Sample records for strong nir absorption

  1. Aromatic Fused [30] Heteroannulenes with NIR Absorption and NIR Emission: Synthesis, Characterization, and Excited-State Dynamics. (United States)

    Mallick, Abhijit; Oh, Juwon; Kim, Dongho; Rath, Harapriya


    Two hitherto unknown planar aromatic [30] fused heterocyclic macrocycles (, with NIR absorption in free-base form and protonation-induced enhanced NIR emission, have been synthesized from easy to make precursors. The induced correspondence of fusion on the macrocyclic structure, electronic absorption, and emission spectra have been highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optical absorption of sodium copper chlorophyllin thin films in UV-vis-NIR region. (United States)

    Farag, A A M


    The optical absorption studies of sodium copper chlorophyllin thin films (SCC), prepared by spray pyrolysis, in the UV-vis-NIR region was reported for the first time. Several new discrete transitions are observed in the UV-vis region of the spectra in addition to a strong continuum component in the IR region. The spectra of the infrared absorption allow characterization of vibration modes for the powder and thin films of SCC. The absorption spectrum recorded in the UV-vis region showed different absorption bands, namely the Soret (B) in the region 340-450 nm and Q-band in the region 600-700 nm and other band labeled N in the 240-320 region. Some important spectral parameters namely optical absorption coefficient (alpha), molar extinction coefficient (epsilon(molar)), oscillator strength (f), electric dipole strength (q(2)) and absorption half bandwidth (Deltalambda) of the principle optical transitions were evaluated. The analysis of the absorption coefficient in the absorption region revealed direct transitions and the energy gap was estimated as 1.63 eV. Discussion of the obtained results and their comparison with the previous published data are also given.

  3. Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging. (United States)

    Cao, Ziyang; Feng, Liangzhu; Zhang, Guobing; Wang, Junxia; Shen, Song; Li, Dongdong; Yang, Xianzhu


    Near-infrared (NIR) light-induced photothermal therapy (PTT) has attracted much interest in recent years. In the NIR region, tissue penetration ability of the second biological near-infrared window (1000-1350 nm) is recognized to be stronger than that of the first window (650-950 nm). However, NIR light absorbers in the second NIR region (NIR-II) have been scant even though various NIR light absorbers in the first NIR region (NIR-I) have been widely explored. In this work, a thieno-isoindigo derivative-based semiconducting polymer, PBTPBF-BT, were formulated into PEGylated nanoparticles. The obtained nanoparticle NP PBTPBF-BT exhibited strong absorption in NIR-II region, inherent high photothermal conversion efficacy, and excellent photostability. The in vitro and in vivo PTT study employing 1064 nm laser in NIR-II window revealed that NP PBTPBF-BT could efficiently ablate tumor cell at a power density of 0.42 W/cm 2 (the skin tolerance threshold value). Moreover, NP PBTPBF-BT with excellent photostability exhibited enhanced photoacoustic (PA) imaging of tumor in living mice, suggesting the great probability of using NP PBTPBF-BT for in vivo PA imaging-guided PTT in the NIR-II window. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Strong saturable absorption of black titanium oxide nanoparticle films (United States)

    Zhang, Rong-Fang; Guo, Deng-Zhu; Zhang, Geng-Min


    Nonlinear optical materials with strong saturable absorption (SA) properties play an essential role in passive mode-locking generation of ultrafast lasers. Here we report black TiO2-x nanoparticles are promising candidate for such an application. Black TiO2-x nanoparticles are synthesized by using cathodic plasma electrolysis, and nanoparticle films are deposited on optical glass plates via natural sedimentation and post annealing. Characterization of the samples with TEM, SEM, XRD and XPS reveal that nanoparticles have diameters of 8-70 nm, and are in polycrystalline structure and co-existence of anatase, rutile and abundant oxygen-deficient phases. Optical transmittance and reflectance measurements with a UV/VIS/NIR spectrophotometer evidence an excellent wide-spectral optical absorption property. The nonlinear optical properties of the samples were measured by using open-aperture Z-scan technique with picosecond 532-nm laser, and verified by direct transmission measurements using nanosecond 1064-nm laser. Strong SA behavior was detected, and the nonlinear absorption coefficient is as high as β = - 4.9 × 10-8 m/W, at least two orders larger than most previous reports on ordinary TiO2. The strong SA behaviors are ascribed to the existence of plenty surface states and defect states within bandgap, and the relaxation rates of electrons from upper energy levels to lower ones are much slower than excitation rates.

  5. Multi-phase functionalization of titanium for enhanced photon absorption in the vis-NIR region. (United States)

    Thakur, Pooja; Tan, Bo; Venkatakrishnan, Krishnan


    Inadequate absorption of Near Infrared (NIR) photons by conventional silicon solar cells has been a major stumbling block towards the attainment of a high efficiency "full spectrum" solar cell. An effective enhancement in the absorption of such photons is desired as they account for a considerable portion of the tappable solar energy. In this work, we report a remarkable gain observed in the absorption of photons in the near infrared and visible region (400 nm-1000 nm) by a novel multi-phased oxide of titanium. Synthesised via a single step ultra-fast laser pulse interaction with pure titanium, characterisation studies have identified this oxide of titanium to be multi-phased and composed of Ti3O, (TiO.716)3.76 and TiO2 (rutile). Computed to have an average band gap value of 2.39 eV, this ultrafast laser induced multi-phased titanium oxide has especially exhibited steady absorption capability in the NIR range of 750-1000 nm, which to the best of our knowledge, was never reported before. The unique NIR absorption properties of the laser functionalised titanium coupled with the simplicity and versatility of the ultrafast laser interaction process involved thereby provides tremendous potential towards the photon sensitization of titanium and thereafter for the inception of a "full spectrum" solar device.

  6. Optical absorption of tetraphenylporphyrin thin films in UV-vis-NIR region. (United States)

    El-Nahass, M M; Zeyada, H M; Aziz, M S; Makhlouf, M M


    The optical absorption of thermally evaporated tetraphenylporphyrin (TPP) in the UV-vis-NIR region have been studied. The absorption spectra recorded in the UV-vis region for the as deposited and annealed films showed different absorption bands, namely the Soret(B) at region 360-490nm, Q-band region consist of four bands in the region 500-720nm and two other bands labeled N and M in UV region. The Soret band always shows its characteristic effect splitting in all the TPP thin films and the effect of annealing on the intensities of these components have been observed. The spectra of the infrared absorption allow characterization of vibrational modes for the powder, as deposited and annealed thin films. Some of the optical absorption parameters, namely molar extinction coefficient, epsilon, half band width, Deltalambda, electronic dipole strength, q(2) and oscillator strength, f, of the principle optical transitions have also been evaluated.

  7. A study of aerosol absorption and height retrievals with a hyperspectral (UV to NIR) passive sensor (United States)

    Gasso, S.


    With the deployment of the first sensor (TOMS, in 1978) with capabilities to detect aerosol absorption (AA) from space, there has been a continuous evolution in hardware and algorithms used to measured this property. Although with TOMS and its more advanced successors (such as OMI) made significant progress in globally characterizing AA , there is room for improvement especially by taking advantage of sensors with extended spectral coverage (UV to NIR) and high spatial resolution (NIR sensor with moderate ( 5km nadir pixel) spatial resolution to be launched in Fall 2017. In addition , the sensor will include sensing capabilities for the wavelength range of the Oxygen bands A and B at very high wavelength resolution. This study will be centered on the aerosol detection capabilities of TropOMI. Because the spectral range covered, it is theoretically possible to simultaneously retrieve the aerosol optical depth, the single scattering albedo and aerosol mean height without assuming any of them as it was the case with previous retrieval approaches. Specifically, we intend to present a theoretical study based on simulated radiances at selected UV, VIS and near-IR bands (including the Oxygen bands) and evaluate the sensitivity of this sensor to different levels of aerosol concentration, height and absorption properties (imaginary index) along with particle size distribution.

  8. Measurements of liquid film thickness, concentration, and temperature of aqueous urea solution by NIR absorption spectroscopy (United States)

    Pan, R.; Jeffries, J. B.; Dreier, T.; Schulz, C.


    A multi-wavelength near-infrared (NIR) diode laser absorption sensor has been developed and demonstrated for real-time monitoring of the thickness, solute concentration, and temperature of thin films of urea-water solutions. The sensor monitors the transmittance of three near-infrared diode lasers through the thin liquid film. Film thickness, urea mass fraction, and liquid temperature were determined from measured transmittance ratios of suitable combinations of lasers. Available laser wavelengths were selected depending on the variation of the NIR absorption spectrum of the solution with temperature and solute concentration. The spectral database was measured by a Fourier transform infrared spectrometer in the range 5500-8000 cm-1 for urea solutions between 5 and 40 wt% and temperatures between 298 and 338 K. A prototype sensor was constructed, and the sensor concept was first validated with measurements using a calibration cell providing liquid layers of variable thickness (200-1500 µm), urea mass fraction (5-40 wt%) and temperature (298-318 K). Temporal variations of film thickness and urea concentration were captured during the constant-temperature evaporation of a liquid film deposited on an optically polished heated quartz flat.

  9. Theory of strong-field attosecond transient absorption

    International Nuclear Information System (INIS)

    Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B


    Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser–matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption

  10. Formation of Nb2O5 matrix and Vis-NIR absorption in Nb-Ge-O thin film. (United States)

    Abe, Seishi


    This paper investigates the crystal structure and optical absorption of Ge-doped Nb-oxide (Nb-Ge-O) thin films prepared by RF sputtering. A wide-gap material, Nb2O5, is selectively produced as a matrix to disperse Ge nanocrystals through compositional optimization with Ge chip numbers and oxygen ratio in argon. The optical-absorption spectra are obviously shifted to visible (vis) and near-infrared (NIR) regions, suggesting that a composite thin film with Ge nanocrystals dispersed in Nb2O5 matrix exhibits quantum-size effects. Accordingly, the two valuable characteristics of the Nb2O5 matrix and the vis-NIR absorption are found to be retained simultaneously in Nb-Ge-O thin films.

  11. Probing the behaviors of gold nanorods in metastatic breast cancer cells based on UV-vis-NIR absorption spectroscopy. (United States)

    Zhang, Weiqi; Ji, Yinglu; Meng, Jie; Wu, Xiaochun; Xu, Haiyan


    In this work, behaviors of positively-charged AuNRs in a highly metastatic tumor cell line MDA-MB-231 are examined based on UV-vis-NIR absorption spectroscopy in combination with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and dark-field microscopic observation. It is found that characteristic surface plasmon resonance (SPR) peaks of AuNRs can be detected using spectroscopic method within living cells that have taken up AuNRs. The peak area of transverse SPR band is shown to be proportionally related to the amount of AuNRs in the cells determined with ICP-MS, which suggests a facile and real time quantification method for AuNRs in living cells. The shape of longitudinal SPR band in UV-vis-NIR spectrum reflects the aggregation state of AuNRs in the cells during the incubation period, which is proved by TEM and microscopic observations. Experimental results reveal that AuNRs are internalized by the cells rapidly; the accumulation, distribution and aggregation of AuNRs in the cells compartments are time and dose dependent. The established spectroscopic analysis method can not only monitor the behaviors of AuNRs in living cells but may also be helpful in choosing the optimum laser stimulation wavelength for anti-tumor thermotherapy.

  12. Solvothermal Synthesis of Caesium Tungsten Bronze in the Presence of Various Organic Acids and Its NIR Absorption Properties

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chongshen; Yin, Shu; Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai (Japan); Adachi, Kenji; Chonan, Takeshi, E-mail: [Ichikawa Research Laboratory, Sumitomo Metal Mining Co., Ltd (Japan)


    Nanoparticles of caesium tungsten bronze were successfully synthesized by solvothermal reactions in ethanol with the introduction of different organic fatty acids with various carbon numbers of 1 to 5. Compared to the sample prepared in pure ethanol, the samples obtained by mixed solvent of ethanol and fatty acids showed higher production yield, smaller particle size, more uniform particles size distribution and higher Cs/W atomic ratio. In addition, all of samples obtained using acids-ethanol mixed solvent exhibited higher visible light transmittance and greater NIR absorption performance, indicating the potential application for smart window and heat-ray shielding materials. The addition of acetic acid showed the best performance to facilitate the formation of well dispersed Cs{sub x}WO{sub 3} regular nanorods, leading to its excellent optical properties.

  13. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase (United States)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; hide


    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  14. Rational molecular design towards Vis/NIR absorption and fluorescence by using pyrrolopyrrole aza-BODIPY and its highly conjugated structures for organic photovoltaics. (United States)

    Shimizu, Soji; Iino, Taku; Saeki, Akinori; Seki, Shu; Kobayashi, Nagao


    Pyrrolopyrrole aza-BODIPY (PPAB) developed in our recent study from diketopyrrolopyrrole by titanium tetrachloride-mediated Schiff-base formation reaction with heteroaromatic amines is a highly potential chromophore due to its intense absorption and fluorescence in the visible region and high fluorescence quantum yield, which is greater than 0.8. To control the absorption and fluorescence of PPAB, particularly in the near-infrared (NIR) region, further molecular design was performed using DFT calculations. This results in the postulation that the HOMO-LUMO gap of PPAB is perturbed by the heteroaromatic moieties and the aryl-substituents. Based on this molecular design, a series of new PPAB molecules was synthesized, in which the largest redshifts of the absorption and fluorescence maxima up to 803 and 850 nm, respectively, were achieved for a PPAB consisting of benzothiazole rings and terthienyl substituents. In contrast to the sharp absorption of PPAB, a PPAB dimer, which was prepared by a cross-coupling reaction of PPAB monomers, exhibited panchromatic absorption across the UV/Vis/NIR regions. With this series of PPAB chromophores in hand, a potential application of PPAB as an optoelectronic material was investigated. After identifying a suitable PPAB molecule for application in organic photovoltaic cells based on evaluation using time-resolved microwave conductivity measurements, a maximized power conversion efficiency of 1.27 % was achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field

    International Nuclear Information System (INIS)

    Chajkovskij, I.A.


    A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers

  16. Determination of the neutron flux in the reactor zones with the strong neutron absorption and leakage

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milosevic, M.


    The procedures for the numerical and experimental determination of the neutron flux in the zones with the strong neutron absorption and leakage are described in this paper. Numerical procedure is based on the SCALE-4.4a code system application with the use of Dancoff factor determined by the VEGA2DAN code. Experimental methodology consists of the irradiated foils activity measurement, and foil averaged neutron absorption cross-section determination via mentioned SCALE- 4.4a calculation procedure. The proposed procedures have been applied for the determination of the neutron flux in the internal neutron converter used with the RB reactor core configuration number 114. (author) [sr

  17. The characterization of the concentration of the single-walled carbon nanotubes in aqueous dispersion by UV-Vis-NIR absorption spectroscopy. (United States)

    Yang, Bing; Ren, Lingling; Li, Luming; Tao, Xingfu; Shi, Yunhua; Zheng, Yudong


    Current and future applications of single-wall carbon nanotubes (SWCNTs) depend on the dispersion of the SWCNTs in aqueous solution and their quantitation. The concentration of SWCNTs is an important indicator to evaluate the dispersibility of the surfactant-dispersed SWCNTs suspension. Due to the complexity of the SWCNTs suspension, it is necessary to determine both the total concentration of the dispersed SWCNTs and the concentration of individually dispersed SWCNTs in aqueous suspensions, and these were evaluated through the absorbance and the resonance ratios of UV-Vis-NIR absorption spectra, respectively. However, there is no specific and reliable position assigned for either calculation of the absorbance or the resonance ratio of the UV-Vis-NIR absorption spectrum. In this paper, different ranges of wavelengths for these two parameters were studied. From this, we concluded that the wavelength range between 300 nm and 600 nm should be the most suitable for evaluation of the total concentration of dispersed SWCNTs in the suspension; also, wavelengths below 800 nm should be most suitable for evaluation of the concentration of individually dispersed SWCNTs in the suspension. Moreover, these wavelength ranges are verified by accurate dilution experiments.

  18. C3H2 : A wide-band-gap semiconductor with strong optical absorption (United States)

    Lu, Hong-Yan; Cuamba, Armindo S.; Geng, Lei; Hao, Lei; Qi, Yu-Min; Ting, C. S.


    Using first-principles calculations, we predict a new type of partially hydrogenated graphene system, C3H2 , which turns out to be a semiconductor with a band gap of 3.56 eV. The bands are rather flat at the band edges and thus lead to a large density of states, which further results in strong optical absorption between the valence band and the conduction band. Particularly, it shows strong optical absorption at about 4.5 eV for the light polarized along the lines connecting the nearest unhydrogenated carbon atoms. Thus, the predicted C3H2 system may have potential applications for a polarizer as well as other high-efficiency optical devices in the near ultraviolet region.

  19. Attosecond transient-absorption dynamics of xenon core-excited states in a strong driving field (United States)

    Kobayashi, Yuki; Timmers, Henry; Sabbar, Mazyar; Leone, Stephen R.; Neumark, Daniel M.


    We present attosecond transient-absorption experiments on xenon 4 d-16 p core-level states resonantly driven by intense (1.6 ×1014W/cm 2 ) few-cycle near-infrared laser pulses. In this strongly driven regime, broad induced absorption features with half-cycle (1.3-fs) delay-dependent modulation are observed over the range of 58-65 eV, predicted as a signature of the breakdown of the rotating-wave approximation in strong-field driving of Autler-Townes splitting [A. N. Pfeiffer and S. R. Leone, Phys. Rev. A 85, 053422 (2012), 10.1103/PhysRevA.85.053422]. Relevant atomic states are identified by a numerical model involving three electronic states, and the mechanism behind the broad induced absorption is discussed in the Floquet formalism. These results demonstrate that a near-infrared field well into the tunneling regime can still control the optical properties of an atomic system over a several-electron-volt spectral range and with attosecond precision.

  20. Strongly correlated quasi-one-dimensional bands: Ground states, optical absorption, and phonons

    International Nuclear Information System (INIS)

    Campbell, D.K.; Gammel, J.T.; Loh, E.Y. Jr.


    Using the Lanczos method for exact diagonalization on systems up to 14 sites, combined with a novel ''phase randomization'' technique for extracting more information from these small systems, we investigate several aspects of the one-dimensional Peierls-Hubbard Hamiltonian, in the context of trans-polyacetylene: the dependence of the ground state dimerization on the strength of the electron-electron interactions, including the effects of ''off-diagonal'' Coulomb terms generally ignored in the Hubbard model; the phonon vibrational frequencies and dispersion relations, and the optical absorption properties, including the spectrum of absorptions as a function of photon energy. These three different observables provide considerable insight into the effects of electron-electron interactions on the properties of real materials and thus into the nature of strongly correlated electron systems. 29 refs., 11 figs

  1. Strong water absorption in the dayside emission spectrum of the planet HD 189733b. (United States)

    Grillmair, Carl J; Burrows, Adam; Charbonneau, David; Armus, Lee; Stauffer, John; Meadows, Victoria; van Cleve, Jeffrey; von Braun, Kaspar; Levine, Deborah


    Recent observations of the extrasolar planet HD 189733b did not reveal the presence of water in the emission spectrum of the planet. Yet models of such 'hot-Jupiter' planets predict an abundance of atmospheric water vapour. Validating and constraining these models is crucial to understanding the physics and chemistry of planetary atmospheres in extreme environments. Indications of the presence of water in the atmosphere of HD 189733b have recently been found in transmission spectra, where the planet's atmosphere selectively absorbs the light of the parent star, and in broadband photometry. Here we report the detection of strong water absorption in a high-signal-to-noise, mid-infrared emission spectrum of the planet itself. We find both a strong downturn in the flux ratio below 10 microm and discrete spectral features that are characteristic of strong absorption by water vapour. The differences between these and previous observations are significant and admit the possibility that predicted planetary-scale dynamical weather structures may alter the emission spectrum over time. Models that match the observed spectrum and the broadband photometry suggest that heat redistribution from the dayside to the nightside is weak. Reconciling this with the high nightside temperature will require a better understanding of atmospheric circulation or possible additional energy sources.

  2. Spectrum of absorption of a weak signal by an atom in a strong field

    International Nuclear Information System (INIS)

    Bakaev, D.S.; Vdovin, Y.A.; Ermachenko, V.M.; Yakovlenko, S.I.


    An analysis is made of the spectrum of absorption of a weak probe electromagnetic field by two-level atoms in a strong resonant laser field, undergoing collision with buffer gas atoms. The analysis is made using an approach that allows for the direct influence of a strong electromagnetic field on the dynamics of an elastic collision between an active atom and a buffer gas atom. Rate equations are analyzed for a combined ''atom--strong electromagnetic field'' system (an atom ''dressed'' by the field) allowing for spontaneous and optical collisional transitions, and also for the interaction with the probe field. In the steady-state case, an expression is derived for the electric susceptibility of the medium at the small-signal frequency. This expression contains the rates of the optical collisional transitions that depend nontrivially on the parameters of the strong electromagnetic field. The phenomenological characteristics of optical collisional transitions generally used are only valid at low intensities and for small frequency detunings of the strong electromagnetic field, i.e., in the impact limit

  3. Determination of mixture valence plutonium and multicomponent by computer resolution analysis of absorption spectrum (UV/VIS/NIR) (CRAAS)

    International Nuclear Information System (INIS)

    Zhuang Weixin; Ye Guoan; Huang Lifeng; Sun Hongfang; Zhao Yanju


    A spectrophotometry has been developed which can directly determine a multi-component sample by spectrophotometry without any chemical separation. CRAAS (Computer Resolution Analysis of Absorption Spectrum) has been reported. It is different from the previous spectrophotometry depending on only one or several special absorption peak. The CRAAS deals with the whole region of absorption spectrum by mathematical statistics. So CRAAS has higher accuracy, stronger power and very high resolution. The trouble comes from overlap of different spectrum in each other has been solved because CRAAS depends on the whole spectrum. As long as two spectra have different shape, their concentrations can be determined even their special absorption peaks are seriously overlapped. The accuracy is about +-5%. (2 refs., 7 figs., 8 tabs.)


    Energy Technology Data Exchange (ETDEWEB)

    Rapoport, Sharon; Onken, Christopher A.; Schmidt, Brian P.; Tucker, Brad E. [Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT 2611 (Australia); Wyithe, J. Stuart B. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Levan, Andrew J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)


    Sixty percent of gamma-ray bursts (GRBs) reveal strong Mg II absorbing systems, which is a factor of {approx}2 times the rate seen along lines of sight to quasars. Previous studies argue that the discrepancy in the strong Mg II covering factor is most likely to be the result of either quasars being obscured due to dust or the consequence of many GRBs being strongly gravitationally lensed. We analyze observations of quasars that show strong foreground Mg II absorption. We find that GRB lines of sight pass closer to bright galaxies than would be expected for random lines of sight within the impact parameter expected for strong Mg II absorption. While this cannot be explained by obscuration in the GRB sample, it is a natural consequence of gravitational lensing. Upon examining the particular configurations of galaxies near a sample of GRBs with strong Mg II absorption, we find several intriguing lensing candidates. Our results suggest that lensing provides a viable contribution to the observed enhancement of strong Mg II absorption along lines of sight to GRBs, and we outline the future observations required to test this hypothesis conclusively.

  5. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films. (United States)

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N


    Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

  6. The velocity distribution of interstellar gas observed in strong UV absorption lines (United States)

    Cowie, L. L.; York, D. G.


    Observations of three strong interstellar UV absorption lines of N I (1199 A), N II (1083 A), and Si III (1206 A) in 47 stars of widely varying distance and a variety of spectral types are analyzed to obtain a velocity distribution function for the interstellar gas. A technique based on the maximum and minimum velocities observed along a line of sight is adopted because of heavy line blending, and results are discussed for both power-law and exponential distribution functions. The expected distribution of radiative-phase supernova remnants (SNRs) in the interstellar medium is calculated as a function of SNR birthrate and of the interstellar density in which they evolve. The results are combined with observed distance estimates, and it is shown that an interstellar density in excess of 0.1 per cu cm would be required to keep the SNRs sufficiently confined so that their cross sections are consistent with the observed number of components. The alternative possibility is considered that SNRs do not enter the radiative phase before escaping from the Galaxy or colliding with neighboring remnants.

  7. Interaction of the electromagnetic precursor from a relativistic shock with the upstream flow - I. Synchrotron absorption of strong electromagnetic waves (United States)

    Lyubarsky, Yuri


    This paper is the first in the series of papers aiming to study interaction of the electromagnetic precursor waves generated at the front of a relativistic shock with the upstream flow. It is motivated by a simple consideration showing that the absorption of such an electromagnetic precursor could yield an efficient transformation of the kinetic energy of the upstream flow to the energy of accelerated particles. Taking into account that the precursor is a strong wave, in which electrons oscillate with relativistic velocities, the standard plasma-radiation interaction processes should be reconsidered. In this paper, I calculate the synchrotron absorption of strong electromagnetic waves.


    NARCIS (Netherlands)



    From atomic calculations in crystal-field symmetry we find a very strong circular and linear dichroism in the 2p x-ray absorption edges of magnetically ordered 3d transition-metal ions. The spectral shape changes drastically with the character of the ground state, which is determined by the presence

  9. Boosting Vis/NIR Charge-Transfer Absorptions of Iron(II) Complexes by N-Alkylation and N-Deprotonation in the Ligand Backbone. (United States)

    Mengel, Andreas K C; Bissinger, Christian; Dorn, Matthias; Back, Oliver; Förster, Christoph; Heinze, Katja


    Reversing the metal-to-ligand charge transfer ( 3 MLCT)/metal-centered ( 3 MC) excited state order in iron(II) complexes is a challenging objective, yet would finally result in long-sought luminescent transition-metal complexes with an earth-abundant central ion. One approach to achieve this goal is based on low-energy charge-transfer absorptions in combination with a strong ligand field. Coordinating electron-rich and electron-poor tridentate oligopyridine ligands with large bite angles at iron(II) enables both low-energy MLCT absorption bands around 590 nm and a strong ligand field. Variations of the electron-rich ligand by introducing longer alkyl substituents destabilizes the iron(II) complex towards ligand substitution reactions while hardly affecting the optical properties. On the other hand, N-deprotonation of the ligand backbone is feasible and reversible, yielding deep-green complexes with charge-transfer bands extending into the near-IR region. Time-dependent density functional theory calculations assign these absorption bands to transitions with dipole-allowed ligand-to-ligand charge transfer character. This unique geometric and electronic situation establishes a further regulating screw to increase the energy gap between potentially emitting charge-transfer states and the non-radiative ligand field states of iron(II) dyes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Strong Hydrogen Absorption at Cosmic Dawn: The Signature of a Baryonic Universe (United States)

    McGaugh, Stacy S.


    The recently reported detection of redshifted 21cm absorption at $z \\approx 17$ is a significant advance in the exploration of the cosmic dark ages. The observed signal ($T_{\\mathrm{21}} \\approx -0.5$ K with the limit $T_{\\mathrm{21}} universe.

  11. Absorption in Music: Development of a Scale to Identify Individuals with Strong Emotional Responses to Music (United States)

    Sandstrom, Gillian M.; Russo, Frank A.


    Despite the rise in research investigating music and emotion over the last decade, there are no validated measures of individual differences in emotional responses to music. We created the Absorption in Music Scale (AIMS), a 34-item measure of individuals' ability and willingness to allow music to draw them into an emotional experience. It was…

  12. Strong two-photon absorption of Mn-doped CsPbCl3 perovskite nanocrystals (United States)

    He, Tingchao; Li, Junzi; Ren, Can; Xiao, Shuyu; Li, Yiwen; Chen, Rui; Lin, Xiaodong


    Emerging CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) have been demonstrated to be efficient emitters with a high fluorescence quantum yield, making these materials interesting for optical applications as well as for fundamental physics. Interestingly, doping with transition metal ions has been extensively explored as a way of introducing new optical, electronic, and magnetic properties, making perovskite NCs much more functional than their undoped counterparts. However, there have been no reports regarding the nonlinear optical properties of transition metal ion doped perovskite NCs. Herein, by using femtosecond-transient absorption spectroscopy, we have determined the one-photon linear absorption cross-section (˜1.42 × 10-14 cm2) of Mn-doped CsPbCl3 NCs (˜11.7 ± 1.8 nm size, ˜0.2% doping concentration, and ˜600 nm emission wavelength). More importantly, their nonlinear optical properties—in particular, the two-photon absorption (TPA) and resultant emission—were investigated. Notably, the NCs exhibit wavelength-dependent TPA with a maximum value up to ˜3.18 × 105 GM at a wavelength of 720 nm. Our results indicate that Mn-doped CsPbCl3 NCs show promise in nonlinear optical devices and multiphoton fluorescence lifetime imaging.

  13. Analytical modeling of light transport in scattering materials with strong absorption

    NARCIS (Netherlands)

    Meretska, M. L.; Uppu, R.; Vissenberg, Gilles; Lagendijk, A.; Ijzerman, W. L.; Vos, W. L.


    We have investigated the transport of light through slabs that both scatter and strongly absorb, a situation that occurs in diverse application fields ranging from biomedical optics, powder technology, to solid-state lighting. In particular, we study the transport of light in the visible wavelength

  14. Resonance enhancement of two photon absorption by magnetically trapped atoms in strong rf-fields (United States)

    Chakraborty, A.; Mishra, S. R.


    Applying a many mode Floquet formalism for magnetically trapped atoms interacting with a polychromatic rf-field, we predict a large two photon transition probability in the atomic system of cold 87Rb atoms. The physical origin of this enormous increase in the two photon transition probability is due to the formation of avoided crossings between eigen-energy levels originating from different Floquet sub-manifolds and redistribution of population in the resonant intermediate levels to give rise to the resonance enhancement effect. Other exquisite features of the studied atom-field composite system include the splitting of the generated avoided crossings at the strong field strength limit and a periodic variation of the single and two photon transition probabilities with the mode separation frequency of the polychromatic rf-field. This work can find applications to characterize properties of cold atom clouds in the magnetic traps using rf-spectroscopy techniques.

  15. Strong-field induced dissociation dynamics in 1,2-dibromoethane traced by femtosecond XUV transient absorption spectroscopy (United States)

    Chatterley, A. S.; Lackner, F.; Neumark, D. M.; Leone, S. R.; Gessner, O.


    Strong field induced dissociation dynamics of the small haloalkane 1,2-dibromoethane (DBE) have been explored using femtosecond XUV transient absorption spectroscopy. Dynamics are initiated by a near IR pump pulse with intensities between 75 and 220 TW cm-2, and are probed by the atomic site specific XUV absorption of the Br 3d levels. Immediately upon ionization, the spectral signatures of molecular ions appear. These molecular peaks decay in tandem with the appearance of atomic Br peaks in charge states of 0, + 1 and + 2, which are all monitored simultaneously. Neutral Br atoms are eliminated in 300 fs, presumably from statistical dissociation of vibrationally hot DBE+ ions, Br+ ions are eliminated in 70 fs from a more energetic dissociative ionization pathway, and Br++ ions are eliminated within the duration of the 35 fs pump pulse. The simultaneous recording of multiple parent molecule and fragment ion traces enables new insight into predominant dissociation pathways induced by strong field ionization of organic molecules.

  16. Direct observation of ring-opening dynamics in strong-field ionized selenophene using femtosecond inner-shell absorption spectroscopy (United States)

    Lackner, Florian; Chatterley, Adam S.; Pemmaraju, C. D.; Closser, Kristina D.; Prendergast, David; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver


    Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (C4H4Se). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (˜58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations. The experiments simultaneously capture the instantaneous population of stable molecular ions, the emergence and decay of excited cation states, and the appearance of atomic fragments. The experiments reveal, in particular, insight into the strong-field induced ring-opening dynamics in the selenophene cation, which are traced by the emergence of non-cyclic molecules as well as the liberation of Se+ ions within an overall time scale of approximately 170 fs. We propose that both products may be associated with dynamics on the same electronic surfaces but with different degrees of vibrational excitation. The time-dependent inner-shell absorption features provide direct evidence for a complex relaxation mechanism that may be approximated by a two-step model, whereby the initially prepared, excited cyclic cation decays within τ1 = 80 ± 30 fs into a transient molecular species, which then gives rise to the emergence of bare Se+ and ring-open cations within an additional τ2 = 80 ± 30 fs. The combined experimental and theoretical results suggest a close relationship between σ* excited cation states and the observed ring-opening reactions. The findings demonstrate that the combination of femtosecond time-resolved core-level spectroscopy with ab initio estimates of spectroscopic signatures provide new insights into complex, ultrafast photochemical reactions such as ring-opening dynamics in organic molecules in real-time and with simultaneous sensitivity for electronic and structural

  17. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.; Campillay, Abdo; Contreras, Carlos [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Simon, Joshua D.; Burns, Christopher R.; Persson, Sven E.; Thompson, I. B.; Freedman, Wendy L. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Cox, Nick L. J. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D bus 2401, 3001 Leuven (Belgium); Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Karakas, Amanda I. [Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611 (Australia); Patat, F. [European Southern Observatory (ESO), Karl Schwarschild Strasse 2, D-85748, Garching bei München (Germany); Sternberg, A. [Max Planck Institute for Astrophysics, Karl Schwarzschild Strasse 1, D-85741 Garching bei München (Germany); Williams, R. E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gal-Yam, A. [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Leonard, D. C. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Folatelli, Gastón, E-mail: [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8583 (Japan); and others


    High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with the progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.

  18. Strong two-photon absorption and its saturation of a self-organized dimer of an ethynylene-linked porphyrin tandem. (United States)

    Kamada, Kenji; Hara, Chihiro; Ogawa, Kazuya; Ohta, Koji; Kobuke, Yoshiaki


    The two-photon absorption properties of a self-organized dimer of a free-base and zinc(II) porphyrins tandem linked with an ethynylene group and terminated by imidazolyl and phenylethynyl groups were investigated. The self-organized dimer was found to exhibit strong two-photon absorption and furthermore the saturation of the two-photon absorption owing to the intense transition.

  19. [Induction and analysis for NIR features of frequently-used mineral traditional Chinese medicines]. (United States)

    Chen, Long; Yuan, Ming-Yang; Chen, Ke-Li


    In order to provide theoretical basis for the rapid identification of mineral traditional Chinese medicines(TCM) with near infrared (NIR)diffuse reflectance spectroscopy, Characteristic NIR spectra of 51 kinds of mineral TCMs were generalized and compared on the basis of the previous research, and the characteristic spectral bands were determined and analyzed by referring to mineralogical and geological literatures. It turned out that the NIR features of mineral TCMs were mainly at 8 000-4 000 cm ⁻¹ wavebands, which can be assigned as the absorption of water, -OH and[CO3 ²⁻] and so on. Absorption peaks of water has regularity as follows, the structure water and -OH had a combined peak which was strong and keen-edged around 7 000 cm ⁻¹, the crystal water had two strong peak around 7 000 cm ⁻¹ and 5 100 cm ⁻¹, and water only has a broad peak around 5 100 cm ⁻¹. Due to the differences in the crystal form and the contents of water in mineral TCMs, NIR features of water in mineral TCMs which could be used for identification were different. Mineral TCMs containing sulfate are rich in crystal water, mineral TCMs containing silicate generally had structure water, and mineral TCMs containing carbonate merely had a little of water, so it was reasonable for the use of NIR spectroscopy to classify mineral TCMs with anionic type. In addition, because of the differences in cationic type, impurities, crystal form and crystallinity, mineral TCMs have exclusive NIR features at 4 600-4 000 cm ⁻¹, which can be assigned as Al-OH, Mg-OH, Fe-OH, Si-OH,[CO3 ²⁻] and so on. Calcined mineral TCMs are often associated with water and main composition changes, also changes of the NIR features, which could be used for the monitoring of the processing, and to provide references for the quality control of mineral TCMs. The adaptability and limitation of NIR analysis for mineral TCMs were also discussed:the majority of mineral TCMs had noteworthy NIR features which could be

  20. Quantifying ultrafast charge carrier injection from methylammonium lead iodide into the hole-transport material H101 and mesoporous TiO2using Vis-NIR transient absorption. (United States)

    Klein, Johannes R; Scholz, Mirko; Oum, Kawon; Lenzer, Thomas


    Organic-inorganic hybrid lead halide perovskites already reach very high power conversion efficiencies above 22% on architectures employing mesoporous TiO 2 , but the carrier injection processes across the different interfaces are still not fully understood. Here we use ultrafast broadband transient absorption spectroscopy to determine time constants and yields for hole and electron injection. We show that hole transfer from the perovskite valence band (VB) to the hole-transport material (HTM) H101 at the perovskite/HTM interface occurs in less than 500 fs, but is limited by imperfections of the contact layer and poor infiltration of the HTM into the mesoporous structure. Electron injection from the perovskite conduction band (CB) into the CB of mesoporous TiO 2 is only a small channel (25%). Electron transport inside mesoporous MAPI/TiO 2 architectures therefore mainly occurs via the perovskite. We also show that electron injection from H101 into the perovskite is feasible for excitation at 400 nm resulting in light-harvesting of high-energy photons by the HTM. Accurate absolute NIR absorption coefficients for CB electrons in mesoporous TiO 2 are provided.

  1. Effects of the gamma-ray irradiation on the optical absorption of pure silica core single-mode fibres in the visible and NIR range

    International Nuclear Information System (INIS)

    Calderon, A.; Calvo, E.; Figueroa, C.F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Arce, P.; Barcala, J.M.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.


    Optical absorption induced by photon radiation was evaluated for several commercial pure silica core, single mode, optical fibres. The study was performed for three different wavelengths: 630, 670 and 785 nm. We have identified a fibre whose induced transmission loss stays below 1 dB/m after 300 kGy gamma-ray irradiation

  2. Modulation of intersubband light absorption and interband photoluminescence in double GaAs/AlGaAs quantum wells under strong lateral electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Balagula, R. M., E-mail:; Vinnichenko, M. Ya., E-mail:; Makhov, I. S.; Firsov, D. A.; Vorobjev, L. E. [Peter the Great Saint-Petersburg Polytechnic University (Russian Federation)


    The effect of a lateral electric field on the mid-infrared absorption and interband photoluminescence spectra in double tunnel-coupled GaAs/AlGaAs quantum wells is studied. The results obtained are explained by the redistribution of hot electrons between quantum wells and changes in the space charge in the structure. The hot carrier temperature is determined by analyzing the intersubband light absorption and interband photoluminescence modulation spectra under strong lateral electric fields.

  3. NIR Analysis for Textiles (United States)

    Near Infrared (NIR) spectroscopy has been found to be a useful technique to characterize raw materials and finished textile products, and NIR methods and techniques continue to find increasingly diverse and wide-ranging quantitative and qualitative applications in the textile industry. NIR methods ...

  4. Microporous Co@C Nanoparticles Prepared by Dealloying CoAl@C Precursors: Achieving Strong Wideband Microwave Absorption via Controlling Carbon Shell Thickness. (United States)

    Li, Da; Liao, Haoyan; Kikuchi, Hiroaki; Liu, Tong


    Excellent magnetic features make Co-based materials promising candidates as high-performance microwave absorbers. However, it is still a significant challenge for Co-based absorbers to possess high-intensity and broadband absorption simultaneously, owing to the lack of dielectric loss and impedance matching. Herein, microporous Co@C nanoparticles (NPs) with carbon shell thicknesses ranging from 1.8-4.9 nm have been successfully synthesized by dealloying CoAl@C precursors. All of the samples exhibit high microwave absorption performance. The microporous Co@C sample possessing a carbon shell of 1.8 nm exhibits the highest absorption intensity among these samples with a minimum reflection loss (RL) of -141.1 dB, whose absorption bandwidth for RL ≤ -10 dB is 7.3 GHz. As the thickness of the carbon shell increases, the absorption bandwidth of the NPs becomes wider. For the sample with the carbon shell thickness of 4.9 nm, the absorption bandwidth for RL ≤ -10 dB reaches a record high of 13.2 GHz. The outstanding microwave attenuation properties are attributed to the dielectric loss of the carbon shell, the magnetic loss of the Co core, and the cooperation of the core-shell structure and microporous morphology. The strong wideband microwave absorption of the carbon-coated microporous Co NPs highlights their potential applications in microwave absorbing systems.

  5. Computational design of small organic dyes with strong visible absorption by controlled quinoidization of the thiophene unit (United States)

    Tan, Yi Yin; Tu, Wei Han; Manzhos, Sergei


    We present rational design of phenothiazine dyes by controlled quinoidization of the thiophene unit. We systematically study the effect of electron-withdrawing functional groups including pseudo- and super-halogens. We propose a new dye where a fumaronitrile unit induces an increase in the bond length alternation and a concurrent red shift in the absorption spectrum vs. the parent dye. The visible absorption peak is predicted at 520 nm, in CH2Cl2 vs. 450 nm for the parent dye. The LUMO and HOMO levels of the new dye are suitable for injection into TiO2 and regeneration by available redox shuttles, respectively.

  6. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies. (United States)

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming


    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Strong Impact of an Axial Ligand on the Absorption by Chlorophyll a and b Pigments Determined by Gas-Phase Ion Spectroscopy Experiments

    DEFF Research Database (Denmark)

    Kjaer, Christina; Stockett, Mark H.; Pedersen, Bjarke Møller


    The microenvironments in photosynthetic proteins affect the absorption by chlorophyll (Chl) pigments. It is, however, a challenge to disentangle the impact on the transition energies of different perturbations, for example, the global electrostatics of the protein (nonbonded environmental effects......), exciton coupling between Chl's, conformational variations, and binding of an axial ligand to the magnesium center. This is needed to distinguish between the two most commonly proposed mechanisms for energy transport in photosynthetic proteins, relying on either weakly or strongly coupled pigments. Here...

  8. H2 emission and CO absorption in Centaurus A : Evidence for a circumnuclear molecular disk

    NARCIS (Netherlands)

    Israel, F.P.; Dishoeck, van E.F.; Baas, F.; Koornneef, J.; Black, J.H.; Graauw, de Th.


    Emission and absorption lines of H2 and CO in nuclei of several galaxies with strong NIR emission, including Centaurus A (NGC 5128), were studied at the La Silla observatory to obtain constraints on the physical parameters of molecular material close to the nucleus of the NGC 5128 galaxy. Results

  9. Using Massive Multivariate NIRS Data in Ryegrass

    DEFF Research Database (Denmark)

    Edriss, Vahid; Greve-Pedersen, Morten; Jensen, Christian S

    variance and the heritability for each bin were estimated using a mixed model. To use all the information for prediction, since we have 366 bins, a reduction in number of parameters is necessary. The usual method is to combine principal component analysis (PCA) and partial least square (PLS). Another...... (e.g. dry matter, protein content, etc.) for the next generation. In total 1984 NIRS data from 995 ryegrass families (first cut) were used. The Absorption of radiation in the region of 960 – 1690 nm in every 2 nm distance produced 366 bins to represent the NIRS spectrum. The amount of genetic...

  10. Amorphization-induced strong localization of electronic states in CsPbBr3 and CsPbCl3 studied by optical absorption measurements (United States)

    Kondo, S.; Sakai, T.; Tanaka, H.; Saito, T.


    Optical absorption spectra of amorphous CsPbX3 films (X=Br,Cl) are characterized by two Gaussian bands near the fundamental edge, with the optical energy gap largely blueshifted and the absorption intensity strongly reduced as compared with the crystalline films. The peak energies of the bands are close to those of the A and C bands of Pb-doped alkali halides. The spectral features are discussed in terms of a molecular orbital theory based on a quasicomplex Pb2+(X-)6 model similar to the complex model for the doped alkali halides. It is shown that not only Pb2+ 6s and 6p extended states near the band edges but also X- p states contributing to upper valence bands are localized by amorphization. The transitions from the localized Pb2+ 6s to 6p states produce the spin-orbit allowed 3P1 and dipole allowed 1P1 states responsible for the two Gaussians. The localized X- p states lie deeper in energy than the localized Pb2+ 6s state and only contribute to higher-energy absorption above the Gaussian bands, giving the reason for the reduced absorption near the fundamental edge. The blueshift of the optical energy gap is attributed to the disappearance of k dispersions for these one-electron states.

  11. Quantum state-resolved probing of strong-field-ionized xenon atoms using femtosecond high-order harmonic transient absorption spectroscopy. (United States)

    Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E; Santra, Robin; Buth, Christian; Leone, Stephen R


    Femtosecond high-order harmonic transient absorption spectroscopy is used to resolve the complete |j,m quantum state distribution of Xe+ produced by optical strong-field ionization of Xe atoms at 800 nm. Probing at the Xe N4/5 edge yields a population distribution rhoj,|m| of rho3/2,1/2ratiorho1/2,1/2ratiorho3/2,3/2=75+/-6 :12+/-3 :13+/-6%. The result is compared to a tunnel ionization calculation with the inclusion of spin-orbit coupling, revealing nonadiabatic ionization behavior. The sub-50-fs time resolution paves the way for tabletop extreme ultraviolet absorption probing of ultrafast dynamics.

  12. SN 2011A: A Low-luminosity Interacting Transient with a Double Plateau and Strong Sodium Absorption (United States)

    de Jaeger, T.; Anderson, J. P.; Pignata, G.; Hamuy, M.; Kankare, E.; Stritzinger, M. D.; Benetti, S.; Bufano, F.; Elias-Rosa, N.; Folatelli, G.; Förster, F.; González-Gaitán, S.; Gutiérrez, C. P.; Inserra, C.; Kotak, R.; Lira, P.; Morrell, N.; Taddia, F.; Tomasella, L.


    We present optical photometry and spectroscopy of the optical transient SN 2011A. Our data span 140 days after discovery including {BVRI} u\\prime g\\prime r\\prime i\\prime z\\prime photometry and 11 epochs of optical spectroscopy. Originally classified as a type IIn supernova (SN IIn) due to the presence of narrow Hα emission, this object shows exceptional characteristics. First, the light curve shows a double plateau, a property only observed before in the impostor SN 1997bs. Second, SN 2011A has a very low luminosity ({M}V=-15.72), placing it between normal luminous SNe IIn and SN impostors. Third, SN 2011A shows low velocity and high equivalent width absorption close to the sodium doublet, which increases with time and is most likely of circumstellar origin. This evolution is also accompanied by a change in line profile; when the absorption becomes stronger, a P Cygni profile appears. We discuss SN 2011A in the context of interacting SNe IIn and SN impostors, which appears to confirm the uniqueness of this transient. While we favor an impostor origin for SN 2011A, we highlight the difficulty in differentiating between terminal and non-terminal interacting transients. This paper includes data obtained with the 6.5 m Magellan Telescopes and du Pont telescope; the Gemini-North Telescope, Mauna Kea, USA (Gemini Program GN-2010B-Q67, PI: Stritzinger); the PROMPT telescopes at Cerro Tololo Inter-American Observatory in Chile; with the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council; based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias; the NTT from ESO Science Archive

  13. Improving NIR snow pit stratigraphy observations by introducing a controlled NIR light source (United States)

    Dean, J.; Marshall, H.; Rutter, N.; Karlson, A.


    Near-infrared (NIR) photography in a prepared snow pit measures mm-/grain-scale variations in snow structure, as reflectivity is strongly dependent on microstructure and grain size at the NIR wavelengths. We explore using a controlled NIR light source to maximize signal to noise ratio and provide uniform incident, diffuse light on the snow pit wall. NIR light fired from the flash is diffused across and reflected by an umbrella onto the snow pit; the lens filter transmits NIR light onto the spectrum-modified sensor of the DSLR camera. Lenses are designed to refract visible light properly, not NIR light, so there must be a correction applied for the subsequent NIR bright spot. To avoid interpolation and debayering algorithms automatically performed by programs like Adobe's Photoshop on the images, the raw data are analyzed directly in MATLAB. NIR image data show a doubling of the amount of light collected in the same time for flash over ambient lighting. Transitions across layer boundaries in the flash-lit image are detailed by higher camera intensity values than ambient-lit images. Curves plotted using median intensity at each depth, normalized to the average profile intensity, show a separation between flash- and ambient-lit images in the upper 10-15 cm; the ambient-lit image curve asymptotically approaches the level of the flash-lit image curve below 15cm. We hypothesize that the difference is caused by additional ambient light penetrating the upper 10-15 cm of the snowpack from above and transmitting through the wall of the snow pit. This indicates that combining NIR ambient and flash photography could be a powerful technique for studying penetration depth of radiation as a function of microstructure and grain size. The NIR flash images do not increase the relative contrast at layer boundaries; however, the flash more than doubles the amount of recorded light and controls layer noise as well as layer boundary transition noise.

  14. Portable wide-field hand-held NIR scanner (United States)

    Jung, Young-Jin; Roman, Manuela; Carrasquilla, Jennifer; Erickson, Sarah J.; Godavarty, Anuradha


    Near-infrared (NIR) optical imaging modality is one of the widely used medical imaging techniques for breast cancer imaging, functional brain mapping, and many other applications. However, conventional NIR imaging systems are bulky and expensive, thereby limiting their accelerated clinical translation. Herein a new compact (6 × 7 × 12 cm3), cost-effective, and wide-field NIR scanner has been developed towards contact as well as no-contact based real-time imaging in both reflectance and transmission mode. The scanner mainly consists of an NIR source light (between 700- 900 nm), an NIR sensitive CCD camera, and a custom-developed image acquisition and processing software to image an area of 12 cm2. Phantom experiments have been conducted to estimate the feasibility of diffuse optical imaging by using Indian-Ink as absorption-based contrast agents. As a result, the developed NIR system measured the light intensity change in absorption-contrasted target up to 4 cm depth under transillumination mode. Preliminary in-vivo studies demonstrated the feasibility of real-time monitoring of blood flow changes. Currently, extensive in-vivo studies are carried out using the ultra-portable NIR scanner in order to assess the potential of the imager towards breast imaging..

  15. Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils

    DEFF Research Database (Denmark)

    Priemé, Anders; Braker, Gesche; Tiedje, James M.


    The genetic heterogeneity of nitrite reductase gene (nirK and nirS) fragments from denitrifying prokaryotes in forested upland and marsh soil was investigated using molecular methods. nirK gene fragments could be amplified from both soils, whereas nirS gene fragments could be amplified only from...... the marsh soil. PCR products were cloned and screened by restriction fragment length polymorphism (RFLP), and representative fragments were sequenced. The diversity of nirK clones was lower than the diversity of nirS clones. Among the 54 distinct nirK RFLP patterns identified in the two soils, only one...... marsh clones and all upland clones. Only a few of the nirK clone sequences branched with those of known denitrifying bacteria. The nirS clones formed two major clusters with several subclusters, but all nirS clones showed less than 80% identity to nirS sequences from known denitrifying bacteria. Overall...

  16. Maturation of the cytochrome cd1 nitrite reductase NirS from Pseudomonas aeruginosa requires transient interactions between the three proteins NirS, NirN and NirF.


    Nicke, Tristan; Schnitzer, Tobias; Münch, Karin; Adamczack, Julia; Haufschildt, Kristin; Buchmeier, Sabine; Kucklick, Martin; Felgenträger, Undine; Jänsch, Lothar; Riedel, Katharina; Layer, Gunhild


    The periplasmic cytochrome cd 1 nitrite reductase NirS occurring in denitrifying bacteria such as the human pathogen Pseudomonas aeruginosa contains the essential tetrapyrrole cofactors haem c and haem d 1. Whereas the haem?c is incorporated into NirS by the cytochrome c maturation system I, nothing is known about the insertion of the haem d 1 into NirS. Here, we show by co-immunoprecipitation that NirS interacts with the potential haem d 1 insertion protein NirN in?vivo. This NirS?NirN inter...

  17. NIRS in Space? (United States)

    Peterson, David L.; Condon, Estelle (Technical Monitor)


    Proponents of near infrared reflectance spectroscopy (NIRS) have been exceptionally successful in applying NIRS techniques to many instances of organic material analyses. While this research and development began in the 1950s, in recent years, stimulation of advancements in instrumentation is allowing NIRS to begin to find its way into the food processing systems, into food quality and safety, textiles and much more. And, imaging high spectral resolution spectrometers are now being evaluated for the rapid scanning of foodstuffs, such as the inspection of whole chicken carcasses for fecal contamination. The imaging methods are also finding their way into medical applications, such as the non-intrusive monitoring of blood oxygenation in newborns. Can these scientific insights also be taken into space and successfully used to measure the Earth's condition? Is there an analog between the organic analyses in the laboratory and clinical settings and the study of Earth's living biosphere? How are the methods comparable and how do they differ?

  18. Shape-controlled synthesis of NIR absorbing branched gold nanoparticles and morphology stabilization with alkanethiols

    International Nuclear Information System (INIS)

    Van de Broek, B; Frederix, F; Bonroy, K; Jans, H; Jans, K; Borghs, G; Maes, G


    Gold nanoparticles are ideal candidates for clinical applications if their plasmon absorption band is situated in the near infrared region (NIR) of the electromagnetic spectrum. Various parameters, including the nanoparticle shape, strongly influence the position of this absorption band. The aim of this study is to produce stabilized NIR absorbing branched gold nanoparticles with potential for biomedical applications. Hereto, the synthesis procedure for branched gold nanoparticles is optimized varying the different synthesis parameters. By subsequent electroless gold plating the plasmon absorption band is shifted to 747.2 nm. The intrinsic unstable nature of the nanoparticles' morphology can be clearly observed by a spectral shift and limits their use in real applications. However, in this article we show how the stabilization of the branched structure can be successfully achieved by exchanging the initial capping agent for different alkanethiols and disulfides. Furthermore, when using alkanethiols/disulfides with poly(ethylene oxide) units incorporated, an increased stability of the gold nanoparticles is achieved in high salt concentrations up to 1 M and in a cell culture medium. These achievements open a plethora of opportunities for these stabilized branched gold nanoparticles in nanomedicine.

  19. Fermi resonance and strong anharmonic effects in the absorption spectra of the ν-OH ( ν-OD) vibration of solid H- and D-benzoic acid (United States)

    Yaremko, A. M.; Ratajczak, H.; Barnes, A. J.; Baran, J.; Durlak, P.; Latajka, Z.


    The vibrational spectra of polycrystalline benzoic acid (BA) and its deuterated derivative were studied over the wide frequency region 4000-10 cm -1 by IR and Raman methods. A theoretical analysis of the hydrogen bond frequency region and calculations at the B3LYP/6-311++G(2d, 2p) level for the benzoic acid cyclic dimer in the gas phase were made. In order to study the dynamics of proton transfer two formalisms were applied: Car-Parrinello Molecular Dynamics (CPMD) and Path Integrals Molecular Dynamics (PIMD). It was shown that the experimentally observed very broad ν-OH band absorption is the result of complex anharmonic interaction: Fermi resonance between the OH-stretching and bending vibrations and strong interaction of the ν-OH stretching with the low frequency phonons. The theoretical analysis in the framework of such an approach gave a good correlation with experiment. From the CPMD calculations it was confirmed that the O-H⋯O bridge is not rigid, with the O⋯O distance being described by a large amplitude motion. For the benzoic acid dimer we observed stepwise (asynchronous) proton transfer.

  20. [Research on shortwave NIR spectroscopy and its application to in situ flammable liquid detection]. (United States)

    Wu, Juan; Du, Zhen-hui; Liu, Jin; Xu, Ke-zin


    Fast, accurate and highly effective detection in situ was important to the control of illegal transportation and the use of liquid state dangerous goods. The present article used the strong penetrability of the shortwave near-infrared ray to the packing material and liquid and measured the absorption spectra of some flammable liquids such as the absolute ethyl alcohol, absolute methanol, ammonia, turpentine, gasoline, diesel oil, petroleum etc and the partial liquors in the short wavelength region of NIR (667-1000 nm). The primitive spectral data were standardized and compressed, and then, the characteristic wavelength of the absorption spectra was analyzed using the SPSS statistics software. A math model for flammable liquid distinction was established based on the designated characteristic wavelength and can correctly detect flammable liquid using the absorbency of 3 wavelengths (881, 935 and 981 nm). According to the above the authors may construct the inexpensive spectrum instrument to check the flammable liquid non-destructively in situ.

  1. On children's dyslexia with NIRS (United States)

    Gan, Zhuo; Li, Chengjun; Gong, Hui; Luo, Qingming; Yao, Bin; Song, Ranran; Wu, Hanrong


    Developmental dyslexia is a kind of prevalent psychologic disease. Some functional imaging technologies, such as FMRI and PET, have been used to study the brain activities of dyslexics. NIRS is a kind of novel technology which is more and more widely being used for study of the cognitive psychology. However, there aren"t reports about the dyslexic research using NIRS to be found until now. This paper introduces a NIRS system of four measuring channels. Brain activities of dyslexic subjects and normal subjects during reading task were studied with the NIRS system. Two groups of subjects, the group of dyslexia and the group of normal, were appointed to perform two reading tasks. At the same time, their cortical activities were measured with the NIRS system. This experimental result indicates that the brain activities of the dyslexic group were significantly higher than the control group in BA 48 and that NIRS can be used for the study of human brain activity.

  2. Indocyanine green fluorescence in second near-infrared (NIR-II) window. (United States)

    Starosolski, Zbigniew; Bhavane, Rohan; Ghaghada, Ketan B; Vasudevan, Sanjeev A; Kaay, Alexander; Annapragada, Ananth


    Indocyanine green (ICG), a FDA approved near infrared (NIR) fluorescent agent, is used in the clinic for a variety of applications including lymphangiography, intra-operative lymph node identification, tumor imaging, superficial vascular imaging, and marking ischemic tissues. These applications operate in the so-called "NIR-I" window (700-900 nm). Recently, imaging in the "NIR-II" window (1000-1700 nm) has attracted attention since, at longer wavelengths, photon absorption, and scattering effects by tissue components are reduced, making it possible to image deeper into the underlying tissue. Agents for NIR-II imaging are, however, still in pre-clinical development. In this study, we investigated ICG as a NIR-II dye. The absorbance and NIR-II fluorescence emission of ICG were measured in different media (PBS, plasma and ethanol) for a range of ICG concentrations. In vitro and in vivo testing were performed using a custom-built spectral NIR assembly to facilitate simultaneous imaging in NIR-I and NIR-II window. In vitro studies using ICG were performed using capillary tubes (as a simulation of blood vessels) embedded in Intralipid solution and tissue phantoms to evaluate depth of tissue penetration in NIR-I and NIR-II window. In vivo imaging using ICG was performed in nude mice to evaluate vascular visualization in the hind limb in the NIR-I and II windows. Contrast-to-noise ratios (CNR) were calculated for comparison of image quality in NIR-I and NIR-II window. ICG exhibited significant fluorescence emission in the NIR-II window and this emission (similar to the absorption profile) is substantially affected by the environment of the ICG molecules. In vivo imaging further confirmed the utility of ICG as a fluorescent dye in the NIR-II domain, with the CNR values being ~2 times those in the NIR-I window. The availability of an FDA approved imaging agent could accelerate the clinical translation of NIR-II imaging technology.

