. The mass per cent varied between 0.0-2.8% for fat, 0.0-80% for protein, 6.6-100 % for lactose, 0.0-5.0 % for water and 0.0-8.0 % for ash. High correlation coefficients (0.97-0.99 were found for all five components.

  1. Soil organic carbon and particle sizes mapping using vis–NIR, EC and temperature mobile sensor platform

    DEFF Research Database (Denmark)

    Knadel, Maria; Thomsen, Anton Gårde; Schelde, Kirsten

    2015-01-01

    Soil organic carbon (SOC) is an important parameter in the climate change mitigation strategies and it is crucial for the function of ecosystems and agriculture. Particle size fractions affect strongly the physical and chemical properties of soil and thus also SOC. Conventional analyses of SOC...... predictive ability for SOC was obtained using a fusion of sensor data. The calibration models based on vis–NIR spectra and temperature resulted in RMSECV = 0.14% and R2 = 0.94 in Voulund1. In Voulund2, the combination of EC, temperature and spectral data generated a SOC model with RMSECV = 0.17% and R2 = 0...

  2. Hybrid EEG-fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control.

    Science.gov (United States)

    Khan, Muhammad Jawad; Hong, Keum-Shik

    2017-01-01

    In this paper, a hybrid electroencephalography-functional near-infrared spectroscopy (EEG-fNIRS) scheme to decode eight active brain commands from the frontal brain region for brain-computer interface is presented. A total of eight commands are decoded by fNIRS, as positioned on the prefrontal cortex, and by EEG, around the frontal, parietal, and visual cortices. Mental arithmetic, mental counting, mental rotation, and word formation tasks are decoded with fNIRS, in which the selected features for classification and command generation are the peak, minimum, and mean ΔHbO values within a 2-s moving window. In the case of EEG, two eyeblinks, three eyeblinks, and eye movement in the up/down and left/right directions are used for four-command generation. The features in this case are the number of peaks and the mean of the EEG signal during 1 s window. We tested the generated commands on a quadcopter in an open space. An average accuracy of 75.6% was achieved with fNIRS for four-command decoding and 86% with EEG for another four-command decoding. The testing results show the possibility of controlling a quadcopter online and in real-time using eight commands from the prefrontal and frontal cortices via the proposed hybrid EEG-fNIRS interface.

  3. 近赤外線分析装置(NIR)による作物の有効成分非破壊計測に関する基礎的研究

    OpenAIRE

    川満, 芳信; 木永, 泰山; 上野, 正実; 小宮, 康明; 平良, 栄三; 松田, 昇; Kawamitsu, Yoshinobu; Kinaga, Yasutaka; Ueno, Masami; Komiya, Yasuaki; Taira, Eizou; Matsuda, Noboru

    2003-01-01

    In this paper, as basic research on the development of nondestructive analysis equipment for nutritional diagnosis and quality assessment in crops, the absorption spectrum of mango fruit was measured using a near infrared radiation (NIR) and the calibration curve was made, and finaly the wavelength was determined as for measurement of fruit sugar content. In addition, photosynthetic rate, transpiration rate, and water potential of the leaf was measured using the pot-cultivating sugarcane plan...

  4. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    Science.gov (United States)

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-01

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  5. Strong Stationary Duality for Diffusion Processes

    OpenAIRE

    Fill, James Allen; Lyzinski, Vince

    2014-01-01

    We develop the theory of strong stationary duality for diffusion processes on compact intervals. We analytically derive the generator and boundary behavior of the dual process and recover a central tenet of the classical Markov chain theory in the diffusion setting by linking the separation distance in the primal diffusion to the absorption time in the dual diffusion. We also exhibit our strong stationary dual as the natural limiting process of the strong stationary dual sequence of a well ch...

  6. Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption

    Science.gov (United States)

    Ma, Qiancheng

    2014-01-01

    The water-vapor continuum absorption plays an important role in the radiative balance in the Earth's atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the far-wings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.

  7. Enhanced index and negative dispersion without absorption in driven cascade media

    International Nuclear Information System (INIS)

    Hu Xiangming; Xu Jun

    2004-01-01

    In this paper we investigate the dispersive and absorptive properties of a system of three-level cascade atoms driven by a strong coherent field. Three characteristic features are found. First, for the same set of atom-light interaction parameters, the indices of refraction are large at three different frequencies where the absorption vanishes. These three frequencies are determined by the resonance transition frequencies between dressed states produced by the strong driving field. Second, negative dispersion without absorption, which leads to superluminal light propagation, is achievable in the central resonance structure of the dispersion spectrum. Third, the whole absorption spectrum displays, in general, three pairs of absorption peaks and three pairs of gain (negative absorption) peaks. The minimal spacing between dressed states determines whether the outer adjacent gain peaks are separated from each other

  8. Single seed NIR as a fast method to predict germination ability in Pak Choi

    DEFF Research Database (Denmark)

    Gislum, René; Deleuran, Lise Christina; Olesen, Merete Halkjær

    2012-01-01

    Single seed NIR has further been tested to determine the applicability for prediction of seed viability in radish (Raphanus sativus L.) seeds and spinach (Spinacia oleracea L.) seeds. The studies show the possibility of using NIR spectroscopy in a seed separating process in the future, provided...

  9. Rapid analysis of hay attributes using NIRS. Final report, Task II alfalfa supply system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-24

    This final report provides technical information on the development of a near infrared reflectance spectroscopy (NIRS) system for the analysis of alfalfa hay. The purpose of the system is to provide consistent quality for processing alfalfa stems for fuel and alfalfa leaf meal products for livestock feed. Project tasks were to: (1) develop an NIRS driven analytical system for analysis of alfalfa hay and processed alfalfa products; (2) assist in hiring a qualified NIRS technician and recommend changes in testing equipment necessary to provide accurate analysis; (3) calibrate the NIRS instrument for accurate analyses; and (4) develop prototype equipment and sampling procedures as a first step towards development of a totally automated sampling system that would rapidly sample and record incoming feedstock and outbound product. An accurate hay testing program was developed, along with calibration equations for analyzing alfalfa hay and sun-cured alfalfa pellets. A preliminary leaf steam calibration protocol was also developed. 7 refs., 11 figs., 10 tabs.

  10. Ar 3p photoelectron sideband spectra in two-color XUV + NIR laser fields

    Science.gov (United States)

    Minemoto, Shinichirou; Shimada, Hiroyuki; Komatsu, Kazma; Komatsubara, Wataru; Majima, Takuya; Mizuno, Tomoya; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Yoshida, Shintaro; Yabashi, Makina; Yagishita, Akira

    2018-04-01

    We performed photoelectron spectroscopy using femtosecond XUV pulses from a free-electron laser and femtosecond near-infrared pulses from a synchronized laser, and succeeded in measuring Ar 3p photoelectron sideband spectra due to the two-color above-threshold ionization. In our calculations of the first-order time-dependent perturbation theoretical model based on the strong field approximation, the photoelectron sideband spectra and their angular distributions are well reproduced by considering the timing jitter between the XUV and the NIR pulses, showing that the timing jitter in our experiments was distributed over the width of {1.0}+0.4-0.2 ps. The present approach can be used as a method to evaluate the timing jitter inevitable in FEL experiments.

  11. Measurement of internal quality of watermelon by Vis/NIR diffuse transmittance technique

    Science.gov (United States)

    Tian, Haiqing; Xu, Huirong; Ying, Yibin; Lu, Huishan; Yu, Haiyan

    2006-10-01

    Watermelon is a popular fruit in the world. Soluble solids content (SSC) is major characteristic used for assessing watermelon internal quality. This study was about a method for nondestructive internal quality detection of watermelons by means of visible/Near Infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer when the watermelon was in motion (1.4m/s) and in static state. Spectra data were analyzed by partial least squares (PLS) method. The influences of different data preprocessing and spectra treatments were also investigated. Performance of different models was assessed in terms of root mean square errors of calibration (RMSEC), root mean square errors of prediction (RMSEP) and correlation coefficient (r) between the predicted and measured parameter values. Results showed that spectra data preprocessing influenced the performance of the calibration models and the PLS method can provide good results. The nondestructive Vis/NIR measurements provided good estimates of SSC index of watermelon both in motion and in static state, and the predicted values were highly correlated with destructively measured values. The results indicated the feasibility of Vis/NIR diffuse transmittance spectral analysis for predicting watermelon internal quality in a nondestructive way.

  12. Evaluation of Pleasure-Displeasure Induced by Use of Lipsticks with Near-Infrared Spectroscopy (NIRS): Usefulness of 2-Channel NIRS in Neuromarketing.

    Science.gov (United States)

    Tanida, M; Okabe, M; Tagai, K; Sakatani, K

    2017-01-01

    In order to examine whether near-infrared spectroscopy (NIRS) would be a useful neuromarketing tool, we employed NIRS to evaluate the difference of pleasure-displeasure in women, induced by the use of different types of lipsticks. The subjects used lipsticks A and B; A is softer than B. Concentration changes of oxy-Hb were measured in the bilateral prefrontal cortex (PFC) during use of lipsticks A and B. We evaluated the right and left dominancy of PFC activity by calculating the Laterality Index (LI) (LI = leftΔoxy-Hb - rightΔoxy-Hb); positive LI indicates left-dominant activity while negative LI indicate right-dominant activity. We found a significant interaction between the use of lipsticks A and B, using a two-way factorial analysis of variance [F(1,13) = 9.63, p neuromarketing tool, since it allows objective assessment of pleasure-unpleasure.

  13. HARDERSEN IRTF ASTEROID NIR REFLECTANCE SPECTRA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset includes average near-infrared (NIR) reflectance spectra for 68 main-belt asteroids that were observed at the NASA Infrared Telescope Facility (IRTF),...

  14. NIR analysis of cellulose and lactose--application to ecstasy tablet analysis.

    Science.gov (United States)

    Baer, Ines; Gurny, Robert; Margot, Pierre

    2007-04-11

    Cellulose and lactose are the most frequently used excipients in illicit ecstasy production. The aim of this project was to use near infrared reflectance spectroscopy (NIRS) for the determination of the different chemical forms of these two substances, as well as for the differentiation of their origin (producer). It was possible to distinguish between the different chemical forms of both compounds, as well as between their origins (producers), although within limits. Furthermore, the possibilities to apply NIR for the analysis of substances such as found in illicit tablets were studied. First, a few cellulose and lactose samples were chosen to make mixtures with amphetamine at three degrees of purity (5, 10 and 15%), in order to study the resulting changes in the spectra as well as to simultaneously quantify amphetamine and identify the excipient. A PLS2 model could be build to predict concentrations and excipient. Secondarily, the technique was to be applied to real ecstasy tablets. About 40 ecstasy seizures were analysed with the aim to determine the excipient and to check them against each other. Identification of the excipients was not always obvious, especially when more than one excipient were present. However, a comparison between tablets appeared to give groups of similar samples. NIR analysis results in spectra representing the tablet blend as a whole taking into account all absorbing compounds. Although NIRS seems to be an appropriate method for ecstasy profiling, little is known about intra- and intervariability of compression batches.

  15. Optical Characterization of Tissue Phantoms Using a Silicon Integrated fdNIRS System on Chip.

    Science.gov (United States)

    Sthalekar, Chirag C; Miao, Yun; Koomson, Valencia Joyner

    2017-04-01

    An interface circuit with signal processing and digitizing circuits for a high frequency, large area avalanche photodiode (APD) has been integrated in a 130 nm BiCMOS chip. The system enables the absolute oximetry of tissue using frequency domain Near Infrared Spectroscopy (fdNIRS). The system measures the light absorbed and scattered by the tissue by measuring the reduction in the amplitude of signal and phase shift introduced between the light source and detector which are placed a finite distance away from each other. The received 80 MHz RF signal is downconverted to a low frequency and amplified using a heterodyning scheme. The front-end transimpedance amplifier has a 3-level programmable gain that increases the dynamic range to 60 dB. The phase difference between an identical reference channel and the optical channel is measured with a 0.5° accuracy. The detectable current range is [Formula: see text] and with a 40 A/W reponsivity using the APD, power levels as low as 500 pW can be detected. Measurements of the absorption and reduced scattering coefficients of solid tissue phantoms using this system are compared with those using a commercial instrument with differences within 30%. Measurement of a milk based liquid tissue phantom show an increase in absorption coefficient with addition of black ink. The miniaturized circuit serves as an efficiently scalable system for multi-site detection for applications in neonatal cerebral oximetry and optical mammography.

  16. nirS-type denitrifying bacterial assemblages respond to environmental conditions of a shallow estuary.

    Science.gov (United States)

    Lisa, Jessica A; Jayakumar, Amal; Ward, Bess B; Song, Bongkeun

    2017-12-01

    Molecular analysis of dissimilatory nitrite reductase genes (nirS) was conducted using a customized microarray containing 165 nirS probes (archetypes) to identify members of sedimentary denitrifying communities. The goal of this study was to examine denitrifying community responses to changing environmental variables over spatial and temporal scales in the New River Estuary (NRE), NC, USA. Multivariate statistical analyses revealed three denitrifier assemblages and uncovered 'generalist' and 'specialist' archetypes based on the distribution of archetypes within these assemblages. Generalists, archetypes detected in all samples during at least one season, were commonly world-wide found in estuarine and marine ecosystems, comprised 8%-29% of the abundant NRE archetypes. Archetypes found in a particular site, 'specialists', were found to co-vary based on site specific conditions. Archetypes specific to the lower estuary in winter were designated Cluster I and significantly correlated by sediment Chl a and porewater Fe 2+ . A combination of specialist and more widely distributed archetypes formed Clusters II and III, which separated based on salinity and porewater H 2 S respectively. The co-occurrence of archetypes correlated with different environmental conditions highlights the importance of habitat type and niche differentiation among nirS-type denitrifying communities and supports the essential role of individual community members in overall ecosystem function. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Hybrid EEG–fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control

    Science.gov (United States)

    Khan, Muhammad Jawad; Hong, Keum-Shik

    2017-01-01

    In this paper, a hybrid electroencephalography–functional near-infrared spectroscopy (EEG–fNIRS) scheme to decode eight active brain commands from the frontal brain region for brain–computer interface is presented. A total of eight commands are decoded by fNIRS, as positioned on the prefrontal cortex, and by EEG, around the frontal, parietal, and visual cortices. Mental arithmetic, mental counting, mental rotation, and word formation tasks are decoded with fNIRS, in which the selected features for classification and command generation are the peak, minimum, and mean ΔHbO values within a 2-s moving window. In the case of EEG, two eyeblinks, three eyeblinks, and eye movement in the up/down and left/right directions are used for four-command generation. The features in this case are the number of peaks and the mean of the EEG signal during 1 s window. We tested the generated commands on a quadcopter in an open space. An average accuracy of 75.6% was achieved with fNIRS for four-command decoding and 86% with EEG for another four-command decoding. The testing results show the possibility of controlling a quadcopter online and in real-time using eight commands from the prefrontal and frontal cortices via the proposed hybrid EEG–fNIRS interface. PMID:28261084

  18. NIR monitoring of in-service wood structures

    Science.gov (United States)

    Michela Zanetti; Timothy G. Rials; Douglas Rammer

    2005-01-01

    Near infrared spectroscopy (NIRS) was used to study a set of Southern Yellow Pine boards exposed to natural weathering for different periods of exposure time. This non-destructive spectroscopic technique is a very powerful tool to predict the weathering of wood when used in combination with multivariate analysis (Principal Component Analysis, PCA, and Projection to...

  19. On temporal connectivity of PFC via Gauss-Markov modeling of fNIRS signals.

    Science.gov (United States)

    Aydöre, Sergül; Mihçak, M Kivanç; Ciftçi, Koray; Akin, Ata

    2010-03-01

    Functional near-infrared spectroscopy (fNIRS) is an optical imaging method, which monitors the brain activation by measuring the successive changes in the concentration of oxy- and deoxyhemoglobin in real time. In this study, we present a method to investigate the functional connectivity of prefrontal cortex (PFC) Sby applying a Gauss-Markov model to fNIRS signals. The hemodynamic changes on PFC during the performance of cognitive paradigm are measured by fNIRS for 17 healthy adults. The color-word matching Stroop task is performed to activate 16 different regions of PFC. There are three different types of stimuli in this task, which can be listed as incongruent stimulus (IS), congruent stimulus (CS), and neutral stimulus (NS), respectively. We introduce a new measure, called "information transfer metric" (ITM) for each time sample. The behavior of ITMs during IS are significantly different from the ITMs during CS and NS, which is consistent with the outcome of the previous research, which concentrated on fNIRS signal analysis via color-word matching Stroop task. Our analysis shows that the functional connectivity of PFC is highly relevant with the cognitive load, i.e., functional connectivity increases with the increasing cognitive load.

  20. Near-infrared spectroscopy (NIRS) in a piglet model

    DEFF Research Database (Denmark)

    Clausen, Nicola Groes; Spielmann, Nelly; Ringer, Simone K.

    2017-01-01

    Near-infrared spectroscopy (NIRS) in a piglet model: readings are influenced by the colour of the cover Clausen NG1,2, Spielmann N1,3, Weiss M1,3, Ringer SK4 1Children’s Research Center, University Children’s Hospital of Zurich, Switzerland; 2Department of Anaesthesiology and Intensive Care, Odense....... The rSO2 was measured by placing NIRS sensors in the supra glabellar region. In 12 animals sensors were covered with a uni-coloured pink (P) napkin and a turquoise (T) napkin in a random order (Setting A). In further 13 animals sensors were covered with blue-coloured surgical drape (SD) and a napkin...... with a reddish SantaClaus (SC) motive (Setting B). Uncovered (UC) baseline values were captured and measurements obtained for a period of three minutes. During measurements, the animals were kept in normoterm, normotensive, normoglycaemic and normoxic condition. Inspired oxygen fraction and ventilatory settings...

  1. What's next in carbon ion radiotherapy at NIRS?

    International Nuclear Information System (INIS)

    Kamada, Tadashi

    2011-01-01

    Since its launch by the National Institute of Radiological Sciences (NIRS) in 1994, cancer therapy using heavy ion beams (carbon ion beams) has been used in approximately 5,500 patients. Accumulated clinical experience has identified certain types of malignant tumors that respond exclusively to this treatment. It has also been made clear that this therapy is capable of treating several other types of cancers safely in a relatively short period of time, effecting remission and/or cure without pain or discomfort in a few days or weeks. We can reasonably state that heavy ion radiotherapy has been established as a safe and effective treatment method. NIRS researchers are continuing to make every effort to develop more effective, efficient, and patient-friendly heavy ion irradiation systems. The result of this research and development is also expected to slash the attendant costs of heavy ion radiotherapy. (author)

  2. Application of NIRS coupled with PLS regression as a rapid, non-destructive alternative method for quantification of KBA in Boswellia sacra

    Science.gov (United States)

    Al-Harrasi, Ahmed; Rehman, Najeeb Ur; Mabood, Fazal; Albroumi, Muhammaed; Ali, Liaqat; Hussain, Javid; Hussain, Hidayat; Csuk, René; Khan, Abdul Latif; Alam, Tanveer; Alameri, Saif

    2017-09-01

    In the present study, for the first time, NIR spectroscopy coupled with PLS regression as a rapid and alternative method was developed to quantify the amount of Keto-β-Boswellic Acid (KBA) in different plant parts of Boswellia sacra and the resin exudates of the trunk. NIR spectroscopy was used for the measurement of KBA standards and B. sacra samples in absorption mode in the wavelength range from 700-2500 nm. PLS regression model was built from the obtained spectral data using 70% of KBA standards (training set) in the range from 0.1 ppm to 100 ppm. The PLS regression model obtained was having R-square value of 98% with 0.99 corelationship value and having good prediction with RMSEP value 3.2 and correlation of 0.99. It was then used to quantify the amount of KBA in the samples of B. sacra. The results indicated that the MeOH extract of resin has the highest concentration of KBA (0.6%) followed by essential oil (0.1%). However, no KBA was found in the aqueous extract. The MeOH extract of the resin was subjected to column chromatography to get various sub-fractions at different polarity of organic solvents. The sub-fraction at 4% MeOH/CHCl3 (4.1% of KBA) was found to contain the highest percentage of KBA followed by another sub-fraction at 2% MeOH/CHCl3 (2.2% of KBA). The present results also indicated that KBA is only present in the gum-resin of the trunk and not in all parts of the plant. These results were further confirmed through HPLC analysis and therefore it is concluded that NIRS coupled with PLS regression is a rapid and alternate method for quantification of KBA in Boswellia sacra. It is non-destructive, rapid, sensitive and uses simple methods of sample preparation.

  3. [Determination of acidity and vitamin C in apples using portable NIR analyzer].

    Science.gov (United States)

    Yang, Fan; Li, Ya-Ting; Gu, Xuan; Ma, Jiang; Fan, Xing; Wang, Xiao-Xuan; Zhang, Zhuo-Yong

    2011-09-01

    Near infrared (NIR) spectroscopy technology based on a portable NIR analyzer, combined with kernel Isomap algorithm and generalized regression neural network (GRNN) has been applied to establishing quantitative models for prediction of acidity and vitamin C in six kinds of apple samples. The obtained results demonstrated that the fitting and the predictive accuracy of the models with kernel Isomap algorithm were satisfactory. The correlation between actual and predicted values of calibration samples (R(c)) obtained by the acidity model was 0.999 4, and for prediction samples (R(p)) was 0.979 9. The root mean square error of prediction set (RMSEP) was 0.055 8. For the vitamin C model, R(c) was 0.989 1, R(p) was 0.927 2, and RMSEP was 4.043 1. Results proved that the portable NIR analyzer can be a feasible tool for the determination of acidity and vitamin C in apples.

  4. Near-infrared incoherent broadband cavity enhanced absorption spectroscopy (NIR-IBBCEAS) for detection and quantification of natural gas components.

    Science.gov (United States)

    Prakash, Neeraj; Ramachandran, Arun; Varma, Ravi; Chen, Jun; Mazzoleni, Claudio; Du, Ke

    2018-06-28

    The principle of near-infrared incoherent broadband cavity enhanced absorption spectroscopy was employed to develop a novel instrument for detecting natural gas leaks as well as for testing the quality of natural gas mixtures. The instrument utilizes the absorption features of methane, butane, ethane, and propane in the wavelength region of 1100 nm to 1250 nm. The absorption cross-section spectrum in this region for methane was adopted from the HITRAN database, and those for the other three gases were measured in the laboratory. A singular-value decomposition (SVD) based analysis scheme was employed for quantifying methane, butane, ethane, and propane by performing a linear least-square fit. The developed instrument achieved a detection limit of 460 ppm, 141 ppm, 175 ppm and 173 ppm for methane, butane, ethane, and propane, respectively, with a measurement time of 1 second and a cavity length of 0.59 m. These detection limits are less than 1% of the Lower Explosive Limit (LEL) for each gas. The sensitivity can be further enhanced by changing the experimental parameters (such as cavity length, lamp power etc.) and using longer averaging intervals. The detection system is a low-cost and portable instrument suitable for performing field monitorings. The results obtained on the gas mixture emphasize the instrument's potential for deployment at industrial facilities dealing with natural gas, where potential leaks pose a threat to public safety.

  5. Experimental radiation carcinogenesis is studies at NIRS

    International Nuclear Information System (INIS)

    Sado, Toshihiko

    1992-01-01

    Experimental radiation carcinogenesis studies conducted during the past decade at NIRS are briefly reviewed. They include the following: 1) Age dependency of susceptibility to radiation carcinogenesis. 2) Radiation-induced myeloid leukemia. 3) Mechanism of fractionated X-irradiation (FX) induced thymic lymphomas. 4) Significance of radiation-induced immunosuppression in radiation carcinogenesis in vivo. 5) Other ongoing studies. (author)

  6. Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly

    International Nuclear Information System (INIS)

    Belfield, Kevin D.; Bondar, Mykhailo V.; Hernandez, Florencio E.; Przhonska, Olga V.; Yao, Sheng

    2006-01-01

    Linear spectral properties, including excitation anisotropy, of pseudoisocyanine or 1,1'-diethyl-2,2'-cyanine iodide (PIC) J-aggregates in aqueous solutions with J-band position at 573 nm were investigated. Two-photon absorption of PIC J-aggregates and monomer molecules was studied using an open aperture Z-scan technique. A strong enhancement of the two-photon absorption cross-section of PIC in the supramolecular J-aggregate assembly was observed in aqueous solution. This enhancement is attributed to a strong coupling of the molecular transition dipoles. No two-photon absorption at the peak of the J-band was detected

  7. Corticospinal excitability changes to anodal tDCS elucidated with NIRS-EEG joint-imaging

    DEFF Research Database (Denmark)

    Jindal, Utkarsh; Sood, Mehak; Chowdhury, Shubhajit Roy

    2015-01-01

    Transcranial direct current stimulation (tDCS) has been shown to modulate corticospinal excitability. We used near-infrared spectroscopy (NIRS) - electroencephalography (EEG) joint-imaging during and after anodal tDCS to measure changes in mean cerebral haemoglobin oxygen saturation (rSO2) along...... with changes in the log-transformed mean-power of EEG within 0.5 Hz - 11.25 Hz. In two separate studies, we investigated local post-tDCS alterations from baseline at the site of anodal tDCS using NIRS-EEG/tDCS joint-imaging as well as local post-tDCS alterations in motor evoked potentials (MEP...... that the innovative technologies for portable NIRS-EEG neuroimaging may be leveraged to objectively quantify the progress (e.g., corticospinal excitability alterations) and dose tDCS intervention as an adjuvant treatment during neurorehabilitation....

  8. Absorption properties of identical atoms

    International Nuclear Information System (INIS)

    Sancho, Pedro

    2013-01-01

    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas. -- Highlights: •The absorption rates of a pair of identical atoms in product and (anti)symmetrized states are different. •The modifications of the optical properties are essentially determined by the overlapping between the atoms. •The absorption properties differ, in some cases, for bosons and fermions

  9. Evaluation of PE Films Having NIR-Reflective Additives for Greenhouse Applications in Arid Regions

    Directory of Open Access Journals (Sweden)

    Syed K. H. Gulrez

    2013-01-01

    Full Text Available Linear-low-density-polyethylene- (LLDPE- based formulations with several near-infrared- (NIR- reflective pigments were prepared by melt blending technique and their subsequent films were prepared by blown film extrusion process. Thermal properties of these films were evaluated using differential scanning calorimetry (DSC. The results showed that the melting and crystallization temperatures (Tm and Tc, resp. of these formulations were almost similar to that of control resin. The melt viscosity was measured by stress-controlled rotational rheometer and melt flow index (MFI instruments. Rheological measurements indicated that the blend formulations with NIR-reflective additive have similar melt viscoelastic behavior (storage modulus and dynamic viscosity to the control resin. The mechanical test performed on NIR-reflective films showed similar values of tensile strength for blend samples as that of control resin. The spectral radiometric properties of the blend films were evaluated in the solar wavelength range of 200–1100 nm and found to be improved over the control sample without having NIR-reflective pigment.

  10. Iterative maximum a posteriori (IMAP-DOAS for retrieval of strongly absorbing trace gases: Model studies for CH4 and CO2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT

    Directory of Open Access Journals (Sweden)

    C. Frankenberg

    2005-01-01

    Full Text Available In the past, differential optical absorption spectroscopy (DOAS has mostly been employed for atmospheric trace gas retrieval in the UV/Vis spectral region. New spectrometers such as SCIAMACHY onboard ENVISAT also provide near infrared channels and thus allow for the detection of greenhouse gases like CH4, CO2, or N2O. However, modifications of the classical DOAS algorithm are necessary to account for the idiosyncrasies of this spectral region, i.e. the temperature and pressure dependence of the high resolution absorption lines. Furthermore, understanding the sensitivity of the measurement of these high resolution, strong absorption lines by means of a non-ideal device, i.e. having finite spectral resolution, is of special importance. This applies not only in the NIR, but can also prove to be an issue for the UV/Vis spectral region. This paper presents a modified iterative maximum a posteriori-DOAS (IMAP-DOAS algorithm based on optimal estimation theory introduced to the remote sensing community by rodgers76. This method directly iterates the vertical column densities of the absorbers of interest until the modeled total optical density fits the measurement. Although the discussion in this paper lays emphasis on satellite retrieval, the basic principles of the algorithm also hold for arbitrary measurement geometries. This new approach is applied to modeled spectra based on a comprehensive set of atmospheric temperature and pressure profiles. This analysis reveals that the sensitivity of measurement strongly depends on the prevailing pressure-height. The IMAP-DOAS algorithm properly accounts for the sensitivity of measurement on pressure due to pressure broadening of the absorption lines. Thus, biases in the retrieved vertical columns that would arise in classical algorithms, are obviated. Here, we analyse and quantify these systematic biases as well as errors due to variations in the temperature and pressure profiles, which is indispensable for

  11. Determination of SFC, FFA, and equivalent reaction time for enzymatically interestified oils using NIRS

    DEFF Research Database (Denmark)

    Houmøller, Lars P.; Kristensen, Dorthe; Rosager, Helle

    2007-01-01

    The use of near infrared spectroscopy (NIRS) for rapid determination of the degree of interesterification of blends of palm stearin, coconut oil, and rapeseed oil obtained using an immobilized Thermomyces lanuginosa lipase at 70 ◦C was investigated. Interesterification was carried out by applying...... that NIRS could be used to replace the traditional methods for determining FFA and SFC in vegetable oils.It was possible to monitor the activity of the immobilized enzyme for interesterification of margarine oils by predicting the equivalent reaction time in a batch reactor from NIR spectra. Root mean...... square errors of prediction for two different oil blends interesterified for 300 and 170 min were 21 and 12 min, respectively....

  12. Development of nondestructive sorting method for brown bloody eggs using VIS/NIR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hong Seock; Kim, Dae Yong; Kandpal, Lalit Mohan; Lee, Sang Dae; Cho, Byoung Kwan [Dept. of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, Daejeon (Korea, Republic of); Mo, Chang Yeun; Hong, Soon Jung [Rural Development Administration, Jeonju (Korea, Republic of)

    2014-02-15

    The aim of this study was the non-destructive evaluation of bloody eggs using VIS/NIR spectroscopy. The bloody egg samples used to develop the sorting mode were produced by injecting chicken blood into the edges of egg yolks. Blood amounts of 0.1, 0.7, 0.04, and 0.01 mL were used for the bloody egg samples. The wavelength range for the VIS/NIR spectroscopy was 471 to 1154 nm, and the spectral resolution was 1.5nm. For the measurement system, the position of the light source was set to, and the distance between the light source and samples was set to 100 mm. The minimum exposure time of the light source was set to 30 ms to ensure the fast sorting of bloody eggs and prevent heating damage of the egg samples. Partial least squares-discriminant analysis (PLS-DA) was used for the spectral data obtained from VIS/NIR spectroscopy. The classification accuracies of the sorting models developed with blood samples of 0.1, 0.07, 0.04, and 0.01 mL were 97.9%, 98.9%, 94.8%, and 86.45%, respectively. In this study, a novel nondestructive sorting technique was developed to detect bloody brown eggs using spectral data obtained from VIS/NIR spectroscopy.

  13. Design and development of a blood vessel localization system using a Nir viewer; Diseno y desarrollo de un sistema de localizacion de vasos sanguineos mediante Visor NIR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez R, A.; Plascencia C, L. E.; Cordova F, T.; Padilla R, N., E-mail: angelicahr@fisica.ugto.mx [Universidad de Guanajuato, 37150 Leon, Guanajuato (Mexico)

    2017-10-15

    In addition to the multiple applications of ionizing radiation in clinical diagnosis there is the possibility of using another part of the electromagnetic spectrum such as near infrared (Nir). This paper presents the design and construction of a Nir Biosensor in a range between 800 and 900 nm, which allows the visualization of blood vessels for the venepuncture procedure with the aim of reducing the trauma of venous access to patients of all ages. The possibility that the device is used in the location of venous ulcers as an alternative to veno grams obtained by X-rays is also explored. (Author)

  14. Effects of Varying Gravity Levels on fNIRS Headgear Performance and Signal Recovery

    Science.gov (United States)

    Mackey, Jeffrey R.; Harrivel, Angela R.; Adamovsky, Grigory; Lewandowski, Beth E.; Gotti, Daniel J.; Tin, Padetha; Floyd, Bertram M.

    2013-01-01

    This paper reviews the effects of varying gravitational levels on functional Near-Infrared Spectroscopy (fNIRS) headgear. The fNIRS systems quantify neural activations in the cortex by measuring hemoglobin concentration changes via optical intensity. Such activation measurement allows for the detection of cognitive state, which can be important for emotional stability, human performance and vigilance optimization, and the detection of hazardous operator state. The technique depends on coupling between the fNIRS probe and users skin. Such coupling may be highly susceptible to motion if probe-containing headgear designs are not adequately tested. The lack of reliable and self-applicable headgear robust to the influence of motion artifact currently inhibits its operational use in aerospace environments. Both NASAs Aviation Safety and Human Research Programs are interested in this technology as a method of monitoring cognitive state of pilots and crew.

  15. Measurement of specific heat and specific absorption rate by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Gultekin, David H., E-mail: david.gultekin@aya.yale.edu [Department of Electrical Engineering, Yale University, New Haven, CT 06520 (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 (United States); Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232 (United States); Gore, John C. [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232 (United States); Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232 (United States); Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232 (United States); Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232 (United States)

    2010-05-20

    We evaluate a nuclear magnetic resonance (NMR) method of calorimetry for the measurement of specific heat (c{sub p}) and specific absorption rate (SAR) in liquids. The feasibility of NMR calorimetry is demonstrated by experimental measurements of water, ethylene glycol and glycerol using any of three different NMR parameters (chemical shift, spin-spin relaxation rate and equilibrium nuclear magnetization). The method involves heating the sample using a continuous wave laser beam and measuring the temporal variation of the spatially averaged NMR parameter by non-invasive means. The temporal variation of the spatially averaged NMR parameter as a function of thermal power yields the ratio of the heat capacity to the respective nuclear thermal coefficient, from which the specific heat can be determined for the substance. The specific absorption rate is obtained by subjecting the liquid to heating by two types of radiation, radiofrequency (RF) and near-infrared (NIR), and by measuring the change in the nuclear spin phase shift by a gradient echo imaging sequence. These studies suggest NMR may be a useful tool for measurements of the thermal properties of liquids.

  16. TROPOMI and TROPI: UV/VIS/NIR/SWIR instruments

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.; Eskes, H.; Weele, M. van; Veefkind, P.; Oss, R. van; Aben, I.; Jongma, R.T.; Landgraf, J.; Vries, J. de; Visser, H.

    2006-01-01

    TROPOMI (Tropospheric Ozone-Monitoring Instrument) is a five-channel UV-VIS-NIR-SWIR non-scanning nadir viewing imaging spectrometer that combines a wide swath (114°) with high spatial resolution (10 × 10 km 2). The instrument heritage consists of GOME on ERS-2, SCIAMACHY on Envisat and, especially,

  17. NIR dual luminescence from an extended porphyrin. Spectroscopy, photophysics and theory.

    Science.gov (United States)

    Gourlaouen, Christophe; Daniel, Chantal; Durola, Fabien; Frey, Julien; Heitz, Valérie; Sauvage, Jean-Pierre; Ventura, Barbara; Flamigni, Lucia

    2014-05-22

    Spectroscopic and photophysical properties of an extended Zn porphyrin with fused bis(tetraazaanthracene) arms including a 2,9-diphenyl-1,10-phenanthroline incorporated in a polyether macrocycle are investigated in solvents of different polarity pointing to the presence of two emitting singlet excited states. The absorption and emission features are identified and ascribed, on the basis of solvent polarity dependence, to a π-π* and to a charge transfer (CT) state, respectively. Whereas the intraligand π-π* transition is assigned to the intense absorption observed at 442-455 nm, the CT states contribute to the bands at 521-525 nm and 472-481 nm. The theoretical analysis of the absorption spectrum confirms the presence of two strong bands centered at 536 and 437 nm corresponding to CT and π-π* states, respectively. Weak CT transitions are calculated at 657 and 486 nm. Two emission maxima are observed in toluene at 724 nm from a (1)π-π* state and at 800 nm from a (1)CT state, respectively. (1)CT bands shift bathochromically by increasing the solvent polarity whereas the energy of the (1)π-π band is less affected. Likewise, the emission yield and lifetime associated with the low energy (1)CT band are strongly affected by solvent polarity. This is rationalized by a (1)π-π* → (1)CT internal conversion driven by solvent polarity, this process being competitive with the (1)π-π* to ground state deactivation channel. Time resolved absorption spectra indicate the presence of two triplet states, a short-lived one (nanoseconds range) and a longer lived one (hundreds of microsecond range) ascribed to a (3)π-π* and a (3)CT, respectively. For them, a conversion mechanism similar to that of the singlet excited states is suggested.

  18. Communities of nirS-type denitrifiers in the water column of the oxygen minimum zone in the eastern South Pacific.

    Science.gov (United States)

    Castro-González, Maribeb; Braker, Gesche; Farías, Laura; Ulloa, Osvaldo

    2005-09-01

    The major sites of water column denitrification in the ocean are oxygen minimum zones (OMZ), such as one in the eastern South Pacific (ESP). To understand the structure of denitrifying communities in the OMZ off Chile, denitrifier communities at two sites in the Chilean OMZ (Antofagasta and Iquique) and at different water depths were explored by terminal restriction fragment length polymorphism analysis and cloning of polymerase chain reaction (PCR)-amplified nirS genes. NirS is a functional marker gene for denitrification encoding cytochrome cd1-containing nitrite reductase, which catalyses the reduction of nitrite to nitric oxide, the key step in denitrification. Major differences were found between communities from the two geographic locations. Shifts in community structure occurred along a biogeochemical gradient at Antofagasta. Canonical correspondence analysis indicated that O2, NO3-, NO2- and depth were important environmental factors governing these communities along the biogeochemical gradient in the water column. Phylogenetic analysis grouped the majority of clones from the ESP in distinct clusters of genes from presumably novel and yet uncultivated denitrifers. These nirS clusters were distantly related to those found in the water column of the Arabian Sea but the phylogenetic distance was even higher compared with environmental sequences from marine sediments or any other habitat. This finding suggests similar environmental conditions trigger the development of denitrifiers with related nirS genotypes despite large geographic distances.