  3. Indocyanine green fluorescence in second near-infrared (NIR-II window.

    Directory of Open Access Journals (Sweden)

    Zbigniew Starosolski

    Full Text Available Indocyanine green (ICG, a FDA approved near infrared (NIR fluorescent agent, is used in the clinic for a variety of applications including lymphangiography, intra-operative lymph node identification, tumor imaging, superficial vascular imaging, and marking ischemic tissues. These applications operate in the so-called "NIR-I" window (700-900 nm. Recently, imaging in the "NIR-II" window (1000-1700 nm has attracted attention since, at longer wavelengths, photon absorption, and scattering effects by tissue components are reduced, making it possible to image deeper into the underlying tissue. Agents for NIR-II imaging are, however, still in pre-clinical development. In this study, we investigated ICG as a NIR-II dye. The absorbance and NIR-II fluorescence emission of ICG were measured in different media (PBS, plasma and ethanol for a range of ICG concentrations. In vitro and in vivo testing were performed using a custom-built spectral NIR assembly to facilitate simultaneous imaging in NIR-I and NIR-II window. In vitro studies using ICG were performed using capillary tubes (as a simulation of blood vessels embedded in Intralipid solution and tissue phantoms to evaluate depth of tissue penetration in NIR-I and NIR-II window. In vivo imaging using ICG was performed in nude mice to evaluate vascular visualization in the hind limb in the NIR-I and II windows. Contrast-to-noise ratios (CNR were calculated for comparison of image quality in NIR-I and NIR-II window. ICG exhibited significant fluorescence emission in the NIR-II window and this emission (similar to the absorption profile is substantially affected by the environment of the ICG molecules. In vivo imaging further confirmed the utility of ICG as a fluorescent dye in the NIR-II domain, with the CNR values being ~2 times those in the NIR-I window. The availability of an FDA approved imaging agent could accelerate the clinical translation of NIR-II imaging technology.

  4. In vivo near infrared (NIRS) sensor attachment using fibrin bioadhesive (United States)

    Macnab, Andrew; Pagano, Roberto; Kwon, Brian; Dumont, Guy; Shadgan, Babak


    Background: `Tisseel' (Baxter Healthcare, Deerfield, IL) is a fibrin-based sealant that is commonly used during spine surgery to augment dural repairs. We wish to intra-operatively secure a near infrared spectroscopy (NIRS) sensor to the dura in order to monitor the tissue hemodynamics of the underlying spinal cord. To determine if `Tisseel' sealant adversely attenuates NIR photon transmission. Methods: We investigated `Tisseel' in both an in vitro and in vivo paradigm. For in vitro testing, we used a 1 mm pathlength cuvette containing either air or `Tisseel' interposed between a NIR light source (760 and 850 nm) and a photodiode detector and compared transmittance. For in vivo testing, a continuous wave (760 and 850 nm) spatiallyresolved NIRS device was placed over the triceps muscle using either conventional skin apposition (overlying adhesive bandage) or bioadhesion with `Tisseel'. Raw optical data and tissue saturation index (TSI%) collected at rest were compared. Results: In-vitro NIR light absorption by `Tisseel' was very high, with transmittance reduced by 95% compared to air. In-vivo muscle TSI% values were 80% with conventional attachment and 20% using fibrin glue. Conclusion: The optical properties of `Tisseel' significantly attenuate NIR light during in-vitro transmittance and critically compromise photon transmission in-vivo.

  5. Near-infrared spectroscopy (NIRS) as a diagnostic tool in patients with suspected stroke or traumatic brain injury (United States)

    Goldberg, Sonja; Lott, Carsten; Ostermeyer, M.; Hennes, Hans-Juergen


    Near-Infrared Spectroscopy (NIRS) as a diagnostic tool in patients with suspected stroke or brain injury S. Goldberg, C. Lott, M. Ostermeyer, H.-J. Hennes Absorption of Near-Infrared (NIR) light in the brain is mainly caused by hemoglobin. Superficial intracranial hematoma with a higher concentration of hemoglobin causes a higher absorption in NIRS. The existence of hemorrhage can be demonstrated by the difference of optical density, comparing identical measuring points at both hemispheres of the brain: absorption of NIR light is greater at the side of the hemorrhage, causing less reflection in NIRS. In a prospective, blinded study, 100 patients who were scheduled for CCT-scan for brain injury or symptoms of stroke have been measured by NIRS. The measurement results were proved by the CCT-diagnosis. A sensitivity of the NIR measurement of 65% and a specificity of 87% was achieved including all patients with any pathology, whereas the subgroup of 58 patients with suspected superficial hematoma and without other pathology showed pathologic findings by NIRS in all of 16 patients indicating superficial bleeding by CCT, pathology could be excluded by NIRS and CCT in 41 patients, one false positive and no false negative result. The results (sensitivity 98%, specificity 100%) support the hypothesis that NIRS is a reliable device for the detection of superficial intracranial hematoma.

  6. Strong far-infrared intersubband absorption under normal incidence in heavily n-type doped nonalloy GaSb-AlSb superlattices (United States)

    Samoska, L. A.; Brar, Berinder; Kroemer, H.


    We report on long-wavelength intersubband absorption under normal incidence in heavily doped binary-binary GaSb-AlSb superlattices. Due to a small energy difference between the ellipsoidal L valleys in GaSb and the low-density-of-states Gamma minimum, electrons spill over from the first Gamma subband into the higher-energy L subband in GaSb wells, where they are allowed to make an intersubband transition under normally incident radiation. A peak fractional absorption per quantum well of 6.8 x 10 exp 3 (absorption coefficient alpha of about 8500/cm) is observed at about 15 microns wavelength for a sheet concentration of 1.6 x 10 exp 12 sq cm/well.

  7. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument (United States)

    Kristin Lewis; William P. Arnott; Hans Moosmuller; Cyle E. Wold


    A dual-wavelength photoacoustic instrument operating at 405 and 870 nm was used during the 2006 Fire Lab at Missoula Experiment to measure light scattering and absorption by smoke from the combustion of a variety of biomass fuels. Simultaneous measurements of aerosol light scattering by reciprocal nephelometry within the instrument's acoustic resonator accompany...

  8. Toward NIR driven photocatalyst: Fabrication, characterization, and photocatalytic activity of β-NaYF4:Yb(3+),Tm(3+)/g-C3N4 nanocomposite. (United States)

    Huang, Min-Zhong; Yuan, Baoling; Dai, Leyang; Fu, Ming-Lai


    The β-NaYF4:Yb(3+),Tm(3+)/g-C3N4 (NYT/C3N4) photocatalyst has been successfully fabricated by a stepwise method. Firstly, the advanced near-infrared (NIR) driven photocatalyst was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV-Vis-NIR diffuse reflectance spectroscopy. It was found that NYT/C3N4 photocatalyst consisted of uniform hexagonal phase NaYF4 nanocrystals with about 20nm diameter distributed on surface of g-C3N4 sheets, and the NYT/C3N4 composite exhibited strong near-infrared light absorption and the energy transfer from β-NaYF4:Yb(3+),Tm(3+) to g-C3N4 was confirmed. Secondly, the photocatalytic activities of the catalysts were evaluated by the degradation of methyl blue dye and colorless phenol under the irradiation of 980nm laser. The results suggested that NYT/C3N4 nanocomposite is an advanced NIR-driven photocatalyst. Moreover the NYT/C3N4 photocatalyst showed good stability for photocatalytic decoloration of dye in the recycled tests. This study suggested a promising system to utilize the NIR energy of sunlight for photochemical and photoelectrical applications based on g-C3N4, which will contribute to the utilization of solar energy in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The effect of threading dislocations on optical absorption and electron scattering in strongly mismatched heteroepitaxial III-V compound semiconductors on silicon

    CERN Document Server

    Peiner, E; Wehmann, H H


    The effect of threading dislocations on the optical and electrical properties of InP and GaAs heteroepitaxial layers on (001) silicon was investigated. Charged deep states act as scattering centres for electrons, thus affecting the electron mobility at low temperatures. The electric field arising from charged dislocations causes enhanced optical absorption at wavelengths near the fundamental absorption edge. The mean charge of the threading dislocations in GaAs/Si was found to be considerably higher than that for InP/Si. A model is described relating this effect to a regular arrangement of alpha-type 60 deg. dislocations at extended twin defects which were observed in InP/Si but were absent in GaAs/Si.

  10. NIR annual report 1987

    International Nuclear Information System (INIS)


    The fourth annual report of the Niedersaechsisches Institut fuer Radiooekologie (NIR) is intended to describe the scientific work of the institute and its members in 1987. The central part of this publication are the fourteen reports on scientific activities, to be divided into four large categories: - Behaviour of tritium in the atmosphere and the soil - on this, important new knowledge was gained in 1987 in an experiment in Canada on the release of this substance; - Investigations in the radioecology of iodine 129, the dependence of its mobility in the soil on humus substances and microorganisms, and its enrichment in the human thyroid gland; - Establishment of transfer factors in the food chain for fission products like cesium 137, cesium 134 and strontium 90 - this being a field where exact knowledge has regained great importance after the accident at Chernobyl; - Aerosol-physical investigations: on the one hand, to obtain data on the propagation of nutrient aerosols and aerosols carrying harmful substances in areas with vegetation, and on the other hand to measure 'snow-out' and 'fog-out' coefficients. To this are added a number of papers on the stability of the decontamination substance for cesium 137 - ammonium-iron-hexacyanoferrate (AIHCF) - in the soil, on the translocation of cesium in apple-trees, and on the improvement of the analytics for uranium and plutonium in environmental specimens. (orig./MG) [de

  11. Hydrogen/deuterium (H/D) exchange of gelatinized starch studied by two-dimensional (2D) near-infrared (NIR) correlation spectroscopy. (United States)

    Shinzawa, Hideyuki; Mizukado, Junji


    Hydrogen/deuterium (H/D) exchange of gelatinized starch was probed by in-situ near-infrared (NIR) monitoring coupled with two-dimensional (2D) correlation spectroscopy. Gelatinized starch undergoes spontaneous H/D exchange in D 2 O. During the substitution, the exchange rate essentially becomes different depending on solvent accessibility of various parts of the molecule. Thus, by analyzing the change in the NIR feature observed during the substitution, it becomes possible to sort out local structure and dynamics of the system. 2D correlation analysis of the time-dependent NIR spectra reveals the presence of different local structure of the starch, each having different solvent accessibility. For example, during the H/D exchange, the D 2 O is first absorbed by starch molecules especially around the surface area between the starch and water, where the water molecules are weakly interacted with the starch molecules. This absorption is quickly followed by the development of HDO species. Further absorption of the D 2 O results in the penetration of the molecules inside the starch and eventually develops the relatively strong interaction between the HDO and starch molecules because of the presence of dominant starch molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Cermet based metamaterials for multi band absorbers over NIR to LWIR frequencies

    International Nuclear Information System (INIS)

    Pradhan, Jitendra K; Behera, Gangadhar; Anantha Ramakrishna, S; Agarwal, Amit K; Ghosh, Amitava


    Cermets or ceramic-metals are known for their use in solar thermal technologies for their absorption across the solar band. Use of cermet layers in a metamaterial perfect absorber allows for flexible control of infra-red absorption over the short wave infra-red, to long wave infra-red bands, while keeping the visible/near infra-red absorption properties constant. We design multilayered metamaterials consisting of a conducting ground plane, a low metal volume fraction cermet/ZnS as dielectric spacer layers, and a top structured layer of an array of circular discs of metal/high volume metal fraction cermet that give rise to specified absorption bands in the near-infra-red (NIR) frequencies, as well as any specified band at SWIR–LWIR frequencies. Thus, a complete decoupling of the absorption at optical/NIR frequencies and the infra-red absorption behaviour of a structured metamaterial is demonstrated. (paper)

  13. Estimating Leaf Water Status from Vis-Nir Reflectance and Transmittance (United States)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert


    Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Established approaches involve measurements in the thermal infrared and the 900-2000nm reflective infrared. Less popular UV-visible-NIR techniques presumably deserve research attention, because photochemical changes linked to plant water status manifest spectral light scattering and absorption changes. Here we monitored the visible and NIR light reflected from the leaf interior as well as the leaf transmittance as the relative water content of corn (Zeamays L.) leaves decreased. Our results highlight the importance of both scattering effects and effects due to absorption by leaf pigments.

  14. Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, Sound-absorption and thermal Insulation. (United States)

    Wang, Chao; Xiong, Ye; Fan, Bitao; Yao, Qiufang; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng


    The lignin aerogels that are both high porosity and compressibility would have promising implications for bioengineering field to sound-adsorption and damping materials; however, creating this aerogel had a challenge to adhesive lignin. Here we reported cellulose as green adhesion agent to synthesize the aerogels with strong mechanical performance. Our approach-straightforwardly dissolved in ionic liquids and simply regenerated in the deionized water-causes assembly of micro-and nanoscale and even molecule level of cellulose and lignin. The resulting lignin aerogels exhibit Young's modulus up to 25.1 MPa, high-efficiency sound-adsorption and excellent thermal insulativity. The successful synthesis of this aerogels developed a path for lignin to an advanced utilization.

  15. Removal of Thin Cirrus Path Radiances in the 0.4-1.0 micron Spectral Region Using the 1.375-micron Strong Water Vapor Absorption Channel (United States)

    Gao, Bo-Cai; Kaufman, Yoram J.; Han, Wei; Wiscombe, Warren J.


    Through analysis of spectral imaging data acquired with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) from an ER-2 aircraft at 20 km altitude during several field programs, it was found that narrow channels near the center of the strong 1.38-micron water vapor band are very sensitive in detecting thin cirrus clouds. Based on this observation from AVIRIS data, a channel centered at 1.375 microns with a width of 30 nm was selected for the Moderate Resolution Imaging Spectrometer (MODIS) for remote sensing of cirrus clouds from space. The sensitivity of the 1.375-micron MODIS channel to detect thin cirrus clouds during the day time is expected to be one to two orders of magnitude better than the current infrared emission techniques. As a result, a larger fraction of the satellite data will likely be identified as containing cirrus clouds. In order to make better studies of surface reflectance properties, thin cirrus effects must be removed from satellite images. We have developed an empirical approach for removing/correcting thin cirrus effects in the 0.4 - 1.0 micron region using channels near 1.375 microns. This algorithm will be incorporated into the present MODIS atmospheric correction algorithms for ocean color and land applications and will yield improved MODIS atmospheric aerosol, land surface, and ocean color products.

  16. Generating passive NIR images from active LIDAR (United States)

    Hagstrom, Shea; Broadwater, Joshua


    Many modern LIDAR platforms contain an integrated RGB camera for capturing contextual imagery. However, these RGB cameras do not collect a near-infrared (NIR) color channel, omitting information useful for many analytical purposes. This raises the question of whether LIDAR data, collected in the NIR, can be used as a substitute for an actual NIR image in this situation. Generating a LIDAR-based NIR image is potentially useful in situations where another source of NIR, such as satellite imagery, is not available. LIDAR is an active sensing system that operates very differently from a passive system, and thus requires additional processing and calibration to approximate the output of a passive instrument. We examine methods of approximating passive NIR images from LIDAR for real-world datasets, and assess differences with true NIR images.

  17. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature

    International Nuclear Information System (INIS)

    Peng, Mingying; Zollfrank, Cordt; Wondraczek, Lothar


    Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi 2 O 3 into elementary Bi. Darkening of bismuthate glass melted at 1300 deg. C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi 3+ is formed. By comparing with atomic spectral data, absorption bands at ∼320 , ∼500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi 0 transitions 4 S 3/2 → 2 P 3/2 , 4 S 3/2 → 2 P 1/2 , 4 S 3/2 → 2 D 5/2 , 4 S 3/2 → 2 D 3/2 (2) and 4 S 3/2 → 2 D 3/2 (1), respectively, and broadband NIR emission is assigned to the transition 2 D 3/2 (1)→ 4 S 3/2 .

  18. Application of a newly developed portable NIR imaging device to monitor the dissolution process of tablets. (United States)

    Ishikawa, Daitaro; Murayama, Kodai; Awa, Kimie; Genkawa, Takuma; Komiyama, Makoto; Kazarian, Sergei G; Ozaki, Yukihiro


    We have recently developed a novel portable NIR imaging device (D-NIRs), which has a high speed and high wavelength resolution. This NIR imaging approach has been developed by utilizing D-NIRs for studying the dissolution of a model tablet containing 20 % ascorbic acid (AsA) as an active pharmaceutical ingredient and 80 % hydroxypropyl methylcellulose, where the tablet is sealed by a special cell. Diffuse reflectance NIR spectra in the 1,000 to 1,600 nm region were measured during the dissolution of the tablet. A unique band at around 1,361 nm of AsA was identified by the second derivative spectra of tablet and used for AsA distribution NIR imaging. Two-dimensional change of AsA concentration of the tablet due to water penetration is clearly shown by using the band-based image at 1,361 nm in NIR spectra obtained with high speed. Moreover, it is significantly enhanced by using the intensity ratio of two bands at 1,361 and 1,354 nm corresponding to AsA and water absorption, respectively, showing the dissolution process. The imaging results suggest that the amount of AsA in the imaged area decreases with increasing water penetration. The proposed NIR imaging approach using the intensity of a specific band or the ratio of two bands combined with the developed portable NIR imaging instrument, is a potentially useful practical way to evaluate the tablet at every moment during dissolution and to monitor the concentration distribution of each drug component in the tablet.

  19. Large area compatible broadband superabsorber surfaces in the VIS-NIR spectrum utilizing metal-insulator-metal stack and plasmonic nanoparticles. (United States)

    Dereshgi, Sina Abedini; Okyay, Ali Kemal


    Plasmonically enhanced absorbing structures have been emerging as strong candidates for photovoltaic (PV) devices. We investigate metal-insulator-metal (MIM) structures that are suitable for tuning spectral absorption properties by modifying layer thicknesses. We have utilized gold and silver nanoparticles to form the top metal (M) region, obtained by dewetting process compatible with large area processes. For the middle (I) and bottom (M) layers, different dielectric materials and metals are investigated. Optimum MIM designs are discussed. We experimentally demonstrate less than 10 percent reflection for most of the visible (VIS) and near infrared (NIR) spectrum. In such stacks, computational analysis shows that the bottom metal is responsible for large portion of absorption with a peak of 80 percent at 1000 nm wavelength for chromium case.

  20. A strong steric hindrance effect on ground state, excited state, and charge separated state properties of a CuI-diimine complex captured by X-ray transient absorption spectroscopy

    DEFF Research Database (Denmark)

    Huang, J.; Mara, M.W.; Stickrath, A.B.


    Photophysical and structural properties of a CuI diimine complex with very strong steric hindrance, [CuI(dppS)2]+ (dppS = 2,9-diphenyl-1,10-phenanthroline disulfonic acid disodium salt), are investigated by optical and X-ray transient absorption (OTA and XTA) spectroscopy. The bulky phenylsulfonic...... dynamics and structures as well as those of the charge separated state resulting from the interfacial electron injection from the MLCT state to TiO2 nanoparticles (NPs). The OTA results show the absence of the sub-picosecond component previously assigned as the time constant for flattening, while the two...... of metal complex/semiconductor NP hybrids but also provide guidance for designing efficient CuI diimine complexes with optimized structures for application in solar-to-electricity conversion. This journal is...

  1. Effect of bulk chemistry in the spectral variability of igneous rocks in VIS-NIR region: Implications to remote compositional mapping (United States)

    Nair, Archana M.; Mathew, George


    In the present study, a range of igneous rocks with weight percentage of silica ranging from 45% to 70% were used to generate reflectance spectra in the VIS-NIR region. The laboratory generated reflectance spectra of these rocks were used to study the effect of chemical composition and mineralogy on the spectral properties. The characteristic spectral features were evaluated based on the mineralogical and chemical characteristics of the rocks. The main spectral features in the VIS-NIR region are the 0.7 μm absorption band due to the inter valance charge transfer between Fe2+ and Fe3+ termed as Band F, the 1 μm broad absorption band from Fe2+ at the octahedral sites in pyroxene termed as Band I, the 1.9 μm and 2.3 μm narrow absorption bands due to H2O or OH functional group in hydrated minerals. The 2 μm absorption feature (Band II; Cloutis and Gaffey, 1991) is observed as a weak feature in all the mafic rocks. The analysis of Band I with the bulk chemistry and mineralogy, we observed a positive correlation to the bulk Ca abundance. Rocks with high bulk calcic content exemplify Band I as a prominent spectral feature towards longer wavelength. Consequently, basalt, gabbro and anorthositic rocks show Band I as a strong feature. However, rocks with low bulk Calcic content show Band I as weak absorption feature observed towards shorter wavelength. Thus, igneous rocks of alkaline affinity have subdued Band I feature that appears towards shorter wavelength. The analysis of Band F with the bulk chemistry and mineralogy showed a positive correlation to the bulk Fe abundance. The results of the present study have implications towards remote compositional mapping and lithological discrimination for Planetary Studies.

  2. Using gold nanorods labelled with antibodies under the photothermal action of NIR laser radiation on Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Tuchina, E S; Petrov, P O; Kozina, K V; Tuchin, V V [N.G. Chernyshevsky Saratov State University, Saratov (Russian Federation); Ratto, F; Pini, R [Institute of Applied Physics ' Nello Carrara' , National Research Council, via Madonna del Piano 10 50019 Sesto Fiorentino (Italy); Centi, S [University of Florence, Dept. Experimental and Clinical Biomedical Sciences, viale Morgagni 50, 50134 Firenze (Italy)


    The effect of NIR laser radiation (808 nm) and gold nanorods on the cells of two strains of Staphylococcus aureus, one of them being methicillin-sensitive and the other being methicillinresistant, is studied. Nanorods having the dimensions 10 × 44 nm with the absorption maximum in the NIR spectral region, functionalised with human immunoglobulins IgA and IgG, are synthesised. It is shown that the use of nanoparticles in combination with NIR irradiation leads to killing up to 97% of the population of microorganisms. (laser biophotonics)

  3. Synthesis, characterization and optical properties of a high NIR reflecting yellow inorganic pigment: Mo6+ doped Y2Ce2O7 as a cool colorant

    International Nuclear Information System (INIS)

    Vishnu, V.S.; Reddy, M.L.P.


    Full text: Pigments possessing the ability to confer high solar reflectance have received considerable attention in recent years. The inorganic class of NIR reflective pigments are mainly metal oxides and are primarily employed in two applications: (i) visual camouflage and (ii) reducing heat build up. More than half of the solar radiation consists of near-infrared radiation (52%), the remaining being 43% visible light and 5% ultraviolet radiation. Over heating due to solar radiation negatively affects comfort in the built environment and contributes substantially to electrical consumption for air conditioning and release of green house gases. A pigment which has strong reflections in the NIR region (780-2500 nm) can be referred to as a 'cool' pigment. However, most of the NIR reflective inorganic pigments particularly yellow (eg. cadmium yellow, lead chromate, chrome titanate yellow etc.) contain toxic metals and hence their consumption is being limited. Replacing them with environmentally benign cool pigments that absorb less NIR radiation can yield coatings similar in color, but with higher NIR reflectance. A new class of yellow inorganic pigments possessing high near-infrared reflectance (above 90% at 1100 nm), having the general formula Y 2 Ce 2-x Mo x O 7+δ (x ranges from 0 to 0.5) were synthesized by traditional solid state route. The synthesized samples were characterized by powder X-ray diffraction, Scanning Electron Microscopy, UV-Vis-NIR Diffuse Reflectance Spectroscopy, CIE 1976Lab color scales and TG/DTA analysis. XRD analysis reveals the existence of a major cubic fluorite phase for the pigment samples. The diffuse reflectance analysis of the pigments shows a significant shift in the absorption edge towards higher wavelengths (from 410 nm to 506 nm) for the molybdenum doped samples in comparison with the parent compound. The band gap of the designed pigments changes from 3.01 to 2.44 eV and displays colors varying from ivory white to yellow. The

  4. Facile Coordination-Precipitation Route to Insoluble Metal Roussin's Black Salts for NIR-Responsive Release of NO for Anti-Metastasis. (United States)

    Chen, Lijuan; He, Qianjun; Lei, Minyi; Xiong, Liwei; Shi, Kun; Tan, Liwei; Jin, Zhaokui; Wang, Tianfu; Qian, Zhiyong


    A facile and general coordination-precipitation method is developed to synthesize insoluble metal Roussin's black salts (Me-RBSs) as a new type of NIR-responsive NORMs. The weak-field ligand coordination of metal + -RBS - brings a NIR absorption effect of Me-RBSs, and further gives rise to the NIR adsorption-dependent NIR-responsive NO release profile. Intratumoral NIR-responsive release of NO effectively inhibits the growth and metastasis of the metastatic breast cancer. Aqueous insolubility of Me-RBSs ensures lower cytotoxicity and higher thermostability compared with traditional soluble RBSs. This work establishes a new class of NIR-sensitive NO donors, and may spark new inspiration for designing intelligent gas-releasing molecules.

  5. Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR-excitable cyanine probe. (United States)

    Liu, Chang-Hui; Qi, Feng-Pei; Wen, Fu-Bin; Long, Li-Ping; Liu, Ai-Juan; Yang, Rong-Hua


    Cyanine has been widely utilized as a near infrared (NIR) fluorophore for detection of glutathione (GSH). However, the excitation of most of the reported cyanine-based probes was less than 800 nm, which inevitably induce biological background absorption and lower the sensitivity, limiting their use for detection of GSH in blood samples. To address this issue, here, a heptamethine cyanine probe (DNIR), with a NIR excitation wavelength at 804 nm and a NIR emission wavelength at 832 nm, is employed for the detection of GSH and its oxidized form (GSSG) in blood. The probe displays excellent selectivity for GSH over GSSG and other amino acids, and rapid response to GSH, in particular a good property for indirect detection of GSSG in the presence of enzyme glutathione reductase and the reducing agent nicotinamideadenine dinucleotide phosphate, without further separation prior to fluorescent measurement. To the best of our knowledge, this is the first attempt to explore NIR fluorescent approach for the simultaneous assay of GSH and GSSG in blood. As such, we expect that our fluorescence sensors with both NIR excitation and NIR emission make this strategy suitable for the application in complex physiological systems.

  6. Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR-excitable cyanine probe (United States)

    Liu, Chang-hui; Qi, Feng-pei; Wen, Fu-bin; Long, Li-ping; Liu, Ai-juan; Yang, Rong-hua


    Cyanine has been widely utilized as a near infrared (NIR) fluorophore for detection of glutathione (GSH). However, the excitation of most of the reported cyanine-based probes was less than 800 nm, which inevitably induce biological background absorption and lower the sensitivity, limiting their use for detection of GSH in blood samples. To address this issue, here, a heptamethine cyanine probe (DNIR), with a NIR excitation wavelength at 804 nm and a NIR emission wavelength at 832 nm, is employed for the detection of GSH and its oxidized form (GSSG) in blood. The probe displays excellent selectivity for GSH over GSSG and other amino acids, and rapid response to GSH, in particular a good property for indirect detection of GSSG in the presence of enzyme glutathione reductase and the reducing agent nicotinamideadenine dinucleotide phosphate, without further separation prior to fluorescent measurement. To the best of our knowledge, this is the first attempt to explore NIR fluorescent approach for the simultaneous assay of GSH and GSSG in blood. As such, we expect that our fluorescence sensors with both NIR excitation and NIR emission make this strategy suitable for the application in complex physiological systems.

  7. Is there Place for Perfectionism in the NIR Spectral Data Reduction? (United States)

    Chilingarian, Igor


    "Despite the crucial importance of the near-infrared spectral domain for understanding the star formation and galaxy evolution, NIR observations and data reduction represent a significant challenge. The known complexity of NIR detectors is aggravated by the airglow emission in the upper atmosphere and the water absorption in the troposphere so that up until now, the astronomical community is divided on the issue whether ground based NIR spectroscopy has a future or should it move completely to space (JWST, Euclid, WFIRST). I will share my experience of pipeline development for low- and intermediate-resolution spectrographs operated at Magellan and MMT. The MMIRS data reduction pipeline became the first example of the sky subtraction quality approaching the limit set by the Poisson photon noise and demonstrated the feasibility of low-resolution (R=1200-3000) NIR spectroscopy from the ground even for very faint (J=24.5) continuum sources. On the other hand, the FIRE Bright Source Pipeline developed specifically for high signal-to-noise intermediate resolution stellar spectra proves that systematics in the flux calibration and telluric absorption correction can be pushed down to the (sub-)percent level. My conclusion is that even though substantial effort and time investment is needed to design and develop NIR spectroscopic pipelines for ground based instruments, it will pay off, if done properly, and open new windows of opportunity in the ELT era."

  8. Diversity of nitrite reductase genes (nirS) in the denitrifying water column of the coastal Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, D.A.; Francis, C.A.; Naqvi, S.W.A.; Ward, B.B.

    are investigated. Nitrite reduction to nitric oxide is the key step in the denitrification pathway, and is catalyzed by the enzyme nitrite reductase, which is encoded by the genes nirS and nirK. The diversity and distribution of nirS genes in relation to nitrite...

  9. Deep nirS amplicon sequencing of San Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition. (United States)

    Lee, Jessica A; Francis, Christopher A


    Denitrification is a dominant nitrogen loss process in the sediments of San Francisco Bay. In this study, we sought to understand the ecology of denitrifying bacteria by using next-generation sequencing (NGS) to survey the diversity of a denitrification functional gene, nirS (encoding cytchrome-cd 1 nitrite reductase), along the salinity gradient of San Francisco Bay over the course of a year. We compared our dataset to a library of nirS sequences obtained previously from the same samples by standard PCR cloning and Sanger sequencing, and showed that both methods similarly demonstrated geography, salinity and, to a lesser extent, nitrogen, to be strong determinants of community composition. Furthermore, the depth afforded by NGS enabled novel techniques for measuring the association between environment and community composition. We used Random Forests modelling to demonstrate that the site and salinity of a sample could be predicted from its nirS sequences, and to identify indicator taxa associated with those environmental characteristics. This work contributes significantly to our understanding of the distribution and dynamics of denitrifying communities in San Francisco Bay, and provides valuable tools for the further study of this key N-cycling guild in all estuarine systems. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Greenhouse cooling by NIR-reflection

    NARCIS (Netherlands)

    Hemming, S.; Kempkes, F.; Braak, van der N.; Dueck, T.A.; Marissen, A.


    Wageningen UR investigated the potential of several NIR-filtering methods to be applied in horticulture. In this paper the analysis of the optical properties of available NIR-filtering materials is given including a calculation method to quantify the energy reduction under these materials and to

  11. Present status of NIRS ECR ion sources

    NARCIS (Netherlands)

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Yamamoto, K.; Ogawa, H.; Hojo, S.; Sakamoto, Y.; Honma, T.; Takasugi, W.; Wakaisami, M.; Yoshida, Y.; Kubo, T.; Kato, Y.; Biri, S.; Drentje, A. G.

    Four ECR ion sources have been operated in National Institute of Radiological Sciences (NIRS). Two ECR ion sources supply various ion species for the Heavy Ion Medical Accelerator in Chiba (HIMAC). The 10GHz NIRS-ECR ion source mainly produces C2+ ions for the heavy-ion therapy. Ions of Si, Ar, Fe,

  12. Transmission Near-Infrared (NIR) and Photon Time-of-Flight (PTOF) Spectroscopy in a Comparative Analysis of Pharmaceuticals

    DEFF Research Database (Denmark)

    Kamran, Faisal; Abildgaard, Otto Højager Attermann; Sparén, Anders


    We present a comprehensive study of the application of photon time-of-flight spectroscopy (PTOFS) in the wavelength range 1050– 1350 nm as a spectroscopic technique for the evaluation of the chemical composition and structural properties of pharmaceutical tablets. PTOFS is compared to transmission...... near-infrared spectroscopy (NIRS). In contrast to transmission NIRS, PTOFS is capable of directly and independently determining the absorption and reduced scattering coefficients of the medium. Chemometric models were built on the evaluated absorption spectra for predicting tablet drug concentration...

  13. Potential of vis-NIR spectroscopy to monitor the silica precipitation reaction. (United States)

    Rey-Bayle, Maud; Bendoula, Ryad; Henrot, Serge; Lamiri, Kilani; Baco-Antoniali, Franck; Caillol, Noémie; Gobrecht, Alexia; Roger, Jean-Michel


    Controlling production online is an important issue for chemical companies. Visible and near-infrared (NIR) spectroscopy offers a number of important advantages for process monitoring, and has been used since the 1980s. For complex media such as silica precipitation samples, it is interesting to be able to study independently the scattering and absorption effects. From the scattering coefficient it is possible to extract information on the physical structure of the medium. In this work, the physical changes were monitored during a silica precipitation reaction by simple measurement of collimated transmittance NIR spectra. It is shown that it is possible to differentiate samples before and after the gel point, which is a key parameter for monitoring the process. From these NIR spectra the scattering coefficients were simply extracted, allowing a global vision of the physical changes in the medium. Then principal component analysis of the spectra allowed refinement of the understanding of the scattering effects, in combination with particle size monitoring.

  14. Effects of the density and homogeneity in NIRS crop moisture estimation (United States)

    Lenzini, Nicola; Rovati, Luigi; Ferrari, Luca


    Near-infrared spectroscopy (NIRS) is widely used in fruits and vegetables quality evaluation. This technique is also used for the analysis of alfalfa, a crop that occupies a position of great importance in the agricultural field. In particular for the storage, moisture content is a key parameter for the crops and for this reason its monitoring is very important during the harvesting phase. Usually optical methods like NIRS are well suitable in laboratory frameworks where the specimen is properly prepared, while their application during the harvesting phase presents several diffculties. A lot of influencing factors, such as density and degree of homogeneity can affect the moisture evaluation. In this paper we present the NIRS analysis of alfalfa specimens with different values of moisture and density, as well as the obtained results. To study scattering and absorption phenomena, the forward and backward scattered light from the sample have been spectrally analyzed.

  15. NirN Protein from Pseudomonas aeruginosa is a Novel Electron-bifurcating Dehydrogenase Catalyzing the Last Step of Heme d1 Biosynthesis* (United States)

    Adamczack, Julia; Hoffmann, Martin; Papke, Ulrich; Haufschildt, Kristin; Nicke, Tristan; Bröring, Martin; Sezer, Murat; Weimar, Rebecca; Kuhlmann, Uwe; Hildebrandt, Peter; Layer, Gunhild


    Heme d1 plays an important role in denitrification as the essential cofactor of the cytochrome cd1 nitrite reductase NirS. At present, the biosynthesis of heme d1 is only partially understood. The last step of heme d1 biosynthesis requires a so far unknown enzyme that catalyzes the introduction of a double bond into one of the propionate side chains of the tetrapyrrole yielding the corresponding acrylate side chain. In this study, we show that a Pseudomonas aeruginosa PAO1 strain lacking the NirN protein does not produce heme d1. Instead, the NirS purified from this strain contains the heme d1 precursor dihydro-heme d1 lacking the acrylic double bond, as indicated by UV-visible absorption spectroscopy and resonance Raman spectroscopy. Furthermore, the dihydro-heme d1 was extracted from purified NirS and characterized by UV-visible absorption spectroscopy and finally identified by high-resolution electrospray ionization mass spectrometry. Moreover, we show that purified NirN from P. aeruginosa binds the dihydro-heme d1 and catalyzes the introduction of the acrylic double bond in vitro. Strikingly, NirN uses an electron bifurcation mechanism for the two-electron oxidation reaction, during which one electron ends up on its heme c cofactor and the second electron reduces the substrate/product from the ferric to the ferrous state. On the basis of our results, we propose novel roles for the proteins NirN and NirF during the biosynthesis of heme d1. PMID:25204657

  16. Real-time, non-invasive monitoring of hydrogel degradation using LiYF4:Yb(3+)/Tm(3+) NIR-to-NIR upconverting nanoparticles. (United States)

    Jalani, Ghulam; Naccache, Rafik; Rosenzweig, Derek H; Lerouge, Sophie; Haglund, Lisbet; Vetrone, Fiorenzo; Cerruti, Marta


    To design a biodegradable hydrogel as cell support, one should know its in vivo degradation rate. A technique commonly used to track gel degradation is fluorescence spectroscopy. However, the fluorescence from conventional fluorophores quickly decays, and the fluorophores are often moderately cytotoxic. Most importantly, they require ultraviolet or visible (UV-Vis) light as the excitation source, which cannot penetrate deeply through biological tissues. Lanthanide-doped upconverting nanoparticles (UCNPs) are exciting alternatives to conventional fluorophores because they can convert near-infrared (NIR) to UV-Vis-NIR light via a sequential multiphoton absorption process referred to as upconversion. NIR light can penetrate up to few cm inside tissues, thus making these UCNPs much better probes than conventional fluorophores for in vivo monitoring. Also, UCNPs have narrow emission bands, high photoluminescence (PL) signal-to-noise ratio, low cytotoxicity and good physical and chemical stability. Here, we show a nanocomposite system consisting of a biodegradable, in situ thermogelling injectable hydrogel made of chitosan and hyaluronic acid encapsulating silica-coated LiYF4:Yb(3+)/Tm(3+) UCNPs. We use these UCNPs as photoluminescent tags to monitor the gel degradation inside live, cultured intervertebral discs (IVDs) over a period of 3 weeks. PL spectroscopy and NIR imaging show that NIR-to-NIR upconversion of LiYF4:Yb(3+)/Tm(3+)@SiO2 UCNPs allows for tracking of the gel degradation in living tissues. Both in vitro and ex vivo release of UCNPs follow a similar trend during the first 5 days; after this time, ex vivo release becomes faster than in vitro, indicating a faster gel degradation ex vivo. Also, the amount of released UCNPs in vitro increases continuously up to 3 weeks, while it plateaus after 15 days inside the IVDs showing a homogenous distribution of UCNPs throughout the IVD tissue. This non-invasive optical method for real time, live tissue imaging holds

  17. Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption (United States)

    Guo, Chongshen; Yin, Shu; Yu, Haijun; Liu, Shaoqin; Dong, Qiang; Goto, Takehiro; Zhang, Zhiwen; Li, Yaping; Sato, Tsugio


    Recently, photothermal ablation therapy (PTA) employing near-infrared radiation (NIR) has been extensively investigated as an emerging modality for cancer management. However, the clinical translation of this promising approach is limited by the lack of PTA agents with broad NIR absorption, low cost and high photothermal conversion efficiency. Herein, we have developed PEGylated homogeneous CsxWO3 nanorods (a mean size ~69.3 nm × 12.8 nm) with broad photo-absorption (780-2500 nm) as a novel NIR absorbent for PTA treatment of human cancer. The prepared CsxWO3 nanocrystals displayed strong near-infrared optical absorption with a high molar extinction coefficient (e.g. 4.8 × 1010 M-1 cm-1 at 980 nm), thus generated significant amounts of heat upon excitation with near-infrared light. The PTA study in two human carcinoma cell lines (i.e. A549 lung cancer cells and HeLa ovarian cancer cells) demonstrated that CsxWO3 nanorods can efficiently cause cell death via hyperthermia induced lysosome destruction, cytoskeleton protein degradation, DNA damage and thereafter cellular necrosis or apoptosis. Our study also confirmed the migration of healthy cells migrated from unirradiated areas to dead cell cycle, which is essential for tissue reconstruction and wound healing after photodestruction of tumor tissue. The prompted results reported in the current study imply the promising potential of CsxWO3 nanorods for application in PTA cancer therapy.Recently, photothermal ablation therapy (PTA) employing near-infrared radiation (NIR) has been extensively investigated as an emerging modality for cancer management. However, the clinical translation of this promising approach is limited by the lack of PTA agents with broad NIR absorption, low cost and high photothermal conversion efficiency. Herein, we have developed PEGylated homogeneous CsxWO3 nanorods (a mean size ~69.3 nm × 12.8 nm) with broad photo-absorption (780-2500 nm) as a novel NIR absorbent for PTA treatment of human

  18. Sediment denitrifier community composition and nirS gene expression investigated with functional gene microarrays

    DEFF Research Database (Denmark)

    Francis, C.A.; Jackson, G.A.; Ward, B.B.


    A functional gene microarray was used to investigate denitrifier community composition and nitrite reductase (nirS) gene expression in sediments along the estuarine gradient in Chesapeake Bay, USA. The nirS oligonucleotide probe set was designed to represent a sequence database containing 539...... Chesapeake Bay clones, as well as sequences from many other environments. Greatest nirS diversity was detected at the freshwater station at the head of the bay and least diversity at the higher salinity station near the mouth of the Bay. The most common OTUs from the sequence database were detected...... on the array with high signal strength in most samples. One of the most abundant OTUs, CB2-S-138, was identified as dominant at the mid-bay site by both microarray and quantitative PCR assays, but it comprised a much smaller fraction of the assemblage in the north and south bay samples. cDNA (transcribed from...

  19. Hemodynamic response to Interictal Epileptiform Discharges addressed by personalized EEG-fNIRS recordings

    Directory of Open Access Journals (Sweden)

    Giovanni ePellegrino


    Full Text Available Objective: We aimed at studying the hemodynamic response (HR to Interictal Epileptic Discharges (IEDs using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG and functional Near InfraRed Spectroscopy (fNIRS recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (7 patients, followed by oxy-hemoglobin decreases (6 patients. HR was lateralized in 6 patients and lasted from 8.5 to 30s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result. The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30s. Conclusions: i EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; ii cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function iii the HR is often bilateral and lasts up to 30s.

  20. Pear quality characteristics by Vis / NIR spectroscopy. (United States)

    Machado, Nicácia P; Fachinello, José C; Galarça, Simone P; Betemps, Débora L; Pasa, Mateus S; Schmitz, Juliano D


    Recently, non-destructive techniques such as the Vis / NIR spectroscopy have been used to evaluate the characteristics of maturation and quality of pears. The study aims to validate the readings by the Vis / NIR spectroscopy as a non-destructive way to assess the qualitative characteristics of pear cultivars 'Williams', 'Packams' and 'Carrick', produced according to Brazilian conditions. The experiment was conducted at the Pelotas Federal University, UFPel, in Pelotas / RS, and the instrument used to measure the fruit quality in a non-destructive way was the NIR- Case spectrophotometer (SACMI, Imola, Italy). To determine pears' soluble solids (SS) and pulp firmness (PF), it was established calibration equations for each variety studied, done from the evaluations obtained by a non-destructive method (NIR-Case) and a destructive method. Further on, it was tested the performance of these readings by linear regressions. The results were significant for the soluble solids parameter obtained by the Vis / NIR spectroscopy; however, it did not achieve satisfactory results for the pear pulp firmness of these cultivars. It is concluded that the Vis / NIR spectroscopy, using linear regression, allows providing reliable estimates of pears' quality levels, especially for soluble solids.

  1. Sodium iron EDTA and ascorbic acid, but not polyphenol oxidase treatment, counteract the strong inhibitory effect of polyphenols from brown sorghum on the absorption of fortification iron in young women. (United States)

    Cercamondi, Colin I; Egli, Ines M; Zeder, Christophe; Hurrell, Richard F


    In addition to phytate, polyphenols (PP) might contribute to low Fe bioavailability from sorghum-based foods. To investigate the inhibitory effects of sorghum PP on Fe absorption and the potential enhancing effects of ascorbic acid (AA), NaFeEDTA and the PP oxidase enzyme laccase, we carried out three Fe absorption studies in fifty young women consuming dephytinised Fe-fortified test meals based on white and brown sorghum varieties with different PP concentrations. Fe absorption was measured as the incorporation of stable Fe isotopes into erythrocytes. In study 1, Fe absorption from meals with 17 mg PP (8·5%) was higher than that from meals with 73 mg PP (3·2%) and 167 mg PP (2·7%; P< 0·001). Fe absorption from meals containing 73 and 167 mg PP did not differ (P= 0·9). In study 2, Fe absorption from NaFeEDTA-fortified meals (167 mg PP) was higher than that from the same meals fortified with FeSO₄ (4·6 v. 2·7%; P< 0·001), but still it was lower than that from FeSO₄-fortified meals with 17 mg PP (10·7%; P< 0·001). In study 3, laccase treatment decreased the levels of PP from 167 to 42 mg, but it did not improve absorption compared with that from meals with 167 mg PP (4·8 v. 4·6%; P= 0·4), whereas adding AA increased absorption to 13·6% (P< 0·001). These findings suggest that PP from brown sorghum contribute to low Fe bioavailability from sorghum foods and that AA and, to a lesser extent, NaFeEDTA, but not laccase, have the potential to overcome the inhibitory effect of PP and improve Fe absorption from sorghum foods.

  2. Near-infrared absorption fiber-optic sensors for ultra-sensitive CO2 detection (United States)

    Chong, Xinyuan; Kim, Ki-Joong; Ohodnicki, Paul R.; Chang, Chih-Hung; Wang, Alan X.


    We present a fiber-optic sensor working at near-infrared (NIR) wavelength (~1.57μm) for CO2 detection. In order to increase the NIR absorption, we utilize functional sensor materials metalorganic framework (MOF) on the surface of the core of a multimode-fiber with the cladding layer etched away. The selected functional materials demonstrated excellent adsorption capacity of CO2 and significantly increased the detection sensitivity down to 500 ppm with only 8-centimeter absorption length.

  3. Ultrasonic absorption

    International Nuclear Information System (INIS)

    Beyer, R.T.


    The paper reviews studies of ultrasonic absorption in liquid alkali metals. The experimental methods to measure the absorption coefficients are briefly described. Experimental results reported for the liquid metals: sodium, potassium, rubidium and caesium, at medium temperatures, are presented, as well as data for liquid alloys. Absorption losses due to the presence of an external magnetic field, and the effects of viscosity on the absorption in metals, are both discussed. (U.K.)

  4. Non-tinted Transparent Luminescent Solar Concentrators Employing Both UV and NIR Selective Absorbers (United States)

    Zhao, Yimu; Lunt, Richard


    Luminescent solar concentrators are a potentially low-cost solar harvesting solution that additionally offer opportunities for integration around buildings and windows. However, the visible absorption and emission of previously demonstrated chromophores hamper their widespread applications including solar windows. Here, we demonstrate non-tinted transparent luminescent solar concentrators (TLSC) that employ both ultraviolet (UV) and near-infrared (NIR) selective absorbing luminophores that create an entirely new paradigm for power-producing transparent surfaces and enhances the potential over UV-only TLSCs. We have previously designed UV-harvesting systems composed of metal halide phosphorescent luminophore blends that enable absorption cutoff positioned at the edge of visible spectrum (430nm) and massive-downconverted emission in the near-infrared (800nm) with quantum yields for luminescence of 75%. Here, we have developed a complimentary TLSC employing fluorescent organic salts with both efficient NIR absorption and deeper NIR emission. We will discuss the photophysical properties of these luminophores, the impact of ligand-host control, and optimization of the TLSC architectures.

  5. New NIR Absorbing DPP-based Polymer for Thick Organic Solar Cells

    KAUST Repository

    Oklem, Gulce


    infrared region (NIR) for better photon harvesting in organic solar cells. It has been shown that copolymers compromising diketopyrrolopyrrole based acceptors and simple donors (thiophene or furan) achieve absorption maximum around 800 nm. In this study, the selenophene based donor units coupled with diketopyrrolopyrrole acceptor unit based polymer (PFDPPSe) was synthesized with an absorption maximum at 830 nm and absorption onset of 930 nm. The optimized organic solar cells with PFDDPSe: PC71BM active layer blends of 210 nm showed maximum PCE of 6.16 % (ave. 6.02 %) via solvent additive engineering with inverted device structure. Charge transport, recombination loss mechanism, and morphology are systematically studied. These results demonstrate that highly efficient NIR polymer can be achieved by the introduction of selenophene and a suitable solvent additive process suitable for NIR organic solar cells. PFDPPSe is also one of the rare examples of a polymer with a PCE over 6% that does not contain any thiophene-based unit in its backbone.

  6. Robust calibrations on reduced sample sets for API content prediction in tablets: definition of a cost-effective NIR model development strategy. (United States)

    Pieters, Sigrid; Saeys, Wouter; Van den Kerkhof, Tom; Goodarzi, Mohammad; Hellings, Mario; De Beer, Thomas; Heyden, Yvan Vander


    Owing to spectral variations from other sources than the component of interest, large investments in the NIR model development may be required to obtain satisfactory and robust prediction performance. To make the NIR model development for routine active pharmaceutical ingredient (API) prediction in tablets more cost-effective, alternative modelling strategies were proposed. They used a massive amount of prior spectral information on intra- and inter-batch variation and the pure component spectra to define a clutter, i.e., the detrimental spectral information. This was subsequently used for artificial data augmentation and/or orthogonal projections. The model performance improved statistically significantly, with a 34-40% reduction in RMSEP while needing fewer model latent variables, by applying the following procedure before PLS regression: (1) augmentation of the calibration spectra with the spectral shapes from the clutter, and (2) net analyte pre-processing (NAP). The improved prediction performance was not compromised when reducing the variability in the calibration set, making exhaustive calibration unnecessary. Strong water content variations in the tablets caused frequency shifts of the API absorption signals that could not be included in the clutter. Updating the model for this kind of variation demonstrated that the completeness of the clutter is critical for the performance of these models and that the model will only be more robust for spectral variation that is not co-linear with the one from the property of interest. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Fluorescence Detection of Glutathione (GSH) and Oxidized Glutathione (GSSG) in Blood with a NIR-Excitable Cyanine Probe. (United States)

    Liu, Changhui; Qi, Fengpei; Wen, Fubin; Long, Liping; Yang, Ronghua


    Cyanine has been widely utilized as a near infrared (NIR) fluorophore for detection of glutathione (GSH). However, the excitation of most of the reported cyanine-based probes was less than 800 nm, which inevitably induce biological background absorption and lower the sensitivity, limiting their use for detection of GSH in blood samples. To address this issue, here, a heptamethine cyanine probe (DNIR), with a NIR excitation wavelength at 804 nm and a NIR emission wavelength at 832 nm, is employed for the detection of GSH and its oxidized form (GSSG) in blood. The probe displays excellent selectivity for GSH over GSSG and other amino acids (AAs), and rapid response to GSH, in particular a good property for indirect detection of GSSG in the presence of enzyme glutathione reductase (GR) and the reducing agent nicotinamideadenine dinucleotide phosphate (NADPH), without further separation prior to fluorescent measurement. To the best of our knowledge, this is the first attempt to explore NIR fluorescent approach for the simultaneous assay of GSH and GSSG in blood. As such, we expect that our fluorescence sensors with both NIR excitation and NIR emission make this strategy suitable for the application in complex physiological systems. © 2017 IOP Publishing Ltd.

  8. Optimize steam cracking with online NIR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Descales, B.; Bages, S.; Bellet, S.; Llinas, J.R. [BP Chemicals S.N.C., Lavera (France); Loublier, M.; Maury, J.P. [Naphtachimie, Lavera (France); Martens, A. [AMS Conseil, Martigues (France)


    At Lavera, the steam cracker of Naphtachimie (a 50/50 subsidiary of BP Chemicals and Elf Atochem) was the first equipped with online NIR analysis of naphtha feedstock. The 24 furnaces of the plant produce more than 670,000 tpy of ethylene. Since 1991, these furnaces have been controlled by an in-house, online process control model that uses the 13 naphtha properties provided by the online NIR analyzer to adjust the furnaces` operating conditions in real time. The naphtha represents between 70% and 95% of the unit feedstock. With the high level of NIR spectroscopy repeatability and the robustness of in-house models based on more than 15 years of experience, optimization of steam cracker operations allows a substantial induced benefit in the range of $1 million/yr. Other NIR online applications have been installed at BP Lavera on major industrial units such as motor gasoline blending optimization and crude oil distillation monitoring. The paper describes the principle of operation, online NIR analysis, and advantages and benefits.

  9. In-vivo evaluation of clindamycin release from glyceryl monooleate-alginate microspheres by NIR spectroscopy. (United States)

    Mohamed, Amir Ibrahim; Ahmed, Osama A A; Amin, Suzan; Elkadi, Omar Anwar; Kassem, Mohamed A


    The purpose of this study was to use near-infrared (NIR) transmission spectroscopic technique to determine clindamycin plasma concentration after oral administration of clindamycin loaded GMO-alginate microspheres using rabbits as animal models. Lyophilized clindamycin-plasma standard samples at a concentration range of 0.001-10 μg/ml were prepared and analyzed by NIR and HPLC as a reference method. NIR calibration model was developed with partial least square (PLS) regression analysis. Then, a single dose in-vivo evaluation was carried out and clindamycin-plasma concentration was estimated by NIR. Over 24 h time period, the pharmacokinetic parameters of clindamycin were calculated for the clindamycin loaded GMO-alginate microspheres (F3) and alginate microspheres (F2), and compared with the plain drug (F1). PLS calibration model with 7-principal components (PC), and 8000-9200 cm(-1) spectral range shows a good correlation between HPLC and NIR values with root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP), and calibration coefficient (R(2)) values of 0.245, 1.164, and 0.9753, respectively, which suggests that NIR transmission technique can be used for drug-plasma analysis without any extraction procedure. F3 microspheres exhibited controlled and prolonged absorption Tmax of 4.0 vs. 1.0 and 0.5 h; Cmax of 2.37±0.3 vs. 3.81±0.8 and 5.43±0.7 μg/ml for F2 and F1, respectively. These results suggest that the combination of GMO and alginate (1:4 w/w) could be successfully employed for once daily clindamycin microspheres formulation which confirmed by low Cmax and high Tmax values. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. 2D Vis/NIR correlation spectroscopy of cooked chicken meats (United States)

    Liu, Yongliang; Chen, Yud-Ren; Ozaki, Yukihiro


    Cooking of chicken meats was investigated by the generalized two-dimensional visible/near-infrared (2D Vis/NIR) correlation spectroscopy. Synchronous and asynchronous spectra in the 400-700 nm visible region suggested that the 445 and 560 nm bands be ascribed to deoxymyoglobin and oxymyoglobin, and at least one of the 475, 520, and 585 nm bands is assignable to the denatured species (metmyoglobin). The asynchronous 2D NIR correlation spectrum showed that CH bands change their spectral intensities before the OH/NH groups during the cooking process, indicating that CH fractions are easily oxidized and degraded. In addition, strong correlation peaks were observed correlating the bands in the visible and NIR spectral regions.

  11. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. (United States)

    Hemmer, Eva; Venkatachalam, Nallusamy; Hyodo, Hiroshi; Hattori, Akito; Ebina, Yoshie; Kishimoto, Hidehiro; Soga, Kohei


    In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near-infrared (NIR) range under NIR excitation may overcome those problems. Due to the outstanding optical and magnetic properties of lanthanide ions (Ln(3+)), nanoscopic host materials doped with Ln(3+), e.g. Y2O3:Er(3+),Yb(3+), are promising candidates for NIR-NIR bioimaging. Ln(3+)-doped gadolinium-based inorganic nanostructures, such as Gd2O3:Er(3+),Yb(3+), have a high potential as opto-magnetic markers allowing the combination of time-resolved optical imaging and magnetic resonance imaging (MRI) of high spatial resolution. Recent progress in our research on over-1000 nm NIR fluorescent nanoprobes for in vivo NIR-NIR bioimaging will be discussed in this review.

  12. NIR optimerer produktionen af gammeldags modnede sild

    DEFF Research Database (Denmark)

    Svensson, Vibeke Tølbøl; Bro, Rasmus; Nielsen, Henrik Hauch


    Måling med nærinfrarødt (NIR) lys er et godt supplement til de nuværende metoder til at følge modningen af sild saltede i tønder. Det viser resultaterne af et forskningsprojekt udført i samarbejde mellem Lykkeberg A/S, Danmarks Fiskeriundersøgelser og Den Kgl Veterinær- og Landbohøjskole. Ved hjælp...... af avanceret matematik er det nemt og hurtigt at bestemme modningsgraden af sild direkte fra en NIR måling....

  13. XUV Transient Absorption Spectroscopy: Probing Laser-Perturbed Dipole Polarization in Single Atom, Macroscopic, and Molecular Regimes

    Directory of Open Access Journals (Sweden)

    Chen-Ting Liao


    Full Text Available We employ an extreme ultraviolet (XUV pulse to impulsively excite dipole polarization in atoms or molecules, which corresponds to coherently prepared superposition of excited states. A delayed near infrared (NIR pulse then perturbs the fast evolving polarization, and the resultant absorbance change is monitored in dilute helium, dense helium, and sulfur hexafluoride (SF6 molecules. We observe and quantify the time-dependence of various transient phenomena in helium atoms,includinglaser-inducedphase(LIP,time-varying(ACStarkshift,quantumpathinterference, and laser-induced continuum structure. In the case of dense helium targets, we discuss nonlinear macroscopic propagation effects pertaining to LIP and resonant pulse propagation, which accoun tfor the appearance of new spectral features in transient lineshapes. We then use tunable NIR photons to demonstrate the wavelength dependence of the transient laser induced effects. In the case of molecular polarization experiment in SF6, we show suppression of XUV photoabsorption corresponding to inter-valence transitions in the presence of a strong NIR field. In each case, the temporal evolution of transient absorption spectra allows us to observe and understand the transient laser induced modifications of the electronic structure of atoms and molecules.

  14. Absorption studies

    International Nuclear Information System (INIS)

    Ganatra, R.D.


    Absorption studies were once quite popular but hardly anyone does them these days. It is easier to estimate the blood level of the nutrient directly by radioimmunoassay (RIA). However, the information obtained by estimating the blood levels of the nutrients is not the same that can be obtained from the absorption studies. Absorption studies are primarily done to find out whether some of the essential nutrients are absorbed from the gut or not and if they are absorbed, to determine how much is being absorbed. In the advanced countries, these tests were mostly done to detect pernicious anaemia where vitamin B 12 is not absorbed because of the lack of the intrinsic factor in the stomach. In the tropical countries, ''malabsorption syndrome'' is quire common. In this condition, several nutrients like fat, folic acid and vitamin B 12 are not absorbed. It is possible to study absorption of these nutrients by radioisotopic absorption studies

  15. Design of NIR Chromenylium-Cyanine Fluorophore Library for "Switch-ON" and Ratiometric Detection of Bio-Active Species In Vivo. (United States)

    Wei, Yanfen; Cheng, Dan; Ren, Tianbing; Li, Yinhui; Zeng, Zebing; Yuan, Lin


    The real-time monitoring of key biospecies in the living systems has received thrusting attention during the past decades. Specifically, fluorescent detection based on near-infrared (NIR) fluorescent probes is highly favorable for live cells, live tissues, and even animal imaging, owing to the substantial merits of the NIR window, such as minimal phototoxicity, deep penetration into tissues, and low autofluorescence background. Nevertheless, developing potent NIR fluorescent probes still poses serious challenges to the chemists because traditional NIR fluorophores are less tunable than visible-wavelength fluorophores. To address this issue, here we report a set of novel NIR hybrid fluorophores, namely, the hybrid chromenylium-cyanine fluorophore (CC-Fluor), in which both the fluorescence intensity and the emission wavelength can be easily adjusted by the conformational changes and substitution groups. Compared to known NIR fluorophores, the new CC-Fluors are substantially advantageous for NIR probe development: (1) CC-Fluors display tunable and moderate Stokes shifts and quantum yields; (2) the fluorophores are stable at physiological conditions after long-term incubation; (3) the absorption maxima of CC-Fluors coincide with the common laser spectral lines in mainstream in vivo imaging systems; (4) most importantly, CC-Fluors can be easily modified to prepare NIR probes targeting various biospecies. To fully demonstrate the practical utility of CC-Fluors, we report two innovative NIR probes, a ratiometric pH probe and a turn-on Hg(2+) probe, both are successfully employed in live animal imaging. Hence, the detailed studies allow us to confirm that CC-Fluors can work as an excellent platform for developing NIR probes for the detection of species in living systems.