  19. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application.

    Science.gov (United States)

    Ferrari, Marco; Quaresima, Valentina

    2012-11-01

    This review is aimed at celebrating the upcoming 20th anniversary of the birth of human functional near-infrared spectroscopy (fNIRS). After the discovery in 1992 that the functional activation of the human cerebral cortex (due to oxygenation and hemodynamic changes) can be explored by NIRS, human functional brain mapping research has gained a new dimension. fNIRS or optical topography, or near-infrared imaging or diffuse optical imaging is used mainly to detect simultaneous changes in optical properties of the human cortex from multiple measurement sites and displays the results in the form of a map or image over a specific area. In order to place current fNIRS research in its proper context, this paper presents a brief historical overview of the events that have shaped the present status of fNIRS. In particular, technological progresses of fNIRS are highlighted (i.e., from single-site to multi-site functional cortical measurements (images)), introduction of the commercial multi-channel systems, recent commercial wireless instrumentation and more advanced prototypes. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Spectral interferences in atomic absorption spectrometry, (5)

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro

    1979-01-01

    Spectral interferences were observed in trace element analysis of concentrated solutions by atomic absorption spectrometry. Molecular absorption and emission spectra for strontium chloride and nitrate, barium chloride and nitrate containing 12 mg/ml of metal ion in airacetylene flame were measured in the wavelength range from 200 to 700 nm. The absorption and emission spectra of SrO were centered near 364.6 nm. The absorption spectra of SrOH around 606.0, 671.0 and 682.0 nm were very strong. And, emission spectrum of BaOH in the wavelength range from 480 to 550 nm was stronger. But, the absorption of this band spectrum was very weak. In the wavelength range from 200 to 400 nm, some unknown bands of absorption were observed for strontium and barium. Absorption spectra of SrCl and BaCl were observed in the argon-hydrogen flame. Also, in the carbon tube atomizer, the absorption spectra of SrCl and BaCl were detected clearly in the wavelength range from 185 to 400 nm. (author)

  1. Monitoramento in situ e em tempo real de variáveis morfológicas do poli(cloreto de vinila usando espectroscopia NIR Monitoring in situ and in real time the morphological variables of pvc using NIR spectroscopy

    Directory of Open Access Journals (Sweden)

    João M. de Faria Jr.

    2009-06-01

    Full Text Available Este trabalho ilustra o uso de espectroscopia do infravermelho próximo (NIRS para fins de monitoramento da polimerização em suspensão de cloreto de vinila em tempo real. Resultados inéditos mostraram que é possível acompanhar a evolução de importantes propriedades morfológicas de resinas de PVC [poli(cloreto de vinila], como por exemplo, BD (densidade aparente, CPA (absorção de plastificante a frio, DTP (distribuição de tamanho de partículas e Dp (diâmetro de partícula. Mostrou-se também, pela primeira vez, que é possível analisar quantitativamente, com o auxílio da sonda NIRS in situ, a estrutura morfológica da partícula de PVC. Com a possibilidade de predizer a evolução dinâmica dos parâmetros morfológicos em tempo real, mostrou-se que é possível injetar dispersantes e variar a velocidade de agitação durante a reação para fins de controle das variáveis BD, CPA e DTP do PVC, até que o ponto de identificação da partícula seja atingido. Por meio do monitoramento e da estratégia de controle proposta, é possível antecipar fugas de temperatura no reator, aumentar a segurança do processo, diminuir o tempo de desenvolvimento de resinas com características morfológicas diferenciadas, evitando perdas de margem oriundas da venda de produtos fora de especificação, e otimizar os recursos para o desenvolvimento de novos produtos.This work illustrates the use of near infrared spectroscopy (NIRS for monitoring of the suspension polymerization of vinyl chloride in real time. Obtained results showed that it is possible to track in situ and in real time important morphological properties of PVC resins, such as BD (bulk density, CPA (cold plasticizer absorption, PSD (particle size distribution and Dp (average particle diameter. It was also shown for the first time that it is possible to analyze quantitatively, with the help of in situ NIRS probe, the morphological structure of the PVC particles. As a consequence, it

  2. Applications of Functional Near-Infrared Spectroscopy (fNIRS) in Studying Cognitive Development: The Case of Mathematics and Language.

    Science.gov (United States)

    Soltanlou, Mojtaba; Sitnikova, Maria A; Nuerk, Hans-Christoph; Dresler, Thomas

    2018-01-01

    In this review, we aim to highlight the application of functional near-infrared spectroscopy (fNIRS) as a useful neuroimaging technique for the investigation of cognitive development. We focus on brain activation changes during the development of mathematics and language skills in schoolchildren. We discuss how technical limitations of common neuroimaging techniques such as functional magnetic resonance imaging (fMRI) have resulted in our limited understanding of neural changes during development, while fNIRS would be a suitable and child-friendly method to examine cognitive development. Moreover, this technique enables us to go to schools to collect large samples of data from children in ecologically valid settings. Furthermore, we report findings of fNIRS studies in the fields of mathematics and language, followed by a discussion of the outlook of fNIRS in these fields. We suggest fNIRS as an additional technique to track brain activation changes in the field of educational neuroscience.

  3. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  4. VIS/NIR imaging application for honey floral origin determination

    NARCIS (Netherlands)

    Minaei, Saeid; Shafiee, Sahameh; Polder, Gerrit; Moghadam-Charkari, Nasrolah; Ruth, van Saskia; Barzegar, Mohsen; Zahiri, Javad; Alewijn, Martin; Kuś, Piotr M.

    2017-01-01

    Nondestructive methods are of utmost importance for honey characterization. This study investigates the potential application of VIS-NIR hyperspectral imaging for detection of honey flower origin using machine learning techniques. Hyperspectral images of 52 honey samples were taken in

  5. The estimation of hemodynamic signals measured by fNIRS response to cold pressor test

    Science.gov (United States)

    Ansari, M. A.; Fazliazar, E.

    2018-04-01

    The estimation of cerebral hemodynamic signals has an important role for monitoring the stage of neurological diseases. Functional Near-Infrared Spectroscopy (fNIRS) can be used for monitoring of brain activities. fNIRS utilizes light in the near-infrared spectrum (650-1000 nm) to study the response of the brain vasculature to the changes in neural activities, called neurovascular coupling, within the cortex when cognitive activation occurs. The neurovascular coupling may be disrupted in the brain pathological condition. Therefore, we can also use fNIRS to diagnosis brain pathological conditions or to monitor the efficacy of related treatments. The Cold pressor test (CPT), followed by immersion of dominant hand or foot in the ice water, can induce cortical activities. The perception of pain induced by CPT can be related to cortical neurovascular coupling. Hence, the variation of cortical hemodynamic signals during CPT can be an indicator for studying neurovascular coupling. Here, we study the effect of pain induced by CPT on the temporal variation of concentration of oxyhemoglobin [HbO2] and deoxyhemoglobin [Hb] in the healthy brains. We use fNIRS data collected on forehead during a CPT from 11 healthy subjects, and the average data are compared with post-stimulus pain rating scores. The results show that the variation of [Hb] and [HbO2] are positively correlated with self-reported scores during the CPT. These results depict that fNIRS can be potentially applied to study the decoupling of neurovascular process in brain pathological conditions.

  6. Construction of Hierarchical Polymer Brushes on Upconversion Nanoparticles via NIR-Light-Initiated RAFT Polymerization.

    Science.gov (United States)

    Xie, Zhongxi; Deng, Xiaoran; Liu, Bei; Huang, Shanshan; Ma, Pingan; Hou, Zhiyao; Cheng, Ziyong; Lin, Jun; Luan, Shifang

    2017-09-13

    Photoinduced reversible addition-fragmentation chain transfer (RAFT) polymerization generally adopts high-energy ultraviolet (UV) or blue light. In combination with photoredox catalyst, the excitation light wavelength was extended to the visible and even near-infrared (NIR) region for photoinduced electron transfer RAFT polymerization. In this report, we introduce for the first time a surface NIR-light-initiated RAFT polymerization on upconversion nanoparticles (UCNPs) without adding any photocatalyst and construct a functional inorganic core/polymer shell nanohybrid for application in cancer theranostics. The multilayer core-shell UCNPs (NaYF 4 :Yb/Tm@NaYbF 4 :Gd@NaNdF 4 :Yb@NaYF 4 ), with surface anchorings of chain transfer agents, can serve as efficient NIR-to-UV light transducers for initiating the RAFT polymerization. A hierarchical double block copolymer brush, consisting of poly(acrylic acid) (PAA) and poly(oligo(ethylene oxide)methacrylate-co-2-(2-methoxy-ethoxy)ethyl methacrylate) (PEG for short), was grafted from the surface in sequence. The targeting arginine-glycine-aspartic (RGD) peptide was modified at the end of the copolymer through the trithiolcarbonate end group. After loading of doxorubicin, the UCNPs@PAA-b-PEG-RGD exhibited an enhanced U87MG cancer cell uptake efficiency and cytotoxicity. Besides, the unique upconversion luminescence of the nanohybrids was used for the autofluoresence-free cell imaging and labeling. Therefore, our strategy verified that UCNPs could efficiently activate RAFT polymerization by NIR photoirradiation and construct the complex nanohybrids, exhibiting prospective biomedical applications due to the low phototoxicity and deep penetration of NIR light.

  7. Multivariate NIR studies of seed-water interaction in Scots Pine Seeds (Pinus sylvestris L.)

    OpenAIRE

    Lestander, Torbjörn

    2003-01-01

    This thesis describes seed-water interaction using near infrared (NIR) spectroscopy, multivariate regression models and Scots pine seeds. The presented research covers classification of seed viability, prediction of seed moisture content, selection of NIR wavelengths and interpretation of seed-water interaction modelled and analysed by principal component analysis, ordinary least squares (OLS), partial least squares (PLS), bi-orthogonal least squares (BPLS) and genetic algorithms. The potenti...

  8. NIR responsive liposomal system for rapid release of drugs in cancer therapy

    Directory of Open Access Journals (Sweden)

    Chen MM

    2017-06-01

    Full Text Available Ming-Mao Chen,1 Yuan-Yuan Liu,1 Guang-Hao Su,2 Fei-Fei Song,1 Yan Liu,3 Qi-Qing Zhang1,4 1Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 2Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, 3State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 4Key Laboratory of Biomedical Material of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People’s Republic of China Abstract: To design a rapid release liposomal system for cancer therapy, a NIR responsive bubble-generating thermosensitive liposome (BTSL system combined with photothermal agent (Cypate, doxorubicin (DOX, and NH4HCO3 was developed. Cypate/DOX-BTSL exhibited a good aqueous stability, photostability, and photothermal effect. In vitro release suggested that the amounts of DOX released from BTSL were obviously higher than that of (NH42SO4 liposomes at 42°C. After NIR irradiation, the hyperthermic temperature induced by Cypate led to the decomposition of NH4HCO3 and the generation of a large number of CO2 bubbles, triggering a rapid release of drugs. Confocal laser scanning microscope and acridine orange staining indicated that Cypate/DOX-BTSL upon irradiation could facilitate to disrupt the lysosomal membranes and realize endolysosomal escape into cytosol, improving the intracellular uptake of DOX clearly. MTT and trypan blue staining implied that the cell damage of Cypate/DOX-BTSL with NIR irradiation was more severe than that in the groups without irradiation. In vivo results indicated that Cypate/DOX-BTSL with irradiation could dramatically increase the accumulation of DOX in tumor, inhibit tumor growth, and reduce systemic side effects of DOX. These data demonstrated that Cypate/DOX-BTSL has the potential to be used as a NIR responsive liposomal system for a rapid

  9. Measurement of soluble solids content in watermelon by Vis/NIR diffuse transmittance technique*

    OpenAIRE

    Tian, Hai-qing; Ying, Yi-bin; Lu, Hui-shan; Fu, Xia-ping; Yu, Hai-yan

    2007-01-01

    Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC detection of watermelons by means of visible/near infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer operating over the range 350~1000 nm. Spectra data were analyz...

  10. NIRS database of the original research database

    International Nuclear Information System (INIS)

    Morita, Kyoko

    1991-01-01

    Recently, library staffs arranged and compiled the original research papers that have been written by researchers for 33 years since National Institute of Radiological Sciences (NIRS) established. This papers describes how the internal database of original research papers has been created. This is a small sample of hand-made database. This has been cumulating by staffs who have any knowledge about computer machine or computer programming. (author)

  11. Agricultural applications of NIR reflectance and transmittance

    DEFF Research Database (Denmark)

    Gislum, René

    2009-01-01

    There has been a considerable increase in the use of near infrared (NIR) reflectance and transmittance spectroscopy technologies for rapid determination of quality parameters in agriculture, including applications within crop product quality, feed and food quality, manure quality, soil analyses etc....... As a result it was decided to arrange a seminar within the Nordic Association of Agricultural Scientists. This is a report of the meeting....

  12. Design and construction of a NIR spectrometer

    CERN Document Server

    Barcala-Riveira, J M; Fernandez-Marron, J L; Molero-Menendez, F; Navarrete-Marin, J J; Oller-Gonzalez, J C

    2003-01-01

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs.

  13. Design and construction of a NIR spectrometer

    International Nuclear Information System (INIS)

    Barcala Riveira, J. M.; Fernandez Marron, J. L.; Alberdi Primicia, J.; Molero Menendez, F.; Navarrete Marin, J. J.; Oller Gonzalez, J. C.

    2003-01-01

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs

  14. Evidence of ventricular contamination of the optical signal in preterm neonates with post hemorrhagic ventricle dilation

    Science.gov (United States)

    Kishimoto, J.; Diop, M.; McLachlan, P.; de Ribaupierre, S.; Lee, D. S. C.; St. Lawrence, K.

    2015-03-01

    Dilation of the cerebral ventricles is a common condition in preterm neonates with intraventricular hemorrhage (IVH). This post hemorrhagic ventricle dilation (PHVD) can lead to lifelong neurological impairment through ischemic injury due to increased intracranial pressure (ICP). Interventions, such as ventricular tapping to remove cerebrospinal fluid (CSF), are used to prevent injury, but determining the optimal time for treatment is difficult as clinical signs of increased ICP lack sensitivity. There is a growing interest in using near-infrared spectroscopy (NIRS) because of its ability to monitor cerebral oxygen saturation (StO2) at the bedside. However, the accuracy of NIRS may be affected by signal contamination from enlarged ventricles, especially if there are blood breakdown products (bbp) in CSF following IVH. To investigate this, serial NIR spectra from the head and from CSF samples were acquired over a month from seven IVH patients undergoing treatment for PHVD. Over time, the visual appearance of the CSF samples progressed from dark brown ("tea color") to clear yellow, reflecting the reduction in bbp concentration as confirmed by the stronger absorption around 760 nm at the earlier time points. All CSF samples contained strong absorption at 960 nm due to water. More importantly the same trend in these absorption features was observed in the in vivo spectra, and Monte Carlo simulations confirmed the potential for signal contamination from enlarged ventricles. These findings highlight the challenges of accurately measuring StO2 in this patient population and the necessity of using a hyperspectral NIRS system to resolve the additional chromophores.

  15. Developing and evaluating a multisite and multispecies NIR ...

    African Journals Online (AJOL)

    To elevate NIR from proof-of-concept to a pilot scale, a large multisite, multispecies calibration was developed over iterative cycles to: (1) determine whether KPY in eucalypts can be predicted from a single calibration independent of site and species, and (2) identify the potential limits of accuracy and precision. This paper ...

  16. Decreased functional connectivity and disrupted neural network in the prefrontal cortex of affective disorders: A resting-state fNIRS study.

    Science.gov (United States)

    Zhu, Huilin; Xu, Jie; Li, Jiangxue; Peng, Hongjun; Cai, Tingting; Li, Xinge; Wu, Shijing; Cao, Wei; He, Sailing

    2017-10-15

    pharmacological treatment affected the resting state cortical organization of the prefrontal lobe, and the degree of the effect in patients with AD. These results strongly supported that RSFC measured by fNIRS could be a useful and powerful way of delineating the neuropathology of AD. Copyright © 2017. Published by Elsevier B.V.

  17. Near infrared spectroscopic (NIRS) analysis of grapes and red-wines

    International Nuclear Information System (INIS)

    Guggenbichler, W.

    2003-04-01

    In this work vine varieties of the genus Vitis as well as grape-must and fully developed wines were examined by Near Infrared Spectroscopy (NIRS). The spectra were obtained by methods of transflection and transmission measurements. It was shown, that spectra of different varieties of grapes and red-wines can be combined in clusters by means of NIR spectroscopy and subsequent principle components analysis (PCA). In addition to this, it was possible to identify blends of two different varieties of wines as such and to determine the ratio of mixture. In several varieties of grape-must these NIR spectroscopic measurements further allowed a quantitative determination of important parameters concerning the quality of grapes, such as: sugar, total acidity, tartaric acid, malic acid, and pH-value. The content of polyphenols in grapes was also analyzed by this method. The total parameter for polyphenols in grapes is a helpful indicator for the optimal harvest time and the quality of grapes. All quantitative calculations were made by the method of partial least square regression (PLS). As these spectroscopic measurements require minimal sample preparations and due to the fact that measurements can be accomplished and results obtained within a few seconds, this method turned out to be a promising option in order to classify wines and to quantify relevant ingredients in grapes. (author)

  18. Use of FT-NIR Spectroscopy for Bovine Colostrum Analysis

    Directory of Open Access Journals (Sweden)

    P. Navrátilová

    2006-01-01

    Full Text Available Fourier transformation near infrared spectroscopy (FT-NIR in combination with partial least squares (PLS method were used to determine the content of total solids, fat, non-fatty solids, lactose and proteins in bovine colostrum. Spectra of 90 samples were measured in the reflectance mode with a transflectance cuvette in the 10000-4000 cm-1 spectral ranges with 100 scans. Calibration was performed and statistical values of correlation coefficients (R and standard error of calibration values (SEC were computed for total solids (0.986 and 0.919, respectively, fat (0.997 and 0.285, respectively, non-fatty solids (0.995 and 0.451, respectively, lactose (0.934 and 0.285, respectively and protein (0.999 and 0.149, respectively. The calibration models developed were verified by cross validation. It follows from the study that FT-NIR spectroscopy can be used to determine the components of bovine colostrum.

  19. Ultrasonic absorption in solid specimens

    International Nuclear Information System (INIS)

    Siwabessy, P.J. W.; Stewart, G.A.

    1996-01-01

    As part of a project to measure the absorption of high frequency (50 - 500 kHz) sonar signals in warm sea-water, a laboratory apparatus has been constructed and tested against room temperature distilled water and various solutions of MgSO 4 (chemical relaxation of MgSO 4 is the major contribution to absorption below 200 kHz). The technique involves monitoring the decay of an acoustic signal for different sizes of vessels of water suspended in an evacuated chamber. So far, all containing vessels used have been spherical in shape. Extrapolation of the results to infinite volume yields the absorption due to the water alone. In order to accommodate variations in temperature and pressure, and to make the system more robust (e.g. for ship deck usage), it is desirable to employ stainless steel vessels. However, it was found that the quality of the data was greatly improved when pyrex glass spheres were used. The stainless steel spheres were manufactured by welding together mechanically spun hemispheres. The linear frequency dependence characteristic of acoustic absorption in solids was observed (in contrast to the quadratic frequency dependence of acoustic absorption in water), and the acoustic absorption was found to depend strongly on the thermal history of the steel

  20. Near Infrared Spectroscopy (NIRS) for the determination of the milk fat fatty acid profile of goats.

    Science.gov (United States)

    Núñez-Sánchez, N; Martínez-Marín, A L; Polvillo, O; Fernández-Cabanás, V M; Carrizosa, J; Urrutia, B; Serradilla, J M

    2016-01-01

    Milk fatty acid (FA) composition is important for the goat dairy industry because of its influence on cheese properties and human health. The aim of the present work was to evaluate the feasibility of NIRS reflectance (oven-dried milk using the DESIR method) and transflectance (liquid milk) analysis to predict milk FA profile and groups of fats in milk samples from individual goats. NIRS analysis of milk samples allowed to estimate FA contents and their ratios and indexes in fat with high precision and accuracy. In general, transflectance analysis gave better or similar results than reflectance mode. Interestingly, NIRS analysis allowed direct prediction of the Atherogenicity and Thrombogenicity indexes, which are useful for the interpretation of the nutritional value of goat milk. Therefore, the calibrations obtained in the present work confirm the viability of NIRS as a fast, reliable and effective analytical method to provide nutritional information of milk samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Observing broad-absorption line quasars with Spectrum-Rontgen-Gamma

    DEFF Research Database (Denmark)

    Singh, K.P.; Schnopper, H.W.; Westergaard, Niels Jørgen Stenfeldt

    1998-01-01

    Broad-absorption line quasars are found to have extremely weak soft X-ray emission when compared with other optically selected quasars. In the only example of PHL 5200 for which a detailed X-ray spectrum has been obtained with ASCA, strong absorption in the source appears to be responsible...

  2. The application of Near Infrared Reflectance Spectroscopy (NIRS for the quantitative analysis of hydrocortisone in primary materials

    Directory of Open Access Journals (Sweden)

    A. PITTAS

    2001-03-01

    Full Text Available Near Infrared Reflectance Spectroscopy (NIRS, coupled with fiber optic probes, has been shown to be a quick and reliable analytical tool for quality assurance and quality control in the pharmaceutical industry, both for verifications of raw materials and quantification of the active ingredients in final products. In this paper, a typical pharmaceutical product, hydrocortisone sodium succinate, is used as an example for the application of NIR spectroscopy for quality control. In order to develop an NIRS method with higher precision and accuracy than the official UV/VIS spectroscopic method (BP '99, 19 samples, taken from one year’s production and several prepared in the laboratory, having a hydrocortisone sodium succinate concentration in the range from 89.05%to 95.83 %, were analysed by NIR and UV/VIS spectroscopy. Three frequency ranges: 5939.73–5627.32 cm-1; 4863.64 – 4574.36 cm-1; 4308.23–4200.24 cm-1, with the best positive correlation between the changes in the spectral and concentration data, were chosen. The validity of the developed NIRS chemometric method for the determination of the hydrocortisone sodium succinate concentration, constructed by the partial least squares (PLS regression technique, is discussed. A correlation coefficient of 0.9758 and a standard error of cross validation (RMSECVof 1.06%were found between the UV/VI Sand òhe NIR spectroscopic results of the hydrocortisone sodium succinate concentration in the samples.

  3. On-chip integrated functional near infra-red spectroscopy (fNIRS) photoreceiver for portable brain imaging

    Science.gov (United States)

    Kamrani, Ehsan

    Optical brain imaging using functional near infra-red spectroscopy (fNIRS) offers a direct and noninvasive tool for monitoring of blood oxygenation. fNIRS is a noninvasive, safe, minimally intrusive, and high temporal-resolution technique for real-time and long-term brain imaging. It allows detecting both fast-neuronal and slow-hemodynamic signals. Besides the significant advantages of fNIRS systems, they still suffer from few drawbacks including low spatial-resolution, moderately high-level noise and high-sensitivity to movement. In order to overcome the limitations of currently available non-portable fNIRS systems, we have introduced a new low-power, miniaturized on-chip photodetector front-end intended for portable fNIRS systems. It includes silicon avalanche photodiode (SiAPD), Transimpedance amplifier (TIA), and Quench- Reset circuitry implemented using standard CMOS technologies to operate in both linear and Geiger modes. So it can be applied for both continuous-wave fNIRS (CW-fNIRS) and also single-photon counting applications. Several SiAPDs have been implemented in novel structures and shapes (Rectangular, Octagonal, Dual, Nested, Netted, Quadratic and Hexadecagonal) using different premature edge breakdown prevention techniques. The main characteristics of the SiAPDs are validated and the impact of each parameter and the device simulators (TCAD, COMSOL, etc.) have been studied based on the simulation and measurement results. Proposed techniques exhibit SiAPDs with high avalanche-gain (up to 119), low breakdown-voltage (around 12V) and high photon-detection efficiency (up to 72% in NIR region) in additional to a low dark-count rate (down to 30Hz at 1V excess bias voltage). Three new high gain-bandwidth product (GBW) and low-noise TIAs are introduced and implemented based on distributed-gain concept, logarithmic-amplification and automatic noise-rejection and have been applied in linear-mode of operation. The implemented TIAs offer a power

  4. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques

    Energy Technology Data Exchange (ETDEWEB)

    Balabin, Roman M., E-mail: balabin@org.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland); Safieva, Ravilya Z. [Gubkin Russian State University of Oil and Gas, 119991 Moscow (Russian Federation); Lomakina, Ekaterina I. [Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119992 Moscow (Russian Federation)

    2010-06-25

    Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm{sup -1} NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems.

  5. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques

    International Nuclear Information System (INIS)

    Balabin, Roman M.; Safieva, Ravilya Z.; Lomakina, Ekaterina I.

    2010-01-01

    Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm -1 NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems.

  6. Intercomparisons for integrating the radon-thoron detector of NIRP, China with NIRS, Japan

    International Nuclear Information System (INIS)

    Wu, Yunyun; Cui, Hongxing; Zhang, Qingzhao; Shang, Bing

    2015-01-01

    Intercomparisons play an important role in maintaining a reasonable and accurate standard of measurement and quality. Integrating the radon-thoron detector of the National Institute for Radiological Protection (NIRP), China has continuously been a subject of four rounds of international intercomparisons organised by the National Institute of Radiological Sciences (NIRS), Japan during 2007-12. The intercomparisons were held at NIRS. The exercises included different exposures for both radon and thoron. The results of the intercomparison for the detectors of NIRP for both radon and thoron exposures were in the range of ±20 % from the reference value and were categorised as 'Category I' in the intercomparison carried out in 2011. The radon and thoron results of the LD-P detector in four rounds of intercomparison exercises were summarised, and uncertainties of all the radon and thoron results of NIRP were within the acceptable range of 30 % in environment. Radon and thoron measurement results between NIRP and NIRS were basically in agreement. (authors)

  7. A NIR-BODIPY derivative for sensing copper(II) in blood and mitochondrial imaging

    Science.gov (United States)

    He, Shao-Jun; Xie, Yu-Wen; Chen, Qiu-Yun

    2018-04-01

    In order to develop NIR BODIPY for mitochondria targeting imaging agents and metal sensors, a side chain modified BODIPY (BPN) was synthesized and spectroscopically characterized. BPN has NIR emission at 765 nm when excited at 704 nm. The emission at 765 nm responded differently to Cu2+ and Mn2+ ions, respectively. The BPN coordinated with Cu2+ forming [BPNCu]2+ complex with quenched emission, while Mn2+ induced aggregation of BPN with specific fluorescence enhancement. Moreover, BPN can be applied to monitor Cu2+ in live cells and image mitochondria. Further, BPN was used as sensor for the detection of Cu2+ ions in serum with linear detection range of 0.45 μM-36.30 μM. Results indicate that BPN is a good sensor for the detection of Cu2+ in serum and image mitochondria. This study gives strategies for future design of NIR sensors for the analysis of metal ions in blood.

  8. Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy.

    Science.gov (United States)

    Kusumaningrum, Dewi; Lee, Hoonsoo; Lohumi, Santosh; Mo, Changyeun; Kim, Moon S; Cho, Byoung-Kwan

    2018-03-01

    The viability of seeds is important for determining their quality. A high-quality seed is one that has a high capability of germination that is necessary to ensure high productivity. Hence, developing technology for the detection of seed viability is a high priority in agriculture. Fourier transform near-infrared (FT-NIR) spectroscopy is one of the most popular devices among other vibrational spectroscopies. This study aims to use FT-NIR spectroscopy to determine the viability of soybean seeds. Viable and artificial ageing seeds as non-viable soybeans were used in this research. The FT-NIR spectra of soybean seeds were collected and analysed using a partial least-squares discriminant analysis (PLS-DA) to classify viable and non-viable soybean seeds. Moreover, the variable importance in projection (VIP) method for variable selection combined with the PLS-DA was employed. The most effective wavelengths were selected by the VIP method, which selected 146 optimal variables from the full set of 1557 variables. The results demonstrated that the FT-NIR spectral analysis with the PLS-DA method that uses all variables or the selected variables showed good performance based on the high value of prediction accuracy for soybean viability with an accuracy close to 100%. Hence, FT-NIR techniques with a chemometric analysis have the potential for rapidly measuring soybean seed viability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Prediction of ethanol in bottled Chinese rice wine by NIR spectroscopy

    Science.gov (United States)

    Ying, Yibin; Yu, Haiyan; Pan, Xingxiang; Lin, Tao

    2006-10-01

    To evaluate the applicability of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining ethanol concentration of Chinese rice wine in square brown glass bottle, transmission spectra of 100 bottled Chinese rice wine samples were collected in the spectral range of 350-1200 nm. Statistical equations were established between the reference data and VIS-NIR spectra by partial least squares (PLS) regression method. Performance of three kinds of mathematical treatment of spectra (original spectra, first derivative spectra and second derivative spectra) were also discussed. The PLS models of original spectra turned out better results, with higher correlation coefficient in calibration (R cal) of 0.89, lower root mean standard error of calibration (RMSEC) of 0.165, and lower root mean standard error of cross validation (RMSECV) of 0.179. Using original spectra, PLS models for ethanol concentration prediction were developed. The R cal and the correlation coefficient in validation (R val) were 0.928 and 0.875, respectively; and the RMSEC and the root mean standard error of validation (RMSEP) were 0.135 (%, v v -1) and 0.177 (%, v v -1), respectively. The results demonstrated that VIS-NIR spectroscopy could be used to predict ethanol concentration in bottled Chinese rice wine.

  10. Espectroscopía NIR como Técnica Exploratoria Rápida para Detección de Amarillamiento Hojas Crisantemo (Dendranthema grandiflora var. Zembla / NIR Spectroscopy as Quick Exploratory Technique for Detection of Chrysanthemum Leaf Yellowing (Dendranthema

    Directory of Open Access Journals (Sweden)

    Juan Carlos Pérez Naranjo

    2014-03-01

    Full Text Available Resumen. El diagnóstico seguro de enfermedades en lasplantas depende de técnicas costosas, que requieren de tiempo y entrenamiento especializado. Esta investigación evaluó el uso de espectroscopia infrarroja cercana NIR (por sus siglas en ingles near-infrared para la detección rápida del “amarillamiento de hojas de crisantemo”, una enfermedad de etiología incierta que genera pérdidas económicas importantes. En este experimento se tomaron espectros infrarrojos en hojas con niveles de amarillamiento diferentes según la clasificación empleada por los agricultores (asintomáticas, síntomas intermedios y hojasdeformadas con síntomas avanzados. Mediante un análisis de componentes principales y con los valores de los espectros de esas muestras, se desarrolló un modelo de clasificación de hojas. Ese modelo aplicado en espectros de hojas tomados al azar separó adecuadamente el grupo de espectros NIR de hojas asintomáticas de un grupo indiferenciado de espectros obtenidos de hojas consíntomas intermedios o avanzados. Los resultados sugieren que para esta enfermedad es posible desarrollar un modelo de detección en muestras problema. Para ello, se requerirá incorporar al modelo un mayor número de muestras en rangos de enfermedad bien definidos. Estos resultados permiten vislumbrar las posibilidades del uso de esta técnica no destructiva, para detección temprana de los síntomas del amarillamiento foliar en crisantemo y como herramienta para el diseño de estrategias oportunas y efectivas demanejo de esta y otras enfermedades en las plantas. / Abstract. The safe diagnostic of plant diseases depends on expensive techniques which require time and specialized training. This study evaluated the use of near-infrared spectroscopy (NIR for the rapid detection of “chrysanthemum leaf yellowing”, a disease of unknown etiology causing important economic losses in Antioquia’s chrysanthemum main producing areas

  11. Interaction of strong electromagnetic fields with atoms

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1982-06-01

    Several non-linear processes involvoing the interaction of atoms with strong laser fields are discussed, with particular emphasis on the ionization problem. Non-perturbative methods which have been proposed to tackle this problem are analysed, and shown to correspond to an expansion in the intra-atomic potential. The relation between tunneling and multiphoton absorption as ionization mechanisms, and the generalization of Einstein's photoelectric equation to the strong-field case are discussed. (Author) [pt

  12. Less transpiration and good quality thanks to NIR-screen

    NARCIS (Netherlands)

    Stanghellini, C.; Kempkes, F.L.K.; Hemming, S.; Jianfeng, D.

    2009-01-01

    Materials or additives for greenhouse cover that reflect or absorb a part of the NIR radiation can decrease the cooling requirement for the greenhouse and increase water use efficiency of the crop. By reducing the ventilation requirement, it might even decrease emissions of carbon dioxide from

  13. Absolutely nondestructive discrimination of Huoshan Dendrobium nobile species with miniature near-infrared (NIR) spectrometer engine.

    Science.gov (United States)

    Hu, Tian; Yang, Hai-Long; Tang, Qing; Zhang, Hui; Nie, Lei; Li, Lian; Wang, Jin-Feng; Liu, Dong-Ming; Jiang, Wei; Wang, Fei; Zang, Heng-Chang

    2014-10-01

    As one very precious traditional Chinese medicine (TCM), Huoshan Dendrobium has not only high price, but also significant pharmaceutical efficacy. However, different species of Huoshan Dendrobium exhibit considerable difference in pharmaceutical efficacy, so rapid and absolutely non-destructive discrimination of Huoshan Dendrobium nobile according to different species is crucial to quality control and pharmaceutical effect. In this study, as one type of miniature near-infrared (NIR) spectrometer, MicroNIR 1700 was used for absolutely nondestructive determination of NIR spectra of 90 batches of Dendrobium from five species of differ- ent commodity grades. The samples were intact and not smashed. Soft independent modeling of class analogy (SIMCA) pattern recognition based on principal component analysis (PCA) was used to classify and recognize different species of Dendrobium samples. The results indicated that the SIMCA qualitative models established with pretreatment method of standard normal variate transformation (SNV) in the spectra range selected by Qs method had 100% recognition rates and 100% rejection rates. This study demonstrated that a rapid and absolutely non-destructive analytical technique based on MicroNIR 1700 spectrometer was developed for successful discrimination of five different species of Huoshan Dendrobium with acceptable accuracy.

  14. Aplicação de FT-MIR e FT-NIR ao estudo de reação de cura de sistemas epoxídicos FT-IR MIR and FT-NIR applied to the study of reaction of epoxy systems

    Directory of Open Access Journals (Sweden)

    Benedita M. V. Romão

    2004-09-01

    Full Text Available A reação de cura entre amostras de resina epoxídica (EP e compostos à base de mercaptana (SH, amino-fenol e amina modificada foi estudada nas regiões espectrais do infravermelho médio (MIR e próximo (NIR. Observou-se, basicamente, que a espectroscopia FT-NIR evidencia melhor as alterações espectrométricas ocorridas durante as reações estudadas, permitindo detectar, inclusive, o agente de cura em menor proporção no sistema epoxídico.The cure reaction of epoxy resin (EP and curing agents based on polymercaptans (SH, amine-phenol and modified amine was studied in the MIR and NIR spectral regions. It was observed that the FT-NIR shows better the spectrometric changes of the reactions studied, which makes it possible to detect the curing agent in lower contents in epoxide systems.

  15. Magnetic and solar effects on ionospheric absorption at high latitude

    Directory of Open Access Journals (Sweden)

    M. Pietrella

    2002-06-01

    Full Text Available Some periods of intense solar events and of strong magnetic storms have been selected and their effects on the ionospheric D region have been investigated on the basis of ionospheric absorption data derived from riometer measurements made at the Italian Antarctic Base of Terra Nova Bay (geographic coordinates: 74.69 S, 164.12 E; geomagnetic coordinates: 77.34 S, 279.41 E. It was found that sharp increases in ionospheric absorption are mainly due to solar protons emission with an energy greater than 10 MeV. Moreover, the day to night ratios of the ionospheric absorption are greater than 2 in the case of strong events of energetic protons emitted by the Sun, while during magnetic storms, these ratios range between 1 and 2.

  16. NIRS-EEG joint imaging during transcranial direct current stimulation: Online parameter estimation with an autoregressive model.

    Science.gov (United States)

    Sood, Mehak; Besson, Pierre; Muthalib, Makii; Jindal, Utkarsh; Perrey, Stephane; Dutta, Anirban; Hayashibe, Mitsuhiro

    2016-12-01

    Transcranial direct current stimulation (tDCS) has been shown to perturb both cortical neural activity and hemodynamics during (online) and after the stimulation, however mechanisms of these tDCS-induced online and after-effects are not known. Here, online resting-state spontaneous brain activation may be relevant to monitor tDCS neuromodulatory effects that can be measured using electroencephalography (EEG) in conjunction with near-infrared spectroscopy (NIRS). We present a Kalman Filter based online parameter estimation of an autoregressive (ARX) model to track the transient coupling relation between the changes in EEG power spectrum and NIRS signals during anodal tDCS (2mA, 10min) using a 4×1 ring high-definition montage. Our online ARX parameter estimation technique using the cross-correlation between log (base-10) transformed EEG band-power (0.5-11.25Hz) and NIRS oxy-hemoglobin signal in the low frequency (≤0.1Hz) range was shown in 5 healthy subjects to be sensitive to detect transient EEG-NIRS coupling changes in resting-state spontaneous brain activation during anodal tDCS. Conventional sliding window cross-correlation calculations suffer a fundamental problem in computing the phase relationship as the signal in the window is considered time-invariant and the choice of the window length and step size are subjective. Here, Kalman Filter based method allowed online ARX parameter estimation using time-varying signals that could capture transients in the coupling relationship between EEG and NIRS signals. Our new online ARX model based tracking method allows continuous assessment of the transient coupling between the electrophysiological (EEG) and the hemodynamic (NIRS) signals representing resting-state spontaneous brain activation during anodal tDCS. Published by Elsevier B.V.

  17. Joint attention studies in normal and autistic children using NIRS

    Science.gov (United States)

    Chaudhary, Ujwal; Hall, Michael; Gutierrez, Anibal; Messinger, Daniel; Rey, Gustavo; Godavarty, Anuradha

    2011-03-01

    Autism is a socio-communication brain development disorder. It is marked by degeneration in the ability to respond to joint attention skill task, from as early as 12 to 18 months of age. This trait is used to distinguish autistic from nonautistic. In this study Near infrared spectroscopy (NIRS) is being applied for the first time to study the difference in activation and connectivity in the frontal cortex of typically developing (TD) and autistic children between 4-8 years of age in response to joint attention task. The optical measurements are acquired in real time from frontal cortex using Imagent (ISS Inc.) - a frequency domain based NIRS system in response to video clips which engenders a feeling of joint attention experience in the subjects. A block design consisting of 5 blocks of following sequence 30 sec joint attention clip (J), 30 sec non-joint attention clip (NJ) and 30 sec rest condition is used. Preliminary results from TD child shows difference in brain activation (in terms of oxy-hemoglobin, HbO) during joint attention interaction compared to the nonjoint interaction and rest. Similar activation study did not reveal significant differences in HbO across the stimuli in, unlike in an autistic child. Extensive studies are carried out to validate the initial observations from both brain activation as well as connectivity analysis. The result has significant implication for research in neural pathways associated with autism that can be mapped using NIRS.

  18. MONITORING ON PLANT LEAF WATER POTENTIAL USING NIR SPECTROSCOPY FOR WATER STRESS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Diding Suhandy

    2012-12-01

    Full Text Available The performance of the calibration model with temperature compensation for on-plant leaf water potential (LWP determination in tomato plants was evaluated. During a cycle of water stress, the on-plant LWP measurement was conducted. The result showed that the LWP values under water stress and recovery from water stress could be monitored well. It showed that a real time monitoring of the LWP values using NIR spectroscopy could be possible.   Keywords: water stress, real time monitoring of leaf water potential, NIR spectroscopy, plant response-based

  19. Solar Energy Delivering Greenhouse with an Integrated NIR filter

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Holterman, H.J.; Tuijl, van B.A.J.; Bot, G.P.A.

    2008-01-01

    The scope of this investigation is the design and development of a new type of greenhouse with an integrated filter for rejecting near infrared radiation (NIR) and a solar energy delivery system. Cooled greenhouses are an important issue to cope with the combination of high global radiation and high

  20. Absorption of femtosecond laser pulses by atomic clusters

    International Nuclear Information System (INIS)

    Lin Jingquan; Zhang Jie; Li Yingjun; Chen Liming; Lu Tiezheng; Teng Hao

    2001-01-01

    Energy absorption by Xe, Ar, He atomic clusters are investigated using laser pulses with 5 mJ energy in 150 fs duration. Experimental results show that the size of cluster and laser absorption efficiency are strongly dependent on several factors, such as the working pressure of pulse valve, atomic number Z of the gas. Absorption fraction of Xe clusters is as high as 45% at a laser intensity of 1 x 10 15 W/cm 2 with 20 x 10 5 Pa gas jet backing pressure. Absorption of the atomic clusters is greatly reduced by introducing pre-pulses. Ion energy measurements confirm that the efficient energy deposition results in a plasma with very high ion temperature

  1. UV-crosslinkable and thermo-responsive chitosan hybrid hydrogel for NIR-triggered localized on-demand drug delivery.

    Science.gov (United States)

    Wang, Lei; Li, Baoqiang; Xu, Feng; Xu, Zheheng; Wei, Daqing; Feng, Yujie; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2017-10-15

    Innovative drug delivery technologies based on smart hydrogels for localized on-demand drug delivery had aroused great interest. To acquire smart UV-crosslinkable chitosan hydrogel for NIR-triggered localized on-demanded drug release, a novel UV-crosslinkable and thermo-responsive chitosan was first designed and synthesized by grafting with poly N-isopropylacrylamide, acetylation of methacryloyl groups and embedding with photothermal carbon. The UV-crosslinkable unit (methacryloyl groups) endowed chitosan with gelation via UV irradiation. The thermo-responsive unit (poly N-isopropylacrylamide) endowed chitosan hydrogel with temperature-triggered volume shrinkage and reversible swelling/de-swelling behavior. The chitosan hybrid hydrogel embedded with photothermal carbon exhibited distinct NIR-triggered volume shrinkage (∼42% shrinkage) in response to temperature elevation as induced by NIR laser irradiation. As a demonstration, doxorubicin release rate was accelerated and approximately 40 times higher than that from non-irradiated hydrogels. The UV-crosslinkable and thermal-responsive hybrid hydrogel served as in situ forming hydrogel-based drug depot is developed for NIR-triggered localized on-demand release. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  3. Spectrophotometric versus NIR-MIR assessments of cowpea pods for discriminating the impact of freezing.

    Science.gov (United States)

    Machado, Nelson; Domínguez-Perles, Raúl; Ramos, Ana; Rosa, Eduardo As; Barros, Ana Irna

    2017-10-01

    Freezing represents an important storage method for vegetal foodstuffs, such as cowpea pods, and thus the impact of this process on the chemical composition of these matrices arises as a prominent issue. In this sense, the phytochemical contents in frozen cowpea pods (i.e. at 6 and 9 months) have been compared with fresh cowpea pods material, with the samples being concomitantly assessed by Fourier-transform infrared spectroscopy (FTIR), both mid-infrared (MIR) and near infrared (NIR), aiming to evaluate the potential of these techniques as a rapid tool for the traceability of these matrices. A decrease in phytochemical contents during freezing was observed, allowing the classification of samples according to the freezing period based on such variations. Also, MIR and NIR allowed discrimination of samples: the use of the first derivative demonstrated a better performance for this purpose, whereas the use of the normalized spectra gave the best correlations between the spectra and specific contents. In both cases, NIR displayed the best performance. Freezing of cowpea pods leads to a decrease of phytochemical contents, which can be monitored by FTIR spectroscopy, both within the MIR and NIR ranges, whereas the use of this technique, in tandem with chemometrics, constitutes a suitable methodology for the traceability of these matrices. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Comparison of NIRS, laser Doppler flowmetry, photoplethysmography, and pulse oximetry during vascular occlusion challenges

    International Nuclear Information System (INIS)

    Abay, T Y; Kyriacou, P A

    2016-01-01

    Monitoring changes in blood volume, blood flow, and oxygenation in tissues is of vital importance in fields such as reconstructive surgery and trauma medicine. Near infrared spectroscopy (NIRS), laser Doppler (LDF) flowmetry, photoplethysmography (PPG), and pulse oximetry (PO) contribute to such fields due to their safe and noninvasive nature. However, the techniques have been rarely investigated simultaneously or altogether. The aim of this study was to investigate all the techniques simultaneously on healthy subjects during vascular occlusion challenges. Sensors were attached on the forearm (NIRS and LDF) and fingers (PPG and PO) of 19 healthy volunteers. Different degrees of vascular occlusion were induced by inflating a pressure cuff on the upper arm. The responses of tissue oxygenation index (NIRS), tissue haemoglobin index (NIRS), flux (LDF), perfusion index (PPG), and arterial oxygen saturation (PO) have been recorded and analyzed. Moreover, the optical densities were calculated from slow varying dc PPG, in order to distinguish changes in venous blood volumes. The indexes showed significant changes (p  <  0.05) in almost all occlusions, either venous or over-systolic occlusions. However, differentiation between venous and arterial occlusion by LDF may be challenging and the perfusion index (PI) may not be adequate to indicate venous occlusions. Optical densities may be an additional tool to detect venous occlusions by PPG. (paper)

  5. Theranostic Gold Nanoshells And Nanomatryoshkas for Cancer Therapy

    Science.gov (United States)

    Ayala-Orozco, Ciceron

    This dissertation describes the synthesis of multifunctional gold nanoparticles designed for therapy and diagnosis of cancer (theranostics), and the evaluation of their therapeutic efficacy and bioimaging of tumors in mice. The design of these metallic nanoparticles is aimed to incorporate imaging agents (MRI contrasts and fluorophores) in compact structures with dimensions below 100 nm while keeping their NIR-light-absorbing properties and optimum surface chemistry to enhance accumulation in tumor. The therapeutic response of these metallic nanoparticles is derived from the photoexcitation of their plasmon resonance, the collective oscillation of the conduction band electrons, which was advantageously utilized to enhance the quantum yield of fluorophores resonant in the NIR where the penetration of light is maximal in biological tissue and minimally destructive. Gold nanoshells as absorbers of NIR light can convert the absorbed light into heat consequently causing hyperthermia in the surrounding medium which leads to tumor cell death. To extent the application of previously developed theranostic nanoshells to the highly lethal pancreatic cancer, chapter 2 describes a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase associated lipocalin (NGAL) receptor in pancreatic cancer. Gold nanoshells (SiO2-Au core-shell nanoshell) resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the NIR dye ICG, resulting in a theranostic gold nanoshells, which provided contrast for both T2 weighted MRI and NIR fluorescence optical imaging. The large size of this complex (200 nm) potentially can hinder the accumulation in tumor. Seeking to reduce the size of the theranostic nanoparticles, chapter 3 presents the sub-100 nm Au nanomatryoshkas (Au/SiO2/Au). Au nanomatryoshkas are strong light absorbers with 77% absorption efficiency while the nanoshells are weaker absorbers with only 15% absorption efficiency. After an intravenous

  6. Development of a low-cost NIR instrument for minced meat analysis: Part 1 - Spectrophotometer and sample presentations

    Science.gov (United States)

    The feasibility of using a compact, low-cost NIR spectrophotometer to predict moisture (MC) and total fat content of minced pork was demonstrated. Results were compared with those obtained using two research type instruments with high signal to noise ratio (S/N). The NIR measuring head of the compac...

  7. A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults.

    Science.gov (United States)

    Quaresima, Valentina; Bisconti, Silvia; Ferrari, Marco

    2012-05-01

    Upon stimulation, real time maps of cortical hemodynamic responses can be obtained by non-invasive functional near-infrared spectroscopy (fNIRS) which measures changes in oxygenated and deoxygenated hemoglobin after positioning multiple sources and detectors over the human scalp. The current commercially available transportable fNIRS systems have a time resolution of 1-10 Hz, a depth sensitivity of about 1.5 cm, and a spatial resolution of about 1cm. The goal of this brief review is to report infants, children and adults fNIRS language studies. Since 1998, 60 studies have been published on cortical activation in the brain's classic language areas in children/adults as well as newborns using fNIRS instrumentations of different complexity. In addition, the basic principles of fNIRS including features, strengths, advantages, and limitations are summarized in terms that can be understood even by non specialists. Future prospects of fNIRS in the field of language processing imaging are highlighted. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Nonlinear absorbing cationic iridium(III) complexes bearing benzothiazolylfluorene motif on the bipyridine (N∧N) ligand: synthesis, photophysics and reverse saturable absorption.

    Science.gov (United States)

    Li, Yuhao; Dandu, Naveen; Liu, Rui; Hu, Lei; Kilina, Svetlana; Sun, Wenfang

    2013-07-24

    Four new heteroleptic cationic Ir(III) complexes bearing benzothiazolylfluorene motif on the bipyridine (N∧N) (1 and 2) and phenylpyridine (C∧N) (3 and 4) ligands are synthesized and characterized. The influence of the position of the substituent and the extent of π-conjugation on the photophysics of these complexes is systematically investigated by spectroscopic methods and simulated by time-dependent density functional theory (TDDFT). The complexes exhibit ligand-centered (1)π,π* transitions with admixtures of (1)ILCT (π(benzothiazolylfluorene) → π*(bpy)) and (1)MLCT (metal-to-ligand charge transfer) characters below 475 nm, and very weak (1,3)MLCT and (1,3)LLCT (ligand-to-ligand charge transfer) transitions above 475 nm. The emission of these complexes at room temperature in CH2Cl2 solutions is ascribed to be predominantly from the (3)MLCT/(3)LLCT states for 1 and from the (3)π,π* state for 2, while the emitting state of 3 and 4 are assigned to be an admixture of (3)MLCT, (3)LLCT, and (3)π,π* characters. The variations of the photophysical properties of 1-4 are attributed to different degrees of π-conjugation in the bipyridine and phenylpyridine ligands induced by different positions of the benzothiazolylfluorenyl substituents on the bipyridine ligand and different extents of π-conjugation in the phenylpyridine ligands, which alters the energy and lifetime of the lowest singlet and triplet excited states. 1-4 all possess broadband transient absorption (TA) upon nanosecond laser excitation, which extends from the visible to the NIR region. Therefore, 1-4 all exhibit strong reverse saturable absorption (RSA) at 532 nm for ns laser pulses. However, the TA of complexes 1, 2, and 3 are much stronger than that of 4. This feature, combined with the difference in ground-state absorption and triplet excited-state quantum yield, result in the difference in RSA strength, which follows this trend: 1 ≈ 2 ≈ 3 > 4. Therefore, complexes 1-3 are strong

  9. Determination of drug, excipients and coating distribution in pharmaceutical tablets using NIR-CI

    Directory of Open Access Journals (Sweden)

    Anna Palou

    2012-04-01

    Full Text Available The growing interest of the pharmaceutical industry in Near Infrared-Chemical Imaging (NIR-CI is a result of its high usefulness for quality control analyses of drugs throughout their production process (particularly of its non-destructive nature and expeditious data acquisition. In this work, the concentration and distribution of the major and minor components of pharmaceutical tablets are determined and the spatial distribution from the internal and external sides has been obtained. In addition, the same NIR-CI allowed the coating thickness and its surface distribution to be quantified. Images were processed to extract the target data and calibration models constructed using the Partial Least Squares (PLS algorithms. The concentrations of Active Pharmaceutical Ingredient (API and excipients obtained for uncoated cores were essentially identical to the nominal values of the pharmaceutical formulation. But the predictive ability of the calibration models applied to the coated tablets decreased as the coating thickness increased. Keywords: Near infrared Chemical Imaging (NIR-CI, Hyperspectral imaging, Component distribution, Tablet coating distribution, Partial Least Squares (PLS regression

  10. Detection of cancerous biological tissue areas by means of infrared absorption and SERS spectroscopy of intercellular fluid

    Science.gov (United States)

    Velicka, M.; Urboniene, V.; Ceponkus, J.; Pucetaite, M.; Jankevicius, F.; Sablinskas, V.

    2015-08-01

    We present a novel approach to the detection of cancerous kidney tissue areas by measuring vibrational spectra (IR absorption or SERS) of intercellular fluid taken from the tissue. The method is based on spectral analysis of cancerous and normal tissue areas in order to find specific spectral markers. The samples were prepared by sliding the kidney tissue over a substrate - surface of diamond ATR crystal in case of IR absorption or calcium fluoride optical window in case of SERS. For producing the SERS signal the dried fluid film was covered by silver nanoparticle colloidal solution. In order to suppress fluorescence background the measurements were performed in the NIR spectral region with the excitation wavelength of 1064 nm. The most significant spectral differences - spectral markers - were found in the region between 400 and 1800 cm-1, where spectral bands related to various vibrations of fatty acids, glycolipids and carbohydrates are located. Spectral markers in the IR and SERS spectra are different and the methods can complement each other. Both of them have potential to be used directly during surgery. Additionally, IR absorption spectroscopy in ATR mode can be combined with waveguide probe what makes this method usable in vivo.

  11. NIR-Emitting Alloyed CdTeSe QDs and Organic Dye Assemblies: A Nontoxic, Stable, and Efficient FRET System

    Directory of Open Access Journals (Sweden)

    Doris E. Ramírez-Herrera

    2018-04-01

    Full Text Available In the present work, we synthesize Near Infrared (NIR-emitting alloyed mercaptopropionic acid (MPA-capped CdTeSe quantum dots (QDs in a single-step one-hour process, without the use of an inert atmosphere or any pyrophoric ligands. The quantum dots are water soluble, non-toxic, and highly photostable and have high quantum yields (QYs up to 84%. The alloyed MPA-capped CdTeSe QDs exhibit a red-shifted emission, whose color can be tuned between visible and NIR regions (608–750 nm by controlling the Te:Se molar ratio in the precursor mixtures and/or changing the time reaction. The MPA-capped QDs were characterized by UV-visible absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDS, and zeta potential measurements. Photostability studies were performed by irradiating the QDs with a high-power xenon lamp. The ternary MPA-CdTeSe QDs showed greater photostability than the corresponding binary MPA-CdTe QDs. We report the Förster resonance energy transfer (FRET from the MPA-capped CdTeSe QDs as energy donors and Cyanine5 NHS-ester (Cy5 dye as an energy acceptor with efficiency (E up to 95%. The distance between the QDs and dye (r, the Förster distance (R0, and the binding constant (K are reported. Additionally, cytocompatibility and cell internalization experiments conducted on human cancer cells (HeLa cells revealed that alloyed MPA-capped CdTeSe QDs are more cytocompatible than MPA-capped CdTe QDs and are capable of ordering homogeneously all over the cytoplasm, which allows their use as potential safe, green donors for biological FRET applications.

  12. Absorptive coating for aluminum solar panels

    Science.gov (United States)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  13. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials.

    Science.gov (United States)

    Chen, Min; Singh, Leena; Xu, Ningning; Singh, Ranjan; Zhang, Weili; Xie, Lijuan

    2017-06-26

    Terahertz sensing of highly absorptive aqueous solutions remains challenging due to strong absorption of water in the terahertz regime. Here, we experimentally demonstrate a cost-effective metamaterial-based sensor integrated with terahertz time-domain spectroscopy for highly absorptive water-methanol mixture sensing. This metamaterial has simple asymmetric wire structures that support multiple resonances including a fundamental Fano resonance and higher order dipolar resonance in the terahertz regime. Both the resonance modes have strong intensity in the transmission spectra which we exploit for detection of the highly absorptive water-methanol mixtures. The experimentally characterized sensitivities of the Fano and dipole resonances for the water-methanol mixtures are found to be 160 and 305 GHz/RIU, respectively. This method provides a robust route for metamaterial-assisted terahertz sensing of highly absorptive chemical and biochemical materials with multiple resonances and high accuracy.

  14. Time-Frequency Characterization of Cerebral Hemodynamics of Migraine Sufferers as Assessed by NIRS Signals

    Directory of Open Access Journals (Sweden)

    Filippo Molinari

    2010-01-01

    Full Text Available Near-infrared spectroscopy (NIRS is a noninvasive system for the real-time monitoring of the concentration of oxygenated (O2Hb and reduced (HHb hemoglobin in the brain cortex. O2Hb and HHb concentrations vary in response to cerebral autoregulation. Sixty-eight women (14 migraineurs without aura, 49 migraineurs with aura, and 5 controls performed breath-holding and hyperventilation during NIRS recordings. Signals were processed using the Choi-Williams time-frequency transform in order to measure the power variation of the very-low frequencies (VLF: 20–40 mHz and of the low frequencies (LF: 40–140 mHz. Results showed that migraineurs without aura present different LF and VLF power levels than controls and migraineurs with aura. The accurate power measurement of the time-frequency analysis allowed for the discrimination of the subjects' hemodynamic patterns. The time-frequency analysis of NIRS signals can be used in clinical practice to assess cerebral hemodynamics.

  15. Time-Frequency Characterization of Cerebral Hemodynamics of Migraine Sufferers as Assessed by NIRS Signals

    Directory of Open Access Journals (Sweden)

    Liboni William

    2010-01-01

    Full Text Available Abstract Near-infrared spectroscopy (NIRS is a noninvasive system for the real-time monitoring of the concentration of oxygenated ( and reduced (HHb hemoglobin in the brain cortex. and HHb concentrations vary in response to cerebral autoregulation. Sixty-eight women (14 migraineurs without aura, 49 migraineurs with aura, and 5 controls performed breath-holding and hyperventilation during NIRS recordings. Signals were processed using the Choi-Williams time-frequency transform in order to measure the power variation of the very-low frequencies (VLF: 20–40 mHz and of the low frequencies (LF: 40–140 mHz. Results showed that migraineurs without aura present different LF and VLF power levels than controls and migraineurs with aura. The accurate power measurement of the time-frequency analysis allowed for the discrimination of the subjects' hemodynamic patterns. The time-frequency analysis of NIRS signals can be used in clinical practice to assess cerebral hemodynamics.

  16. New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR).

    Science.gov (United States)

    Genisheva, Z; Quintelas, C; Mesquita, D P; Ferreira, E C; Oliveira, J M; Amaral, A L

    2018-04-25

    This work aims to explore the potential of near infrared (NIR) spectroscopy to quantify volatile compounds in Vinho Verde wines, commonly determined by gas chromatography. For this purpose, 105 Vinho Verde wine samples were analyzed using Fourier transform near infrared (FT-NIR) transmission spectroscopy in the range of 5435 cm -1 to 6357 cm -1 . Boxplot and principal components analysis (PCA) were performed for clusters identification and outliers removal. A partial least square (PLS) regression was then applied to develop the calibration models, by a new iterative approach. The predictive ability of the models was confirmed by an external validation procedure with an independent sample set. The obtained results could be considered as quite good with coefficients of determination (R 2 ) varying from 0.94 to 0.97. The current methodology, using NIR spectroscopy and chemometrics, can be seen as a promising rapid tool to determine volatile compounds in Vinho Verde wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. REM optical/NIR observations of MAXI J1659-152

    NARCIS (Netherlands)

    D'Avanzo, P.; Goldoni, P.; Patruno, A.; Casella, P.; Campana, S.; Russell, D.M.; Belloni, T.M.

    2010-01-01

    We observed the optical and NIR counterpart of the recently discovered X-ray transient MAXI J1659-152 (Negoro et al. 2010, ATel #2873; Mangano et al. 2010, GCN #11296) with the REM telescope located in La Silla (Chile) in imaging mode using the V, R, I, J, H and K filters.

  18. Classification of maize kernels using NIR hyperspectral imaging

    DEFF Research Database (Denmark)

    Williams, Paul; Kucheryavskiy, Sergey V.

    2016-01-01

    NIR hyperspectral imaging was evaluated to classify maize kernels of three hardness categories: hard, medium and soft. Two approaches, pixel-wise and object-wise, were investigated to group kernels according to hardness. The pixel-wise classification assigned a class to every pixel from individual...... and specificity of 0.95 and 0.93). Both feature extraction methods can be recommended for classification of maize kernels on production scale....

  19. Calorimetric measurement of strong γ emitting sources

    International Nuclear Information System (INIS)

    Brangier, B.; Herczeg, C.; Henry, R.

    1968-01-01

    This publication gives the principle and a description of an adiabatic calorimeter for measuring the real activity of strong gamma-emitting sources by absorbing the emitted energy in a mass of copper. Because of the difficulty of evaluating the amount self- absorption, we have built a calorimeter for measuring the self- absorption, and a description of it is given.The results of these three measurements are fairly satisfactory. The calibration and the actual measurements obtained are given with a few corrections made necessary by the design of the apparatus. The correlation of the various results is discussed. (author) [fr

  20. NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites.

    Science.gov (United States)

    Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng

    2015-12-16

    To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight.

  1. A new network of faint calibration stars from the near infrared spectrometer (NIRS) on the IRTS

    Science.gov (United States)

    Freund, Minoru M.; Matsuura, Mikako; Murakami, Hiroshi; Cohen, Martin; Noda, Manabu; Matsuura, Shuji; Matsumoto, Toshio

    1997-01-01

    The point source extraction and calibration of the near infrared spectrometer (NIRS) onboard the Infrared Telescope in Space (IRTS) is described. About 7 percent of the sky was observed during a one month mission in the range of 1.4 micrometers to 4 micrometers. The accuracy of the spectral shape and absolute values of calibration stars provided by the NIRS/IRTS were validated.

  2. Nonequilibrium absorption in semiconductors and the dynamical Franz-Keldysh effect

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Jauho, Antti-Pekka

    1997-01-01

    We theoretically study free electron light absorption for a sample which is placed in a strong, time-dependent uniform electric field. In the case of static fields one observes the Franz-Keldysh effect: finite absorption for photon energies below the band gap. We refer to this phenomenon as the F...

  3. Design of experiments-based monitoring of critical quality attributes for the spray-drying process of insulin by NIR spectroscopy

    DEFF Research Database (Denmark)

    Maltesen, Morten Jonas; van de Weert, Marco; Grohganz, Holger

    2012-01-01

    Moisture content and aerodynamic particle size are critical quality attributes for spray-dried protein formulations. In this study, spray-dried insulin powders intended for pulmonary delivery were produced applying design of experiments methodology. Near infrared spectroscopy (NIR) in combination...... on the chemical information of the water molecules in the NIR spectrum. Models yielded prediction errors (RMSEP) between 0.39% and 0.48% with thermal gravimetric analysis used as reference method. The PLS models predicting the aerodynamic particle size were based on baseline offset in the NIR spectra and yielded...... less robust models with a Q (2) of 0.69. Based on the results in this study, NIR is a suitable tool for process analysis of the spray-drying process and for control of moisture content and particle size, in particular for smooth and spherical particles....

  4. Strong field control of predissociation dynamics.

    Science.gov (United States)

    Corrales, María E; Balerdi, Garikoitz; Loriot, Vincent; de Nalda, Rebeca; Bañares, Luis

    2013-01-01

    Strong field control scenarios are investigated in the CH3I predissociation dynamics at the origin of the second absorption B-band, in which state-selective electronic predissociation occurs through the crossing with a valence dissociative state. Dynamic Stark control (DSC) and pump-dump strategies are shown capable of altering both the predissociation lifetime and the product branching ratio.

  5. Design and development of a blood vessel localization system using a Nir viewer

    International Nuclear Information System (INIS)

    Hernandez R, A.; Plascencia C, L. E.; Cordova F, T.; Padilla R, N.

    2017-10-01

    In addition to the multiple applications of ionizing radiation in clinical diagnosis there is the possibility of using another part of the electromagnetic spectrum such as near infrared (Nir). This paper presents the design and construction of a Nir Biosensor in a range between 800 and 900 nm, which allows the visualization of blood vessels for the venepuncture procedure with the aim of reducing the trauma of venous access to patients of all ages. The possibility that the device is used in the location of venous ulcers as an alternative to veno grams obtained by X-rays is also explored. (Author)

  6. HIGH RESOLUTION OPTICAL AND NIR SPECTRA OF HBC 722

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Eun; Park, Sunkyung [School of Space Research, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Green, Joel D.; Cochran, William D. [Department of Astronomy, University of Texas at Austin, TX (United States); Kang, Wonseok; Lee, Sang-Gak [National Youth Space Center, 200 Deokheungyangjjok-gil, Dongil-myeon, Goheung-gun, Jeollanam-do 548-951 (Korea, Republic of); Sung, Hyun-Il, E-mail: jeongeun.lee@khu.ac.kr, E-mail: sunkyung@khu.ac.kr, E-mail: joel@astro.as.utexas.edu, E-mail: wdc@astro.as.utexas.edu, E-mail: wskang@kywa.or.kr, E-mail: sanggak@kywa.or.kr, E-mail: hisung@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-07-01

    We present the results of high resolution (R ≥ 30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in the optical/near-IR with the Bohyunsan Optical Echelle Spectrograph, Hobby–Eberly Telescope-HRS, and Immersion Grating Infrared Spectrograph, at various points in the outburst. We found atomic lines with strongly blueshifted absorption features or P Cygni profiles, both evidence of a wind driven by the accretion. Some lines show a broad double-peaked absorption feature, evidence of disk rotation. However, the wind-driven and disk-driven spectroscopic features are anti-correlated in time; the disk features became strong as the wind features disappeared. This anti-correlation might indicate that the rebuilding of the inner disk was interrupted by the wind pressure during the first 2 years. The half-width at half-depth of the double-peaked profiles decreases with wavelength, indicative of the Keplerian rotation; the optical spectra with the disk feature are fitted by a G5 template stellar spectrum convolved with a rotation velocity of 70 km s{sup −1} while the near-IR disk features are fitted by a K5 template stellar spectrum convolved with a rotation velocity of 50 km s{sup −1}. Therefore, the optical and near-IR spectra seem to trace the disk at 39 and 76 R{sub ⊙}, respectively. We fit a power-law temperature distribution in the disk, finding an index of 0.8, comparable to optically thick accretion disk models.

  7. Measurements of coherent hemodynamics to enrich the physiological information provided by near-infrared spectroscopy (NIRS) and functional MRI

    Science.gov (United States)

    Sassaroli, Angelo; Tgavalekos, Kristen; Pham, Thao; Krishnamurthy, Nishanth; Fantini, Sergio

    2018-02-01

    Hemodynamic-based neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) sense hemoglobin concentration in cerebral tissue. The local concentration of hemoglobin, which is differentiated into oxy- and deoxy-hemoglobin by NIRS, features spontaneous oscillations over time scales of 10-100 s in response to a number of local and systemic physiological processes. If one of such processes becomes the dominant source of cerebral hemodynamics, there is a high coherence between this process and the associated hemodynamics. In this work, we report a method to identify such conditions of coherent hemodynamics, which may be exploited to study and quantify microvasculature and microcirculation properties. We discuss how a critical value of significant coherence may depend on the specific data collection scheme (for example, the total acquisition time) and the nature of the hemodynamic data (in particular, oxy- and deoxy-hemoglobin concentrations measured with NIRS show an intrinsic level of correlation that must be taken into account). A frequency-resolved study of coherent hemodynamics is the basis for the new technique of coherent hemodynamics spectroscopy (CHS), which aims to provide measures of cerebral blood flow and cerebral autoregulation. While these concepts apply in principle to both fMRI and NIRS data, in this article we focus on NIRS data.

  8. Dissolution testing of isoniazid, rifampicin, pyrazinamide and ethambutol tablets using near-infrared spectroscopy (NIRS) and multivariate calibration.

    Science.gov (United States)

    de Oliveira Neves, Ana Carolina; Soares, Gustavo Mesquita; de Morais, Stéphanie Cavalcante; da Costa, Fernanda Saadna Lopes; Porto, Dayanne Lopes; de Lima, Kássio Michell Gomes

    2012-01-05

    This work utilized the near-infrared spectroscopy (NIRS) and multivariate calibration to measure the percentage drug dissolution of four active pharmaceutical ingredients (APIs) (isoniazid, rifampicin, pyrazinamide and ethambutol) in finished pharmaceutical products produced in the Federal University of Rio Grande do Norte (Brazil). The conventional analytical method employed in quality control tests of the dissolution by the pharmaceutical industry is high-performance liquid chromatography (HPLC). The NIRS is a reliable method that offers important advantages for the large-scale production of tablets and for non-destructive analysis. NIR spectra of 38 samples (in triplicate) were measured using a Bomen FT-NIR 160 MB in the range 1100-2500nm. Each spectrum was the average of 50 scans obtained in the diffuse reflectance mode. The dissolution test, which was initially carried out in 900mL of 0.1N hydrochloric acid at 37±0.5°C, was used to determine the percentage a drug that dissolved from each tablet measured at the same time interval (45min) at pH 6.8. The measurement of the four API was performed by HPLC (Shimadzu, Japan) in the gradiente mode. The influence of various spectral pretreatments (Savitzky-Golay smoothing, Multiplicative Scatter Correction (MSC), and Savitzky-Golay derivatives) and multivariate analysis using the partial least squares (PLS) regression algorithm was calculated by the Unscrambler 9.8 (Camo) software. The correlation coefficient (R(2)) for the HPLC determination versus predicted values (NIRS) ranged from 0.88 to 0.98. The root-mean-square error of prediction (RMSEP) obtained from PLS models were 9.99%, 8.63%, 8.57% and 9.97% for isoniazid, rifampicin, ethambutol and pyrazinamide, respectively, indicating that the NIR method is an effective and non-destructive tool for measurement of drug dissolution from tablets. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  9. Exploiting neurovascular coupling: a Bayesian sequential Monte Carlo approach applied to simulated EEG fNIRS data

    Science.gov (United States)

    Croce, Pierpaolo; Zappasodi, Filippo; Merla, Arcangelo; Chiarelli, Antonio Maria

    2017-08-01

    Objective. Electrical and hemodynamic brain activity are linked through the neurovascular coupling process and they can be simultaneously measured through integration of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Thanks to the lack of electro-optical interference, the two procedures can be easily combined and, whereas EEG provides electrophysiological information, fNIRS can provide measurements of two hemodynamic variables, such as oxygenated and deoxygenated hemoglobin. A Bayesian sequential Monte Carlo approach (particle filter, PF) was applied to simulated recordings of electrical and neurovascular mediated hemodynamic activity, and the advantages of a unified framework were shown. Approach. Multiple neural activities and hemodynamic responses were simulated in the primary motor cortex of a subject brain. EEG and fNIRS recordings were obtained by means of forward models of volume conduction and light propagation through the head. A state space model of combined EEG and fNIRS data was built and its dynamic evolution was estimated through a Bayesian sequential Monte Carlo approach (PF). Main results. We showed the feasibility of the procedure and the improvements in both electrical and hemodynamic brain activity reconstruction when using the PF on combined EEG and fNIRS measurements. Significance. The investigated procedure allows one to combine the information provided by the two methodologies, and, by taking advantage of a physical model of the coupling between electrical and hemodynamic response, to obtain a better estimate of brain activity evolution. Despite the high computational demand, application of such an approach to in vivo recordings could fully exploit the advantages of this combined brain imaging technology.

  10. Terahertz absorption signatures of lactose monohydrate in crystalline form

    International Nuclear Information System (INIS)

    Jung, Euna; Kim, Jeonghoi; Han, Younho; Moon, Kiwon; Lim, Meehyun; Han, Haewook

    2008-01-01

    Terahertz (THz)vibrational modes of biomolecules strongly depend on intermolecular interactions, including electrostatic, Van der Waals, and hydrogen bonds. Upon both the theoretical and experimental investigation of vibrational dynamics in biomolecules that have been done, it is turned out that low frequency vibrational modes of biomolecules exist in 0.1∼3.0THz. Recent advances of THz technology have paved the way for a wide range of practical applications in physics, chemistry, and biology. THz time domain spectroscopy (TDS)is a promising technique for studying the collective vibrational modes of biomolecules and is important to understanding the relationship between their conformation and biological function. Using THz TDS a variety of biomolecules, including DNA, polysaccharides, amino acids, and proteins have been studied, indicating the THz absorption spectroscopy can be used to probe the collective vibrational modes and hence for structural and functional studies of biomolecules. The diluted material was then pressed into 1mm thick pellet with 13mm diameter using a vacuum die. The low frequency absorption signatures of solid α lactose monohydrate have been experimentally obtained in 0.1∼2.0THz. Previous study has already reported that α lactose monohydrate in crystalline form has a strong and narrow absorption signature centered at 0.530THz. In our measurement, we observed that THz spectrum of α lactose monohydrate has strong absorption peaks centered at 0.531, 1.195, and 1.38 THz

  11. [Study on predicting firmness of watermelon by Vis/NIR diffuse transmittance technique].

    Science.gov (United States)

    Tian, Hai-Qing; Ying, Yi-Bin; Lu, Hui-Shan; Xu, Hui-Rong; Xie, Li-Juan; Fu, Xia-Ping; Yu, Hai-Yan

    2007-06-01

    Watermelon is a popular fruit in the world and firmness (FM) is one of the major characteristics used for assessing watermelon quality. The objective of the present research was to study the potential of visible/near Infrared (Vis/NIR) diffuse transmittance spectroscopy as a way for the nondestructive measurement of FM of watermelon. Statistical models between the spectra and FM were developed using partial least square (PLS) and principle component regression (PCR) methods. Performance of different models was assessed in terms of correlation coefficients (r) of validation set of samples and root mean square errors of prediction (RMSEP). Models for three kinds of mathematical treatments of spectra (original, first derivative and second derivative) were established. Savitsky-Goaly filter smoothing method was used for spectra data smoothing. The PLS model of the second derivative spectra gave the best prediction of FM, with a correlation coefficient (r) of 0. 974 and root mean square errors of prediction (RMSEP) of 0. 589 N using Savitsky-Goaly filter smoothing method. The results of this study indicate that NIR diffuse transmittance spectroscopy can be used to predict the FM of watermelon. The Vis/NIR diffuse transmittance technique will be valuable for the nandestructive detection large shape and thick peel fruits'.

  12. Interference Tolerant Functional Near Infrared Spectrometer (fNIRS) for Cognitive State Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — Measuring hemoglobin concentration changes in the brain with Functional Near Infrared Spectroscopy (fNIRS) is a promising technique for monitoring cognitive state...

  13. Multi-spectral optical absorption in substrate-free nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray, E-mail: lapierr@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L7 (Canada); Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada); Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  14. NIR FRET Fluorophores for Use as an Implantable Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Majed DWEIK

    2008-12-01

    Full Text Available Development of an in vivo optical sensor requires the utilization of Near Infra Red (NIR fluorophores due to their ability to operate within the biological tissue window. Alexa Fluor 750 (AF750 and Alexa Fluor 680 (AF680 were examined as potential NIR fluorophores for an in vivo fluorescence resonance energy transfer (FRET glucose biosensor. AF680 and AF750 found to be a FRET pair and percent energy transfer was calculated. Next, the tested dye pair was utilized in a competitive binding assay in order to detect glucose. Concanavalin A (Con A and dextran have binding affinity, but in the presence of glucose, glucose displaces dextran due to its higher affinity to Con A than dextran. Finally, the percent signal transfer through porcine skin was examined. The results showed with approximately 4.0 mm porcine skin thickness, 1.98 % of the fluorescence was transmitted and captured by the detector.