  16. Experimental radiation carcinogenesis is studies at NIRS

    International Nuclear Information System (INIS)

    Sado, Toshihiko


    Experimental radiation carcinogenesis studies conducted during the past decade at NIRS are briefly reviewed. They include the following: 1) Age dependency of susceptibility to radiation carcinogenesis. 2) Radiation-induced myeloid leukemia. 3) Mechanism of fractionated X-irradiation (FX) induced thymic lymphomas. 4) Significance of radiation-induced immunosuppression in radiation carcinogenesis in vivo. 5) Other ongoing studies. (author)

  17. Monitoring of whey quality with NIR spectroscopy

    DEFF Research Database (Denmark)

    Kucheryavskiy, Sergey; Lomborg, Carina


    The possibility of using near-infrared (NIR) spectroscopy for monitoring of liquid whey quality parameters during protein production process has been tested. The parameters included total solids, lactose, protein and fat content. The samples for the experiment were taken from real industrial...

  18. Agricultural applications of NIR reflectance and transmittance

    DEFF Research Database (Denmark)

    Gislum, René


    There has been a considerable increase in the use of near infrared (NIR) reflectance and transmittance spectroscopy technologies for rapid determination of quality parameters in agriculture, including applications within crop product quality, feed and food quality, manure quality, soil analyses etc...

  19. Folate absorption

    International Nuclear Information System (INIS)

    Baker, S.J.


    Folate is the generic term given to numerous compounds of pteroic acid with glutamic acid. Knowledge of absorption is limited because of the complexities introduced by the variety of compounds and because of the inadequacy of investigational methods. Two assay methods are in use, namely microbiological and radioactive. Techniques used to study absorption include measurement of urinary excretion, serum concentration, faecal excretion, intestinal perfusion, and haematological response. It is probably necessary to test absorption of both pteroylmonoglutamic acid and one or more polyglutamates, and such tests would be facilitated by availability of synthesized compounds labelled with radioactive tracers at specifically selected sites. (author)

  20. Nonlinear effects in collective absorption

    International Nuclear Information System (INIS)

    Uenoyama, Takeshi; Mima, Kunioki; Watanabe, Tsuguhiro.


    The collective absorption of high intensity laser radiation is analyzed numerically. Density profile modification due to the ponderomotive force associating laser radiation and the excited electron plasma waves is self-consistently taken into account, and the intensity dependences of the absorption efficiency are obtained. In the high intensity regime, the absorption efficiency is found to be strongly enhanced in the plasma without flow, but reduced with supersonic flow. (author)

  1. Narrative absorption

    DEFF Research Database (Denmark)

    Narrative Absorption brings together research from the social sciences and Humanities to solve a number of mysteries: Most of us will have had those moments, of being totally absorbed in a book, a movie, or computer game. Typically we do not have any idea about how we ended up in such a state. Nor...... do we fully realize how we might have changed as we return for the fictional worlds we have visited. The feeling of being absorbed is one of the most illusive and transient feelings, but also one that motivates audiences to spend considerable amounts of time in narrative worlds, and one...... that is central to our understanding of the effects of narratives on beliefs and behavior. Key specialists inform the reader of this book about the nature of the peculiar state of consciousness during episodes of absorption, the perception of absorption in history, the role of absorption in meaningful experiences...

  2. Elucidation of two photon absorption of ethylenediaminium (2,4-dinitrophenolate) crystals (United States)

    Indumathi, C.; Sabari Girisun, T. C.; Anitha, K.; Cecil Raj, S. Alfred


    Optical quality single crystals of ethylenediaminium (2,4-dinitrophenolate) [EDA(2,4)DNP] were grown by solvent evaporation method for optical limiting applications against intense ultrashot pulse lasers. Single crystal XRD showed that the material crystallizes in monoclinic system with centric space group P21/C. The crystal packing diagram was elucidated for the first time in literature and it revealed six hydrogen bonds played a very important role in stabilizing the structure. A bifurcated hydrogen bond was also observed between ethylenediamminium and dinitrophenolate ions. The formation of charge transfer complex during the reaction of ethylenediamine and 2,4-dinitrophenol was strongly evident through the vibrational spectroscopic studies. TG-DTA and DSC curves indicate that the material exhibited strong decomposition at 224 °C. Ground state absorption analysis showed that the grown crystals possess absorption maxima in UV region (270 nm, 346 nm) and wide optical transmittance window (480-1200 nm) in the entire visible and NIR region. Measurement of two photon absorption (2PA) and optical limiting response by Z-scan technique under nanosecond pulse excitation was reported. Hence EDA(2,4)DNP with high 2PA coefficient (0.79 ± 0.04 × 10-10 m/W) and low limiting threshold (2.40 ± 0.05 × 1012 W/m2) will be a potential candidate for optical limiting applications like eye and sensor protection against short pulse lasers that are well spread in human interactive sectors.

  3. An examination of the principle of non-destructive flesh firmness measurement of peach fruit by using VIS-NIR spectroscopy. (United States)

    Uwadaira, Yasuhiro; Sekiyama, Yasuyo; Ikehata, Akifumi


    Evaluating the maturity of peach fruit is desirable during both the preharvest and postharvest periods, and flesh firmness (FF) is a representative maturity index. Although a non-destructive FF measurement technique using visible (VIS) and near-infrared (NIR) spectroscopy has been developed, the principle has been unclear. This study was conducted to examine the structure of the FF prediction model by comparing with that of the model for measuring water-soluble pectin (WSP) content. Those two prediction models have the same information regions related to the colors of pericarp and mesocarp (chlorophyll) and to a water band in the NIR region. Moreover, a statistical heterospectroscopy analysis between NIR and 1 H nuclear magnetic resonance (NMR) spectra suggests the possibility that absorptions of methanol and succinate as well as galacturonic acid embedded in a water band play important roles in predicting FF. This approach would enhance the reliability of nondestructive VIS-NIR prediction models in many practical situations.

  4. Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity (United States)

    Pinti, Paola; Cardone, Daniela; Merla, Arcangelo


    Functional Near Infrared-Spectroscopy (fNIRS) represents a powerful tool to non-invasively study task-evoked brain activity. fNIRS assessment of cortical activity may suffer for contamination by physiological noises of different origin (e.g. heart beat, respiration, blood pressure, skin blood flow), both task-evoked and spontaneous. Spontaneous changes occur at different time scales and, even if they are not directly elicited by tasks, their amplitude may result task-modulated. In this study, concentration changes of hemoglobin were recorded over the prefrontal cortex while simultaneously recording the facial temperature variations of the participants through functional infrared thermal (fIR) imaging. fIR imaging provides touch-less estimation of the thermal expression of peripheral autonomic. Wavelet analysis revealed task-modulation of the very low frequency (VLF) components of both fNIRS and fIR signals and strong coherence between them. Our results indicate that subjective cognitive and autonomic activities are intimately linked and that the VLF component of the fNIRS signal is affected by the autonomic activity elicited by the cognitive task. Moreover, we showed that task-modulated changes in vascular tone occur both at a superficial and at larger depth in the brain. Combined use of fNIRS and fIR imaging can effectively quantify the impact of VLF autonomic activity on the fNIRS signals.

  5. The Utility of Using a Near-Infrared (NIR) Camera to Measure Beach Surface Moisture (United States)

    Nelson, S.; Schmutz, P. P.


    Surface moisture content is an important factor that must be considered when studying aeolian sediment transport in a beach environment. A few different instruments and procedures are available for measuring surface moisture content (i.e. moisture probes, LiDAR, and gravimetric moisture data from surface scrapings); however, these methods can be inaccurate, costly, and inapplicable, particularly in the field. Near-infrared (NIR) spectral band imagery is another technique used to obtain moisture data. NIR imagery has been predominately used through remote sensing and has yet to be used for ground-based measurements. Dry sand reflects infrared radiation given off by the sun and wet sand absorbs IR radiation. All things considered, this study assesses the utility of measuring surface moisture content of beach sand with a modified NIR camera. A traditional point and shoot digital camera was internally modified with the placement of a visible light-blocking filter. Images were taken of three different types of beach sand at controlled moisture content values, with sunlight as the source of infrared radiation. A technique was established through trial and error by comparing resultant histogram values using Adobe Photoshop with the various moisture conditions. The resultant IR absorption histogram values were calibrated to actual gravimetric moisture content from surface scrapings of the samples. Overall, the results illustrate that the NIR spectrum modified camera does not provide the ability to adequately measure beach surface moisture content. However, there were noted differences in IR absorption histogram values among the different sediment types. Sediment with darker quartz mineralogy provided larger variations in histogram values, but the technique is not sensitive enough to accurately represent low moisture percentages, which are of most importance when studying aeolian sediment transport.

  6. Graphene-Coupled ZnO: A Robust NIR-Induced Catalyst for Rapid Photo-Oxidation of Cyanide. (United States)

    Neelgund, Gururaj M; Oki, Aderemi


    Herein, we report the modulation of ZnO for enhancement of its ability toward plasmonic absorption of near-infrared (NIR) photons through coupling of graphene (GR). The reported modification led GR-ZnO to be a promising photocatalyst by the complete removal of poisonous and nonvolatile potassium cyanide from water. The photocatalytic degradation of cyanide was revealed by exposing it to NIR laser and comparing with the rate of UV, visible, and sunlight using their apparent reaction rate constants derived from the Langmuir-Hinshelwood model. The heteronanostructured GR-ZnO promoted rapid photo-oxidation of cyanide under illumination with NIR laser rather than UV, visible, and sunlight. It was assessed that the photothermal effect (PTE) is the main cause for higher catalytic efficiency of GR-ZnO in the presence of NIR radiations. Except for the NIR radiations, GR-ZnO does not show any indication of PTE by irradiating with UV, visible, or sunlight. On account of its significance, the PTE of GR-ZnO in KCN solution was evaluated and compared with its individual components viz., GR and ZnO upon exposure to a 980 nm laser system. Furthermore, it has been revealed that the PTE of GR-ZnO was proportional to its concentration. In addition to its effectiveness in the degradation of cyanide, GR-ZnO retained its special structure and exhibited an outstanding photostability after its repeated use in three successive cycles.

  7. Tuning Electronic Structure, Redox, and Photophysical Properties in Asymmetric NIR-Absorbing Organometallic BODIPYs. (United States)

    Zatsikha, Yuriy V; Maligaspe, Eranda; Purchel, Anatolii A; Didukh, Natalia O; Wang, Yefeng; Kovtun, Yuriy P; Blank, David A; Nemykin, Victor N


    Stepwise modification of the methyl groups at the α positions of BODIPY 1 was used for preparation of a series of mono- (2, 4, and 6) and diferrocene (3) substituted donor-acceptor dyads in which the organometallic substituents are fully conjugated with the BODIPY π system. All donor-acceptor complexes have strong absorption in the NIR region and quenched steady-state fluorescence, which can be partially restored upon oxidation of organometallic group(s). X-ray crystallography of complexes 2-4 and 6 confirms the nearly coplanar arrangement of the ferrocene groups and the BODIPY π system. Redox properties of the target systems were studied using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the first oxidation process in all dyads is ferrocene centered, while the separation between the first and the second ferrocene-centered oxidation potentials in diferrocenyl-containing dyad 3 is ∼150 mV. The density functional theory-polarized continuum model (DFT-PCM) and time-dependent (TD) DFT-PCM methods were used to investigate the electronic structure as well as explain the UV-vis and redox properties of organometallic compounds 2-4 and 6. TDDFT calculations allow for assignment of the charge-transfer and π → π* transitions in the target compounds. The excited state dynamics of the parent BODIPY 1 and dyads 2-4 and 6 were investigated using time-resolved transient spectroscopy. In all organometallic dyads 2-4 and 6 the initially excited state is rapidly quenched by electron transfer from the ferrocene ligand. The lifetime of the charge-separated state was found to be between 136 and 260 ps and demonstrates a systematic dependence on the electronic structure and geometry of BODIPYs 2-4 and 6.

  8. Remote Estimation of Chlorophyll-a in Inland Waters by a NIR-Red-Based Algorithm: Validation in Asian Lakes

    Directory of Open Access Journals (Sweden)

    Gongliang Yu


    Full Text Available Satellite remote sensing is a highly useful tool for monitoring chlorophyll-a concentration (Chl-a in water bodies. Remote sensing algorithms based on near-infrared-red (NIR-red wavelengths have demonstrated great potential for retrieving Chl-a in inland waters. This study tested the performance of a recently developed NIR-red based algorithm, SAMO-LUT (Semi-Analytical Model Optimizing and Look-Up Tables, using an extensive dataset collected from five Asian lakes. Results demonstrated that Chl-a retrieved by the SAMO-LUT algorithm was strongly correlated with measured Chl-a (R2 = 0.94, and the root-mean-square error (RMSE and normalized root-mean-square error (NRMS were 8.9 mg∙m−3 and 72.6%, respectively. However, the SAMO-LUT algorithm yielded large errors for sites where Chl-a was less than 10 mg∙m−3 (RMSE = 1.8 mg∙m−3 and NRMS = 217.9%. This was because differences in water-leaving radiances at the NIR-red wavelengths (i.e., 665 nm, 705 nm and 754 nm used in the SAMO-LUT were too small due to low concentrations of water constituents. Using a blue-green algorithm (OC4E instead of the SAMO-LUT for the waters with low constituent concentrations would have reduced the RMSE and NRMS to 1.0 mg∙m−3 and 16.0%, respectively. This indicates (1 the NIR-red algorithm does not work well when water constituent concentrations are relatively low; (2 different algorithms should be used in light of water constituent concentration; and thus (3 it is necessary to develop a classification method for selecting the appropriate algorithm.

  9. NIR spectroscopic properties of aqueous acids solutions. (United States)

    Omar, Ahmad Fairuz; Atan, Hanafi; Matjafri, Mohd Zubir


    Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R² above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918-925 nm and 990-996 nm, while at 975 nm for water.

  10. Optical NIR monitoring of skeletal muscle contraction (United States)

    Lago, Paolo; Gelmetti, Andrea; Pavesi, Roberta; Zambarbieri, Daniela


    NIR spectroscopy allows monitoring of muscle oxygenation and perfusion during contraction. The knowledge of modifications of blood characteristics in body tissues has relevant clinical interest. A compact and reliable device, which makes use of two laser diodes at 750 and 810 nm coupled with the skin surface through optical fibers, was tested. NIR and surface EMG signals during isometric contractions both in normal and ischaemic conditions were analyzed. A set of parameters from the 750/810 spectroscopic curve was analyzed. Two different categories depending on the recovery rate from maximal voluntary contraction to basal oxygenation conditions were found. This behavior can give information about metabolic modifications during muscle fatigue. Interesting results in testing isokinetic rehabilitation training were also obtained.

  11. On the interaction of guest molecules with Co-MOF-74: A Vis/NIR and Raman approach. (United States)

    Strauss, Ina; Mundstock, Alexander; Hinrichs, Dominik; Himstedt, Rasmus; Knebel, Alexander; Reinhardt, Carsten; Dorfs, Dirk; Caro, Jürgen


    Co-MOF-74 rod like crystals with a length of several hundred micrometers have been synthesized via a solvothermal procedure and their interaction with different gases has been evaluated in view of selective gas sensing. We show strongly anisotropic absorption behaviour of the Co-MOF-74 crystals when illuminated with polarized light. This study then addresses the interactions of guests (CO2, propane, propene, Ar, MeOH, H2O) with Co-MOF-74, studied by various spectroscopic techniques. Via Vis/NIR measurements, peak shifts of Co-MOF-74 depending on the interaction with the guest molecules were observed and distinguished. In the visible as well as in the near infrared region, the maximum absorbance is shifted selectively corresponding to the intensity of the CoII-guest interaction. Even propene and propane could be distinguished at room temperature according to their different interactions with Co-MOF-74. Furthermore, we used Raman spectroscopy to detect a modified vibrational behaviour of Co-MOF-74 upon gas adsorption. We show that the adsorption of H2O leads to a characteristic shift of the peak maxima in the Raman spectra. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Design and construction of a NIR spectrometer

    CERN Document Server

    Barcala-Riveira, J M; Fernandez-Marron, J L; Molero-Menendez, F; Navarrete-Marin, J J; Oller-Gonzalez, J C


    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs.

  13. Design and construction of a NIR spectrometer

    International Nuclear Information System (INIS)

    Barcala Riveira, J. M.; Fernandez Marron, J. L.; Alberdi Primicia, J.; Molero Menendez, F.; Navarrete Marin, J. J.; Oller Gonzalez, J. C.


    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs

  14. Near-infrared radiation absorption properties of covellite (CuS using first-principles calculations

    Directory of Open Access Journals (Sweden)

    Lihua Xiao


    Full Text Available First-principles density functional theory was used to investigate the electronic structure, optical properties and the origin of the near-infrared (NIR absorption of covellite (CuS. The calculated lattice constant and optical properties are found to be in reasonable agreement with experimental and theoretical findings. The electronic structure reveals that the valence and conduction bands of covellite are determined by the Cu 3d and S 3p states. By analyzing its optical properties, we can fully understand the potential of covellite (CuS as a NIR absorbing material. Our results show that covellite (CuS exhibits NIR absorption due to its metal-like plasma oscillation in the NIR range.

  15. Pharmaceutical applications using NIR technology in the cloud (United States)

    Grossmann, Luiz; Borges, Marco A.


    NIR technology has been available for a long time, certainly more than 50 years. Without any doubt, it has found many niche applications, especially in the pharmaceutical, food, agriculture and other industries due to its flexibility. There are a number of advantages over other existing analytical technologies we can list, for example virtually no need for sample preparation; usually NIR does not demand sample destruction and subsequent discard; NIR provides fast results; NIR does not require extensive operator training and carries small operating costs. However, the key point about NIR technology is the fact that it's more related to statistics than chemistry or, in other words, we are more concerned about analyzing and distinguishing features within the data than looking deep into the chemical entities themselves. A simple scan reading in the NIR range usually involves huge inflows of data points. Usually we decompose the signals into hundreds of predictor variables and use complex algorithms to predict classes or quantify specific content. NIR is all about math, especially by converting chemical information into numbers. Easier said than done. A NIR signal is a very complex one. Usually the signal responses are not specific to a particular material, rather, each grouṕs responses add up, thus providing low specificity of a spectral reading. This paper proposes a simple and efficient method to analyze and compare NIR spectra for the purpose of identifying the presence of active pharmaceutical ingredients in finished products using low cost NIR scanning devices connected to the internet cloud.

  16. A comparative computational study of Csbnd N and Csbnd C bonding visible to NIR absorbing croconines (United States)

    Chetti, Prabhakar; Tripathi, Anuj


    The lowest electronic excitations and charge transfer properties in two series of croconine dyes; 1) molecules with Csbnd N bonding, having an absorption in the visible region (400-600 nm) and 2) molecules with Csbnd C bonding, showing absorption in visible to near infrared (NIR) region (600-1100 nm) are analyzed by quantum-chemical calculations. The absorption maxima in Csbnd C bonding croconines (CCR) are always having 200-300 nm red shifted than its corresponding Csbnd N bonding croconines (NCR). The reason for this drastic red shift in CCR series than its corresponding NCR has been systematically studied by DFT, TDDFT and SAC-CI methods. It is found that, CCR series are with less charge transfer in nature and are having larger diradical character, whereas NCR series molecules showing larger charge transfer with lower diradical character. The change in bonding mode of central five membered croconate ring, from Csbnd N to Csbnd C, destabilization and/stabilization of HOMO LUMO levels were observed. This study may helpful in the design and synthesis of new visible to NIR absorbing croconine dyes which are useful in materials applications.

  17. UV/vis and NIR light-responsive spiropyran self-assembled monolayers. (United States)

    Ivashenko, Oleksii; van Herpt, Jochem T; Feringa, Ben L; Rudolf, Petra; Browne, Wesley R


    Self-assembled monolayers of a 6-nitro BIPS spiropyran (SP) modified with a disulfide-terminated aliphatic chain were prepared on polycrystalline gold surfaces and characterized by UV/vis absorption, surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopies (XPS). The SAMs obtained are composed of the ring-closed form (i.e., spiropyran) only. Irradiation with UV light results in conversion of the monolayer to the merocyanine form (MC), manifested in the appearance of an N(+) contribution in the N 1s region of the XPS spectrum of the SAMs, the characteristic absorption band of the MC form in the visible region at 555 nm, and the C-O stretching band in the SERS spectrum. Recovery of the initial state of the monolayer was observed both thermally and after irradiation with visible light. Several switching cycles were performed and monitored by SERS spectroscopy, demonstrating the stability of the SAMs during repeated switching between SP and MC states. A key finding in the present study is that ring-opening of the surface-immobilized spiropyrans can be induced by irradiation with continuous wave NIR (785 nm) light as well as by irradiation with UV light. We demonstrate that ring-opening by irradiation at 785 nm proceeds by a two-photon absorption pathway both in the SAMs and in the solid state. Hence, spiropyran SAMs on gold can undergo reversible photochemical switching from the SP to the MC form with both UV and NIR and the reverse reaction induced by irradiation with visible light or heating. Furthermore, the observation of NIR-induced switching with a continuous wave source holds important consequences in the study of photochromic switches on surfaces using SERS and emphasizes the importance of the use of multiple complementary techniques in characterizing photoresponsive SAMs.

  18. NIR-NIR fluorescence: A new genre of fingermark visualisation techniques. (United States)

    King, Roberto S P; Hallett, Peter M; Foster, Doug


    A preliminary study reveals that finely divided cuprorivaite powder may be used to efficiently develop and subsequently image latent fingermarks across a range of highly patterned, coloured non-porous and semi-porous substrates using near infrared illumination and imaging. Problematic multi-coloured backgrounds provide very little interference under the illumination conditions used, and invoked fluorescence observed, when using this material. This is the first reported example of a NIR-NIR fluorophore for use within latent fingermark visualisation and offers the potential for application at the scene and in the laboratory. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. The action of NIR (808nm) laser radiation and gold nanorods labeled with IgA and IgG human antibodies on methicillin-resistant and methicillin sensitive strains of Staphylococcus aureus (United States)

    Tuchina, Elena S.; Petrov, Pavel O.; Ratto, Fulvio; Centi, Sonia; Pini, Roberto; Tuchin, Valery V.


    The effect of NIR laser radiation (808 nm) on methicillin-sensitive and methicillin resistant strains of Staphylococcus aureus incubated with gold nanorods is studied. Nanorods having length of 44 (± 4) nm and diameter of 10 (± 3) nm with the absorption maximum in the NIR (800 nm), functionalized with human immunoglobulins IgA and IgG, were synthesized and used in the studies. The killing ability up to 97% of the microorganism populations by using this nanotechnology was shown.

  20. Discrimination of Finger Area of Somatosensory Cortex by NIRS (United States)

    Xu, Mingdi; Hayami, Takehito; Iramina, Keiji

    We carried out a near-infrared spectroscopy (NIRS) study to observe the hemodynamic responses associated with cortical activation in the primary somatosensory cortex (SI) by finger electrical stimulation. We examined whether NIRS can assist in investigating the somatotopic arrangement of fingers on the SI hand area. We found that although relatively low in spatial resolution, NIRS can to some extent help to discriminate the representations of thumb and ring finger on the SI hand area.

  1. The histone acetyltransferase inhibitor Nir regulates epidermis development. (United States)

    Duteil, Delphine; Tourrette, Yves; Eberlin, Adrien; Willmann, Dominica; Patel, Dharmeshkumar; Friedrichs, Nicolaus; Müller, Judith M; Schüle, Roland


    In addition to its function as an inhibitor of histone acetyltransferases, Nir (Noc2l) binds to p53 and TAp63 to regulate their activity. Here, we show that epidermis-specific ablation of Nir impairs epidermal stratification and barrier function, resulting in perinatal lethality. Nir-deficient epidermis lacks appendages and remains single layered during embryogenesis. Cell proliferation is inhibited, whereas apoptosis and p53 acetylation are increased, indicating that Nir is controlling cell proliferation by limiting p53 acetylation. Transcriptome analysis revealed that Nir regulates the expression of essential factors in epidermis development, such as keratins, integrins and laminins. Furthermore, Nir binds to and controls the expression of p63 and limits H3K18ac at the p63 promoter. Corroborating the stratification defects, asymmetric cell divisions were virtually absent in Nir-deficient mice, suggesting that Nir is required for correct mitotic spindle orientation. In summary, our data define Nir as a key regulator of skin development. © 2018. Published by The Company of Biologists Ltd.

  2. Food quality assessment by NIR hyperspectral imaging (United States)

    Whitworth, Martin B.; Millar, Samuel J.; Chau, Astor


    Near infrared reflectance (NIR) spectroscopy is well established in the food industry for rapid compositional analysis of bulk samples. NIR hyperspectral imaging provides new opportunities to measure the spatial distribution of components such as moisture and fat, and to identify and measure specific regions of composite samples. An NIR hyperspectral imaging system has been constructed for food research applications, incorporating a SWIR camera with a cooled 14 bit HgCdTe detector and N25E spectrograph (Specim Ltd, Finland). Samples are scanned in a pushbroom mode using a motorised stage. The system has a spectral resolution of 256 pixels covering a range of 970-2500 nm and a spatial resolution of 320 pixels covering a swathe adjustable from 8 to 300 mm. Images are acquired at a rate of up to 100 lines s-1, enabling samples to be scanned within a few seconds. Data are captured using SpectralCube software (Specim) and analysed using ENVI and IDL (ITT Visual Information Solutions). Several food applications are presented. The strength of individual absorbance bands enables the distribution of particular components to be assessed. Examples are shown for detection of added gluten in wheat flour and to study the effect of processing conditions on fat distribution in chips/French fries. More detailed quantitative calibrations have been developed to study evolution of the moisture distribution in baguettes during storage at different humidities, to assess freshness of fish using measurements of whole cod and fillets, and for prediction of beef quality by identification and separate measurement of lean and fat regions.

  3. On the terminology of the spectral vegetation index (NIR – SWIR)/(NIR + SWIR) (United States)

    Ji, Lel; Zhang, Li; Wylie, Bruce K.; Rover, Jennifer R.


    The spectral vegetation index (ρNIR – ρSWIR)/(ρNIR + ρSWIR), where ρNIR and ρSWIR are the near-infrared (NIR) and shortwave-infrared (SWIR) reflectances, respectively, has been widely used to indicate vegetation moisture condition. This index has multiple names in the literature, including infrared index (II), normalized difference infrared index (NDII), normalized difference water index (NDWI), normalized difference moisture index (NDMI), land surface water index (LSWI), and normalized burn ratio (NBR), etc. After reviewing each term’s definition, associated sensors, and channel specifications, we found that the index consists of three variants, differing only in the SWIR region (1.2–1.3 µm, 1.55–1.75 µm, or 2.05–2.45 µm). Thus, three terms are sufficient to represent these three SWIR variants; other names are redundant and therefore unnecessary. Considering the spectral representativeness, the term’s popularity, and the “rule of priority” in scientific nomenclature, NDWI, NDII, and NBR, each corresponding to the three SWIR regions, are more preferable terms.

  4. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.


    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  5. [Online soft sensing method for freezing point of diesel fuel based on NIR spectrometry]. (United States)

    Wu, De-Hui


    To solve the problems of real-time online measurement for the freezing point of diesel fuel products, a soft sensing method by near-infrared (NIR) spectrometry was proposed. Firstly, the information of diesel fuel samples in the spectral region of 750-1 550 nm was extracted by spectrum analyzer, and the polynomial convolution algorithm was also applied in spectrogram smoothness, baseline correction and standardization. Principal component analysis (PCA) was then used to extract the features of NIR spectrum data sets, which not only reduced the number of input dimension, but increased their sensitivity to output. Finally the soft sensing model for freezing point was built using SVR algorithm. One hundred fifty diesel fuel samples were used as experimental materials, 100 of which were used as training (calibrating) samples and the others as testing samples. Four hundred and one dimensional original NIR absorption spectrum data sets, through PCA, were reduced to 6 dimensions. To investigate the measuring effect, the freezing points of the testing samples were estimated by four different soft sensing models, BP, SVR, PCA-BP and PCA+SVR. Experimental results show that (1) the soft sensing models using PCA to extract features are generally better than those used directly in spectrum wavelength domain; (2) SVR based model outperforms its main competitors-BP model in the limited training data, the error of which is only half of the latter; (3) The MSE between the estimated values by the presented method and the standard chemical values of freezing point by condensing method are less than 4.2. The research suggests that the proposed method can be used in fast measurement of the freezing point of diesel fuel products by NIRS.

  6. Determination of NIR informative wavebands for transmission non-invasive blood glucose measurement using a Fourier transform spectrometer (United States)

    Yang, Wenming; Liao, Ningfang; Cheng, Haobo; Li, Yasheng; Bai, Xueqiong; Deng, Chengyang


    Non-invasive blood glucose measurement using near infrared (NIR) spectroscopy relies on wavebands that provide reliable information about spectral absorption. In this study, we investigated wavebands which are informative for blood glucose in the NIR shortwave band (900˜1450 nm) and the first overtone band (1450˜1700 nm) through a specially designed NIR Fourier transform spectrometer (FTS), which featured a test fixture (where a sample or subject's finger could be placed) and all-reflective optics, except for a Michelson structure. Different concentrations of glucose solution and seven volunteers who had undergone oral glucose tolerance tests (OGTT) were studied to acquire transmission spectra in the shortwave band and the first overtone band. Characteristic peaks of glucose absorption were identified from the spectra of glucose aqueous solution by second-order derivative processing. The wavebands linked to blood glucose were successfully estimated through spectra of the middle fingertip of OGTT participants by a simple linear regression and correlation coefficient. The light intensity difference showed that glucose absorption in the first overtone band was much more prominent than it was in the shortwave band. The results of the SLR model established from seven OGTTs in total on seven participants enabled a positive estimation of the glucose-linked wavelength. It is suggested that wavebands with prominent characteristic peaks, a high correlation coefficient between blood glucose and light intensity difference and a relatively low standard deviation of predicted values will be the most informative wavebands for transmission non-invasive blood glucose measurement methods. This work provides a guidance for waveband selection for the development of non-invasive NIR blood glucose measurement.

  7. Investigation of the effects of different carotenoids on the absorption and CD signals of light harvesting 1 complexes

    NARCIS (Netherlands)

    Georgakopoulou, S.; van der Zwan, G.; Olsen, J.D.; Hunter, C.N.; Niederman, R.A.; van Grondelle, R.


    Absorption and circular dichroism (CD) spectra of light-harvesting (LH)1 complexes from the purple bacteria Rhodobacter (Rba.) sphaeroides and Rhodospirillum (Rsp.) rubrum are presented. The complexes exhibit very low intensity, highly nonconservative, near-infrared (NIR) CD spectra. Absorption and

  8. Effect of Palagonite Dust Deposition on the Automated Detection of Carbonate Vis/NIR Spectra (United States)

    Gilmore, Martha S.; Merrill, Matthew D.; Castano, Rebecca; Bornstein, Benjamin; Greenwood, James


    Currently Mars missions can collect more data than can be returned. Future rovers of increased mission lifetime will benefit from onboard autonomous data processing systems to guide the selection, measurement and return of scientifically important data. One approach is to train a neural net to recognize spectral reflectance characteristics of minerals of interest. We have developed a carbonate detector using a neural net algorithm trained on 10,000 synthetic Vis/NIR (350-2500 nm) spectra. The detector was able to correctly identify carbonates in the spectra of 30 carbonate and noncarbonate field samples with 100% success. However, Martian dust coatings strongly affect the spectral characteristics of surface rocks potentially masking the underlying substrate rock. In this experiment, we measure Vis/NIR spectra of calcite coated with different thicknesses of palagonite dust and evaluate the performance of the carbonate detector.

  9. Oxygenation of the calf muscle during an incremental, intermittent walking exercise assessed by NIRS (United States)

    Härtel, S.; Kutzner, C.; Schneider, D.; Grieger, S.; Neumaier, M.; Kohl-Bareis, M.


    We use near infrared spectroscopy (NIRS) for the non-invasive assessment of calf oxygenation during a new walking protocol in healthy subjects of different fitness levels. The protocol increases the exercise power by an increase of the skew rather than speed, and the incremental power steps are intermitted by a 30 s rest which serves for blood sampling. The NIRS measurement parameter of tissue oxygenation are discussed, and a high correlation of the oxygen saturation (tissue oxygenation index) difference between exercise and rest period with exercise power is observed. This difference parameter can be interpreted as strongly linked to blood flow rather than oxygenation. This finding is supported by comparison with spirometry data. The effect of training is discussed. The exercise protocol is suited for testing unfit, or older subjects and the data discussed here servers as a test for a larger trial with heart clinic patients.

  10. Application of Principal Component Analysis to NIR Spectra of Phyllosilicates: A Technique for Identifying Phyllosilicates on Mars (United States)

    Rampe, E. B.; Lanza, N. L.


    Orbital near-infrared (NIR) reflectance spectra of the martian surface from the OMEGA and CRISM instruments have identified a variety of phyllosilicates in Noachian terrains. The types of phyllosilicates present on Mars have important implications for the aqueous environments in which they formed, and, thus, for recognizing locales that may have been habitable. Current identifications of phyllosilicates from martian NIR data are based on the positions of spectral absorptions relative to laboratory data of well-characterized samples and from spectral ratios; however, some phyllosilicates can be difficult to distinguish from one another with these methods (i.e. illite vs. muscovite). Here we employ a multivariate statistical technique, principal component analysis (PCA), to differentiate between spectrally similar phyllosilicate minerals. PCA is commonly used in a variety of industries (pharmaceutical, agricultural, viticultural) to discriminate between samples. Previous work using PCA to analyze raw NIR reflectance data from mineral mixtures has shown that this is a viable technique for identifying mineral types, abundances, and particle sizes. Here, we evaluate PCA of second-derivative NIR reflectance data as a method for classifying phyllosilicates and test whether this method can be used to identify phyllosilicates on Mars.

  11. Managing dual color properties with the Z-parameter in the visual and NIR spectrum (United States)

    Žiljak, Vilko; Pap, Klaudio; Žiljak Stanimirović, Ivana; Žiljak Vujić, Jana


    In this paper value Z is introduced into the physics of describing material light absorption in the sub-area of the near infrared (NIR) spectrum ranging from 1000 nm to 1100 nm. This value is added to the standard parameters for color description for managing dual color properties. The basic challenge is in grouping together the infrared technology of manipulation with inks and ink characteristics in the visible spectrum (VS) in order to design new inks, with the goal to create hidden, invisible and double information. The value Z is the numerical value of absorption in the NIR-Z spectrum from matter, ink and pigments, as well as from flora and fauna. It is introduced into standard colorimetric defined by three parameters (CIELab, RGB, HSB) as the fourth value with the assertion that there is no correlation between them and parameter Z. It has been proven experimentally that if there is a default fourth value Z, the desired ink color can be set in the visible spectrum in a single manner only. The significance of the four-parameter color LabZ (RGBZ, HSBZ) system is in the new approach to application of spot inks and pigments in visual arts (paintings), industrial and military application, as well as in security graphics designed with printing technologies.

  12. 3D NIR-II Molecular Imaging Distinguishes Targeted Organs with High-Performance NIR-II Bioconjugates. (United States)

    Zhu, Shoujun; Herraiz, Sonia; Yue, Jingying; Zhang, Mingxi; Wan, Hao; Yang, Qinglai; Ma, Zhuoran; Wang, Yan; He, Jiahuan; Antaris, Alexander L; Zhong, Yeteng; Diao, Shuo; Feng, Yi; Zhou, Ying; Yu, Kuai; Hong, Guosong; Liang, Yongye; Hsueh, Aaron J; Dai, Hongjie


    Greatly reduced scattering in the second near-infrared (NIR-II) region (1000-1700 nm) opens up many new exciting avenues of bioimaging research, yet NIR-II fluorescence imaging is mostly implemented by using nontargeted fluorophores or wide-field imaging setups, limiting the signal-to-background ratio and imaging penetration depth due to poor specific binding and out-of-focus signals. A newly developed high-performance NIR-II bioconjugate enables targeted imaging of a specific organ in the living body with high quality. Combined with a home-built NIR-II confocal set-up, the enhanced imaging technique allows 900 µm-deep 3D organ imaging without tissue clearing techniques. Bioconjugation of two hormones to nonoverlapping NIR-II fluorophores facilitates two-color imaging of different receptors, demonstrating unprecedented multicolor live molecular imaging across the NIR-II window. This deep tissue imaging of specific receptors in live animals allows development of noninvasive molecular imaging of multifarious models of normal and neoplastic organs in vivo, beyond the traditional visible to NIR-I range. The developed NIR-II fluorescence microscopy will become a powerful imaging technique for deep tissue imaging without any physical sectioning or clearing treatment of the tissue. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Prediction of pork quality with near infrared spectroscopy (NIRS): 1. Feasibility and robustness of NIRS measurements at laboratory scale

    NARCIS (Netherlands)

    Kapper, C.; Klont, R.E.; Verdonk, J.M.A.J.; Urlings, H.A.P.


    The objective was to study prediction of pork quality by near infrared spectroscopy (NIRS) technology in the laboratory. A total of 131 commercial pork loin samples were measured with NIRS. Predictive equations were developed for drip loss %, colour L*, a*, b* and pH ultimate (pHu). Equations with

  14. Near Infrared (nir) Imaging for Nde (United States)

    Diamond, G. G.; Pallav, P.; Hutchins, D. A.


    A novel application of near infrared (NIR) signals is presented, which can be used to provide images of many different materials and objects. It is effectively a very low cost non-ionising alternative to many applications currently being investigated using electromagnetic waves at other frequencies, such as THz and X-ray imaging. This alternative technique can be realised by very simple and inexpensive electronics and is inherently far more portable and easy to use. Transmission imaging results from this technique are presented from examples industrial quality control, food inspection and various security applications, and the results compared to existing techniques. In addition, this technique can be used in through-transmission mode on biological and medical samples, and images are presented that differentiate between not only flesh and bone, but also various types of soft tissue.

  15. Diseno y construccion de un espectrometro NIR; Design and construction of a NIR spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Barcala Riveira, J. M.; Fernandez Marron, J. L.; Alberdi Primicia, J.; Molero Menendez, F.; Navarrete Marin, J. J.; Oller Gonzalez, J. C.


    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs.

  16. NIRS-based noninvasive cerebrovascular regulation assessment (United States)

    Miller, S.; Richmond, I.; Borgos, J.; Mitra, K.


    Alterations to cerebral blood flow (CBF) have been implicated in diverse neurological conditions, including mild traumatic brain injury, microgravity induced intracranial pressure (ICP) increases, mild cognitive impairment, and Alzheimer's disease. Near infrared spectroscopy (NIRS)-measured regional cerebral tissue oxygen saturation (rSO2) provides an estimate of oxygenation of the interrogated cerebral volume that is useful in identifying trends and changes in oxygen supply to cerebral tissue and has been used to monitor cerebrovascular function during surgery and ventilation. In this study, CO2-inhalation-based hypercapnic breathing challenges were used as a tool to simulate CBF dysregulation, and NIRS was used to monitor the CBF autoregulatory response. A breathing circuit for the selective administration of CO2-compressed air mixtures was designed and used to assess CBF regulatory responses to hypercapnia in 26 healthy young adults using non-invasive methods and real-time sensors. After a 5 or 10 minute baseline period, 1 to 3 hypercapnic challenges of 5 or 10 minutes duration were delivered to each subject while rSO2, partial pressure of end tidal CO2 (PETCO2), and vital signs were continuously monitored. Change in rSO2 measurements from pre- to intrachallenge (ΔrSO2) detected periods of hypercapnic challenges. Subjects were grouped into three exercise factor levels (hr/wk), 1: 0, 2:>0 and 10. Exercise factor level 3 subjects showed significantly greater ΔrSO2 responses to CO2 challenges than level 2 and 1 subjects. No significant difference in ΔPETCO2 existed between these factor levels. Establishing baseline values of rSO2 in clinical practice may be useful in early detection of CBF changes.

  17. Study the effects of varying interference upon the optical properties of turbid samples using NIR spatial light modulation (United States)

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David


    Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.

  18. UV-Vis-NIR luminescence properties and energy transfer mechanism of LiSrPO4:Eu2+, Pr3+ suitable for solar spectral convertor. (United States)

    Chen, Yan; Wang, Jing; Liu, Chunmeng; Tang, Jinke; Kuang, Xiaojun; Wu, Mingmei; Su, Qiang


    An efficient near-infrared (NIR) phosphor LiSrPO(4):Eu(2+), Pr(3+) is synthesized by solid-state reaction and systematically investigated using x-ray diffraction, diffuse reflection spectrum, photoluminescence spectra at room temperature and 3 K, and the decay curves. The UV-Vis-NIR energy transfer mechanism is proposed based on these results. The results demonstrate Eu(2+) can be an efficient sensitizer for harvesting UV photon and greatly enhancing the NIR emission of Pr(3+) between 960 and 1060 nm through efficient energy feeding by allowed 4f-5d absorption of Eu(2+) with high oscillator strength. Eu(2+)/Pr(3+) may be an efficient donor-acceptor pair as solar spectral converter for Si solar cells.

  19. Time domain functional NIRS imaging for human brain mapping. (United States)

    Torricelli, Alessandro; Contini, Davide; Pifferi, Antonio; Caffini, Matteo; Re, Rebecca; Zucchelli, Lucia; Spinelli, Lorenzo


    This review is aimed at presenting the state-of-the-art of time domain (TD) functional near-infrared spectroscopy (fNIRS). We first introduce the physical principles, the basics of modeling and data analysis. Basic instrumentation components (light sources, detection techniques, and delivery and collection systems) of a TD fNIRS system are described. A survey of past, existing and next generation TD fNIRS systems used for research and clinical studies is presented. Performance assessment of TD fNIRS systems and standardization issues are also discussed. Main strengths and weakness of TD fNIRS are highlighted, also in comparison with continuous wave (CW) fNIRS. Issues like quantification of the hemodynamic response, penetration depth, depth selectivity, spatial resolution and contrast-to-noise ratio are critically examined, with the help of experimental results performed on phantoms or in vivo. Finally we give an account on the technological developments that would pave the way for a broader use of TD fNIRS in the neuroimaging community. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Ultrafast transient-absorption of the solvated electron in water

    International Nuclear Information System (INIS)

    Kimura, Y.; Alfano, J.C.; Walhout, P.K.; Barbara, P.F.


    Ultrafast near infrared (NIR)-pump/variable wavelength probe transient-absorption spectroscopy has been performed on the aqueous solvated electron. The photodynamics of the solvated electron excited to its p-state are qualitatively similar to previous measurements of the dynamics of photoinjected electrons at high energy. This result confirms the previous interpretation of photoinjected electron dynamics as having a rate-limiting bottleneck at low energies presumably involving the p-state

  1. Patterning of graphite nanocones for broadband solar spectrum absorption

    Directory of Open Access Journals (Sweden)

    Yaoran Sun


    Full Text Available We experimentally demonstrate a broadband vis-NIR absorber consisting of 300-400 nm nanocone structures on highly oriented pyrolytic graphite. The nanocone structures are fabricated through simple nanoparticle lithography process and analyzed with three-dimensional finite-difference time-domain methods. The measured absorption reaches an average level of above 95% over almost the entire solar spectrum and agrees well with the simulation. Our simple process offers a promising material for solar-thermal devices.

  2. Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances. (United States)

    Muhammed, Madathumpady Abubaker Habeeb; Döblinger, Markus; Rodríguez-Fernández, Jessica


    Exerting control over the near-infrared (NIR) plasmonic response of nanosized metals and semiconductors can facilitate access to unexplored phenomena and applications. Here we combine electrostatic self-assembly and Cd(2+)/Cu(+) cation exchange to obtain an anisotropic core-shell nanoparticle cluster (NPC) whose optical properties stem from two dissimilar plasmonic materials: a gold nanorod (AuNR) core and a copper selenide (Cu(2-x)Se, x ≥ 0) supraparticle shell. The spectral response of the AuNR@Cu2Se NPCs is governed by the transverse and longitudinal plasmon bands (LPB) of the anisotropic metallic core, since the Cu2Se shell is nonplasmonic. Under aerobic conditions the shell undergoes vacancy doping (x > 0), leading to the plasmon-rich NIR spectrum of the AuNR@Cu(2-x)Se NPCs. For low vacancy doping levels the NIR optical properties of the dually plasmonic NPCs are determined by the LPBs of the semiconductor shell (along its major longitudinal axis) and of the metal core. Conversely, for high vacancy doping levels their NIR optical response is dominated by the two most intense plasmon modes from the shell: the transverse (along the shortest transversal axis) and longitudinal (along the major longitudinal axis) modes. The optical properties of the NPCs can be reversibly switched back to a purely metallic plasmonic character upon reversible conversion of AuNR@Cu(2-x)Se into AuNR@Cu2Se. Such well-defined nanosized colloidal assemblies feature the unique ability of holding an all-metallic, a metallic/semiconductor, or an all-semiconductor plasmonic response in the NIR. Therefore, they can serve as an ideal platform to evaluate the crosstalk between plasmonic metals and plasmonic semiconductors at the nanoscale. Furthermore, their versatility to display plasmon modes in the first, second, or both NIR windows is particularly advantageous for bioapplications, especially considering their strong absorbing and near-field enhancing properties.

  3. Bidirectional reflectance and VIS-NIR spectroscopy of cometary analogues under simulated space conditions (United States)

    Jost, Bernhard; Pommerol, Antoine; Poch, Olivier; Yoldi, Zuriñe; Fornasier, Sonia; Hasselmann, Pedro Henrique; Feller, Clément; Carrasco, Nathalie; Szopa, Cyril; Thomas, Nicolas


    display higher coincidence with data of 67P than the phase curves of the samples having a more compact surface layer with smooth texture. The analysis of spectral absorption bands of water ice in the near-infrared (NIR) range, similar to those acquired by the VIRTIS instrument onboard Rosetta, allows to link compositional considerations with surface activity and texture.

  4. Graph theoretical approach to functional connectivity in prefrontal cortex via fNIRS. (United States)

    Einalou, Zahra; Maghooli, Keivan; Setarehdan, Seyaed Kamaledin; Akin, Ata


    Functional near-infrared spectroscopy (fNIRS) has been proposed as an affordable, fast, and robust alternative to many neuroimaging modalities yet it still has long way to go to be adapted in the clinic. One request from the clinicians has been the delivery of a simple and straightforward metric (a so-called biomarker) from the vast amount of data a multichannel fNIRS system provides. We propose a simple-straightforward signal processing algorithm derived from [Formula: see text] data collected during a modified version of the color-word matching Stroop task that consists of three different conditions. The algorithm starts with a wavelet-transform-based preprocessing, then uses partial correlation analysis to compute the functional connectivity matrices at each condition and then computes the global efficiency values. To this end, a continuous wave 16 channels fNIRS device (ARGES Cerebro, Hemosoft Inc., Turkey) was used to measure the changes in [Formula: see text] concentrations from 12 healthy volunteers. We have considered 10% of strongest connections in each network. A strong Stroop interference effect was found between the incongruent against neutral condition ([Formula: see text]) while a similar significance was observed for the global efficiency values decreased from neutral to congruent to incongruent conditions [[Formula: see text], [Formula: see text

  5. Intelligent MEMS spectral sensor for NIR applications (Conference Presentation) (United States)

    Kantojärvi, Uula; Antila, Jarkko E.; Mäkynen, Jussi; Suhonen, Janne


    Near Infrared (NIR) spectrometers have been widely used in many material inspection applications, but mainly in central laboratories. The role of miniaturization, robustness of spectrometer and portability are really crucial when field inspection tools should be developed. We present an advanced spectral sensor based on a tunable Microelectromechanical (MEMS) Fabry-Perot Interferometer which will meet these requirements. We describe the wireless device design, operation principle and easy-to-use algorithms to adapt the sensor to number of applications. Multiple devices can be operated simultaneously and seamlessly through cloud connectivity. We also present some practical NIR applications carried out with truly portable NIR device.

  6. Inights on NIRS sensitivity from a cross-linguistic study on the emergence of phonological grammar

    Directory of Open Access Journals (Sweden)

    Yasuyo eMinagawa-Kawai


    Full Text Available Each language has a unique set of phonemic categories and phonotactic rules which determine permissible sound sequences in that language. Behavioral research demonstrates that one’s native language shapes the perception of both sound categories and sound sequences in adults, and neuroimaging results further indicate that the processing of native phonemes and phonotactics involves a left-dominant perisylvian brain network. Recent work using a novel technique, functional Near InfraRed Spectroscopy (NIRS, has suggested that a left-dominant network becomes evident towards the end of the first year of life as infants process phonemic contrasts. The present research project attempted to assess whether the same pattern would be seen for native phonotactics. We measured brain responses in Japanese- and French-learning infants to two contrasts: Abuna vs. Abna (a phonotactic contrast that is native in French, but not in Japanese and Abuna vs. Abuuna (a vowel length contrast that is native in Japanese, but not in French. Results did not show a significant response to either contrast in either group, unlike both previous behavioral research on phonotactic processing and NIRS work on phonemic processing. To understand these null results, we performed similar NIRS experiments with Japanese adult participants. These data suggest that the infant null results arise from an interaction of multiple factors, involving the suitability of the experimental paradigm for NIRS measurements and stimulus perceptibility. We discuss the challenges facing this novel technique, particularly focusing on the optimal stimulus presentation which could yield strong enough hemodynamic responses when using the change detection paradigm.

  7. PAT-Based Control of Fluid Bed Coating Process Using NIR Spectroscopy to Monitor the Cellulose Coating on Pharmaceutical Pellets. (United States)

    Naidu, Venkata Ramana; Deshpande, Rucha S; Syed, Moinuddin R; Deoghare, Piyush; Singh, Dharamvir; Wakte, Pravin S


    Current endeavor was aimed towards monitoring percent weight build-up during functional coating process on drug-layered pellets. Near-infrared (NIR) spectroscopy is an emerging process analytical technology (PAT) tool which was employed here within quality by design (QbD) framework. Samples were withdrawn after spraying every 15-Kg cellulosic coating material during Wurster coating process of drug-loaded pellets. NIR spectra of these samples were acquired using cup spinner assembly of Thermoscientific Antaris II, followed by multivariate analysis using partial least squares (PLS) calibration model. PLS model was built by selecting various absorption regions of NIR spectra for Ethyl cellulose, drug and correlating the absorption values with actual percent weight build up determined by HPLC. The spectral regions of 8971.04 to 8250.77 cm -1 , 7515.24 to 7108.33 cm -1 , and 5257.00 to 5098.87 cm -1 were found to be specific to cellulose, where as the spectral region of 6004.45 to 5844.14 cm -1 was found to be specific to drug. The final model gave superb correlation co-efficient value of 0.9994 for calibration and 0.9984 for validation with low root mean square of error (RMSE) values of 0.147 for calibration and 0.371 for validation using 6 factors. The developed correlation between the NIR spectra and cellulose content is useful in precise at-line prediction of functional coat value and can be used for monitoring the Wurster coating process.

  8. Avoiding thermal injury during near-infrared photoimmunotherapy (NIR-PIT): the importance of NIR light power density. (United States)

    Okuyama, Shuhei; Nagaya, Tadanobu; Ogata, Fusa; Maruoka, Yasuhiro; Sato, Kazuhide; Nakamura, Yuko; Choyke, Peter L; Kobayashi, Hisataka


    Near-infrared photoimmunotherapy (NIR-PIT) is a newly-established cancer treatment which employs the combination of an antibody-photoabsorber conjugate (APC) and NIR light. When NIR light is absorbed by APC-bound tissues, a certain amount of heat is generated locally. For the most part this results in a subclinical rise in skin temperature, however, excessive light exposure may cause non-specific thermal damage. In this study, we investigated the potential for thermal damage caused by NIR-PIT by measuring surface temperature. Two sources of light, laser and light emitting diode (LED), were compared in a mouse tumor model. First, we found that the skin was heated rapidly by NIR light regardless of whether laser or LED light sources were used. Air cooling at the surface reduced the rise in temperature. There were no associations between the rise of skin temperature and tumor volume of the treated tumor, or APC concentration. Second, we investigated the extent of thermal damage to the skin at various light doses. We detected burn injuries 1 day after NIR-PIT, when the NIR light was at a power density higher than 600 mW/cm 2 . Successful treatments at lower power density could be achieved if the total light energy absorbed by the tumor was the same, i.e. by extending the duration of light exposure. In conclusion, this study demonstrates that thermal injury after NIR-PIT can be avoided by either employing a cooling system or by lowering the power density of the light source and prolonging the exposure time such that the total energy is constant. Thus, thermal damage is preventable side effect of NIR-PIT.

  9. Comprehensive study of solid pharmaceutical tablets in visible, near infrared (NIR), and longwave infrared (LWIR) spectral regions using a rapid simultaneous ultraviolet/visible/NIR (UVN) + LWIR laser-induced breakdown spectroscopy linear arrays detection system and a fast acousto-optic tunable filter NIR spectrometer. (United States)

    Yang, Clayton S C; Jin, Feng; Swaminathan, Siva R; Patel, Sita; Ramer, Evan D; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Samuels, Alan C


    This is the first report of a simultaneous ultraviolet/visible/NIR and longwave infrared laser-induced breakdown spectroscopy (UVN + LWIR LIBS) measurement. In our attempt to study the feasibility of combining the newly developed rapid LWIR LIBS linear array detection system to existing rapid analytical techniques for a wide range of chemical analysis applications, two different solid pharmaceutical tablets, Tylenol arthritis pain and Bufferin, were studied using both a recently designed simultaneous UVN + LWIR LIBS detection system and a fast AOTF NIR (1200 to 2200 nm) spectrometer. Every simultaneous UVN + LWIR LIBS emission spectrum in this work was initiated by one single laser pulse-induced micro-plasma in the ambient air atmosphere. Distinct atomic and molecular LIBS emission signatures of the target compounds measured simultaneously in UVN (200 to 1100 nm) and LWIR (5.6 to 10 µm) spectral regions are readily detected and identified without the need to employ complex data processing. In depth profiling studies of these two pharmaceutical tablets without any sample preparation, one can easily monitor the transition of the dominant LWIR emission signatures from coating ingredients gradually to the pharmaceutical ingredients underneath the coating. The observed LWIR LIBS emission signatures provide complementary molecular information to the UVN LIBS signatures, thus adding robustness to identification procedures. LIBS techniques are more surface specific while NIR spectroscopy has the capability to probe more bulk materials with its greater penetration depth. Both UVN + LWIR LIBS and NIR absorption spectroscopy have shown the capabilities of acquiring useful target analyte spectral signatures in comparable short time scales. The addition of a rapid LWIR spectroscopic probe to these widely used optical analytical methods, such as NIR spectroscopy and UVN LIBS, may greatly enhance the capability and accuracy of the combined system for a comprehensive analysis.

  10. Medical applications of VIS/NIR spectroscopy of human tissue surfaces by a novel portable instrumentation (United States)

    Otto, Thomas; Stock, Volker; Schmidt, Wolf-Dieter; Liebold, Kristin; Fassler, Dieter; Wollina, Uwe; Fritzsch, Uwe; Gessner, Thomas


    In medical diagnostics, non invasive optical techniques will become common at a variety of applications because they contribute to objectivity and precision. The spectral properties of human tissue are an important field of interest. They offer opportunities of detection of skin diseases and of evaluation of chronic wounds. In the visible range, the hemoglobin absorption corresponds to blood microcirculation and the melanin absorption to the skin-type. Two types of diode-array equipment will be described: a combined VIS-NIR spectrometer system from J&M Aalen/Germany (400 nm to 1600 nm) and a stand-alone spectrometer from COLOUR CONTROL Farbmesstechnik Chemnitz/Germany (400 nm to 1000 nm). Non-contacting sensing is essential for investigating chronic wounds (no disturbances of blood microcirculation by contact pressure). The spectroscopic VIS-NIR readings of chronic wounds mainly depend on the absorption of hemoglobin and water. Multivariate analysis was applied for an objective spectral classification of eight different wound scores. Some results regarding spectral measurements of wounds and skin will be discussed. The spectrometer of COLOUR CONTROL was tested in dental surgery. To select dentures, its color has to be determined exactly to meet beauty culture demands. Color determination by dentist is not sufficient enough because of possible metameric effects of illumination. Results of spectral evaluation of denture material and human teeth will be given. Medical examination requires portable and ease equipment suitable for precise measurements. This is solved by a modular measurement system comprising microcomputer, display, light source, fiber probe, and diode-array spectrometer. It is efficient to process primary spectral data to appropriate medical interpretations.


    National Aeronautics and Space Administration — This dataset includes average near-infrared (NIR) reflectance spectra for 68 main-belt asteroids that were observed at the NASA Infrared Telescope Facility (IRTF),...

  12. Identification of transgenic foods using NIR spectroscopy: A review (United States)

    Alishahi, A.; Farahmand, H.; Prieto, N.; Cozzolino, D.


    The utilization of chemometric methods in the quantitative and qualitative analysis of feeds, foods, medicine and so on has been accompanied with the great evolution in the progress and in the near infrared spectroscopy (NIRS). Hence, recently the application of NIR spectroscopy has extended on the context of genetics and transgenic products. The aim of this review was to investigate the application of NIR spectroscopy to identificate transgenic products and to compare it with the traditional methods. The results of copious researches showed that the application of NIRS technology was successful to distinguish transgenic foods and it has advantages such as fast, avoiding time-consuming, non-destructive and low cost in relation to the antecedent methods such as PCR and ELISA.

  13. HAYABUSA NIRS RAW SPECTRA V1.0 (United States)

    National Aeronautics and Space Administration — This data set includes the 117,937 raw spectra returned by the Near-Infrared Spectrometer (NIRS) of the Hayabusa mission. The targets include the asteroid 25143...

  14. NIRS Characterization of Paper Pulps to Predict Kappa Number

    Directory of Open Access Journals (Sweden)

    Ana Moral


    Full Text Available Rice is one of the most abundant food crops in the world and its straw stands as an important source of fibres both from an economic and an environmental point of view. Pulp characterization is of special relevance in works involving alternative raw materials, since pulp properties are closely linked to the quality of the final product. One of the analytical techniques that can be used in pulp characterization is near-infrared spectroscopy (NIRS. The use of NIRS has economic and technical advantages over conventional techniques. This paper aims to discuss the convenience of using NIRS to predict Kappa number in rice straw pulps produced under different conditions. We found that the resulting Kappa number can be acceptably estimated by NIRS, as the errors obtained with that method are similar to those found for other techniques.

  15. Gold nanoflowers with mesoporous silica as “nanocarriers” for drug release and photothermal therapy in the treatment of oral cancer using near-infrared (NIR) laser light

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wenzhi; Gong, Junxia [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Wang, Yuqian [Jilin University, China-Japan Union Hospital, Scientific Research Center (China); Zhang, Yan [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Zhang, Hongmei [Jilin University, China-Japan Union Hospital, Scientific Research Center (China); Zhang, Weihang; Zhang, Hu; Liu, Xin; Zhang, Tianfu [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Yin, Wanzhong, E-mail: [First Clinical Hospital of Jilin University, Department of Otorhinolaryngology (China); Yang, Wensheng, E-mail: [College of Chemistry, The Key Laboratory of Surface and Interface Chemistry of Jilin Province (China)


    In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO{sub 2}) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO{sub 2}@mSiO{sub 2}), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150–200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO{sub 2} and AuNFs@SiO{sub 2}@mSiO{sub 2} exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.

  16. <strong>PRAYER INDUCED ANALGESIAstrong>

    DEFF Research Database (Denmark)

    Jegindø, Else-Marie Elmholdt

    moderators (personality, absorption and coping) and mediators (expectations, desire for pain relief and anxiety) were included in the study design in order to explore the influence of psychological mechanisms involved in the potential analgesic effect of prayer as a coping strategy. RESULTS: TBA (it...