  15. [Identification of varieties of textile fibers by using Vis/NIR infrared spectroscopy technique].

    Science.gov (United States)

    Wu, Gui-Fang; He, Yong

    2010-02-01

    The aim of the present paper was to provide new insight into Vis/NIR spectroscopic analysis of textile fibers. In order to achieve rapid identification of the varieties of fibers, the authors selected 5 kinds of fibers of cotton, flax, wool, silk and tencel to do a study with Vis/NIR spectroscopy. Firstly, the spectra of each kind of fiber were scanned by spectrometer, and principal component analysis (PCA) method was used to analyze the characteristics of the pattern of Vis/NIR spectra. Principal component scores scatter plot (PC1 x PC2 x PC3) of fiber indicated the classification effect of five varieties of fibers. The former 6 principal components (PCs) were selected according to the quantity and size of PCs. The PCA classification model was optimized by using the least-squares support vector machines (LS-SVM) method. The authors used the 6 PCs extracted by PCA as the inputs of LS-SVM, and PCA-LS-SVM model was built to achieve varieties validation as well as mathematical model building and optimization analysis. Two hundred samples (40 samples for each variety of fibers) of five varieties of fibers were used for calibration of PCA-LS-SVM model, and the other 50 samples (10 samples for each variety of fibers) were used for validation. The result of validation showed that Vis/NIR spectroscopy technique based on PCA-LS-SVM had a powerful classification capability. It provides a new method for identifying varieties of fibers rapidly and real time, so it has important significance for protecting the rights of consumers, ensuring the quality of textiles, and implementing rationalization production and transaction of textile materials and its production.

  16. CARMENES-NIR channel spectrograph cooling system AIV: thermo-mechanical performance of the instrument

    Science.gov (United States)

    Becerril, S.; Mirabet, E.; Lizon, J. L.; Abril, M.; Cárdenas, C.; Ferro, I.; Morales, R.; Pérez, D.; Ramón, A.; Sánchez-Carrasco, M. A.; Quirrenbach, A.; Amado, P.; Ribas, I.; Reiners, A.; Caballero, J. A.; Seifert, W.; Herranz, J.

    2016-07-01

    CARMENES is the new high-resolution high-stability spectrograph built for the 3.5m telescope at the Calar Alto Observatory (CAHA, Almería, Spain) by a consortium formed by German and Spanish institutions. This instrument is composed by two separated spectrographs: VIS channel (550-1050 nm) and NIR channel (950- 1700 nm). The NIR-channel spectrograph's responsible is the Instituto de Astrofísica de Andalucía (IAACSIC). It has been manufactured, assembled, integrated and verified in the last two years, delivered in fall 2015 and commissioned in December 2015. One of the most challenging systems in this cryogenic channel involves the Cooling System. Due to the highly demanding requirements applicable in terms of stability, this system arises as one of the core systems to provide outstanding stability to the channel. Really at the edge of the state-of-the-art, the Cooling System is able to provide to the cold mass ( 1 Ton) better thermal stability than few hundredths of degree within 24 hours (goal: 0.01K/day). The present paper describes the Assembly, Integration and Verification phase (AIV) of the CARMENES-NIR channel Cooling System implemented at IAA-CSIC and later installation at CAHA 3.5m Telescope, thus the most relevant highlights being shown in terms of thermal performance. The CARMENES NIR-channel Cooling System has been implemented by the IAA-CSIC through very fruitful collaboration and involvement of the ESO (European Southern Observatory) cryo-vacuum department with Jean-Louis Lizon as its head and main collaborator. The present work sets an important trend in terms of cryogenic systems for future E-ELT (European Extremely Large Telescope) large-dimensioned instrumentation in astrophysics.

  17. Clinical uses of I-123 produced by 127I(p, 5n)123Xe to 123I reaction in NIRS

    International Nuclear Information System (INIS)

    Saegusa, Kenji; Arimizu, Noboru; Uchiyama, Guio; Tateno, Yukio; Rikitake, Tomoyuki.

    1978-01-01

    123 I capsules produced by NIRS which are believed to be uncontaminated by radioactive impurities other than 125 I were compared with commercial 123 I capsules regarding gamma-ray spectra, thyroid phantoms and clinical scintigrams. Absorbed radiation doses of 123 I contaminated with nuclides other than 123 I to thyroid and whole body were also estimated. Regarding gamma-ray spectra, any nuclides other than 125 I(0.53%) did not contaminate in 123 I produced by NIRS, and it was superior to commercial capsules. Regarding phantoms and clinical scintigrams, background counts around the thyroid gland seemed to be slightly higher in commercial capsules than that produced by NIRS because of contamination with other nuclides. Exposed doses in thyroid and whole body were counted. Ratios in thyroid and whole body were increased by 30% and 9%, respectively in 123 I produced by NIRS because of contamination with 0.53% of 125 I in the event that the intake ratio of thyroid was determined as 25%. In commercial capsules the doses in thyroid and whole body were increased by 500% and 150%, respectively. Doses of commercial capsules and NIRS capsules were 7.87 rad and 1.72 rad, respectively per 100 μCi in thyroid. The ratio of NIRS capsules to commercial capsules in thyroid was 1/4.6, and that in the whole body was less than 1/2. (Ichikawa, K.)

  18. Biochemical and genetic variation of some Syrian wheat varieties using NIR, RAPD and AFLPs techniques

    International Nuclear Information System (INIS)

    Saleh, B.

    2012-01-01

    This study was performed to assess chemical components and genetic variability of five Syrian wheat varieties using NIR, RAPD and AFLP techniques. NIR technique showed that Cham6 was the best variety in term of wheat grain quality due to their lowest protein (%), hardness, water uptake and baking volume and the highest starch (%) compared to the other tested varieties. PCR amplifications with 21 RAPD primers and 13 AFLP PCs primer combinations gave 104 and 466 discernible loci of which 24 (18.823%) and 199 (45.527%) were polymorphic for the both techniques respectively. Our data indicated that the three techniques gave similar results regarding the degree of relatedness among the tested varieties. In the present investigation, AFLP fingerprinting was more efficient than the RAPD assay. Where the letter exhibited lower Marker Index (MI) average (0.219) compared to AFLP one (3.203). The pattern generated by RAPD, AFLPs markers or by NIR separated the five wheat varieties into two groups. The first group consists of two subclusters. The first subcluster involved Cham8 and Bohous6, while the second one includes Cham6 that is very closed to precedent varieties. The second group consists of Bohous9 and Cham7 that were also closely related. Based on this study, the use of NIR, RAPD and AFLP techniques could be a powerful tool to detect the effectiveness relationships of these technologies. (author)

  19. [NIR and XRD analysis of drill-hole samples from Zhamuaobao iron-graphite deposit, Inner Mongolia].

    Science.gov (United States)

    Li, Ying-kui; Cao, Jian-jin; Wu, Zheng-quan; Dai, Dong-le; Lin, Zu-xu

    2015-01-01

    The author analyzed the 4202 drill-hole samples from Zhamuaobao iron-graphite deposit by using near infrared spectroscopy(NIR) and X-ray diffraction(XRD) measuring and testing techniques, and then compared and summarized the results of two kinds of testing technology. The results indicate that some difference of the mineral composition exists among different layers, the lithology from upper to deeper is the clay gravel layer of tertiary and quaternary, mudstone, mica quartz schist, quartz actinolite scarn, skarnization marble, iron ore deposits, graphite deposits and mica quartz schist. The petrogenesis in different depth also shows difference, which may indicate the geological characteristic to some extent. The samples had mainly undergone such processes as oxidization, carbonation, chloritization and skarn alteration. The research results can not only improve the geological feature of the mining area, but also have great importance in ore exploration, mining, mineral processing and so on. What's more, as XRD can provide preliminary information about the mineral composition, NIR can make further judgement on the existence of the minerals. The research integrated the advantages of both NIR and XRD measuring and testing techniques, put forward a method with two kinds of modern testing technology combined with each other, which may improve the accuracy of the mineral composition identification. In the meantime, the NIR will be more wildly used in geography on the basis of mineral spectroscopy.

  20. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.

    Science.gov (United States)

    Koo, Bonkon; Lee, Hwan-Gon; Nam, Yunjun; Kang, Hyohyeong; Koh, Chin Su; Shin, Hyung-Cheul; Choi, Seungjin

    2015-04-15

    For a self-paced motor imagery based brain-computer interface (BCI), the system should be able to recognize the occurrence of a motor imagery, as well as the type of the motor imagery. However, because of the difficulty of detecting the occurrence of a motor imagery, general motor imagery based BCI studies have been focusing on the cued motor imagery paradigm. In this paper, we present a novel hybrid BCI system that uses near infrared spectroscopy (NIRS) and electroencephalography (EEG) systems together to achieve online self-paced motor imagery based BCI. We designed a unique sensor frame that records NIRS and EEG simultaneously for the realization of our system. Based on this hybrid system, we proposed a novel analysis method that detects the occurrence of a motor imagery with the NIRS system, and classifies its type with the EEG system. An online experiment demonstrated that our hybrid system had a true positive rate of about 88%, a false positive rate of 7% with an average response time of 10.36 s. As far as we know, there is no report that explored hemodynamic brain switch for self-paced motor imagery based BCI with hybrid EEG and NIRS system. From our experimental results, our hybrid system showed enough reliability for using in a practical self-paced motor imagery based BCI. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. fNIRS evidence of prefrontal regulation of frustration in early childhood.

    Science.gov (United States)

    Perlman, Susan B; Luna, Beatriz; Hein, Tyler C; Huppert, Theodore J

    2014-01-15

    The experience of frustration is common in early childhood, yet some children seem to possess a lower tolerance for frustration than others. Characterizing the biological mechanisms underlying a wide range of frustration tolerance observed in early childhood may inform maladaptive behavior and psychopathology that is associated with this construct. The goal of this study was to measure prefrontal correlates of frustration in 3-5-year-old children, who are not readily adaptable for typical neuroimaging approaches, using functional near infrared spectroscopy (fNIRS). fNIRS of frontal regions were measured as frustration was induced in children through a computer game where a desired and expected prize was "stolen" by an animated dog. A fNIRS general linear model (GLM) was used to quantify the correlation of brain regions with the task and identify areas that were statistically different between the winning and frustrating test conditions. A second-level voxel-based ANOVA analysis was then used to correlate the amplitude of each individual's brain activation with measure of parent-reported frustration. Experimental results indicated increased activity in the middle prefrontal cortex during winning of a desired prize, while lateral prefrontal cortex activity increased during frustration. Further, activity increase in lateral prefrontal cortex during frustration correlated positively with parent-reported frustration tolerance. These findings point to the role of the lateral prefrontal cortex as a potential region supporting the regulation of emotion during frustration. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Synthesis of nir-sensitive Au-Au{sub 2}S nanocolloids for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Ren, L.; Chow, G.M

    2003-01-15

    Near IR (NIR) sensitive Au-Au{sub 2}S nanocolloids were prepared by mixing HAuCl{sub 4} and Na{sub 2}S in aqueous solutions. An anti-tumor drug, cis-platin, was adsorbed onto Au-Au{sub 2}S nanoparticle surface via the 11-mercaptoundecanoic acid (MUA) layers. The results show that the degree of adsorption of cis-platin onto Au-Au{sub 2}S nanoparticles was controlled by the solution pH value, and the drug release was sensitive to near-infrared irradiation. The cis-platin-loaded Au-Au{sub 2}S nanocolloids can be potentially applied as NIR activated drug delivery carrier.

  3. Near-infrared spectroscopy (NIRS neurofeedback as a treatment for children with attention deficit hyperactivity disorder (ADHD – a pilot study

    Directory of Open Access Journals (Sweden)

    Anna-Maria eMarx

    2015-01-01

    Full Text Available In this pilot study near-infrared spectroscopy (NIRS neurofeedback was investigated as a new method for the treatment of ADHD. Oxygenated hemoglobin in the prefrontal cortex of children with ADHD was measured and fed back. 12 sessions of NIRS-neurofeedback were compared to the intermediate outcome after 12 sessions of EEG-neurofeedback (slow cortical potentials, SCP and 12 sessions of EMG-feedback (muscular activity of left and right musculus supraspinatus. The task was either to increase or decrease hemodynamic activity in the prefrontal cortex (NIRS, to produce positive or negative shifts of SCP (EEG or to increase or decrease muscular activity (EMG. In each group nine children with ADHD, aged 7 to 10 years, took part. Changes in parents’ ratings of ADHD symptoms were assessed before and after the 12 sessions and compared within and between groups. For the NIRS-group additional teachers’ ratings of ADHD symptoms, parents’ and teachers’ ratings of associated behavioral symptoms, childrens’ self reports on quality of life and a computer based attention task were conducted before, 4 weeks and 6 months after training. As primary outcome, ADHD symptoms decreased significantly 4 weeks and 6 months after the NIRS training, according to parents’ ratings. In teachers’ ratings of ADHD symptoms there was a significant reduction 4 weeks after the training. The performance in the computer based attention test improved significantly. Within-group comparisons after 12 sessions of NIRS-, EEG- and EMG-training revealed a significant reduction in ADHD symptoms in the NIRS-group and a trend for EEG- and EMG-groups. No significant differences for symptom reduction were found between the groups. Despite the limitations of small groups and the comparison of a completed with two uncompleted interventions, the results of this pilot study are promising. NIRS-neurofeedback could be a time-effective treatment for ADHD and an interesting new option to

  4. All-optical femtosecond switch using two-photon absorption

    International Nuclear Information System (INIS)

    Yavuz, D. D.

    2006-01-01

    Utilizing a two-photon absorption scheme in an alkali-metal vapor cell, we suggest a technique where a strong laser beam switches off another laser beam of different wavelength in femtosecond time scales

  5. Measurement of quadriceps endurance by fNIRS

    Science.gov (United States)

    Erdem, Devrim; Şayli, Ömer; Karahan, Mustafa; Akin, A.

    2006-02-01

    In this paper, the changes in muscle deoxygenation trends during a sustained isometric quadriceps (chair squat/half squat) endurance exercise were evaluated among twelve male subjects and the relationship between muscle oxygenation and endurance times was investigated by means of functional near-infrared spectroscopy (fNIRS). Neuromuscular activation and predictions of muscle performance decrements during extended fatiguing task was investigated by means of surface electromyography (sEMG). The results of the study showed that in the subjects who maintained exercise longer than five minutes (group 1), mean Hb recovery time (33 [sec.]) was 37.4% less than the others (group 2, 52.7 [sec.]). Also mean HbO II decline amplitude (2.53 [a.u.] in group 1 and 2.07 [a.u.] in group 2) and oxy decline amplitude (8.4 [a.u.] in group 1 and 3.04 [a.u.] in group 2) in the beginning of squat exercise are found to be 22.6% and 176.9% bigger in these group. For the EMG parameters, mean slope of MNF and MDF decline are found to be 57.5% and 42.2% bigger in magnitude in group 2 which indicates higher degree of decrement in mean and median frequencies although their mean squat duration time is less. This indicates higher index of fatigue for this group. It is concluded that training leads to altered oxygenation and oxygen extraction capability in the exercising muscle and investigated fNIRS parameters could be used for endurance evaluation.

  6. Determination of Free Fatty Acid by FT-NIR Spectroscopy in Esterification Reaction for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Djéssica Tatiana Raspe

    2013-01-01

    Full Text Available This work reports the use of FT-NIR spectroscopy coupled with multivariate calibration to determine the percentage of free fatty acids (FFA in samples obtained by the esterification of FFA in vegetable oils. The analytical method used as calibration matrix samples of the reaction medium of esterification of oleic acid in soybean oil in proportions of 0.3 to 40 wt% (by weight of oleic acid obtained under different experimental conditions and utilized the partial least squares (PLS regression. The efficiency of the method was tested to predict the content of FFA in reactions of esterification of oleic acid in soybean oil catalysed by KSF clay and Amberlyst 15 commercial resin, both in a batch mode. Good Correlations were observed between the FT-NIR/PLS method and the reference method (AOCS. The results confirm that FT-NIR spectroscopy, in combination with multivariate calibration, is a promising technique for monitoring esterification reaction for biodiesel production.

  7. Room temperature solution processed low dimensional CH3NH3PbI3 NIR detector

    Science.gov (United States)

    Besra, N.; Paul, T.; Sarkar, P. K.; Thakur, S.; Sarkar, S.; Das, A.; Chanda, K.; Sardar, K.; Chattopadhyay, K. K.

    2018-05-01

    Metal halide perovskites have recently drawn immense research interests among the worldwide scientific community due to their excellent light harvesting capabilities and above all, cost effectiveness. These new class of materials have already been used as efficient optoelectronic devices e.g. solar cells, photo detectors, etc. Here in this work, room temperature NIR (near infra red) response of organic-inorganic lead halide perovskite CH3NH3PbI3 (Methylammonium lead tri iodide) nanorods has been studied. A very simple solution process technique has been adopted to synthesize CH3NH3PbI3 nanostructures at room temperature. The NIR exposure upon the sample resulted in a considerable hike in its dark current with very good responsivity (0.37 mA/W). Along with that, a good on-off ratio (41.8) was also obtained when the sample was treated under a pulsed NIR exposure with operating voltage of 2 V. The specific detectivity of the device came in the order of 1010 Jone.

  8. Effects of aluminum on root growth and absorption of nutrients by ...

    African Journals Online (AJOL)

    Aluminum (Al) is a biotoxic which often influences the absorption of nutrients by plants in strongly acidic soils. In this experiment, the effect of Al on root growth, absorption of macronutrients; phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and micronutrients; iron (Fe), manganese (Mn), copper (Cu) and zinc ...

  9. The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Li Yuanxun; Xie Yunsong; Zhang Huaiwu; Liu Yingli; Wen Qiye; Ling Weiwei, E-mail: liyuanxun@uestc.edu.c [State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2009-05-07

    We simulated the metamaterial absorbers in two propagation conditions and observed the universal phenomenon of strong non-reciprocity. It is found that this non-reciprocity cannot be well interpreted using the effective medium theory, which indicates that the designing and understanding for the metamaterial absorber based on the proposed effective medium theory could not be applicable. The reason is pointed out that the metamaterial absorber does not satisfy the homogeneous-effective limit. So we put forward a three-parameter modified effective medium theory to fully describe the metamaterial absorbers. We have also investigated the relationships of S-parameters and absorptance among the metamaterial absorbers and the two components inside. Then the power absorption distributions in these three structures are discussed in detail. It can be concluded that the absorption is derived from the ERR structure and is enhanced largely by the coupling mechanism, and the strong non-reciprocity results from the different roles which wire structure plays in both propagation conditions.

  10. The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modelling

    International Nuclear Information System (INIS)

    Li Yuanxun; Xie Yunsong; Zhang Huaiwu; Liu Yingli; Wen Qiye; Ling Weiwei

    2009-01-01

    We simulated the metamaterial absorbers in two propagation conditions and observed the universal phenomenon of strong non-reciprocity. It is found that this non-reciprocity cannot be well interpreted using the effective medium theory, which indicates that the designing and understanding for the metamaterial absorber based on the proposed effective medium theory could not be applicable. The reason is pointed out that the metamaterial absorber does not satisfy the homogeneous-effective limit. So we put forward a three-parameter modified effective medium theory to fully describe the metamaterial absorbers. We have also investigated the relationships of S-parameters and absorptance among the metamaterial absorbers and the two components inside. Then the power absorption distributions in these three structures are discussed in detail. It can be concluded that the absorption is derived from the ERR structure and is enhanced largely by the coupling mechanism, and the strong non-reciprocity results from the different roles which wire structure plays in both propagation conditions.

  11. Bidirectional reflectance and VIS-NIR spectroscopy of cometary analogues under simulated space conditions

    Science.gov (United States)

    Jost, Bernhard; Pommerol, Antoine; Poch, Olivier; Yoldi, Zuriñe; Fornasier, Sonia; Hasselmann, Pedro Henrique; Feller, Clément; Carrasco, Nathalie; Szopa, Cyril; Thomas, Nicolas

    2017-10-01

    display higher coincidence with data of 67P than the phase curves of the samples having a more compact surface layer with smooth texture. The analysis of spectral absorption bands of water ice in the near-infrared (NIR) range, similar to those acquired by the VIRTIS instrument onboard Rosetta, allows to link compositional considerations with surface activity and texture.

  12. Quantum interference between multi photon absorption pathways in organic solid

    International Nuclear Information System (INIS)

    Rebane, A.; Christensson, N.; Drobizhev, M.; Stepanenko, Y.; Spangler, C.W.

    2007-01-01

    We demonstrate spatial interference fringe pattern by simultaneous one- and three-photon absorption of UV and near-IR femtosecond pulses in thin film organic solid at room temperature. We use organic dendrimers that are specially designed to have strong fluorescence and very large three-photon absorption cross-section. High fringe visibility allows the quantum interference to be observed by eye

  13. Measurement of soluble solids content in watermelon by Vis/NIR diffuse transmittance technique.

    Science.gov (United States)

    Tian, Hai-qing; Ying, Yi-bin; Lu, Hui-shan; Fu, Xia-ping; Yu, Hai-yan

    2007-02-01

    Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC detection of watermelons by means of visible/near infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer operating over the range 350~1000 nm. Spectra data were analyzed by two multivariate calibration techniques: partial least squares (PLS) and principal component regression (PCR) methods. Two experiments were designed for two varieties of watermelons [Qilin (QL), Zaochunhongyu (ZC)], which have different skin thickness range and shape dimensions. The influences of different data preprocessing and spectra treatments were also investigated. Performance of different models was assessed in terms of root mean square errors of calibration (RMSEC), root mean square errors of prediction (RMSEP) and correlation coefficient (r) between the predicted and measured parameter values. Results showed that spectra data preprocessing influenced the performance of the calibration models. The first derivative spectra showed the best results with high correlation coefficient of determination [r=0.918 (QL); r=0.954 (ZC)], low RMSEP [0.65 degrees Brix (QL); 0.58 degrees Brix (ZC)], low RMSEC [0.48 degrees Brix (QL); 0.34 degrees Brix (ZC)] and small difference between the RMSEP and the RMSEC by PLS method. The nondestructive Vis/NIR measurements provided good estimates of SSC index of watermelon, and the predicted values were highly correlated with destructively measured values for SSC. The models based on smoothing spectra (Savitzky-Golay filter smoothing method) did not enhance the performance of calibration models obviously. The results indicated the feasibility of Vis/NIR diffuse transmittance spectral analysis for predicting watermelon SSC in a

  14. Optical absorption of hyperbolic metamaterial with stochastic surfaces

    DEFF Research Database (Denmark)

    Liu, Jingjing; Naik, Gururaj V.; Ishii, Satoshi

    2014-01-01

    We investigate the absorption properties of planar hyperbolic metamaterials (HMMs) consisting of metal-dielectric multilayers, which support propagating plane waves with anomalously large wavevectors and high photonic-density-of-states over a broad bandwidth. An interface formed by depositing...... indium-tin-oxide nanoparticles on an HMM surface scatters light into the high-k propagating modes of the metamaterial and reduces reflection. We compare the reflection and absorption from an HMM with the nanoparticle cover layer versus those of a metal film with the same thickness also covered...... with the nanoparticles. It is predicted that the super absorption properties of HMM show up when exceedingly large amounts of high-k modes are excited by strong plasmonic resonances. In the case that the coupling interface is formed by non-resonance scatterers, there is almost the same enhancement in the absorption...

  15. Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments

    DEFF Research Database (Denmark)

    Priemé, Anders; Wolsing, Martin

    2004-01-01

    Temporal and spatial variation of communities of soil denitrifying bacteria at sites receiving mineral fertilizer (60 and 120 kg N ha-1 year-1) and cattle manure (75 and 150 kg N ha-1 year-1) were explored using terminal restriction fragment length polymorphism (T-RFLP) analyses of PCR amplified...... nitrite reductase (nirK and nirS) gene fragments. The analyses were done three times during the year: in March, July and October. nirK gene fragments could be amplified in all three months, whereas nirS gene fragments could be amplified only in March. Analysis of similarities in T-RFLP patterns revealed...... a significant seasonal shift in the community structure of nirK-containing bacteria. Also, sites treated with mineral fertilizer or cattle manure showed different communities of nirK-containing denitrifying bacteria, since the T-RFLP patterns of soils treated with these fertilizers were significantly different...

  16. Spectroscopic and Quantum Mechanical Calculation Study of the Effect of Isotopic Substitution on NIR Spectra of Methanol.

    Science.gov (United States)

    Grabska, Justyna; Czarnecki, Mirosław A; Beć, Krzysztof B; Ozaki, Yukihiro

    2017-10-19

    In this work, we studied methanol and its deuterated derivatives (CH 3 OH, CH 3 OD, CD 3 OH, CD 3 OD) by NIR spectroscopy and anharmonic quantum chemical calculations. Vibrational bands corresponding to up to three quanta transitions (first and second overtones, binary and ternary combination modes) were predicted by the use of the VPT2 route. The accuracy of prediction of NIR modes was evaluated through density functional theory (DFT) with selected density functionals and basis sets. On the basis of the theoretical NIR spectra, detailed band assignments for all studied molecules were proposed. It was found that the pattern of bands in NIR spectra of deuterated methanols can be used for identification of isotopically equalized forms. Calculations of NIR spectra of all possible forms of CXXXOX (X = H, D) molecules demonstrated that the isotopic contamination can be identified due to a coexistence of bands specific to OH and OD groups. Also, bands from partially deuterated methyl groups can be distinguished in NIR spectra. Since the VPT2 framework is known to be sensitive to inaccuracy in the case of highly anharmonic modes, we obtained an independent insight by numerical solving of the time-independent Schrödinger equation corresponding to the O-X stretching mode scanned within -0.4 to 2.0 Å over a dense grid of 0.005 Å. This way the energies of vibrational levels of the CX1X2X3OX4 (X = H, D) isotopomers and the corresponding transition frequencies were obtained with high accuracy (<0.1 cm -1 ). The change in normal coordinate influences the reduced mass of the oscillator and thus its frequency. Our results lead to a conclusion that the effect of deuterization of the methyl group introduces a very specific and consistent frequency shift of the first overtone of the O-X stretching mode depending on the substitution of X1, X2, or X3 positions (<2 cm -1 ). However, the pattern of this shift is not reproduced accurately and is also largely overestimated by VPT2

  17. Real-Time Subject-Independent Pattern Classification of Overt and Covert Movements from fNIRS Signals.

    Directory of Open Access Journals (Sweden)

    Neethu Robinson

    Full Text Available Recently, studies have reported the use of Near Infrared Spectroscopy (NIRS for developing Brain-Computer Interface (BCI by applying online pattern classification of brain states from subject-specific fNIRS signals. The purpose of the present study was to develop and test a real-time method for subject-specific and subject-independent classification of multi-channel fNIRS signals using support-vector machines (SVM, so as to determine its feasibility as an online neurofeedback system. Towards this goal, we used left versus right hand movement execution and movement imagery as study paradigms in a series of experiments. In the first two experiments, activations in the motor cortex during movement execution and movement imagery were used to develop subject-dependent models that obtained high classification accuracies thereby indicating the robustness of our classification method. In the third experiment, a generalized classifier-model was developed from the first two experimental data, which was then applied for subject-independent neurofeedback training. Application of this method in new participants showed mean classification accuracy of 63% for movement imagery tasks and 80% for movement execution tasks. These results, and their corresponding offline analysis reported in this study demonstrate that SVM based real-time subject-independent classification of fNIRS signals is feasible. This method has important applications in the field of hemodynamic BCIs, and neuro-rehabilitation where patients can be trained to learn spatio-temporal patterns of healthy brain activity.

  18. Development and validation of NIR-chemometric methods for chemical and pharmaceutical characterization of meloxicam tablets.

    Science.gov (United States)

    Tomuta, Ioan; Iovanov, Rares; Bodoki, Ede; Vonica, Loredana

    2014-04-01

    Near-Infrared (NIR) spectroscopy is an important component of a Process Analytical Technology (PAT) toolbox and is a key technology for enabling the rapid analysis of pharmaceutical tablets. The aim of this research work was to develop and validate NIR-chemometric methods not only for the determination of active pharmaceutical ingredients content but also pharmaceutical properties (crushing strength, disintegration time) of meloxicam tablets. The development of the method for active content assay was performed on samples corresponding to 80%, 90%, 100%, 110% and 120% of meloxicam content and the development of the methods for pharmaceutical characterization was performed on samples prepared at seven different compression forces (ranging from 7 to 45 kN) using NIR transmission spectra of intact tablets and PLS as a regression method. The results show that the developed methods have good trueness, precision and accuracy and are appropriate for direct active content assay in tablets (ranging from 12 to 18 mg/tablet) and also for predicting crushing strength and disintegration time of intact meloxicam tablets. The comparative data show that the proposed methods are in good agreement with the reference methods currently used for the characterization of meloxicam tablets (HPLC-UV methods for the assay and European Pharmacopeia methods for determining the crushing strength and disintegration time). The results show the possibility to predict both chemical properties (active content) and physical/pharmaceutical properties (crushing strength and disintegration time) directly, without any sample preparation, from the same NIR transmission spectrum of meloxicam tablets.

  19. Supplementing predictive mapping of acid sulfate soil occurrence with Vis-NIR spectroscopy

    DEFF Research Database (Denmark)

    Beucher, Amélie; Peng, Yi; Knadel, Maria

    , including geology, landscape type and terrain parameters. Visible-Near-Infrared (Vis-NIR) spectroscopy constitutes a rapid and cheap alternative to soil analysis, and was successfully utilized for the prediction of soil chemical, physical and biological properties. In particular, the Vis-NIR spectra contain......Releasing acidity and metals into watercourses, acid sulfate soils represent a critical environmental problem worldwide. Identifying the spatial distribution of these soils enables to target the strategic areas for risk management. In Denmark, the occurrence of acid sulfate soils was first studied...... during the 1980’s through conventional mapping (i.e. soil sampling and the subsequent determination of pH at the time of sampling and after incubation, the pyrite content and the acid-neutralizing capacity). Since acid sulfate soils mostly occur in wetlands, the survey specifically targeted these areas...

  20. Study of absorption, emission and EDS properties of Pr3+ incorporated in a SiO2 matrix by sol-gel method

    International Nuclear Information System (INIS)

    Gómez-Miranda, M; Fonseca, R Sosa; Ordoñez, C Velásquez

    2015-01-01

    The optical response of the Pr 3+ ions doped monolith of SiO 2 prepared by sol-gel method was investigated by absorption and emission spectra. The absorption spectrum shows some typical lines of Pr 3+ , with these data was made the diagram levels corresponding to SiO 2 : Pr 3+ . The emission spectra were taken at 225 nm and 240 nm of wavelength of excitation was measured. In that there are reabsorption line at 423 of the Pr 3+ ions in the emission host, that means that some kind of host-ion interactions exist. Red and NIR emission at 612 nm, 652 nm, 711 and 728 nm, respectively, from Pr 3+ ions in SiO 2 was observed. The transition 1 S 0 → 3 P 2 at 425 nm is observed because an effective radiative transfer between the silicate glasses host and the praseodymium ions is observed and discussed

  1. Simulated In Situ Determination of Soil Profile Organic and Inorganic Carbon With LIBS and VisNIR

    Science.gov (United States)

    Bricklemyer, R. S.; Brown, D. J.; Clegg, S. M.; Barefield, J. E.

    2008-12-01

    There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laser Induced Breakdown Spectroscopy (LIBS) and Visible and Near Infrared Spectroscopy (VisNIR) are complementary analytical techniques that have the potential to fill that need. The LIBS method provides precise elemental analysis of soils, but generally cannot distinguish between organic C and inorganic C. VisNIR has been established as a viable technique for measuring soil properties including SOC and inorganic carbon (IC). As part of the Big Sky Carbon Sequestration Regional Partnership, 240 intact core samples (3.8 x 50 cm) have been collected from six agricultural fields in north central Montana, USA. Each of these core samples were probed concurrently with LIBS and VisNIR at 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 35 and 45 cm (+/- 1.5 cm) depths. VisNIR measurements were taken using an Analytical Spectral Devices (ASD, Boulder, CO, USA) Agrispec spectrometer to determine the partition of SOC vs. IC in the samples. The LIBS scans were collected with the LANL LIBS Core Scanner Instrument which collected the entire 200 - 900 nm plasma emission including the 247.8 nm carbon emission line. This instrument also collected the emission from the elements typically found in inorganic carbon (Ca and Mg) and organic carbon (H, O, and N). Subsamples of soil (~ 4 g) were taken from interrogation points for laboratory determination of SOC and IC. Using this analytical data, we constructed several full spectrum multivariate VisNIR/LIBS calibration models for SOC and IC. These models were then applied to independent validation cores for model evaluation.

  2. Brain activity underlying the recovery of meaning from degraded speech: A functional near-infrared spectroscopy (fNIRS) study.

    Science.gov (United States)

    Wijayasiri, Pramudi; Hartley, Douglas E H; Wiggins, Ian M

    2017-08-01

    The purpose of this study was to establish whether functional near-infrared spectroscopy (fNIRS), an emerging brain-imaging technique based on optical principles, is suitable for studying the brain activity that underlies effortful listening. In an event-related fNIRS experiment, normally-hearing adults listened to sentences that were either clear or degraded (noise vocoded). These sentences were presented simultaneously with a non-speech distractor, and on each trial participants were instructed to attend either to the speech or to the distractor. The primary region of interest for the fNIRS measurements was the left inferior frontal gyrus (LIFG), a cortical region involved in higher-order language processing. The fNIRS results confirmed findings previously reported in the functional magnetic resonance imaging (fMRI) literature. Firstly, the LIFG exhibited an elevated response to degraded versus clear speech, but only when attention was directed towards the speech. This attention-dependent increase in frontal brain activation may be a neural marker for effortful listening. Secondly, during attentive listening to degraded speech, the haemodynamic response peaked significantly later in the LIFG than in superior temporal cortex, possibly reflecting the engagement of working memory to help reconstruct the meaning of degraded sentences. The homologous region in the right hemisphere may play an equivalent role to the LIFG in some left-handed individuals. In conclusion, fNIRS holds promise as a flexible tool to examine the neural signature of effortful listening. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Replacing lactose from calf milk replacers : effects on digestion and post-absorptive metabolism

    NARCIS (Netherlands)

    Gilbert, M.S.

    2015-01-01

    <strong>Summary PhD thesis Myrthe S. Gilbertstrong>

    <strong>Replacing lactose from calf milk replacers – Effects on digestion and post-absorptive metabolismstrong>

    Veal calves are fed milk replacer (MR) and solid feed. The largest part of the energy provided to veal calves

  4. Automated cart with VIS/NIR hyperspectral reflectance and fluorescence imaging capabilities

    Science.gov (United States)

    A system to take high-resolution VIS/NIR hyperspectral reflectance and fluorescence images in outdoor fields using ambient lighting or a pulsed laser (355 nm), respectively, for illumination was designed, built, and tested. Components of the system include a semi-autonomous cart, a gated-intensified...

  5. Near infrared spectroscopy (NIRS) to monitor tissue haemoglobin (and myoglobin) oxygenation

    NARCIS (Netherlands)

    Scheeren, T. W. L.

    2010-01-01

    Introduction: Tissue oxygenation may be monitored noninvasively by near infrared spectroscopy (NIRS) both on the thenar eminescence (muscle) and on the forehead (brain). Thenar measurement have been used to guide therapy in trauma patients ( 1 ) and to determine the prognosis of septic patients ( 2

  6. Concentration-modulated absorption spectroscopy and the triplet state: Photoinduced absorption/bleaching in erythrosin B, rose bengal and eosin y

    Science.gov (United States)

    Jones, W. Jeremy; Grofcsik, Andras; Kubinyi, Miklos; Thomas, Daniel

    2006-07-01

    The pump and probe method concentration-modulated absorption spectroscopy has been applied for studying the triplet characteristics of dyes erythrosin B, rose bengal and eosin y in ethanol solutions. Using the 514.5 and 488 nm lines of an argon ion laser for pump and probe beams, respectively, photoinduced bleaching for erythrosin B and eosin y and photoinduced absorption for rose bengal have been observed. The theory developed for describing the interactions of dye molecules of strong triplet forming ability with continuous wave pump and probe beams of Gaussian beam profiles has been tested by analysing the probe power gain or loss at different positions along the optical path of the focused collinear beams. From the gain-modulation frequency curves triplet absorption cross sections and the lifetimes of the triplet states have been determined.

  7. A simple method to fabricate an NIR detector by PbTe nanowires in a large scale

    International Nuclear Information System (INIS)

    Baghchesara, Mohammad Amin; Yousefi, Ramin; Cheraghizade, Mohsen; Jamali-Sheini, Farid; Saáedi, Abdolhossein; Mahmmoudian, M.R.

    2016-01-01

    Highlights: • PbTe nanowires were grown by tellurization of the Pb sheets for the first time. • It was observed a band gap value for the PbTe nanostructures in the NIR region. • NIR detector was fabricated in a large scale using a simple method. • Effect of Te concentration on morphology of PbTe nanostructures was investigated. - Abstract: A simple method was used to fabricate a near-infrared (NIR) detector using PbTe nanostructures. Samples were synthesized by tellurization of lead sheets in a tube furnace. PbTe nanostructures with wires and flakes shapes were grown on the lead sheets that were placed at 300 and 330 °C, respectively, while, PbTe nanoporous were grown at 360 and 390 °C. X-ray diffraction patterns and X-ray photoelectron spectra results indicated that, the PbTe phase was formed in all samples. UV–vis diffuse reflectance spectra measurements showed a band gap for the PbTe nanostructures in the near-infrared region of the electromagnetic spectrum. Actually, the results indicated that, the band gap values of the PbTe nanowires and nanoporous were 1.54 eV and 1.61 eV, respectively. Finally, the PbTe nanostructures were used as a simple photoresponse device under a red light source. The photoresponse results revealed, PbTe nanowires are promising for photoelectrical applications in the NIR region.

  8. Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI.

    Science.gov (United States)

    Erdoğan, Sinem B; Yücel, Meryem A; Akın, Ata

    2014-02-15

    Functional near infrared spectroscopy (fNIRS) is a promising method for monitoring cerebral hemodynamics with a wide range of clinical applications. fNIRS signals are contaminated with systemic physiological interferences from both the brain and superficial tissues, resulting in a poor estimation of the task related neuronal activation. In this study, we use the anatomical resolution of functional magnetic resonance imaging (fMRI) to extract scalp and brain vascular signals separately and construct an optically weighted spatial average of the fMRI blood oxygen level-dependent (BOLD) signal for characterizing the scalp signal contribution to fNIRS measurements. We introduce an extended superficial signal regression (ESSR) method for canceling physiology-based systemic interference where the effects of cerebral and superficial systemic interference are treated separately. We apply and validate our method on the optically weighted BOLD signals, which are obtained by projecting the fMRI image onto optical measurement space by use of the optical forward problem. The performance of ESSR method in removing physiological artifacts is compared to i) a global signal regression (GSR) method and ii) a superficial signal regression (SSR) method. The retrieved signals from each method are compared with the neural signals that represent the 'ground truth' brain activation cleaned from cerebral systemic fluctuations. We report significant improvements in the recovery of task induced neural activation with the ESSR method when compared to the other two methods as reflected in the Pearson R(2) coefficient and mean square error (MSE) metrics (two tailed paired t-tests, pnoise (CNR) improvement (60%). Our findings suggest that, during a cognitive task i) superficial scalp signal contribution to fNIRS signals varies significantly among different regions on the forehead and ii) using an average scalp measurement together with a local measure of superficial hemodynamics better accounts

  9. A NIR-remote controlled upconverting nanoparticle: an improved tool for living cell dye-labeling

    International Nuclear Information System (INIS)

    Zheng, Bin; Gong, Xiaoqun; Wang, Hanjie; Wang, Sheng; Chang, Jin; Wang, Huiquan; Li, Wei; Tan, Jian

    2015-01-01

    In living cells, due to the selective permeability and complicated cellular environment, the uptake efficiency and fluorescence decay of organic dyes during dye-labeling may be influenced, which may eventually result in poor fluorescent imaging. In this work, a protocol of UCNs@mSiO_2-(FA and Azo) core–shell nanocarriers was designed and prepared successfully. The core–shell nanocarriers were assembled from two parts, including a mesoporous silica shell surface modified by folate (FA) and azobenzene (Azo), and an upconverting nanocrystal (UCN) core. The mesoporous silica shell is used for loading organic dyes and conjugating folate which helps to enhance the cellular uptake of nanocarriers. The UCN core works as a transducer to convert near infrared (NIR) light to local UV and visible light to activate a back-and-forth wagging motion of azobenzene molecules on the surface, while the azobenzene acts as a molecular impeller for propelling the release of organic dyes. The nanocarriers of loading organic dyes can maintain the stability of the fluorescent imaging effect better than free organic dyes. The experimental results show that with the help of the nanoparticle, cell uptake efficiency of the model dyes of rhodamine and 4′, 6-diamidino-2-phenylindole (DAPI) was significantly improved. The release of dyes can only be triggered by NIR light exposure and their quantity is highly dependent on the duration of NIR light exposure, thus realizing NIR-regulated dye release spatiotemporally. Our work may open a novel avenue for precisely controlling UCN-based living cell imaging in biotechnology and diagnostics, as well as studying cell dynamics, cell–cell interactions, and tissue morphogenesis. (paper)

  10. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Pan, Xiang; Shi, Xiheng; Zhang, Shaohua [Polar Research Institute of China, 451 Jinqiao Road, Shanghai (China); Liu, Wenjuan; Wang, Jianguo [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan (China); Wang, Tinggui; Yang, Chenwei [Department of Astronomy, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui (China); Miller, Lauren P., E-mail: lmsun@mail.ustc.edu.cn [Lehigh University, 27 Memorial Drive West, Bethlehem, PA 18015 (United States)

    2017-04-01

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s{sup −1} relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V -band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s{sup −1} has a density in the range of 10{sup 9} to 10{sup 10} cm{sup −3} and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s{sup −1} has a density of 10{sup 3} cm{sup −3} and a distance of ∼1 kpc.

  11. X-ray magnetic circular dichroism strongly influenced by non-magnetic cover layers

    International Nuclear Information System (INIS)

    Zafar, K.; Audehm, P.; Schütz, G.; Goering, E.; Pathak, M.; Chetry, K.B.; LeClair, P.R.; Gupta, A.

    2013-01-01

    Highlights: •Energy filtering gives much larger sampling depth and escape length as expected. •XMCD sum rules could be dramatically altered by this effect. •Strong enhanced effective escape length for buried layers. •A “universal curve” model gives semi quantitative understanding. •Buried layers are more sensitive to self-absorption phenomena. -- Abstract: Total electron yield (TEY) is the dominating measurement mode in soft X-ray absorption spectroscopy (XAS), where the sampling depth is generally assumed to be quite small and constant, and the related self-absorption or saturation phenomena are about to be negligible at normal incidence conditions. From the OK edge to CrL 2,3 edge XAS ratio we determined a strong change in the effective electron escape length between an uncovered and a RuO 2 covered CrO 2 sample. This effect has been explained by a simple electron energy filtering model, providing a semi quantitative description. In addition, this simple model can quantitatively describe the unexpected reduced and positive CrL 2,3 X-ray magnetic circular dichroism (XMCD) signal of a RuO 2 /CrO 2 bilayer, while previous results have identified a clear negative Cr magnetization at the RuO 2 /CrO 2 interface. In our case this escape length enhancement has strong impact on the XMCD sum rule results and in general it provides much deeper sampling depth, but also larger self-absorption or saturation effects

  12. Recent progress in GeSi electro-absorption modulators

    International Nuclear Information System (INIS)

    Chaisakul, Papichaya; Marris-Morini, Delphine; Rouifed, Mohamed-Said; Coudevylle, Jean-René; Roux, Xavier Le; Edmond, Samson; Vivien, Laurent; Frigerio, Jacopo; Chrastina, Daniel; Isella, Giovanni

    2014-01-01

    Electro-absorption from GeSi heterostructures is receiving growing attention as a high performance optical modulator for short distance optical interconnects. Ge incorporation with Si allows strong modulation mechanism using the Franz–Keldysh effect and the quantum-confined Stark effect from bulk and quantum well structures at telecommunication wavelengths. In this review, we discuss the current state of knowledge and the on-going challenges concerning the development of high performance GeSi electro-absorption modulators. We also provide feasible future prospects concerning this research topic. (review)

  13. NIR-Red Spectra-Based Disaggregation of SMAP Soil Moisture to 250 m Resolution Based on SMAPEx-4/5 in Southeastern Australia

    Directory of Open Access Journals (Sweden)

    Nengcheng Chen

    2017-01-01

    Full Text Available To meet the demand of regional hydrological and agricultural applications, a new method named near infrared-red (NIR-red spectra-based disaggregation (NRSD was proposed to perform a disaggregation of Soil Moisture Active Passive (SMAP products from 36 km to 250 m resolution. The NRSD combined proposed normalized soil moisture index (NSMI with SMAP data to obtain 250 m resolution soil moisture mapping. The experiment was conducted in southeastern Australia during SMAP Experiments (SMAPEx 4/5 and validated with the in situ SMAPEx network. Results showed that NRSD performed a decent downscaling (root-mean-square error (RMSE = 0.04 m3/m3 and 0.12 m3/m3 during SMAPEx-4 and SMAPEx-5, respectively. Based on the validation, it was found that the proposed NSMI was a new alternative indicator for denoting the heterogeneity of soil moisture at sub-kilometer scales. Attributed to the excellent performance of the NSMI, NRSD has a higher overall accuracy, finer spatial representation within SMAP pixels and wider applicable scope on usability tests for land cover, vegetation density and drought condition than the disaggregation based on physical and theoretical scale change (DISPATCH has at 250 m resolution. This revealed that the NRSD method is expected to provide soil moisture mapping at 250-resolution for large-scale hydrological and agricultural studies.

  14. Multiwavelength Spectroscopy of PSR B0656+14

    Science.gov (United States)

    Durant, Martin; Kargaltsev, Oleg; Pavlov, George G.

    2011-12-01

    Using high-quality Hubble Space Telescope observations, we construct the near-infrared (NIR) to far-ultraviolet (FUV) spectral energy distribution (SED) of PSR B0656+14. The SED is non-monotonic. Fitting it with a simple combination of a Rayleigh-Jeans spectrum (UV) and non-thermal power law (PL; optical/NIR) leaves significant residuals, strongly hinting at one or more spectral features. We consider various models (combination of continuum components, and absorption/emission lines) with possible interpretations and place them in the context of the broader SED. Surprisingly, the extrapolation of the best-fit X-ray spectral model roughly matches the NIR-FUV data, and the PL component is also consistent with the γ-ray fluxes. We compare the multiwavelength SED of B0656+14 with those of other optical-, X-ray-, and γ-ray-detected pulsars, and notice that a simple PL spectrum crudely accounts for most of the non-thermal emission.

  15. MULTIWAVELENGTH SPECTROSCOPY OF PSR B0656+14

    International Nuclear Information System (INIS)

    Durant, Martin; Kargaltsev, Oleg; Pavlov, George G.

    2011-01-01

    Using high-quality Hubble Space Telescope observations, we construct the near-infrared (NIR) to far-ultraviolet (FUV) spectral energy distribution (SED) of PSR B0656+14. The SED is non-monotonic. Fitting it with a simple combination of a Rayleigh-Jeans spectrum (UV) and non-thermal power law (PL; optical/NIR) leaves significant residuals, strongly hinting at one or more spectral features. We consider various models (combination of continuum components, and absorption/emission lines) with possible interpretations and place them in the context of the broader SED. Surprisingly, the extrapolation of the best-fit X-ray spectral model roughly matches the NIR-FUV data, and the PL component is also consistent with the γ-ray fluxes. We compare the multiwavelength SED of B0656+14 with those of other optical-, X-ray-, and γ-ray-detected pulsars, and notice that a simple PL spectrum crudely accounts for most of the non-thermal emission.

  16. Cu₂-xSe@mSiO₂-PEG core-shell nanoparticles: a low-toxic and efficient difunctional nanoplatform for chemo-photothermal therapy under near infrared light radiation with a safe power density.

    Science.gov (United States)

    Liu, Xijian; Wang, Qian; Li, Chun; Zou, Rujia; Li, Bo; Song, Guosheng; Xu, Kaibing; Zheng, Yun; Hu, Junqing

    2014-04-21

    A low-toxic difunctional nanoplatform integrating both photothermal therapy and chemotherapy for killing cancer cells using Cu₂-xSe@mSiO₂-PEG core-shell nanoparticles is reported. Silica coating and further PEG modification improve the hydrophilicity and biocompatibility of copper selenide nanoparticles. As-prepared Cu₂-xSe@mSiO₂-PEG nanoparticles not only display strong near infrared (NIR) region absorption and good photothermal effect, but also exhibit excellent biocompatibility. The mesoporous silica shell is provided as the carrier for loading the anticancer drug, doxorubicin (DOX). Moreover, the release of DOX from Cu₂-xSe@mSiO₂-PEG core-shell nanoparticles can be triggered by pH and NIR light, resulting in a synergistic effect for killing cancer cells. Importantly, the combination of photothermal therapy and chemotherapy driven by NIR radiation with safe power density significantly improves the therapeutic efficacy, and demonstrates better therapeutic effects for cancer treatment than individual therapy.

  17. Direct measurements for highly-exposed TEPCO workers and NIRS first responders involved in the Fukushima NPS accident

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Takashi; Kim, Eunjoo; Akahane, Keiichi; Tominaga, Takako; Tatsuzaki, Hideo; Kurihara, Osamu; Sugiura, Nobuyuki [National Inst. of Radiological Sciences, Chiba (Japan)

    2012-11-15

    Direct measurements for internal dose estimates were performed at National Institute of Radiological Sciences (NIRS) on seven highly exposed workers of Tokyo Electric Power Company (TEPCO) and eight NIRS staff members who were first responders to the accident at the TEPCO Fukushima Daiichi Nuclear Power Station. For the TEPCO workers, the measurements were performed by both the whole-body counting and thyroid counting. The average effective half-life values of {sup 131}I in the thyroid and of {sup 134}Cs and {sup 137}Cs in the body were 7.8 days, 92.0 days and 104.3 days, respectively. These values were consistent with biokinetic models proposed by the International Commission on Radiological Protection (ICRP). For the NIRS staff members, the thyroid counting was made on the day when they had returned. The amount of {sup 131}I that was detected in the thyroid of all the eight subjects was small ({approx}100 Bq) even though they went to places near the site of the accident in its early stage. This level was found to be comparable to those of other NIRS staff members who stayed in the Chiba area (about 200 km south of the reactor) during the early stage of the accident. (author)

  18. [Research progress on standardization study of NIR spectroscopy based method for quality control of traditional Chinese medicine].

    Science.gov (United States)

    Li, Wen-Long; Qu, Hai-Bin

    2016-10-01

    In recent years, the near infrared (NIR) spectroscopy has gained wide acceptance within the quantitative analysis of traditional Chinese medicine (TCM). However, the lack of technical standards is the bottleneck problem in this process. To address this issue, standardization study of the NIR spectroscopy based method for the quantitative analysis of TCM is needed, in which the specific characteristics of TCM should be given full considerations. The main research contents include:the scope definition for the application of NIR spectroscopy in the TCM quantitative analysis field, the selection criteria for the sample pretreatment and spectral acquisition conditions, the rules for the model optimization and evaluation, and the regulations for the model update and transfer. In this paper, some foreign studies in the agricultural areas are reviewed for reference. Different chemometrics methods reported in the literature are investigated and compared systematically. This research is important actual significance to the theoretical development of NIR spectroscopy analytical techniques, and will effectively promote the application of the technology in the TCM industry. Furthermore, it is beneficial to improve the technical level of TCM quality control, and can also be used as references to achieve similar purposes for other natural products. Copyright© by the Chinese Pharmaceutical Association.

  19. Comparison of causality analysis on simultaneously measured fMRI and NIRS signals during motor tasks.

    Science.gov (United States)

    Anwar, Abdul Rauf; Muthalib, Makii; Perrey, Stephane; Galka, Andreas; Granert, Oliver; Wolff, Stephan; Deuschl, Guenther; Raethjen, Jan; Heute, Ulrich; Muthuraman, Muthuraman

    2013-01-01

    Brain activity can be measured using different modalities. Since most of the modalities tend to complement each other, it seems promising to measure them simultaneously. In to be presented research, the data recorded from Functional Magnetic Resonance Imaging (fMRI) and Near Infrared Spectroscopy (NIRS), simultaneously, are subjected to causality analysis using time-resolved partial directed coherence (tPDC). Time-resolved partial directed coherence uses the principle of state space modelling to estimate Multivariate Autoregressive (MVAR) coefficients. This method is useful to visualize both frequency and time dynamics of causality between the time series. Afterwards, causality results from different modalities are compared by estimating the Spearman correlation. In to be presented study, we used directionality vectors to analyze correlation, rather than actual signal vectors. Results show that causality analysis of the fMRI correlates more closely to causality results of oxy-NIRS as compared to deoxy-NIRS in case of a finger sequencing task. However, in case of simple finger tapping, no clear difference between oxy-fMRI and deoxy-fMRI correlation is identified.

  20. Predicting glycogen concentration in the foot muscle of abalone using near infrared reflectance spectroscopy (NIRS).

    Science.gov (United States)

    Fluckiger, Miriam; Brown, Malcolm R; Ward, Louise R; Moltschaniwskyj, Natalie A

    2011-06-15

    Near infrared reflectance spectroscopy (NIRS) was used to predict glycogen concentrations in the foot muscle of cultured abalone. NIR spectra of live, shucked and freeze-dried abalones were modelled against chemically measured glycogen data (range: 0.77-40.9% of dry weight (DW)) using partial least squares (PLS) regression. The calibration models were then used to predict glycogen concentrations of test abalone samples and model robustness was assessed from coefficient of determination of the validation (R2(val)) and standard error of prediction (SEP) values. The model for freeze-dried abalone gave the best prediction (R2(val) 0.97, SEP=1.71), making it suitable for quantifying glycogen. Models for live and shucked abalones had R2(val) of 0.86 and 0.90, and SEP of 3.46 and 3.07 respectively, making them suitable for producing estimations of glycogen concentration. As glycogen is a taste-active component associated with palatability in abalone, this study demonstrated the potential of NIRS as a rapid method to monitor the factors associated with abalone quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. On the nature of absorption features toward nearby stars

    Science.gov (United States)

    Kohl, S.; Czesla, S.; Schmitt, J. H. M. M.

    2016-06-01

    Context. Diffuse interstellar absorption bands (DIBs) of largely unknown chemical origin are regularly observed primarily in distant early-type stars. More recently, detections in nearby late-type stars have also been claimed. These stars' spectra are dominated by stellar absorption lines. Specifically, strong interstellar atomic and DIB absorption has been reported in τ Boo. Aims: We test these claims by studying the strength of interstellar absorption in high-resolution TIGRE spectra of the nearby stars τ Boo, HD 33608, and α CrB. Methods: We focus our analysis on a strong DIB located at 5780.61 Å and on the absorption of interstellar Na. First, we carry out a differential analysis by comparing the spectra of the highly similar F-stars, τ Boo and HD 33608, whose light, however, samples different lines of sight. To obtain absolute values for the DIB absorption, we compare the observed spectra of τ Boo, HD 33608, and α CrB to PHOENIX models and carry out basic spectral modeling based on Voigt line profiles. Results: The intercomparison between τ Boo and HD 33608 reveals that the difference in the line depth is 6.85 ± 1.48 mÅ at the DIB location which is, however, unlikely to be caused by DIB absorption. The comparison between PHOENIX models and observed spectra yields an upper limit of 34.0 ± 0.3 mÅ for any additional interstellar absorption in τ Boo; similar results are obtained for HD 33608 and α CrB. For all objects we derive unrealistically large values for the radial velocity of any presumed interstellar clouds. In τ Boo we find Na D absorption with an equivalent width of 0.65 ± 0.07 mÅ and 2.3 ± 0.1 mÅ in the D2 and D1 lines. For the other Na, absorption of the same magnitude could only be detected in the D2 line. Our comparisons between model and data show that the interstellar absorption toward τ Boo is not abnormally high. Conclusions: We find no significant DIB absorption in any of our target stars. Any differences between modeled and

  2. ALTIUS: a spaceborne AOTF-based UV-VIS-NIR hyperspectral imager for atmospheric remote sensing

    Science.gov (United States)

    Dekemper, Emmanuel; Fussen, Didier; Van Opstal, Bert; Vanhamel, Jurgen; Pieroux, Didier; Vanhellemont, Filip; Mateshvili, Nina; Franssens, Ghislain; Voloshinov, Vitaly; Janssen, Christof; Elandaloussi, Hadj

    2014-10-01

    Since the recent losses of several atmospheric instruments with good vertical sampling capabilities (SAGE II, SAGE III, GOMOS, SCIAMACHY,. . . ), the scientific community is left with very few sounders delivering concentration pro les of key atmospheric species for understanding atmospheric processes and monitoring the radiative balance of the Earth. The situation is so critical that at the horizon 2020, less than five such instruments will be on duty (most probably only 2 or 3), whereas their number topped at more than 15 in the years 2000. In parallel, recent inter-comparison exercises among the climate chemistry models (CCM) and instrument datasets have shown large differences in vertical distribution of constituents (SPARC CCMVal and Data Initiative), stressing the need for more vertically-resolved and accurate data at all latitudes. In this frame, the Belgian Institute for Space Aeronomy (IASB-BIRA) proposed a gap-filler small mission called ALTIUS (Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere), which is currently in preliminary design phase (phase B according to ESA standards). Taking advantage of the good performances of the PROBA platform (PRoject for On-Board Autonomy) in terms of pointing precision and accuracy, on-board processing ressources, and agility, the ALTIUS concept relies on a hyperspectral imager observing limb-scattered radiance and solar/stellar occultations every orbit. The objective is twofold: the imaging feature allows to better assess the tangent height of the sounded air masses (through easier star tracker information validation by scene details recognition), while its spectral capabilities will be good enough to exploit the characteristic signatures of many molecular absorption cross-sections (O3, NO2, CH4, H2O, aerosols,...). The payload will be divided in three independent optical channels, associated to separated spectral ranges (UV: 250- 450 nm, VIS: 440-800 nm, NIR: 900-1800 nm). This approach also

  3. Thermostatic system of sensor in NIR spectrometer based on PID control

    Science.gov (United States)

    Wang, Zhihong; Qiao, Liwei; Ji, Xufei

    2016-11-01

    Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.

  4. Contrast-enhanced near-infrared laser mammography with a prototype breast scanner: feasibility study with tissue phantoms and preliminary results of imaging experimental tumors.

    Science.gov (United States)

    Boehm, T; Hochmuth, A; Malich, A; Reichenbach, J R; Fleck, M; Kaiser, W A

    2001-10-01

    Near-infrared (NIR) optical mammography without contrast has a low specificity. The application of optical contrast medium may improve the performance. The concentration-dependent detectability of a new NIR contrast medium was determined with a prototype optical breast scanner. In vivo imaging of experimental tumors was performed. The NIR contrast agent NIR96010 is a newly synthesized, hydrophilic contrast agent for NIR mammography. A concentration-dependent contrast resolution was determined for tissue phantoms consisting of whole milk powder and gelatin. A central part of the phantoms measuring 2 x 2 cm2 without contrast was replaced with phantom material containing 1 micromol/L to 25 nmol/L NIR96010. The composite phantoms were measured with a prototype NIR breast scanner with lasers of lambda1 = 785 nm and lambda2 = 850 nm wavelength. Intensity profiles and standard deviations of the transmission signal in areas with and without contrast were determined by linear fit procedures. Signal-to-noise ratios and spatial resolution as a function of contrast concentration were determined. Near-infrared imaging of five tumor-bearing SCID mice (MX1 breast adenocarcinoma, tumor diameter 5-10 mm) was performed before and after intravenous application of 2 micromol/kg NIR96010. Spectrometry showed an absorption maximum of the contrast agent at 755 nm. No spectral shifts occurred in protein-containing solution. Signal-to-noise ratio in the transmission intensity profiles ranged from 1.1 at 25 nmol/L contrast to 28 at 1 micromol/L. At concentrations contrast-enhanced images, with better delineation after contrast administration. In postcontrast absorption profiles, a 44.1% +/- 11.3% greater absorption increase was seen in tumor tissue compared with normal tissue. The laser wavelength lambda1 of the prototype laser mammography device was not situated at maximum absorption of the contrast agent NIR96010 but on the descending shoulder of the absorption spectrum. This implies a 20

  5. The application of Near Infrared Reflectance Spectroscopy (NIRS) for the quantitative analysis of hydrocortisone in primary materials

    OpenAIRE

    A. PITTAS; C. SERGIDES; K. NIKOLICH

    2001-01-01

    Near Infrared Reflectance Spectroscopy (NIRS), coupled with fiber optic probes, has been shown to be a quick and reliable analytical tool for quality assurance and quality control in the pharmaceutical industry, both for verifications of raw materials and quantification of the active ingredients in final products. In this paper, a typical pharmaceutical product, hydrocortisone sodium succinate, is used as an example for the application of NIR spectroscopy for quality control. In order to deve...

  6. Moisture content determination in solid biofuels by dielectric and NIR reflection methods

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Peter Daugbjerg; Morsing, Merete [Department of Forest and Landscape, The Royal Veterinary and Agricultural University, Rolighedsvej 23, DK-1958 Frederiksberg C (Denmark); Hartmann, Hans; Boehm, Thorsten [Technologie- und Foerderzentrum fuer Nachwachsende Rohstoffe (TFZ), Schulgasse 18, D-94315 Straubing (Germany); Temmerman, Michael; Rabier, Fabienne [Departement Genie Rural, Chee de Namur 146, B-5030 Gembloux (Belgium)

    2006-11-15

    One near infrared (NIR) reflectance and five dielectric moisture meters were tested for their capability of measuring moisture content (MC) in solid biofuels. Ninety-eight samples were tested at up to eight moisture levels covering the MC range from fresh fuel to approximately 10% MC (w.b.). The fuel types ranged from typical solid biofuels such as coniferous and deciduous wood chips over short rotation coppice (SRC) to sunflower seed and olive stones. The most promising calibrations were obtained with the NIR reflection method and two dielectric devices where the sample is placed in a container integrated in the device. The calibration equations developed show that there is a profound influence from both laboratory and fuel type. It is suggested that individual calibrations that are based on the specific fuel types used at the individual heating plant could be applied. (author)

  7. Anomalous water absorption in porous materials

    CERN Document Server

    Lockington, D A

    2003-01-01

    The absorption of fluid by unsaturated, rigid porous materials may be characterized by the sorptivity. This is a simple parameter to determine and is increasingly being used as a measure of a material's resistance to exposure to fluids (especially moisture and reactive solutes) in aggressive environments. The complete isothermal absorption process is described by a nonlinear diffusion equation, with the hydraulic diffusivity being a strongly nonlinear function of the degree of saturation of the material. This diffusivity can be estimated from the sorptivity test. In a typical test the cumulative absorption is proportional to the square root of time. However, a number of researchers have observed deviation from this behaviour when the infiltrating fluid is water and there is some potential for chemo-mechanical interaction with the material. In that case the current interpretation of the test and estimation of the hydraulic diffusivity is no longer appropriate. Kuentz and Lavallee (2001) discuss the anomalous b...

  8. Application of process analytical technology in tablet process development using NIR spectroscopy : Blend uniformity, content uniformity and coating thickness measurements

    NARCIS (Netherlands)

    Moes, Johannes J; Ruijken, Marco M; Gout, Erik; Frijlink, Henderik W; Ugwoke, Michael I

    2008-01-01

    Near-infrared (NIR)spectroscopy was employed as a process analytical technique in three steps of tabletting process: to monitor the blend homogeneity, evaluate the content uniformity of tablets and determine the tablets coating thickness. A diode-array spectrometer mounted on a lab blender (SP15 NIR

  9. Terahertz gas sensor based on absorption-induced transparency

    Directory of Open Access Journals (Sweden)

    Rodrigo Sergio G.

    2016-01-01

    Full Text Available A system for the detection of spectral signatures of gases at the Terahertz regime is presented. The system consists in an initially opaque holey metal film whereby the introduction of a gas provokes the appearance of spectral features in transmission and reflection, due to the phenomenom of absorption-induced transparency (AIT. The peaks in transmission and dips in reflection observed in AIT occur close to the absorption energies of the molecules, hence its name. The presence of the gas would be thus revealed as a strong drop in reflectivity measurements at one (or several of the gas absorption resonances. As a proof of principle, we theoretically demonstrate how the AIT-based sensor would serve to detect tiny amounts of hydrocyanic acid.

  10. Wearable functional Near Infrared Spectroscopy (fNIRS and transcranial Direct Current Stimulation (tDCS: Expanding Vistas for Neurocognitive Augmentation

    Directory of Open Access Journals (Sweden)

    Ryan eMcKendrick

    2015-03-01

    Full Text Available Contemporary studies with transcranial direct current stimulation (tDCS provide a growing base of evidence for enhancing cognition through the non-invasive delivery of weak electric currents to the brain. The main effect of tDCS is to modulate cortical excitability depending on the polarity of the applied current. However, the underlying mechanism of neuromodulation is not well understood. A new generation of functional near infrared spectroscopy (fNIRS systems is described that are miniaturized, portable, and include wearable sensors. These developments provide an opportunity to couple fNIRS with tDCS, consistent with a neuroergonomics approach for joint neuroimaging and neurostimulation investigations of cognition in complex tasks and in naturalistic conditions. The effects of tDCS on complex task performance and the use of fNIRS for monitoring cognitive workload during task performance are described. Also explained is how fNIRS + tDCS can be used simultaneously for assessing spatial working memory. Mobile optical brain imaging is a promising neuroimaging tool that has the potential to complement tDCS for realistic applications in natural settings.

  11. Calculation of effective absorption coefficient for aerosols of internal mixture

    International Nuclear Information System (INIS)

    Xu Bo; Huang Yinbo; Fan Chengyu; Qiao Chunhong

    2012-01-01

    The effective absorption coefficient with time of strong absorbing aerosol made of carbon dusts and water of internal mixture is analyzed, and the influence of different wavelengths and radius ratios on it is discussed. The shorter the wavelength is, the larger the effective absorption coefficient is , and more quickly it increases during 1-100 μs, and the largest increase if 132.65% during 1-100 μs. Different ratios between inner and outer radius have large influence on the effective absorption coefficient. The larger the ratio is, the larger the effective absorption coefficient is, and more quickly it increases during 1-100 μs. The increase of the effective absorption coefficient during 1-100 μs is larger than that during 100-1000 μs, and the largest increase is 138.66% during 1-100 μs. (authors)

  12. Near-infrared chemical imaging (NIR-CI) as a process monitoring solution for a production line of roll compaction and tableting

    DEFF Research Database (Denmark)

    Khorasani, Milad Rouhi; Amigo Rubio, Jose Manuel; Sun, Changquan Calvin

    2015-01-01

    In the present study the application of near-infrared chemical imaging (NIR-CI) supported by chemometric modeling as non-destructive tool for monitoring and assessing the roller compaction and tableting processes was investigated. Based on preliminary risk-assessment, discussion with experts...... compound for both roller compacted ribbons and corresponding tablets. In order to select the optimal process, setting the standard deviation of tablet tensile strength and tablet weight for each tablet batch was considered. Strong linear correlation between tablet tensile strength and amount of fines...... and granule size was established, respectively. These approaches are considered to have a potentially large impact on quality monitoring and control of continuously operating manufacturing lines, such as roller compaction and tableting processes....

  13. Handling of uncertainty due to interference fringe in FT-NIR transmittance spectroscopy - Performance comparison of interference elimination techniques using glucose-water system

    Science.gov (United States)

    Beganović, Anel; Beć, Krzysztof B.; Henn, Raphael; Huck, Christian W.

    2018-05-01

    The applicability of two elimination techniques for interferences occurring in measurements with cells of short pathlength using Fourier transform near-infrared (FT-NIR) spectroscopy was evaluated. Due to the growing interest in the field of vibrational spectroscopy in aqueous biological fluids (e.g. glucose in blood), aqueous solutions of D-(+)-glucose were prepared and split into a calibration set and an independent validation set. All samples were measured with two FT-NIR spectrometers at various spectral resolutions. Moving average smoothing (MAS) and fast Fourier transform filter (FFT filter) were applied to the interference affected FT-NIR spectra in order to eliminate the interference pattern. After data pre-treatment, partial least squares regression (PLSR) models using different NIR regions were constructed using untreated (interference affected) spectra and spectra treated with MAS and FFT filter. The prediction of the independent validation set revealed information about the performance of the utilized interference elimination techniques, as well as the different NIR regions. The results showed that the combination band of water at approx. 5200 cm-1 is of great importance since its performance was superior to the one of the so-called first overtone of water at approx. 6800 cm-1. Furthermore, this work demonstrated that MAS and FFT filter are fast and easy-to-use techniques for the elimination of interference fringes in FT-NIR transmittance spectroscopy.

  14. [Modeling of sugar content based on NIRS during cider-making fermentation].

    Science.gov (United States)

    Peng, Bang-Zhu; Yue, Tian-Li; Yuan, Ya-Hong; Gao, Zhen-Peng

    2009-03-01

    The sugar content and the matrix always are being changed during cider-making fermentation. In order to measure and monitor sugar content accurately and rapidly, it is necessary for the spectra to be sorted. Calibration models were established at different fermentation stages based on near infrared spectroscopy with artificial neural network. NIR spectral data were collected in the spectral region of 12 000-4 000 cm(-1) for the next analysis. After the different conditions for modeling sugar content were analyzed and discussed, the results indicated that the calibration models developed by the spectral data pretreatment of straight line subtraction(SLS) in the characteristic absorption spectra ranges of 7 502-6 472.1 cm(-1) at stage I and 6 102-5 446.2 cm(-1) at stage II were the best for sugar content. The result of comparison of different data pretreatment methods for establishing calibration model showed that the correlation coefficients of the models (R2) for stage I and II were 98.93% and 99.34% respectively and the root mean square errors of cross validation(RMSECV) for stage I and II were 4.42 and 1.21 g x L(-1) respectively. Then the models were tested and the results showed that the root mean square error of prediction (RMSEP) was 4.07 g x L(-1) and 1.13 g x L(-1) respectively. These demonstrated that the models the authors established are very well and can be applied to quick determination and monitoring of sugar content during cider-making fermentation.

  15. Microwave absorption properties and mechanism of cagelike ZnO /SiO2 nanocomposites

    Science.gov (United States)

    Cao, Mao-Sheng; Shi, Xiao-Ling; Fang, Xiao-Yong; Jin, Hai-Bo; Hou, Zhi-Ling; Zhou, Wei; Chen, Yu-Jin

    2007-11-01

    In this paper, cagelike ZnO /SiO2 nanocomposites were prepared and their microwave absorption properties were investigated in detail. Dielectric constants and losses of the pure cagelike ZnO nanostructures were measured in a frequency range of 8.2-12.4GHz. The measured results indicate that the cagelike ZnO nanostructures are low-loss material for microwave absorption in X band. However, the cagelike ZnO /SiO2 nanocomposites exhibit a relatively strong attenuation to microwave in X band. Such strong absorption is related to the unique geometrical morphology of the cagelike ZnO nanostructures in the composites. The microcurrent network can be produced in the cagelike ZnO nanostructures, which contributes to the conductive loss.

  16. The use of near infrared spectroscopy (NIRS) to predict the chemical ...

    African Journals Online (AJOL)

    resias

    Keywords: NIRS, ostrich TMR, chemical composition, nutritive value ... For adequate feeding of livestock, farmers need information about the nutritive value of available .... presented a SD/SECV ratio value of less than three, which is regarded as fair, .... The current and future role of near infrared reflectance spectroscopy in.

  17. Conversion of NIR-radiation to Electric Power in a Solar Greenhouse

    Science.gov (United States)

    Sonneveld, P. J.; Swinkels, G. L. A. M.; Bot, G. P. A.; Flamand, G.

    2007-02-01

    The scope of this investigation is the development of a new type of greenhouse with an integrated filter for rejecting near infrared radiation (NIR) and a solar energy delivery system. Cooled greenhouses are an important issue to cope with the combination of high global radiation and high outdoor temperatures. As a first measure, the spectral selective cover material, which prevents the entrance of NIR radiation, is investigated. The special spectral selective reflectivity of these materials has to block up to 50% of the solar energy outside the greenhouse, which will reduce the needed cooling capacity. The second measure is the integration of a solar energy system. When the NIR reflecting coating is designed as a parabolic or circular shaped reflector integrated in the greenhouse, the reflected solar energy of a PV cell in the focus point delivers electric energy. With a ray tracing computer program the geometry of the reflector was optimally designed with respect to the maximum power level. The PV or TPV cells mounted in the focal point require cooling due to the high heat load of the concentrated radiation (concentration factor of 40-80). The properties of different materials, Ge, GaSb, CIS and Si cells were investigated to find the optimal cell for this application. For the second option a tubular collector is placed in the focus of the reflector. The collector contains thermal oil, which is heated up to a temperature of 400°C. This hot oil can be used for heating a Stirling motor or an Organic Rankine Cycle (ORC). The typical efficiencies and economic achievement of these systems including the tube collector are compared with the efficiencies of the TPV cells.

  18. Extraordinary absorption of sound in porous lamella-crystals

    DEFF Research Database (Denmark)

    Christensen, Johan; Romero-García, V.; Picó, R.

    2014-01-01

    . Experimental measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases the wave interaction time and is responsible for the enhancement of intrinsic material......We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support...