  17. Toward Adaptation of fNIRS Instrumentation to Airborne Environments (United States)

    Adamovsky, Grigory; Mackey, Jeffrey; Harrivel, Angela; Hearn, Tristan; Floyd, Bertram


    The paper reviews potential applications of functional Near-Infrared Spectroscopy (fNIRS), a well-known medical diagnostic technique, to monitoring the cognitive state of pilots with a focus on identifying ways to adopt this technique to airborne environments. We also discuss various fNIRS techniques and the direction of technology maturation of associated hardware in view of their potential for miniaturization, maximization of data collection capabilities, and user friendliness.

  18. Preliminary study of muscle contraction assessment by NIR spectroscopy (United States)

    Gelmetti, Andrea; Giardini, Mario E.; Lago, Paolo; Pavesi, Roberta; Zambarbieri, Daniela; Maestri, R.; Felicetti, G.


    NIR spectroscopy allows monitoring of muscle oxygenation and perfusion during contraction. The knowledge of modifications of blood characteristics in body tissues has relevant clinical interest. A compact and reliable device, which makes use of two laser diodes at 750 and 810 nm coupled with the skin surface through optical fibers, was tested. NIR and surface EMG signals during isokinetic contractions were studied. A set of parameters was analyzed in order to obtain information about metabolic modifications during muscle fatigue.

  19. Concurrent MR-NIR Imaging for Breast Cancer Diagnosis (United States)


    fibroadenoma , which corresponds to a mass estimated to be 1–2 cm in diameter within a breast of 9 cm diameter located at 6–7 o’clock. Second case (case 2) is...AD_________________ Award Number: W81XWH-04-1-0559 TITLE: Concurrent MR-NIR Imaging for Breast ...CONTRACT NUMBER Concurrent MR-NIR Imaging for Breast Cancer Diagnosis 5b. GRANT NUMBER W81XWH-04-1-0559 5c. PROGRAM ELEMENT NUMBER 6

  20. Compensation techniques in NIRS proton beam radiotherapy

    International Nuclear Information System (INIS)

    Akanuma, A.; Majima, H.; Furukawa, S.


    Proton beam has the dose distribution advantage in radiation therapy, although it has little advantage in biological effects. One of the best advantages is its sharp fall off of dose after the peak. With proton beam, therefore, the dose can be given just to cover a target volume and potentially no dose is delivered thereafter in the beam direction. To utilize this advantage, bolus techniques in conjunction with CT scanning are employed in NIRS proton beam radiation therapy planning. A patient receives CT scanning first so that the target volume can be clearly marked and the radiation direction and fixation method can be determined. At the same time bolus dimensions are calculated. The bolus frames are made with dental paraffin sheets according to the dimensions. The paraffin frame is replaced with dental resin. Alginate (a dental impression material with favorable physical density and skin surface contact) is now employed for the bolus material. With fixation device and bolus on, which are constructed individually, the patient receives CT scanning again prior to a proton beam treatment in order to prove the devices are suitable. Alginate has to be poured into the frame right before each treatments. Further investigations are required to find better bolus materials and easier construction methods

  1. Compensation techniques in NIRS proton beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Akanuma, A. (Univ. of Tokyo, Japan); Majima, H.; Furukawa, S.


    Proton beam has the dose distribution advantage in radiation therapy, although it has little advantage in biological effects. One of the best advantages is its sharp fall off of dose after the peak. With proton beam, therefore, the dose can be given just to cover a target volume and potentially no dose is delivered thereafter in the beam direction. To utilize this advantage, bolus techniques in conjunction with CT scanning are employed in NIRS proton beam radiation therapy planning. A patient receives CT scanning first so that the target volume can be clearly marked and the radiation direction and fixation method can be determined. At the same time bolus dimensions are calculated. The bolus frames are made with dental paraffin sheets according to the dimensions. The paraffin frame is replaced with dental resin. Alginate (a dental impression material with favorable physical density and skin surface contact) is now employed for the bolus material. With fixation device and bolus on, which are constructed individually, the patient receives CT scanning again prior to a proton beam treatment in order to prove the devices are suitable. Alginate has to be poured into the frame right before each treatments. Further investigations are required to find better bolus materials and easier construction methods.

  2. SHARK-NIR system design analysis overview (United States)

    Viotto, Valentina; Farinato, Jacopo; Greggio, Davide; Vassallo, Daniele; Carolo, Elena; Baruffolo, Andrea; Bergomi, Maria; Carlotti, Alexis; De Pascale, Marco; D'Orazi, Valentina; Fantinel, Daniela; Magrin, Demetrio; Marafatto, Luca; Mohr, Lars; Ragazzoni, Roberto; Salasnich, Bernardo; Verinaud, Christophe


    In this paper, we present an overview of the System Design Analysis carried on for SHARK-NIR, the coronagraphic camera designed to take advantage of the outstanding performance that can be obtained with the FLAO facility at the LBT, in the near infrared regime. Born as a fast-track project, the system now foresees both coronagraphic direct imaging and spectroscopic observing mode, together with a first order wavefront correction tool. The analysis we here report includes several trade-offs for the selection of the baseline design, in terms of optical and mechanical engineering, and the choice of the coronagraphic techniques to be implemented, to satisfy both the main scientific drivers and the technical requirements set at the level of the telescope. Further care has been taken on the possible exploitation of the synergy with other LBT instrumentation, like LBTI. A set of system specifications is then flown down from the upper level requirements to finally ensure the fulfillment of the science drivers. The preliminary performance budgets are presented, both in terms of the main optical planes stability and of the image quality, including the contributions of the main error sources in different observing modes.

  3. Novel INHAT repressor (NIR) is required for early lymphocyte development. (United States)

    Ma, Chi A; Pusso, Antonia; Wu, Liming; Zhao, Yongge; Hoffmann, Victoria; Notarangelo, Luigi D; Fowlkes, B J; Jain, Ashish


    Novel inhibitor of histone acetyltransferase repressor (NIR) is a transcriptional corepressor with inhibitor of histone acetyltransferase activity and is a potent suppressor of p53. Although NIR deficiency in mice leads to early embryonic lethality, lymphoid-restricted deletion resulted in the absence of double-positive CD4(+)CD8(+) thymocytes, whereas bone-marrow-derived B cells were arrested at the B220(+)CD19(-) pro-B-cell stage. V(D)J recombination was preserved in NIR-deficient DN3 double-negative thymocytes, suggesting that NIR does not affect p53 function in response to physiologic DNA breaks. Nevertheless, the combined deficiency of NIR and p53 provided rescue of DN3L double-negative thymocytes and their further differentiation to double- and single-positive thymocytes, whereas B cells in the marrow further developed to the B220(+)CD19(+) pro-B-cell stage. Our results show that NIR cooperate with p53 to impose checkpoint for the generation of mature B and T lymphocytes.

  4. Convolutional Sparse Coding for RGB+NIR Imaging. (United States)

    Hu, Xuemei; Heide, Felix; Dai, Qionghai; Wetzstein, Gordon


    Emerging sensor designs increasingly rely on novel color filter arrays (CFAs) to sample the incident spectrum in unconventional ways. In particular, capturing a near-infrared (NIR) channel along with conventional RGB color is an exciting new imaging modality. RGB+NIR sensing has broad applications in computational photography, such as low-light denoising, it has applications in computer vision, such as facial recognition and tracking, and it paves the way toward low-cost single-sensor RGB and depth imaging using structured illumination. However, cost-effective commercial CFAs suffer from severe spectral cross talk. This cross talk represents a major challenge in high-quality RGB+NIR imaging, rendering existing spatially multiplexed sensor designs impractical. In this work, we introduce a new approach to RGB+NIR image reconstruction using learned convolutional sparse priors. We demonstrate high-quality color and NIR imaging for challenging scenes, even including high-frequency structured NIR illumination. The effectiveness of the proposed method is validated on a large data set of experimental captures, and simulated benchmark results which demonstrate that this work achieves unprecedented reconstruction quality.

  5. Epoch making NIRS studies seen through citation trends

    International Nuclear Information System (INIS)

    Dan, Ippeita


    Near-infrared spectroscopy (NIRS) studies through citation trends are investigated of literature concerning only the brain function measurement and its methodology together with NIRS principle, technological development, present state and future view. Investigation is conducted firstly for the survey of important author name of those concerned papers in Web of Science and Google Scholar with search words of NIRS, brain and optical topography as an option. Second, >100 papers of those authors citing any of them are picked up and their papers are ranked in accordance with Web of Science citation number, of which top-nineteen are presented here. Impact and epoch making papers are reviewed with explanations of: the establishment of measuring technology of cerebral blood flow change and subsequent brain function by NIRS; development with multi-channel detection; simultaneous measurement with other imaging modalities; examination of NIRS validity; spatial analysis of NIRS; and measurement of brain function. The highest times of citation are 1,238 of the paper by F. F. Jobsis in 'Science' (1977). It should be noted that 10 of top 19 papers are those by Japanese authors. However, review articles omitted in the present literature survey are mostly described by foreign authors: an effort to systemize the concerned fields might be required in this country. (K.T.)

  6. NIRS-Based Hyperscanning Reveals Inter-brain Neural Synchronization during Cooperative Jenga Game with Face-to-Face Communication. (United States)

    Liu, Ning; Mok, Charis; Witt, Emily E; Pradhan, Anjali H; Chen, Jingyuan E; Reiss, Allan L


    Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying social cognition. In particular, fNIRS permits simultaneous measurement of hemodynamic activity in two or more individuals interacting in a naturalistic setting. Here, we used fNIRS hyperscanning to study social cognition and communication in human dyads engaged in cooperative and obstructive interaction while they played the game of Jenga™. Novel methods were developed to identify synchronized channels for each dyad and a structural node-based spatial registration approach was utilized for inter-dyad analyses. Strong inter-brain neural synchrony (INS) was observed in the posterior region of the right middle and superior frontal gyrus, in particular Brodmann area 8 (BA8), during cooperative and obstructive interaction. This synchrony was not observed during the parallel game play condition and the dialog section, suggesting that BA8 was involved in goal-oriented social interaction such as complex interactive movements and social decision-making. INS was also observed in the dorsomedial prefrontal cortex (dmPFC), in particular Brodmann 9, during cooperative interaction only. These additional findings suggest that BA9 may be particularly engaged when theory-of-mind (ToM) is required for cooperative social interaction. The new methods described here have the potential to significantly extend fNIRS applications to social cognitive research.

  7. Automatic moisture content determination on biomass with NIR and radio frequency spectroscopy; Automatisk fukthaltsmaetning paa biobraenslen med NIR samt radiofrekvent spektroskopi

    Energy Technology Data Exchange (ETDEWEB)

    Dahlquist, Erik; Nystroem, Jenny; Thorin, Eva; Paz, Ana de la [Maelardalen Univ. (Sweden). Dept. of Public Technology; Axrup, Lars [Stora Enso AB (Sweden)


    The goal with the project has been to evaluate two methods for determination of moisture content in biomass fuels and to determine if these methods can be used in practice in connection with delivery control of biomass at power plants. Tests have been performed with different biomass qualities and with two different measurement methods within a large moisture span, 0.6-72%. The two methods have been NIR (Near Infrared spectroscopy), and RF (Radio Frequency spectroscopy). The NIR-method is a surface analysis method, where hydro-carbons like wood have a different absorption pattern than water. The RF-method is a bulk method and utilizes that wood and water have different dielectric constants. Radio waves thus are affected differently by transportation through wet and dry biomass. In this project we have studied how representative sampling can be achieved from a large volume of delivered biomass fuel. We also have performed calibration with mixtures of the different fuels. Sampling has been performed by extracting biomass in a four meter long screw from the large volume as it is poured into a storage vessel. A conveyor belt is then transporting the material to the measurement systems. Two different NIR-instruments, DA (Diod Array) -NIR respective FT (Fourier Transform)- NIR, were placed above the conveyor belt. The material was collected from the belt into the measuring vessel for the RF, a 200 liter 'oil barrel'. The radio waves were sent from the transceiver into the sample from above without direct contact between the biomass and the transceiver antenna. Six different fuels were studied separately. Calibration was performed where the moisture content was varied by mixing relatively dry fuel with humidified biomass in different proportions a day before the measurements. Samples were taken from each mixture in connection with the measurements, from the conveyor belt. The samples were made in such a way that they represented the whole volume as good as

  8. Assessment of Transition Element Speciation in Glasses Using a Portable Transmission Ultraviolet-Visible-Near-Infrared (UV-Vis-NIR) Spectrometer. (United States)

    Hunault, Myrtille; Lelong, Gérald; Gauthier, Michel; Gélébart, Frédéric; Ismael, Saindou; Galoisy, Laurence; Bauchau, Fanny; Loisel, Claudine; Calas, Georges


    A new low-cost experimental setup based on two compact dispersive optical spectrometers has been developed to measure optical absorption transmission spectra over the 350-2500 nm energy range. We demonstrate how near-infrared (NIR) data are essential to identify the coloring species in addition to ultraviolet visible data. After calibration with reference glasses, the use of an original sample stage that maintains the window panel in the vertical position enables the comparison of ancient and modern glasses embedded in a panel from the Sainte-Chapelle of Paris, without any sampling. The spectral resolution enables to observe fine resonances arising in the absorption bands of Cr(3+), and the complementary information obtained in the NIR enables to determine the contribution of Fe(2+), a key indicator of glassmaking conditions. © The Author(s) 2016.

  9. Ultrasonic absorption in solid specimens

    International Nuclear Information System (INIS)

    Siwabessy, P.J. W.; Stewart, G.A.


    As part of a project to measure the absorption of high frequency (50 - 500 kHz) sonar signals in warm sea-water, a laboratory apparatus has been constructed and tested against room temperature distilled water and various solutions of MgSO 4 (chemical relaxation of MgSO 4 is the major contribution to absorption below 200 kHz). The technique involves monitoring the decay of an acoustic signal for different sizes of vessels of water suspended in an evacuated chamber. So far, all containing vessels used have been spherical in shape. Extrapolation of the results to infinite volume yields the absorption due to the water alone. In order to accommodate variations in temperature and pressure, and to make the system more robust (e.g. for ship deck usage), it is desirable to employ stainless steel vessels. However, it was found that the quality of the data was greatly improved when pyrex glass spheres were used. The stainless steel spheres were manufactured by welding together mechanically spun hemispheres. The linear frequency dependence characteristic of acoustic absorption in solids was observed (in contrast to the quadratic frequency dependence of acoustic absorption in water), and the acoustic absorption was found to depend strongly on the thermal history of the steel

  10. Design and Functionalization of the NIR-Responsive Photothermal Semiconductor Nanomaterials for Cancer Theranostics. (United States)

    Huang, Xiaojuan; Zhang, Wenlong; Guan, Guoqiang; Song, Guosheng; Zou, Rujia; Hu, Junqing


    Despite the development of medical technology, cancer still remains a great threat to the survival of people all over the world. Photothermal therapy (PTT) is a minimally invasive method for selective photothermal ablation of cancer cells without damages to normal cells. Recently, copper chalcogenide semiconductors have emerged as a promising photothermal agent attributed to strong absorbance in the near-infrared (NIR) region and high photothermal conversion efficiency. An earlier study witnessed a rapid increase in their development for cancer therapy, including CuS, Cu 2-x Se and CuTe nanocrystals. However, a barrier is that the minimum laser power intensity for effective PTT is still significantly higher than the conservative limit for human skin exposure. Improving the photothermal conversion efficiency and reducing the laser power density has become a direction for the development of PTT. Furthermore, in an effort to improve the therapeutic efficacy, many multimode therapeutic nanostuctures have been formulated by integrating the photothermal agents with antitumor drugs, photosensitizers, or radiosensitizers, resulting in a synergistic effect. Various functional materials also have been absorbed, attached, encapsulated, or coated on the photothermal nanostructures, including fluorescence, computed tomography, magnetic resonance imaging, realizing cancer diagnosis, tumor location, site-specific therapy, and evaluation of therapeutic responses via incorporation of diagnosis and treatment. In this Account, we present an overview of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics with a focus on their design and functionalization based on our own work. Our group has developed a series of chalcogenides with greatly improved NIR photoabsorption as photothermal agents, allowing laser exposure within regulatory limits. We also investigated the photothermal bioapplications of hypotoxic oxides including WO 3-x , MoO 3-x , and RuO 2

  11. Sensitivity of fNIRS to cognitive state and load

    Directory of Open Access Journals (Sweden)

    Frank Anthony Fishburn


    Full Text Available Functional near-infrared spectroscopy (fNIRS is an emerging low-cost noninvasive neuroimaging technique that measures cortical bloodflow. While fNIRS has gained interest as a potential alternative to fMRI for use with clinical and pediatric populations, it remains unclear whether fNIRS has the necessary sensitivity to serve as a replacement for fMRI. The present study set out to examine whether fNIRS has the sensitivity to detect linear changes in activation and functional connectivity in response to cognitive load, and functional connectivity changes when transitioning from a task-free resting state to a task. Sixteen young adult subjects were scanned with a continuous-wave fNIRS system during a 10-minute resting-state scan followed by a letter n-back task with three load conditions. Five optical probes were placed over frontal and parietal cortices, covering bilateral dorsolateral PFC (dlPFC, bilateral ventrolateral PFC (vlPFC, frontopolar cortex (FP, and bilateral parietal cortex. Activation was found to scale linearly with working memory load in bilateral prefrontal cortex. Functional connectivity increased with increasing n-back loads for fronto-parietal, interhemispheric dlPFC, and local connections. Functional connectivity differed between the resting state scan and the n-back scan, with fronto-parietal connectivity greater during the n-back, and interhemispheric vlPFC connectivity greater during rest. These results demonstrate that fNIRS is sensitive to both cognitive load and state, suggesting that fNIRS is well-suited to explore the full complement of neuroimaging research questions and will serve as a viable alternative to fMRI.

  12. Rheo-optical two-dimensional (2D) near-infrared (NIR) correlation spectroscopy for probing strain-induced molecular chain deformation of annealed and quenched Nylon 6 films (United States)

    Shinzawa, Hideyuki; Mizukado, Junji


    A rheo-optical characterization technique based on the combination of a near-infrared (NIR) spectrometer and a tensile testing machine is presented here. In the rheo-optical NIR spectroscopy, tensile deformations are applied to polymers to induce displacement of ordered or disordered molecular chains. The molecular-level variation of the sample occurring on short time scales is readily captured as a form of strain-dependent NIR spectra by taking an advantage of an acousto-optic tunable filter (AOTF) equipped with the NIR spectrometer. In addition, the utilization of NIR with much less intense absorption makes it possible to measure transmittance spectra of relatively thick samples which are often required for conventional tensile testing. An illustrative example of the rheo-optical technique is given with annealed and quenched Nylon 6 samples to show how this technique can be utilized to derive more penetrating insight even from the seemingly simple polymers. The analysis of the sets of strain-dependent NIR spectra suggests the presence of polymer structures undergoing different variations during the tensile elongation. For instance, the tensile deformation of the semi-crystalline Nylon 6 involves a separate step of elongation of the rubbery amorphous chains and subsequent disintegration of the rigid crystalline structure. Excess amount of crystalline phase in Nylon 6, however, results in the retardation of the elastic deformation mainly achieved by the amorphous structure, which eventually leads to the simultaneous orientation of both amorphous and crystalline structures.

  13. Monitoring osteoarthritis progression using near infrared (NIR) spectroscopy. (United States)

    Afara, Isaac O; Prasadam, Indira; Arabshahi, Zohreh; Xiao, Yin; Oloyede, Adekunle


    We demonstrate in this study the potential of near infrared (NIR) spectroscopy as a tool for monitoring progression of cartilage degeneration in an animal model. Osteoarthritic degeneration was artificially induced in one joint in laboratory rats, and the animals were sacrificed at four time points: 1, 2, 4, and 6 weeks (3 animals/week). NIR spectra were acquired from both (injured and intact) knees. Subsequently, the joint samples were subjected to histological evaluation and glycosaminoglycan (GAG) content analysis, to assess disease severity based on the Mankin scoring system and to determine proteoglycan loss, respectively. Multivariate spectral techniques were then employed for classification (principal component analysis and support vector machines) and prediction (partial least squares regression) of the samples' Mankin scores and GAG content from their NIR spectra. Our results demonstrate that NIR spectroscopy is sensitive to degenerative changes in articular cartilage, and is capable of distinguishing between mild (weeks 1&2; Mankin 3) cartilage degeneration. In addition, the spectral data contains information that enables estimation of the tissue's Mankin score (error = 12.6%, R 2  = 86.2%) and GAG content (error = 7.6%, R 2  = 95%). We conclude that NIR spectroscopy is a viable tool for assessing cartilage degeneration post-injury, such as, post-traumatic osteoarthritis.

  14. Multipoint-NIR-measurements in pharmaceutical powder applications

    International Nuclear Information System (INIS)

    Heikkilae, A.


    In this paper, multipoint near-infrared (NIR) spectroscopy is used in studying particulate pharmaceutical ingredients and their mixing and granulation processes. Homogeneous mixing of active pharmaceutical ingredients with excipients is essential in getting the correct dosage in the tableting phase. The basic principles of NIR spectroscopy and the associated molecular vibrations are briefly reviewed in the beginning of the work, followed by a summary of typical applications of NIR spectroscopy. A multipoint NIR measurement system developed at VTT is presented in this work. It consists of a spectral camera with fiber-optic inputs, a fiber-optic light source and twelve fiber-optic probes. The performance of the system in the laboratory is thoroughly reported, including signal-to-noise ratio, stability and probe-to-probe variability. The system was also tested in a fluidized bed granulator at Helsinki University. Eight probes were attached in two rows into the granulator, and several granulations were run. The mixing period in the beginning of the granulation process was clearly visible, as well as the changes in the moisture level during liquid spraying and final drying. The study shows that multipoint NIR spectroscopy is a valuable tool in monitoring the granulation process. In particular, it gives information about the macroscopic homogeneity of the fluidized bed. (orig.)

  15. Multipoint-NIR-measurements in pharmaceutical powder applications

    Energy Technology Data Exchange (ETDEWEB)

    Heikkilae, A.


    In this paper, multipoint near-infrared (NIR) spectroscopy is used in studying particulate pharmaceutical ingredients and their mixing and granulation processes. Homogeneous mixing of active pharmaceutical ingredients with excipients is essential in getting the correct dosage in the tableting phase. The basic principles of NIR spectroscopy and the associated molecular vibrations are briefly reviewed in the beginning of the work, followed by a summary of typical applications of NIR spectroscopy. A multipoint NIR measurement system developed at VTT is presented in this work. It consists of a spectral camera with fiber-optic inputs, a fiber-optic light source and twelve fiber-optic probes. The performance of the system in the laboratory is thoroughly reported, including signal-to-noise ratio, stability and probe-to-probe variability. The system was also tested in a fluidized bed granulator at Helsinki University. Eight probes were attached in two rows into the granulator, and several granulations were run. The mixing period in the beginning of the granulation process was clearly visible, as well as the changes in the moisture level during liquid spraying and final drying. The study shows that multipoint NIR spectroscopy is a valuable tool in monitoring the granulation process. In particular, it gives information about the macroscopic homogeneity of the fluidized bed. (orig.)

  16. Absorption properties of identical atoms

    International Nuclear Information System (INIS)

    Sancho, Pedro


    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas. -- Highlights: •The absorption rates of a pair of identical atoms in product and (anti)symmetrized states are different. •The modifications of the optical properties are essentially determined by the overlapping between the atoms. •The absorption properties differ, in some cases, for bosons and fermions

  17. Integration of Absorption Feature Information from Visible to Longwave Infrared Spectral Ranges for Mineral Mapping

    Directory of Open Access Journals (Sweden)

    Veronika Kopačková


    Full Text Available Merging hyperspectral data from optical and thermal ranges allows a wider variety of minerals to be mapped and thus allows lithology to be mapped in a more complex way. In contrast, in most of the studies that have taken advantage of the data from the visible (VIS, near-infrared (NIR, shortwave infrared (SWIR and longwave infrared (LWIR spectral ranges, these different spectral ranges were analysed and interpreted separately. This limits the complexity of the final interpretation. In this study a presentation is made of how multiple absorption features, which are directly linked to the mineral composition and are present throughout the VIS, NIR, SWIR and LWIR ranges, can be automatically derived and, moreover, how these new datasets can be successfully used for mineral/lithology mapping. The biggest advantage of this approach is that it overcomes the issue of prior definition of endmembers, which is a requested routine employed in all widely used spectral mapping techniques. In this study, two different airborne image datasets were analysed, HyMap (VIS/NIR/SWIR image data and Airborne Hyperspectral Scanner (AHS, LWIR image data. Both datasets were acquired over the Sokolov lignite open-cast mines in the Czech Republic. It is further demonstrated that even in this case, when the absorption feature information derived from multispectral LWIR data is integrated with the absorption feature information derived from hyperspectral VIS/NIR/SWIR data, an important improvement in terms of more complex mineral mapping is achieved.

  18. Plasmonic nanostructure assisted HHG in NIR spectrum and thermal analysis (United States)

    Ebadian, H.; Mohebbi, M.


    We study plasmonic nanoparticle assisted high-order harmonic generation (HHG), illuminated by near infrared (NIR) laser sources, and the effect of the geometry of some different dimers on HHG cutoff frequency is evaluated. Dimers are installed on different dielectric substrates and the electric field enhancement factors are simulated. We demonstrate that NIR femto-fiber sources are good options for the HHG process. Such sources can induce significant inhomogeneous electric fields in the nanogaps; and consequently, high harmonic cutoff orders more than 250 will be obtained. Moreover, by time dependent thermal analysis of Au nanoparticles exposed to NIR ultrafast high power lasers, we could determine the temperature distribution in the nanoparticle and substrate.

  19. fNIRS-based brain-computer interfaces: a review. (United States)

    Naseer, Noman; Hong, Keum-Shik


    A brain-computer interface (BCI) is a communication system that allows the use of brain activity to control computers or other external devices. It can, by bypassing the peripheral nervous system, provide a means of communication for people suffering from severe motor disabilities or in a persistent vegetative state. In this paper, brain-signal generation tasks, noise removal methods, feature extraction/selection schemes, and classification techniques for fNIRS-based BCI are reviewed. The most common brain areas for fNIRS BCI are the primary motor cortex and the prefrontal cortex. In relation to the motor cortex, motor imagery tasks were preferred to motor execution tasks since possible proprioceptive feedback could be avoided. In relation to the prefrontal cortex, fNIRS showed a significant advantage due to no hair in detecting the cognitive tasks like mental arithmetic, music imagery, emotion induction, etc. In removing physiological noise in fNIRS data, band-pass filtering was mostly used. However, more advanced techniques like adaptive filtering, independent component analysis (ICA), multi optodes arrangement, etc. are being pursued to overcome the problem that a band-pass filter cannot be used when both brain and physiological signals occur within a close band. In extracting features related to the desired brain signal, the mean, variance, peak value, slope, skewness, and kurtosis of the noised-removed hemodynamic response were used. For classification, the linear discriminant analysis method provided simple but good performance among others: support vector machine (SVM), hidden Markov model (HMM), artificial neural network, etc. fNIRS will be more widely used to monitor the occurrence of neuro-plasticity after neuro-rehabilitation and neuro-stimulation. Technical breakthroughs in the future are expected via bundled-type probes, hybrid EEG-fNIRS BCI, and through the detection of initial dips.

  20. fNIRS-based brain-computer interfaces: a review

    Directory of Open Access Journals (Sweden)

    Noman eNaseer


    Full Text Available A brain-computer interface (BCI is a communication system that allows the use of brain activity to control computers or other external devices. It can, by bypassing the peripheral nervous system, provide a means of communication for people suffering from severe motor disabilities or in a persistent vegetative state. In this paper, brain-signal generation tasks, noise removal methods, feature extraction/selection schemes, and classification techniques for fNIRS-based BCI are reviewed. The most common brain areas for fNIRS BCI are the primary motor cortex and the prefrontal cortex. In relation to the motor cortex, motor imagery tasks were preferred to motor execution tasks since possible proprioceptive feedback could be avoided. In relation to the prefrontal cortex, fNIRS showed a significant advantage due to no hair in detecting the cognitive tasks like mental arithmetic, music imagery, emotion induction, etc. In removing physiological noise in fNIRS data, band-pass filtering was mostly used. However, more advanced techniques like adaptive filtering, independent component analysis, multi optodes arrangement, etc. are being pursued to overcome the problem that a band-pass filter cannot be used when both brain and physiological signals occur within a close band. In extracting features related to the desired brain signal, the mean, variance, peak value, slope, skewness, and kurtosis of the noised-removed hemodynamic response were used. For classification, the linear discriminant analysis method provided simple but good performance among others: support vector machine, hidden Markov model, artificial neural network, etc. fNIRS will be more widely used to monitor the occurrence of neuro-plasticity after neuro-rehabilitation and neuro-stimulation. Technical breakthroughs in the future are expected via bundled-type probes, hybrid EEG-fNIRS BCI, and through the detection of initial dips.

  1. [Advances of NIR spectroscopy technology applied in seed quality detection]. (United States)

    Zhu, Li-wei; Ma, Wen-guang; Hu, Jin; Zheng, Yun-ye; Tian, Yi-xin; Guan, Ya-jing; Hu, Wei-min


    Near infrared spectroscopy (NIRS) technology developed fast in recent years, due to its rapid speed, less pollution, high-efficiency and other advantages. It has been widely used in many fields such as food, chemical industry, pharmacy, agriculture and so on. The seed is the most basic and important agricultural capital goods, and seed quality is important for agricultural production. Most methods presently used for seed quality detecting were destructive, slow and needed pretreatment, therefore, developing one kind of method that is simple and rapid has great significance for seed quality testing. This article reviewed the application and trends of NIRS technology in testing of seed constituents, vigor, disease and insect pests etc. For moisture, starch, protein, fatty acid and carotene content, the model identification rates were high as their relative contents were high; for trace organic, the identification rates were low as their relative content were low. The heat-damaged seeds with low vigor were discriminated by NIRS, the seeds stored for different time could also been identified. The discrimination of frost-damaged seeds was impossible. The NIRS could be used to identify health and infected disease seeds, and did the classification for the health degree; it could identify parts of the fungal pathogens. The NIRS could identify worm-eaten and health seeds, and further distinguished the insect species, however the identification effects for small larval and low injury level of insect pests was not good enough. Finally, in present paper existing problems and development trends for NIRS in seed quality detection was discussed, especially the single seed detecting technology which was characteristic of the seed industry, the standardization of its spectral acquisition accessories will greatly improve its applicability.

  2. Important NIR brightening of the Blazar PKS1244-255 (United States)

    Carrasco, L.; Recillas, E.; Porras, A.; Escobedo, G.; Chavushyan, V.


    We report on NIR photometry of the flat spectrum radio source PKS1244-255, cross identified with the intermediate redshift quasar CGRaBSJ1246-2547 (z=0.633) and the Gamma-ray source 3FGL1246.7-2547, We observed the source in the NIR, finding that on January 27th, 2017 (MJD 2458145.970579) its fluxes corresponded to J = 13.895 +/- 0.03, H = 12.937 +/- 0.02 and Ks = 12.042 +/- 0.04.

  3. Dynamic Filtering Improves Attentional State Prediction with fNIRS (United States)

    Harrivel, Angela R.; Weissman, Daniel H.; Noll, Douglas C.; Huppert, Theodore; Peltier, Scott J.


    Brain activity can predict a person's level of engagement in an attentional task. However, estimates of brain activity are often confounded by measurement artifacts and systemic physiological noise. The optimal method for filtering this noise - thereby increasing such state prediction accuracy - remains unclear. To investigate this, we asked study participants to perform an attentional task while we monitored their brain activity with functional near infrared spectroscopy (fNIRS). We observed higher state prediction accuracy when noise in the fNIRS hemoglobin [Hb] signals was filtered with a non-stationary (adaptive) model as compared to static regression (84% +/- 6% versus 72% +/- 15%).

  4. Template-directed synthesis of linear porphyrin oligomers: classical, Vernier and mutual Vernier† †Electronic supplementary information (ESI) available: Synthesis and characterization of new compounds, ladder complexes, UV-vis-NIR titrations and binding data for reference compounds and for the formation of linear oligomer complexes, calculation of effective molarities, analytical GPC calibration and molar absorption coefficients. See DOI: 10.1039/c6sc05355f Click here for additional data file. (United States)

    Kamonsutthipaijit, Nuntaporn


    Three different types of template-directed syntheses of linear porphyrin oligomers are presented. In the classical approach the product has the same number of binding sites as the template, whereas in Vernier reactions the product has the lowest common multiple of the numbers of binding sites in the template and the building block. Mutual Vernier templating is like Vernier templating except that both strands of the Vernier complex undergo coupling simultaneously, so that it becomes impossible to say which is the ‘template’ and which is the ‘building block’. The template-directed synthesis of monodisperse linear oligomers is more difficult than that of cyclic oligomers, because the products of linear templating have reactive ends. All three types of templating are demonstrated here, and used to prepare a nickel(ii) porphyrin dodecamer with 4-pyridyl substituents on all twelve porphyrin units. The stabilities and cooperativities of the double-strand complexes involved in these reactions were investigated by UV-vis-NIR titration. The four-rung ladder duplex has a stability constant of about 2 × 1018 M–1 in dichloromethane at 298 K. PMID:28553508

  5. An examination of the principle of non-destructive flesh firmness measurement of peach fruit by using VIS-NIR spectroscopy

    Directory of Open Access Journals (Sweden)

    Yasuhiro Uwadaira


    Full Text Available Evaluating the maturity of peach fruit is desirable during both the preharvest and postharvest periods, and flesh firmness (FF is a representative maturity index. Although a non-destructive FF measurement technique using visible (VIS and near-infrared (NIR spectroscopy has been developed, the principle has been unclear. This study was conducted to examine the structure of the FF prediction model by comparing with that of the model for measuring water-soluble pectin (WSP content. Those two prediction models have the same information regions related to the colors of pericarp and mesocarp (chlorophyll and to a water band in the NIR region. Moreover, a statistical heterospectroscopy analysis between NIR and 1H nuclear magnetic resonance (NMR spectra suggests the possibility that absorptions of methanol and succinate as well as galacturonic acid embedded in a water band play important roles in predicting FF. This approach would enhance the reliability of nondestructive VIS-NIR prediction models in many practical situations.

  6. Acquisition of reproducible transmission near-infrared (NIR) spectra of solid samples with inconsistent shapes by irradiation with isotropically diffused radiation using polytetrafluoroethylene (PTFE) beads. (United States)

    Lee, Jinah; Duy, Pham Khac; Yoon, Jihye; Chung, Hoeil


    A bead-incorporated transmission scheme (BITS) has been demonstrated for collecting reproducible transmission near-infrared (NIR) spectra of samples with inconsistent shapes. Isotropically diffused NIR radiation was applied around a sample and the surrounding radiation was allowed to interact homogeneously with the sample for transmission measurement. Samples were packed in 1.40 mm polytetrafluoroethylene (PTFE) beads, ideal diffusers without NIR absorption, and then transmission spectra were collected by illuminating the sample-containing beads using NIR radiation. When collimated radiation was directly applied, a small portion of the non-fully diffused radiation (NFDR) propagated through the void space of the packing and eventually degraded the reproducibility. Pre-diffused radiation was introduced by placing an additional PTFE disk in front of the packing to diminish NFDR, which produced more reproducible spectral features. The proposed scheme was evaluated by analyzing two different solid samples: density determination for individual polyethylene (PE) pellets and identification of mining locality for tourmalines. Because spectral collection was reproducible, the use of the spectrum acquired from one PE pellet was sufficient to accurately determine the density of nine other pellets with different shapes. The differentiation of tourmalines, which are even more dissimilar in appearance, according to their mining locality was also feasible with the help of the scheme.

  7. A 980 nm laser-activated upconverted persistent probe for NIR-to-NIR rechargeable in vivo bioimaging. (United States)

    Xue, Zhenluan; Li, Xiaolong; Li, Youbin; Jiang, Mingyang; Ren, Guozhong; Liu, Hongrong; Zeng, Songjun; Hao, Jianhua


    Long-lasting persistent luminescent nanoparticles (PLNPs) with efficient near-infrared (NIR) emission have emerged as a new generation of probes for in vivo optical bioimaging owing to their advantages of zero-autofluorescence benefited from the self-sustained emission after excitation, deep penetration depth, and a high signal-to-noise ratio. However, most of the PLNPs are charged by ultraviolet (UV) or visible light, remarkably limiting their applications for in vivo long-term bioimaging. Here we demonstrate 980 nm laser activated upconversion-PLNPs (UC-PLNPs) with efficient NIR emission. The NIR-emitting UC-PLNPs (Zn 3 Ga 2 GeO 8 :Yb/Er/Cr) were synthesized by a sol-gel method with subsequent calcination. Owing to the efficient energy-transfer between Er and Cr ions, these UC-PLNPs present long-lasting up to 15 h NIR emission at 700 nm after the excitation of a 980 nm laser; in which both excitation and emission bands fall within the biological transparent window. The results of in vitro/in vivo toxicity assessments indicate that UC-PLNPs after surface modification present low biotoxicity and side effects in living animals. More importantly, the synthesized UC-PLNPs can be effectively recharged by 980 nm laser to restore in vivo persistent bioimaging signals and can also be employed as nanoprobes for in vivo UC optical bioimaging. This is the first demonstration of rechargeable UC-PLNPs for NIR-to-NIR in vivo bioimaging. We believe that the synthesized UC-PLNPs by combining UC and persistent luminescence properties into a single host may have potential applications in the bioimaging area and pave the way for widely using PLNPs for in vivo renewable long-lasting bioimaging.

  8. A NIR phosphorescent osmium(ii) complex as a lysosome tracking reagent and photodynamic therapeutic agent. (United States)

    Zhang, Pingyu; Wang, Yi; Qiu, Kangqiang; Zhao, Zhiqian; Hu, Rentao; He, Chuanxin; Zhang, Qianling; Chao, Hui


    A novel near infrared (NIR) phosphorescent osmium complex (Os1) was developed for lysosome tracking and photodynamic therapy. Owing to its NIR photophysical properties, cellular imaging ability and phototoxicity, it has advantages over its ruthenium analogue (Ru1).

  9. Ternary blend of conjugated polymers for broadening the absorption bandwidth of polymer solar cells


    Benten, Hiroaki; Nishida, Takaya; Mori, Daisuke; Ohkita, Hideo; Ito, Shinzaburo


    Ternary blend all-polymer solar cells are developed to broaden the absorption bandwidth of the photoactive layer. A wide-bandgap polymer with absorption in the visible region is introduced as a third polymer into a low-bandgap donor/acceptor binary polymer blend showing absorption in the near-infrared (NIR) region. In the ternary blend solar cell, the external quantum efficiency (EQE) is improved in the visible wavelength region, while retaining the excellent EQE of the host binary blend in t...

  10. DSC, FT-IR, NIR, NIR-PCA and NIR-ANOVA for determination of chemical stability of diuretic drugs: impact of excipients

    Directory of Open Access Journals (Sweden)

    Gumieniczek Anna


    Full Text Available It is well known that drugs can directly react with excipients. In addition, excipients can be a source of impurities that either directly react with drugs or catalyze their degradation. Thus, binary mixtures of three diuretics, torasemide, furosemide and amiloride with different excipients, i.e. citric acid anhydrous, povidone K25 (PVP, magnesium stearate (Mg stearate, lactose, D-mannitol, glycine, calcium hydrogen phosphate anhydrous (CaHPO4 and starch, were examined to detect interactions. High temperature and humidity or UV/VIS irradiation were applied as stressing conditions. Differential scanning calorimetry (DSC, FT-IR and NIR were used to adequately collect information. In addition, chemometric assessments of NIR signals with principal component analysis (PCA and ANOVA were applied.

  11. NIR fluorescence spectroscopic investigations of Er{sup 3+}-ions doped borate based tellurium calcium zinc niobium oxide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, O. [Department of Instrumentation, Sri Venkateswara University, Tirupati 517502 (India); Dhoble, S.J. [Department of Physics, RTM Nagpur University, Nagpur 440033 (India); Ramesh, B.; Devarajulu, G. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Reddy, C. Madhukar [Department of Physics, AP Model School, Yerravaripalem 517194 (India); Linganna, K. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Reddy, G. Rajasekhar [Department of Instrumentation, Sri Venkateswara University, Tirupati 517502 (India); Raju, B. Deva Prasad, E-mail: [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Department of Future Studies, Sri Venkateswara University, Tirupati 517502 (India)


    A series of Er{sup 3+} ions doped tellurium calcium zinc niobium borate glasses were prepared by the melt quenching technique. The prepared samples were investigated by optical absorption and near infrared fluorescence spectroscopic studies. The obtained Judd–Ofelt intensity parameters Ω{sub λ} (λ=2, 4 and 6) were determined through experimental and calculated oscillator strengths obtained from absorption spectra and their results are studied and compared with reported literature. The stark-level energies of {sup 4}I{sub 13/2} excited and {sup 4}I{sub 15/2} ground states were evaluated by using both the absorption and emission measurements. The effect of Er{sup 3+} ion concentration on the emission intensity of {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} transition was discussed. Intense and broad 1.53 µm infrared fluorescence is observed at 980 nm diode laser excitation. Photoluminescence (PL) and its decay behavior studies were carried out for the transition {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} at 1.53 µm emission. The broad emission together with higher values of the bandwidth (81 nm), stimulated emission cross-section (32.25×10{sup −22} cm{sup 2}) and lifetime (530 µs for 1.0 mol% of Er{sup 3+}) of level {sup 4}I{sub 13/2} make these glasses attractive for broadband amplifiers. From the analysis of spectroscopic data, the present glass is a prospective photonic material for practical applications in the visible and NIR region. - Highlights: • In this study we prepared TCZNB glasses doped with Er{sup 3+} ions. • Glasses are characterized with absorption, emission and lifetime analysis. • Judd–Ofelt theory is used to calculate radiative properties. • TCZNB glasses could be used as NIR lasers.

  12. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.


    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  13. Rare-Earth-Based Nanoparticles with Simultaneously Enhanced Near-Infrared (NIR)-Visible (Vis) and NIR-NIR Dual-Conversion Luminescence for Multimodal Imaging. (United States)

    Ma, Dandan; Xu, Xiang; Hu, Min; Wang, Jing; Zhang, Zhenxi; Yang, Jian; Meng, Lingjie


    Multifunctional NaGdF4 :Yb(3+),Er(3+),Nd(3+) @NaGdF4 :Nd(3+) core-shell nanoparticles (called Gd:Yb(3+),Er(3+),Nd(3+) @Gd:Nd(3+) NPs) with simultaneously enhanced near-infrared (NIR)-visible (Vis) and NIR-NIR dual-conversion (up and down) luminescence (UCL/DCL) properties were successfully synthesized. The resulting core-shell NPs simultaneously emitted enhanced UCL at 522, 540, and 660 nm and DCL at 980 and 1060 nm under the excitation of a 793 nm laser. The enhanced UCL and DCL can be explained by complex energy-transfer processes, Nd(3+) →Yb(3+) →Er(3+) and Nd(3+) →Yb(3+) , respectively. The effects of Nd(3+) concentration and shell thickness on the UCL/DCL properties were systematically investigated. The UCL and DCL properties of NPs were observed under the optimal conditions: a shell Nd(3+) content of 20 % and a shell thickness of approximately 5 nm. Moreover, the Gd:Yb(3+) ,Er(3+) ,Nd(3+) @Gd:20 % Nd(3+) NPs exhibited remarkable magnetic resonance imaging (MRI) properties similar to that of a clinical agent, Omniscan. Thus, the core-shell NPs with excellent UCL/DCL/magnetic resonance imaging (MRI) properties have great potential for both in vitro and in vivo multimodal bioimaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Evaluation of combined near-IR spectroscopic (NIRS)-IVUS imaging as a means to detect lipid-rich plaque burden in human coronary autopsy specimens (United States)

    Su, Jimmy L.; Grainger, Stephanie J.; Greiner, Cherry A.; Hendricks, Michael J.; Goode, Meghan M.; Saybolt, Matthew D.; Wilensky, Robert L.; Madden, Sean P.; Muller, James E.


    Intracoronary near-infrared spectroscopy (NIRS) can identify lipid in the coronary arteries, but lacks depth resolution. A novel catheter is currently in clinical use that combines NIRS with intravascular ultrasound (IVUS), which provides depth-resolved structural information via the IVUS modality. A measure designated as lipid-rich plaque burden (LRPB) has been proposed as a means to interpret the combined acoustic and optical information of NIRS-IVUS. LRPB is defined as the area created by the intersection of the NIRS lipid-rich arc with the corresponding IVUS-measured plaque burden. We determined the correlation in human coronary autopsy specimens between LRPB, a measure of lipid presence and extent available via intravascular imaging in patients, and the area of lipid-rich plaque as determined by the gold-standard of histology. Fifteen artery segments from 8 human autopsy hearts were imaged with the NIRS-IVUS system (TVC Imaging System, Infraredx Inc., Burlington, MA). Arteries were imaged in a specialty fixture that assured accurate co-registration between imaging and histology. The arteries were then fixed and divided into 2 mm blocks for histological staining. Pathological contouring of lipid-rich areas was performed on the stained thin sections for 54 lipid-rich blocks. Computation of LRPB was performed on transverse NIRS-IVUS frames corresponding to the histologic sections. The quantified LRPB was frequently higher than the lipid-rich plaque area determined by histology, because the region denoted by the EEL and lumen within the NIRS lipid-rich arc is not entirely comprised of lipid. Overall, a moderate to strong correlation (R = 0.73) was found between LRPB determined by NIRS-IVUS imaging and the lipid-rich plaque area determined by histology. LRPB, which can be measured in patients with NIRS-IVUS imaging, corresponds to the amount of lipid-rich plaque in a coronary artery. LRPB should be evaluated in prospective clinical trials for its ability to

  15. VIS/NIR imaging application for honey floral origin determination

    NARCIS (Netherlands)

    Minaei, Saeid; Shafiee, Sahameh; Polder, Gerrit; Moghadam-Charkari, Nasrolah; Ruth, van Saskia; Barzegar, Mohsen; Zahiri, Javad; Alewijn, Martin; Kuś, Piotr M.


    Nondestructive methods are of utmost importance for honey characterization. This study investigates the potential application of VIS-NIR hyperspectral imaging for detection of honey flower origin using machine learning techniques. Hyperspectral images of 52 honey samples were taken in

  16. NIR monitoring of in-service wood structures (United States)

    Michela Zanetti; Timothy G. Rials; Douglas Rammer


    Near infrared spectroscopy (NIRS) was used to study a set of Southern Yellow Pine boards exposed to natural weathering for different periods of exposure time. This non-destructive spectroscopic technique is a very powerful tool to predict the weathering of wood when used in combination with multivariate analysis (Principal Component Analysis, PCA, and Projection to...

  17. The recent NIR Flare of the Blazar 3C279 (United States)

    Carrasco, L.; Recillas, E.; Porras, A.; Escobedo, G.; Chavushyan, V.


    In our monitoring campaign of AGNs we found the Blazar 3C279 flaring in the NIR on January 27th,2018. this source is cross identified with the quasar HB891253-055 and the Gamma-ray source 3FGLJ1256.1-054.

  18. NIR Flare of radio source GB60713+5738 (United States)

    Carrasco, L.; Porras, A.; Recillas, E.; Chavushyan, V.


    In ATel#11331, we reported the NIR detection of the radio source GB60713+5738 and the suggestion of it being in flaring state. However, we found a previous observation in our archive that fully confirms a recent giant flare of this object.

  19. Greenhouse with a CPV system and NIR reflecting lamellae

    NARCIS (Netherlands)

    H.J.J. Janssen; B.A.J. van Tuijl; Gert-Jan Swinkels; Piet Sonneveld; G.P.A. Bot


    In previous research a new type of greenhouse with an integrated concentrated photovoltaic system (CPV) was developed based on a circular covering geometry and an integrated filter for reflecting the near infrared radiation (NIR) of the greenhouse and exploiting this radiation in a solar energy

  20. Design of a NIR concentrator system integrated in a greenhouse

    NARCIS (Netherlands)

    Piet Sonneveld; Gert-Jan Swinkels; H.J.J. Janssen; B.A.J. van Tuijl


    In this paper the design and development of a new type of greenhouse with an integrated filter for reflecting near infrared radiation (NIR) and a solar energy delivery system is described. Especially the optical parts as the spectral selective film, the properties of the circular reflector and the

  1. Solar Energy Delivering Greenhouse with an Integrated NIR filter

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Holterman, H.J.; Tuijl, van B.A.J.; Bot, G.P.A.


    The scope of this investigation is the design and development of a new type of greenhouse with an integrated filter for rejecting near infrared radiation (NIR) and a solar energy delivery system. Cooled greenhouses are an important issue to cope with the combination of high global radiation and high

  2. New NIR light-curve templates for classical Cepheids

    NARCIS (Netherlands)

    Inno, L.; Matsunaga, N.; Romaniello, M.; Bono, G.; Monson, A.; Ferraro, I.; Iannicola, G.; Persson, E.; Buonanno, R.; Freedman, W.; Gieren, W.; Groenewegen, M.A.T.; Ita, Y.; Laney, C.D.; Lemasle, B.; Madore, B.F.; Nagayama, T.; Nakada, Y.; Nonino, M.; Pietrzyński, G.; Primas, F.; Scowcroft, V.; Soszyński, I.; Tanabé, T.; Udalski, A.


    Aims. We present new near-infrared (NIR) light-curve templates for fundamental (FU, J, H, KS) and first overtone (FO, J) classical Cepheids. The new templates together with period-luminosity and period-Wesenheit (PW) relations provide Cepheid distances from single-epoch observations with a precision

  3. TROPOMI and TROPI: UV/VIS/NIR/SWIR instruments

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.; Eskes, H.; Weele, M. van; Veefkind, P.; Oss, R. van; Aben, I.; Jongma, R.T.; Landgraf, J.; Vries, J. de; Visser, H.


    TROPOMI (Tropospheric Ozone-Monitoring Instrument) is a five-channel UV-VIS-NIR-SWIR non-scanning nadir viewing imaging spectrometer that combines a wide swath (114°) with high spatial resolution (10 × 10 km 2). The instrument heritage consists of GOME on ERS-2, SCIAMACHY on Envisat and, especially,

  4. Less transpiration and good quality thanks to NIR-screen

    NARCIS (Netherlands)

    Stanghellini, C.; Kempkes, F.L.K.; Hemming, S.; Jianfeng, D.


    Materials or additives for greenhouse cover that reflect or absorb a part of the NIR radiation can decrease the cooling requirement for the greenhouse and increase water use efficiency of the crop. By reducing the ventilation requirement, it might even decrease emissions of carbon dioxide from

  5. Developing and evaluating a multisite and multispecies NIR ...

    African Journals Online (AJOL)

    To elevate NIR from proof-of-concept to a pilot scale, a large multisite, multispecies calibration was developed over iterative cycles to: (1) determine whether KPY in eucalypts can be predicted from a single calibration independent of site and species, and (2) identify the potential limits of accuracy and precision. This paper ...

  6. Greenhouse with a CPV system based on NIR reflecting lamellae

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Tuijl, van B.A.J.; Janssen, H.J.J.; Bot, G.P.A.


    In previous research a new type of greenhouse with an integrated concentrated photovoltaic system (CPV) was developed based on a circular covering geometry and an integrated filter for reflecting the near infrared radiation (NIR) of the greenhouse and exploiting this radiation in a solar energy

  7. 7 CFR 801.7 - Reference methods and tolerances for near-infrared spectroscopy (NIRS) analyzers. (United States)


    ... Association Method A-20, Analysis for Starch in Corn, Second revision, April 15, 1986, Standard Analytical... Method 992.23. (3) NIRS corn oil, protein, and starch analyzers. The maintenance tolerances for the NIRS... Starch method, Corn Refiners Association Method A-20. (4) NIRS barley protein analyzers. The maintenance...

  8. Nutrition and magnesium absorption


    Brink, E.J.


    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true magnesium absorption was neither affected by soybean protein in the diet nor by supplemental phytate. The inhibitory influence of soybean protein and phytate on apparent magnesium absorption was found ...

  9. NIR Phosphorescent Intramolecularly Bridged Benzoporphyrins and Their Application in Oxygen-Compensated Glucose Optode. (United States)

    Zach, Peter W; Hofmann, Oliver T; Klimant, Ingo; Borisov, Sergey M


    A glucose optode measuring the internal oxygen gradient is presented. The multilayer biosensor is composed of (i) analyte-impermeable transparent support, (ii) first oxygen-sensing layer combined with an enzymatic layer, (iii) diffusion barrier, and (iv) second oxygen-sensing layer. To make this design suitable for measurement in subcutaneous tissue, a pair of NIR phosphorescent indicators with very different spectral properties is chosen. Combination of a conventional Pt(II) tetrabenzoporphyrin dye (absorption and emission maxima at 617 and 772 nm, respectively) used in the first layer and a new intramolecularly bridged Pt(II) complex (absorption and emission maxima at 673 and 872 nm, respectively) in the second layer enables efficient separation of both emission signals. This specially designed dye class is accessible via Scholl-reaction from tetraphenyltetrabenzoporphyrin complexes. For the first time, the new optode allows simultaneous glucose and oxygen measurement in a single spot and therefore accurate compensation of oxygen heterogeneities resulting from fluctuations in the tissue. The presented material covers the dynamic ranges from 0 to 150 hPa O 2 and from 0 to 360 mg/dL (20 mM) glucose (at 37 °C).

  10. NIR-FT-Raman spectroscopic studies of hexammine and pentammine chromium(III) complexes (United States)

    Chen, Yuying; Christensen, Daniel H.; Sørensen, Georg O.; Nielsen, Ole Faurskov; Jacobsen, Claus J. H.; Hyldtoft, Jens


    The NIR-FT-Raman spectra are presented for the hexammine [Cr(NH 3) 6]X 3 (where X = Br -, NO -3), pentamminechloro [Cr(NH 3) 5Cl]X 2 (where X = Cl -, ClO -4), and pentammineaqua [Cr(NH 3) 5(H 2O)]X 3 (where X = ClO -4, CF 3SO -3) chromium(III) complexes. The NIR-FT-Raman spectra, with an excitation wavelength of 1064 nm, were obtained at room temperature without problems from the strongly colored samples, which often cause problems with excitation by lasers in the visible region. All the Raman frequencies observed from the complexes have been assigned to the skeleton vibrational region from 100 to 600 cm -1. The symmetry and the general valence force constants for the bonds chromium(III)nitrogen, chromium(III)oxygen and chromium(III)chloro have been obtained. The nature of the metalligand bond between chromium(III) ammine complexes has been compared with recent results obtained for similar cobalt(III) ammine complexes.

  11. High performance of visible-NIR broad spectral photocurrent application of monodisperse PbSe nanocubes decorated on rGO sheets (United States)

    Ghorban Shiravizadeh, A.; Elahi, S. M.; Sebt, S. A.; Yousefi, Ramin


    In this work, the photoresponse performance of monodisperse PbSe nanocubes in the range of visible and near-infrared (NIR) (400-1500 nm) regions was enhanced by reduced graphene oxide (rGO). A simple cost-effective method is presented to synthesize monodisperse PbSe nanocubes (NCs) that are decorated on the rGO sheets. By the addition of PbSe/rGO nanocomposites with different rGO concentrations, pristine PbSe NCs were synthesized with the same method. Microscopy images showed that the size of NCs was smaller than the exciton Bohr radius (46 nm) of PbSe bulk. Therefore, the UV-Vis-IR spectroscopy result revealed that the PbSe/rGO samples had absorption peaks in the NIR region around 1650 nm and showed a blue shift compared to the absorption peak of the PbSe bulk. J-V measurements of the samples indicated that monodisperse PbSe/rGO nanocomposites had a higher resistance than the other samples under dark condition. On the other hand, the resistance of the monodisperse PbSe/rGO nanocomposites decreased under different light source illuminations while the resistance of the other samples was increased under illumination. Photodetector measurements indicated that the monodisperse morphology of the PbSe NCs enhanced the photoresponse speed and photocurrent intensity. In addition, responsivity (R) and detectivity (D*) of the samples were higher in the NIR region.

  12. Absorption and excretion tests

    International Nuclear Information System (INIS)

    Berberich, R.


    The absorption and excretion of radiopharmaceuticals is still of interest in diagnostic investigations of nuclear medicine. In this paper the most common methods of measuring absorption and excretion are described. The performance of the different tests and their standard values are discussed. More over the basic possibilities of measuring absorption and excretion including the needed measurement equipments are presented. (orig.) [de

  13. Field Measurements of Water Continuum and Water Dimer Absorption by Active Long Path Differential Optical Absorption Spectroscopy (DOAS)


    Lotter, Andreas


    Water vapor plays an important role in Earth's radiative budget since water molecules strongly absorb the incoming solar shortwave and the outgoing thermal infrared radiation. Superimposed on the water monomer absorption, a water continuum absorption has long been recognized, but its true nature still remains controversial. On the one hand, this absorption is explained by a deformation of the line shape of the water monomer absorption lines as a consequence of a molecular collision. One the o...

  14. A Highly Efficient UV-Vis-NIR Active Ln(3+)-Doped BiPO4/BiVO4 Nanocomposite for Photocatalysis Application. (United States)

    Ganguli, Sagar; Hazra, Chanchal; Chatti, Manjunath; Samanta, Tuhin; Mahalingam, Venkataramanan


    In this Article, we report the synthesis of Ln(3+) (Yb(3+), Tm(3+))-doped BiPO4/BiVO4 nanocomposite photocatalyst that shows efficient photocatalytic activity under UV-visible-near-infrared (UV-vis-NIR) illumination. Incorporation of upconverting Ln(3+) ion pairs in BiPO4 nanocrystals resulted in strong emission in the visible region upon excitation with a NIR laser (980 nm). A composite of BiPO4 nanocrystals and vanadate was prepared by the addition of vanadate source to BiPO4 nanocrystals. In the nanocomposite, the strong blue emission from Tm(3+) ions via upconversion is nonradiatively transferred to BiVO4, resulting in the production of excitons. This in turn generates reactive oxygen species and efficiently degrades methylene blue dye in aqueous medium. The nanocomposite also shows high photocatalytic activity both under the visible region (0.010 min(-1)) and under the full solar spectrum (0.047 min(-1)). The results suggest that the photocatalytic activity of the nanocomposite under both NIR as well as full solar irradiation is better compared to other reported nanocomposite photocatalysts. The choice of BiPO4 as the matrix for Ln(3+) ions has been discussed in detail, as it plays an important role in the superior NIR photocatalytic activity of the nanocomposite photocatalyst.

  15. Determination of Aluminium Content in Aluminium Hydroxide Formulation by FT-NIR Transmittance Spectroscopy

    DEFF Research Database (Denmark)

    Lai, Xuxin; Zheng, Yiwu; Søndergaard, Ib


    A method for determining the aluminium content of an aluminium hydroxide suspension using near infrared (NIR) transmittance spectroscopy has been developed. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used as reference method. The factors influencing the NIR analysis......-AES and NIR transmittance spectroscopy exhibit comparable precision and accuracy. The NIR method provides several advantages: no complicated sample preparation; easy to operate; fast and non-destructive. In conclusion, NIR transmittance spectroscopy can be an alternative analytical method for determining...