  19. MEMS-based microspectrometer technologies for NIR and MIR wavelengths

    International Nuclear Information System (INIS)

    Schuler, Leo P; Milne, Jason S; Dell, John M; Faraone, Lorenzo

    2009-01-01

    Commercially manufactured near-infrared (NIR) instruments became available about 50 years ago. While they have been designed for laboratory use in a controlled environment and boast high performance, they are generally bulky, fragile and maintenance intensive, and therefore expensive to purchase and maintain. Micromachining is a powerful technique to fabricate micromechanical parts such as integrated circuits. It was perfected in the 1980s and led to the invention of micro electro mechanical systems (MEMSs). The three characteristic features of MEMS fabrication technologies are miniaturization, multiplicity and microelectronics. Combined, these features allow the batch production of compact and rugged devices with integrated intelligence. In order to build more compact, more rugged and less expensive NIR instruments, MEMS technology has been successfully integrated into a range of new devices. In the first part of this paper we discuss the UWA MEMS-based Fabry-Perot spectrometer, its design and issues to be solved. MEMS-based Fabry-Perot filters primarily isolate certain wavelengths by sweeping across an incident spectrum and the resulting monochromatic signal is detected by a broadband detector. In the second part, we discuss other microspectrometers including other Fabry-Perot spectrometer designs, time multiplexing devices and mixed time/space multiplexing devices. (topical review)

  20. NIRS and IVUS for characterization of atherosclerosis in patients undergoing coronary angiography

    NARCIS (Netherlands)

    Brugaletta, Salvatore; Garcia-Garcia, Hector M.; Serruys, Patrick W.; de Boer, Sanneke; Ligthart, Jurgen; Gomez-Lara, Josep; Witberg, Karen; Diletti, Roberto; Wykrzykowska, Joanna; van Geuns, Robert-Jan; Schultz, Carl; Regar, Evelyn; Duckers, Henricus J.; van Mieghem, Nicolas; de Jaegere, Peter; Madden, Sean P.; Muller, James E.; van der Steen, Antonius F. W.; van der Giessen, Wim J.; Boersma, Eric

    2011-01-01

    The aim of this study was to compare the findings of near-infrared spectroscopy (NIRS), intravascular ultrasound (IVUS) virtual histology (VH), and grayscale IVUS obtained in matched coronary vessel segments of patients undergoing coronary angiography. Intravascular ultrasound VH has been developed

  1. Temperature-dependent optical absorption of SrTiO3

    International Nuclear Information System (INIS)

    Kok, Dirk J.; Irmscher, Klaus; Naumann, Martin; Guguschev, Christo; Galazka, Zbigniew; Uecker, Reinhard

    2015-01-01

    The optical absorption edge and near infrared absorption of SrTiO 3 were measured at temperatures from 4 to 1703 K. The absorption edge decreases from 3.25 eV at 4 K to 1.8 eV at 1703 K and is extrapolated to approximately 1.2 eV at the melting point (2350 K). The transmission in the near IR decreases rapidly above 1400 K because of free carrier absorption and is about 50% of the room temperature value at 1673 K. The free carriers are generated by thermal excitation of electrons over the band gap and the formation of charged vacancies. The observed temperature-dependent infrared absorption can be well reproduced by a calculation based on simple models for the intrinsic free carrier concentration and the free carrier absorption coefficient. The measured red shift of the optical absorption edge and the rising free carrier absorption strongly narrow the spectral range of transmission and impede radiative heat transport through the crystal. These effects have to be considered in high temperature applications of SrTiO 3 -based devices, as the number of free carriers rises considerably, and in bulk crystal growth to avoid growth instabilities. Temperature dependent optical absorption edge of SrTiO 3 , measured, fitted, and extrapolated to the melting point. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Pondermotive absorption of a short intense laser pulse in a non-uniform plasma

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A A; Platonov, K Yu [Inst. for Laser Physics, SC ` Vavilov State Optical Inst.` 12, Birzhevaya line, St Petersburg (Russian Federation); Tanaka, K A

    1998-03-01

    An analytical description of the pondermotive absorption mechanism at a short high intense laser pulse interaction with a strong inhomogeneous plasma is presented. The optimal conditions for the maximum of resonance absorption of laser pulse interaction with non-uniform plasma at normal incidence are founded. (author)

  3. A novel GLM-based method for the Automatic IDentification of functional Events (AIDE) in fNIRS data recorded in naturalistic environments.

    Science.gov (United States)

    Pinti, Paola; Merla, Arcangelo; Aichelburg, Clarisse; Lind, Frida; Power, Sarah; Swingler, Elizabeth; Hamilton, Antonia; Gilbert, Sam; Burgess, Paul W; Tachtsidis, Ilias

    2017-07-15

    Recent technological advances have allowed the development of portable functional Near-Infrared Spectroscopy (fNIRS) devices that can be used to perform neuroimaging in the real-world. However, as real-world experiments are designed to mimic everyday life situations, the identification of event onsets can be extremely challenging and time-consuming. Here, we present a novel analysis method based on the general linear model (GLM) least square fit analysis for the Automatic IDentification of functional Events (or AIDE) directly from real-world fNIRS neuroimaging data. In order to investigate the accuracy and feasibility of this method, as a proof-of-principle we applied the algorithm to (i) synthetic fNIRS data simulating both block-, event-related and mixed-design experiments and (ii) experimental fNIRS data recorded during a conventional lab-based task (involving maths). AIDE was able to recover functional events from simulated fNIRS data with an accuracy of 89%, 97% and 91% for the simulated block-, event-related and mixed-design experiments respectively. For the lab-based experiment, AIDE recovered more than the 66.7% of the functional events from the fNIRS experimental measured data. To illustrate the strength of this method, we then applied AIDE to fNIRS data recorded by a wearable system on one participant during a complex real-world prospective memory experiment conducted outside the lab. As part of the experiment, there were four and six events (actions where participants had to interact with a target) for the two different conditions respectively (condition 1: social-interact with a person; condition 2: non-social-interact with an object). AIDE managed to recover 3/4 events and 3/6 events for conditions 1 and 2 respectively. The identified functional events were then corresponded to behavioural data from the video recordings of the movements and actions of the participant. Our results suggest that "brain-first" rather than "behaviour-first" analysis is

  4. Slow-light enhancement of Beer-Lambert-Bouguer absorption

    OpenAIRE

    Mortensen, Niels Asger; Xiao, Sanshui

    2007-01-01

    We theoretically show how slow light in an optofluidic environment facilitates enhanced light-matter interactions, by orders of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized chemical absorbance cells for Beer-Lambert-Bouguer absorption measurements widely employed in analytical chemistry.

  5. SHARK-NIR: from K-band to a key instrument, a status update

    Science.gov (United States)

    Farinato, Jacopo; Bacciotti, Francesca; Baffa, Carlo; Baruffolo, Andrea; Bergomi, Maria; Bongiorno, Angela; Carbonaro, Luca; Carolo, Elena; Carlotti, Alexis; Centrone, Mauro; Close, Laird; De Pascale, Marco; Dima, Marco; D'Orazi, Valentina; Esposito, Simone; Fantinel, Daniela; Farisato, Giancarlo; Gaessler, Wolfgang; Giallongo, Emanuele; Greggio, Davide; Guyon, Olivier; Hinz, Philip; Lisi, Franco; Magrin, Demetrio; Marafatto, Luca; Mohr, Lars; Montoya, Manny; Pedichini, Fernando; Pinna, Enrico; Puglisi, Alfio; Ragazzoni, Roberto; Salasnich, Bernardo; Stangalini, Marco; Vassallo, Daniele; Verinaud, Christophe; Viotto, Valentina

    2016-07-01

    SHARK-NIR channel is one of the two coronagraphic instruments proposed for the Large Binocular Telescope, in the framework of the call for second generation instruments, issued in 2014. Together with the SHARK-VIS channel, it will offer a few observing modes (direct imaging, coronagraphic imaging and coronagraphic low resolution spectroscopy) covering a wide wavelength domain, going from 0.5μm to 1.7μm. Initially proposed as an instrument covering also the K-band, the current design foresees a camera working from Y to H bands, exploiting in this way the synergy with other LBT instruments such as LBTI, which is actually covering wavelengths greater than L' band, and it will be soon upgraded to work also in K band. SHARK-NIR has been undergoing the conceptual design review at the end of 2015 and it has been approved to proceed to the final design phase, receiving the green light for successive construction and installation at LBT. The current design is significantly more flexible than the previous one, having an additional intermediate pupil plane that will allow the usage of coronagraphic techniques very efficient in term of contrast and vicinity to the star, increasing the instrument coronagraphic performance. The latter is necessary to properly exploit the search of giant exo-planets, which is the main science case and the driver for the technical choices of SHARK-NIR. We also emphasize that the LBT AO SOUL upgrade will further improve the AO performance, making possible to extend the exo-planet search to target fainter than normally achieved by other 8-m class telescopes, and opening in this way to other very interesting scientific scenarios, such as the characterization of AGN and Quasars (normally too faint to be observed) and increasing considerably the sample of disks and jets to be studied. Finally, we emphasize that SHARK-NIR will offer XAO direct imaging capability on a FoV of about 15"x15", and a simple coronagraphic spectroscopic mode offering spectral

  6. Rheo-optical near-infrared (NIR) spectroscopy study of partially miscible polymer blend of polymethyl methacrylate (PMMA) and polyethylene glycol (PEG)

    Science.gov (United States)

    Shinzawa, Hideyuki; Mizukado, Junji

    2018-03-01

    Tensile deformations of a partially miscible blend of polymethyl methacrylate (PMMA) and polyethylene glycol (PEG) is studied by a rheo-optical characterization near-infrared (NIR) technique to probe deformation behavior during tensile deformation. Sets of NIR spectra of the polymer samples were collected by using an acousto-optic tunable filter (AOTF) NIR spectrometer coupled with a tensile testing machine as an excitation device. While deformations of the samples were readily captured as strain-dependent NIR spectra, the entire feature of the spectra was overwhelmed with the baseline fluctuation induced by the decrease in the sample thickness and subsequent change in the light scattering. Several pretreatment techniques, including multiplicative scatter collection (MSC) and null-space projection, are subjected to the NIR spectra prior to the determination of the sequential order of the spectral intensity changes by two-dimensional (2D) correlation analysis. The comparison of the MSC and null-space projection provided an interesting insight into the system, especially deformation-induced variation of light scattering observed during the tensile testing of the polymer sample. In addition, the sequential order determined with the 2D correlation spectra revealed that orientation of a specific part of PMMA chain occurs before that of the others because of the interaction between Cdbnd O group of PMMA and terminal sbnd OH group of PEG.

  7. Referential framework for transcranial anatomical correspondence for fNIRS based on manually traced sulci and gyri of an infant brain.

    Science.gov (United States)

    Matsui, Mie; Homae, Fumitaka; Tsuzuki, Daisuke; Watanabe, Hama; Katagiri, Masatoshi; Uda, Satoshi; Nakashima, Mitsuhiro; Dan, Ippeita; Taga, Gentaro

    2014-03-01

    Functional near infrared spectroscopy (fNIRS), which is compact, portable, and tolerant of body movement, is suitable for monitoring infant brain functions. Nevertheless, fNIRS also poses a technical problem in that it cannot provide structural information. Supplementation with structural magnetic resonance images (MRI) is not always feasible for infants who undergo fNIRS measurement. Probabilistic registration methods using an MRI database instead of subjects' own MRIs are optimized for adult studies and offer only limited resources for infant studies. To overcome this, we used high-quality infant MRI data for a 12-month-old infant and manually delineated segmented gyri from among the highly visible macroanatomies on the lateral cortical surface. These macroanatomical regions are primarily linked to the spherical coordinate system based on external cranial landmarks, and further to traditional 10-20-based head-surface positioning systems. While macroanatomical structures were generally comparable between adult and infant atlases, differences were found in the parietal lobe, which was positioned posteriorly at the vertex in the infant brain. The present study provides a referential framework for macroanatomical analyses in infant fNIRS studies. With this resource, multichannel fNIRS functional data could be analyzed in reference to macroanatomical structures through virtual and probabilistic registrations without acquiring subject-specific MRIs. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  8. Infrared and NIR Raman spectroscopy in medical microbiology

    Science.gov (United States)

    Naumann, Dieter

    1998-04-01

    FTIR and FT-NIR Raman spectra of intact microbial cells are highly specific, fingerprint-like signatures which can be used to (i) discriminate between diverse microbial species and strains, (ii) detect in situ intracellular components or structures such as inclusion bodies, storage materials or endospores, (iii) detect and quantify metabolically released CO2 in response to various different substrate, and (iv) characterize growth-dependent phenomena and cell-drug interactions. The characteristic information is extracted from the spectral contours by applying resolution enhancement techniques, difference spectroscopy, and pattern recognition methods such as factor-, cluster-, linear discriminant analysis, and artificial neural networks. Particularly interesting applications arise by means of a light microscope coupled to the spectrometer. FTIR spectra of micro-colonies containing less than 103 cells can be obtained from colony replica by a stamping technique that transfers micro-colonies growing on culture plates to a special IR-sample holder. Using a computer controlled x, y- stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro- organisms can be integrated in one single apparatus. FTIR and NIR-FT-Raman spectroscopy can also be used in tandem to characterize medically important microorganisms. Currently novel methodologies are tested to take advantage of the complementary information of IR and Raman spectra. Representative examples on medically important microorganisms will be given that highlight the new possibilities of vibrational spectroscopies.

  9. Non-noble metal vanadium phosphites with broad absorption for photocatalytic hydrogen evolution

    International Nuclear Information System (INIS)

    Song, Jun-Ling; Zhang, Jian-Han; Mao, Jiang-Gao

    2016-01-01

    We reported the synthesis and crystal structures of alkali metal and alkali-earth metal phosphite, namely, CsV 2 (H 3 O)(HPO 3 ) 4 (1), and Ba 3 V 2 (HPO 3 ) 6 (2). Both compounds were prepared by hydrothermal reactions and feature unique new structures. They both exhibit 3D complicated frameworks based on VO 6 octahedra which are connected by HPO 3 tetrahedra via corner-sharing. Alkali or alkali earth metal cations are filled in the different channels of the frameworks. Topological analysis shows that the framework of CsV 2 (H 3 O) (HPO 3 ) 4 (1) is a new 3,3,3,4,5-connected network with the Schläfli symbol of {4.6 2 } 2 {4 2 .6 6 .8 2 }{6 3 }{6 5 .8}. The investigations of X-ray photoelectron spectroscopy (XPS) and magnetic measurement on CsV 2 (H 3 O)(HPO 3 ) 4 suggest a +3 oxidation state of the vanadium ions in compound 1. Photocatalytic performance was evaluated by photocatalytic H 2 evolution and degradation of methylene blue, which shows that both compounds exhibit activity under visible-light irradiation. IR spectrum, UV–vis-NIR spectrum and thermogravimetric analysis (TGA) of compounds were also investigated. - Graphical abstract: Metal vanadium phosphites with broad absorption for photocatalytic hydrogen evolution and the degradation of methylene blue aqueous solution. - Highlights: • Two new vanadium phosphites, CsV 2 (H 3 O)(HPO 3 ) 4 and Ba 3 V 2 (HPO 3 ) 6 , are reported. • CsV 2 (H 3 O)(HPO 3 ) 4 and Ba 3 V 2 (HPO 3 ) 6 feature complicated 3D framework structures with different channels. • CsV 2 (H 3 O)(HPO 3 ) 4 and Ba 3 V 2 (HPO 3 ) 6 exhibit strong and broad absorptions in the visible and Near IR region. • Photocatalytic properties of CsV 2 (H 3 O)(HPO 3 ) 4 and Ba 3 V 2 (HPO 3 ) 6 are investigated. • The magnetic measurement of CsV 2 (H 3 O)(HPO 3 ) 4 was performed in the temperature range of 2–300 K.

  10. Classical anomalous absorption in strongly magnetized plasmas and effective shielding length

    International Nuclear Information System (INIS)

    Matsuda, K.

    1981-01-01

    The high-frequency conductivity tensor of a plasma in a magnetic field has been evaluated. An anomalous perpendicular conductivity is obtained for a strongly magnetized plasma. Contrarily to the previous prediction, the effective shielding length is found to be the Debye length even when the Debye length is larger than the electron gyroradius. The effective shielding length is further discussed by presenting the generalized Balescu-Lenard equation

  11. Heavy nucleus resonance absorption in heterogeneous lattices

    International Nuclear Information System (INIS)

    Coste, M.; Tellier, H.; Brienne-Raepsaet, C.; Van Der Gucht, C.

    1992-01-01

    To compute easily the neutron reaction rates in the resonance energy range, the reactor physicists use the self-shielding formalism and the effective cross-section concept. Usually, for these calculations, and equivalence process is used, in such a way that the absorption rate is correctly computed for the whole fuel pin. This procedure does not allow to preserve the spatial absorption rate distribution inside the pin. It is an important handicap if we want to reproduce the plutonium distribution in a spent fuel. To avoid this inconvenience, new improvements of the self-shielding formalism have been recently introduced in the new assembly calculation code of the French Atomic Energy Commission, APOLLO 2. With this improved formalism, it is now possible to represent the spatial and energetic dependence of the heavy nucleus absorption inside the fuel pin and to use a fine energy dependent equivalence process. As it does not exist clean experimental results for the spatial and energetic dependence of the absorption, the authors used reference calculations to qualify the self-shielding formalism. For the strongly self-shielded nuclei of interest in reactor physics, U238, Pu240 and Th232, the agreement between the self-shielding calculation and the reference ones is fairly good for the spatial and energetic dependence of the absorption rate

  12. Visible and NIR luminescence of nanocrystalline β-Ga2O3:Er3+ prepared by solution combustion synthesis

    International Nuclear Information System (INIS)

    Biljan, Tomislav; Gajovic, Andreja; Meic, Zlatko

    2008-01-01

    In this paper we report on facile solution combustion synthesis of erbium doped β-Ga 2 O 3 with urea as fuel. The product was characterized using powder X-ray diffraction and transmission electron microscopy (TEM). X-ray diffraction and TEM showed that the material is nanostructured. Luminescence properties of β-Ga 2 O 3 :Er are studied with excitation in near infrared (Nd:YAG laser at 1064 nm) and visible (argon laser at 514.5 nm). A strong NIR emission of Er 3+ in the window of minimal optical loss in silica based optical fibers, due to the 4 I 13/2 → 4 I 15/2 transition at 1.55 μm has been observed. Codoping with Yb 3+ significantly increases the intensity of that important emission

  13. A Multifunctional Biomaterial with NIR Long Persistent Phosphorescence, Photothermal Response and Magnetism.

    Science.gov (United States)

    Wu, Yiling; Li, Yang; Qin, Xixi; Qiu, Jianrong

    2016-09-20

    There are many reports on long persistent phosphors (LPPs) applied in bioimaging. However, there are few reports on LPPs applied in photothermal therapy (PTT), and an integrated system with multiple functions of diagnosis and therapy. In this work, we fabricate effective multifunctional phosphors Zn3 Ga2 SnO8 : Cr(3+) , Nd(3+) , Gd(3+) with NIR persistent phosphorescence, photothermal response and magnetism. Such featured materials can act as NIR optical biolabels and magnetic resonance imaging (MRI) contrast agents for tracking the early cancer cells, but also as photothermal therapeutic agent for killing the cancer cells. This new multifunctional biomaterial is expected to open a new possibility of setting up an advanced imaging-guided therapy system featuring a high resolution for bioimaging and low side effects for the photothermal ablation of tumors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Reducing NIR prediction errors with nonlinear methods and large populations of intact compound feedstuffs

    International Nuclear Information System (INIS)

    Fernández-Ahumada, E; Gómez, A; Vallesquino, P; Guerrero, J E; Pérez-Marín, D; Garrido-Varo, A; Fearn, T

    2008-01-01

    According to the current demands of the authorities, the manufacturers and the consumers, controls and assessments of the feed compound manufacturing process have become a key concern. Among others, it must be assured that a given compound feed is well manufactured and labelled in terms of the ingredient composition. When near-infrared spectroscopy (NIRS) together with linear models were used for the prediction of the ingredient composition, the results were not always acceptable. Therefore, the performance of nonlinear methods has been investigated. Artificial neural networks and least squares support vector machines (LS-SVM) have been applied to a large (N = 20 320) and heterogeneous population of non-milled feed compounds for the NIR prediction of the inclusion percentage of wheat and sunflower meal, as representative of two different classes of ingredients. Compared to partial least squares regression, results showed considerable reductions of standard error of prediction values for both methods and ingredients: reductions of 45% with ANN and 49% with LS-SVM for wheat and reductions of 44% with ANN and 46% with LS-SVM for sunflower meal. These improvements together with the facility of NIRS technology to be implemented in the process make it ideal for meeting the requirements of the animal feed industry

  15. In-line monitoring and interpretation of an indomethacin anti-solvent crystallization process by near-infrared spectroscopy (NIRS).

    Science.gov (United States)

    Lee, Hea-Eun; Lee, Min-Jeong; Kim, Woo-Sik; Jeong, Myung-Yung; Cho, Young-Sang; Choi, Guang Jin

    2011-11-28

    PAT (process analytical technology) has been emphasized as one of key elements for the full implementation of QbD (quality-by-design) in the pharmaceutical area. NIRS (near-infrared spectroscopy) has been studied intensively as an in-line/on-line monitoring tool in chemical and biomedical industries. A precise and reliable monitoring of the particle characteristics during crystallization along with a suitable control strategy should be highly encouraged for the conformance to new quality system of pharmaceutical products. In this study, the anti-solvent crystallization process of indomethacin (IMC) was monitored using an in-line NIRS. IMC powders were produced via anti-solvent crystallization using two schemes; 'S-to-A' (solvent-to-antisolvent) and 'A-to-S' (antisolvent-to-solvent). In-line NIR spectra were analyzed by a PCA (principal component analysis) method. Although pure α-form IMC powder was resulted under A-to-S scheme, a mixture of the α-form and γ-form was produced for S-to-A case. By integrating the PCA results with off-line characterization (SEM, XRD, DSC) data, the crystallization process under each scheme was elucidated by three distinct consecutive steps. It was demonstrated that in-line NIRS, combined with PCA, can be very useful to monitor in real time and interpret the anti-solvent crystallization process with respect to the polymorphism and particle size. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Calculated optical absorption of different perovskite phases

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2015-01-01

    We present calculations of the optical properties of a set of around 80 oxides, oxynitrides, and organometal halide cubic and layered perovskites (Ruddlesden-Popper and Dion-Jacobson phases) with a bandgap in the visible part of the solar spectrum. The calculations show that for different classes...... of perovskites the solar light absorption efficiency varies greatly depending not only on bandgap size and character (direct/indirect) but also on the dipole matrix elements. The oxides exhibit generally a fairly weak absorption efficiency due to indirect bandgaps while the most efficient absorbers are found...... in the classes of oxynitride and organometal halide perovskites with strong direct transitions....

  17. Encapsulation of Protonated Diamines in a Water-Soluble Chiral, Supramolecular Assembly Allows for Measurement of Hydrogen-Bond Breaking Followed by Nitrogen Inversion/Rotation (NIR)

    Energy Technology Data Exchange (ETDEWEB)

    Meux, Susan C.; Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2007-09-19

    Amine nitrogen inversion, difficult to observe in aqueous solution, is followed in a chiral, supramolecular host molecule with purely-rotational T-symmetry that reduces the local symmetry of encapsulated monoprotonated diamines and enables the observation and quantification of {Delta}G{double_dagger} for the combined hydrogen-bond breaking and nitrogen inversion rotation (NIR) process. Free energies of activation for the combined hydrogen-bond breaking and NIR process inside of the chiral assembly were determined by the NMR coalescence method. Activation parameters for ejection of the protonated amines from the assembly confirm that the NIR process responsible for the coalescence behavior occurs inside of the assembly rather than by a guest ejection/NIR/re-encapsulation mechanism. For one of the diamines, N,N,N{prime},N{prime}-tetramethylethylenediamine (TMEDA), the relative energy barriers for the hydrogen-bond breaking and NIR process were calculated at the G3(MP2)//B3LYP/6-31++G(d,p) level of theory, and these agreed well with the experimental data.

  18. The effects of water and lipids on NIR optical breast measurements

    Science.gov (United States)

    Cerussi, Albert E.; Bevilacqua, Frederic; Shah, Natasha; Jakubowski, Dorota B.; Berger, Andrew J.; Lanning, Ryan M.; Tromberg, Bruce J.

    2001-06-01

    Near infrared diffuse optical spectroscopy and imaging may enhance existing technologies for breast cancer screening, diagnosis, and treatment. NIR spectroscopy yields quantitative functional information that cannot be obtained with other non-invasive radiological techniques. In this study we focused upon the origins of this contrast in healthy breast, especially from water and lipids.

  19. Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation

    Science.gov (United States)

    Sun, Pei-Pei; Tan, Fu-Lun; Zhang, Zong; Jiang, Yi-Han; Zhao, Yang; Zhu, Chao-Zhe

    2018-01-01

    The mirror neuron system (MNS), mainly including the premotor cortex (PMC), inferior frontal gyrus (IFG), superior parietal lobule (SPL), and rostral inferior parietal lobule (IPL), has attracted extensive attention as a possible neural mechanism of social interaction. Owing to high ecological validity, functional near-infrared spectroscopy (fNIRS) has become an ideal approach for exploring the MNS. Unfortunately, for the feasibility of fNIRS to detect the MNS, none of the four dominant regions were found in previous studies, implying a very limited capacity of fNIRS to investigate the MNS. Here, we adopted an experimental paradigm in a real-life situation to evaluate whether the MNS activity, including four dominant regions, can be detected by using fNIRS. Specifically, 30 right-handed subjects were asked to complete a table-setting task that included action execution and action observation. A double density probe configuration covered the four regions of the MNS in the left hemisphere. We used a traditional channel-based group analysis and also a ROI-based group analysis to find which regions are activated during both action execution and action observation. The results showed that the IFG, adjacent PMC, SPL, and IPL were involved in both conditions, indicating the feasibility of fNIRS to detect the MNS. Our findings provide a foundation for future research to explore the functional role of the MNS in social interaction and various disorders using fNIRS. PMID:29556185

  20. Feasibility of Functional Near-Infrared Spectroscopy (fNIRS to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation

    Directory of Open Access Journals (Sweden)

    Pei-Pei Sun

    2018-03-01

    Full Text Available The mirror neuron system (MNS, mainly including the premotor cortex (PMC, inferior frontal gyrus (IFG, superior parietal lobule (SPL, and rostral inferior parietal lobule (IPL, has attracted extensive attention as a possible neural mechanism of social interaction. Owing to high ecological validity, functional near-infrared spectroscopy (fNIRS has become an ideal approach for exploring the MNS. Unfortunately, for the feasibility of fNIRS to detect the MNS, none of the four dominant regions were found in previous studies, implying a very limited capacity of fNIRS to investigate the MNS. Here, we adopted an experimental paradigm in a real-life situation to evaluate whether the MNS activity, including four dominant regions, can be detected by using fNIRS. Specifically, 30 right-handed subjects were asked to complete a table-setting task that included action execution and action observation. A double density probe configuration covered the four regions of the MNS in the left hemisphere. We used a traditional channel-based group analysis and also a ROI-based group analysis to find which regions are activated during both action execution and action observation. The results showed that the IFG, adjacent PMC, SPL, and IPL were involved in both conditions, indicating the feasibility of fNIRS to detect the MNS. Our findings provide a foundation for future research to explore the functional role of the MNS in social interaction and various disorders using fNIRS.

  1. Spectral characterization of crude oil using fluorescence (synchronous and time-resolved) and NIR (Near Infrared Spectroscopy); Caracterizacao espectral do petroleo utilizando fluorescencia (sincronizada e resolvida no tempo) e NIR (Near Infrared Spectroscopy)

    Energy Technology Data Exchange (ETDEWEB)

    Falla Sotelo, F.; Araujo Pantoja, P.; Lopez-Gejo, J.; Le Roux, G.A.C.; Nascimento, C.A.O. [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Quimica. Lab. de Simulacao e Controle de Processos; Quina, F.H. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Centro de Capacitacao e Pesquisa em Meio Ambiente (CEPEMA)

    2008-07-01

    The objective of the present work is to evaluate the performance of two spectroscopic techniques employed in the crude oil characterization: NIR spectroscopy and fluorescence spectroscopy (Synchronous fluorescence - SF and Time Resolved Fluorescence - TRF) for the development of correlation models between spectral profiles of crude oil samples and both physical properties (viscosity and API density) and physico-chemical properties (SARA analysis: Saturated, Aromatic, Resins and Asphaltenes). The better results for viscosity and density were obtained using NIR whose prediction capacity was good (1.5 cP and 0.5 deg API, respectively). For SARA analysis, fluorescence spectroscopy revealed its potential in the model calibration showing good results (R2 coefficients greater than 0.85). TRF spectroscopy had better performance than SF spectroscopy. (author)

  2. In vivo photoacoustic tumor tomography using a quinoline-annulated porphyrin as NIR molecular contrast agent.

    Science.gov (United States)

    Luciano, Michael; Erfanzadeh, Mohsen; Zhou, Feifei; Zhu, Hua; Bornhütter, Tobias; Röder, Beate; Zhu, Quing; Brückner, Christian

    2017-01-25

    The synthesis and photophysical properties of a tetra-PEG-modified and freely water-soluble quinoline-annulated porphyrin are described. We previously demonstrated the ability of quinoline-annulated porphyrins to act as an in vitro NIR photoacoustic imaging (PAI) contrast agent. The solubility of the quinoline-annulated porphyrin derivative in serum now allowed the assessment of the efficacy of the PEGylated derivative as an in vivo NIR contrast agent for the PAI of an implanted tumor in a mouse model. A multi-fold contrast enhancement when compared to the benchmark dye ICG could be shown, a finding that could be traced to its photophysical properties (short triplet lifetimes, low fluorescence and singlet oxygen sensitization quantum yields). A NIR excitation wavelength of 790 nm could be used, fully taking advantage of the optical window of tissue. Rapid renal clearance of the dye was observed. Its straight-forward synthesis, optical properties with the possibility for further optical fine-tuning, nontoxicity, favorable elimination rates, and contrast enhancement make this a promising PAI contrast agent. The ability to conjugate the PAI chromophore with a fluorescent tag using a facile and general conjugation strategy was also demonstrated.

  3. Broadband dye-sensitized upconverting nanocrystals enabled near-infrared planar perovskite solar cells

    Science.gov (United States)

    Lai, Xuesen; Li, Xitao; Lv, Xinding; Zheng, Yan-Zhen; Meng, Fanli; Tao, Xia

    2017-12-01

    Extending the spectral absorption of perovskite solar cells (PSCs) from visible into near-infrared (NIR) range is a promising strategy to minimize non-absorption loss of solar photons and enhance the cell photovoltaic performance. Herein, we report on for the first time a viable strategy of incorporating IR806 dye-sensitized upconversion nanocrystals (IR806-UCNCs) into planar PSC for broadband upconversion of NIR light (800-1000 nm) into perovskite absorber-responsive visible emissions. A smart trick is firstly adopted to prepare hydrophilic IR806-UCNCs via a NOBF4 assisted two-step ligand-exchange that allows incorporating with perovskite precursor for in-situ growth of upconverting planar perovskite film. Unlike typically reported upconverting nanoparticles with narrow NIR absorption, the as-prepared IR806-UCNCs are able to harvest NIR light broadly and then transfer the captured energy to the UCNCs for an efficient visible upconversion. The IR806-UCNCs-incorporated cell exhibits a power conversion efficiency of 17.49%, corresponding to 29% increment from that of the pristine cell (13.52%). This strategy provides a feasible way to enable the most efficient harvesting of NIR sunlight for solar cells and other optoelectric devices.

  4. From nanoscale to macroscale: Engineering biomass derivatives with nitrogen doping for tailoring dielectric properties and electromagnetic absorption

    Science.gov (United States)

    Wang, Yana; Zhou, Zhili; Chen, Mingji; Huang, Yixing; Wang, Changxian; Song, Wei-Li

    2018-05-01

    Since achievement in electromagnetic (EM) technology dramatically promotes the critical requirement in developing advanced EM response materials, which are required to hold various advantageous features in light weight, small thickness, strong reflection loss and broadband absorption, the most important requirements, i.e. strong reflection loss and broadband absorption, are still highly pursued because of the intrinsic shortage in conventional EM absorbers. For addressing such critical problems, a unique three-dimensional nitrogen doped carbon monolith was demonstrated to understand the effects of the nitrogen doping on the dielectric and microwave absorption performance. The chemical components of the nitrogen doped carbon monoliths have been quantitatively determined for fully understanding the effects of nanoscale structures on the macroscopic composites. A modified Cole-Cole plot is plotted for guiding the chemical doping and material process, aiming to realizing the best matching conditions. The results have promised a universal route for achieving advanced materials with strong and broadband EM absorption.

  5. Synthesis, Characterization, and NIR Reflectance of Highly Dispersed NiTiO3 and NiTiO3/TiO2 Composite Pigments

    Directory of Open Access Journals (Sweden)

    Yuping Tong

    2016-01-01

    Full Text Available The highly dispersed nanostructured NiTiO3 pigments and NiTiO3/TiO2 composite pigments can be synthesized at relative low temperature. The activation energy of crystal growth of NiTiO3 during calcinations via salt-assistant combustion method is 9.35 kJ/mol. The UV-vis spectra results revealed that the absorbance decreased with the increasing of calcinations temperature due to small size effect of nanometer particles. The optical data of NiTiO3 nanocrystals were analyzed at the near-absorption edge. SEM showed that the obtained NiTiO3 nanocrystals and NiTiO3/TiO2 nanocomposite were composed of highly dispersed spherical-like and spherical particles with uniform size distribution, respectively. The chromatic properties and diffuse reflectance of samples were investigated. The obtained NiTiO3/TiO2 composite samples have higher NIR reflectance than NiTiO3 pigments.

  6. Fast on-line analysis of process alkane gas mixtures by NIR spectroscopy

    NARCIS (Netherlands)

    Boelens, H. F. M.; Kok, W. T.; de Noord, O. E.; Smilde, A. K.

    2000-01-01

    Proper operation of a molecular sieve process for the separation of iso- and cyclo-alkanes front normal alkanes requires the fast online detection of normal alkanes breaking through the column. The feasibility of using near-infrared (NIR) spectroscopy for this application was investigated. Alkane

  7. Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows

    NARCIS (Netherlands)

    Cortelletti, P.; Skripka, A.; Facciotti, C.; Pedroni, M.; Caputo, G.; Pinna, N.; Quintanilla, M.; Benayas, A.; Vetrone, F.; Speghini, A.

    2018-01-01

    Lanthanide-activated SrF2 nanoparticles with a multishell architecture were investigated as optical thermometers in the biological windows. A ratiometric approach based on the relative changes in the intensities of different lanthanide (Nd3+ and Yb3+) NIR emissions was applied to investigate the

  8. The Effect of NIR Light and the Light-Activated Antimicrobial Agent on Wound Pathogenic Biofilms; Implication for Nonpharmacologic Chronic Wound Treatment

    DEFF Research Database (Denmark)

    Omar, Ghada Said Mohammed

    2015-01-01

    to the increase of lifestyle diseases, as diabetes, obesity, and cardiovascular diseases. The presence of bacterial biofilms is considered an important factor responsible for wounds chronicity. Therefore, this study investigates the efficacy of near-infrared (NIR) laser in vitro, in disrupting wound pathogenic...... biofilms. Metoder / Methods Biofilms of Staphylococcus aureus and Pseudomonas aeruginosa were grown in a 96-well microtiter plate for 18-22 h. The study included 4 arms: (a) control; (b) 200 µg/mL Indocyanin green (ICG) kept in the dark, (c) NIR laser alone; (d) NIR laser combined with 200 µg/mL. ICG....... The biofilms were exposed to different light doses from the 808 nm NIR laser at a fluence rate of 0.3 W/cm2. Crystal violate assay and viable count were used to detect the effect. (Foreløbige) resultater / (Preliminary) Results A light dose of 90 J/cm2 killed approximately 99.9% of P. aeruginosa bacterial...

  9. Temporal Comparison Between NIRS and EEG Signals During a Mental Arithmetic Task Evaluated with Self-Organizing Maps.

    Science.gov (United States)

    Oyama, Katsunori; Sakatani, Kaoru

    2016-01-01

    Simultaneous monitoring of brain activity with near-infrared spectroscopy and electroencephalography allows spatiotemporal reconstruction of the hemodynamic response regarding the concentration changes in oxyhemoglobin and deoxyhemoglobin that are associated with recorded brain activity such as cognitive functions. However, the accuracy of state estimation during mental arithmetic tasks is often different depending on the length of the segment for sampling of NIRS and EEG signals. This study compared the results of a self-organizing map and ANOVA, which were both used to assess the accuracy of state estimation. We conducted an experiment with a mental arithmetic task performed by 10 participants. The lengths of the segment in each time frame for observation of NIRS and EEG signals were compared with the 30-s, 1-min, and 2-min segment lengths. The optimal segment lengths were different for NIRS and EEG signals in the case of classification of feature vectors into the states of performing a mental arithmetic task and being at rest.

  10. Motor learning and modulation of prefrontal cortex: an fNIRS assessment

    Science.gov (United States)

    Ono, Yumie; Noah, Jack Adam; Zhang, Xian; Nomoto, Yasunori; Suzuki, Tatsuya; Shimada, Sotaro; Tachibana, Atsumichi; Bronner, Shaw; Hirsch, Joy

    2015-12-01

    Objective. Prefrontal hemodynamic responses are observed during performance of motor tasks. Using a dance video game (DVG), a complex motor task that requires temporally accurate footsteps with given visual and auditory cues, we investigated whether 20 h of DVG training modified hemodynamic responses of the prefrontal cortex in six healthy young adults. Approach. Fronto-temporal activity during actual DVG play was measured using functional near-infrared spectroscopy (fNIRS) pre- and post-training. To evaluate the training-induced changes in the time-courses of fNIRS signals, we employed a regression analysis using the task-specific template fNIRS signals that were generated from alternate well-trained and/or novice DVG players. The HRF was also separately incorporated as a template to construct an alternate regression model. Change in coefficients for template functions at pre- and post- training were determined and compared among different models. Main results. Training significantly increased the motor performance using the number of temporally accurate steps in the DVG as criteria. The mean oxygenated hemoglobin (ΔoxyHb) waveform changed from an activation above baseline pattern to that of a below baseline pattern. Participants showed significantly decreased coefficients for regressors of the ΔoxyHb response of novice players and HRF. The model using ΔoxyHb responses from both well-trained and novice players of DVG as templates showed the best fit for the ΔoxyHb responses of the participants at both pre- and post-training when analyzed with Akaike information criteria. Significance. These results suggest that the coefficients for the template ΔoxyHb responses of the novice players are sensitive indicators of motor learning during the initial stage of training and thus clinically useful to determine the improvement in motor performance when patients are engaged in a specific rehabilitation program.