  16. [In hospital and mid-term outcome of patients with NIR stent implantation: multicenter ESPORT-NIR registry]. (United States)

    Iñiguez, A; García, E; Seabra, R; Bordes, P; Bethencourt, A; Rigla, J


    Despite improvements in the results and techniques of catheter-based revascularization, few studies have evaluated the clinical results of the application of new stent designs. We describe the in-hospital and mid-term outcome of patients undergoing a stent NIR implantation. At least 1 Stent NIR was implanted in 1.004 patients (1.136 lesions) recruited from 50 centers in an international, multicenter, prospective, registry (Spain and Portugal NIR stent registry). Inclusion criteria were objective coronary ischemia related to a severe de novo lesion or first restenosis in native vessels with a reference diameter >= 2.75 mm. The primary end-point was the incidence of major adverse cardiac events within the first 7 months of follow-up. The mean age of the patients was 60 years and 82% were male. Angioplasty was indicated due to unstable angina in 61% of the cases. Stent implantation was successfully achieved in 99.6%. Clinical success (angiographic success without in-hospital major events) was achieved in 98.6% of patients. The rate of angiographic restenosis (> 50% stenosis narrowing) was 16% (CI 95%; 11.7-21.2). The accumulated major cardiac adverse event rate at seven months of follow-up was 8.7%: death (0.9%), acute myocardial infarction (1.2%) and target lesion revascularization (6.6%). In the wide setting of the population included in the ESPORT-NIR registry, stent NIR implantation was a highly effective therapy with a good mid-term clinical and angiographic outcome.

  17. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Recker, R.R.


    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  18. Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS2/ZnS Core/Shell Colloidal Quantum Dots. (United States)

    Xia, Chenghui; Meeldijk, Johannes D; Gerritsen, Hans C; de Mello Donega, Celso


    Copper indium sulfide (CIS) quantum dots (QDs) are attractive as labels for biomedical imaging, since they have large absorption coefficients across a broad spectral range, size- and composition-tunable photoluminescence from the visible to the near-infrared, and low toxicity. However, the application of NIR-emitting CIS QDs is still hindered by large size and shape dispersions and low photoluminescence quantum yields (PLQYs). In this work, we develop an efficient pathway to synthesize highly luminescent NIR-emitting wurtzite CIS/ZnS QDs, starting from template Cu 2- x S nanocrystals (NCs), which are converted by topotactic partial Cu + for In 3+ exchange into CIS NCs. These NCs are subsequently used as cores for the overgrowth of ZnS shells (≤1 nm thick). The CIS/ZnS core/shell QDs exhibit PL tunability from the first to the second NIR window (750-1100 nm), with PLQYs ranging from 75% (at 820 nm) to 25% (at 1050 nm), and can be readily transferred to water upon exchange of the native ligands for mercaptoundecanoic acid. The resulting water-dispersible CIS/ZnS QDs possess good colloidal stability over at least 6 months and PLQYs ranging from 39% (at 820 nm) to 6% (at 1050 nm). These PLQYs are superior to those of commonly available water-soluble NIR-fluorophores (dyes and QDs), making the hydrophilic CIS/ZnS QDs developed in this work promising candidates for further application as NIR emitters in bioimaging. The hydrophobic CIS/ZnS QDs obtained immediately after the ZnS shelling are also attractive as fluorophores in luminescent solar concentrators.

  19. Shed a light of wireless technology on portable mobile design of NIRS (United States)

    Sun, Yunlong; Li, Ting


    Mobile internet is growing rapidly driven by high-tech companies including the popular Apple and Google. The wireless mini-NIRS is believed to deserve a great spread future, while there is sparse report on wireless NIRS device and even for the reported wireless NIRS, its wireless design is scarcely presented. Here we focused on the wireless design of NIRS devices. The widely-used wireless communication standards and wireless communication typical solutions were employed into our NIRS design and then compared on communication efficiency, distance, error rate, low-cost, power consumption, and stabilities, based on the requirements of NIRS applications. The properly-performed wireless communication methods matched with the characteristics of NIRS are picked out. Finally, we realized one recommended wireless communication in our NIRS, developed a test platform on wireless NIRS and tested the full properties on wireless communication. This study elaborated the wireless communication methods specified for NIRS and suggested one implementation with one example fully illustrated, which support the future mobile design on NIRS devices.

  20. Dynamic topographical pattern classification of multichannel prefrontal NIRS signals (United States)

    Schudlo, Larissa C.; Power, Sarah D.; Chau, Tom


    Objective. Near-infrared spectroscopy (NIRS) is an optical imaging technique that has recently been considered for brain-computer interface (BCI) applications. To date, NIRS-BCI studies have primarily made use of temporal features of brain activity, derived from the time-course of optical signals measured from discrete locations, to differentiate mental states. However, functional brain imaging studies have indicated that the spatial distribution of haemodynamic activity is also rich in information. Thus, the progression of a response over both time and space may be valuable to brain state classification. In this paper, we investigate the implication of including spatiotemporal features in the single-trial classification of haemodynamic events for a two-class problem by exploiting this information from dynamic NIR topograms. Approach. The value of spatiotemporal information was explored through a comparative analysis of four different classification schemes performed on multichannel NIRS data collected from the prefrontal cortex during a mental arithmetic activation task and rest. Employing a linear discriminant classifier, data were analysed using spatiotemporal features, temporal features, and a collective pool of spatiotemporal and temporal features. We also considered a majority vote combination of three classifiers; each established using one of the above feature sets. Lastly, two separate task durations (20 and 10 s) were considered for feature extraction. Main results. With features from the longer task interval, the highest overall classification accuracy was achieved using the majority voting classifier (76.1 ± 8.4%), which was greater than the accuracy obtained using temporal features alone (73.5 ± 8.5%) (F3,144 = 7.04, p = 0.0002). While results from the shorter task duration were lower overall, the classifier employing only spatiotemporal features (with an average accuracy of 67.9 ± 9.3%) achieved a higher average accuracy than the rate obtained

  1. NIRS of body and tissues in growing rabbits fed diets with different fat sources and supplemented with Curcuma longa

    Directory of Open Access Journals (Sweden)

    Pier Giorgio Peiretti


    Full Text Available A portable Near Infrared Reflectance Spectroscopy (NIRS instrument was applied to 40 growing rabbits to determine body and tissue differences induced by experimental factors. The rabbits were examined at 2 live sites, in 7 warm carcass tissues and in longissimus dorsi muscle samples prepared in ethanol. For this purpose, the method was applied in a bi-factorial experiment concerning the dietary oil source (O (maize vs. palm oil and Curcuma longa (C supplementation (0 and 3 g/kg, respectively. Significant chemical differences emerged for palmitic, oleic and linoleic acids in the longissimus dorsi muscle due to the O factor and for linolenic acid due to the C factor. The NIRS spectra and chemical analyses were elaborated by the Partial Least Squares (PLS method, and the rsquares in cross-validation (R2cv were retained as measure of the unoriented differentiation between the levels of the planned factor for each landmark and fatty acid (FA profile. Multivariate PLS analysis of the FA muscular fat showed that the O factor induced strong differentiation (R2cv: 0.96, while less influence (0.33 was observed for the C factor. The model based on the NIRS radiation of the landmarks clearly shows the O factor effects, not only in the perirenal (0.90 and scapular (0.85 fats, but also in the belly (0.76, liver (0.73 and hind legs (0.72. Whereas the C effects were only expressed in the live animals (ears: 0.66 and abdominal wall: 0.58 and in post-mortem (liver: 0.60. It was concluded that a preliminary NIRS scan of the carcass and of live rabbits can point out the presence of intrinsic experimental effects concerning the lipid metabolism of polyunsaturated FA of the n-6 series (O factor and n-3 series (C factor.

  2. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry]. (United States)

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng


    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  3. Oxygen induced enhancement of NIR emission in brookite TiO2powders: comparison with rutile and anatase TiO2powders. (United States)

    Vequizo, Junie Jhon M; Kamimura, Sunao; Ohno, Teruhisa; Yamakata, Akira


    Brookite TiO 2 attracts considerable attention in photocatalysis owing to its superior performance in several photocatalytic reactions. In this work, we investigated the behavior of charge carriers in brookite, rutile, and anatase TiO 2 by using photoluminescence (PL) and transient absorption (TA) spectroscopies. PL measurements revealed that brookite TiO 2 exhibits a visible and a NIR emission at ∼520 nm and ∼860 nm, respectively. Addition of methanol vapor quenched both the visible and NIR emissions by the hole-consuming reaction of methanol. However, exposure to O 2 shows curious behaviors: the visible emission was quenched but the NIR emission was enhanced. These results can be accounted for by the enhancement of upward band bending resulting in the effective separation of electrons and holes into the bulk and the surface, respectively. Furthermore, the shallowly trapped electrons, which are responsible for visible PL, are consumed by O 2 ; hence, the visible emission is quenched. However, in the case of NIR emission, the deeply trapped electrons are responsible and they are mainly located at the surface defects. The O 2 adsorption promotes the hole accumulation at the surface and then assists the recombination of these deeply trapped electrons, resulting in the enhancement of the NIR emission. We also found that the lifetime of NIR emission (τ 1 = 43 ± 0 ns and τ 2 = 589 ± 1 ns) was much longer than that of visible emission (τ 1 = 15 ± 0 ns and τ 2 = 23 ± 0 ns), since the mobility of these deeply trapped electrons to encounter with holes is lower than that of the shallowly trapped electrons. However, even for this slow NIR emission, the actual lifetime of the deeply trapped electrons estimated by TA (1.5 ± 0.0 μs and 17 ± 0 μs) was one or two orders of magnitude longer, confirming that non-radiative recombination is dominant and it is much slower than radiative recombination: TAS and PL provide detailed information on the radiative and non

  4. Ar 3p photoelectron sideband spectra in two-color XUV + NIR laser fields (United States)

    Minemoto, Shinichirou; Shimada, Hiroyuki; Komatsu, Kazma; Komatsubara, Wataru; Majima, Takuya; Mizuno, Tomoya; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Yoshida, Shintaro; Yabashi, Makina; Yagishita, Akira


    We performed photoelectron spectroscopy using femtosecond XUV pulses from a free-electron laser and femtosecond near-infrared pulses from a synchronized laser, and succeeded in measuring Ar 3p photoelectron sideband spectra due to the two-color above-threshold ionization. In our calculations of the first-order time-dependent perturbation theoretical model based on the strong field approximation, the photoelectron sideband spectra and their angular distributions are well reproduced by considering the timing jitter between the XUV and the NIR pulses, showing that the timing jitter in our experiments was distributed over the width of {1.0}+0.4-0.2 ps. The present approach can be used as a method to evaluate the timing jitter inevitable in FEL experiments.

  5. Spectral interferences in atomic absorption spectrometry, (5)

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro


    Spectral interferences were observed in trace element analysis of concentrated solutions by atomic absorption spectrometry. Molecular absorption and emission spectra for strontium chloride and nitrate, barium chloride and nitrate containing 12 mg/ml of metal ion in airacetylene flame were measured in the wavelength range from 200 to 700 nm. The absorption and emission spectra of SrO were centered near 364.6 nm. The absorption spectra of SrOH around 606.0, 671.0 and 682.0 nm were very strong. And, emission spectrum of BaOH in the wavelength range from 480 to 550 nm was stronger. But, the absorption of this band spectrum was very weak. In the wavelength range from 200 to 400 nm, some unknown bands of absorption were observed for strontium and barium. Absorption spectra of SrCl and BaCl were observed in the argon-hydrogen flame. Also, in the carbon tube atomizer, the absorption spectra of SrCl and BaCl were detected clearly in the wavelength range from 185 to 400 nm. (author)

  6. Human brain activity with functional NIR optical imager (United States)

    Luo, Qingming


    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  7. FT-NIR: A Tool for Process Monitoring and More. (United States)

    Martoccia, Domenico; Lutz, Holger; Cohen, Yvan; Jerphagnon, Thomas; Jenelten, Urban


    With ever-increasing pressure to optimize product quality, to reduce cost and to safely increase production output from existing assets, all combined with regular changes in terms of feedstock and operational targets, process monitoring with traditional instruments reaches its limits. One promising answer to these challenges is in-line, real time process analysis with spectroscopic instruments, and above all Fourier-Transform Near Infrared spectroscopy (FT-NIR). Its potential to afford decreased batch cycle times, higher yields, reduced rework and minimized batch variance is presented and application examples in the field of fine chemicals are given. We demonstrate that FT-NIR can be an efficient tool for improved process monitoring and optimization, effective process design and advanced process control.

  8. Diagnosis method of cucumber downy mildew with NIR hyperspectral imaging (United States)

    Tian, Youwen; Li, Tianlai; Zhang, Lin; Zhang, Xiaodong


    This study was carried out to develop a hyperspectral imaging system in the near infrared (NIR) region (900-1700 nm) to diagnose cucumber downy mildew. Hyperspectral images were acquired from each diseased cucumber leaf samples with downy mildew and then their spectral data were extracted. Spectral data were analyzed using principal component analysis (PCA) to reduce the high dimensionality of the data and for selecting some important wavelengths. Out of 256 wavelengths, only two wavelengths (1426 and 1626nm) of first PC were selected as the optimum wavelengths for the diagnosis of cucumber downy mildew. The data analysis showed that it is possible to diagnose cucumber downy mildew with few numbers of wavelengths on the basis of their statistical image features and histogram features. The results revealed the potentiality of NIR hyperspectral imaging as an objective and non-destructive method for the authentication and diagnosis of cucumber downy mildew.

  9. NIR FRET Fluorophores for Use as an Implantable Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Majed DWEIK


    Full Text Available Development of an in vivo optical sensor requires the utilization of Near Infra Red (NIR fluorophores due to their ability to operate within the biological tissue window. Alexa Fluor 750 (AF750 and Alexa Fluor 680 (AF680 were examined as potential NIR fluorophores for an in vivo fluorescence resonance energy transfer (FRET glucose biosensor. AF680 and AF750 found to be a FRET pair and percent energy transfer was calculated. Next, the tested dye pair was utilized in a competitive binding assay in order to detect glucose. Concanavalin A (Con A and dextran have binding affinity, but in the presence of glucose, glucose displaces dextran due to its higher affinity to Con A than dextran. Finally, the percent signal transfer through porcine skin was examined. The results showed with approximately 4.0 mm porcine skin thickness, 1.98 % of the fluorescence was transmitted and captured by the detector.

  10. [EMD Time-Frequency Analysis of Raman Spectrum and NIR]. (United States)

    Zhao, Xiao-yu; Fang, Yi-ming; Tan, Feng; Tong, Liang; Zhai, Zhe


    This paper analyzes the Raman spectrum and Near Infrared Spectrum (NIR) with time-frequency method. The empirical mode decomposition spectrum becomes intrinsic mode functions, which the proportion calculation reveals the Raman spectral energy is uniform distributed in each component, while the NIR's low order intrinsic mode functions only undertakes fewer primary spectroscopic effective information. Both the real spectrum and numerical experiments show that the empirical mode decomposition (EMD) regard Raman spectrum as the amplitude-modulated signal, which possessed with high frequency adsorption property; and EMD regards NIR as the frequency-modulated signal, which could be preferably realized high frequency narrow-band demodulation during first-order intrinsic mode functions. The first-order intrinsic mode functions Hilbert transform reveals that during the period of empirical mode decomposes Raman spectrum, modal aliasing happened. Through further analysis of corn leaf's NIR in time-frequency domain, after EMD, the first and second orders components of low energy are cut off, and reconstruct spectral signal by using the remaining intrinsic mode functions, the root-mean-square error is 1.001 1, and the correlation coefficient is 0.981 3, both of these two indexes indicated higher accuracy in re-construction; the decomposition trend term indicates the absorbency is ascending along with the decreasing to wave length in the near-infrared light wave band; and the Hilbert transform of characteristic modal component displays, 657 cm⁻¹ is the specific frequency by the corn leaf stress spectrum, which could be regarded as characteristic frequency for identification.

  11. NIR observations of V404 Cyg with PANIC (United States)

    Shaw, A. W.; Knigge, C.; Meisenheimer, K.; Ibanez, J. M.


    We report on NIR photometry of the black hole X-ray transient, V404 Cyg during its current outburst (GCN #17929). The source was observed between 27 Jun 22:47 UT - 29 Jun UT 02:28 with the PANoramic Near Infrared Camera (PANIC) on the 2.2m telescope at the Centro Astron & oacute;mico Hispano-Alem & aacute;n (CAHA) on Calar Alto, Spain.

  12. Relationship between muscle oxygenation by NIRS and blood lactate

    Energy Technology Data Exchange (ETDEWEB)

    Xu Guodong [School of Physical Education, Jianghan University, Hubei Wuhan 430056 (China); Mao Zongzhen; Ye Yanjie; Lv Kunru, E-mail: [School of Health Sciences, Wuhan Institute of Physical Education, Hubei Wuhan 430079 (China)


    The aim of the study was to investigate the relationship of muscle oxygenation in term of oxy-hemoglobin concentration change ({Delta}HbO{sub 2}) by NIRS and blood lactate (BLA) in local skeletal muscle and evaluate the capability of NIRS in the research of exercise physiology Twenty-three athlete in the national fin-swimming team took the increasing load training on the power bicycle while their {Delta}HbO{sub 2} and BLA were simultaneously recorded. The initial powers used in the training were set as 100 w for males and 40 w for females. During the experiment, the power kept constant for 3 min before each abrupt increment of 30 w until the limit of the athlete's capability. Statistical analysis and data visualization were performed. Following the increasing load training, {Delta}HbO{sub 2} step-likely increased in the phase of aerobic metabolism but linearly decreased in the phase of anaerobic metabolism. The variation tendency of BLA was the same as {Delta}HbO{sub 2} and the concurrency of crucial turning points between {Delta}HbO{sub 2} and BLA was revealed. This relationship between {Delta}HbO{sub 2} and BLA presented in the increasing load training suggested that {Delta}HbO{sub 2} might be capable for taking the place of the invasively measured parameter BLA. Considering that {Delta}HbO{sub 2} can be noninvasively measured by NIRS, {Delta}HbO{sub 2} has the potential in the evaluation of athletes' physiological function and training effect on the athletes and accordingly NIRS can be well used in this field.

  13. Relationship between muscle oxygenation by NIRS and blood lactate

    International Nuclear Information System (INIS)

    Xu Guodong; Mao Zongzhen; Ye Yanjie; Lv Kunru


    The aim of the study was to investigate the relationship of muscle oxygenation in term of oxy-hemoglobin concentration change (ΔHbO 2 ) by NIRS and blood lactate (BLA) in local skeletal muscle and evaluate the capability of NIRS in the research of exercise physiology Twenty-three athlete in the national fin-swimming team took the increasing load training on the power bicycle while their ΔHbO 2 and BLA were simultaneously recorded. The initial powers used in the training were set as 100 w for males and 40 w for females. During the experiment, the power kept constant for 3 min before each abrupt increment of 30 w until the limit of the athlete's capability. Statistical analysis and data visualization were performed. Following the increasing load training, ΔHbO 2 step-likely increased in the phase of aerobic metabolism but linearly decreased in the phase of anaerobic metabolism. The variation tendency of BLA was the same as ΔHbO 2 and the concurrency of crucial turning points between ΔHbO 2 and BLA was revealed. This relationship between ΔHbO 2 and BLA presented in the increasing load training suggested that ΔHbO 2 might be capable for taking the place of the invasively measured parameter BLA. Considering that ΔHbO 2 can be noninvasively measured by NIRS, ΔHbO 2 has the potential in the evaluation of athletes' physiological function and training effect on the athletes and accordingly NIRS can be well used in this field.

  14. Greenhouse with a CPV system based on NIR reflecting lamellae


    Sonneveld, P.J.; Swinkels, G.L.A.M.; Tuijl, van, B.A.J.; Janssen, H.J.J.; Bot, G.P.A.


    In previous research a new type of greenhouse with an integrated concentrated photovoltaic system (CPV) was developed based on a circular covering geometry and an integrated filter for reflecting the near infrared radiation (NIR) of the greenhouse and exploiting this radiation in a solar energy system. The performance of the system was promising. In this study further optimalisation of the CPV system is made to avoid the large construction for solar tracing and the high investment. Hereto all...

  15. Absorption heat pumps

    International Nuclear Information System (INIS)

    Formigoni, C.


    A brief description of the difference between a compression and an absorption heat pump is made, and the reasons why absorption systems have spread lately are given. Studies and projects recently started in the field of absorption heat pumps, as well as criteria usually followed in project development are described. An outline (performance targets, basic components) of a project on a water/air absorption heat pump, running on natural gas or LPG, is given. The project was developed by the Robur Group as an evolution of a water absorption refrigerator operating with a water/ammonia solution, which has been on the market for a long time and recently innovated. Finally, a list of the main energy and cost advantages deriving from the use of absorption heat pumps is made [it

  16. The application of near infrared spectroscopy (NIR technique for

    Directory of Open Access Journals (Sweden)

    Sandor Barabassy


    Full Text Available The production of cow’s milk in Hungary fluctuates by 15-20 % annualy. Surplus milk is dried into powder and can also be converted to modified milk powders using techniques such as ultra filtration. From approximetely 20.000 tonnes, of all milk powder types, 3.000 tonnes, is converted using ultra filtration technology. Multivariable near infrared (NIR calibration was performed on powder mixtures of whole milk, skimmed milk, whey, retenate (protein concentrate and lactose for rapid fat, protein, lactose, water and ash content determination. More than 150 samples were prepared and measured in two NIRS labs (Scottish Agriculture College – SAC – Aberdeen and University of Horticulture and Food Science - UHFS – Budapest. The results obtained from the same samples were compared. The aims of the study were: 1. Rapid quantitative and qualitative determination of mixtures of milk powder products using NIR technique. 2. Comparison of the results achieved in Aberdeen (SAC and Budapest (UHFS institutes. The mass per cent varied between 0.0-2.8% for fat, 0.0-80% for protein, 6.6-100 % for lactose, 0.0-5.0 % for water and 0.0-8.0 % for ash. High correlation coefficients (0.97-0.99 were found for all five components.

  17. UV-VIS-NIR spectroscopy and microscopy of heterogeneous catalysts. (United States)

    Schoonheydt, Robert A


    This critical review article discusses the characterization of heterogeneous catalysts by UV-VIS-NIR spectroscopy and microscopy with special emphasis on transition metal ion containing catalysts. A review is given of the transitions, that can be observed in the UV-VIS-NIR region and the peculiarities of catalytic solids that have to be taken into account. This is followed by a short discussion of the techniques that have been developed over the years: diffuse reflectance spectroscopy, UV-VIS microscopy, in situ or operando spectroscopy, the combination of UV-VIS spectroscopy with other spectroscopic techniques, with chemometrics and with quantum chemistry. In the third part of this paper four successes of UV-VIS-NIR spectroscopy and microscopy are discussed; (1) coordination of transition metal ions to surface oxygens; (2) quantitative determination of the oxidation states of transition metal ions; (3) characterization of active sites and (4) study of the distribution of transition metal ions and carbocations in catalytic bodies, particles and crystals (104 references).

  18. GSH-Activated NIR Fluorescent Prodrug for Podophyllotoxin Delivery. (United States)

    Liu, Yajing; Zhu, Shaojia; Gu, Kaizhi; Guo, Zhiqian; Huang, Xiaoyu; Wang, Mingwei; Amin, Hesham M; Zhu, Weihong; Shi, Ping


    Theranostic prodrug therapy enables the targeted delivery of anticancer drugs with minimized adverse effects and real-time in situ monitoring of activation of the prodrugs. In this work, we report the synthesis and biological assessment of the near-infrared (NIR) prodrug DCM-S-PPT and its amphiphilic copolymer (mPEG-DSPE)-encapsulated nanoparticles. DCM-S-PPT is composed of podophyllotoxin (PPT) as the anticancer moiety and a dicyanomethylene-4H-pyran (DCM) derivative as the NIR fluorescent reporter, which are linked by a thiol-specific cleavable disulfide bond. In vitro experiments indicated that DCM-S-PPT has low cytotoxicity and that glutathione (GSH) can activate DCM-S-PPT resulting in PPT release and a concomitant significant enhancement in NIR fluorescence at 665 nm. After being intravenously injected into tumor-bearing nude mice, DCM-S-PPT exhibited excellent tumor-activated performance. Furthermore, we have demonstrated that mPEG-DSPE as a nanocarrier loaded with DCM-S-PPT (mPEG-DSPE/DCM-S-PPT) showed even greater tumor-targeting performance than DCM-S-PPT on account of the enhanced permeability and retention effect. Its tumor-targeting ability and specific drug release in tumors make DCM-S-PPT a promising prodrug that could provide a significant strategy for theranostic drug delivery systems.

  19. Characterization of Mind Wandering using fNIRS

    Directory of Open Access Journals (Sweden)

    Gautier eDurantin


    Full Text Available Assessing whether someone is attending to a task has become importantfor educational and professional applications. Such attentional drifts are usually termed mind wandering. The purpose of the current study is to test to what extent a recent neural imaging modality can be used to detect mind wandering episodes. Functional near infra-red spectroscopy is a non-invasive neuro-imaging technique that has never been studied so far to measure mind wandering. The Sustained Attention to Response Task was used to assess when subjects attention leaves a primary task. 16-channel fNIRS data were collected over frontal cortices. We observed significant activations over the medial prefrontal cortex during mind wandering, a brain region associated with the default mode network. fNIRS data were used to classify mind wandering data above chance level. In line with previous brain-imaging studies of mind wandering, our results confirm the ability of fNIRS to detect Default Network activations in the context of mind wandering.

  20. Principle and application of portable NIR tea drinks analyzer (United States)

    Jiang, Liyi; Chen, Huacai; Liu, Fuli


    Tea polyphenols (Tp) and free amino acids (Aa) are the most important quality materials in tea drinks. Due to the high number of samples to be analyzed, new analytical techniques providing fast and reliable data about the quality are essential. Therefore, a portable near-infrared spectroscopy (NIR) analyzer was developed for real-time, continuous and quantitative determination of Tp and Aa in tea drinks. The portable NIR tea drinks analyzer is composed of a lamphouse, a temperature-controlled sample chamber, an optical fiber and an InGaAs array mini grating spectrometer. The analyzer is compact, lightweight and robust with no movable elements. The software with the functions of spectrum acquisition, model establishment, method selection and real-time analysis was also developed for the analyzer. Using partial least squares (PLS) regression, the calibration models for the quantification of Tp and Aa were established with reference to the GB methods (the national standard methods). The values of root mean square error of cross validation (RMSECV) of the models for Tp and Aa calibration were 0.059 mg/mL, 0.005 mg/mL, the values of the correlation coefficients (R2) were 0.99 and 0.98 respectively. The relative standard deviation (RSD) of ten repetitive testing were 3.17% and 4.15%. It suggested that the portable NIR tea drinks analyzer could be a fast and reliable alternative for tea drinks quality testing.

  1. Joint attention studies in normal and autistic children using NIRS (United States)

    Chaudhary, Ujwal; Hall, Michael; Gutierrez, Anibal; Messinger, Daniel; Rey, Gustavo; Godavarty, Anuradha


    Autism is a socio-communication brain development disorder. It is marked by degeneration in the ability to respond to joint attention skill task, from as early as 12 to 18 months of age. This trait is used to distinguish autistic from nonautistic. In this study Near infrared spectroscopy (NIRS) is being applied for the first time to study the difference in activation and connectivity in the frontal cortex of typically developing (TD) and autistic children between 4-8 years of age in response to joint attention task. The optical measurements are acquired in real time from frontal cortex using Imagent (ISS Inc.) - a frequency domain based NIRS system in response to video clips which engenders a feeling of joint attention experience in the subjects. A block design consisting of 5 blocks of following sequence 30 sec joint attention clip (J), 30 sec non-joint attention clip (NJ) and 30 sec rest condition is used. Preliminary results from TD child shows difference in brain activation (in terms of oxy-hemoglobin, HbO) during joint attention interaction compared to the nonjoint interaction and rest. Similar activation study did not reveal significant differences in HbO across the stimuli in, unlike in an autistic child. Extensive studies are carried out to validate the initial observations from both brain activation as well as connectivity analysis. The result has significant implication for research in neural pathways associated with autism that can be mapped using NIRS.

  2. Near-infrared (NIR) up-conversion optogenetics (United States)

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Hoque, Mohammad Razuanul; Yamashita, Takayuki; Yamanaka, Akihiro; Sugano, Eriko; Tomita, Hiroshi; Yawo, Hiromu


    Non-invasive remote control technologies designed to manipulate neural functions have been long-awaited for the comprehensive and quantitative understanding of neuronal network in the brain as well as for the therapy of neurological disorders. Recently, it has become possible for the neuronal activity to be optically manipulated using biological photo-reactive molecules such as channelrhodopsin (ChR)-2. However, ChR2 and its relatives are mostly reactive to visible light, which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light (650-1450 nm) penetrates deep into the tissues because biological systems are almost transparent to light within this so-called ‘imaging window’. Here we used lanthanide nanoparticles (LNPs), composed of rare-earth elements, as luminous bodies to activate ChRs since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Here, we created a new type of optogenetic system which consists of the donor LNPs and the acceptor ChRs. The NIR laser irradiation emitted visible light from LNPs, then induced the photo-reactive responses in the near-by cells that expressed ChRs. However, there remains room for large improvements in the energy efficiency of the LNP-ChR system.

  3. A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows. (United States)

    Lin, Han; Gao, Shanshan; Dai, Chen; Chen, Yu; Shi, Jianlin


    Conventionally, ceramics-based materials, fabricated by high-temperature solid-phase reaction and sintering, are preferred as bone scaffolds in hard-tissue engineering because of their tunable biocompatibility and mechanical properties. However, their possible biomedical applications have rarely been considered, especially the cancer phototherapeutic applications in both the first and second near-infrared light (NIR-I and NIR-II) biowindows. In this work, we explore, for the first time as far as we know, a novel kind of 2D niobium carbide (Nb 2 C), MXene, with highly efficient in vivo photothermal ablation of mouse tumor xenografts in both NIR-I and NIR-II windows. The 2D Nb 2 C nanosheets (NSs) were fabricated by a facile and scalable two-step liquid exfoliation method combining stepwise delamination and intercalation procedures. The ultrathin, lateral-nanosized Nb 2 C NSs exhibited extraordinarily high photothermal conversion efficiency (36.4% at NIR-I and 45.65% at NIR-II), as well as high photothermal stability. The Nb 2 C NSs intrinsically feature unique enzyme-responsive biodegradability to human myeloperoxidase, low phototoxicity, and high biocompatibility. Especially, these surface-engineered Nb 2 C NSs present highly efficient in vivo photothermal ablation and eradication of tumor in both NIR-I and NIR-II biowindows. This work significantly broadens the application prospects of 2D MXenes by rationally designing their compositions and exploring related physiochemical properties, especially on phototherapy of cancer.

  4. Quantification of incensole in three Boswellia species by NIR spectroscopy coupled with PLSR and cross-validation by HPLC. (United States)

    Al-Shidhani, Sulaiman; Rehman, Najeeb Ur; Mabood, Fazal; Al-Broumi, Muhammed; Hussain, Hidayat; Hussain, Javid; Csuk, Rene; Al-Harrasi, Ahmed


    Incensole can be considered as a biomarker for Boswellia species which is a diterpene that has received remarkable pharmacological interest recently due to its potent anti-inflammatory and anti-depressant activity. Near-infrared (NIR) spectroscopy coupled with PLSR (partial least squares regression) as a robust, rapid and alternative method was used to quantify the content of incensole in three species namely B. papyrifera, B. sacra and B. serrata and cross-validated by high-performance liquid chromatography (HPLC). NIR spectrophotometer was used for the quantification of incensole standards and Boswellia species in absorption mode in the wavelength range between 700 and 2500 nm. A PLSR model was built from the obtained spectral data using 70% of the incensole working standard solutions (training set), ranging from 0.5 to 100 ppm. The PLSR model obtained has a R 2 value of 98% with a correlationship of 0.99 and a good prediction with root mean square error for prediction (RMSEP) value of 3.2%. The results indicated that the methanol (MeOH) extract of B. papyrifera resin has the highest concentration of incensole (18.4%) followed by n-hexane (13.5%) and ethyl acetate (3.6%) while trace amounts was detected in the fractions of B. sacra and no incensole was detected in the fractions of B. serrata. The findings are in total agreement with the HPLC analysis suggesting that NIR spectroscopy coupled with PLSR is a robust, rapid and non-destructive alternate method for the quantification of incensole in B. papyrifera. Copyright © 2018 John Wiley & Sons, Ltd. Copyright © 2018 John Wiley & Sons, Ltd.

  5. VIS/NIR reflectance and fluorescence spectrometric studies of minerals, water, organics and biomarkers in MoonMars analogue samples (United States)

    Vos, Heleen; Foing, Bernard; Kołodziejczyk, Agata; Vago, Jorge; Harasymczuk, Matt


    This study focuses on the detection and characterisation of elements, minerals, volatiles and organics using reflectance spectrometry. The goal is to create a calibration method to enable the use of spectrometers on analogue Moon/Mars missions and on a lander. For this study we use measurements that are done in the VIS and NIR spectrum, as well as fluorescence using different spectrometers. The first part of the study consists of measurements that are performed in a laboratory to create a calibration method. Different rock samples and soils are analysed and the reflectance and absorption of minerals, water, organics and biomarkers are measured. Also the influence of the grain size, light source and surroundings is being determined. An experiment on the reflectance spectra of plant growth in different soils is also done to determine the possibilities of detecting the presence of chlorophyll and other biomarkers, and to diagnose the growth and health of a plant. This analysis can result in a monitoring method for a Moon greenhouse, but also for general surface analysis. Using VIS and NIR spectrometry has a couple of advantages, one being the fact that measurements require no sample preparation, and also the small size of the spectrometer makes it an easy tool for different analyses on board space missions. However, VIS and NIR spectroscopy have detection limits which makes only certain characteristics detectable. Besides laboratory measurements, the different spectroscopy methods are tested during a field campaign in the Eifel, Germany. During this campaign we can determine the functionality of the spectrometer in the field and on a lander and the problems that can rise when a spectrometer is controlled from a distant or by a person who is not trained in using spectroscopy. These laboratory and field measurements can help in the scientific preparation for instruments on ExoMars rover, future MoonMars lander missions and for the MoonVillage.

  6. Strongly Correlated Topological Insulators (United States)


    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  7. Strong Cosmic Censorship (United States)

    Isenberg, James


    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  8. Using vis-NIR to predict soil organic carbon and clay at national scale: validation of geographically closest resampling strategy

    DEFF Research Database (Denmark)

    Peng, Yi; Knadel, Maria; Greve, Mette Balslev


    The Danish soil visible-near infrared (vis-NIR) spectral library has proved capable of predicting soil properties in Denmark such as soil organic carbon (SOC) at field scale using the geographically closest resampling strategy. However, this strategy has only been tested on one Danish local field...... with the uncertainties of traditional laboratory wet chemistry analysis. However, for organic soils (48 samples SOC >7%) originating from wetland or forested areas the SOC predictions were generally under-estimated and not satisfactory. For prediction of clay content, only 12 out of 442 predictions were unsatisfactory...... model was strongly affected by soil parent material and landscape....

  9. Perylene-fused BODIPY dye with near-IR absorption/emission and high photostability

    KAUST Repository

    Jiao, Chongjun


    A N-annulated perylene unit was successfully fused to the meso-and β-positions of a boron dipyrromethene (BODIPY) core. The newly synthesized BODIPY dye 1b exhibits intensified near-infrared (NIR) absorption and the longest emission maximum ever observed for all BODIPY derivatives. In addition, this dye possesses excellent solubility and photostability, beneficial to practical applications. © 2011 American Chemical Society.

  10. Investigation of silver-only and silver/TOPAS coated hollow glass waveguides for visible and NIR laser delivery (United States)

    Melzer, Jeffrey E.; Harrington, James A.


    Hollow Glass Waveguides (HGWs) present a viable option for the low-loss transmission of radiation over a broad range spanning from visible to far-infrared wavelengths. Cyclic Olefin Copolymer (COC), a commercially available polymer known as TOPAS®, is chosen for this study due to its exceptionally low absorption losses throughout the spectrum, particularly in the visible and near-infrared (NIR) regions. While silver-coated HGWs are capable of transmitting visible and NIR radiation with low losses, theory predicts that the addition of a uniform dielectric thin film of quarter wavelength thickness will reduce these losses for both straight and bent configurations, while additionally providing a potentially more desirable modal output for laser applications. In this paper, the procedures for the deposition of the silver and subsequent COC films are outlined. Spectroscopy is used to obtain the thickness of the polymer film. The theoretical attenuation losses of the silver and Ag/COC HGWs are explored and experimental values are obtained using various visible and IR lasers. Moreover, the modal output of the silver and Ag/COC HGWs is qualitatively compared. The possibility of use of these Ag/COC HGWs at mid- and far-IR wavelengths is discussed.

  11. [Prediction of chlorophyll content of leaves of oil camelliae after being infected with anthracnose based on Vis/NIR spectroscopy]. (United States)

    Wu, Nan; Liu, Jun-ang; Zhou, Guo-ying; Yan, Rui-kun; Zhang, Lei


    The prediction model of chlorophyll content of leaves in canopies of oil camelliae under disease was explored and built by analyzing the Vis/NIR spectroscopy characteristics of oil camelliae canopies after being injected with anthracnose. Through field survey of disease index (DI), chlorophyll content and spectral data of leaves in canopies surviving different severity of disease were acquired. The first order differential of spectral data combined with moving average filter was pretreated. The prediction model of BP neural network of chlorophyll content was built by extracting sensitive wave band from spectral resample data. The results showed that with the disease being aggravated, reflection peaks and valleys of spectra of oil camelliae canopies in visible-light region vanished gradually, steep red edges from red light to near infrared leveled little by little, and reflectivity of healthy oil camelliae was far larger than that of ill ones. The sensitive wave band of absorption and reflection of chlorophyll lay in the region of 84-512, 533-565, 586-606 and 672-724 nm. The correlation coefficient r and RMSE between predictive values calculated from BP neural network using sensitive wave band as input variables and observed values was 0.9921 and 0.0458 respectively. It was therefore feasible to utilize Vis/NIR spectroscopy technology to forecast the chlorophyll content of oil camelliae after being infected with anthracnose.

  12. Solar absorption surface panel (United States)

    Santala, Teuvo J.


    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  13. Nutrition and magnesium absorption

    NARCIS (Netherlands)

    Brink, E.J.


    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true

  14. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.


    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  15. Strong Arcwise Connectedness


    Espinoza, Benjamin; Gartside, Paul; Kovan-Bakan, Merve; Mamatelashvili, Ana


    A space is `n-strong arc connected' (n-sac) if for any n points in the space there is an arc in the space visiting them in order. A space is omega-strong arc connected (omega-sac) if it is n-sac for all n. We study these properties in finite graphs, regular continua, and rational continua. There are no 4-sac graphs, but there are 3-sac graphs and graphs which are 2-sac but not 3-sac. For every n there is an n-sac regular continuum, but no regular continuum is omega-sac. There is an omega-sac ...

  16. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio


    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally......'s scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims....

  17. Absorption and Scattering by Molecules and Particles (United States)

    Lenoble, Jacqueline; Mishchenko, Michael I.; Herman, Maurice


    The Earth's atmosphere absorbs, scatters, and emits electromagnetic radiation. Although air molecules are the primary actors in these processes, aerosol particles are also present ubiquitously and modify the radiation field. In fact, this modification constitutes the very physical basis of aerosol remote sensing. Whenever clouds are present, they have a much larger influence on radiation which largely overshadows the aerosol impact. Therefore, in aerosol remote sensing, one often has to limit observations to cloudless conditions and screen cloudy pixels. In the solar part of the spectrum, molecular absorption is mostly limited to ultraviolet (UV; ozone) and near-infrared (near-IR; carbon dioxide, water vapor) wavelengths and is characterized by strong and narrow oxygen bands. A brief description of atmospheric molecular absorption is presented in Section 2.2. Shortwave aerosol remote sensing is usually performed outside the absorption bands, but some instruments also have channels capturing absorption bands with the objective of quantifying gaseous components.

  18. Micronutrient interactions: effects on absorption and bioavailability. (United States)

    Sandström, B


    A potential risk of interactions between micronutrients affecting absorption and bioavailability has to be considered in any supplementation or fortification strategy. At levels of essential micronutrients present in foods, most micronutrients appear to utilise specific absorptive mechanisms and not be vulnerable to interactions. In aqueous solutions and at higher intake levels competition between elements with similar chemical characteristics and uptake by non-regulated processes can take place. These interactions have clearly been demonstrated in experimental absorption studies and to some extent have been confirmed in supplementation studies. Negative effects of iron supplementation on indices of zinc and copper status and of zinc supplementation on iron and copper status have been reported. In contrast, the negative effect of calcium on iron absorption has not been confirmed in long-term supplementation studies. Ascorbic acid has a strong iron absorption promoting potential and in iron deficient populations ascorbic acid supplementation improves iron status. Thus, ascorbic acid supplements or an increased intake of ascorbic acid rich foods could have important public health implications, especially in populations subsisting on a mainly plant food based diet. The effect of poor status of a given micronutrient on absorption and utilisation of other micronutrients should also be considered while developing strategies to improve micronutrient status in a population. Awareness of these interactions, combined with a balanced evaluation of the dietary intake of the population with regard to absorption promoting and inhibiting substances and the risk for multiple deficiencies, could lead to more effective strategies to improve micronutrient status.

  19. Development of visible and NIR imaging equipment for small animals with smart pad. (United States)

    Eum, Nyeon Sik; Han, Jung Hyun; Seong, Ki Woong; Lee, Jong Ha; Park, Hee Joon


    The portable visible and near-infrared (NIR) imaging equipment for a pre-clinical test with small animals was designed and developed in this paper. The developed equipment is composed of a CCD camera, a focusing lens, an objective lens, a NIR band pass filter and a NIR filter driving motor. An NIR ray is mainly used for imaging equipment because it has high light penetration depth in biological tissue. Therefore, NIR fluorescent agents are available for chemical conjugation to targeting molecules in vivo. This equipment can provide a visible image, NIR image and merged image simultaneously. A communication system was specifically established to check obtained images through a smart pad in real time. It is less dependent on space and time than the conventional system.

  20. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.


    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  1. New GasB-based single-mode diode lasers in the NIR and MIR spectral regime for sensor applications (United States)

    Milde, Tobias; Hoppe, Morten; Tatenguem, Herve; Honsberg, Martin; Mordmüller, Mario; O'Gorman, James; Schade, Wolfgang; Sacher, Joachim


    The NIR/MIR region between 1.8μm and 3.5μm contains important absorption lines for gas detection. State of the art are InP laser based setups, which show poor gain above 1.8μm and cannot be applied beyond 2.1μm. GaSb laser show a significantly higher output power (100mW for Fabry-Perot, 30mW for DFB). The laser design is presented with simulation and actual performance data. The superior performance of the GaSb lasers is verified in gas sensing applications. TDLAS and QEPAS measurements at trace gases like CH4, CO2 and N2O are shown to prove the spectroscopy performance.

  2. Absorptive coating for aluminum solar panels (United States)

    Desmet, D.; Jason, A.; Parr, A.


    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  3. Development of new NIR-spectroscopy method combined with multivariate analysis for detection of adulteration in camel milk with goat milk. (United States)

    Mabood, Fazal; Jabeen, Farah; Ahmed, Manzor; Hussain, Javid; Al Mashaykhi, Saaida A A; Al Rubaiey, Zainb M A; Farooq, Saim; Boqué, Ricard; Ali, Liaqat; Hussain, Zahid; Al-Harrasi, Ahmed; Khan, Abdul Latif; Naureen, Zakira; Idrees, Mohammed; Manzoor, Suryyia


    New NIR spectroscopy combined with multivariate analysis for detection and quantification of camel milk adulteration with goat milk was investigated. Camel milk samples were collected from Aldhahira and Sharqia regions of Sultanate of Oman and were measured using NIR spectroscopy in absorption mode in the wavelength range from 700 to 2500nm, at 2cm -1 resolution and using a 0.2mm path length CaF 2 sealed cell. The multivariate methods like PCA, PLS-DA and PLS regression were used for interpretation of NIR spectral data. PLS-DA was used to detect the discrimination between the pure and adulterated milk samples. For PLSDA model the R-square value obtained was 0.974 with 0.08 RMSE. Furthermore, PLS regression model was used to quantify the levels of adulteration from, 0%, 2%, 5%, 10%, 15% and 20%. The PLS model showed the RMSEC=1.10% with R 2 =94%. This method is simple, reproducible, having excellent sensitivity. The limit of detection was found 0.5%, while the limit of quantification was 2%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Correlations between in situ denitrification activity and nir-gene abundances in pristine and impacted prairie streams

    International Nuclear Information System (INIS)

    Graham, David W.; Trippett, Clare; Dodds, Walter K.; O'Brien, Jonathan M.; Banner, Eric B.K.; Head, Ian M.; Smith, Marilyn S.; Yang, Richard K.; Knapp, Charles W.


    Denitrification is a process that reduces nitrogen levels in headwaters and other streams. We compared nirS and nirK abundances with the absolute rate of denitrification, the longitudinal coefficient of denitrification (i.e., K den , which represents optimal denitrification rates at given environmental conditions), and water quality in seven prairie streams to determine if nir-gene abundances explain denitrification activity. Previous work showed that absolute rates of denitrification correlate with nitrate levels; however, no correlation has been found for denitrification efficiency, which we hypothesise might be related to gene abundances. Water-column nitrate and soluble-reactive phosphorus levels significantly correlated with absolute rates of denitrification, but nir-gene abundances did not. However, nirS and nirK abundances significantly correlated with K den , as well as phosphorus, although no correlation was found between K den and nitrate. These data confirm that absolute denitrification rates are controlled by nitrate load, but intrinsic denitrification efficiency is linked to nirS and nirK gene abundances. - Denitrification efficiency best correlated to nirS and nirK gene abundances.

  5. Transcriptional repressor NIR interacts with the p53-inhibiting ubiquitin ligase MDM2. (United States)

    Heyne, Kristina; Förster, Juliane; Schüle, Roland; Roemer, Klaus


    NIR (novel INHAT repressor) can bind to p53 at promoters and inhibit p53-mediated gene transactivation by blocking histone acetylation carried out by p300/CBP. Like NIR, the E3 ubiquitin ligase MDM2 can also bind and inhibit p53 at promoters. Here, we present data indicating that NIR, which shuttles between the nucleolus and nucleoplasm, not only binds to p53 but also directly to MDM2, in part via the central acidic and zinc finger domain of MDM2 that is also contacted by several other nucleolus-based MDM2/p53-regulating proteins. Like some of these, NIR was able to inhibit the ubiquitination of MDM2 and stabilize MDM2; however, unlike these nucleolus-based MDM2 regulators, NIR did not inhibit MDM2 to activate p53. Rather, NIR cooperated with MDM2 to repress p53-induced transactivation. This cooperative repression may at least in part involve p300/CBP. We show that NIR can block the acetylation of p53 and MDM2. Non-acetylated p53 has been documented previously to more readily associate with inhibitory MDM2. NIR may thus help to sustain the inhibitory p53:MDM2 complex, and we present evidence suggesting that all three proteins can indeed form a ternary complex. In sum, our findings suggest that NIR can support MDM2 to suppress p53 as a transcriptional activator.

  6. Mental Task Evaluation for Hybrid NIRS-EEG Brain-Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Hubert Banville


    Full Text Available Based on recent electroencephalography (EEG and near-infrared spectroscopy (NIRS studies that showed that tasks such as motor imagery and mental arithmetic induce specific neural response patterns, we propose a hybrid brain-computer interface (hBCI paradigm in which EEG and NIRS data are fused to improve binary classification performance. We recorded simultaneous NIRS-EEG data from nine participants performing seven mental tasks (word generation, mental rotation, subtraction, singing and navigation, and motor and face imagery. Classifiers were trained for each possible pair of tasks using (1 EEG features alone, (2 NIRS features alone, and (3 EEG and NIRS features combined, to identify the best task pairs and assess the usefulness of a multimodal approach. The NIRS-EEG approach led to an average increase in peak kappa of 0.03 when using features extracted from one-second windows (equivalent to an increase of 1.5% in classification accuracy for balanced classes. The increase was much stronger (0.20, corresponding to an 10% accuracy increase when focusing on time windows of high NIRS performance. The EEG and NIRS analyses further unveiled relevant brain regions and important feature types. This work provides a basis for future NIRS-EEG hBCI studies aiming to improve classification performance toward more efficient and flexible BCIs.

  7. Triple-doped KMnF3:Yb3+/Er3+/Tm3+ nanocubes: four-color upconversion emissions with strong red and near-infrared bands (United States)

    Wang, Hao; Hong, Xiaodong; Han, Renlu; Shi, Junhui; Liu, Zongjun; Liu, Shujuan; Wang, You; Gan, Yang


    Triple-doped (Yb3+/Er3+/Tm3+) KMnF3 nanocubes with uniform sizes of 250 nm were synthesized by a facile hydrothermal route using the oleic acid as the capping agent. It was found that these nanocubes can simultaneously exhibited four-color (blue, green, red and NIR) upconversion emissions under a single 980 nm near-infrared (NIR) laser excitation, which should have potential multicolor in vivo imaging applications. Specifically, the red (660 nm) and NIR (800 nm) peaks, known as two “optical windows” for imaging biological tissues, were strong. The spectral and pump analyses indicated the two-photon processes were responsible for the both red and NIR emissions.

  8. Uranium absorption study pile

    International Nuclear Information System (INIS)

    Raievski, V.; Sautiez, B.


    The report describes a pile designed to measure the absorption of fuel slugs. The pile is of graphite and comprises a central section composed of uranium rods in a regular lattice. RaBe sources and BF 3 counters are situated on either side of the center. A given uranium charge is compared with a specimen charge of about 560 kg, and the difference in absorption between the two noted. The sensitivity of the equipment will detect absorption variations of about a few ppm boron (10 -6 boron per gr. of uranium) or better. (author) [fr

  9. Transitions in nirS-type denitrifier diversity, community composition, and biogeochemical activity along the Chesapeake Bay estuary. (United States)

    Francis, Christopher A; O'Mullan, Gregory D; Cornwell, Jeffrey C; Ward, Bess B


    Chesapeake Bay, the largest estuary in North America, can be characterized as having steep and opposing gradients in salinity and dissolved inorganic nitrogen along the main axis of the Bay. In this study, the diversity of nirS gene fragments (encoding cytochrome cd 1-type nitrite reductase), physical/chemical parameters, and benthic N2-fluxes were analyzed in order to determine how denitrifier communities and biogeochemical activity vary along the estuary salinity gradient. The nirS gene fragments were PCR-amplified, cloned, and sequenced from sediment cores collected at five stations. Sequence analysis of 96-123 nirS clones from each station revealed extensive overall diversity in this estuary, as well as distinct spatial structure in the nirS sequence distributions. Both nirS-based richness and community composition varied among stations, with the most dramatic shifts occurring between low-salinity (oligohaline) and moderate-salinity (mesohaline) sites. For four samples collected in April, the nirS-based richness, nitrate concentrations, and N2-fluxes all decreased in parallel along the salinity gradient from the oligohaline northernmost station to the highest salinity (polyhaline) station near the mouth of the Bay. The vast majority of the 550 nirS sequences were distinct from cultivated denitrifiers, although many were closely related to environmental clones from other coastal and estuarine systems. Interestingly, 8 of the 172 OTUs identified accounted for 42% of the total nirS clones, implying the presence of a few dominant and many rare genotypes, which were distributed in a non-random manner along the salinity gradient of Chesapeake Bay. These data, comprising the largest dataset to investigate nirS clone sequence diversity from an estuarine environment, also provided information that was required for the development of nirS microarrays to investigate the interaction of microbial diversity, environmental gradients, and biogeochemical activity.

  10. Transitions in nirS-type Denitrifier Diversity, Community Composition, and Biogeochemical Activity along the Chesapeake Bay Estuary

    Directory of Open Access Journals (Sweden)

    Christopher A Francis


    Full Text Available Chesapeake Bay, the largest estuary in North America, can be characterized as having steep and opposing gradients in salinity and dissolved inorganic nitrogen along the main axis of the Bay. In this study, the diversity of nirS gene fragments (encoding cytochrome cd1-type nitrite reductase, physical/chemical parameters, and benthic N2-fluxes were analyzed in order to determine how denitrifier communities and biogeochemical activity vary along the estuary salinity gradient. The nirS gene fragments were PCR-amplified, cloned, and sequenced from sediment cores collected at five stations. Sequence analysis of 96 to 123 nirS clones from each station revealed extensive overall diversity in this estuary, as well as distinct spatial structure in the nirS sequence distributions. Both nirS-based richness and community composition varied among stations, with the most dramatic shifts occurring between low-salinity (oligohaline and moderate-salinity (mesohaline sites. For four samples collected in April, the nirS-based richness, nitrate concentrations, and N2-fluxes all decreased in parallel along the salinity gradient from the oligohaline northernmost station to the highest salinity (polyhaline station near the mouth of the Bay. The vast majority of the 550 nirS sequences were distinct from cultivated denitrifiers, although many were closely related to environmental clones from other coastal and estuarine systems. Interestingly, 8 of the 172 OTUs identified accounted for 42% of the total nirS clones, implying the presence of a few dominant and many rare genotypes, which were distributed in a non-random manner along the salinity gradient of Chesapeake Bay. These data, comprising the largest dataset to investigate nirS clone sequence diversity from an estuarine environment, also provided information that was required for the development of nirS microarrays to investigate the interaction of microbial diversity, environmental gradients, and biogeochemical

  11. NIR spectrometry for counterfeit drug detection - A feasibility study

    DEFF Research Database (Denmark)

    Rodionova, O.Y.; Houmøller, Lars P.; Pomerantsev, A.L.


    for mathematical data processing for false drugs detection is demonstrated. Also, multivariate hyperspectral image analysis is applied providing additional diagnostic information. Hyperspectral imaging is becoming a useful diagnostic tool for identifying non-homogeneous spatial regions of drug formulation. Two......Express-methods for detection of counterfeit drugs are of vital necessity. Visual control, dissociating tests or simple color reaction tests reveal only very rough forgeries. The feasibility of information-rich NIR-measurements as an analytical method together with multivariate calibration...... types of drugs are used to demonstrate the applicability of these approaches....

  12. NIRS - Near infrared spectroscopy - investigations in neurovascular diseases

    DEFF Research Database (Denmark)

    Schytz, Henrik Winther


    The purpose of this thesis was to explore and develop methods, where continuous wave near infrared spectroscopy (CW-NIRS) can be applied in different neurovascular diseases, in order to find biological markers that are useful in clinical neurology. To develop a new method to detect changes...... to sympathetic activity was investigated in obstructive sleep apnoea (OSA) patients, who have increased sympathetic activity and risk of stroke. Following successful continuous positive airway pressure (CPAP) therapy, OSA patients decreased their LFOs amplitude, which was interpreted as a marker of decreased...

  13. In situ Vis NIR and Raman spectroelectrochemistry at fullerene peapods (United States)

    Kavan, Ladislav; Dunsch, Lothar; Kataura, Hiromichi


    The population of valence-band electronic states of fullerene peapods (C 60@SWCNT) was tuned electrochemically in acetonitrile solutions. Electrochemistry of peapods was dominated by their capacitive charging without distinct faradaic processes. In situ Vis-NIR spectra of peapods showed similar features as those of empty nanotubes. Electrochemical charging caused reversible bleaching of the transitions between Van Hove singularities. This bleaching was mirrored by quenching of resonance Raman spectra of the tube-related modes. The A g(2) mode of C 60 exhibits considerable intensity increase upon anodic doping of peapods, but this mode is not enhanced at cathodic charging.

  14. [Visible-NIR spectral feature of citrus greening disease]. (United States)

    Li, Xiu-hua; Li, Min-zan; Won Suk, Lee; Reza, Ehsani; Ashish, Ratn Mishra


    Citrus greening (Huanglongbing, or HLB) is a devastating disease caused by Candidatus liberibacter which uses psyllids as vectors. It has no cure till now, and poses a huge threat to citrus industry around the world. In order to diagnose, assess and further control this disease, it is of great importance to first find a quick and effective way to detect it. Spectroscopy method, which was widely considered as a fast and nondestructive way, was adopted here to conduct a preliminary exploration of disease characteristics. In order to explore the spectral differences between the healthy and HLB infected leaves and canopies, this study measured the visible-NIR spectral reflectance of their leaves and canopies under lab and field conditions, respectively. The original spectral data were firstly preprocessed with smoothing (or moving average) and cluster average procedures, and then the first derivatives were also calculated to determine the red edge position (REP). In order to solve the multi-peak phenomenon problem, two interpolation methods (three-point Lagrangian interpolation and four-point linear extrapolation) were adopted to calculate the REP for each sample. The results showed that there were, obvious differences at the visible & NIR spectral reflectance between the healthy and HLB infected classes. Comparing with the healthy reflectance, the HLB reflectance was higher at the visible bands because of the yellowish symptoms on the infected leaves, and lower at NIR bands because the disease blocked water transportation to leaves. But the feature at NIR bands was easily affected by environmental factors such as light, background, etc. The REP was also a potential indicator to distinguish those two classes. The average REP was slowly moving toward red bands while the infection level was getting higher. The gap of the average REPs between the healthy and HLB classes reached to a maximum of 20 nm. Even in the dataset with relatively lower variation, the classification

  15. Enhanced surface structuring by ultrafast XUV/NIR dual action

    Czech Academy of Sciences Publication Activity Database

    Jakubczak, Krzysztof; Mocek, Tomáš; Chalupský, Jaromír; Lee, G.H.; Kim, T.K.; Park, S.B.; Nam, Ch. H.; Hájková, Věra; Toufarová, Martina; Juha, Libor; Rus, Bedřich


    Roč. 13, č. 5 (2011), s. 1-12 ISSN 1367-2630 R&D Projects: GA AV ČR KAN300100702; GA MŠk(CZ) LC528; GA MŠk LA08024; GA ČR GC202/07/J008 Grant - others:AV ČR(CZ) M100100911 Institutional research plan: CEZ:AV0Z10100523 Keywords : XUV beam * ultrafast NIR laser pulses * high-order harmonics * laser-induced periodic surface structures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.177, year: 2011

  16. New NIR Calibration Models Speed Biomass Composition and Reactivity Characterization

    Energy Technology Data Exchange (ETDEWEB)


    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. This highlight describes NREL's work to use near-infrared (NIR) spectroscopy and partial least squares multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  17. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin


    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  18. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.


    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  19. Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper


    We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption.......We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption....

  20. Investigation on optical absorption properties of ion irradiated single walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vishalli,, E-mail:; Dharamvir, Keya, E-mail: [Department of Physics, Panjab University, Chandigarh (India); Kaur, Ramneek; Raina, K. K. [Materials Research Laboratory, School of Physics and Materials Science, Thapar University, Patiala (India); Avasthi, D. K. [Materials Science Group, Inter University Accelerator Centre, ArunaAsaf Ali Marg, NewDelhi (India); Jeet, Kiran [Electron Microscopy and Nanoscience laboratory, Punjab Agriculture University, Ludhiana (India)


    In the present study change in the optical absorption properties of single walled carbon nanotubes (SWCNTs) under nickel ion (60 MeV) irradiation at various fluences has been investigated. Langmuir Blodgett technique is used to deposit SWCNT thin film of uniform thickness. AFM analysis shows a network of interconnected bundles of nanotubes. UV-Vis-NIR absorption spectra indicate that the sample mainly contain SWCNTs of semiconducting nature. It has been found in absorption spectra that there is decrease in the intensity of the characteristic SWCNT peaks with increase in fluence. At fluence value 1×10{sup 14} ions/cm{sup 2} there is almost complete suppression of the characteristic SWCNTs peaks.The decrease in the optical absorption with increase in fluence is due to the increase in the disorder in the system which leads to the decrease in optically active states.