  11. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    DEFF Research Database (Denmark)

    Gritti, Claudia; Raza, Søren; Kadkhodazadeh, Shima

    2017-01-01

    Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique......, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface...

  12. The low-ion QSO absorption-line systems

    International Nuclear Information System (INIS)

    Lanzetta, K.M.

    1988-01-01

    Various techniques are used to investigate the class of QSO absorption-line systems that exhibit low-ion absorption lines. Four separate investigations are conducted as follows: Spectroscopy of 32 QSOs at red wavelengths is presented and used to investigate intermediate-redshift MgII absorption. A total of 22 Mg II doublets are detected, from which properties of the Mg II absorbers are derived. Marginal evidence for intrinsic evolution of the number density of the Mg II absorbers with redshift is found. The data are combined with previous observations of C IV and C II seen in the same QSOs at blue wavelengths, and the properties of Mg II- and C IV-selected systems are compared. A sample is constructed of 129 QSOs for which are available published data suitable for detecting absorption-line systems that are optically thick to Lyman continuum radiation. A total of 53 such Lyman-limit systems are found, from which properties of the Lyman-limit systems are derived. It is found that the rate of incidence of the systems does not strongly evolved with redshift. This result is contrasted with the evolution found previously for systems selected on the basis of Mg II absorption. Spectroscopy at red wavelengths of eight QSOs with known damped Lyα absorption systems is presented. Spectroscopic and spectrophotometric observations aimed at detecting molecular hydrogen and dust in the z = 2.796 damped Lyα absorber toward Q1337 + 113 are presented

  13. Aplicación de la espectroscopia NIR para la predicción de sólidos solubles en pulpa de guayaba

    Directory of Open Access Journals (Sweden)

    ányelo Andrey Gutiérrez Devia

    2015-04-01

    Full Text Available Utilizando la técnica NIRS (espectroscopia de reflectancia en el infrarrojo cercano se realizó la predicción de sólidos solubles en pulpa de guayaba (Psidium guajava L. y (Psidium friedrichsthalianum sobre 92 muestras en dos estados de madurez de la fruta. Cada fruto fue procesado hasta obtener la fracción comestible en la cual se determinó el contenido de sólidos solubles (%. De esta fracción se tomaron dos submuestras que fueron escaneadas en el espectrofotómetro NIR en un rango entre 400 y 2500 nm. Para la calibración se generaron modelos de regresión mediante MPLS (mínimos cuadrados parciales modificados en un rango entre 1108 y 2498.2 nm. Para la elección del modelo final de calibración del NIR se consideraron como criterios el coeficiente de determinación (R² y la desviación residual predictiva (RPD. Para establecer la existencia de diferencias entre los resultados obtenidos por el método primario o de referencia y los de NIR se realizó un análisis de varianza y prueba de medias mediante el programa estadístico SAS v 9.0. Los resultados mostraron una alta capacidad de predicción del modelo (R² = 0.990 entre las mediciones primarias y las de NIR. El valor de RPD fue 6.20, que indica una excelente precisión de la predicción. Entre las estimaciones por NIR y primarias no se presentaron diferencias significativas, pero sí se observaron entre muestras.

  14. Role of diet in absorption and toxicity of oral cadmium- A review of ...

    African Journals Online (AJOL)

    The role of diet or its components in the absorption, distribution and toxicity of cadmium (Cd) has received attention in recent times. Experimental evidence in literature strongly suggests that the absorption of Cd is dependent on factors such as age, pH, diet and intestinal metallothionein (MT) production. The chemical forms ...

  15. Picosecond absorption relaxation measured with nanosecond laser photoacoustics.

    Science.gov (United States)

    Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V

    2010-10-18

    Picosecond absorption relaxation-central to many disciplines-is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural-including strongly scattering and nonfluorescent-materials.

  16. Light interaction with nano-structured diatom frustule, from UV-A to NIR

    DEFF Research Database (Denmark)

    Maibohm, Christian; Nielsen, Josefine Holm; Rottwitt, Karsten

    2016-01-01

    symmetry where morphological parameters vary between the different investigated species. We report how light interacts with the frustule in the wavelength range from UV-A (320-380 nm) to NIR (900 nm). High resolution spectroscopy and CCD images are used to identify photoluminescence (PL) and variations...

  17. High frame-rate MR-guided near-infrared tomography system to monitor breast hemodynamics

    Science.gov (United States)

    Li, Zhiqiu; Jiang, Shudong; Krishnaswamy, Venkataramanan; Davis, Scott C.; Srinivasan, Subhadra; Paulsen, Keith D.; Pogue, Brian W.

    2011-02-01

    A near-infrared (NIR) tomography system with spectral-encoded sources at two wavelength bands was built to quantify the temporal contrast at 20 Hz bandwidth, while imaging breast tissue. The NIR system was integrated with a magnetic resonance (MR) machine through a custom breast coil interface, and both NIR data and MR images were acquired simultaneously. MR images provided breast tissue structural information for NIR reconstruction. Acquisition of finger pulse oximeter (PO) plethysmogram was synchronized with the NIR system in the experiment to offer a frequency-locked reference. The recovered absorption coefficients of the breast at two wavelengths showed identical temporal frequency as the PO output, proving this multi-modality design can recover the small pulsatile variation of absorption property in breast tissue related to the heartbeat. And it also showed the system's ability on novel contrast imaging of fast flow signals in deep tissue.

  18. Absorption of surface acoustic waves by topological insulator thin films

    International Nuclear Information System (INIS)

    Li, L. L.; Xu, W.

    2014-01-01

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies

  19. An optimized absorbing potential for ultrafast, strong-field problems

    Science.gov (United States)

    Yu, Youliang; Esry, B. D.

    2018-05-01

    Theoretical treatments of strong-field physics have long relied on the numerical solution of the time-dependent Schrödinger equation. The most effective such treatments utilize a discrete spatial representation—a grid. Since most strong-field observables relate to the continuum portion of the wave function, the boundaries of the grid—which act as hard walls and thus cause reflection—can substantially impact the observables. Special care thus needs to be taken. While there exist a number of attempts to solve this problem—e.g., complex absorbing potentials and masking functions, exterior complex scaling, and coordinate scaling—none of them are completely satisfactory. The first of these is arguably the most popular, but it consumes a substantial fraction of the computing resources in any given calculation. Worse, this fraction grows with the dimensionality of the problem. In addition, no systematic way to design such a potential has been used in the strong-field community. In this work, we address these issues and find a much better solution. By comparing with previous widely used absorbing potentials, we find a factor of 3–4 reduction in the absorption range, given the same level of absorption over a specified energy interval.

  20. Enhanced microwave absorption properties of Ni-doped ordered mesoporous carbon/polyaniline nanocomposites

    International Nuclear Information System (INIS)

    Wang, Liuding; Wu, Hongjing; Shen, Zhongyuan; Guo, Shaoli; Wang, Yiming

    2012-01-01

    Highlights: ► OMC-Ni/PANI nanocomposites were prepared by in situ polymerization method. ► The effective absorption bandwidth was 4.7 GHz for OMC-Ni0.15/PANI. ► OMC-Ni/PANI showed excellent microwave absorption with respect to OMC-Ni. ► This effect could be mainly attributed to the improvement of impendence matching. - Abstract: We propose and demonstrate a new scheme to improve microwave absorption property through polyaniline (PANI)-functionalized Ni-doped ordered mesoporous carbon (OMC) by in situ polymerization method. The polymer-functionalized nanocomposites, embedding polyaniline within ordered mesoporous carbon, exhibit strong and broadband microwave absorption due to its better dielectric loss characteristic. OMC-Ni0.15/PANI exhibits an effective absorption bandwidth (i.e., reflection loss (RL) ≤ −10 dB) of 4.7 GHz and an absorption peak of −51 dB at 9.0 GHz. The absorption peak intensity and position can be tuned by controlling the thickness of the coating.

  1. Association of radiowave absorption with E(sporadic)-activity

    International Nuclear Information System (INIS)

    Ganguly, S.

    1975-01-01

    Noontime radiowave absorption data for frequencies which are reflected below the height of sporadic-E layers show a strong positive correlation with the sporadic-E layer activity. The possibilities of atmospheric waves affecting both the sporadic-E activity as well as mesospheric ionization are suggested to explain this association

  2. Pharmaceutical Raw Material Identification Using Miniature Near-Infrared (MicroNIR) Spectroscopy and Supervised Pattern Recognition Using Support Vector Machine

    OpenAIRE

    Sun, Lan; Hsiung, Chang; Pederson, Christopher G.; Zou, Peng; Smith, Valton; von Gunten, Marc; O?Brien, Nada A.

    2016-01-01

    Near-infrared spectroscopy as a rapid and non-destructive analytical technique offers great advantages for pharmaceutical raw material identification (RMID) to fulfill the quality and safety requirements in pharmaceutical industry. In this study, we demonstrated the use of portable miniature near-infrared (MicroNIR) spectrometers for NIR-based pharmaceutical RMID and solved two challenges in this area, model transferability and large-scale classification, with the aid of support vector machin...

  3. Absorption of ultraviolet radiation by antarctic phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Vernet, M.; Mitchell, B.G. (Univ. of California-San Diego, La Jolla (United States))

    1990-01-09

    Antarctic phytoplankton contain UV-absorbing compounds that may block damaging radiation. Compounds that absorb from 320-340 nm were observed in spectral absorption of both particulates and in methanol extracts of the particulates. The decrease in the total concentration of these UV compounds with respect to chlorophyll a, as measured by the ratio of in vitro absorption at 335 nm to absorption at 665 nm is variable and decreases with depth. We observed up to 5-fold decrease in this ratio for samples within the physically mixes surface layer. The absorption of UV radiation in methanol extracts, which peaks from 320 to 340 nm, may be composed of several compounds. Shifts in peak absorption with depth (for example, from 331 nm at surface to 321 nm at 75 m), may be interpreted as a change in composition. Ratios of protective yellow xanthophylls (diadinoxanthin + diatoxanthin) to photosynthetic fucoxanthin-like pigments have highest values in surface waters. As these pigments also absorb in the near UV, their function might extend to protection as well as utilization of UV radiation for photosynthesis. We document strong absorption in the UV from 320-330 nm for Antarctic marine particulates. Below this region of the solar energy spectrum, absolute energy levels of incident radiation drop off dramatically. Only wavelengths shorter than about 320 nm will be significantly enhanced due to ozone depletion. If the absorption we observed serves a protective role for phytoplankton photosynthesis, it appears the peak band is in the region where solar energy increases rapidly, and not in the region where depletion would cause significant variations in absolute flux.

  4. Feasibility of field portable near infrared (NIR) spectroscopy to determine cyanide concentrations in soil

    Science.gov (United States)

    Sut, Magdalena; Fischer, Thomas; Repmann, Frank; Raab, Thomas

    2013-04-01

    In Germany, at more than 1000 sites, soil is polluted with an anthropogenic contaminant in form of iron-cyanide complexes. These contaminations are caused by former Manufactured Gas Plants (MGPs), where electricity for lighting was produced in the process of coal gasification. The production of manufactured gas was restrained in 1950, which caused cessation of MGPs. Our study describes the application of Polychromix Handheld Field Portable Near-Infrared (NIR) Analyzer to predict the cyanide concentrations in soil. In recent times, when the soil remediation is of major importance, there is a need to develop rapid and non-destructive methods for contaminant determination in the field. In situ analysis enables determination of 'hot spots', is cheap and time saving in comparison to laboratory methods. This paper presents a novel usage of NIR spectroscopy, where a calibration model was developed, using multivariate calibration algorithms, in order to determine NIR spectral response to the cyanide concentration in soil samples. As a control, the contaminant concentration was determined using conventional Flow Injection Analysis (FIA). The experiments revealed that portable near-infrared spectrometers could be a reliable device for identification of contamination 'hot spots', where cyanide concentration are higher than 2400 mg kg-1 in the field and >1750 mg kg-1 after sample preparation in the laboratory, but cannot replace traditional laboratory analyses due to high limits of detection.

  5. Characterizing and Authenticating Montilla-Moriles PDO Vinegars Using Near Infrared Reflectance Spectroscopy (NIRS Technology

    Directory of Open Access Journals (Sweden)

    María-José De la Haba

    2014-02-01

    Full Text Available This study assessed the potential of near infrared (NIR spectroscopy as a non-destructive method for characterizing Protected Designation of Origin (PDO “Vinagres de Montilla-Moriles” wine vinegars and for classifying them as a function of the manufacturing process used. Three spectrophotometers were evaluated for this purpose: two monochromator instruments (Foss NIRSystems 6500 SY-I and Foss NIRSystems 6500 SY-II; spectral range 400–2,500 nm in both cases and a diode-array instrument (Corona 45 VIS/NIR; spectral range 380–1,700 nm. A total of 70 samples were used to predict major chemical quality parameters (total acidity, fixed acidity, volatile acidity, pH, dry extract, ash, acetoin, methanol, total polyphenols, color (tonality and intensity, and alcohol content, and to construct models for the classification of vinegars as a function of the manufacturing method used. The results obtained indicate that this non-invasive technology can be used successfully by the vinegar industry and by PDO regulators for the routine analysis of vinegars in order to authenticate them and to detect potential fraud. Slightly better results were achieved with the two monochromator instruments. The findings also highlight the potential of these NIR instruments for predicting the manufacturing process used, this being of particular value for the industrial authentication of traditional wine vinegars.

  6. Constraining Absorption of Organic Aerosol from Biomass Burning with Observations

    Science.gov (United States)

    Feng, Y.; Liu, X.

    2014-12-01

    Biomass burning emissions contribute to a large fraction of global organic aerosol (OA) emissions. In most models, radiative forcing of black carbon (BC) and OA from biomass burning offsets each other to give a small or close to zero total forcing, i.e., an estimate of 0 (-0.2 to +0.2) W m-2 by IPCC-AR5. Recent observational and modeling studies have shown the absorbing part of OA, referred to as "brown" carbon (BrC), to be a significant source of direct absorption of solar radiation thus positive forcing, in particular over regions dominated by biomass burning and biofuel emissions. Here we implement optical treatment for the BrC absorption in the CESM1/CAM5 model, and compare the calculated aerosol spectral absorption with ground-based AERONET and DOE/ARM observations. In this version of CAM5, biomass burning and biofuel OA are treated separately from fossil fuel OA with different imaginary refractive index. Because the absorption of BrC is highly variable and uncertain depending on source, aging, and mixing state, sensitivity studies of BrC refractive index parameterized by fuel type and ratio of BC to OA mass will be examined and the resulting uncertainty in the estimated forcing will be discussed. Preliminary results suggest the simulated wavelength dependence of aerosol absorption, as measured by the absorption Ångström exponent (AAE), increases from 0.9 for non-absorbing OA to 1.2 (or 1.0) for strongly (or moderately) absorbing BrC. The AAE calculated for the strongly absorbing BrC agrees with AERONET spectral observations at 440-870 nm over most regions but overpredicts for the open biomass burning-dominated South America and southern Africa, in which inclusion of moderately absorbing BrC exhibits better agreement.

  7. Folding Up of Gold Nanoparticle Strings into Plasmonic Vesicles for Enhanced Photoacoustic Imaging

    KAUST Repository

    Liu, Yijing

    2015-11-11

    The stepwise self-assembly of hollow plasmonic vesicles with vesicular membranes containing strings of gold nanoparticles (NPs) is reported. The formation of chain vesicles can be controlled by tuning the density of the polymer ligands on the surface of the gold NPs. The strong absorption of the chain vesicles in the near-infrared (NIR) region leads to a much higher efficiency in photoacoustic (PA) imaging than for non-chain vesicles. The chain vesicles were further employed for the encapsulation of drugs and the NIR light triggered release of payloads. This work not only offers a new platform for controlling the hierarchical self-assembly of NPs, but also demonstrates that the physical properties of the materials can be tailored by controlling the spatial arrangement of NPs within assemblies to achieve a better performance in biomedical applications.

  8. The theory and experiment of solute migration caused by excited state absorptions

    International Nuclear Information System (INIS)

    Xiao, Jin; Ying-Lin, Song; Yu-Xiao, Wang; Min, Shui; Chang-Wei, Li; Jun-Yi, Yang; Xue-Ru, Zhang; Kun, Yang

    2010-01-01

    Nonsymmetrical transition from reverse-saturable absorption (RSA) to saturable absorption (SA) caused by excited state absorption induced mass transport of the CuPcTs dissolved in dimethyl sulfoxide is observed in an open aperture Z-scan experiment with a 21-ps laser pulse. The nonsymmetrical transition from RSA to SA is ascribed neither to saturation of excited state absorption nor to thermal induced mass transport, the so-called Soret effect. In our consideration, strong nonlinear absorption causes the rapid accumulation of the non-uniform kinetic energy of the solute molecules. The non-uniform kinetic field in turn causes the migration of the solute molecules. Additionally, an energy-gradient-induced mass transport theory is presented to interpret the experimental results, and the theoretical calculations are also taken to fit our experimental results. (classical areas of phenomenology)

  9. The Role of Trait and State Absorption in the Enjoyment of Music

    Science.gov (United States)

    2016-01-01

    Little is known about the role of state versus trait characteristics on our enjoyment of music. The aim of this study was to investigate the influence of state and trait absorption upon preference for music, particularly preference for music that evokes negative emotions. The sample consisted of 128 participants who were asked to listen to two pieces of self-selected music and rate the music on variables including preference and felt and expressed emotions. Participants completed a brief measure of state absorption after listening to each piece, and a trait absorption inventory. State absorption was strongly positively correlated with music preference, whereas trait absorption was not. Trait absorption was related to preference for negative emotions in music, with chi-square analyses demonstrating greater enjoyment of negative emotions in music among individuals with high trait absorption. This is the first study to show that state and trait absorption have separable and distinct effects on a listener’s music experience, with state characteristics impacting music enjoyment in the moment, and trait characteristics influencing music preference based on its emotional content. PMID:27828970

  10. The Role of Trait and State Absorption in the Enjoyment of Music.

    Science.gov (United States)

    Hall, Sarah E; Schubert, Emery; Wilson, Sarah J

    2016-01-01

    Little is known about the role of state versus trait characteristics on our enjoyment of music. The aim of this study was to investigate the influence of state and trait absorption upon preference for music, particularly preference for music that evokes negative emotions. The sample consisted of 128 participants who were asked to listen to two pieces of self-selected music and rate the music on variables including preference and felt and expressed emotions. Participants completed a brief measure of state absorption after listening to each piece, and a trait absorption inventory. State absorption was strongly positively correlated with music preference, whereas trait absorption was not. Trait absorption was related to preference for negative emotions in music, with chi-square analyses demonstrating greater enjoyment of negative emotions in music among individuals with high trait absorption. This is the first study to show that state and trait absorption have separable and distinct effects on a listener's music experience, with state characteristics impacting music enjoyment in the moment, and trait characteristics influencing music preference based on its emotional content.

  11. Optical nonlinear absorption characteristics of Sb2Se3 nanoparticles

    Science.gov (United States)

    Muralikrishna, Molli; Kiran, Aditha Sai; Ravikanth, B.; Sowmendran, P.; Muthukumar, V. Sai; Venkataramaniah, Kamisetti

    2014-04-01

    In this work, we report for the first time, the nonlinear optical absorption properties of antimony selenide (Sb2Se3) nanoparticles synthesized through solvothermal route. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies revealed that the nanoparticles are in the range of 10 - 40 nm. Elemental analysis was performed using EDAX. By employing open aperture z-scan technique, we have evaluated the effective two-photon absorption coefficient of Sb2Se3 nanoparticles to be 5e-10 m/W at 532 nm. These nanoparticles exhibit strong intensity dependent nonlinear optical absorption and hence could be considered to have optical power limiting applications in the visible range.

  12. Nonlinear propagation of strong-field THz pulses in doped semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2012-01-01

    We report on nonlinear propagation of single-cycle THz pulses with peak electric fields reaching 300 kV/cm in n-type semiconductors at room temperature. Dramatic THz saturable absorption effects are observed in GaAs, GaP, and Ge, which are caused by the nonlinear electron transport in THz fields....... The semiconductor conductivity, and hence the THz absorption, is modulated due to the acceleration of carriers in strong THz fields, leading to an increase of the effective mass of the electron population, as the electrons are redistributed from the low-momentum, low-effective-mass states to the high-momentum, high...

  13. Pharmaceutical Raw Material Identification Using Miniature Near-Infrared (MicroNIR) Spectroscopy and Supervised Pattern Recognition Using Support Vector Machine.

    Science.gov (United States)

    Sun, Lan; Hsiung, Chang; Pederson, Christopher G; Zou, Peng; Smith, Valton; von Gunten, Marc; O'Brien, Nada A

    2016-05-01

    Near-infrared spectroscopy as a rapid and non-destructive analytical technique offers great advantages for pharmaceutical raw material identification (RMID) to fulfill the quality and safety requirements in pharmaceutical industry. In this study, we demonstrated the use of portable miniature near-infrared (MicroNIR) spectrometers for NIR-based pharmaceutical RMID and solved two challenges in this area, model transferability and large-scale classification, with the aid of support vector machine (SVM) modeling. We used a set of 19 pharmaceutical compounds including various active pharmaceutical ingredients (APIs) and excipients and six MicroNIR spectrometers to test model transferability. For the test of large-scale classification, we used another set of 253 pharmaceutical compounds comprised of both chemically and physically different APIs and excipients. We compared SVM with conventional chemometric modeling techniques, including soft independent modeling of class analogy, partial least squares discriminant analysis, linear discriminant analysis, and quadratic discriminant analysis. Support vector machine modeling using a linear kernel, especially when combined with a hierarchical scheme, exhibited excellent performance in both model transferability and large-scale classification. Hence, ultra-compact, portable and robust MicroNIR spectrometers coupled with SVM modeling can make on-site and in situ pharmaceutical RMID for large-volume applications highly achievable. © The Author(s) 2016.

  14. [On-site evaluation of raw milk qualities by portable Vis/NIR transmittance technique].

    Science.gov (United States)

    Wang, Jia-Hua; Zhang, Xiao-Wei; Wang, Jun; Han, Dong-Hai

    2014-10-01

    To ensure the material safety of dairy products, visible (Vis)/near infrared (NIR) spectroscopy combined with che- mometrics methods was used to develop models for fat, protein, dry matter (DM) and lactose on-site evaluation. A total of 88 raw milk samples were collected from individual livestocks in different years. The spectral of raw milk were measured by a porta- ble Vis/NIR spectrometer with diffused transmittance accessory. To remove the scatter effect and baseline drift, the diffused transmittance spectra were preprocessed by 2nd order derivative with Savitsky-Golay (polynomial order 2, data point 25). Changeable size moving window partial least squares (CSMWPLS) and genetic algorithms partial least squares (GAPLS) meth- ods were suggested to select informative regions for PLS calibration. The PLS and multiple linear regression (MLR) methods were used to develop models for predicting quality index of raw milk. The prediction performance of CSMWPLS models were similar to GAPLS models for fat, protein, DM and lactose evaluation, the root mean standard errors of prediction (RMSEP) were 0.115 6/0.103 3, 0.096 2/0.113 7, 0.201 3/0.123 7 and 0.077 4/0.066 8, and the relative standard deviations of prediction (RPD) were 8.99/10.06, 3.53/2.99, 5.76/9.38 and 1.81/2.10, respectively. Meanwhile, the MLR models were also cal- ibrated with 8, 10, 9 and 7 variables for fat, protein, DM and lactose, respectively. The prediction performance of MLR models was better than or close to PLS models. The MLR models to predict fat, protein, DM and lactose yielded the RMSEP of 0.107 0, 0.093 0, 0.136 0 and 0.065 8, and the RPD of 9.72, 3.66, 8.53 and 2.13, respectively. The results demonstrated the usefulness of Vis/NIR spectra combined with multivariate calibration methods as an objective and rapid method for the quality evaluation of complicated raw milks. And the results obtained also highlight the potential of portable Vis/NIR instruments for on-site assessing quality indexes of

  15. A Brief Review on the Use of Functional Near-Infrared Spectroscopy (fNIRS) for Language Imaging Studies in Human Newborns and Adults

    Science.gov (United States)

    Quaresima, Valentina; Bisconti, Silvia; Ferrari, Marco

    2012-01-01

    Upon stimulation, real time maps of cortical hemodynamic responses can be obtained by non-invasive functional near-infrared spectroscopy (fNIRS) which measures changes in oxygenated and deoxygenated hemoglobin after positioning multiple sources and detectors over the human scalp. The current commercially available transportable fNIRS systems have…

  16. The effect of regional variation of seismic wave attenuation on the strong ground motion from earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, D H; Bernreuter, D L

    1981-10-01

    Attenuation is caused by geometric spreading and absorption. Geometric spreading is almost independent of crustal geology and physiographic region, but absorption depends strongly on crustal geology and the state of the earth's upper mantle. Except for very high frequency waves, absorption does not affect ground motion at distances less than about 25 to 50 km. Thus, in the near-field zone, the attenuation in the eastern United States is similar to that in the western United States. Beyond the near field, differences in ground motion can best be accounted for by differences in attenuation caused by differences in absorption. The stress drop of eastern earthquakes may be higher than for western earthquakes of the same seismic moment, which would affect the high-frequency spectral content. But we believe this factor is of much less significance than differences in absorption in explaining the differences in ground motion between the East and the West. The characteristics of strong ground motion in the conterminous United States are discussed in light of these considerations, and estimates are made of the epicentral ground motions in the central and eastern United States. (author)

  17. Determination of the Mechanical Properties of Rubber by FT-NIR

    OpenAIRE

    Pornprasit, Rattapol; Pornprasit, Philaiwan; Boonma, Pruet; Natwichai, Juggapong

    2016-01-01

    Mechanical tests, for example, tensile and hardness tests, are usually used to evaluate the properties of rubber materials. In this work, mechanical properties of selected rubber materials, that is, natural rubber (NR), styrene butadiene rubber (SBR), nitrile butadiene rubber (NBR), and ethylene propylene diene monomer (EPDM), were evaluated using a near infrared (NIR) spectroscopy technique. Here, NR/NBR and NR/EPDM blends were first prepared. All of the samples were then scanned using a FT-...

  18. The difficulty of measuring the absorption of scattered sunlight by H2O and CO2 in volcanic plumes: A comment on Pering et al. “A novel and inexpensive method for measuring volcanic plume water fluxes at high temporal resolution,” Remote Sens. 2017, 9, 146

    Science.gov (United States)

    Kern, Christoph

    2017-01-01

    In their recent study, Pering et al. (2017) presented a novel method for measuring volcanic water vapor fluxes. Their method is based on imaging volcanic gas and aerosol plumes using a camera sensitive to the near-infrared (NIR) absorption of water vapor. The imaging data are empirically calibrated by comparison with in situ water measurements made within the plumes. Though the presented method may give reasonable results over short time scales, the authors fail to recognize the sensitivity of the technique to light scattering on aerosols within the plume. In fact, the signals measured by Pering et al. are not related to the absorption of NIR radiation by water vapor within the plume. Instead, the measured signals are most likely caused by a change in the effective light path of the detected radiation through the atmospheric background water vapor column. Therefore, their method is actually based on establishing an empirical relationship between in-plume scattering efficiency and plume water content. Since this relationship is sensitive to plume aerosol abundance and numerous environmental factors, the method will only yield accurate results if it is calibrated very frequently using other measurement techniques.

  19. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    DEFF Research Database (Denmark)

    Gritti, Claudia; Raza, Søren; Kadkhodazadeh, Shima

    2017-01-01

    Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique....... Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of nearinfrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged......, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface...

  20. Prediction of energy absorption characteristics of aligned carbon nanotube/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Weidt, D; Figiel, Ł; Buggy, M

    2012-01-01

    This research aims ultimately at improving the impact performance of laminates by applying a coating of epoxy containing carbon nanotubes (CNTs). Here, 2D and 3D computational modelling was carried out to predict energy absorption characteristics of aligned CNT/epoxy nanocomposites subjected to macroscopic compression under different strain rates (quasi-static and impact rates). The influence of the rate-dependent matrix behaviour, CNT aspect ratio and CNT volume fraction on the energy absorption characteristics of the nanocomposites was evaluated. A strong correlation between those parameters was found, which provides an insight into a rate-dependent behaviour of the nanocomposites, and can help to tune their energy absorption characteristics.

  1. Effect of ion concentrations on uranium absorption from sodium carbonate solutions

    International Nuclear Information System (INIS)

    Traut, D.E.; El Hazek, N.M.T.; Palmer, G.R.; Nichols, I.L.

    1979-01-01

    The effect of various ion concentrations on uranium absorption from a sodium carbonate solution by a strong-base, anion resin was investigated in order to help assure an adequate uranium supply for future needs. The studies were conducted to improve the recovery of uranium from in situ leach solutions by ion exchange. The effects of carbonate, bicarbonate, chloride, and sulfate ions were examined. Relatively low (less than 5 g/l) concentrations of chloride, sulfate, and bicarbonate were found to be detrimental to the absorption of uranium. High (greater than 10 g/l) carbonate concentrations also adversely affected the uranium absorption. In addition, the effect of initial resin form was investigated in tests of the chloride, carbonate, and bicarbonate forms; resin form was shown to have no effect on the absorption of uranium

  2. Intensities and strong interaction attenuation of kaonic x-rays

    CERN Document Server

    Backenstoss, Gerhard; Koch, H; Povel, H P; Schwitter, A; Tauscher, Ludwig

    1974-01-01

    Relative intensities of numerous kaonic X-ray transitions have been measured for the elements C, P, S, and Cl, from which level widths due to the strong K-nucleus absorption have been determined. From these and earlier published data, optical potential parameters have been derived and possible consequences on the nuclear matter distribution are discussed. (10 refs).

  3. Black Carbon Absorption at the Global Scale Is Affected by Particle-Scale Diversity in Composition

    Science.gov (United States)

    Fierce, Laura; Bond, Tami C.; Bauer, Susanne E.; Mena, Francisco; Riemer, Nicole

    2016-01-01

    Atmospheric black carbon (BC) exerts a strong, but uncertain, warming effect on the climate. BC that is coated with non-absorbing material absorbs more strongly than the same amount of BC in an uncoated particle, but the magnitude of this absorption enhancement (E(sub abs)) is not well constrained. Modelling studies and laboratory measurements have found stronger absorption enhancement than has been observed in the atmosphere. Here, using a particle-resolved aerosol model to simulate diverse BC populations, we show that absorption is overestimated by as much as a factor of two if diversity is neglected and population-averaged composition is assumed across all BC-containing particles. If, instead, composition diversity is resolved, we find E(sub abs) = 1 - 1.5 at low relative humidity, consistent with ambient observations. This study offers not only an explanation for the discrepancy between modelled and observed absorption enhancement, but also demonstrates how particle-scale simulations can be used to develop relationships for global-scale models.

  4. Optical absorptions of an exciton in a quantum ring: Effect of the repulsive core

    International Nuclear Information System (INIS)

    Xie, Wenfang

    2013-01-01

    We study the optical absorptions of an exciton in a quantum ring. The quantum ring is described as a circular quantum dot with a repulsive core. The advantage of our methodology is that one can investigate the influence of the repulsive core by varying two parameters in the confinement potential. The linear, third-order nonlinear and total optical absorption coefficients have been examined with the change of the confinement potential. The results show that the optical absorptions are strongly affected by the repulsive core. Moreover, the repulsive core can influence the oscillation in the resonant peak of the absorption coefficients.

  5. `VIS/NIR mapping of TOC and extent of organic soils in the Nørre Å valley

    Science.gov (United States)

    Knadel, M.; Greve, M. H.; Thomsen, A.

    2009-04-01

    Organic soils represent a substantial pool of carbon in Denmark. The need for carbon stock assessment calls for more rapid and effective mapping methods to be developed. The aim of this study was to compare traditional soil mapping with maps produced from the results of a mobile VIS/NIR system and to evaluate the ability to estimate TOC and map the area of organic soils. The Veris mobile VIS/NIR spectroscopy system was compared to traditional manual sampling. The system is developed for in-situ near surface measurements of soil carbon content. It measures diffuse reflectance in the 350 nm-2200 nm region. The system consists of two spectrophotometers mounted on a toolbar and pulled by a tractor. Optical measurements are made through a sapphire window at the bottom of the shank. The shank was pulled at a depth of 5-7 cm at a speed of 4-5 km/hr. 20-25 spectra per second with 8 nm resolution were acquired by the spectrometers. Measurements were made on 10-12 m spaced transects. The system also acquired soil electrical conductivity (EC) for two soil depths: shallow EC-SH (0- 31 cm) and deep conductivity EC-DP (0- 91 cm). The conductivity was recorded together with GPS coordinates and spectral data for further construction of the calibration models. Two maps of organic soils in the Nørre Å valley (Central Jutland) were generated: (i) based on a conventional 25 m grid with 162 sampling points and laboratory analysis of TOC, (ii) based on in-situ VIS/NIR measurements supported by chemometrics. Before regression analysis, spectral information was compressed by calculating principal components. The outliers were determined by a mahalanobis distance equation and removed. Clustering using a fuzzy c- means algorithm was conducted. Within each cluster a location with the minimal spatial variability was selected. A map of 15 representative sample locations was proposed. The interpolation of the spectra into a single spectrum was performed using a Gaussian kernel weighting

  6. NIR calibration of soluble stem carbohydrates for predicting drought tolerance in spring wheat

    Science.gov (United States)

    Soluble stem carbohydrates are a component of drought response in wheat (Triticum aestivum L.) and other grasses. Near-infrared spectroscopy (NIR) can rapidly assay for soluble carbohydrates indirectly, but this requires a statistical model for calibration. The objectives of this study were: (i) to ...

  7. Combined data mining/NIR spectroscopy for purity assessment of lime juice

    Science.gov (United States)

    Shafiee, Sahameh; Minaei, Saeid

    2018-06-01

    This paper reports the data mining study on the NIR spectrum of lime juice samples to determine their purity (natural or synthetic). NIR spectra for 72 pure and synthetic lime juice samples were recorded in reflectance mode. Sample outliers were removed using PCA analysis. Different data mining techniques for feature selection (Genetic Algorithm (GA)) and classification (including the radial basis function (RBF) network, Support Vector Machine (SVM), and Random Forest (RF) tree) were employed. Based on the results, SVM proved to be the most accurate classifier as it achieved the highest accuracy (97%) using the raw spectrum information. The classifier accuracy dropped to 93% when selected feature vector by GA search method was applied as classifier input. It can be concluded that some relevant features which produce good performance with the SVM classifier are removed by feature selection. Also, reduced spectra using PCA do not show acceptable performance (total accuracy of 66% by RBFNN), which indicates that dimensional reduction methods such as PCA do not always lead to more accurate results. These findings demonstrate the potential of data mining combination with near-infrared spectroscopy for monitoring lime juice quality in terms of natural or synthetic nature.

  8. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    Science.gov (United States)

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  9. A novel in-line NIR spectroscopy application for the monitoring of tablet film coating in an industrial scale process.

    Science.gov (United States)

    Möltgen, C-V; Puchert, T; Menezes, J C; Lochmann, D; Reich, G

    2012-04-15

    Film coating of tablets is a multivariate pharmaceutical unit operation. In this study an innovative in-line Fourier-Transform Near-Infrared Spectroscopy (FT-NIRS) application is described which enables real-time monitoring of a full industrial scale pan coating process of heart-shaped tablets. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film of up to approx. 28 μm on the tablet face as determined by SEM, corresponding to a weight gain of 2.26%. For a better understanding of the aqueous coating process the NIR probe was positioned inside the rotating tablet bed. Five full scale experimental runs have been performed to evaluate the impact of process variables such as pan rotation, exhaust air temperature, spray rate and pan load and elaborate robust and selective quantitative calibration models for the real-time determination of both coating growth and tablet moisture content. Principal Component (PC) score plots allowed each coating step, namely preheating, spraying and drying to be distinguished and the dominating factors and their spectral effects to be identified (e.g. temperature, moisture, coating growth, change of tablet bed density, and core/coat interactions). The distinct separation of HPMC coating growth and tablet moisture in different PCs enabled a real-time in-line monitoring of both attributes. A PLS calibration model based on Karl Fischer reference values allowed the tablet moisture trajectory to be determined throughout the entire coating process. A 1-latent variable iPLS weight gain calibration model with calibration samples from process stages dominated by the coating growth (i.e. ≥ 30% of the theoretically applied amount of coating) was sufficiently selective and accurate to predict the progress of the thin HPMC coating layer. At-line NIR Chemical Imaging (NIR-CI) in combination with PLS Discriminant Analysis (PLSDA) verified the HPMC coating growth and physical changes at the core/coat interface during the initial

  10. Rapid Discrimination of Chlorpheniramine Maleate and Assessment of Its Surface Content Uniformity in a Pharmaceutical Formulation by NIR-CI Coupled with Statistical Measurement

    Directory of Open Access Journals (Sweden)

    Luwei Zhou

    2014-01-01

    Full Text Available This study demonstrated that near infrared chemical imaging (NIR-CI was a rapid and nondestructive technique for discrimination of chlorpheniramine maleate (CPM and assessment of its surface content uniformity (SCU in a pharmaceutical formulation. The characteristic wavenumber method was used for discriminating CPM distribution on the tablet surface. To assess the surface content uniformity of CPM, binary image and statistical measurement were proposed. Furthermore, high-performance liquid chromatography (HPLC was used as reference method for accurately determining volume content of CPM in the sample. Moreover, HPLC was performed to assess volume content uniformity (VCU of CPM in whole region and part region of the tablets. The NIR-CI result showed that the spatial distribution of CPM was heterogeneous on the tablet surface. Through the comparison of content uniformity of CPM determined by NIR-CI and HPLC, respectively, it demonstrated that a high degree of VCU did not imply a high degree of SCU of the samples. These results indicate that HPLC method is not suitable for testing SCU, and this has been verified by NIR-CI. This study proves the feasibility of NIR-CI for rapid discrimination of CPM and assessment of its SCU, which is helpful for the quality control of commercial CPM tablets.