  1. Increasing the optical absorption in a-Si thin films by embedding gold nanoparticles (United States)

    Faraone, Gabriele; Modi, Ritika; Marom, Sarita; Podestà, Alessandro; Di Vece, Marcel


    The light conversion efficiency of traditional a-Si thin-film solar cells is limited by their low optical thicknesses, especially in the NIR. A possible approach to increase the light-trapping efficiency over the entire solar spectral range is to design solar-cell architectures which rely on the optical properties of plasmonic nanocomposite materials. We demonstrate that it is possible to have a controlled Gold nanoparticle optical absorption by varying the thickness of a covering a-Si thin-film. For thick a-Si films the Gold nanoparticle plasmon resonance vanishes likely due to the formation of a silicide. Optical absorption measurements as well as finite difference time-domain (FDTD) simulations were employed to determine the a-Si thickness-dependent optical absorption properties, which demonstrated a significantly increased optical absorption in a-Si.

  2. Revisiting Absorptive Capacity

    DEFF Research Database (Denmark)

    de Araújo, Ana Luiza Lara; Ulhøi, John Parm; Lettl, Christopher

    learning processes of absorptive capacity, which comprise combinative and adaptive capabilities. Drawing on survey data (n=169), the study concludes that combinative capabilities primarily enhance transformative and exploratory learning processes, while adaptive capabilities strengthen all three learning......Absorptive capacity has mostly been perceived as a 'passive' outcome of R&D investments. Recently, however, a growing interest into its 'proactive' potentials has emerged. This paper taps into this development and proposes a dynamic model for conceptualizing the determinants of the complementary...

  3. Infrared differential absorption lidar for stand-off detection of ...

    Indian Academy of Sciences (India)


    Feb 14, 2014 ... S VEERABUTHIRAN, M K JINDAL and R K SHARMA. Lidar and Beam Diagnostics Division, Laser Science & Technology Centre, Delhi ... was tested successfully with diethyl ether (DEE) (a toxic industrial chemical (TIC)) and differential absorption signals at λon (strong absorption, 9R16) and λoff (weak ...

  4. Absorption fluids data survey (United States)

    Macriss, R. A.; Zawacki, T. S.

    Development of improved data for the thermodynamic, transport and physical properties of absorption fluids were studied. A specific objective of this phase of the study is to compile, catalog and coarse screen the available US data of known absorption fluid systems and publish it as a first edition document to be distributed to manufacturers, researchers and others active in absorption heat pump activities. The methodology and findings of the compilation, cataloguing and coarse screening of the available US data on absorption fluid properties and presents current status and future work on this project are summarized. Both in house file and literature searches were undertaken to obtain available US publications with pertinent physical, thermodynamic and transport properties data for absorption fluids. Cross checks of literature searches were also made, using available published bibliographies and literature review articles, to eliminate secondary sources for the data and include only original sources and manuscripts. The properties of these fluids relate to the liquid and/or vapor state, as encountered in normal operation of absorption equipment employing such fluids, and to the crystallization boundary of the liquid phase, where applicable. The actual data were systematically classified according to the type of fluid and property, as well as temperature, pressure and concentration ranges over which data were available. Data were sought for 14 different properties: Vapor-Liquid Equilibria, Crystallization Temperature, Corrosion Characteristics, Heat of Mixing, Liquid-Phase-Densities, Vapor-Liquid-Phase Enthalpies, Specific Heat, Stability, Viscosity, Mass Transfer Rate, Heat Transfer Rate, Thermal Conductivity, Flammability, and Toxicity.

  5. Analysis of powder phenomena inside a Fette 3090 feed frame using in-line NIR spectroscopy. (United States)

    Mateo-Ortiz, Daniel; Colon, Yleana; Romañach, Rodolfo J; Méndez, Rafael


    New analytical methods are needed to understand and optimize the processes by which tablets are produced. Fette 3090 tablet presses are commonly used in the pharmaceutical industry. A near-infrared (NIR) probe was installed into a Fette 3090 feed frame to understand and monitor the die filling process. The second objective was to analyze in detail the different factors that could affect the prediction of the developed NIR calibration models. Two monitoring positions for NIR spectrometers were evaluated; one at each side of the feed frame. A powder wave behavior caused by the paddle motion was observed inside the feed frame. The study also revealed that NIR spectra can help in the understanding of powder flow inside the feed frame. It was demonstrated that NIR spectra baselines can also be used to determine changes in mass inside the feed frame. The new NIR method showed that the paddle wheel speed has a significant impact in the powder dynamics inside the feed frame. The baselines of the NIR spectra depended on the mass hold-up inside the feed frame and paddle wheel speed. Studies using blends were performed to develop a NIR calibration model based on the feed frame system dynamics to determine acetaminophen drug concentration variability during the die filling process. The study found that variation in the distance from the powder to the probe due to paddle wheel speed has a significant effect on the NIR prediction. This study found that with NIR spectroscopy, blend uniformity can be assessed with high accuracy during the die filling process using the corresponding paddle wheel speed in-line calibration model. NIR was demonstrated to be a good development tool for the in-line monitoring of powder during the die filling process. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.


    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  7. Strong interaction and QFD

    International Nuclear Information System (INIS)

    Ebata, T.


    With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)

  8. Quality control of tablets by Near Infrared (NIR)-Spectroscopy. (United States)

    Petri, J; Kaunzinger, A; Niemöller, A; Karas, M


    Today, NIR-spectroscopy is an established analytical technique not only in the identification of raw materials but also in the quantification of active ingredients in tablets. In this work calibration models were set up with tablets of the same active ingredient but of miscellaneous origin and manufacturess. Consequently the tablets had different excipients and appearance. The pharmaceutical preparations used included atenolol 100 mg tablets, enalapril 20 mg tablets and acetylsalicylic acid (ASS) tablets of different dosage units. In order to proof if the calibration models set up are generally feasible the assay declared by the manufacturer was used to calculate the partial least square (PLS) calibration. With respect to enalapril tablets simultaneous analysis by HPLC, according to USP 26 was carried out. It was investigated if such methods allow a determination of active ingredients in tablets within limits of +/- 10% of declaration. It was shown that it is possible to set up calibration models to quantify active ingredients in tablets independent of adjuvants or optical appearance. Additionally it could be shown that NIR-spectroscopy is also applicable to determine the concentration of active ingredients in blister-packed tablets.

  9. Predicting pork quality using Vis/NIR spectroscopy. (United States)

    Balage, Juliana Monteiro; da Luz E Silva, Saulo; Gomide, Catarina Abdalla; Bonin, Marina de Nadai; Figueira, Ana Cristina


    Visible and near-infrared reflectance spectroscopy (Vis/NIRS) was used to predict the ultimate pH (pHu), color, intramuscular fat (IMF) and shear force (WBSF) of pork samples and to build classifiers capable of categorizing the samples by tenderness (tender or tough) and juiciness (juicy and dry). Spectra were collected from 400 to 1495nm, and 200 data points were generated for every sample (n=134). Sixty-seven percent of the sample set was used for calibration, and 33% was used for validation. Partial least squares (PLS) calibration models were developed for each characteristic measured. A coefficient of determination (R(2)) and residual prediction deviation (RPD) were used to evaluate the accuracy of the calibration models. The pHu and color prediction models developed in this study fit this classification, indicating that these predictive models can be used to predict quality traits of intact pork samples. The Vis/NIRS offered great potential for correctly classifying pork Longissimus into two tenderness and two juiciness classes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. VIS/NIR imaging application for honey floral origin determination (United States)

    Minaei, Saeid; Shafiee, Sahameh; Polder, Gerrit; Moghadam-Charkari, Nasrolah; van Ruth, Saskia; Barzegar, Mohsen; Zahiri, Javad; Alewijn, Martin; Kuś, Piotr M.


    Nondestructive methods are of utmost importance for honey characterization. This study investigates the potential application of VIS-NIR hyperspectral imaging for detection of honey flower origin using machine learning techniques. Hyperspectral images of 52 honey samples were taken in transmittance mode in the visible/near infrared (VIS-NIR) range (400-1000 nm). Three different machine learning algorithms were implemented to predict honey floral origin using honey spectral images. These methods, included radial basis function (RBF) network, support vector machine (SVM), and random forest (RF). Principal component analysis (PCA) was also exploited for dimensionality reduction. According to the obtained results, the best classifier (RBF) achieved a precision of 94% in a fivefold cross validation experiment using only the first two PCs. Mapping of the classifier results to the test set images showed 90% accuracy for honey images. Three types of honey including buckwheat, rapeseed and heather were classified with 100% accuracy. The proposed approach has great potential for honey floral origin detection. As some other honey properties can also be predicted using image features, in addition to floral origin detection, this method may be applied to predict other honey characteristics.

  11. Use of FT-NIR Spectroscopy for Bovine Colostrum Analysis

    Directory of Open Access Journals (Sweden)

    P. Navrátilová


    Full Text Available Fourier transformation near infrared spectroscopy (FT-NIR in combination with partial least squares (PLS method were used to determine the content of total solids, fat, non-fatty solids, lactose and proteins in bovine colostrum. Spectra of 90 samples were measured in the reflectance mode with a transflectance cuvette in the 10000-4000 cm-1 spectral ranges with 100 scans. Calibration was performed and statistical values of correlation coefficients (R and standard error of calibration values (SEC were computed for total solids (0.986 and 0.919, respectively, fat (0.997 and 0.285, respectively, non-fatty solids (0.995 and 0.451, respectively, lactose (0.934 and 0.285, respectively and protein (0.999 and 0.149, respectively. The calibration models developed were verified by cross validation. It follows from the study that FT-NIR spectroscopy can be used to determine the components of bovine colostrum.

  12. NIR-light triggered delivery of macromolecules into the cytosol. (United States)

    Carregal-Romero, Susana; Ochs, Markus; Rivera-Gil, Pilar; Ganas, Carolin; Pavlov, Anton M; Sukhorukov, Gleb B; Parak, Wolfgang J


    Light-responsive microcapsules constructed by layer-by-layer self-assembly are used as microcarriers to deliver different macromolecules inside cells. The microcapsules carry the macromolecules as cargo in their cavity, while their walls are modified with agglomerated gold nanoparticles. Microcapsules are incorporated by living cells and are then located in lysosomal compartments. Controlled release of the encapsulated material from the interior of the capsule to the cytosol is possible upon NIR-light irradiation. This is based on local heating of the gold nanoparticles upon NIR light and disruption of the capsule wall, what results on release of encapsulated materials. We illustrate several key advances in controlled release induced by light. First, we demonstrate that capsules can be opened individually, which allows for sequentially releasing cargo from different capsules within one single cell. Second, by using a pH-indicator as cargo the claim of release from the acidic lysosomal compartments to the neutral cytosol is experimentally evident which until now has been only speculated. Third, green fluorescent protein (GFP) is released to the cytosol while retaining its functionality. This demonstrates that proteins can be released without destruction by the local heating. Fourth, GFP is also administered in biodegradable capsules, which leads to a different release mechanism compared to externally triggering for light-responsive microcapsules. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Probing Shock Compressed Silicon Metallization using VIS/NIR Reflectivity (United States)

    Ali, S. J.; Bolme, C.; Jeanloz, R.; Collins, G. W.


    Broadband reflectivity measurements provide detailed information about the optical and electronic properties of shocked matter, complementing other spectroscopic techniques and increasing the accuracy of pyrometric measurements, which is vital for improving models of planetary cores. A time resolved broadband VIS/NIR reflectivity diagnostic was constructed and used to observe the metallization of shock compressed single crystal silicon phase at Jupiter Laser Facility at Lawrence Livermore National Lab. Silicon is the second most abundant element in the Earth's crust and was considered to be an excellent candidate for initial testing of this diagnostic due to accessible phase changes that should result in dramatic increases in reflectivity. A 50-100 fs 800 nm pulse was first sent through a pulse stacker and then an intense white light pulse with wavelengths from ~400 nm to ~1200 nm was generated by focusing the stacked pulses into a water cell. The white light pulses were then sent into the chamber and reflected from the target surface. The reflected light was dispersed using a custom spectrometer which was coupled to a streak camera. On transition to the higher pressure phase a dramatic increase in reflectivity was observed in the NIR, and to a lesser extent in the visible. This is congruent with the decrease in resistivity that accompanies closure of the silicon band gap and metallization.

  14. Miniature near-infrared (NIR) spectrometer engine for handheld applications (United States)

    O'Brien, Nada A.; Hulse, Charles A.; Friedrich, Donald M.; Van Milligen, Fred J.; von Gunten, Marc K.; Pfeifer, Frank; Siesler, Heinz W.


    While substantial progress has been made recently towards the miniaturization of Raman, mid-infrared (IR), and near-infrared (NIR) spectrometers, there remains continued interest from end-users and product developers in pushing the technology envelope toward even smaller and lower cost analyzers. The potential of these instruments to revolutionize on-site and on-line applications can only be realized if the reduction in size does not compromise performance of the spectrometer beyond the practical need of a given application. In this paper, the working principle of a novel, extremely miniaturized NIR spectrometer will be presented. The ultra-compact spectrometer relies on thin-film linear variable filter (LVF) technology for the light dispersing element. We will also report on an environmental study whereby the contamination of soil by oil is determined quantitatively in the range of 0-12% by weight of oil contamination. The achieved analytical results will be discussed in terms of the instrument's competitiveness and suitability for on-site and in-the-field measurements.

  15. NIR photoacoustic spectroscopy for non-invasive glucose measurement. (United States)

    Pai, Praful P; Kumar Sanki, Pradyut; De, Arijit; Banerjee, Swapna


    The use of near infra red (NIR) photoacoustic spectroscopy (PAS) for continuous non-invasive glucose measurement is outlined in the paper. A photoacoustic (PA) measurement apparatus was constructed and PA measurements were made on glucose solutions at multiple NIR excitation wavelengths. A variety of time and frequency domain features, including amplitude and area based features, were extracted from the PA measurements. These features were observed to be proportional to the glucose concentration of the sample. PA measurements from samples of whole blood at different glucose concentrations showed similar results. Subsequently, in vivo PA measurements made on a cohort of 30 volunteers were calibrated using a quadratic fit, and the results were compared to reference glucose concentrations made using a regular blood glucose meter. A comparison of 196 measurement pairs of predicted and reference glucose concentrations using a Clarke Error Grid gave a point distribution of 87.24% and 12.76% over zones A and B of the grid, with no measurement pairs falling in unacceptable zones C-E of the error grid. The predicted measurements had a mean absolute difference (MAD) of 12.57 ± 13.90 mg/dl and a mean absolute relative difference (MARD) of 9.61% ± 10.55%. This is an improvement over previous results obtained using PAS and other non-invasive techniques, validating the potential of PAS for continuous noninvasive glucose monitoring.

  16. Infrared and NIR Raman spectroscopy in medical microbiology (United States)

    Naumann, Dieter


    FTIR and FT-NIR Raman spectra of intact microbial cells are highly specific, fingerprint-like signatures which can be used to (i) discriminate between diverse microbial species and strains, (ii) detect in situ intracellular components or structures such as inclusion bodies, storage materials or endospores, (iii) detect and quantify metabolically released CO2 in response to various different substrate, and (iv) characterize growth-dependent phenomena and cell-drug interactions. The characteristic information is extracted from the spectral contours by applying resolution enhancement techniques, difference spectroscopy, and pattern recognition methods such as factor-, cluster-, linear discriminant analysis, and artificial neural networks. Particularly interesting applications arise by means of a light microscope coupled to the spectrometer. FTIR spectra of micro-colonies containing less than 103 cells can be obtained from colony replica by a stamping technique that transfers micro-colonies growing on culture plates to a special IR-sample holder. Using a computer controlled x, y- stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro- organisms can be integrated in one single apparatus. FTIR and NIR-FT-Raman spectroscopy can also be used in tandem to characterize medically important microorganisms. Currently novel methodologies are tested to take advantage of the complementary information of IR and Raman spectra. Representative examples on medically important microorganisms will be given that highlight the new possibilities of vibrational spectroscopies.

  17. Absorption cooling device. Absorptions-Kuehlvorrichtung

    Energy Technology Data Exchange (ETDEWEB)

    Bourne, J.; Vardi, I.; Kimchi, Y.; Ben-Dror, J.


    The invention concerns improvements of absorption refrigerators, where a lithium chloride or lithium bromide/water cycle is used. According to the invention an inner separating or dividing structure between different functional parts of a machine of this type is provided. The structure contains two sections of wall, which are separated from one another by a suitable space, in order to achieve thermal insulation. This air space is provided with an opening in the direction towards the inside of the container and the opening is shielded to prevent the entry of liquids (in liquid or spray form).

  18. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia


    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  19. THz induced nonlinear absorption in ZnTe

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Jepsen, Peter Uhd


    Absorption spectra of ZnTe during strong-field THz interaction are investigated. Bleaching of the difference phonon modes below the fundamental TO mode is observed when field strengths higher than 4 MV/cm are applied.......Absorption spectra of ZnTe during strong-field THz interaction are investigated. Bleaching of the difference phonon modes below the fundamental TO mode is observed when field strengths higher than 4 MV/cm are applied....

  20. Recovering fNIRS brain signals: physiological interference suppression with independent component analysis (United States)

    Zhang, Y.; Shi, M.; Sun, J.; Yang, C.; Zhang, Yajuan; Scopesi, F.; Makobore, P.; Chin, C.; Serra, G.; Wickramasinghe, Y. A. B. D.; Rolfe, P.


    Brain activity can be monitored non-invasively by functional near-infrared spectroscopy (fNIRS), which has several advantages in comparison with other methods, such as flexibility, portability, low cost and fewer physical restrictions. However, in practice fNIRS measurements are often contaminated by physiological interference arising from cardiac contraction, breathing and blood pressure fluctuations, thereby severely limiting the utility of the method. Hence, further improvement is necessary to reduce or eliminate such interference in order that the evoked brain activity information can be extracted reliably from fNIRS data. In the present paper, the multi-distance fNIRS probe configuration has been adopted. The short-distance fNIRS measurement is treated as the virtual channel and the long-distance fNIRS measurement is treated as the measurement channel. Independent component analysis (ICA) is employed for the fNIRS recordings to separate the brain signals and the interference. Least-absolute deviation (LAD) estimator is employed to recover the brain activity signals. We also utilized Monte Carlo simulations based on a five-layer model of the adult human head to evaluate our methodology. The results demonstrate that the ICA algorithm has the potential to separate physiological interference in fNIRS data and the LAD estimator could be a useful criterion to recover the brain activity signals.

  1. The role of cell hydration in realization of biological effects of non-ionizing radiation (NIR). (United States)

    Ayrapetyan, Sinerik


    The weak knowledge on the nature of cellular and molecular mechanisms of biological effects of NIR such as static magnetic field, infrasound frequency of mechanical vibration, extremely low frequency of electromagnetic fields and microwave serves as a main barrier for adequate dosimetry from the point of Public Health. The difficulty lies in the fact that the biological effects of NIR depend not only on their thermodynamic characteristics but also on their frequency and intensity "windows", chemical and physical composition of the surrounding medium, as well as on the initial metabolic state of the organism. Therefore, only biomarker can be used for adequate estimation of biological effect of NIR on organisms. Because of the absence of such biomarker(s), organizations having the mission to monitor hazardous effects of NIR traditionally base their instruction on thermodynamic characteristics of NIR. Based on the high sensitivity to NIR of both aqua medium structure and cell hydration, it is suggested that cell bathing medium is one of the primary targets and cell hydration is a biomarker for NIR effects on cells and organisms. The purpose of this article is to present a short review of literature and our own experimental data on the effects of NIR on plants' seeds germination, microbe growth and development, snail neurons and heart muscle, rat's brain and heart tissues.

  2. Single seed NIR as a fast method to predict germination ability in Pak Choi

    DEFF Research Database (Denmark)

    Gislum, René; Deleuran, Lise Christina; Olesen, Merete Halkjær


    Single seed NIR has further been tested to determine the applicability for prediction of seed viability in radish (Raphanus sativus L.) seeds and spinach (Spinacia oleracea L.) seeds. The studies show the possibility of using NIR spectroscopy in a seed separating process in the future, provided...

  3. The use of near infrared spectroscopy (NIRS) to predict the chemical ...

    African Journals Online (AJOL)

    The wet chemical analysis of feed samples is time consuming and expensive. Near infrared spectroscopy (NIRS) was developed as a rapid technique to predict the chemical composition of feeds. The prediction of accuracy of NIRS relies heavily on obtaining a calibration set which represents the variation in the main ...

  4. A New Framework for the Assessment of Cerebral Hemodynamics Regulation in Neonates Using NIRS

    NARCIS (Netherlands)

    Caicedo, Alexander; Alderliesten, Thomas; Naulaers, Gunnar; Lemmers, Petra; van Bel, Frank; Van Huffel, Sabine


    We present a new framework for the assessment of cerebral hemodynamics regulation (CHR) in neonates using near-infrared spectroscopy (NIRS). In premature infants, NIRS measurements have been used as surrogate variables for cerebral blood flow (CBF) in the assessment of cerebral autoregulation (CA).

  5. Authentication of Tunisian virgin olive oils by chemometric analysis of fatty acid compositions and NIR spectra. Comparison with Maghrebian and French virgin olive oils. (United States)

    Laroussi-Mezghani, S; Vanloot, P; Molinet, J; Dupuy, N; Hammami, M; Grati-Kamoun, N; Artaud, J


    Six Tunisian virgin olive oil (VOO) varieties, Chemlali Sfax, Chetoui, Chemchali, Oueslati, Zarrazi and Zalmati, were characterised by two analytical methods. The gas chromatography allowed the determination of 14 fatty acids and squalene amounts. With fatty acids of each variety, a characteristic "morphotypes" for each oil variety was established. Chemlali Sfax and Zalmati showed strong similarities. Gas chromatography of fatty acid methyl esters (FAME) and near infrared (NIR) spectra of oils, associated to chemometric treatment, allowed the study of the inter-varietal variability and the verification of the variety origins of some Tunisian commercial VOOs. The specificity of Tunisian VOOs was evaluated by comparing the samples to Algerian, Moroccan and French Protected Designation of Origin VOOs. Classification in varietal origins by SIMCA used the FAME compositions and NIR spectra of the most represented varieties (Chemlali Sfax, Chetoui and Oueslati) showed a high potential to authenticate the varietal origin of Tunisian VOOs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Charged states of α,ω-dicyano β,β'-dibutylquaterthiophene as studied by in situ ESR UV-vis NIR spectroelectrochemistry. (United States)

    Haubner, Kinga; Tarábek, Ján; Ziegs, Frank; Lukeš, Vladimír; Jaehne, Evelin; Dunsch, Lothar


    The influence of the molecular structure on the stabilization of charged states was studied in detail by in situ ESR UV-vis NIR spectroelectrochemistry at a novel α,ω-dicyano substituted β,β'-dibutylquaterthiophene (DCNDBQT) and the electrochemically generated cation and anion radicals have been proved for the first time. The voltammetry of DCNDBQT results in two separate oxidation steps with the reversible first one. The experimental absorption maxima at 646 and 1052 nm together with the calculated ones (by DFT method) as well as an ESR signal at the first anodic step prove the presence of a radical cation. Three additional optical bands (554, 906, and 1294 nm for CT-transition) can be attributed to the formation of cation radical dimer. The dicationic structure formed in the second oxidation step is not stable. The stabilization proceeds via a dimer formation in two chemical follow-up reactions. The existence of the dimeric structures was proved by ex situ MALDI TOF mass spectrometry. As the substitution by cyano groups opens the route to cathodic reductions, DCNDBQT shows a single quasi-reversible reduction step. Here, the in situ ESR UV-vis NIR spectroelectrochemical measurements and theoretical calculations let us confirm the electrochemical generation of an anion radical. As we found a low number of anion radicals by quantitative ESR spectroelectrochemistry and an appearance of additional bands in the UV-vis NIR absorption spectra, the formation of dimeric structures must be considered and was corroborated by mass spectrometry. The role of dimerization in the reaction mechanism of the DCNDBQT oxidation and reduction are discussed in general. The experimental results were interpreted using the quantum chemical calculations based on density functional theory.

  7. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso


    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  8. Strongly interacting photons and atoms

    International Nuclear Information System (INIS)

    Alge, W.


    This thesis contains the main results of the research topics I have pursued during the my PhD studies at the University of Innsbruck and partly in collaboration with the Institut d' Optique in Orsay, France. It is divided into three parts. The first and largest part discusses the possibility of using strong standing waves as a tool to cool and trap neutral atoms in optical cavities. This is very important in the field of nonlinear optics where several successful experiments with cold atoms in cavities have been performed recently. A discussion of the optical parametric oscillator in a regime where the nonlinearity dominates the evolution is the topic of the second part. We investigated mainly the statistical properties of the cavity output of the three interactive cavity modes. Very recently a system has been proposed which promises fantastic properties. It should exhibit a giant Kerr nonlinearity with negligible absorption thus leading to a photonic turnstile device based on cold atoms in cavity. We have shown that this model suffers from overly simplistic assumptions and developed several more comprehensive approaches to study the behavior of this system. Apart from the division into three parts of different contents the thesis is divided into publications, supplements and invisible stuff. The intention of the supplements is to reach researchers which work in related areas and provide them with more detailed information about the concepts and the numerical tools we used. It is written especially for diploma and PhD students to give them a chance to use the third part of our work which is actually the largest one. They consist of a large number of computer programs we wrote to investigate the behavior of the systems in parameter regions where no hope exists to solve the equations analytically. (author)

  9. A two-photon NIR-to-NIR fluorescent probe for imaging hydrogen peroxide in living cells. (United States)

    Li, Haidong; Yao, Qichao; Fan, Jiangli; Du, Jianjun; Wang, Jingyun; Peng, Xiaojun


    Hydrogen peroxide (H 2 O 2 ), one of the reactive oxygen species (ROS), plays vital roles in diverse physiological processes. Imbalance of the H 2 O 2 is concerned with serious diseases such as cardiovascular disorders, neurodegenerative diseases, Alzheimer's disease and cancer. Therefore, it is critical to develop efficient methods for monitoring H 2 O 2 in vivo. In this work, a two-photon excitation (860nm) NIR fluorescent turn-on probe TPNR-H 2 O 2 for H 2 O 2 based on Dicyanomethylene-4H-pyran fluorophore is reported, which can be used in solution detection with 13.2-fold NIR fluorescence enhancement, fast response (completed within 40min), excellent sensitivity (DL 72.48nM), and lower cellular auto-fluorescence interference. Importantly, the perfect photostability of TPNR-H 2 O 2 clearly demonstrated that the probe could be applied to imaging intracellular H 2 O 2 for a long time without photobleaching. In addition, through two-photon imaging, this probe was cell permeable and used to monitor the level of endogenous and exogenous H 2 O 2 with promising biological application. Copyright © 2017. Published by Elsevier B.V.

  10. Vitamin A absorption

    International Nuclear Information System (INIS)

    Baker, S.J.


    Investigation of the absorption of vitamin A and related substances is complicated by the multiplicity of forms in which they occur in the diet and by the possibility that they may be subject to different mechanisms of absorption. Present knowledge of these mechanisms is inadequate, especially in the case of carotenoids. Numerous tests of absorption have been developed. The most common has been the biochemical measurement of the rise in plasma vitamin A after an oral dose of retinol or retinyl ester, but standardization is inadequate. Radioisotope tests based upon assay of serum or faecal activity following oral administration of tritiated vitamin A derivaties hold considerable promise, but again standardization is inadequate. From investigations hitherto performed it is known that absorption of vitamin A is influenced by several diseases, although as yet the consistency of results and the correlation with other tests of intestinal function have often been poor. However, the test of vitamin A absorption is nevertheless of clinical importance as a specialized measure of intestinal function. (author)

  11. Using Vis-NIR spectroscopy for monitoring temporal changes of soil organic carbon

    DEFF Research Database (Denmark)

    Deng, Fan; Minasny, Budiman; Knadel, Maria


    Monitoring the spatial and temporal changes in soil organic carbon (SOC) brought about by climate change and agricultural practices is challenging because existing SOC monitoring methods are very time and resource consuming. This study examined the use of visible near-infrared spectroscopy (Vis-NIR...... Bayesian Kriging was used to map SOC. The Vis-NIR predictions indicated that average topsoil and subsoil SOC had decreased slightly in Denmark from 1986 to 2009, and this was confirmed by TL measurements of SOC. In East Denmark, Vis-NIR predictions differed significantly from the measured SOC values....... For subsoil samples, the ability of Vis-NIR to predict SOC levels varied. In West Jutland, Central Jutland, North Jutland, and Thy, Vis-NIR-predicted SOC levels did not differ from TL-measured levels, showing good predictive ability. For topsoil samples, the spatial pattern of change in TL...

  12. Linear regression models and k-means clustering for statistical analysis of fNIRS data. (United States)

    Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro


    We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets.

  13. Gold/Chitosan Nanocomposites with Specific Near Infrared Absorption for Photothermal Therapy Applications

    Directory of Open Access Journals (Sweden)

    Guandong Zhang


    Full Text Available Gold/chitosan nanocomposites were synthesized and evaluated as a therapeutic agent for the photothermal therapy. Gold nanoparticles (Au NPs with controllable optical absorption in the near infrared (NIR region were prepared by the reaction of chloroauric acid and sodium thiosulfate. To apply these particles to cancer therapy, the bare Au NPs were coated with chitosan (CS, O-carboxymethyl chitosan (CMCS, and a blend of CS and CMCS for utilizations in physiologic conditions. The surface properties, optical stability, and photothermal ablation efficiency on hepatocellular carcinoma cells (HepG2 and human dermal fibroblast cells (HDF demonstrate that these gold nanocomposites have great potential as a therapeutic agent in in vitro tests. The CS-coated nanocomposites show the highest efficiency for the photo-ablation on the HepG2 cells, and the CS and CMCS blended coated particles show the best discrimination between the cancer cell and normal cells. The well-controlled NIR absorption and the biocompatible surface of these nanocomposites allow low-power NIR laser activation and low-dosage particle injection for the cancer cell treatment.

  14. Isolation, genetic and functional characterization of novel soil nirK-type denitrifiers. (United States)

    Falk, Silke; Liu, Binbin; Braker, Gesche


    Denitrification, the reduction of nitrogen oxides (NO(3)(-) and NO(2)(-)) to N(2) via the intermediates NO and N(2)O, is crucial for nitrogen turnover in soils. Cultivation-independent approaches that applied nitrite reductase genes (nirK/nirS) as marker genes to detect denitrifiers showed a predominance of genes presumably derived from as yet uncultured organisms. However, the phylogenetic affiliation of these organisms remains unresolved since the ability to denitrify is widespread among phylogenetically unrelated organisms. In this study, denitrifiers were cultured using a strategy to generally enrich soil microorganisms. Of 490 colonies screened, eight nirK-containing isolates were phylogenetically identified (16S rRNA genes) as members of the Rhizobiales. A nirK gene related to a large cluster of sequences from uncultured bacteria mainly retrieved from soil was found in three isolates classified as Bradyrhizobium sp. Additional isolates were classified as Bradyrhizobium japonicum and Bosea sp. that contained nirK genes also closely related to the nirK from these strains. These isolates denitrified, albeit with different efficiencies. In Devosia sp., nirK was the only denitrification gene detected. Two Mesorhizobium sp. isolates contained a nirK gene also related to nirK from cultured Mesorhizobia and uncultured soil bacteria but no gene encoding nitric oxide or nitrous oxide reductase. These isolates accumulated NO under nitrate-reducing conditions without growth, presumably due to the lethal effects of NO. This showed the presence of a functional nitrite reductase but lack of a nitric oxide reductase. In summary, similar nirK genotypes recurrently detected mainly in soils likely originated from Rhizobia, and functional differences were presumably strain-dependent. Copyright © 2010 Elsevier GmbH. All rights reserved.

  15. Visible and infrared absorption spectra of covering materials for solar collectors

    International Nuclear Information System (INIS)

    Pelece, I.


    Use of solar energy increases every year. In Latvia, solar energy is used mainly by solar collectors. The main part of the solar collector is the absorber, but not less important is the covering material which protects the absorber from the cooling impact of the wind. This cover must be transparent for solar radiation, but opaque for thermal radiation of the absorber, which is at greater wavelengths. Therefore it is important to measure absorption spectra of possible covering materials at visible and infrared wavelength ranges. Absorption spectra have been measured for several materials: glass, polythene, Plexiglas, and cells Plexiglas. Absorption spectra for all these materials are measured in three ranges: ultraviolet-visible (UV-VIS): 250-1000 nm; near infrared (NIR): 700-110 nm; infrared (IR): 1200-8000 nm. UV-VIS spectra with the 'Ocean Optics' device HR-4000 have been measured, but NIR and IR - with 'Bruker' Furje spectrometer EQUINOX 55. Evaluation of absorption spectra showed that the most suitable material (from the considered) for covering of solar collectors is Plexiglas

  16. Gastrointestinal absorption of plutonium

    International Nuclear Information System (INIS)

    Larsen, R.P.; Oldham, R.D.; Bhattacharyya, M.H.; Moretti, E.S.; Austin, D.J.


    An investigation has been made of the effect of the oxidation state of plutonium on its absorption from the gastrointestinal tract. For mice and rats that have been starved prior to gastrointestinal administration, there is no significant difference between the absorption factors for Pu(IV) and Pu(VI). The value obtained for Pu(VI) is an order of magnitude lower than that reported previously. The value obtained for Pu(IV) is two orders of magnitude higher than those reported previously for nitrate solutions and the same as those reported for citrate solutions

  17. Quantum Absorption Refrigerator (United States)

    Levy, Amikam; Kosloff, Ronnie


    A quantum absorption refrigerator driven by noise is studied with the purpose of determining the limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously to hot, cold, and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics. The third law is quantified; the cooling power Jc vanishes as Jc∝Tcα, when Tc→0, where α=d+1 for dissipation by emission and absorption of quanta described by a linear coupling to a thermal bosonic field, where d is the dimension of the bath.

  18. John Strong (1941 - 2006)

    CERN Multimedia

    Wickens, F

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

  19. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim


    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  20. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.


    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  1. Filtering natural light at the greenhouse covering - better greenhouse climate and higher production by filtering out NIR?

    NARCIS (Netherlands)

    Hemming, S.; Kempkes, F.; Braak, van der N.; Dueck, T.A.; Marissen, A.


    Wageningen UR investigated the potentials of several NIR-filtering methods to be applied in Dutch horticulture. NIR-filtering can be done by the greenhouse covering or by internal or external moveable screens. The objective of this investigation was to quantify the effect of different NIR-filtering

  2. Comparison of NIR chemical imaging with conventional NIR, Raman and ATR-IR spectroscopy for quantification of furosemide crystal polymorphs in ternary powder mixtures. (United States)

    Schönbichler, S A; Bittner, L K H; Weiss, A K H; Griesser, U J; Pallua, J D; Huck, C W


    The aim of this study was to evaluate the ability of near-infrared chemical imaging (NIR-CI), near-infrared (NIR), Raman and attenuated-total-reflectance infrared (ATR-IR) spectroscopy to quantify three polymorphic forms (I, II, III) of furosemide in ternary powder mixtures. For this purpose, partial least-squares (PLS) regression models were developed, and different data preprocessing algorithms such as normalization, standard normal variate (SNV), multiplicative scatter correction (MSC) and 1st to 3rd derivatives were applied to reduce the influence of systematic disturbances. The performance of the methods was evaluated by comparison of the standard error of cross-validation (SECV), R(2), and the ratio performance deviation (RPD). Limits of detection (LOD) and limits of quantification (LOQ) of all methods were determined. For NIR-CI, a SECVcorr-spec and a SECVsingle-pixel corrected were calculated to assess the loss of accuracy by taking advantage of the spatial information. NIR-CI showed a SECVcorr-spec (SECVsingle-pixel corrected) of 2.82% (3.71%), 3.49% (4.65%), and 4.10% (5.06%) for form I, II, III. NIR had a SECV of 2.98%, 3.62%, and 2.75%, and Raman reached 3.25%, 3.08%, and 3.18%. The SECV of the ATR-IR models were 7.46%, 7.18%, and 12.08%. This study proves that NIR-CI, NIR, and Raman are well suited to quantify forms I-III of furosemide in ternary mixtures. Because of the pressure-dependent conversion of form II to form I, ATR-IR was found to be less appropriate for an accurate quantification of the mixtures. In this study, the capability of NIR-CI for the quantification of polymorphic ternary mixtures was compared with conventional spectroscopic techniques for the first time. For this purpose, a new way of spectra selection was chosen, and two kinds of SECVs were calculated to achieve a better comparability of NIR-CI to NIR, Raman, and ATR-IR. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Ultrafast Coherent Absorption in Diamond Metamaterials. (United States)

    Karvounis, Artemios; Nalla, Venkatram; MacDonald, Kevin F; Zheludev, Nikolay I


    Diamond is introduced as a material platform for visible/near-infrared photonic metamaterials, with a nanostructured polycrystalline diamond metasurface only 170 nm thick providing an experimental demonstration of coherent light-by-light modulation at few-optical-cycle (6 fs) pulse durations. "Coherent control" of absorption in planar (subwavelength-thickness) materials has emerged recently as a mechanism for high-contrast all-optical gating, with a speed of response that is limited only by the spectral width of the absorption line. It is shown here that a free-standing diamond membrane structured by focused ion beam milling can provide strong, spectrally near-flat absorption over a visible to near-infrared wavelength range that is wide enough (wider than is characteristically achievable in plasmonic metal metasurfaces) to facilitate coherent modulation of ultrashort optical pulses comprising only a few oscillations of electromagnetic field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L


    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  5. Strong near-infrared luminescence in BaSnO3. (United States)

    Mizoguchi, Hiroshi; Woodward, Patrick M; Park, Cheol-Hee; Keszler, Douglas A


    Powdered samples of the perovskite BaSnO(3) exhibit strong near-infrared (NIR) luminescence at room temperature, following band-gap excitation at 380 nm (3.26 eV). The emission spectrum is characterized by a broad band centered at 905 nm (1.4 eV), tailing on the high-energy side to approximately 760 nm. The Stokes shift is 1.9 eV, and measured lifetimes in the range 7-18 ms depend on preparative conditions. These extraordinary long values indicate that the luminescence involves a defect state(s). At low temperatures, both a sharp peak and a broad band appear in the visible portion of the luminescence spectrum at approximately 595 nm. Upon cooling, the intensity of the NIR emission decreases, while the integrated intensities of the visible emission features increase to approximately 40% of the NIR intensity at 77 K. Room-temperature photoluminescence (PL) is observed across the Ba(1-x)Sr(x)SnO(3) series. As the strontium content increases, the excitation maximum and band gap shift further into the UV, while the intensity of the NIR emission peak decreases and shifts further into the infrared. This combination leads to an unexpectedly large increase in the Stokes shift. The unusual NIR PL in BaSnO(3) may originate from recombination of a photogenerated valence-band hole and an occupied donor level, probably associated with a Sn(2+) ion situated roughly 1.4 eV above the valence-band edge.

  6. Classification of maize kernels using NIR hyperspectral imaging

    DEFF Research Database (Denmark)

    Williams, Paul; Kucheryavskiy, Sergey V.


    NIR hyperspectral imaging was evaluated to classify maize kernels of three hardness categories: hard, medium and soft. Two approaches, pixel-wise and object-wise, were investigated to group kernels according to hardness. The pixel-wise classification assigned a class to every pixel from individual...... kernels and did not give acceptable results because of high misclassification. However by using a predefined threshold and classifying entire kernels based on the number of correctly predicted pixels, improved results were achieved (sensitivity and specificity of 0.75 and 0.97). Object-wise classification...... was performed using two methods for feature extraction — score histograms and mean spectra. The model based on score histograms performed better for hard kernel classification (sensitivity and specificity of 0.93 and 0.97), while that of mean spectra gave better results for medium kernels (sensitivity...

  7. A beam energy measurement system at NIRS-930 cyclotron

    International Nuclear Information System (INIS)

    Hojo, S.; Honma, T.; Sakamoto, Y.; Miyahara, N.; Okada, T.; Komatsu, K.; Tsuji, N.; Yamada, S.


    A beam energy measurement system employing a set of capacitive probes has been developed at NIRS-930 cyclotron. Principle of the measurement is applying a modified-TOF method, so that the two proves are installed at one of the straight section in the beam transport line. Usually they are separated about 5.8 m, which is equivalent to the almost final path length of the beam extracted in the cyclotron. In the measurement, two beam signals are superimposed by adjusting a position of the downstream-probe along the beam direction with watching an oscilloscope screen roughly. In order to determine the beam energy accurately the signals are processed by MCA with suitable electric module. (author)

  8. Rapid NIR determination of alkyl esters in virgin olive oil

    International Nuclear Information System (INIS)

    Cayuela, J.A.


    The regulation of The European Union for olive oil and olive pomace established the limit of 35 mg·kg-1 for fatty acids ethyl ester contents in extra virgin olive oils, from grinding seasons after 2016. In this work, predictive models have been established for measuring fatty acid ethyl and methyl esters and to measure the total fatty acid alkyl esters based on near infrared spectroscopy (NIRS), and used successfully for this purpose. The correlation coefficients from the external validation exercises carried out with these predictive models ranged from 0.84 to 0.91. Different classification tests using the same models for the thresholds 35 mg·kg-1 for fatty acid ethyl esters and 75 mg·kg-1 for fatty acid alkyl esters provided success percentages from 75.0% to 95.2%. [es

  9. SIR - 2: The NIR Spectrometer for the Chandrayaan-1 Mission (United States)

    Mall, U.; Nathues, A.; Keller, H. U.; SIR-2 Science Team


    SIR-2 is an upgraded, compact grating, near-infrared spectrometer, which covers the wave-length range between 0.9 and 2.45 μ m, with a spectral resolution of Δ λ pixel = 6 nm. SIR-2 has been chosen to fly on board the Indian mission Chandrayan-1 in 2007-2009. SIR-2, which will benefit from its heritage of SIR on SMART-1, will deliver, compared to SMART-1, a homogenous lunar surface coverage with unsurpassed spatial resolution and thus will greatly improve our knowledge of the lunar surface composition. The SIR-2 NIR data, combined with the hyperspectral data from the HySI instrument on Chandrayaan-1, will provide, for the first time, a full spectral coverage of the olivine and large part of the pyroxen bands, thus allowing one to extract from the data the necessary input parameters for the mineralogical mixing models. We present the SIR-2 design and discuss the potential science.

  10. Screening of grated cheese authenticity by nir spectroscopy

    Directory of Open Access Journals (Sweden)

    Chiara Cevoli


    Full Text Available Parmigiano–Reggiano (PR cheese is one of the oldest traditional cheeses produced in Europe, and it is still one of the most valuable Protected Designation of Origin (PDO cheeses of Italy. The denomination of origin is extended to the grated cheese when manufactured exclusively from whole Parmigiano-Reggiano cheese wheels that respond to the production standard. The grated cheese must be matured for a period of at least 12 months and characterized by a rind content not over 18%. In this investigation the potential of near infrared spectroscopy (NIR, coupled to different statistical methods, were used to estimate the authenticity of grated Parmigiano Reggiano cheese PDO. Cheese samples were classified as: compliance PR, competitors, non-compliance PR (defected PR, and PR with rind content greater then 18%. NIR spectra were obtained using a spectrophotometer Vector 22/N (Bruker Optics, Milan, Italy in the diffuse reflectance mode. Instrument was equipped with a rotating integrating sphere. Principal Component Analysis (PCA was conducted for an explorative spectra analysis, while the Artificial Neural Networks (ANN were used to classify spectra, according to different cheese categories. Subsequently the rind percentage and month of ripening were estimated by a Partial Least Squares regression (PLS. Score plots of the PCA show a clear separation between compliance PR samples and the rest of the sample was observed. Competitors samples and the defected PR samples were grouped together. The classification performance for all sample classes, obtained by ANN analysis, was higher of 90%, in test set validation. Rind content and month of ripening were predicted by PLS a with a determination coefficient greater then 0.95 (test set. These results showed that the method can be suitable for a fast screening of grated cheese authenticity.

  11. [Rapid evaluation of beef quality by NIRS technology]. (United States)

    Yang, Jian-Song; Meng, Qing-Xiang; Ren, Li-Ping; Zhou, Zhen-Ming; Xie, Xiang-Xue


    The aim of the present study was to develop a near-infrared reflectance (NIR) spectroscopy rapid method for evaluation of beef quality. Partial least squares (PLS) prediction model for the physic-chemical characteristics such as moisture, fat, protein, pH, color and WBSF in beef was established with good veracity. One hundred fourteen samples from five different parts of beef carcass (tenderloin, ribeye, topside, shin, striploin) were collected from meat packer after 48 h aging. Spectra were obtained by scanning sample from 950 to 1 650 nm and pretreated the model by MSC, SNV and first derivative. Predictive correlation coefficients of physic-chemical parameters in beef were 0.947 2 (moisture), 0.924 5 (fat), 0.934 6 (protein), 0.620 2 (pH), 0.820 3 (L), 0.864 6 (a*), 0.753 0 (b*) and 0.475 9 (WBSF) respectively. Root mean square errors of calibration (RMSEC) were 0.313 3 (moisture), 0.221 0 (fat), 1.243 2 (protein), 0.744 6 (pH), 1.778 3 (L*), 1.394 2 (a*), 1.763 9 (b*) and 1.0743 (WBSF). They were externally validated with additional 30 beef samples. Statistics showed that there was no significant difference between predicted value and those obtained with conventional laboratory methods. The results showed that NIRS is a rapid, effective technique for evaluating beef quality. The predictions for chemical characteristics gave higher accuracy than prediction for physical characteristics.

  12. Measurement of quadriceps endurance by fNIRS (United States)

    Erdem, Devrim; Şayli, Ömer; Karahan, Mustafa; Akin, A.


    In this paper, the changes in muscle deoxygenation trends during a sustained isometric quadriceps (chair squat/half squat) endurance exercise were evaluated among twelve male subjects and the relationship between muscle oxygenation and endurance times was investigated by means of functional near-infrared spectroscopy (fNIRS). Neuromuscular activation and predictions of muscle performance decrements during extended fatiguing task was investigated by means of surface electromyography (sEMG). The results of the study showed that in the subjects who maintained exercise longer than five minutes (group 1), mean Hb recovery time (33 [sec.]) was 37.4% less than the others (group 2, 52.7 [sec.]). Also mean HbO II decline amplitude (2.53 [a.u.] in group 1 and 2.07 [a.u.] in group 2) and oxy decline amplitude (8.4 [a.u.] in group 1 and 3.04 [a.u.] in group 2) in the beginning of squat exercise are found to be 22.6% and 176.9% bigger in these group. For the EMG parameters, mean slope of MNF and MDF decline are found to be 57.5% and 42.2% bigger in magnitude in group 2 which indicates higher degree of decrement in mean and median frequencies although their mean squat duration time is less. This indicates higher index of fatigue for this group. It is concluded that training leads to altered oxygenation and oxygen extraction capability in the exercising muscle and investigated fNIRS parameters could be used for endurance evaluation.

  13. Unsupervised defect segmentation of patterned materials under NIR illumination

    International Nuclear Information System (INIS)

    Millan, Maria S; Escofet, Jaume; Rallo, Miquel


    An unsupervised detection method for automatic flaw segmentation in patterned materials (textile, non-woven, paper) that has no need of any defect-free references or a training stage is presented in this paper. Printed materials having a pattern of colored squares, bands, etc. superimposed to the background texture can be advantageously analyzed using NIR illumination and a camera with enough sensitivity to this region of the spectrum. The contrast reduction of the pattern in the NIR image facilitates material inspection and defect segmentation. Underdetection and misdetection errors can be reduced in comparison with the inspection performed under visible illumination. For woven fabrics, with periodic structure, the algorithm is based on the structural feature extraction of the weave repeat from the Fourier transform of the sample image. These features are used to define a set of multiresolution bandpass filters adapted to the fabric structure that operate in the Fourier domain. Inverse Fourier transformation, binarization and merging of the information obtained at different scales lead to the output image that contains flaws segmented from the fabric background. For non-woven and random textured materials, the algorithm combines the multiresolution Gabor analysis of the sample image with a statistical analysis of the wavelet coefficients corresponding to each detail. The information of all the channels is merged in a single binary output image where the defect appears segmented from the background. The method is applicable to random, non-periodic, and periodic textures. Since all the information to inspect a sample is obtained from the sample itself, the method is proof against heterogeneities between different samples of the material, in-plane positioning errors, scale variations and lack of homogeneous illumination. Experimental results are presented for a variety of materials and defects.

  14. Cohesive, multicomponent, dense powder flow characterization by NIR. (United States)

    Benedetti, C; Abatzoglou, N; Simard, J-S; McDermott, L; Léonard, G; Cartilier, L


    Non-aerated powder flows are frequently encountered in downstream pharmaceutical processes. Such flows occur at the entrance of powder compression units, and their characteristics are of great interest because any powder agglomeration or segregation can be detrimental to the quality of the final solid oral dosage form. This work was aimed at developing a process analytical technology (PAT) method, based on near-infrared spectroscopy (NIR) for the in-line powder flow characterization of pharmaceutical formulations. An Ibuprofen drug formulation was selected for study. A bench-scale hopper system was assembled to monitor powder flow behaviour. An in-line commercial NIR Axsun spectrometer and probe were chosen to collect in-line spectral data on dense, multicomponent, non-aerated powder flow prior to compression. Spectra were collected on flowing mannitol and pharmaceutical product blends. A specially designed, non-contact sampling interface allowed the collection of representative process powder flow spectra without affecting blend uniformity. A partial least squares chemometric model was developed for laboratory-prepared samples, to quantitatively determine the flowing powder's active pharmaceutical ingredient (API) level. Static sample spectra and flowing pure mannitol spectra proved to have a high degree of reproducibility. The model's standard error of calibration was 2.95% of the API level with a R2 of 0.991. Flowing blend powder spectra and API estimates showed variations consistent with those seen in model samples. The average values for flowing pharmaceutical blends were close to the API concentration, indicating that the proposed procedure was statistically acceptable. The model is considered very promising, and some improvements would lead to its final acceptance at production scale as a PAT tool.

  15. Aerosol Absorption Retrievals from the PACE Broad Spectrum Ocean Color Instrument (OCI) (United States)

    Mattoo, Shana; Remer, Lorraine A.; Levy, Robert C.; Gupta, Pawan; Ahmad, Ziauddin; Martins, J. Vanderlei; Lima, Adriana Rocha; Torres, Omar


    The PACE (Pre-­Aerosol, Clouds and ocean Ecosystem) mission, anticipated for launch in the early 2020s, is designed to characterize oceanic and atmospheric properties. The primary instrument on-­-board will be a moderate resolution (approximately 1 km nadir) radiometer, called the Ocean Color Instrument (OCI). OCI will provide high spectral resolution (5 nm) from the UV to NIR (350 - 800 nm), with additional spectral bands in the NIR and SWIR. The OCI itself is an excellent instrument for atmospheric objectives, providing measurements across a broad spectral range that in essence combines the capabilities of MODIS and OMI, but with the UV channels from OMI to be available at moderate resolution. (Image credit: PACE Science Definition Team Report). Objective: Can we make use of the UV-­SWIR measurements to derive information about aerosol absorption when aerosol loading is high?

  16. N-Annulated perylene-substituted and fused porphyrin dimers with intense near-infrared one-photon and two-photon absorption

    KAUST Repository

    Luo, Jie


    Fusion of two N-annulated perylene (NP) units with a fused porphyrin dimer along the S0-S1 electronic transition moment axis has resulted in new near-infrared (NIR) dyes 1a/1b with very intense absorption (ε>1.3×105M-1cm-1) beyond 1250nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10-6 and 6.0×10-6 for 1a and 1b, respectively. The NP-substituted porphyrin dimers 2a/2b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited-state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer-like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two-photon absorption cross-sections in the NIR region due to extended π-conjugation. Time-dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.

  17. Chemical Absorption Materials

    DEFF Research Database (Denmark)

    Thomsen, Kaj


    Chemical absorption materials that potentially can be used for post combustion carbon dioxide capture are discussed. They fall into five groups, alkanolamines, alkali carbonates, ammonia, amino acid salts, and ionic liquids. The chemistry of the materials is discussed and advantages and drawbacks...

  18. Neutron resonance absorption theory

    International Nuclear Information System (INIS)

    Reuss, P.


    After some recalls on the physics of neutron resonance absorption during their slowing down, this paper presents the main features of the theoretical developments performed by the french school of reactor physics: the effective reaction rate method so called Livolant-Jeanpierre theory, the generalizations carried out by the author, and the probability table method [fr

  19. ALTIUS: a spaceborne AOTF-based UV-VIS-NIR hyperspectral imager for atmospheric remote sensing (United States)

    Dekemper, Emmanuel; Fussen, Didier; Van Opstal, Bert; Vanhamel, Jurgen; Pieroux, Didier; Vanhellemont, Filip; Mateshvili, Nina; Franssens, Ghislain; Voloshinov, Vitaly; Janssen, Christof; Elandaloussi, Hadj


    Since the recent losses of several atmospheric instruments with good vertical sampling capabilities (SAGE II, SAGE III, GOMOS, SCIAMACHY,. . . ), the scientific community is left with very few sounders delivering concentration pro les of key atmospheric species for understanding atmospheric processes and monitoring the radiative balance of the Earth. The situation is so critical that at the horizon 2020, less than five such instruments will be on duty (most probably only 2 or 3), whereas their number topped at more than 15 in the years 2000. In parallel, recent inter-comparison exercises among the climate chemistry models (CCM) and instrument datasets have shown large differences in vertical distribution of constituents (SPARC CCMVal and Data Initiative), stressing the need for more vertically-resolved and accurate data at all latitudes. In this frame, the Belgian Institute for Space Aeronomy (IASB-BIRA) proposed a gap-filler small mission called ALTIUS (Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere), which is currently in preliminary design phase (phase B according to ESA standards). Taking advantage of the good performances of the PROBA platform (PRoject for On-Board Autonomy) in terms of pointing precision and accuracy, on-board processing ressources, and agility, the ALTIUS concept relies on a hyperspectral imager observing limb-scattered radiance and solar/stellar occultations every orbit. The objective is twofold: the imaging feature allows to better assess the tangent height of the sounded air masses (through easier star tracker information validation by scene details recognition), while its spectral capabilities will be good enough to exploit the characteristic signatures of many molecular absorption cross-sections (O3, NO2, CH4, H2O, aerosols,...). The payload will be divided in three independent optical channels, associated to separated spectral ranges (UV: 250- 450 nm, VIS: 440-800 nm, NIR: 900-1800 nm). This approach also

  20. Corrosion inhibitor for aqueous ammonia absorption system (United States)

    Phillips, B.A.; Whitlow, E.P.


    A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

  1. Cotton Micronaire Measurements Using Small Portable Near-Infrared (NIR) Analyzers. (United States)

    Zumba, Jimmy; Rodgers, James


    A key quality and processing parameter for cotton fiber is micronaire, which is a function of the fiber's maturity and fineness. Near-infrared (NIR) spectroscopy has previously shown the ability to measure micronaire, primarily in the laboratory and using large, research-grade laboratory NIR instrumentation. International interest has been expressed by the industry in the measurement of fiber micronaire using small, portable NIR spectroscopy instruments for both laboratory and outside the laboratory (e.g., field or greenhouse) locations. New, very small NIR micro-spectrometers have been commercialized that offer the potential advantages of smaller size and lower weight, lower cost, and increased portability over current portable units. A program was implemented to determine the feasibility of a small NIR micro-spectrometer to measure fiber micronaire both in the laboratory and outside the laboratory, with initial emphasis on laboratory measurements prior to moving to field evaluations. In the laboratory, distinct spectral differences with increasing micronaire were observed. Optimal sampling and instrumental procedures and protocols for two units (different spectral wavelength capabilities) were established. Comparative evaluations established very good method micronaire agreement between the micro-spectrometer and a standard portable spectrometer, with high Regression (R) value, low residuals, and few outliers (less than 20%). The NIR micro-spectrometer measurements were fast (NIR micro-spectrometer was demonstrated. © The Author(s) 2016.

  2. [Maize Hybrid Seed Purity Identification Based on Near Infrared Reflectance (NIR) and Transmittance (NIT) Spectra]. (United States)

    Li, Tian-xin; Jia, Shi-qiang; Liu, Xu; Zhao, Sheng-yi; Ran, Hang; Yan, Yan-lu; An, Dong


    This article explore the feasibility of using Near Infrared Reflectance (NIR) and Transmittance (NIT) Spectroscopy (908.1-1677.2 nm wavelength range) to identify maize hybrid purity, and compare the performance of NIR and NIT spectroscopy. Principle Component Analysis (PCA) and Orthogonal Linear Discriminant Analysis (OLDA) were used to reduce the dimension of spectra which have been pretreated by first derivative and vector normalization. The hybrid purity identification model of Nonghua101 and Jingyu16 were built by SVM. Models based on NIR spectra obtained correct identification rate as 100% and 90% for Nonghua101 and Jingyu16 respectively. But NIR spectra were greatly influenced by the placement of seeds, and there existed significant difference between NIR spectra of embryo and non-embryo side. Models based on NIT spectroscopy yielded correct identification rate as 98% both for Nonghua101 and Jingyu16. NIT spectra of embryo and non-embryo side were highly similar. The results indicate that it is feasible to identify maize hybrid purity based on NIR and NIT spectroscopy, and NIT spectroscopy is more suitable to analyze single seed kernel than NIR spectroscopy.

  3. Functional near infra-red spectroscopy (fNIRS) in schizophrenia: A review. (United States)

    Kumar, Vijay; Shivakumar, Venkataram; Chhabra, Harleen; Bose, Anushree; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N


    The research on the alterations in functional connectivity in schizophrenia has been facilitated by development of an array of functional neuroimaging techniques. Functional Near Infra Red Spectroscopy (fNIRS) is a novel diffuse optical neuromonitring method with its own advantages and limitations. The advantages of fNIRS have made it to be frequently used as a research tool by medical community in different settings. In fNIRS the property of haemoglobin to absorb near infrared light is used to measure brain activity. It provides the indirect measurement of the neuronal activity in the areas of interest. The advantage of fNIRS being less restrictive has made it to be used more commonly in the research of psychiatric disorders in general, schizophrenia in particular. The fNIRS studies on patients with schizophrenia have shown haemodynamic hypo activation primarily in the prefrontal cortex during various cognitive tasks. In this review, initially we have briefly explained the basic principles of fNIRS followed by detailed review of fNIRS findings in patients with schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. FC-NIRS: A Functional Connectivity Analysis Tool for Near-Infrared Spectroscopy Data. (United States)

    Xu, Jingping; Liu, Xiangyu; Zhang, Jinrui; Li, Zhen; Wang, Xindi; Fang, Fang; Niu, Haijing


    Functional near-infrared spectroscopy (fNIRS), a promising noninvasive imaging technique, has recently become an increasingly popular tool in resting-state brain functional connectivity (FC) studies. However, the corresponding software packages for FC analysis are still lacking. To facilitate fNIRS-based human functional connectome studies, we developed a MATLAB software package called "functional connectivity analysis tool for near-infrared spectroscopy data" (FC-NIRS). This package includes the main functions of fNIRS data preprocessing, quality control, FC calculation, and network analysis. Because this software has a friendly graphical user interface (GUI), FC-NIRS allows researchers to perform data analysis in an easy, flexible, and quick way. Furthermore, FC-NIRS can accomplish batch processing during data processing and analysis, thereby greatly reducing the time cost of addressing a large number of datasets. Extensive experimental results using real human brain imaging confirm the viability of the toolbox. This novel toolbox is expected to substantially facilitate fNIRS-data-based human functional connectome studies.

  5. Total Column Water Vapor Trends from 15 Years of MODIS/NIR above the Arctic (United States)

    OMAR, D. A.; Sarkissian, A.; Keckhut, P.; Bock, O.; Claud, C.; Irbah, A.


    Water vapor is defined as a major climate indicator at many occasions, highly variable spatially and temporarily, water vapor has the most important natural GHG effect, through his high infra-red absorption capacity, and temperature changes sensitivity, water vapor affects the Earth radiative budget and energy transfer, evolved at many atmospheric dynamics including the cloud formation and the aerosols composition. As a consequence to the accelerated transition towards the new climate especially above the arctic, and to investigate the feedback to the arctic amplification and the global warming, we study the water vapor variability and trends on a relatively long term above the arctic region, using the Total Column Water Vapor retrieval from MODIS/NIR spectro-radiometer on board of TERRA satellite. These 15 Years monthly daytime satellite data were compared to GPS integrated water vapor over four selected NDACC polar stations: Sodankyla-Finland, Ny-Alesund -Svalbard, Thule-Greenland, Scoresbysund-Greenland. GPS data are calculated with the temperature and pressure profile of the nearest coastal ERA-Interim station. These data were filtered for nearly coincident time to satellite over pass in order to exclude the timing effects. Errors, relative biases and RMSE at both monthly and seasonally scales will be presented and discussed. Then the MODIS 15 years linear trends and anomalies above the whole Arctic will be shown with a special focus on sea ice extent decline feed-back and hydrologic cycle connections with respect to heat waves. Results show wetter trends on the Mackenzie and mid-Siberia at September, unlike the European arctic summer which is getting drier, while Svalbard is getting wetter almost all the year. Conclusion and perspectives are also presented.

  6. NIR-Emitting Alloyed CdTeSe QDs and Organic Dye Assemblies: A Nontoxic, Stable, and Efficient FRET System

    Directory of Open Access Journals (Sweden)

    Doris E. Ramírez-Herrera


    Full Text Available In the present work, we synthesize Near Infrared (NIR-emitting alloyed mercaptopropionic acid (MPA-capped CdTeSe quantum dots (QDs in a single-step one-hour process, without the use of an inert atmosphere or any pyrophoric ligands. The quantum dots are water soluble, non-toxic, and highly photostable and have high quantum yields (QYs up to 84%. The alloyed MPA-capped CdTeSe QDs exhibit a red-shifted emission, whose color can be tuned between visible and NIR regions (608–750 nm by controlling the Te:Se molar ratio in the precursor mixtures and/or changing the time reaction. The MPA-capped QDs were characterized by UV-visible absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDS, and zeta potential measurements. Photostability studies were performed by irradiating the QDs with a high-power xenon lamp. The ternary MPA-CdTeSe QDs showed greater photostability than the corresponding binary MPA-CdTe QDs. We report the Förster resonance energy transfer (FRET from the MPA-capped CdTeSe QDs as energy donors and Cyanine5 NHS-ester (Cy5 dye as an energy acceptor with efficiency (E up to 95%. The distance between the QDs and dye (r, the Förster distance (R0, and the binding constant (K are reported. Additionally, cytocompatibility and cell internalization experiments conducted on human cancer cells (HeLa cells revealed that alloyed MPA-capped CdTeSe QDs are more cytocompatible than MPA-capped CdTe QDs and are capable of ordering homogeneously all over the cytoplasm, which allows their use as potential safe, green donors for biological FRET applications.

  7. Prediction of essential oil content of oregano by hand-held and Fourier transform NIR spectroscopy. (United States)

    Camps, Cédric; Gérard, Marianne; Quennoz, Mélanie; Brabant, Cécile; Oberson, Carine; Simonnet, Xavier


    In the framework of a breeding programme, the analysis of hundreds of oregano samples to determine their essential oil content (EOC) is time-consuming and expensive in terms of labour. Therefore developing a new method that is rapid, accurate and less expensive to use would be an asset to breeders. The aim of the present study was to develop a method based on near-inrared (NIR) spectroscopy to determine the EOC of oregano dried powder. Two spectroscopic approaches were compared, the first using a hand-held NIR device and the second a Fourier transform (FT) NIR spectrometer. Hand-held NIR (1000-1800 nm) measurements and partial least squares regression allowed the determination of EOC with R² and SEP values of 0.58 and 0.81 mL per 100 g dry matter (DM) respectively. Measurements with FT-NIR (1000-2500 nm) allowed the determination of EOC with R² and SEP values of 0.91 and 0.68 mL per 100 g DM respectively. RPD, RER and RPIQ values for the model implemented with FT-NIR data were satisfactory for screening application, while those obtained with hand-held NIR data were below the level required to consider the model as enough accurate for screening application. The FT-NIR approach allowed the development of an accurate model for EOC prediction. Although the hand-held NIR approach is promising, it needs additional development before it can be used in practice. © 2013 Society of Chemical Industry.

  8. [Comparative research on the NIR and MIR micro-imaging of two similar plastic materials]. (United States)

    Wang, Dong; Ma, Zhi-Hong; Zhao, Liu; Pan, Li-Gang; Li, Xiao-Ting; Wang, Ji-Hua


    The NIR/MIR micro-imaging can supply not only the information of spectra, but also the information of spacial distribution of the sample, which is superior to the traditional NIR/MIR spectroscopy analysis. In the present paper, polyethylene and parafilm, with similar appearances, were regarded as the research objects, of which the NIR/MIR micro-imaging was collected. Chemical imaging (CI) and compare correlation imaging were carried out for the two materials respectively to discuss the imaging methods of the two materials. The result indicated that the differentiation of the CI values of the two materials in the NIR/MIR CI for material II was 0.004 8 and 0.254 8 respectively, while those in the NIR/MIR CI for material I were 0.002 6 and 0.326 5, respectively. Clear CI was acquired, and the two materials could be differentiated. The result of the compare correlation imagings indicated that the compare correlation imagings, in which the NIR/MIR spectra of the two materials were regarded as reference spectra respectively, can differentiate the two materials remarkably with clear imagings. In the compare correlation imagings of MIR micro-imaging, the difference of the correlation coefficients between the two materials' MIR spectra and the reference spectrum was more than 0.12, which showed a better imaging result; while a tiny difference of the correlation coefficients between the two materials' NIR spectra and the reference spectrum could be employed to show a clear imaging result for NIR compare correlation imaging so as to differentiate the two materials. This thesis, to some extent, can supply the reference to not only the rapid discrimination of the safety of the packaging material for agri-food, but also the imaging methods for NIR/MIR micro-imaging to differentiate the different materials.

  9. Accuracy of oxygen saturation and total hemoglobin estimates in the neonatal brain using the semi-infinite slab model for FD-NIRS data analysis. (United States)

    Barker, Jeffrey W; Panigrahy, Ashok; Huppert, Theodore J


    Frequency domain near-infrared spectroscopy (FD-NIRS) is a non-invasive method for measuring optical absorption in the brain. Common data analysis procedures for FD-NIRS data assume the head is a semi-infinite, homogenous medium. This assumption introduces bias in estimates of absorption (μa ), scattering ( [Formula: see text]), tissue oxygen saturation (StO2), and total hemoglobin (HbT). Previous works have investigated the accuracy of recovered μa values under this assumption. The purpose of this study was to examine the accuracy of recovered StO2 and HbT values in FD-NIRS measurements of the neonatal brain. We used Monte Carlo methods to compute light propagation through a neonate head model in order to simulate FD-NIRS measurements at 690 nm and 830 nm. We recovered μa , [Formula: see text], StO2, and HbT using common analysis procedures that assume a semi-infinite, homogenous medium and compared the recovered values to simulated values. Additionally, we characterized the effects of curvature via simulations on homogenous spheres of varying radius. Lastly, we investigated the effects of varying amounts of extra-axial fluid. Curvature induced underestimation of μa , [Formula: see text], and HbT, but had minimal effects on StO2. For the morphologically normal neonate head model, the mean absolute percent errors (MAPE) of recovered μa values were 12% and 7% for 690 nm and 830 nm, respectively, when source-detector separation was at least 20 mm. The MAPE for recovered StO2 and HbT were 6% and 9%, respectively. Larger relative errors were observed (∼20-30%), especially as StO2 and HbT deviated from normal values. Excess CSF around the brain caused very large errors in μa , [Formula: see text], and HbT, but had little effect on StO2.

  10. Near-infrared spectroscopy (NIRS evaluation and regional analysis of Chinese faba bean (Vicia faba L.

    Directory of Open Access Journals (Sweden)

    Jiaojiao Wang


    Full Text Available To analyze the nutritional composition of faba bean (Vicia faba L. seed, estimation models were developed for protein, starch, oil, and total polyphenol using near infrared spectroscopy (NIRS. Two hundred and forty-four samples from twelve producing regions were measured in both milled powder and intact seed forms. Partial least squares (PLS regression was applied for model development. The model based on ground seed powder was generally superior to that based on the intact seed. The optimal seed powder-based models for protein, starch, and total polyphenol had coefficients of correlation (r2 of 0.97, 0.93 and 0.89, respectively. The relationship between nutrient contents and twelve producing areas was determined by two-step cluster analysis. Three distinct groupings were obtained with region-constituent features, i.e., Group 1 of high oil, Group 2 of high protein, and Group 3 of high starch as well as total polyphenol. The clustering accuracy was 79.5%. Moreover, the nutrition contents were affected by seeding date, longitude, latitude, and altitude of plant location. Cluster analysis revealed that the differences in the seed were strongly influenced by geographical factors.

  11. A stretchable nanowire UV-Vis-NIR photodetector with high performance. (United States)

    Yoo, Jewon; Jeong, Sanghwa; Kim, Sungjee; Je, Jung Ho


    A simple direct-writing technique can be used to fabricate a stretchable UV-vis-NIR nanowire photodetector (NWPD) consisting of PbS quantum dot (QD)-poly(3-hexylthiopehene) (P3HT) hybrid NWs. The hybrid NWPD shows superior sensitivity and response speed in the UV-vis to NIR range. The stretchable UV-vis-NIR NWPD shows a nearly identical photoresponse under extreme (up to 100%) and repeated (up to 100 cycles) stretching conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Note: A unibody NIR transmission probe for in situ liquid detection (United States)

    Wang, Huijie; Wang, Yang; Ma, Xiangyun; Zhao, Yang; Chen, Da; Chen, Wenliang; Xu, Kexin; Li, Qifeng


    The transmission probe is widely used for in situ spectroscopic detection in various fields. Conventional transmission probes are always assembled from parts, which require accurate assembly and good sealing. In this paper, a universal and reliable near-infrared (NIR) transmission probe is proposed, which is simply made up of a unibody fused silica rod. The proposed NIR transmission probe has been successfully used to measure the alcohol by volume of the Chinese spirit for quality control. This unibody NIR transmission probe has great potential for the detection of corrosive substances, owing to the good chemical resistance.

  13. Karakteristik Spektra Absorbansi NIR (Near Infra Red Spektroskopi Kayu Acacia mangium WILLD pada 3 Umur Berbeda

    Directory of Open Access Journals (Sweden)

    Lina Karlinasari


    Full Text Available Penelitian mengenai pengujian nondestruktif metode near infrared (NIR spektroskopi di Indonesia masih sangat terbatas. Penelitian ini bertujuan untuk menentukan karakteristik spektra NIR spektroskopi (panjang gelombang 700 nm – 2500 nm kayu Acacia mangium dari 3 umur yaitu 5, 6, dan, 7 tahun. Kayu mangium diperoleh dari daerah Maribaya, Parung Panjang, Bogor. Sampel contoh uji spektra terdiri dari bentuk solid atau padatan dan bentuk serbuk kayu. Hasil penelitian menunjukkan spektra absorban NIR sampel padatan kayu lebih tinggi dibandingkan bentuk sampel serbuk. Umur pohon untuk jenis kayu yang sama tidak memberikan informasi perbedaan pola spektra absorbansi NIR yang nyata untuk setiap lokasi panjang gelombangnya. Penelitian lebih lanjut dapat dilakukan untuk menentukan model pendugaan sifat kimia, fisis dan mekanis kayu menggunakan analisis statistik metode analisis multivariasi. Kata kunci: NIR spektroskopi, Acacia mangium, kayu solid, serbuk kayu    Characteristics of Absorbency Spectra of NIR (Near Infra Red Spectroscopy of Acacia mangium Willd Wood from Three Different Age Abstract Research on non-destructive test of near infrared (NIR spectroscopy method was still limited in Indonesia. The aim of this study was to determine near infrared (NIR spectroscopy (wavelength range within 780 nm -2500 nm characteristic of wood species of Acacia mangium. The samples were selected from three different ages e.g. 5 year, 6 years, and 7 years grown in Maribaya area of Parung Panjang Distric. The NIR testing samples used were solid wood and ground wood. This study resulted that there was visually no significant difference of absorbance spectra NIR patterns based on wood ages. NIR absorbance spectra had same trend for both solid and ground wood samples in a range of wavelength, although those were in different values. The NIR absorbance spectra values of solid wood samples seemed higher than ground wood samples. Further research is needed to

  14. [Recent progress in NIR spectroscopy technology and its application to the field of forestry]. (United States)

    Gong, Yu-Mei; Zhang, Wei


    Near-Infrared Spectroscopy (NIRS) is the most rapidly developing and the most noticeable spectrographic technique in the 80's (the last century). Its developing history and utilization in foreign countries were introduced. The authors mainly summarized the applications of NIRS to the field of forestry. The applications of near-infrared reflectance spectroscopy (NIRS) in fruit quality, timber and seed quality analysis are more active in forestry due to its rapid, timely, less expensive, non-destructive, straightforward analytic characteristics. In the last two decades, non-destructive methods using near-infrared spectroscopy (NIRS) to evaluate parameters for estimating maturity were applied to different fruits species to check the ripening status of fruits on trees or to grade fruits in the packing house, to assess fruit quality, such as sugar and acid contents, soluble solids, firmness of fruit, offers great advantages to growers in deciding when to harvest. The near infrared spectrophotometry (NIRS) can also be used the nondestructive quantitative assessment of the solid wood density, the moisture condition and the lignin content in bulky wood. The previous results indicated that the utility of NIRS was a selection tool in breeding programs, for example, three kids of persimmon fruits, astringent, non-astringent and half-astringent, were clearly classified by using Near-infrared (NIR) methods, and based on the combination of near infrared technology and multivariate analysis, the genetic, physiological and technical qualities of both temperate and tropical tree species on single seed basis can be characterized. It has already been shown that NIRS can predict the chemical composition of litters. NIRS is also capable of correlating the initial spectral characteristics of the litters with their short- and medium-term decomposability. The stage of decay of decomposing leaves can be predicted by using the near infrared reflectance spectroscopy. The method is rich in

  15. [A Study of the Relationship Among Genetic Distances, NIR Spectra Distances, and NIR-Based Identification Model Performance of the Seeds of Maize Iinbred Lines]. (United States)

    Liu, Xu; Jia, Shi-qiang; Wang, Chun-ying; Liu, Zhe; Gu, Jian-cheng; Zhai, Wei; Li, Shao-ming; Zhang, Xiao-dong; Zhu, De-hai; Huang, Hua-jun; An, Dong


    This paper explored the relationship among genetic distances, NIR spectra distances and NIR-based identification model performance of the seeds of maize inbred lines. Using 3 groups (total 15 pairs) of maize inbred lines whose genetic distaches are different as experimental materials, we calculates the genetic distance between these seeds with SSR markers and uses Euclidean distance between distributed center points of maize NIR spectrum in the PCA space as the distances of NIR spectrum. BPR method is used to build identification model of inbred lines and the identification accuracy is used as a measure of model identification performance. The results showed that, the correlation of genetic distance and spectra distancesis 0.9868, and it has a correlation of 0.9110 with the identification accuracy, which is highly correlated. This means near-Infrared spectrum of seedscan reflect genetic relationship of maize inbred lines. The smaller the genetic distance, the smaller the distance of spectrum, the poorer ability of model to identify. In practical application, near infrared spectrum analysis technology has the potential to be used to analyze maize inbred genetic relations, contributing much to genetic breeding, identification of species, purity sorting and so on. What's more, when creating a NIR-based identification model, the impact of the maize inbred lines which have closer genetic relationship should be fully considered.

  16. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared – Part 1: Setup, uncertainty analysis, and assessment of far-infrared water vapor continuum

    Directory of Open Access Journals (Sweden)

    R. Sussmann


    Full Text Available Quantitative knowledge of water vapor radiative processes in the atmosphere throughout the terrestrial and solar infrared spectrum is still incomplete even though this is crucial input to the radiation codes forming the core of both remote sensing methods and climate simulations. Beside laboratory spectroscopy, ground-based remote sensing field studies in the context of so-called radiative closure experiments are a powerful approach because this is the only way to quantify water absorption under cold atmospheric conditions. For this purpose, we have set up at the Zugspitze (47.42° N, 10.98° E; 2964 m a.s.l. a long-term radiative closure experiment designed to cover the infrared spectrum between 400 and 7800 cm−1 (1.28–25 µm. As a benefit for such experiments, the atmospheric states at the Zugspitze frequently comprise very low integrated water vapor (IWV; minimum  =  0.1 mm, median  =  2.3 mm and very low aerosol optical depth (AOD  =  0.0024–0.0032 at 7800 cm−1 at air mass 1. All instruments for radiance measurements and atmospheric-state measurements are described along with their measurement uncertainties. Based on all parameter uncertainties and the corresponding radiance Jacobians, a systematic residual radiance uncertainty budget has been set up to characterize the sensitivity of the radiative closure over the whole infrared spectral range. The dominant uncertainty contribution in the spectral windows used for far-infrared (FIR continuum quantification is from IWV uncertainties, while T profile uncertainties dominate in the mid-infrared (MIR. Uncertainty contributions to near-infrared (NIR radiance residuals are dominated by water vapor line parameters in the vicinity of the strong water vapor bands. The window regions in between these bands are dominated by solar Fourier transform infrared (FTIR calibration uncertainties at low NIR wavenumbers, while uncertainties due to AOD become an

  17. Near-unity absorption of graphene monolayer with a triple-layer waveguide coupled grating (United States)

    Zhang, Haojing; Zheng, Gaige; Xian, Fenglin; Zou, Xiujuan; Wang, Jicheng


    In order to achieve the enhancement and manipulation of light absorption in graphene monolayer within the visible (Vis) and near infrared (NIR) regions, a design of absorber inspired by contact coupled gratings with an absentee layer is demonstrated. It is proved that the absorptance of monolayer graphene can be greatly enhanced to near unity through rigorous coupled-wave analysis (RCWA) numerical calculation. The thickness of grating and homogeneous absentee layers can significantly change the linewidth and resonant mode position in absorption spectrum. Furthermore, the lateral shift of the contact coupled gratings changes the magnetic field distributions in the grating cavity and the surface-confined mode at the cover/grating interface, thus facilitating the dynamic control of the spectral bandwidth of the graphene absorber. The proposed devices could be efficiently exploited as tunable and selective absorbers, allowing to realize other two-dimensional (2D) materials-based selective photo-detectors.

  18. Correlations between in situ denitrification activity and nir-gene abundances in pristine and impacted prairie streams (United States)

    Graham, David W.; Trippett, Clare; Dodds, Walter K.; O’Brien, Jonathan M.; Banner, Eric B.K.; Head, Ian M.; Smith, Marilyn S.; Yang, Richard K.; Knapp, Charles W.


    Denitrification is a process that reduces nitrogen levels in headwaters and other streams. We compared nirS and nirK abundances with the absolute rate of denitrification, the longitudinal coefficient of denitrification (i.e., Kden, which represents optimal denitrification rates at given environmental conditions), and water quality in seven prairie streams to determine if nir-gene abundances explain denitrification activity. Previous work showed that absolute rates of denitrification correlate with nitrate levels; however, no correlation has been found for denitrification efficiency, which we hypothesise might be related to gene abundances. Water-column nitrate and soluble-reactive phosphorus levels significantly correlated with absolute rates of denitrification, but nir-gene abundances did not. However, nirS and nirK abundances significantly correlated with Kden, as well as phosphorus, although no correlation was found between Kden and nitrate. These data confirm that absolute denitrification rates are controlled by nitrate load, but intrinsic denitrification efficiency is linked to nirS and nirK gene abundances. PMID:20724046

  19. Estimating Soil Organic Carbon Using VIS/NIR Spectroscopy with SVMR and SPA Methods

    Directory of Open Access Journals (Sweden)

    Xiaoting Peng


    Full Text Available With 298 heterogeneous soil samples from Yixing (Jiangsu Province, Zhongxiang and Honghu (Hubei Province, this study aimed to combine a successive projections algorithm (SPA with a support vector machine regression (SVMR model (SPA-SVMR model to improve the estimation accuracy of soil organic carbon (SOC contents using the laboratory-based visible and near-infrared (VIS/NIR, 350−2500 nm spectroscopy of soils. The effects of eight spectra pre-processing methods, i.e., Log (1/R, Log (1/R coupled with Savitzky-Golay (SG smoothing (Log (1/R + SG, first derivative with SG smoothing (FD, second derivative with SG smoothing (SD, SG, standard normal variate (SNV, mean center (MC and multiplicative scatter correction (MSC, on SPA-based informative wavelength selection were explored. The SVMR model (i.e., SVMR without SPA and SPA-PLSR model (i.e., SPA combined with partial least squares regression (PLSR were developed and compared with the SPA-SVMR model in order to evaluate the performance of SPA-SVMR. The results indicated that the variables selected by SPA and their distributions were strongly affected by different pre-processing methods, and SG was the optimal pre-processing method for SPA-SVMR model development; the SPA-SVMR model using SG pre-processing and 28 SPA-selected wavelengths obtained a better result (R2V = 0.73, RMSEV = 2.78 g∙kg−1 and RPDV = 1.89 and outperformed the SVMR model (R2V = 0.72, RMSEV = 2.83 g∙kg−1 and RPDV = 1.86 and the SPA-PLSR model (R2V = 0.62, RMSEV = 3.23 g∙kg−1 and RPDV = 1.63. Most of the spectral bands used by the SPA-SVMR model over the near-infrared region were important wavelengths for SOC content estimation. This study demonstrated that the combination of SPA and SVMR is feasible and reliable for estimating SOC content from the VIS/NIR spectra of soils in regions with multiple soil and land-use types.

  20. Absorptive Capacity and Diversity

    DEFF Research Database (Denmark)

    Kristinsson, Kári

    international business, organizational economics, strategic management, technology management and last but not least neo-Schumpeterian economics. The goal of this dissertation is to examine what many consider as neglected arguments from the work by Cohen and Levinthal and thereby illuminate an otherwise......One of the most influential contributions to neo-Schumpeterian economics is Cohen and Levinthal‘s papers on absorptive capacity. Since their publication in the late 1980s and early 1990s the concept absorptive capacity has had substantial impact on research in economics and management, including...... overlooked area of research. Although research based on Cohen and Levinthal‘s work has made considerable impact, there is scarcity of research on certain fundamental points argued by Cohen and Levinthal. Among these is the importance of employee diversity as well as the type and nature of interaction between...

  1. Intensities and strong interaction attenuation of kaonic x-rays

    CERN Document Server

    Backenstoss, Gerhard; Koch, H; Povel, H P; Schwitter, A; Tauscher, Ludwig


    Relative intensities of numerous kaonic X-ray transitions have been measured for the elements C, P, S, and Cl, from which level widths due to the strong K-nucleus absorption have been determined. From these and earlier published data, optical potential parameters have been derived and possible consequences on the nuclear matter distribution are discussed. (10 refs).

  2. Sound absorption of snow


    Maysenhölder, W.; Schneebeli, M.; Zhou, X.; Zhang, T.; Heggli, M.


    Recently fallen snow possesses good sound-absorbing properties. This fact is well-known and confirmed by measurements. Is the filigree structure of snowflakes decisive? In principle we know that the sound-absorbing capacity of a porous material is dependent on its structure. But until now the question as to which structural characteristics are significant has been insufficiently answered. Detailed investigations of snow are to explain this fact by precise measurements of the sound absorption,...

  3. Iron absorption studies

    International Nuclear Information System (INIS)

    Ekenved, G.


    The main objective of the present work was to study iron absorption from different iron preparations in different types of subjects and under varying therapeutic conditions. The studies were performed with different radioiron isotope techniques and with a serum iron technique. The preparations used were solutions of ferrous sulphate and rapidly-disintegrating tablets containing ferrous sulphate, ferrous fumarate and ferrous carbonate and a slow-release ferrous sulphate tablet of an insoluble matrix type (Duroferon Durules). The serum iron method was evaluated and good correlation was found between the serum iron response and the total amount of iron absorbed after an oral dose of iron given in solution or in tablet form. New technique for studying the in-vivo release properties of tablets was presented. Iron tablets labelled with a radio-isotope were given to healthy subjects. The decline of the radioactivity in the tablets was followed by a profile scanning technique applied to different types of iron tablets. The release of iron from the two types of tablets was shown to be slower in vivo than in vitro. It was found that co-administration of antacids and iron tablets led to a marked reduction in the iron absorption and that these drugs should not be administered sumultaneously. A standardized meal markedly decreased the absorbability of iron from iron tablets. The influence of the meal was more marked with rapidly-disintegrating than with slow-release ferrous sulphate tablets. The absorption from rapidly-disintegrating and slow-release ferrous sulphate tablets was compared under practical clinical conditions during an extended treatment period. The studies were performed in healthy subjects, blood donors and patients with iron deficiency anaemia and it was found that the absorption of iron from the slow-release tablets was significantly better than from the rapidly-disintegrating tablets in all three groups of subjects. (author)

  4. Total Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Rubio, B.; Gelletly, W.


    The problem of determining the distribution of beta decay strength (B(GT)) as a function of excitation energy in the daughter nucleus is discussed. Total Absorption Spectroscopy is shown to provide a way of determining the B(GT) precisely. A brief history of such measurements and a discussion of the advantages and disadvantages of this technique, is followed by examples of two recent studies using the technique. (authors)

  5. Relic Neutrino Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, b


    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  6. UV laser long-path absorption spectroscopy (United States)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf


    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  7. Optofluidic interferometry chip designs of differential NIR absorbance based sensors for identification and quantification of electrolytes

    NARCIS (Netherlands)

    Steen, Gerrit W.; Wexler, Adam D.; Offerhaus, Herman L.


    Design and optimization of integrated photonic NIR absorbance based sensors for identification and quantification of aqueous electrolytes was performed by simulation in MATLAB and Optodesigner. Ten designs are presented and compared for suitability.

  8. Near Infrared Spectroscopy (NIRS) for the determination of the milk fat fatty acid profile of goats. (United States)

    Núñez-Sánchez, N; Martínez-Marín, A L; Polvillo, O; Fernández-Cabanás, V M; Carrizosa, J; Urrutia, B; Serradilla, J M


    Milk fatty acid (FA) composition is important for the goat dairy industry because of its influence on cheese properties and human health. The aim of the present work was to evaluate the feasibility of NIRS reflectance (oven-dried milk using the DESIR method) and transflectance (liquid milk) analysis to predict milk FA profile and groups of fats in milk samples from individual goats. NIRS analysis of milk samples allowed to estimate FA contents and their ratios and indexes in fat with high precision and accuracy. In general, transflectance analysis gave better or similar results than reflectance mode. Interestingly, NIRS analysis allowed direct prediction of the Atherogenicity and Thrombogenicity indexes, which are useful for the interpretation of the nutritional value of goat milk. Therefore, the calibrations obtained in the present work confirm the viability of NIRS as a fast, reliable and effective analytical method to provide nutritional information of milk samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. [Applications of near infrared reflectance spectroscopy technique (NIRS) to soil attributes research]. (United States)

    Liu, Yan-De; Xiong, Song-Sheng; Liu, De-Li


    Soil is a much complicated substance, because animals, plants and microbes live together, organic and inorganic exist together. So soil contains a large amount of information. The traditional method in laboratory is a time-consuming effort. But the technology of near infrared reflectance spectroscopy (NIRS) has been widely used in many areas, owing to its rapidness, high efficiency, no pollution and low cost, NIRS has become the most important method to detect the composition of soil. This paper mainly introduce some traditional methods in laboratory, the basic processes of soil detection by NIRS, some algorithms for data preprocessing and modeling. Besides, the present paper illustrates the latest research progress and the development of portable near infrared instruments of the soil. According to this paper, the authors also hope to promote the application conditions of NIRS in the grassland ecology research in China, and accelerate the modernization of research measures in this area.

  10. Rapid analysis of hay attributes using NIRS. Final report, Task II alfalfa supply system

    Energy Technology Data Exchange (ETDEWEB)



    This final report provides technical information on the development of a near infrared reflectance spectroscopy (NIRS) system for the analysis of alfalfa hay. The purpose of the system is to provide consistent quality for processing alfalfa stems for fuel and alfalfa leaf meal products for livestock feed. Project tasks were to: (1) develop an NIRS driven analytical system for analysis of alfalfa hay and processed alfalfa products; (2) assist in hiring a qualified NIRS technician and recommend changes in testing equipment necessary to provide accurate analysis; (3) calibrate the NIRS instrument for accurate analyses; and (4) develop prototype equipment and sampling procedures as a first step towards development of a totally automated sampling system that would rapidly sample and record incoming feedstock and outbound product. An accurate hay testing program was developed, along with calibration equations for analyzing alfalfa hay and sun-cured alfalfa pellets. A preliminary leaf steam calibration protocol was also developed. 7 refs., 11 figs., 10 tabs.

  11. Detection Of Volatile Oil Content Of Single-Grainzanthoxylum Seed Based on Nir (United States)

    Xu, Yun; Wang, Yiming; Wu, Jingzhu; Zhu, Shiping

    A NIR model was established to predict the volatile oil content of single particle red Zanthoxylum seed in this paper. With the characteristic of irregular surface, A single Zanthoxylum seed will reflect the great difference in response to spectrum signals the entire spectrum detection and exceptional sample rejection method were employed before model optimization. As a result, the NIR model for predicting the content of volatile oil were built up by 74 red Zanthoxylum seed and results indicated: the NIR model of the single grain Zanthoxylum seed had good stability and predictability (RSD3). Results of this paper suggested that NIR could be used as a quick and convenient method for predicting the volatile oil content of Zanthoxylum seed, which is useful for breeding and the quality evaluation of it.

  12. Acrylamide inverse miniemulsion polymerization: in situ, real-time monitoring using nir spectroscopy

    Directory of Open Access Journals (Sweden)

    M. M. E. Colmán


    Full Text Available In this work, the ability of on-line NIR spectroscopy for the prediction of the evolution of monomer concentration, conversion and average particle diameter in acrylamide inverse miniemulsion polymerization was evaluated. The spectral ranges were chosen as those representing the decrease in concentration of monomer. An increase in the baseline shift indicated that the NIR spectra were affected by particle size. Multivariate partial least squares calibration models were developed to relate NIR spectra collected by the immersion probe with off-line conversion and polymer particle size data. The results showed good agreement between off-line data and values predicted by the NIR calibration models and these latter were also able to detect different types of operational disturbances. These results indicate that it is possible to monitor variables of interest during acrylamide inverse miniemulsion polymerizations.

  13. Interference Tolerant Functional Near Infrared Spectrometer (fNIRS) for Cognitive State Monitoring (United States)

    National Aeronautics and Space Administration — Measuring hemoglobin concentration changes in the brain with Functional Near Infrared Spectroscopy (fNIRS) is a promising technique for monitoring cognitive state...

  14. [Influence of measurement errors of radiation in NIR bands on water atmospheric correction]. (United States)

    Xu, Hua; Li, Zheng-Qiang; Yin, Qiu; Gu, Xing-Fa


    For standard algorithm of atmospheric correction of water, the ratio of two near-infrared (NIR) channels is selected to determine an aerosol model, and then aerosol radiation at every wavelength is accordingly estimated by extrapolation. The uncertainty of radiation measurement in NIR bands will play important part in the accuracy of water-leaving reflectance. In the present research, erroneous expressions were derived mathematically in order to see the error propagation from NIR bands. The errors distribution of water-leaving reflectance was thoroughly studied. The results show that the bigger the errors of measurement are made, the bigger the errors of water-leaving reflectance are retrieved, with sometimes the NIR band errors canceling out. Moreover, the higher the values of aerosol optical depth or the more the component of small particles in aerosol, the bigger the errors that appear during retrieval.

  15. Novel self-assembled sandwich nanomedicine for NIR-responsive release of NO (United States)

    Fan, Jing; He, Qianjun; Liu, Yi; Ma, Ying; Fu, Xiao; Liu, Yijing; Huang, Peng; He, Nongyue; Chen, Xiaoyuan


    A novel sandwich nanomedicine (GO-BNN6) for near-infrared (NIR) light responsive release of nitric oxide (NO) has been constructed by self-assembling of graphene oxide (GO) nanosheets and a NO donor BNN6 through the π-π stacking interaction. GO-BNN6 nanomedicine has an extraordinarily high drug loading capacity (1.2 mg BNN6 per mg GO), good thermal stability, and high NIR responsiveness. The NO release from GO-BNN6 can be easily triggered and effectively controlled by adjusting the switching, irradiation time and power density of NIR laser. The intracellular NIR-responsive release of NO from GO-BNN6 nanomedicine causes a remarkable anti-cancer effect. PMID:26568270

  16. Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms. (United States)

    Malegori, Cristina; Nascimento Marques, Emanuel José; de Freitas, Sergio Tonetto; Pimentel, Maria Fernanda; Pasquini, Celio; Casiraghi, Ernestina


    The main goal of this study was to investigate the analytical performances of a state-of-the-art device, one of the smallest dispersion NIR spectrometers on the market (MicroNIR 1700), making a critical comparison with a benchtop FT-NIR spectrometer in the evaluation of the prediction accuracy. In particular, the aim of this study was to estimate in a non-destructive manner, titratable acidity and ascorbic acid content in acerola fruit during ripening, in a view of direct applicability in field of this new miniaturised handheld device. Acerola (Malpighia emarginata DC.) is a super-fruit characterised by a considerable amount of ascorbic acid, ranging from 1.0% to 4.5%. However, during ripening, acerola colour changes and the fruit may lose as much as half of its ascorbic acid content. Because the variability of chemical parameters followed a non-strictly linear profile, two different regression algorithms were compared: PLS and SVM. Regression models obtained with Micro-NIR spectra give better results using SVM algorithm, for both ascorbic acid and titratable acidity estimation. FT-NIR data give comparable results using both SVM and PLS algorithms, with lower errors for SVM regression. The prediction ability of the two instruments was statistically compared using the Passing-Bablok regression algorithm; the outcomes are critically discussed together with the regression models, showing the suitability of the portable Micro-NIR for in field monitoring of chemical parameters of interest in acerola fruits. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Aerosol optical absorption measurements with photoacoustic spectroscopy (United States)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming


    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  18. NIR absorbing diferrocene-containing meso-cyano-BODIPY with a UV-Vis-NIR spectrum remarkably close to that of magnesium tetracyanotetraferrocenyltetraazaporphyrin. (United States)

    Didukh, Natalia O; Zatsikha, Yuriy V; Rohde, Gregory T; Blesener, Tanner S; Yakubovskyi, Viktor P; Kovtun, Yuriy P; Nemykin, Victor N


    Diferrocene-containing meso-cyano-BODIPY (4) was prepared by the direct cyanation/oxidation reaction of symmetric BODIPY 1 followed by Knoevenagel condensation with ferrocenealdehyde. Ferrocene-containing BODIPY 4 was characterized by a variety of spectroscopic, electrochemical, and theoretical methods and its UV-Vis-NIR spectrum has a striking similarity with a UV-Vis-NIR spectrum of the previously reported magnesium 2(3),7(8),12(13),17(18)-tetracyano-3(2),8(7),13(12),18(17)-tetraferrocenyl-5,10,15,20-tetraazaporphyrin.

  19. Highly Efficient Visible-to-NIR Luminescence of Lanthanide(III) Complexes with Zwitterionic Ligands Bearing Charge-Transfer Character: Beyond Triplet Sensitization. (United States)

    Pan, Mei; Du, Bin-Bin; Zhu, Yi-Xuan; Yue, Mei-Qin; Wei, Zhang-Wen; Su, Cheng-Yong


    Two zwitterionic-type ligands featuring π-π* and intraligand charge-transfer (ILCT) excited states, namely 1,1'-(2,3,5,6-tetramethyl-1,4-phenylene)bis(methylene)dipyridinium-4-olate (TMPBPO) and 1-dodecylpyridin-4(1 H)-one (DOPO), have been prepared and applied to the assembly of lanthanide coordination complexes in an effort to understand the ligand-direction effect on the structure of the Ln complexes and the ligand sensitization effect on the luminescence of the Ln complexes. Due to the wide-band triplet states plus additional ILCT excitation states extending into lower energy levels, broadly and strongly sensitized photoluminescence of f→f transitions from various Ln(3+) ions were observed to cover the visible to near-infrared (NIR) regions. Among which, the Pr, Sm, Dy, and Tm complexes simultaneously display both strong visible and NIR emissions. Based on the isostructural feature of the Ln complexes, color tuning and single-component white light was achieved by preparation of solid solutions of the ternary systems Gd-Eu-Tb (for TMPBPO) and La-Eu-Tb and La-Dy-Sm (for DOPO). Moreover, the visible and NIR luminescence lifetimes of the Ln complexes with the TMPBPO ligand were investigated from 77 to 298 K, revealing a strong temperature dependence of the Tm(3+) ((3) H4 ) and Yb(3+) ((2) F5/2 ) decay dynamics, which has not been explored before for their coordination complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Activatable photodynamic destruction of cancer cells by NIR dye/photosensitizer loaded liposomes. (United States)

    Yuan, Ahu; Tang, Xiaolei; Qiu, Xuefeng; Jiang, Ke; Wu, Jinhui; Hu, Yiqiao


    The phototoxicity of Chlorin e6 (Ce6) for photodynamic therapy (PDT) was found to be effectively suppressed by indocyanine green (ICG), a near infrared (NIR) dye. Upon NIR laser irradiation at 808 nm, ICG in the liposomes containing ICG and Ce6 could be degraded, while the phototoxicity of Ce6 could be recovered. In addition, we demonstrate that this newly developed liposomal component can be successfully used for activatable PDT to destroy cancer cells in vitro.

  1. fMRI Validation of fNIRS Measurements During a Naturalistic Task. (United States)

    Noah, J Adam; Ono, Yumie; Nomoto, Yasunori; Shimada, Sotaro; Tachibana, Atsumichi; Zhang, Xian; Bronner, Shaw; Hirsch, Joy


    We present a method to compare brain activity recorded with near-infrared spectroscopy (fNIRS) in a dance video game task to that recorded in a reduced version of the task using fMRI (functional magnetic resonance imaging). Recently, it has been shown that fNIRS can accurately record functional brain activities equivalent to those concurrently recorded with functional magnetic resonance imaging for classic psychophysical tasks and simple finger tapping paradigms. However, an often quoted benefit of fNIRS is that the technique allows for studying neural mechanisms of complex, naturalistic behaviors that are not possible using the constrained environment of fMRI. Our goal was to extend the findings of previous studies that have shown high correlation between concurrently recorded fNIRS and fMRI signals to compare neural recordings obtained in fMRI procedures to those separately obtained in naturalistic fNIRS experiments. Specifically, we developed a modified version of the dance video game Dance Dance Revolution (DDR) to be compatible with both fMRI and fNIRS imaging procedures. In this methodology we explain the modifications to the software and hardware for compatibility with each technique as well as the scanning and calibration procedures used to obtain representative results. The results of the study show a task-related increase in oxyhemoglobin in both modalities and demonstrate that it is possible to replicate the findings of fMRI using fNIRS in a naturalistic task. This technique represents a methodology to compare fMRI imaging paradigms which utilize a reduced-world environment to fNIRS in closer approximation to naturalistic, full-body activities and behaviors. Further development of this technique may apply to neurodegenerative diseases, such as Parkinson's disease, late states of dementia, or those with magnetic susceptibility which are contraindicated for fMRI scanning.

  2. Measurement of soluble solids content in watermelon by Vis/NIR diffuse transmittance technique*


    Tian, Hai-qing; Ying, Yi-bin; Lu, Hui-shan; Fu, Xia-ping; Yu, Hai-yan


    Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC detection of watermelons by means of visible/near infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer operating over the range 350~1000 nm. Spectra data were analyz...

  3. Multivariate NIR studies of seed-water interaction in Scots Pine Seeds (Pinus sylvestris L.)


    Lestander, Torbjörn


    This thesis describes seed-water interaction using near infrared (NIR) spectroscopy, multivariate regression models and Scots pine seeds. The presented research covers classification of seed viability, prediction of seed moisture content, selection of NIR wavelengths and interpretation of seed-water interaction modelled and analysed by principal component analysis, ordinary least squares (OLS), partial least squares (PLS), bi-orthogonal least squares (BPLS) and genetic algorithms. The potenti...

  4. A new network of faint calibration stars from the near infrared spectrometer (NIRS) on the IRTS (United States)

    Freund, Minoru M.; Matsuura, Mikako; Murakami, Hiroshi; Cohen, Martin; Noda, Manabu; Matsuura, Shuji; Matsumoto, Toshio


    The point source extraction and calibration of the near infrared spectrometer (NIRS) onboard the Infrared Telescope in Space (IRTS) is described. About 7 percent of the sky was observed during a one month mission in the range of 1.4 micrometers to 4 micrometers. The accuracy of the spectral shape and absolute values of calibration stars provided by the NIRS/IRTS were validated.

  5. Thermal behavior of NIR active centers in Bi-doped optical fibers


    Dvoretsky, D. A.; Bufetov, I. A.; Vel'miskin, V. V.; Zlenko, A. S.; Khopin, V. F.; Semenov, S. L.; Guryanov, A. N.; Denisov, L. K.; Dianov, E. M.


    The temperature dependences of optical loss and luminescence spectra have been measured in visible and NIR spectral range for Bi-doped silica and Bi-doped germanosilicate fibers for the first time. The temperature dependence of luminescence lifetime for Si-associated active bismuth centers in germanosilicate fiber was measured. It has been revealed, that distribution of Bi3+ ions across the fiber preform is essentially different as compared to that of NIR active bismuth centers. Data received...

  6. NIR techniques create added values for the pellet and biofuel industry. (United States)

    Lestander, Torbjörn A; Johnsson, Bo; Grothage, Morgan


    A 2(3)-factorial experiment was carried out in an industrial plant producing biofuel pellets with sawdust as feedstock. The aim was to use on-line near infrared (NIR) spectra from sawdust for real time predictions of moisture content, blends of sawdust and energy consumption of the pellet press. The factors varied were: drying temperature and wood powder dryness in binary blends of sawdust from Norway spruce and Scots pine. The main results were excellent NIR calibration models for on-line prediction of moisture content and binary blends of sawdust from the two species, but also for the novel finding that the consumption of electrical energy per unit pelletized biomass can be predicted by NIR reflectance spectra from sawdust entering the pellet press. This power consumption model, explaining 91.0% of the variation, indicated that NIR data contained information of the compression and friction properties of the biomass feedstock. The moisture content model was validated using a running NIR calibration model in the pellet plant. It is shown that the adjusted prediction error was 0.41% moisture content for grinded sawdust dried to ca. 6-12% moisture content. Further, although used drying temperatures influenced NIR spectra the models for drying temperature resulted in low prediction accuracy. The results show that on-line NIR can be used as an important tool in the monitoring and control of the pelletizing process and that the use of NIR technique in fuel pellet production has possibilities to better meet customer specifications, and therefore create added production values.

  7. NIR spectroscopic sensing for point-of-need freshness assessment of meat, fish, vegetables and fruits (United States)

    Lee, Seoho; Noh, Tae Gyoon; Choi, Jun Hoe; Han, Jeongsu; Ha, Joo Young; Lee, Ji Young; Park, Yongjong


    Foodborne illness represents a significant health burden worldwide. While monitoring the freshness of food before consumption could significantly improve the current predicament, there is a lack of a simple system that one can use to accurately assess the freshness of their food. Currently, the most common practice for food quality determination is by visual or odor inspection which lacks objectivity, accuracy and precision. Near infrared (NIR) spectroscopic techniques can help address this problem by providing rapid and non-destructive means to estimate the freshness state of various foods based on the changes to their characteristic spectra in the NIR region. Recent advancements in the development of portable NIR spectrometers are also enabling the realization of this technique at the point-of-need. In this study, we have evaluated the feasibility of using NIR spectroscopy at the point-of-need to estimate the freshness of various foods including: beef sirloin, beef eyeround, pork sirloin, bass, salmon, corvina, tomato and watermelon. Using a commercial portable NIR spectrometer, we periodically scanned and collected NIR spectra from the food items that were stored at 4°C inside a refrigerator for up to 30 days. For these food items, we show that the NIR spectra can be classified by the foods' aging day as well as by the levels of chemical/microbial indicators (i.e., thiobarbituric acid, volatile basic nitrogen and bacteria levels) with high accuracy, which represents high prospects of NIR spectroscopy for point-of-need freshness assessment of meat, fish, vegetables and fruits.

  8. Association of Concurrent fNIRS and EEG Signatures in Response to Auditory and Visual Stimuli. (United States)

    Chen, Ling-Chia; Sandmann, Pascale; Thorne, Jeremy D; Herrmann, Christoph S; Debener, Stefan


    Functional near-infrared spectroscopy (fNIRS) has been proven reliable for investigation of low-level visual processing in both infants and adults. Similar investigation of fundamental auditory processes with fNIRS, however, remains only partially complete. Here we employed a systematic three-level validation approach to investigate whether fNIRS could capture fundamental aspects of bottom-up acoustic processing. We performed a simultaneous fNIRS-EEG experiment with visual and auditory stimulation in 24 participants, which allowed the relationship between changes in neural activity and hemoglobin concentrations to be studied. In the first level, the fNIRS results showed a clear distinction between visual and auditory sensory modalities. Specifically, the results demonstrated area specificity, that is, maximal fNIRS responses in visual and auditory areas for the visual and auditory stimuli respectively, and stimulus selectivity, whereby the visual and auditory areas responded mainly toward their respective stimuli. In the second level, a stimulus-dependent modulation of the fNIRS signal was observed in the visual area, as well as a loudness modulation in the auditory area. Finally in the last level, we observed significant correlations between simultaneously-recorded visual evoked potentials and deoxygenated hemoglobin (DeoxyHb) concentration, and between late auditory evoked potentials and oxygenated hemoglobin (OxyHb) concentration. In sum, these results suggest good sensitivity of fNIRS to low-level sensory processing in both the visual and the auditory domain, and provide further evidence of the neurovascular coupling between hemoglobin concentration changes and non-invasive brain electrical activity.

  9. [Determination of ursolic acid of Liuwei Dihuangwan simulation samples by NIR]. (United States)

    Song, Li-Li; Fan, Bing-Yi; Xu, Xiao-Jie; Lu, Peng-Wei; Xiang, Bing-Ren


    Determine the content of ursolic acid of Liuwei Dihuangwan. Using NIR with PLS, PCA-BPANN and WT-BPANN. The predication recovery were 100.7%, 100.6%, 100.1%, and the RSD were 5.42%, 6.49%, 6.52% respectively. NIR can be used in the determination of ursolic acid, which set up the foundation of on-line control of traditional Chinese medicine.

  10. Karakteristik Spektra Absorbansi NIR (Near Infra Red) Spektroskopi Kayu Acacia mangium WILLD pada 3 Umur Berbeda


    Karlinasari, Lina; Sabed, Merry; J. Wistara, Nyoman; Purwanto, Aris; Wijayanto, Hari


    Penelitian mengenai pengujian nondestruktif metode near infrared (NIR) spektroskopi di Indonesia masih sangat terbatas. Penelitian ini bertujuan untuk menentukan karakteristik spektra NIR spektroskopi (panjang gelombang 700 nm – 2500 nm) kayu Acacia mangium dari 3 umur yaitu 5, 6, dan, 7 tahun. Kayu mangium diperoleh dari daerah Maribaya, Parung Panjang, Bogor. Sampel contoh uji spektra terdiri dari bentuk solid atau padatan dan bentuk serbuk kayu. Hasil penelitian menunjukkan spektra absorba...


    CERN Multimedia

    Françoise Benz


    ACADEMIC TRAINING Françoise Benz tel. 73127 22, 23, 24, 25 and 26 March LECTURE SERIES From 11:00 to 12:00 hrs Main Auditorium bldg. 500 on 22, 24, 25 and 26 March TH Auditorium bldg 4 on 23 March Neutrinos Y. NIR, Weizmann Institute of Science, Rehovot, Israel The Standard Model predicts that the neutrinos are massless and do not mix. Generic extensions of the Standard Model predict that neutrinos are massive (but, very likely, much lighter than the charged fermions). Therefore, the search for neutrino masses and mixing tests the Standard Model and probes new physics. Measurements of various features of the fluxes of atmospheric, solar and, more recently, reactor neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. These results have significant theoretical implications: new physics exists, and its scale can be estimated. There are interesting lessons for grand unified theories and for models of extra dimensions. T...

  12. NIRS report concerning the cyclotron usages. FY 2000

    International Nuclear Information System (INIS)


    This report describes the National Institute of Radiological Sciences (NIRS) cyclotron usages concerning of: Operation and improvement-development of the cyclotrons in 2000 (total 1,302 hr operation, development of the insulating septum, renewal of the magnetic channel and radiofrequency (RF) pre-amplifier, and improvement of the magnetic interference); Development of neutron detectors in the cosmic environment (the phoswich detector, low-pressure proportional counter, bubble dosimeter and new type phoswich detector); Development of detectors of charged particle components in the cosmic radiation (Liulin-4J and position sensitive silicon detector); Measurement of the energy and angular distribution of secondary electrons from water vapor with heavy-ion impact; Phase II clinical trials of proton beam therapy for ophthalmological tumors (34 patients in 1996-2000 and survival rate 100% within 3 years); Application of cyclotrons for RI production (mainly, 11 C, 13 N, 15 O and 18 F for basic and clinical PET); Studies on the spread-out peak of proton beam (for radiotherapy); and Related materials to above (details). (N.I.)

  13. Quality assessment of fruit juices by NIR spectroscopy

    Directory of Open Access Journals (Sweden)

    Petr Šnurkovič


    Full Text Available In the article there is described the detection of substances used for adulteration of fruit juices. They were investigated in juice products distributed within the network of retail markets. This detection was performed using the method of near-infrared spectroscopy (NIR. There were analysed samples of orange juices, apple juices, and grapefruit juices. At the beginning, there were assessed quality parameters (soluble dry matter, total acids, formol number, malic acid, citric acid, ascorbic acid, lactic acid, specific density, and ethanol content and their compatibility with the limit values specified by the Association of the Industries of Juices and Nectars. The research covered 45 kinds of fruit juices and there was found 10 cases when at least one parameter was out of the approved limits. After that there was used the discrimination analysis and it enabled to separate pure juices from those containing at least 1 % of admixtures. This method also helped to distinguish between the group of fresh squeezed juices and the juices made of fruit concentrates. Using the diagnostics “Principal Component Scores 3D Display”, there were arranged various numbers of similar groups of juice samples with similar compound profiles.

  14. EMIR: cryogenic NIR multi-object spectrograph for GTC (United States)

    Balcells, Marc; Guzman, R.; Patron, J.; Aragon-Salamanca, Alfonso; Azcue, J.; Ballester Lluch, Jose A.; Barroso, M. T.; Beigbeder, F.; Brau-Nogue, S.; Cardiel, N.; Carter, Dave; Diaz-Garcia, Jose J.; de la Fuente, E.; Fuentes, F. Javier; Fragoso-Lopez, Ana B.; Gago, Fernando; Gallego, J.; Gomez-Elvira, J.; Heredero, J. C.; Jones, Damien J.; Lopez, J. C.; Luke, P.; Manescau, Antonio; Munoz, T.; Peletier, R. F.; Pello, R.; Picat, Jean P.; Robertson, David J.; Rodriguez, J. A.; Serrano, Angel; Sharples, Ray M.; Zamorano, J.


    EMIR is a near-IR, multi-slit camera-spectrograph under development for the 10m GTC on La Palma. It will deliver up to 45 independent R equals 3500-4000 spectra of sources over a field of view of 6 feet by 3 feet, and allow NIR imaging over a 6 foot by 6 foot FOV, with spatial sampling of 0.175 inch/pixel. The prime science goal of the instrument is to open K-band, wide field multi-object spectroscopy on 10m class telescopes. Science applications range from the study of star-forming galaxies beyond z equals 2, to observations of substellar objects and dust-enshrouded star formation regions. Main technological challenges include the large optics, the mechanical and thermal stability and the need to implement a mask exchange mechanism that does not require warming up the spectrograph. EMIR is begin developed by the Instituto de Astrofisica de Canarias, the Instituto Nacional de Tecnica Aeroespacial, the Universidad Complutense de Madrid, the Observatoire Midi-Pyrennees, and the University of Durham. Currently in its Preliminary Design phase, EMIR is expected to start science operation in 2004.

  15. Learning word order at birth: A NIRS study. (United States)

    Benavides-Varela, Silvia; Gervain, Judit


    In language, the relative order of words in sentences carries important grammatical functions. However, the developmental origins and the neural correlates of the ability to track word order are to date poorly understood. The current study therefore investigates the origins of infants' ability to learn about the sequential order of words, using near-infrared spectroscopy (NIRS) with newborn infants. We have conducted two experiments: one in which a word order change was implemented in 4-word sequences recorded with a list intonation (as if each word was a separate item in a list; list prosody condition, Experiment 1) and one in which the same 4-word sequences were recorded with a well-formed utterance-level prosodic contour (utterance prosody condition, Experiment 2). We found that newborns could detect the violation of the word order in the list prosody condition, but not in the utterance prosody condition. These results suggest that while newborns are already sensitive to word order in linguistic sequences, prosody appears to be a stronger cue than word order for the identification of linguistic units at birth. Copyright © 2017. Published by Elsevier Ltd.

  16. Learning word order at birth: A NIRS study

    Directory of Open Access Journals (Sweden)

    Silvia Benavides-Varela


    Full Text Available In language, the relative order of words in sentences carries important grammatical functions. However, the developmental origins and the neural correlates of the ability to track word order are to date poorly understood. The current study therefore investigates the origins of infants’ ability to learn about the sequential order of words, using near-infrared spectroscopy (NIRS with newborn infants. We have conducted two experiments: one in which a word order change was implemented in 4-word sequences recorded with a list intonation (as if each word was a separate item in a list; list prosody condition, Experiment 1 and one in which the same 4-word sequences were recorded with a well-formed utterance-level prosodic contour (utterance prosody condition, Experiment 2. We found that newborns could detect the violation of the word order in the list prosody condition, but not in the utterance prosody condition. These results suggest that while newborns are already sensitive to word order in linguistic sequences, prosody appears to be a stronger cue than word order for the identification of linguistic units at birth.

  17. NIR Raman spectroscopy in medicine and biology: results and aspects (United States)

    Schrader, B.; Dippel, B.; Erb, I.; Keller, S.; Löchte, T.; Schulz, H.; Tatsch, E.; Wessel, S.


    Analyses of biomaterial by 'classical' Raman spectroscopy with excitation in the visible range has not been possible since the fluorescence of many essential constituents of all animal and plant cells and tissues overlays the Raman spectra completely. Fluorescence, however, is virtually avoided, when Raman spectra are excited with the Nd : YAG laser line at 1064 nm. Within seven dissertations we explored different fields of potential applications to medical diagnostics. Identification and qualification of tissues and cells is possible. Tumors show small but significant differences to normal tissues; in order to develop a reliable tool for tumor diagnostics more research is necessary, especially a collection of reference spectra in a data bank is needed. Raman spectra of biomineralization structures in teeth and bones show pathological tissues as well as the development of new mineralized structures. NIR Raman spectra of flowers, leaves, and fruit show, without special preparation, their constituents: alkaloids, the essential oils, natural dyes, flavors, spices and drugs. They allow application to taxonomy, optimizing plant breeding and control of food.

  18. Near-infrared spectroscopy (NIRS) in a piglet model

    DEFF Research Database (Denmark)

    Clausen, Nicola Groes; Spielmann, Nelly; Ringer, Simone K.


    Near-infrared spectroscopy (NIRS) in a piglet model: readings are influenced by the colour of the cover Clausen NG1,2, Spielmann N1,3, Weiss M1,3, Ringer SK4 1Children’s Research Center, University Children’s Hospital of Zurich, Switzerland; 2Department of Anaesthesiology and Intensive Care, Odense...... from rSO2-UC and rSO2-SC (rSO2-UC2: 57.4 ± 6.8; rSO2-SC: 57.5 ± 6.4; rSO2-SD: 52 ± 5.9 %) (preadings can be influenced by covering of the sensors. The colour of the cover seems to be of importance....... This variability is likely to reflect a source of error rather than an actual change in rSO2 and should be considered, when interpreting rSO2 in a clinical setting. We suggest application of a black sensor cover to avoid the influence of light. Acknowledgement: An INVOS Oximetry monitor was provided with courtesy...

  19. Monitoramento in situ e em tempo real de variáveis morfológicas do poli(cloreto de vinila usando espectroscopia NIR Monitoring in situ and in real time the morphological variables of pvc using NIR spectroscopy

    Directory of Open Access Journals (Sweden)

    João M. de Faria Jr.