  11. Mg II ABSORPTION CHARACTERISTICS OF A VOLUME-LIMITED SAMPLE OF GALAXIES AT z ∼ 0.1

    International Nuclear Information System (INIS)

    Barton, Elizabeth J.; Cooke, Jeff

    2009-01-01

    We present an initial survey of Mg II absorption characteristics in the halos of a carefully constructed, volume-limited subsample of galaxies embedded in the spectroscopic part of the Sloan Digital Sky Survey (SDSS). We observed quasars near sightlines to 20 low-redshift (z ∼ 0.1), luminous (M r + 5log h ≤-20.5) galaxies in SDSS DR4 and DR6 with the LRIS-B spectrograph on the Keck I telescope. The primary systematic criteria for the targeted galaxies are a redshift z ∼> 0.1 and the presence of an appropriate bright background quasar within a projected 75 h -1 kpc of its center, although we preferentially sample galaxies with lower impact parameters and slightly more star formation within this range. Of the observed systems, six exhibit strong (W eq (2796) ≥ 0.3 A) Mg II absorption at the galaxy's redshift, six systems have upper limits which preclude strong Mg II absorption, while the remaining observations rule out very strong (W eq (2796) ≥ 1-2 A) absorption. The absorbers fall at higher impact parameters than many non-absorber sightlines, indicating a covering fraction f c ∼ -1 kpc (f c ∼ 0.25). The data are consistent with a possible dependence of covering fraction and/or absorption halo size on the environment or star-forming properties of the central galaxy.

  12. Crop/weed discrimination using near-infrared reflectance spectroscopy (NIRS)

    Science.gov (United States)

    Zhang, Yun; He, Yong

    2006-09-01

    The traditional uniform herbicide application often results in an over chemical residues on soil, crop plants and agriculture produce, which have imperiled the environment and food security. Near-infrared reflectance spectroscopy (NIRS) offers a promising means for weed detection and site-specific herbicide application. In laboratory, a total of 90 samples (30 for each species) of the detached leaves of two weeds, i.e., threeseeded mercury (Acalypha australis L.) and fourleafed duckweed (Marsilea quadrfolia L.), and one crop soybean (Glycine max) was investigated for NIRS on 325- 1075 nm using a field spectroradiometer. 20 absorbance samples of each species after pretreatment were exported and the lacked Y variables were assigned independent values for partial least squares (PLS) analysis. During the combined principle component analysis (PCA) on 400-1000 nm, the PC1 and PC2 could together explain over 91% of the total variance and detect the three plant species with 98.3% accuracy. The full-cross validation results of PLS, i.e., standard error of prediction (SEP) 0.247, correlation coefficient (r) 0.954 and root mean square error of prediction (RMSEP) 0.245, indicated an optimum model for weed identification. By predicting the remaining 10 samples of each species in the PLS model, the results with deviation presented a 100% crop/weed detection rate. Thus, it could be concluded that PLS was an available alternative of for qualitative weed discrimination on NTRS.

  13. Decoding human mental states by whole-head EEG+fNIRS during category fluency task performance

    Science.gov (United States)

    Omurtag, Ahmet; Aghajani, Haleh; Onur Keles, Hasan

    2017-12-01

    Objective. Concurrent scalp electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), which we refer to as EEG+fNIRS, promises greater accuracy than the individual modalities while remaining nearly as convenient as EEG. We sought to quantify the hybrid system’s ability to decode mental states and compare it with its unimodal components. Approach. We recorded from healthy volunteers taking the category fluency test and applied machine learning techniques to the data. Main results. EEG+fNIRS’s decoding accuracy was greater than that of its subsystems, partly due to the new type of neurovascular features made available by hybrid data. Significance. Availability of an accurate and practical decoding method has potential implications for medical diagnosis, brain-computer interface design, and neuroergonomics.

  14. Three-in-one approach towards efficient organic dye-sensitized solar cells: aggregation suppression, panchromatic absorption and resonance energy transfer

    Directory of Open Access Journals (Sweden)

    Jayita Patwari

    2017-08-01

    Full Text Available In the present study, protoporphyrin IX (PPIX and squarine (SQ2 have been used in a co-sensitized dye-sensitized solar cell (DSSC to apply their high absorption coefficients in the visible and NIR region of the solar spectrum and to probe the possibility of Förster resonance energy transfer (FRET between the two dyes. FRET from the donor PPIX to acceptor SQ2 was observed from detailed investigation of the excited-state photophysics of the dye mixture, using time-resolved fluorescence decay measurements. The electron transfer time scales from the dyes to TiO2 have also been characterized for each dye. The current–voltage (I–V characteristics and the wavelength-dependent photocurrent measurements of the co-sensitized DSSCs reveal that FRET between the two dyes increase the photocurrent as well as the efficiency of the device. From the absorption spectra of the co-sensitized photoanodes, PPIX was observed to be efficiently acting as a co-adsorbent and to reduce the dye aggregation problem of SQ2. It has further been proven by a comparison of the device performance with a chenodeoxycholic acid (CDCA added to a SQ2-sensitized DSSC. Apart from increasing the absorption window, the FRET-induced enhanced photocurrent and the anti-aggregating behavior of PPIX towards SQ2 are crucial points that improve the performance of the co-sensitized DSSC.

  15. Perfect absorption in nanotextured thin films via Anderson-localized photon modes

    Science.gov (United States)

    Aeschlimann, Martin; Brixner, Tobias; Differt, Dominik; Heinzmann, Ulrich; Hensen, Matthias; Kramer, Christian; Lükermann, Florian; Melchior, Pascal; Pfeiffer, Walter; Piecuch, Martin; Schneider, Christian; Stiebig, Helmut; Strüber, Christian; Thielen, Philip

    2015-10-01

    The enhancement of light absorption in absorber layers is crucial in a number of applications, including photovoltaics and thermoelectrics. The efficient use of natural resources and physical constraints such as limited charge extraction in photovoltaic devices require thin but efficient absorbers. Among the many different strategies used, light diffraction and light localization at randomly nanotextured interfaces have been proposed to improve absorption. Although already exploited in commercial devices, the enhancement mechanism for devices with nanotextured interfaces is still subject to debate. Using coherent two-dimensional nanoscopy and coherent light scattering, we demonstrate the existence of localized photonic states in nanotextured amorphous silicon layers as used in commercial thin-film solar cells. Resonant absorption in these states accounts for the enhanced absorption in the long-wavelength cutoff region. Our observations establish that Anderson localization—that is, strong localization—is a highly efficient resonant absorption enhancement mechanism offering interesting opportunities for the design of efficient future absorber layers.

  16. Light absorption of organic aerosol from pyrolysis of corn stalk

    Science.gov (United States)

    Li, Xinghua; Chen, Yanju; Bond, Tami C.

    2016-11-01

    Organic aerosol (OA) can absorb solar radiation in the low-visible and ultra-violet wavelengths thereby modifying radiative forcing. Agricultural waste burning emits a large quantity of organic carbon in many developing countries. In this work, we improved the extraction and analysis method developed by Chen and Bond, and extended the spectral range of OC absorption. We examined light absorbing properties of primary OA from pyrolysis of corn stalk, which is a major type of agricultural wastes. Light absorption of bulk liquid extracts of OA was measured using a UV-vis recording spectrophotometer. OA can be extracted by methanol at 95%, close to full extent, and shows polar character. Light absorption of organic aerosol has strong spectral dependence (Absorption Ångström exponent = 7.7) and is not negligible at ultra-violet and low-visible regions. Higher pyrolysis temperature produced OA with higher absorption. Imaginary refractive index of organic aerosol (kOA) is 0.041 at 400 nm wavelength and 0.005 at 550 nm wavelength, respectively.

  17. Utilization of visible to NIR light energy by Yb"+"3, Er"+"3 and Tm"+"3 doped BiVO_4 for the photocatalytic degradation of methylene blue

    International Nuclear Information System (INIS)

    Regmi, Chhabilal; Kshetri, Yuwaraj K.; Ray, Schindra Kumar; Pandey, Ramesh Prasad; Lee, Soo Wohn

    2017-01-01

    Highlights: • Lanthanide doped BiVO_4 as highly efficient upconversion and photocatalytic material. • Well defined beads like morphology for better photocatalytic activity. • Effective utilization of NIR and visible light for efficient photocatalytic degradation of methylene blue. • Nontoxic to human cells, potential for application in biological fields. - Abstract: Lanthanide-doped BiVO_4 semiconductors with efficient photocatalytic activities over a broad range of the solar light spectrum have been synthesized by the microwave hydrothermal method using ethylenediaminetetraacetic acid (EDTA). The structural, morphological, and optical properties of the as-synthesized samples were evaluated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray powder diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, UV–vis diffuse reflectance spectroscopy (DRS), and photoluminescence spectroscopy (PL). The chemical compositions were analyzed by X-ray photoelectron spectroscopy (XPS). The toxicity of the samples was measured using Mus musculus skin melanoma cells (B16-F10 (ATCC"® CRL-6475™)) and were found to be nontoxic for human cells. The photocatalytic efficiency of the prepared samples was evaluated by methylene blue (MB) degradation. The best photocatalytic activity was shown by BiVO_4 with 6:3:3 mol percentage of Yb"+"3:Er"+"3:Tm"+"3 in all solar light spectrum. The synthesized samples possess low band gap energy and a hollow structure suitable for the better photocatalytic activity. The observed NIR photoactivity supports that the upconversion mechanism is involved in the overall photocatalytic process. Therefore, this approach provides a better alternative upconversion material for integral solar light absorption.

  18. A Gaussian mixture model based adaptive classifier for fNIRS brain-computer interfaces and its testing via simulation

    Science.gov (United States)

    Li, Zheng; Jiang, Yi-han; Duan, Lian; Zhu, Chao-zhe

    2017-08-01

    Objective. Functional near infra-red spectroscopy (fNIRS) is a promising brain imaging technology for brain-computer interfaces (BCI). Future clinical uses of fNIRS will likely require operation over long time spans, during which neural activation patterns may change. However, current decoders for fNIRS signals are not designed to handle changing activation patterns. The objective of this study is to test via simulations a new adaptive decoder for fNIRS signals, the Gaussian mixture model adaptive classifier (GMMAC). Approach. GMMAC can simultaneously classify and track activation pattern changes without the need for ground-truth labels. This adaptive classifier uses computationally efficient variational Bayesian inference to label new data points and update mixture model parameters, using the previous model parameters as priors. We test GMMAC in simulations in which neural activation patterns change over time and compare to static decoders and unsupervised adaptive linear discriminant analysis classifiers. Main results. Our simulation experiments show GMMAC can accurately decode under time-varying activation patterns: shifts of activation region, expansions of activation region, and combined contractions and shifts of activation region. Furthermore, the experiments show the proposed method can track the changing shape of the activation region. Compared to prior work, GMMAC performed significantly better than the other unsupervised adaptive classifiers on a difficult activation pattern change simulation: 99% versus  brain-computer interfaces, including neurofeedback training systems, where operation over long time spans is required.

  19. Synovitis in mice with inflammatory arthritis monitored with quantitative analysis of dynamic contrast-enhanced NIR fluorescence imaging using iRGD-targeted liposomes as fluorescence probes

    Directory of Open Access Journals (Sweden)

    Wu H

    2018-03-01

    Full Text Available Hao Wu,1,2,* Haohan Wu,1,2,* Yanni He,1 Zhen Gan,2 Zhili Xu,1,2 Meijun Zhou,1,2 Sai Liu,1,2 Hongmei Liu1 1Department of Ultrasonography, Guangdong Second Provincial General Hospital Affiliated to Southern Medical University, Guangzhou, China; 2Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China *These authors contributed equally to this work Background: Rheumatoid arthritis (RA is a common inflammatory disorder characterized primarily by synovitis and pannus formation in multiple joints, causing joints destruction and irreversible disability in most cases. Early diagnosis and effective therapy monitoring of RA are of importance for achieving the favorable prognosis. Methods: We first prepared the targeted fluorescence probes, and then explored the feasibility of near-infrared (NIR fluorescence molecular imaging to detect and evaluate the RA via the targeted fluorescence probes by quantitative analysis in this study. Results: The targeted fluorescence probes (indocyanine green-liposomes decorated with iRGD peptide [iLPs] was successfully prepared. The quantitative analysis found that strong fluorescence signal was detected in inflamed paws and the fluorescence signal in iLPs group was 3.03-fold higher than that in non-targeted (indocyanine green-liposomes decorated without iRGD peptide [LPs] group (P<0.01 at 15 min after injection, whereas the fluorescence signal from iLPs signal can almost not be observed in the non-inflamed paws, showing the high sensitivity and accuracy for arthritis by the NIR fluorescence imaging based on iLPs. Conclusion: The NIR fluorescence imaging by iLPs may facilitate improved arthritis diagnosis and early assessment of the disease progression by providing an in vivo characterization of angiogenesis in inflammatory joint diseases. Keywords: rheumatoid arthritis, synovitis, diagnosis, near-infrared fluorescence imaging, iRGD-targeted probes

  20. Enhanced surface structuring by ultrafast XUV/NIR dual action

    Czech Academy of Sciences Publication Activity Database

    Jakubczak, Krzysztof; Mocek, Tomáš; Chalupský, Jaromír; Lee, G.H.; Kim, T.K.; Park, S.B.; Nam, Ch. H.; Hájková, Věra; Toufarová, Martina; Juha, Libor; Rus, Bedřich

    2011-01-01

    Roč. 13, č. 5 (2011), s. 1-12 ISSN 1367-2630 R&D Projects: GA AV ČR KAN300100702; GA MŠk(CZ) LC528; GA MŠk LA08024; GA ČR GC202/07/J008 Grant - others:AV ČR(CZ) M100100911 Institutional research plan: CEZ:AV0Z10100523 Keywords : XUV beam * ultrafast NIR laser pulses * high-order harmonics * laser-induced periodic surface structures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.177, year: 2011 http://iopscience.iop.org/1367-2630/13/5/053049

  1. Induction of the Nitrate Assimilation nirA Operon and Protein-Protein Interactions in the Maturation of Nitrate and Nitrite Reductases in the Cyanobacterium Anabaena sp. Strain PCC 7120.

    Science.gov (United States)

    Frías, José E; Flores, Enrique

    2015-07-01

    Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively. Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many cyanobacteria

  2. Relative biological effectiveness of the therapeutic proton beams at NIRS and Tsukuba University

    International Nuclear Information System (INIS)

    Ando, Koichi; Koike, Sachiko; Kawachi, Kiyomitsu

    1985-01-01

    Relative biological effectiveness (RBE) of proton beams dedicated to radiotherapy was examined using a method of simultaneous irradiation. Mice received i.v. transplantation of syngeneic fibrosarcoma (NFSa) cells. These mice were divided into 3 groups on the following day, and thorax was simultaneously irradiated with one of the following beams: 70MeV proton beam at National Institute of Radiological Sciences (NIRS), 250 MeV Proton beam at Tsukuba University (PARMS) and 60 Co γ ray. Ten to 13 days thereafter, lungs were removed for colony counts to give dose-cell survival relationships. RBE of NIRS proton was ranging from 1.01 to 1.12 with an average of 1.06 while that of PARMS proton was ranging from 1.03 to 1.09 with an average of 1.06 at surviving fraction of 0.01. The simultaneous irradiation for RBE study was found to be reliable at large dose-low survival regions. (author)

  3. High-throughput prediction of tablet weight and trimethoprim content of compound sulfamethoxazole tablets for controlling the uniformity of dosage units by NIR.

    Science.gov (United States)

    Dong, Yanhong; Li, Juan; Zhong, Xiaoxiao; Cao, Liya; Luo, Yang; Fan, Qi

    2016-04-15

    This paper establishes a novel method to simultaneously predict the tablet weight (TW) and trimethoprim (TMP) content of compound sulfamethoxazole tablets (SMZCO) by near infrared (NIR) spectroscopy with partial least squares (PLS) regression for controlling the uniformity of dosage units (UODU). The NIR spectra for 257 samples were measured using the optimized parameter values and pretreated using the optimized chemometric techniques. After the outliers were ignored, two PLS models for predicting TW and TMP content were respectively established by using the selected spectral sub-ranges and the reference values. The TW model reaches the correlation coefficient of calibration (R(c)) 0.9543 and the TMP content model has the R(c) 0.9205. The experimental results indicate that this strategy expands the NIR application in controlling UODU, especially in the high-throughput and rapid analysis of TWs and contents of the compound pharmaceutical tablets, and may be an important complement to the common NIR on-line analytical method for pharmaceutical tablets. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The importance of bilateral monitoring of cerebral oxygenation (NIRS): Clinical case of asymmetry during cardiopulmonary bypass secondary to previous cerebral infarction.

    Science.gov (United States)

    Matcan, S; Sanabria Carretero, P; Gómez Rojo, M; Castro Parga, L; Reinoso-Barbero, F

    2018-03-01

    Cerebral oximetry based on near infrared spectroscopy (NIRS) technology is used to determine cerebral tissue oxygenation. We hereby present the clinical case of a 12-month old child with right hemiparesis secondary to prior left middle cerebral artery stroke 8 months ago. The child underwent surgical enlargement of the right ventricular outflow tract (RVOT) with cardiopulmonary bypass. During cardiopulmonary bypass, asymmetric NIRS results were detected between both hemispheres. The utilization of multimodal neuromonitoring (NIRS-BIS) allowed acting on both perfusion pressure and anesthetic depth to balance out the supply and demand of cerebral oxygen consumption. No new neurological sequelae were observed postoperatively. We consider bilateral NIRS monitoring necessary in order to detect asymmetries between cerebral hemispheres. Although asymmetries were not present at baseline, they can arise intraoperatively and its monitoring thus allows the detection and treatment of cerebral ischemia-hypoxia in the healthy hemisphere, which if undetected and untreated would lead to additional neurological damage. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Absorption homogenization at wavy melt films by CO{sub 2}-lasers in contrast to 1 μm-wavelength lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Alexander F.H., E-mail: alexander.kaplan@ltu.se

    2015-02-15

    Highlights: • The absorption distribution of 1 μm wavelength lasers compared to 10 μm CO{sub 2}-lasers across a wavy molten steel surface is calculated, at grazing angle of incidence. • For a wide range of surface waviness parameters the CO{sub 2}-laser shows a much more homogenizing absorption behaviour than 1 μm-lasers. • Although the interaction is very complex and non-linear, it is fundamental and very distinct between CO{sub 2}-lasers and 1 μm-lasers, due to their very different Fresnel-absorption characteristics. • The strong local absorption peaks for 1 μm-lasers can cause very strong local boiling and amplification of surface waves, in good correlation to empirical experimental trends. • Such differences can in turn have strong consequences during laser materials processing like laser keyhole welding, laser drilling or laser remote fusion cutting. - Abstract: For wavy metal melts, across a wide range of their topology parameters, lasers with about 1 μm wavelength experience the highest Fresnel absorption around the shoulders of the waves. Calculations show that this induces a strong peak of the absorbed power density of the laser beam. The high temperature gradients have the potential to cause very local boiling and growth of the valleys. In contrast, for a certain parameter category the small Brewster angle for the CO{sub 2}-laser partially homogenizes the temperatures by elevated absorption at domains of grazing incidence. This has the potential to cause opposite consequences on the process, like wave smoothing.

  6. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study.

    Science.gov (United States)

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman

    2016-09-01

    Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a

  7. Quality evaluation of frozen guava and yellow passion fruit pulps by NIR spectroscopy and chemometrics.

    Science.gov (United States)

    Alamar, Priscila D; Caramês, Elem T S; Poppi, Ronei J; Pallone, Juliana A L

    2016-07-01

    The present study investigated the application of near infrared spectroscopy as a green, quick, and efficient alternative to analytical methods currently used to evaluate the quality (moisture, total sugars, acidity, soluble solids, pH and ascorbic acid) of frozen guava and passion fruit pulps. Fifty samples were analyzed by near infrared spectroscopy (NIR) and reference methods. Partial least square regression (PLSR) was used to develop calibration models to relate the NIR spectra and the reference values. Reference methods indicated adulteration by water addition in 58% of guava pulp samples and 44% of yellow passion fruit pulp samples. The PLS models produced lower values of root mean squares error of calibration (RMSEC), root mean squares error of prediction (RMSEP), and coefficient of determination above 0.7. Moisture and total sugars presented the best calibration models (RMSEP of 0.240 and 0.269, respectively, for guava pulp; RMSEP of 0.401 and 0.413, respectively, for passion fruit pulp) which enables the application of these models to determine adulteration in guava and yellow passion fruit pulp by water or sugar addition. The models constructed for calibration of quality parameters of frozen fruit pulps in this study indicate that NIR spectroscopy coupled with the multivariate calibration technique could be applied to determine the quality of guava and yellow passion fruit pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. NIRS report of the criticality accident in a uranium conversion test plant in Tokai-mura

    International Nuclear Information System (INIS)

    2001-01-01

    This report is a detailed account of the roles that National Institute of Radiological Sciences (NIRS) played at the criticality accident in the title, which occurred at around 10:35, on Sep. 30, 1999 and resulted in death of two workers after all, and is published to discharge NIRS responsibilities in regards to the accident. The accident caused many residents concern on their health and rumors had both social and economic consequences. The report involves chapters of detailed outline of the accident; demand for acceptance of the victims and communications until the identification of the criticality'' accident; the acceptance and initial treatment; the exposure dose estimation (based on acute symptoms, on physics, on chromosomal analyses and on neutron-activated dental metals, and detailed analyses for dose distribution); decision made for therapeutic strategies; cooperation with the Network Council for Radiation Emergency and with other medical facilities; the urgent import of medicine; treatment and processes (patients, nursing system and radiation injuries); radiation protection in medical facilities; response to nearby residents of the Plant; international response; press release; Uranium Processing Plant Criticality Accident Investigation Committee and the Health Management Committee organized by the Nuclear Safety Commission; handling of information; and radiation emergency medical preparedness at the NIRS (future issues and prospect). The report is hopefully useful in preventing the occurrence of future accidents. (N.I.)

  9. Absorption of fast waves at moderate to high ion cyclotron harmonics on DIII-D

    International Nuclear Information System (INIS)

    Pinsker, R.I.; Porkolab, M.; Heidbrink, W.W.; Luo, Y.; Petty, C.C.; Prater, R.; Choi, M.; Schaffner, D.A.; Baity, F.W.; Fredd, E.; Hosea, J.C.; Harvey, R.W.; Smirnov, A.P.; Murakami, M.; Zeeland, M.A. Van

    2006-01-01

    The absorption of fast Alfven waves (FW) by ion cyclotron harmonic damping in the range of harmonics from 4th to 8th is studied theoretically and with experiments in the DIII-D tokamak. A formula for linear ion cyclotron absorption on ions with an arbitrary distribution function which is symmetric about the magnetic field is used to estimate the single-pass damping for various cases of experimental interest. It is found that damping on fast ions from neutral beam injection can be significant even at the 8th harmonic if the fast ion beta, the beam injection energy and the background plasma density are high enough and the beam injection geometry is appropriate. The predictions are tested in several L-mode experiments in DIII-D with FW power at 60 MHz and at 116 MHz. It is found that 4th and 5th harmonic absorption of the 60 MHz power on the beam ions can be quite strong, but 8th harmonic absorption of the 116 MHz power appears to be weaker than expected. The linear modelling predicts a strong dependence of the 8th harmonic absorption on the initial pitch-angle of the injected beam, which is not observed in the experiment. Possible explanations of the discrepancy are discussed

  10. A Proof of Concept Study of Function-Based Statistical Analysis of fNIRS Data: Syntax Comprehension in Children with Specific Language Impairment Compared to Typically-Developing Controls.

    Science.gov (United States)

    Fu, Guifang; Wan, Nicholas J A; Baker, Joseph M; Montgomery, James W; Evans, Julia L; Gillam, Ronald B

    2016-01-01

    Functional near infrared spectroscopy (fNIRS) is a neuroimaging technology that enables investigators to indirectly monitor brain activity in vivo through relative changes in the concentration of oxygenated and deoxygenated hemoglobin. One of the key features of fNIRS is its superior temporal resolution, with dense measurements over very short periods of time (100 ms increments). Unfortunately, most statistical analysis approaches in the existing literature have not fully utilized the high temporal resolution of fNIRS. For example, many analysis procedures are based on linearity assumptions that only extract partial information, thereby neglecting the overall dynamic trends in fNIRS trajectories. The main goal of this article is to assess the ability of a functional data analysis (FDA) approach for detecting significant differences in hemodynamic responses recorded by fNIRS. Children with and without SLI wore two, 3 × 5 fNIRS caps situated over the bilateral parasylvian areas as they completed a language comprehension task. FDA was used to decompose the high dimensional hemodynamic curves into the mean function and a few eigenfunctions to represent the overall trend and variation structures over time. Compared to the most popular GLM, we did not assume any parametric structure and let the data speak for itself. This analysis identified significant differences between the case and control groups in the oxygenated hemodynamic mean trends in the bilateral inferior frontal and left inferior posterior parietal brain regions. We also detected significant group differences in the deoxygenated hemodynamic mean trends in the right inferior posterior parietal cortex and left temporal parietal junction. These findings, using dramatically different approaches, experimental designs, data sets, and foci, were consistent with several other reports, confirming group differences in the importance of these two areas for syntax comprehension. The proposed FDA was consistent with the

  11. Individual classification of ADHD children by right prefrontal hemodynamic responses during a go/no-go task as assessed by fNIRS

    Directory of Open Access Journals (Sweden)

    Yukifumi Monden

    2015-01-01

    Full Text Available While a growing body of neurocognitive research has explored the neural substrates associated with attention deficit hyperactive disorder (ADHD, an objective biomarker for diagnosis has not been established. The advent of functional near-infrared spectroscopy (fNIRS, which is a noninvasive and unrestrictive method of functional neuroimaging, raised the possibility of introducing functional neuroimaging diagnosis in young ADHD children. Previously, our fNIRS-based measurements successfully visualized the hypoactivation pattern in the right prefrontal cortex during a go/no-go task in ADHD children compared with typically developing control children at a group level. The current study aimed to explore a method of individual differentiation between ADHD and typically developing control children using multichannel fNIRS, emphasizing how spatial distribution and amplitude of hemodynamic response are associated with inhibition-related right prefrontal dysfunction. Thirty ADHD and thirty typically developing control children underwent a go/no-go task, and their cortical hemodynamics were assessed using fNIRS. We explored specific regions of interest (ROIs and cut-off amplitudes for cortical activation to distinguish ADHD children from control children. The ROI located on the border of inferior and middle frontal gyri yielded the most accurate discrimination. Furthermore, we adapted well-formed formulae for the constituent channels of the optimized ROI, leading to improved classification accuracy with an area under the curve value of 85% and with 90% sensitivity. Thus, the right prefrontal hypoactivation assessed by fNIRS would serve as a potentially effective biomarker for classifying ADHD children at the individual level.

  12. Light absorption by coated nano-sized carbonaceous particles

    Science.gov (United States)

    Gangl, Martin; Kocifaj, Miroslav; Videen, Gorden; Horvath, Helmuth

    The optical properties of strongly absorbing soot particles coated by transparent material are investigated experimentally and described by several modeling approaches. Soot is produced by spark discharge and passed through a Sinclair-La Mer generator where non-absorbing carnauba wax is condensed onto it to obtain internal soot-wax mixtures in a controlled way. Measurements of the extinction and volume scattering coefficient show an amplification of absorption by a factor of approximately 1.8. This behavior was described by different approaches of internally mixed materials for the modal diameters of the measured size distributions: concentric-sphere model, effective medium approximations and heterogeneous ellipsoids. The concentric-sphere model describes the absorption increase quantitatively; and hence, it is chosen to be applied to the entire particle population in the size distribution. The growth of the soot particles by condensing wax is described by a simplified growth model to estimate the different contributions of several soot particle diameters to the overall absorption cross-section.

  13. Gigahertz-peaked Spectra Pulsars and Thermal Absorption Model

    Energy Technology Data Exchange (ETDEWEB)

    Kijak, J.; Basu, R.; Lewandowski, W.; Rożko, K. [Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Z. Szafrana 2, PL-65-516 Zielona Góra (Poland); Dembska, M., E-mail: jkijak@astro.ia.uz.zgora.pl [DLR Institute of Space Systems, Robert-Hooke-Str. 7 D-28359 Bremen (Germany)

    2017-05-10

    We present the results of our radio interferometric observations of pulsars at 325 and 610 MHz using the Giant Metrewave Radio Telescope. We used the imaging method to estimate the flux densities of several pulsars at these radio frequencies. The analysis of the shapes of the pulsar spectra allowed us to identify five new gigahertz-peaked spectra (GPS) pulsars. Using the hypothesis that the spectral turnovers are caused by thermal free–free absorption in the interstellar medium, we modeled the spectra of all known objects of this kind. Using the model, we were able to put some observational constraints on the physical parameters of the absorbing matter, which allows us to distinguish between the possible sources of absorption. We also discuss the possible effects of the existence of GPS pulsars on future search surveys, showing that the optimal frequency range for finding such objects would be from a few GHz (for regular GPS sources) to possibly 10 GHz for pulsars and radio magnetars exhibiting very strong absorption.

  14. Ensemble preprocessing of near-infrared (NIR) spectra for multivariate calibration

    International Nuclear Information System (INIS)

    Xu Lu; Zhou Yanping; Tang Lijuan; Wu Hailong; Jiang Jianhui; Shen Guoli; Yu Ruqin

    2008-01-01

    Preprocessing of raw near-infrared (NIR) spectral data is indispensable in multivariate calibration when the measured spectra are subject to significant noises, baselines and other undesirable factors. However, due to the lack of sufficient prior information and an incomplete knowledge of the raw data, NIR spectra preprocessing in multivariate calibration is still trial and error. How to select a proper method depends largely on both the nature of the data and the expertise and experience of the practitioners. This might limit the applications of multivariate calibration in many fields, where researchers are not very familiar with the characteristics of many preprocessing methods unique in chemometrics and have difficulties to select the most suitable methods. Another problem is many preprocessing methods, when used alone, might degrade the data in certain aspects or lose some useful information while improving certain qualities of the data. In order to tackle these problems, this paper proposes a new concept of data preprocessing, ensemble preprocessing method, where partial least squares (PLSs) models built on differently preprocessed data are combined by Monte Carlo cross validation (MCCV) stacked regression. Little or no prior information of the data and expertise are required. Moreover, fusion of complementary information obtained by different preprocessing methods often leads to a more stable and accurate calibration model. The investigation of two real data sets has demonstrated the advantages of the proposed method

  15. Influence of wood barrels classified by NIRS on the ellagitannin content/composition and on the organoleptic properties of wine.

    Science.gov (United States)

    Michel, Julien; Jourdes, Michael; Le Floch, Alexandra; Giordanengo, Thomas; Mourey, Nicolas; Teissedre, Pierre-Louis

    2013-11-20

    Ellagitannins are extracted from oak wood during wine aging in oak barrels. This research is based on the NIRS (Oakscan) oak wood classification according to their index polyphenolic (IP) (between 21.07 and 70.15). Their level in wood is very variable (between 5.95 and 32.91 mg/g dry wood) and influenced their concentration in red wine (between 2.30 and 32.56 mg/L after 24 months of aging) and thus their impact on wine organoleptic properties. The results show a good correlation between the NIRS classification and the chemical analysis (HPLC-UV-MS and acidic hydrolysis procedure) and with the wood ellagitannin level, the ellagitannin extraction kinetic, and the ellagitannins evolution in red wine (Cabernet Sauvignon). Moreover, a correlation between the NIRS classification and the increasing intensity of some wood aromas (woody, spicy, vanilla, and smoked/toasted), flavors (bitterness and astringency), and a decreasing intensity of fruitiness was also observed.

  16. Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy

    Science.gov (United States)

    Guo, Xiangdong; Hu, Hai; Liao, Baoxin; Zhu, Xing; Yang, Xiaoxia; Dai, Qing

    2018-05-01

    Graphene plasmon with extremely strong light confinement and tunable resonance frequency represents a promising surface-enhanced infrared absorption (SEIRA) sensing platform. However, plasmonic absorption is relatively weak (approximately 1%-9%) in monolayer graphene nanostructures, which would limit its sensitivity. Here, we theoretically propose a hybrid plasmon-metamaterial structure that can realize perfect absorption in graphene with a low carrier mobility of 1000 cm2 V-1 s-1. This structure combines a gold reflector and a gold grating to the graphene plasmon structures, which introduce interference effect and the lightning-rod effect, respectively, and largely enhance the coupling of light to graphene. The vibration signal of trace molecules can be enhanced up to 2000-fold at the hotspot of the perfect-absorption structure, enabling the SEIRA sensing to reach the molecular level. This hybrid metal-graphene structure provides a novel path to generate high sensitivity in nanoscale molecular recognition for numerous applications.

  17. PG 1700 + 518 - a low-redshift, broad absorption line QSO

    International Nuclear Information System (INIS)

    Pettini, M.; Boksenberg, A.

    1985-01-01

    The first high-resolution optical spectra and lower resolution UV spectra of PG 1700 + 518, the only known broad-absorption-line (BAL) QSO at low emission redshift (0.288) are presented. The optical data were obtained with the Isaac Newton Telescope on the island of La Palma and the UV data with the International Ultraviolet Explorer satellite. The outstanding feature of the optical spectrum is a strong, broad Mg II absorption trough, detached from the Mg II emission line and indicative of ejection velocities of between 7000 and 18,000 km/s. Also detected were narrow (FWHM = 350 km/s) Mg II absorption lines at absolute z = 0.2698, which are probably related to the mass ejection phenomenon. It is concluded that the emission-line spectrum is similar to that of other low-redshift QSOs although there are some obvious differences from typical BAL QSOs, most notably in the unusually low level of ionization of both emission-line and broad absorption line gas. 21 references

  18. Data preprocessing methods of FT-NIR spectral data for the classification cooking oil

    Science.gov (United States)

    Ruah, Mas Ezatul Nadia Mohd; Rasaruddin, Nor Fazila; Fong, Sim Siong; Jaafar, Mohd Zuli

    2014-12-01

    This recent work describes the data pre-processing method of FT-NIR spectroscopy datasets of cooking oil and its quality parameters with chemometrics method. Pre-processing of near-infrared (NIR) spectral data has become an integral part of chemometrics modelling. Hence, this work is dedicated to investigate the utility and effectiveness of pre-processing algorithms namely row scaling, column scaling and single scaling process with Standard Normal Variate (SNV). The combinations of these scaling methods have impact on exploratory analysis and classification via Principle Component Analysis plot (PCA). The samples were divided into palm oil and non-palm cooking oil. The classification model was build using FT-NIR cooking oil spectra datasets in absorbance mode at the range of 4000cm-1-14000cm-1. Savitzky Golay derivative was applied before developing the classification model. Then, the data was separated into two sets which were training set and test set by using Duplex method. The number of each class was kept equal to 2/3 of the class that has the minimum number of sample. Then, the sample was employed t-statistic as variable selection method in order to select which variable is significant towards the classification models. The evaluation of data pre-processing were looking at value of modified silhouette width (mSW), PCA and also Percentage Correctly Classified (%CC). The results show that different data processing strategies resulting to substantial amount of model performances quality. The effects of several data pre-processing i.e. row scaling, column standardisation and single scaling process with Standard Normal Variate indicated by mSW and %CC. At two PCs model, all five classifier gave high %CC except Quadratic Distance Analysis.

  19. Electron density profiles in the background of LF absorption during Forbush-decrease and PSE

    International Nuclear Information System (INIS)

    Satori, G.

    1989-01-01

    Based on the simulation of different Forbush decrease and particle precipitation effects in the D region, electron density profiles in the mid-latitudes the ionospheric absorption of low frequency (LF) radio waves was determined. The absorption variations at different frequenceis are strongly affected by the shape of the electron density profile. A structure appears which sometimes resembles the letter S (in a sloping form). Both the height (around 70 to 72 km) and the depth of the local minimum in the electron density contribute to the computed absorption changes of various degree at different frequencies. In this way several observed special absorption events can be interpreted

  20. Evaluation of cerebral activity in the prefrontal cortex in mood [affective] disorders during animal-assisted therapy (AAT) by near-infrared spectroscopy (NIRS): a pilot study.

    Science.gov (United States)

    Aoki, Jun; Iwahashi, Kazuhiko; Ishigooka, Jun; Fukamauchi, Fumihiko; Numajiri, Maki; Ohtani, Nobuyo; Ohta, Mitsuaki

    2012-09-01

    Previous studies have shown the possibility that animal-assisted therapy (AAT) is useful for promoting the recovery of a patient's psychological, social, and physiological aspect. As a pilot study, we measured the effect that AAT had on cerebral activity using near-infrared spectroscopy (NIRS), and examined whether or not NIRS be used to evaluate the effect of AAT biologically and objectively. Two patients with mood [affective] disorders and a healthy subject participated in this study. We performed two AAT and the verbal fluency task (VFT). The NIRS signal during AAT showed great [oxy-Hb] increases in most of the prefrontal cortex (PFC) in the two patients. When the NIRS pattern during AAT was compared with that during VFT, greater or lesser differences were observed between them in all subjects. The present study suggested that AAT possibly causes biological and physiological changes in the PFC, and that AAT is useful for inducing the activity of the PFC in patients with depression who have generally been said to exhibit low cerebral activity in the PFC. In addition, the possibility was also suggested that the effect of AAT can be evaluated using NIRS physiologically and objectively.