    Full Text Available Este trabalho ilustra o uso de espectroscopia do infravermelho próximo (NIRS para fins de monitoramento da polimerização em suspensão de cloreto de vinila em tempo real. Resultados inéditos mostraram que é possível acompanhar a evolução de importantes propriedades morfológicas de resinas de PVC [poli(cloreto de vinila], como por exemplo, BD (densidade aparente, CPA (absorção de plastificante a frio, DTP (distribuição de tamanho de partículas e Dp (diâmetro de partícula. Mostrou-se também, pela primeira vez, que é possível analisar quantitativamente, com o auxílio da sonda NIRS in situ, a estrutura morfológica da partícula de PVC. Com a possibilidade de predizer a evolução dinâmica dos parâmetros morfológicos em tempo real, mostrou-se que é possível injetar dispersantes e variar a velocidade de agitação durante a reação para fins de controle das variáveis BD, CPA e DTP do PVC, até que o ponto de identificação da partícula seja atingido. Por meio do monitoramento e da estratégia de controle proposta, é possível antecipar fugas de temperatura no reator, aumentar a segurança do processo, diminuir o tempo de desenvolvimento de resinas com características morfológicas diferenciadas, evitando perdas de margem oriundas da venda de produtos fora de especificação, e otimizar os recursos para o desenvolvimento de novos produtos.This work illustrates the use of near infrared spectroscopy (NIRS for monitoring of the suspension polymerization of vinyl chloride in real time. Obtained results showed that it is possible to track in situ and in real time important morphological properties of PVC resins, such as BD (bulk density, CPA (cold plasticizer absorption, PSD (particle size distribution and Dp (average particle diameter. It was also shown for the first time that it is possible to analyze quantitatively, with the help of in situ NIRS probe, the morphological structure of the PVC particles. As a consequence, it

  20. Ultrasensitive NIR-SERRS Probes with Multiplexed Ratiometric Quantification for In Vivo Antibody Leads Validation. (United States)

    Kang, Homan; Jeong, Sinyoung; Jo, Ahla; Chang, Hyejin; Yang, Jin-Kyoung; Jeong, Cheolhwan; Kyeong, San; Lee, Youn Woo; Samanta, Animesh; Maiti, Kaustabh Kumar; Cha, Myeong Geun; Kim, Taek-Keun; Lee, Sukmook; Jun, Bong-Hyun; Chang, Young-Tae; Chung, Junho; Lee, Ho-Young; Jeong, Dae Hong; Lee, Yoon-Sik


    Immunotargeting ability of antibodies may show significant difference between in vitro and in vivo. To select antibody leads with high affinity and specificity, it is necessary to perform in vivo validation of antibody candidates following in vitro antibody screening. Herein, a robust in vivo validation of anti-tetraspanin-8 antibody candidates against human colon cancer using ratiometric quantification method is reported. The validation is performed on a single mouse and analyzed by multiplexed surface-enhanced Raman scattering using ultrasensitive and near infrared (NIR)-active surface-enhanced resonance Raman scattering nanoprobes (NIR-SERRS dots). The NIR-SERRS dots are composed of NIR-active labels and Au/Ag hollow-shell assembled silica nanospheres. A 93% of NIR-SERRS dots is detectable at a single-particle level and signal intensity is 100-fold stronger than that from nonresonant molecule-labeled spherical Au NPs (80 nm). The result of SERRS-based antibody validation is comparable to that of the conventional method using single-photon-emission computed tomography. The NIR-SERRS-based strategy is an alternate validation method which provides cost-effective and accurate multiplexing measurements for antibody-based drug development. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Modeling Neurovascular Coupling from Clustered Parameter Sets for Multimodal EEG-NIRS

    Directory of Open Access Journals (Sweden)

    M. Tanveer Talukdar


    Full Text Available Despite significant improvements in neuroimaging technologies and analysis methods, the fundamental relationship between local changes in cerebral hemodynamics and the underlying neural activity remains largely unknown. In this study, a data driven approach is proposed for modeling this neurovascular coupling relationship from simultaneously acquired electroencephalographic (EEG and near-infrared spectroscopic (NIRS data. The approach uses gamma transfer functions to map EEG spectral envelopes that reflect time-varying power variations in neural rhythms to hemodynamics measured with NIRS during median nerve stimulation. The approach is evaluated first with simulated EEG-NIRS data and then by applying the method to experimental EEG-NIRS data measured from 3 human subjects. Results from the experimental data indicate that the neurovascular coupling relationship can be modeled using multiple sets of gamma transfer functions. By applying cluster analysis, statistically significant parameter sets were found to predict NIRS hemodynamics from EEG spectral envelopes. All subjects were found to have significant clustered parameters (P<0.05 for EEG-NIRS data fitted using gamma transfer functions. These results suggest that the use of gamma transfer functions followed by cluster analysis of the resulting parameter sets may provide insights into neurovascular coupling in human neuroimaging data.

  2. Application of NIR Spectroscopy Coupled with PLS Regression for Quantification of Total Polyphenol Contents from the Fruit and Aerial Parts of Citrullus colocynthis. (United States)

    Rizvi, Tania S; Mabood, Fazal; Ali, Liaqat; Al-Broumi, Mohammed; Al Rabani, Hamida K M; Hussain, Javid; Jabeen, Farah; Manzoor, Suryyia; Al-Harrasi, Ahmed


    Citrullus colocynthis (L.) Schrad is extensively used to treat diabetes, obesity, fever, cancer, amenorrhea, jaundice, leukemia, rheumatism, and respiratory diseases. Chemical studies have indicated the presence of several cucurbitacins, flavones, and other polyphenols in this plant. These phytochemical constituents are responsible for the interesting antioxidant and other biological activities of C. colocynthis. In the present study, for the first time, near infrared (NIR) spectroscopy coupled with partial least square (PLS) regression analysis was used to quantify the polyphenolic phytochemicals of C. colocynthis. The fruit and aerial parts of the C. colocynthis were extracted individually in methanol followed by fractionation in n-hexane, chloroform, ethyl acetate, n-butanol, and water. Near infrared (NIR) spectra were obtained in absorption mode in the wavelength range 700-2500 nm. The PLS regression model was then built from the obtained spectral data to quantify the total polyphenol contents in the selected plant samples. The PLS regression model obtained had a R 2 value of 99% with a 0.98 correlationship value and a good prediction with a root mean square error of prediction (RMSEP) value of 1.89% and correlation of 0.98. These results were further confirmed through UV-vis spectroscopy and it is found that the ethyl acetate fraction has the maximum value for polyphenol contents (101.7 mg/100 g; NIR, 100.4 mg/100 g; UV-vis). The polyphenolic phytochemicals of the fruit and aerial parts of C. colocynthis have been quantified successfully by using multivariate analysis in a non-destructive, economical, precise, and highly sensitive method, which uses very simple sample preparation. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Absorption heat pumps (United States)

    Huhtinen, M.; Heikkilae, M.; Andersson, R.


    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  4. Calculation of effective absorption coefficient for aerosols of internal mixture

    International Nuclear Information System (INIS)

    Xu Bo; Huang Yinbo; Fan Chengyu; Qiao Chunhong


    The effective absorption coefficient with time of strong absorbing aerosol made of carbon dusts and water of internal mixture is analyzed, and the influence of different wavelengths and radius ratios on it is discussed. The shorter the wavelength is, the larger the effective absorption coefficient is , and more quickly it increases during 1-100 μs, and the largest increase if 132.65% during 1-100 μs. Different ratios between inner and outer radius have large influence on the effective absorption coefficient. The larger the ratio is, the larger the effective absorption coefficient is, and more quickly it increases during 1-100 μs. The increase of the effective absorption coefficient during 1-100 μs is larger than that during 100-1000 μs, and the largest increase is 138.66% during 1-100 μs. (authors)

  5. Rapidly variable relatvistic absorption (United States)

    Parker, M.; Pinto, C.; Fabian, A.; Lohfink, A.; Buisson, D.; Alston, W.; Jiang, J.


    I will present results from the 1.5Ms XMM-Newton observing campaign on the most X-ray variable AGN, IRAS 13224-3809. We find a series of nine absorption lines with a velocity of 0.24c from an ultra-fast outflow. For the first time, we are able to see extremely rapid variability of the UFO features, and can link this to the X-ray variability from the inner accretion disk. We find a clear flux dependence of the outflow features, suggesting that the wind is ionized by increasing X-ray emission.

  6. Geospatial Absorption and Regional Effects

    Directory of Open Access Journals (Sweden)



    Full Text Available The geospatial absorptions are characterized by a specific complexity both in content and in their phenomenological and spatial manifestation fields. Such processes are differentiated according to their specificity to pre-absorption, absorption or post-absorption. The mechanisms that contribute to absorption are extremely numerous: aggregation, extension, diffusion, substitution, resistivity (resilience, stratification, borrowings, etc. Between these mechanisms frequent relations are established determining an amplification of the process and of its regional effects. The installation of the geographic osmosis phenomenon in a given territory (a place for example leads to a homogenization of the geospatial state and to the installation of the regional homogeneity.

  7. Broadband and wide angle near-unity absorption in graphene-insulator-metal thin film stacks (United States)

    Zhang, H. J.; Zheng, G. G.; Chen, Y. Y.; Xu, L. H.


    Broadband unity absorption in graphene-insulator-metal (GIM) structures is demonstrated in the visible (VIS) and near-infrared (NIR) spectra. The spectral characteristics possess broadband absorption peaks, by simply choosing a stack of GIM, while no nanofabrication steps and patterning are required, and thus can be easily fabricated to cover a large area. The electromagnetic (EM) waves can be entirely trapped and the absorption can be greatly enhanced are verified with the finite-difference time-domain (FDTD) and rigorous coupled wave analysis (RCWA) methods. The position and the number of the absorption peak can be totally controlled by adjusting the thickness of the insulator layer. The proposed absorber maintains high absorption (above 90%) for both transverse electric (TE) and transverse magnetic (TM) polarizations, and for angles of incidence up to 80°. This work opens up a promising approach to realize perfect absorption (PA) with ultra-thin film, which could implicate many potential applications in optical detection and optoelectronic devices.

  8. Extraordinary absorption of sound in porous lamella-crystals. (United States)

    Christensen, J; Romero-García, V; Picó, R; Cebrecos, A; de Abajo, F J García; Mortensen, N A; Willatzen, M; Sánchez-Morcillo, V J


    We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support. Experimental measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases the wave interaction time and is responsible for the enhancement of intrinsic material dissipation, making the system more absorptive with less material.

  9. Extraordinary absorption of sound in porous lamella-crystals

    DEFF Research Database (Denmark)

    Christensen, Johan; Romero-García, V.; Picó, R.


    We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support....... Experimental measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases the wave interaction time and is responsible for the enhancement of intrinsic material...... dissipation, making the system more absorptive with less material....

  10. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors. (United States)

    Wang, Menghua; Shi, Wei; Jiang, Lide; Voss, Kenneth


    The near-infrared (NIR) and shortwave infrared (SWIR)-based atmospheric correction algorithms are used in satellite ocean color data processing, with the SWIR-based algorithm particularly useful for turbid coastal and inland waters. In this study, we describe the NIR- and two SWIR-based on-orbit vicarious calibration approaches for satellite ocean color sensors, and compare results from these three on-orbit vicarious calibrations using satellite measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). Vicarious calibration gains for VIIRS spectral bands are derived using the in situ normalized water-leaving radiance nLw(λ) spectra from the Marine Optical Buoy (MOBY) in waters off Hawaii. The SWIR vicarious gains are determined using VIIRS measurements from the South Pacific Gyre region, where waters are the clearest and generally stable. Specifically, vicarious gain sets for VIIRS spectral bands of 410, 443, 486, 551, and 671 nm derived from the NIR method using the NIR 745 and 862 nm bands, the SWIR method using the SWIR 1238 and 1601 nm bands, and the SWIR method using the SWIR 1238 and 2257 nm bands are (0.979954, 0.974892, 0.974685, 0.965832, 0.979042), (0.980344, 0.975344, 0.975357, 0.965531, 0.979518), and (0.980820, 0.975609, 0.975761, 0.965888, 0.978576), respectively. Thus, the NIR-based vicarious calibration gains are consistent with those from the two SWIR-based approaches with discrepancies mostly within ~0.05% from three data processing methods. In addition, the NIR vicarious gains (745 and 862 nm) derived from the two SWIR methods are (0.982065, 1.00001) and (0.981811, 1.00000), respectively, with the difference ~0.03% at the NIR 745 nm band. This is the fundamental basis for the NIR-SWIR combined atmospheric correction algorithm, which has been used to derive improved satellite ocean color products over open oceans and turbid coastal/inland waters. Therefore, a unified

  11. Nitrite Reductase NirS Is Required for Type III Secretion System Expression and Virulence in the Human Monocyte Cell Line THP-1 by Pseudomonas aeruginosa▿ (United States)

    Van Alst, Nadine E.; Wellington, Melanie; Clark, Virginia L.; Haidaris, Constantine G.; Iglewski, Barbara H.


    The nitrate dissimilation pathway is important for anaerobic growth in Pseudomonas aeruginosa. In addition, this pathway contributes to P. aeruginosa virulence by using the nematode Caenorhabditis elegans as a model host, as well as biofilm formation and motility. We used a set of nitrate dissimilation pathway mutants to evaluate the virulence of P. aeruginosa PA14 in a model of P. aeruginosa-phagocyte interaction by using the human monocytic cell line THP-1. Both membrane nitrate reductase and nitrite reductase enzyme complexes were important for cytotoxicity during the interaction of P. aeruginosa PA14 with THP-1 cells. Furthermore, deletion mutations in genes encoding membrane nitrate reductase (ΔnarGH) and nitrite reductase (ΔnirS) produced defects in the expression of type III secretion system (T3SS) components, extracellular protease, and elastase. Interestingly, exotoxin A expression was unaffected in these mutants. Addition of exogenous nitric oxide (NO)-generating compounds to ΔnirS mutant cultures restored the production of T3SS phospholipase ExoU, whereas nitrite addition had no effect. These data suggest that NO generated via nitrite reductase NirS contributes to the regulation of expression of selected virulence factors in P. aeruginosa PA14. PMID:19651860

  12. Efficient Dual-Modal NIR-to-NIR Emission of Rare Earth Ions Co-doped Nanocrystals for Biological Fluorescence Imaging. (United States)

    Zhou, Jiajia; Shirahata, Naoto; Sun, Hong-Tao; Ghosh, Batu; Ogawara, Makoto; Teng, Yu; Zhou, Shifeng; Sa Chu, Rong Gui; Fujii, Minoru; Qiu, Jianrong


    A novel approach has been developed for the realization of efficient near-infrared to near-infrared (NIR-to-NIR) upconversion and down-shifting emission in nanophosphors. The efficient dual-modal NIR-to-NIR emission is realized in a β-NaGdF4/Nd(3+)@NaGdF4/Tm(3+)-Yb(3+) core-shell nanocrystal by careful control of the identity and concentration of the doped rare earth (RE) ion species and by manipulation of the spatial distributions of these RE ions. The photoluminescence results reveal that the emission efficiency increases at least 2-fold when comparing the materials synthesized in this study with those synthesized through traditional approaches. Hence, these core-shell structured nanocrystals with novel excitation and emission behaviors enable us to obtain tissue fluorescence imaging by detecting the upconverted and down-shifted photoluminescence from Tm(3+) and Nd(3+) ions, respectively. The reported approach thus provides a new route for the realization of high-yield emission from RE ion doped nanocrystals, which could prove to be useful for the design of optical materials containing other optically active centers.

  13. High-Contrast NIR Polarization Imaging of MWC480 (United States)

    McElwain, M. W.; Kusakabe, N.; Hashimoto, J.; Kudo, T.; Kandori, R.; Miyama, S.; Morino, J.-I.; Suto, H.; Suzuki, R.; Tamura, M.; hide


    One of the key predictions of modeling from the IR excess of Herbig Ae stars is that for protoplanetary disks, where significant grain growth and settling has occurred, the dust disk has flattened to the point that it can be partially or largely shadowed by the innermost material at or near the dust sublimation radius. When the self-shadowing has already started, the outer disk is expected to be detected in scattered light only in the exceptional cases that the scale height of the dust disk at the sublimation radius is smaller than usual. High-contrast imaging combined with the IR spectral energy distribution allow us to measure the degree of flattening of the disk, as well as to determine the properties of the outer disk. We present polarimetric differential imaging in H band obtained with Subaru/HiCIAO of one such system, MWC 480. The HiCIAO data were obtained at a historic minimum of the NIR excess. The disk is detected in scattered light from 0".2-1"0 (27.4-137 AU). Together with the marginal detection of the disk from 1998 February 24 by HST / NICMOS, our data constrain the opening half angle for the disk to lie between 1.3 <= Theta <=2.2 deg. When compared with similar measures in CO for the gas disk from the literature, the dust disk subtends only approx 30% of the gas disk scale height (H/R approx 0. 03). Such a dust disk is a factor of 5-7 flatter than transitional disks, which have structural signatures that giant planets have formed.

  14. [Determination of Chloride Salt Solution by NIR Spectroscopy]. (United States)

    Zhang, Bin; Chen, Jian-hong; Jiao, Ming-xing


    Determination of chloride salt solution by near infrared spectrum plays a very important role in Biomedicine. The near infrared spectrum analysis of Sodium chloride, potassium chloride, calcium chloride aqueous solution shows that the concentration change of chloride salt can affect hydrogen bond, resulting in the variation of near infrared spectrum of water. The temperature influence on NIR spectrum has been decreased by choosing reasonable wavelength range and the wavelength where the temperature effects are zero (isosbestic point). Chlorine salt prediction model was established based on partial least squares method and used for predicting the concentration of the chlorine ion. The impact on near infrared spectrum of the cation ionic radius, the number of ionic charge, the complex effect of ionic in water has also discussed in this article and the reason of every factor are analysed. Experimental results show that the temperature and concentration will affect the near-infrared spectrum of the solution, It is found that the effect of temperature plays the dominant role at low concentrations of chlorine salt; rather, the ionic dominates at high concentration. Chloride complexes are formed in aqueous solution, It has an effect on hydrogen bond of water combining with the cations in chlorine salt solution, Comparing different chloride solutions at the same concentration, the destruction effects of chloride complexes and catnions on the hydrogen bond of water increases in the sequences: CaCl2 >NaCl>KC. The modeling result shows that the determination coefficients (R2) = 99.97%, the root mean square error of cross validation (RM- SECV) = 4.51, and the residual prediction deviation (RPD) = 62.7, it meets the daily requirements of biochemical detection accuracy.

  15. Replacing lactose from calf milk replacers : effects on digestion and post-absorptive metabolism

    NARCIS (Netherlands)

    Gilbert, M.S.


    <strong>Summary PhD thesis Myrthe S. Gilbertstrong>

    <strong>Replacing lactose from calf milk replacers – Effects on digestion and post-absorptive metabolismstrong>

    Veal calves are fed milk replacer (MR) and solid feed. The largest part of the energy provided to veal calves

  16. Replacing lactose from calf milk replacers : effects on digestion and post-absorptive metabolism

    NARCIS (Netherlands)

    Gilbert, M.S.


    <strong>Summary PhD thesis Myrthe S. Gilbertstrong> <strong>Replacing lactose from calf milk replacers – Effects on digestion and post-absorptive metabolismstrong> Veal calves are fed milk replacer (MR) and solid feed. The largest part of the energy provided to veal calves originates from

  17. Intracellular Disassembly of Self-Quenched Nanoparticles Turns NIR Fluorescence on for Sensing Furin Activity in Cells and in Tumors. (United States)

    Yuan, Yue; Zhang, Jia; Cao, Qinjingwen; An, Linna; Liang, Gaolin


    There has been no report on enzyme-controlled disassembly of self-quenched NIR fluorescent nanoparticles turning fluorescence on for specific detection/imaging of the enzyme's activity in vitro and in vivo. Herein, we reported the rational design of new NIR probe 1 whose fluorescence signal was self-quenched upon reduction-controlled condensation and subsequent assembly of its nanoparticles (i.e., 1-NPs). Then disassembly of 1-NPs by furin turned the fluorescence on. Employing this enzymatic strategy, we successfully applied 1-NPs for NIR detection of furin in vitro and NIR imaging furin activity in living cells. Moreover, we also applied 1-NPs for discriminative NIR imaging of MDA-MB-468 tumors in nude mice. This NIR probe 1 might be further developed for tumor-targeted imaging in routine preclinical studies or even in patients in the future.

  18. Aerosol radiative effect in UV, VIS, NIR, and SW spectra under haze and high-humidity urban conditions (United States)

    Zhang, Ming; Ma, Yingying; Gong, Wei; Wang, Lunche; Xia, Xiangao; Che, Huizheng; Hu, Bo; Liu, Boming


    Aerosol properties derived from sun-photometric observations at Wuhan during a haze period were analyzed and used as input in a radiative transfer model to calculate the aerosol radiative effect (ARE) in ultraviolet (UV), visible (VIS), near-infrared (NIR), and shortwave (SW) spectra. The results showed that the aerosol optical depth (AOD) at 440 nm increased from 0.32 under clear-air conditions to 0.85 during common haze and 1.39 during severe haze. An unusual inverse relationship was found between the Ångström exponent (AE) and AOD during the haze period at Wuhan. Under high-humidity conditions, the fine-mode median radius of aerosols increased from 0.113 μm to approximately 0.2-0.5 μm as a result of hygroscopic growth, which led to increases in the AOD and decreases in the AE simultaneously. These changes were responsible for the inverse relationship between AE and AOD at Wuhan. The surface ARE in the UV (AREUV), VIS (AREVIS), NIR (ARENIR), and SW (ARESW) spectra changed from -4.46, -25.37, -12.15, and -41.99 W/m2 under clear-air conditions to -9.48, -53.96, -29.81, and -93.25 W/m2 during common hazy days and -12.89, -80.16, -55.17, and -148.22 W/m2 during severe hazy days, respectively, and the percentages of AREUV, AREVIS, and ARENIR in ARESW changed from 11%, 61%, and 28%-9%, 54%, and 37%, respectively. Meanwhile, the ARE efficiencies (REE) in SW varied from -206.5 W/m2 under clear-air conditions to -152.94 W/m2 during the common haze period and -131.47 W/m2 during the severe haze period. The smallest decreasing rate of the REE in NIR was associated with the increase of ARENIR. The weakened REE values were related to the strong forward scattering and weak backward scattering of fine aerosol particles with increasing size resulting from hygroscopic growth, while the variation of the single scattering albedo showed less impact. Source region analysis by back trajectories and the concentration weighted trajectory (CWT) method showed that black carbon came

  19. Prediction of rumen degradability parameters of a wide range of forages and non-forages by NIRS. (United States)

    Foskolos, A; Calsamiglia, S; Chrenková, M; Weisbjerg, M R; Albanell, E


    Kinetics of nutrient degradation in the rumen is an important component of feed evaluation systems for ruminants. The in situ technique is commonly used to obtain such dynamic parameters, but it requires cannulated animals and incubations last several days limiting its application in practice. On the other hand, feed industry relies strongly on NIRS to predict chemical composition of feeds and it has been used to predict nutrient degradability parameters. However, most of these studies were feedstuff specific, predicting degradability parameters of a particular feedstuff or category of feedstuffs, mainly forages or compound feeds and not grains and byproducts. Our objective was to evaluate the potential of NIRS to predict degradability parameters and effective degradation utilizing a wide range of feedstuffs commonly used in ruminant nutrition. A database of 809 feedstuffs was created. Feedstuffs were grouped as forages (FF; n=256), non-forages (NF; n=539) and of animal origin (n=14). In situ degradability data for dry matter (DM; n=665), CP (n=682) and NDF (n=100) were collected. Degradability was described in terms of washable fraction (a), slowly degradable fraction (b) and its rate of degradation (c). All samples were scanned from 1100 to 2500 nm using an NIRSystems 5000 scanning in reflectance mode. Calibrations were developed for all samples (ALL), FF and NF. Equations were validated with an external validation set of 20% of total samples. NIRS equations to predict the effective degradability and fractions a and b of DM, CP and NDF could be evaluated from being adequate for screening (r(2)>0.77; ratio of performance to deviation (RPD)=2.0 to 2.9) to suitable for quantitative purposes (r(2)>0.84; RPD=3.1 to 4.7), and some predictions were improved by group separation reducing the standard error of prediction. Similarly, the rate of degradation of CP (CP(c)) and DM (DM(c)) was predicted for screening purposes (RPD⩾2 and 2.5 for CP(c) and DM(c), respectively


    The absorption spectrum of MnF2 at 4.2K in the 3900A region was measured in zero external fields and in high fields. Exciton lines with magnon ...sidebands are observed, accompanied by a large number of weak satellite lines. Results on the exciton and magnon absorptions are similar to those of...McClure et al. The satellite lines are interpreted as being multi- magnon absorptions, and it is possible to fit the energy of all the absorptions with

  1. Single-particle absorption spectroscopy by photothermal contrast. (United States)

    Yorulmaz, Mustafa; Nizzero, Sara; Hoggard, Anneli; Wang, Lin-Yung; Cai, Yi-Yu; Su, Man-Nung; Chang, Wei-Shun; Link, Stephan


    Removing effects of sample heterogeneity through single-molecule and single-particle techniques has advanced many fields. While background free luminescence and scattering spectroscopy is widely used, recording the absorption spectrum only is rather difficult. Here we present an approach capable of recording pure absorption spectra of individual nanostructures. We demonstrate the implementation of single-particle absorption spectroscopy on strongly scattering plasmonic nanoparticles by combining photothermal microscopy with a supercontinuum laser and an innovative calibration procedure that accounts for chromatic aberrations and wavelength-dependent excitation powers. Comparison of the absorption spectra to the scattering spectra of the same individual gold nanoparticles reveals the blueshift of the absorption spectra, as predicted by Mie theory but previously not detectable in extinction measurements that measure the sum of absorption and scattering. By covering a wavelength range of 300 nm, we are furthermore able to record absorption spectra of single gold nanorods with different aspect ratios. We find that the spectral shift between absorption and scattering for the longitudinal plasmon resonance decreases as a function of nanorod aspect ratio, which is in agreement with simulations.

  2. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.


    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  3. Carbazole-based BODIPYs with ethynyl substituents at the boron center: solid-state excimer fluorescence in the VIS/NIR region. (United States)

    Maeda, Chihiro; Nagahata, Keiji; Ema, Tadashi


    Carbazole-based BODIPYs 1-6 with several different substituents at the boron atom site were synthesized. These dyes fluoresced in the solid state, and 3a with phenylethynyl groups exhibited a red-shifted and broad fluorescence spectrum, which suggested an excimer emission. Its derivatives 3b-n were synthesized, and the relationship between the solid-state emission and crystal packing was investigated. The X-ray crystal structures revealed cofacial dimers that might form excimers. From the structural optimization results, we found that the introduction of mesityl groups hindered intermolecular access and led to reduced interactions between the dimers. In addition, the red-shifted excimer fluorescence suppressed self-absorption, and dyes with ethynyl groups showed solid-state fluorescence in the vis/NIR region.

  4. Dopant occupancy and UV-VIS-NIR spectroscopy of Mg (0, 4, 5 and 6 mol.%):Dy:LiNbO3 crystal (United States)

    Dai, Li; Liu, Chunrui; Han, Xianbo; Wang, Luping; Tan, Chao; Yan, Zhehua; Xu, Yuheng


    A series of Dy:LiNbO3 crystals with x mol.% Mg2+ ions (x =0, 4, 5 and 6 mol.%) were grown by the Czochralski method. The effective segregation coefficient of Mg2+ and Dy3+ ions was studied by the inductively coupled plasma-atomic emission spectrometry (ICP-AES). UV-VIS-NIR absorption spectra and Judd-Ofelt theory were used to investigate their spectroscopic properties. J-O intensity parameters (Ω2 = 7.53 × 10-20cm2, Ω4 = 6.98 × 10-20cm2, and Ω6 = 3.09 × 10-20cm2) and larger spectroscopic quality factor (X = 2.26) for Mg:(6 mol.%)Dy:LiNbO3 crystals were obtained.

  5. Analyzing Water's Optical Absorption (United States)


    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  6. Atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Haswell, S.J.


    Atomic absorption spectroscopy is now well established and widely used technique for the determination of trace and major elements in a wide range analyte types. There have been many advances in the atomic spectroscopy over the last decade and for this reason and to meet the demand, it was felt that there was a need for an updated book. Whilst interest in instrumental design has tended to dominate the minds of the spectrocopist, the analyst concerned with obtaining reliable and representative data, in diverse areas of application, has been diligently modifying and developing sample treatment and instrumental introduction techniques. Such methodology is de fundamental part of analysis and form the basis of the fourteen application chapters of this book. The text focuses in the main on AAS; however, the sample handling techniques described are in many cases equally applicable to ICP-OES and ICP-MS analysis. (author). refs.; figs.; tabs

  7. Fabrication of NIR-responsive NaYF4:Yb,Tm/anatase TiO2 composite aerogel (United States)

    Li, Fu-Chih; Kitamoto, Yoshitaka


    3-dimensional interconnected network structure of TiO2 aerogel has attracted considerable attention to solve environmental issues due to an advanced oxidation process which uses abundant sunlight for the complete minimization of toxic pollutants. The TiO2 aerogel with high specific surface area, large pores, and low density has a potential to be used as photocatalyst for air and water purification. Nonetheless, due to the larger band gap, TiO2 semiconductor photocatalysts possess high oxidizing properties under UV light only which occupies 5% of solar energy. To expand the absorption spectrum of TiO2 aerogel under solar irradiation, the NaYF4:Yb,Tm nanoparticles (NPs) are introduced into the TiO2 aerogel matrix structure. The morphology and crystal structure of the composite aerogel are investigated by transmission electron microscopy and X-ray diffraction, respectively. The particle size of NaYF4:Yb,Tm NPs is approximately 40 nm and the crystallite size of TiO2 is around 10 nm. In addition, the NaYF4:Yb,Tm NPs are enclosed by anatase phase of TiO2 aerogel. The NaYF4:Yb,Tm NPs which exist in the TiO2 aerogel has a capability of transferring NIR light to UV region.

  8. A monolithic 640 × 512 CMOS imager with high-NIR sensitivity (United States)

    Lauxtermann, Stefan; Fisher, John; McDougal, Michael


    In this paper we present first results from a backside illuminated CMOS image sensor that we fabricated on high resistivity silicon. Compared to conventional CMOS imagers, a thicker photosensitive membrane can be depleted when using silicon with low background doping concentration while maintaining low dark current and good MTF performance. The benefits of such a fully depleted silicon sensor are high quantum efficiency over a wide spectral range and a fast photo detector response. Combining these characteristics with the circuit complexity and manufacturing maturity available from a modern, mixed signal CMOS technology leads to a new type of sensor, with an unprecedented performance spectrum in a monolithic device. Our fully depleted, backside illuminated CMOS sensor was designed to operate at integration times down to 100nsec and frame rates up to 1000Hz. Noise in Integrate While Read (IWR) snapshot shutter operation for these conditions was simulated to be below 10e- at room temperature. 2×2 binning with a 4× increase in sensitivity and a maximum frame rate of 4000 Hz is supported. For application in hyperspectral imaging systems the full well capacity in each row can individually be programmed between 10ke-, 60ke- and 500ke-. On test structures we measured a room temperature dark current of 360pA/cm2 at a reverse bias of 3.3V. A peak quantum efficiency of 80% was measured with a single layer AR coating on the backside. Test images captured with the 50μm thick VGA imager between 30Hz and 90Hz frame rate show a strong response at NIR wavelengths.

  9. Country report from Japan: Activities of NIRS as a central reference laboratory

    International Nuclear Information System (INIS)

    Kawamura, H.; Shiraishi, K.; Ozawa, K.; Arae, H.; Yukawa, M.


    As agreed upon at the Project Formulation Meeting and the First Research Co-ordination Meeting, functions of the central reference laboratory (CRL) in assistance to the Agency were assigned to National Institute of Radiological Sciences (NIRS). Therefore, we have been making utmost efforts, aside from our own research activities concerning the current CRP, to cope with the following assignments, in which we are supported through the Science and Technology Agency of Japan. There was some delay in the progress for the planned distribution of three Reference Materials for internal quality control (QC) and preparation in Japan of the reference diet material of an Asian composition. However, training of fellow research workers of the CRP and associated co-operation that were requested by some of the participants, were satisfactorily carried out. During the next 18 months, we foresee (a) analysis of '10% samples' sent by the participants for external QC, (b) backup analysis of some number of samples for the first priority elements for some participants, and (c) distribution of the Japanese reference diet material when it is prepared, to accelerate progress of the CRP as originally planned. We are putting an emphasis on the strong will to completing the Project to provide researchers worldwide with essential data for metabolism of the elements of importance in internal dosimetry and Reference Man. It should be noted, however, the CRL is moving from its present location to the Chiba campus, about 130 km to the south by car, sometime during 1999. Due to the relocation process, our analytical work will probably be interrupted for a month or two

  10. Electrodynamics of a hydrogenlike atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Kovarskij, V.A.; Perel'man, N.F.


    The quasienergy spectrum of the hydrogen atom in strong electromagnetic radiation is studied, the luminescence of the atom under these conditions is considered. It is shown that in a strong field the atom, being even in the ground state, radiates a spectrum of frequencies corresponding to transitions from the ground state into excited states, the strong field photons being involved. The intensity of such a luminescence is basically a non-linear function of the strong field. The exposure of the atom to two strong electromagnetic fields Ω and ω (Ω>>ω) is considered, the Ω coinciding with one of the natural frquencies of the atom. The effct of modulation of the resonance shift for an atomic level by the ω-field strength is predicted. The dependence of Ω-absorption in the ω-field on the statistic properties of the latter is investigated. (author)

  11. Spectroscopy and enhanced frequency upconversion in Nd3+-Yb3+ codoped TPO glasses: energy transfer and NIR to visible upconverter (United States)

    Azam, Mohd; Rai, Vineet Kumar; Mohanty, Deepak Kumar


    TeO2-Pb3O4 (TPO) glasses codoped with Nd3+ and Yb3+ ions have been fabricated by conventional melting technique. The absorption, emission and excitation spectra of the samples have been recorded. The optical band gap in both the doped/codoped glasses is found to be ˜3.31 eV. Judd-Ofelt analysis has been carried out by using the absorption spectrum of 0.8 mol% Nd3+ doped glass to determine the radiative properties viz radiative transition probabilities, branching ratios, radiative lifetimes, quality factor and emission cross sections of some emitting levels for Nd3+ ions. The radiative transition probability for the 4G7/2 → 4I9/2 transition (˜1926 Hz) is found to be maximum compared to other 4G5/2 → 4I9/2 (˜1622 Hz) and 4F5/2 → 4I9/2 (˜865 Hz) transitions. Upconversion (UC) luminescence of the samples has been examined by the 980 nm CW diode laser excitation. Effect of addition of Yb3+ ions in the Nd3+ doped glasses on UC emission intensity has been discussed. The UC emission intensity corresponding to the green, red and NIR bands in the codoped glass has been enhanced by ˜17, ˜12 and ˜42 times as compared to that of the Nd3+ singly doped glass. The quantum efficiency for the 4G7/2 level is found to be ˜32%. The nephelauxetic ratio, bonding parameter and covalency of Nd3+ ions have been found positive which represents the covalent bonding between Nd3+ ion and oxygen atom. The colour tunability from yellowish-green to dominant green region has been obtained in the optimized codoped TPO glass.

  12. Performance comparison of different compact NIR fluorescent imaging systems with goggle display for intraoperative image-guidance (United States)

    Gao, Shengkui; Mondal, Suman; Zhu, Nan; Liang, Rongguang; Achilefu, Samuel; Gruev, Viktor


    Near-infrared (NIR) fluorescent imaging system has been widely used for intraoperative image-guided application. In this paper, we present performance comparison from three compact NIR fluorescence imaging system prototypes with goggle display that we developed for intraoperative guidance: threshold detection based two camera system, feature matching based three cameras system and miniature beam-splitter single camera system. Their performance is evaluated according to sensitivity regarding different ICG concentrations, accuracy of image overlay between NIR-visible channels, compactness and practicability in intraoperative use. The comparison results show great potentials of using these NIR fluorescence imaging systems to improve user experience and surgical outcomes in intraoperative use.

  13. Folate/NIR 797-conjugated albumin magnetic nanospheres: synthesis, characterisation, and in vitro and in vivo targeting evaluation. (United States)

    Tang, Qiusha; An, Yanli; Liu, Dongfang; Liu, Peidang; Zhang, Dongsheng


    A practical and effective strategy for synthesis of Folate-NIR 797-conjugated Magnetic Albumin Nanospheres (FA-NIR 797-MAN) was developed. For this strategy, Magnetic Albumin Nanospheres (MAN), composed of superparamagnetic iron oxide nanoparticles (SPIONs) and bovine serum albumin (BSA), were covalently conjugated with folic acid (FA) ligands to enhance the targeting capability of the particles to folate receptor (FR) over-expressing tumours. Subsequently, a near-infrared (NIR) fluorescent dye NIR 797 was conjugated with FA-conjugated MAN for in vivo fluorescence imaging. The FA-NIR 797-MAN exhibited low toxicity to a human nasopharyngeal epidermal carcinoma cell line (KB cells). Additionally, in vitro and in vivo evaluation of the dynamic behaviour and targeting ability of FA-NIR 797-MAN to KB tumours validated the highly selective affinity of FA-NIR 797-MAN for FR-positive tumours. In summary, the FA-NIR 797-MAN prepared here exhibited great potential for tumour imaging, since the near-infrared fluorescence contrast agents target cells via FR-mediated endocytosis. The high fluorescence intensity together with the targeting effect makes FA-NIR 797-MAN a promising candidate for imaging, monitoring, and early diagnosis of cancer at the molecular and cellular levels.

  14. Folate/NIR 797-conjugated albumin magnetic nanospheres: synthesis, characterisation, and in vitro and in vivo targeting evaluation.

    Directory of Open Access Journals (Sweden)

    Qiusha Tang

    Full Text Available A practical and effective strategy for synthesis of Folate-NIR 797-conjugated Magnetic Albumin Nanospheres (FA-NIR 797-MAN was developed. For this strategy, Magnetic Albumin Nanospheres (MAN, composed of superparamagnetic iron oxide nanoparticles (SPIONs and bovine serum albumin (BSA, were covalently conjugated with folic acid (FA ligands to enhance the targeting capability of the particles to folate receptor (FR over-expressing tumours. Subsequently, a near-infrared (NIR fluorescent dye NIR 797 was conjugated with FA-conjugated MAN for in vivo fluorescence imaging. The FA-NIR 797-MAN exhibited low toxicity to a human nasopharyngeal epidermal carcinoma cell line (KB cells. Additionally, in vitro and in vivo evaluation of the dynamic behaviour and targeting ability of FA-NIR 797-MAN to KB tumours validated the highly selective affinity of FA-NIR 797-MAN for FR-positive tumours. In summary, the FA-NIR 797-MAN prepared here exhibited great potential for tumour imaging, since the near-infrared fluorescence contrast agents target cells via FR-mediated endocytosis. The high fluorescence intensity together with the targeting effect makes FA-NIR 797-MAN a promising candidate for imaging, monitoring, and early diagnosis of cancer at the molecular and cellular levels.

  15. Optical transmittance investigation of 1-keV ion-irradiated sapphire crystals as potential VUV to NIR window materials of fusion reactors

    Directory of Open Access Journals (Sweden)

    Keisuke Iwano


    Full Text Available We investigate the optical transmittances of ion-irradiated sapphire crystals as potential vacuum ultraviolet (VUV to near-infrared (NIR window materials of fusion reactors. Under potential conditions in fusion reactors, sapphire crystals are irradiated with hydrogen (H, deuterium (D, and helium (He ions with 1-keV energy and ∼ 1020-m-2 s-1 flux. Ion irradiation decreases the transmittances from 140 to 260 nm but hardly affects the transmittances from 300 to 1500 nm. H-ion and D-ion irradiation causes optical absorptions near 210 and 260 nm associated with an F-center and an F+-center, respectively. These F-type centers are classified as Schottky defects that can be removed through annealing above 1000 K. In contrast, He-ion irradiation does not cause optical absorptions above 200 nm because He-ions cannot be incorporated in the crystal lattice due to the large ionic radius of He-ions. Moreover, the significant decrease in transmittance of the ion-irradiated sapphire crystals from 140 to 180 nm is related to the light scattering on the crystal surface. Similar to diamond polishing, ion irradiation modifies the crystal surface thereby affecting the optical properties especially at shorter wavelengths. Although the transmittances in the VUV wavelengths decrease after ion irradiation, the transmittances can be improved through annealing above 1000 K. With an optical transmittance in the VUV region that can recover through simple annealing and with a high transparency from the ultraviolet (UV to the NIR region, sapphire crystals can therefore be used as good optical windows inside modern fusion power reactors in terms of light particle loadings of hydrogen isotopes and helium.

  16. Atomic absorption spectrophotometry in perspective

    International Nuclear Information System (INIS)

    Soffiantini, V.


    Atomic absorption spectrophotometry is essentially an analytical technique used for quantitative trace metal analysis in a variety of materials. The speed and specificity of the technique is its greatest advantage over other analytical techniques. What atomic absorption spectrophotometry can and cannot do and its advantages and disadvantages are discussed, a summary of operating instructions are given, as well as a summary of analytical interferences. The applications of atomic absorption spectrophotometry are also shortly discussed

  17. [Determination of wine original regions using information fusion of NIR and MIR spectroscopy]. (United States)

    Xiang, Ling-Li; Li, Meng-Hua; Li, Jing-Mingz; Li, Jun-Hui; Zhang, Lu-Da; Zhao, Long-Lian


    Geographical origins of wine grapes are significant factors affecting wine quality and wine prices. Tasters' evaluation is a good method but has some limitations. It is important to discriminate different wine original regions quickly and accurately. The present paper proposed a method to determine wine original regions based on Bayesian information fusion that fused near-infrared (NIR) transmission spectra information and mid-infrared (MIR) ATR spectra information of wines. This method improved the determination results by expanding the sources of analysis information. NIR spectra and MIR spectra of 153 wine samples from four different regions of grape growing were collected by near-infrared and mid-infrared Fourier transform spe trometer separately. These four different regions are Huailai, Yantai, Gansu and Changli, which areall typical geographical originals for Chinese wines. NIR and MIR discriminant models for wine regions were established using partial least squares discriminant analysis (PLS-DA) based on NIR spectra and MIR spectra separately. In PLS-DA, the regions of wine samples are presented in group of binary code. There are four wine regions in this paper, thereby using four nodes standing for categorical variables. The output nodes values for each sample in NIR and MIR models were normalized first. These values stand for the probabilities of each sample belonging to each category. They seemed as the input to the Bayesian discriminant formula as a priori probability value. The probabilities were substituteed into the Bayesian formula to get posterior probabilities, by which we can judge the new class characteristics of these samples. Considering the stability of PLS-DA models, all the wine samples were divided into calibration sets and validation sets randomly for ten times. The results of NIR and MIR discriminant models of four wine regions were as follows: the average accuracy rates of calibration sets were 78.21% (NIR) and 82.57% (MIR), and the

  18. Strong WW Interaction at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, Jose R


    We present a brief pedagogical introduction to the Effective Electroweak Chiral Lagrangians, which provide a model independent description of the WW interactions in the strong regime. When it is complemented with some unitarization or a dispersive approach, this formalism allows the study of the general strong scenario expected at the LHC, including resonances.

  19. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.


    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  20. Strong-back safety latch

    International Nuclear Information System (INIS)

    DeSantis, G.N.


    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch

  1. Strong-back safety latch

    Energy Technology Data Exchange (ETDEWEB)

    DeSantis, G.N.


    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch.

  2. Determination of Protein Content by NIR Spectroscopy in Protein Powder Mix Products. (United States)

    Ingle, Prashant D; Christian, Roney; Purohit, Piyush; Zarraga, Veronica; Handley, Erica; Freel, Keith; Abdo, Saleem


    Protein is a principal component in commonly used dietary supplements and health food products. The analysis of these products, within the consumer package form, is of critical importance for the purpose of ensuring quality and supporting label claims. A rapid test method was developed using near-infrared (NIR) spectroscopy as a compliment to current protein determination by the Dumas combustion method. The NIR method was found to be a rapid, low-cost, and green (no use of chemicals and reagents) complimentary technique. The protein powder samples analyzed in this study were in the range of 22-90% protein. The samples were prepared as mixtures of soy protein, whey protein, and silicon dioxide ingredients, which are common in commercially sold protein powder drink-mix products in the market. A NIR regression model was developed with 17 samples within the constituent range and was validated with 20 independent samples of known protein levels (85-88%). The results show that the NIR method is capable of predicting the protein content with a bias of ±2% and a maximum bias of 3% between NIR and the external Dumas method.

  3. [In-site total N content prediction of soil with Vis/NIR spectroscopy]. (United States)

    Wang, Shan-Qin; Shu, Ning; Zhang, Hai-Tao


    The Vis/NIR spectroscopy as an efficient tool to predict within-filed soil properties is significantly valuable when establishing agricultural field trials and in precision farming. The object of the study was to investigate the feasibility and possibility of using transformed in-site spectra by relative transformation method (RTM) to prediction soil properties. One hundred and three samples of paddy and fluvo-aquic soil in central china were collected. The in-site moisture (R(w)) and dried (R(d)) Vis/NIR spectra were measured by ASD field handHeld analyzer. The spectral characteristics of two kind soils were analyzed comparatively. The Rw spectra were transformed by RTM into R(n), which were of similar information content and charatistics with R(d). The first derivatives of three spectra revealed that the method could reduce the water disturb on and noise in R(w) Vis/NIR spectrum. The PLS regession model was applied to predict total nitrogen (TN) respectively using R(w), R(d) and R(n) as predictor. The models with Rw predicted TN respectively of paddy, fluvo-aquic and all samples with poor adjusted r2 (Vis/NIR spectrum measured on the spot. The combination of PLS and RTM could help implemention of real-time analyzing soil properties using Vis/NIR spectrum.

  4. [Temperature compensation for portable Vis/NIR spectrometer measurement of apple fruit soluble solids contents]. (United States)

    Wang, Jia-hua; Qi, Shu-ye; Tang, Zhi-hui; Jia, Shou-xing; Li, Yong-yu


    Visible (Vis)/near infrared (NIR) spectroscopy has been used successfully to measure soluble solids content (SSC) in fruit. However, for practical implementation, the NIR technique needs to be able to compensate for fruit temperature fluctuations, as it was observed that the sample temperature affects the NIR spectrum. A portable Vis/NIR spectrometer was used to collect diffused transmittance spectra of apples at different temperatures (0-30 degrees C). The spectral data of apple at 20 degrees C was used to develop a norm partial least squares (PLS) model. Slope/bias technique was found to well suits to control the accuracy of the calibration model for SSC concerning temperature fluctuations. The correctional PLS models were used to predict the SSC of apple at 0, 10 and 30 degrees C, respectively. The correctional method was found to perform well with Q values of 0.810, 0.822 and 0.802, respectively. When no precautions are taken, the Q value on the SSC may be as small as 0.525-0.680. The results obtained highlight the potential of portable Vis/NIR instruments for assessing internal quality of fruits on site under varying weather conditions.

  5. Beer fermentation: monitoring of process parameters by FT-NIR and multivariate data analysis. (United States)

    Grassi, Silvia; Amigo, José Manuel; Lyndgaard, Christian Bøge; Foschino, Roberto; Casiraghi, Ernestina


    This work investigates the capability of Fourier-Transform near infrared (FT-NIR) spectroscopy to monitor and assess process parameters in beer fermentation at different operative conditions. For this purpose, the fermentation of wort with two different yeast strains and at different temperatures was monitored for nine days by FT-NIR. To correlate the collected spectra with °Brix, pH and biomass, different multivariate data methodologies were applied. Principal component analysis (PCA), partial least squares (PLS) and locally weighted regression (LWR) were used to assess the relationship between FT-NIR spectra and the abovementioned process parameters that define the beer fermentation. The accuracy and robustness of the obtained results clearly show the suitability of FT-NIR spectroscopy, combined with multivariate data analysis, to be used as a quality control tool in the beer fermentation process. FT-NIR spectroscopy, when combined with LWR, demonstrates to be a perfectly suitable quantitative method to be implemented in the production of beer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Fine and Clean Photothermally Controlled NIR Drug Delivery from Biocompatible Nickel-bis(dithiolene)-Containing Liposomes. (United States)

    Mebrouk, Kenny; Ciancone, Mathieu; Vives, Thomas; Cammas-Marion, Sandrine; Benvegnu, Thierry; Le Goff-Gaillard, Catherine; Arlot-Bonnemains, Yannick; Fourmigué, Marc; Camerel, Franck


    This work demonstrates that metal-bis(dithiolene) complexes can be efficiently incorporated inside organic nanocarriers and, that under near-infrared (NIR) irradiation, their high photothermal activity can be finely used to release encapsulated drugs on demand. In contrast to gold nanoparticles and other organic NIR dyes, nickel-bis(dithiolene) complexes do not produce singlet oxygen under irradiation, a highly desirable characteristic to preserve the chemical integrity and activity of the loaded drug during the NIR-triggered release from the nanocarriers. Finally, cytotoxicity experiments performed on various cell lines have shown that the incorporation of such metal complexes do not increase the toxicity of the final liposomal formulation. These results offer great promise for the development of innovative biocompatible drug nanocargos that are able to safely deliver their content on demand under NIR laser irradiation. Moreover, this work demonstrates that metal-bis(dithiolene) complexes, owing to their versatility of functionalization and metal complexation, are attractive photothermal agents for the development of original NIR-responsive materials for application not only in biotechnology but also in materials science. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Taking NIRS-BCIs outside the lab: towards achieving robustness against environment noise. (United States)

    Falk, Tiago H; Guirgis, Mirna; Power, Sarah; Chau, Tom T


    This paper reported initial findings on the effects of environmental noise and auditory distractions on the performance of mental state classification based on near-infrared spectroscopy (NIRS) signals recorded from the prefrontal cortex. Characterization of the performance losses due to environmental factors could provide useful information for the future development of NIRS-based brain-computer interfaces that can be taken beyond controlled laboratory settings and into everyday environments. Experiments with a hidden Markov model-based classifier showed that while significant performance could be attained in silent conditions, only chance levels of sensitivity and specificity were obtained in noisy environments. In order to achieve robustness against environment noise, two strategies were proposed and evaluated. First, physiological responses harnessed from the autonomic nervous system were used as complementary information to NIRS signals. More specifically, four physiological signals (electrodermal activity, skin temperature, blood volume pulse, and respiration effort) were collected in synchrony with the NIRS signals as the user sat at rest and/or performed music imagery tasks. Second, an acoustic monitoring technique was proposed and used to detect startle noise events, as both the prefrontal cortex and ANS are known to involuntarily respond to auditory startle stimuli. Experiments with eight participants showed that with a startle noise compensation strategy in place, performance comparable to that observed in silent conditions could be recovered with the hybrid ANS-NIRS system.

  8. Hybrid EEG-fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control. (United States)

    Khan, Muhammad Jawad; Hong, Keum-Shik


    In this paper, a hybrid electroencephalography-functional near-infrared spectroscopy (EEG-fNIRS) scheme to decode eight active brain commands from the frontal brain region for brain-computer interface is presented. A total of eight commands are decoded by fNIRS, as positioned on the prefrontal cortex, and by EEG, around the frontal, parietal, and visual cortices. Mental arithmetic, mental counting, mental rotation, and word formation tasks are decoded with fNIRS, in which the selected features for classification and command generation are the peak, minimum, and mean ΔHbO values within a 2-s moving window. In the case of EEG, two eyeblinks, three eyeblinks, and eye movement in the up/down and left/right directions are used for four-command generation. The features in this case are the number of peaks and the mean of the EEG signal during 1 s window. We tested the generated commands on a quadcopter in an open space. An average accuracy of 75.6% was achieved with fNIRS for four-command decoding and 86% with EEG for another four-command decoding. The testing results show the possibility of controlling a quadcopter online and in real-time using eight commands from the prefrontal and frontal cortices via the proposed hybrid EEG-fNIRS interface.

  9. Hybrid EEG–fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control (United States)

    Khan, Muhammad Jawad; Hong, Keum-Shik


    In this paper, a hybrid electroencephalography–functional near-infrared spectroscopy (EEG–fNIRS) scheme to decode eight active brain commands from the frontal brain region for brain–computer interface is presented. A total of eight commands are decoded by fNIRS, as positioned on the prefrontal cortex, and by EEG, around the frontal, parietal, and visual cortices. Mental arithmetic, mental counting, mental rotation, and word formation tasks are decoded with fNIRS, in which the selected features for classification and command generation are the peak, minimum, and mean ΔHbO values within a 2-s moving window. In the case of EEG, two eyeblinks, three eyeblinks, and eye movement in the up/down and left/right directions are used for four-command generation. The features in this case are the number of peaks and the mean of the EEG signal during 1 s window. We tested the generated commands on a quadcopter in an open space. An average accuracy of 75.6% was achieved with fNIRS for four-command decoding and 86% with EEG for another four-command decoding. The testing results show the possibility of controlling a quadcopter online and in real-time using eight commands from the prefrontal and frontal cortices via the proposed hybrid EEG–fNIRS interface. PMID:28261084

  10. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS)

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Didier, E-mail: didier.brunet@ird.f [IRD - Institut de Recherche pour le Developpement, UMR Eco and Sols (Ecologie Fonctionnelle et Biogeochimie des Sols), Montpellier SupAgro, Batiment 12, 2 place Viala, 34060 Montpellier Cedex 1 (France); Woignier, Thierry [IRD, UMR Eco and Sols, PRAM (Pole de Recherche Agronomique de la Martinique), BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); CNRS - Centre National de la Recherche Scientifique, Universite Montpellier 2, place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Lesueur-Jannoyer, Magalie; Achard, Raphael [CIRAD (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement), PRAM, BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); Rangon, Luc [IRD, UMR Eco and Sols, PRAM (Pole de Recherche Agronomique de la Martinique), BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); Barthes, Bernard G. [IRD - Institut de Recherche pour le Developpement, UMR Eco and Sols (Ecologie Fonctionnelle et Biogeochimie des Sols), Montpellier SupAgro, Batiment 12, 2 place Viala, 34060 Montpellier Cedex 1 (France)


    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q{sup 2} = 0.75, R{sup 2} = 0.82 for the total set), especially for samples with chlordecone content <12 mg kg{sup -1} or when the sample set was rather homogeneous (Q{sup 2} = 0.91, R{sup 2} = 0.82 for the Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg{sup -1}, nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone. - Soil content in chlordecone, an organochlorine insecticide, can be determined time- and cost-effectively using near infrared reflectance spectroscopy (NIRS).

  11. Simultaneous Quantification of Paracetamol and Caffeine in Powder Blends for Tableting by NIR-Chemometry

    Directory of Open Access Journals (Sweden)

    Dana Maria Muntean


    Full Text Available Near-infrared spectroscopy (NIRS is a technique widely used for rapid and nondestructive analysis of solid samples. A method for simultaneous analysis of the two components of paracetamol and caffeine from powder blends has been developed by using chemometry with near-infrared spectroscopy (NIRS. The method development was performed on samples containing 80, 90, 100, 110, and 120% active pharmaceutical ingredients, and near-infrared spectroscopy (NIRS spectra of prepared powder blends were recorded and analyzed in order to develop models for the prediction of drug content. Many calibration models were applied in order to perform quantitative determination of drug content in powder, and choosing the appropriate number of factors (principal components proved to be of highly importance for a PLS chemometric calibration. Once the methods were developed, they were validated in terms of trueness, precision, and accuracy. The results obtained by NIRS methods were compared with those obtained by HPLC reference method, and no significant differences were found. Therefore, the NIR chemometry methods were proved to be a suitable tool for predicting chemical properties of powder blends and for simultaneous determination of active pharmaceutical ingredients.

  12. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.

    Directory of Open Access Journals (Sweden)

    Alessio Paolo Buccino

    Full Text Available Non-invasive Brain-Computer Interfaces (BCI have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG and functional Near-Infrared Spectroscopy (fNIRS in an asynchronous Sensory Motor rhythm (SMR-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm-Left-Arm-Right-Hand-Left-Hand tasks. Previous studies demonstrated the benefit of EEG-fNIRS combination. However, since normally fNIRS hemodynamic response shows a long delay, we investigated new features, involving slope indicators, in order to immediately detect changes in the signals. Moreover, Common Spatial Patterns (CSPs have been applied to both EEG and fNIRS signals. 15 healthy subjects took part in the experiments and since 25 trials per class were available, CSPs have been regularized with information from the entire population of participants and optimized using genetic algorithms. The different features have been compared in terms of performance and the dynamic accuracy over trials shows that the introduced methods diminish the fNIRS delay in the detection of changes.

  13. nirS-type denitrifying bacterial assemblages respond to environmental conditions of a shallow estuary. (United States)

    Lisa, Jessica A; Jayakumar, Amal; Ward, Bess B; Song, Bongkeun


    Molecular analysis of dissimilatory nitrite reductase genes (nirS) was conducted using a customized microarray containing 165 nirS probes (archetypes) to identify members of sedimentary denitrifying communities. The goal of this study was to examine denitrifying community responses to changing environmental variables over spatial and temporal scales in the New River Estuary (NRE), NC, USA. Multivariate statistical analyses revealed three denitrifier assemblages and uncovered 'generalist' and 'specialist' archetypes based on the distribution of archetypes within these assemblages. Generalists, archetypes detected in all samples during at least one season, were commonly world-wide found in estuarine and marine ecosystems, comprised 8%-29% of the abundant NRE archetypes. Archetypes found in a particular site, 'specialists', were found to co-vary based on site specific conditions. Archetypes specific to the lower estuary in winter were designated Cluster I and significantly correlated by sediment Chl a and porewater Fe 2+ . A combination of specialist and more widely distributed archetypes formed Clusters II and III, which separated based on salinity and porewater H 2 S respectively. The co-occurrence of archetypes correlated with different environmental conditions highlights the importance of habitat type and niche differentiation among nirS-type denitrifying communities and supports the essential role of individual community members in overall ecosystem function. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Feasibility tests of a dual modality system for imaging using gamma rays and NIR light (United States)

    Uzunov, Nikolay; Atroshchenko, Kostiantyn; Baneva, Yanka; Bello, Michele; De Rosa, Matteo; Fontana, Cristiano Lino; Moschini, Giuliano; Rossi, Paolo


    We are developing a dual system for small-animal imaging in multimodality studies, which consists of a highspatial resolution gamma-camera and a scanner for Near-Infra-Red (NIR) light. The gamma-camera is assembled from a position-sensitive photomultiplier and a scintillation-crystal with parallel-hole collimator. On the other hand, the NIR imaging is designed for near-object scanning, and features two operational modes: Transmission and Fluorescence. In the Transmission mode, the NIR light, coming from five different wavelength LEDs, crosses the sample and is subsequently measured by an array sensor. In the Fluorescence mode, the emission from nanoparticles, such as singlewalled carbon nanotubes (SWCNTs) administered in the imaged object, is excited using the laser. The gamma-camera energy and spatial resolutions have been measured. This latter has been assessed by using specially-designed phantoms like capillary tubes or volumes with cavities filled with a radioactive solution. The NIR-scanner spatial resolution has been determined along two perpendicular directions using standards, placed at different distances from the sensor. The results show that both the NIR scanning-system and the gamma-camera feature good imaging-parameters and can be applied to multimodality studies.

  15. Iterative maximum a posteriori (IMAP-DOAS for retrieval of strongly absorbing trace gases: Model studies for CH4 and CO2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT

    Directory of Open Access Journals (Sweden)

    C. Frankenberg


    Full Text Available In the past, differential optical absorption spectroscopy (DOAS has mostly been employed for atmospheric trace gas retrieval in the UV/Vis spectral region. New spectrometers such as SCIAMACHY onboard ENVISAT also provide near infrared channels and thus allow for the detection of greenhouse gases like CH4, CO2, or N2O. However, modifications of the classical DOAS algorithm are necessary to account for the idiosyncrasies of this spectral region, i.e. the temperature and pressure dependence of the high resolution absorption lines. Furthermore, understanding the sensitivity of the measurement of these high resolution, strong absorption lines by means of a non-ideal device, i.e. having finite spectral resolution, is of special importance. This applies not only in the NIR, but can also prove to be an issue for the UV/Vis spectral region. This paper presents a modified iterative maximum a posteriori-DOAS (IMAP-DOAS algorithm based on optimal estimation theory introduced to the remote sensing community by rodgers76. This method directly iterates the vertical column densities of the absorbers of interest until the modeled total optical density fits the measurement. Although the discussion in this paper lays emphasis on satellite retrieval, the basic principles of the algorithm also hold for arbitrary measurement geometries. This new approach is applied to modeled spectra based on a comprehensive set of atmospheric temperature and pressure profiles. This analysis reveals that the sensitivity of measurement strongly depends on the prevailing pressure-height. The IMAP-DOAS algorithm properly accounts for the sensitivity of measurement on pressure due to pressure broadening of the absorption lines. Thus, biases in the retrieved vertical columns that would arise in classical algorithms, are obviated. Here, we analyse and quantify these systematic biases as well as errors due to variations in the temperature and pressure profiles, which is indispensable for

  16. Oil absorption in mesoporous silica particles

    Directory of Open Access Journals (Sweden)

    Radislav Filipović


    Full Text Available Mesoporous silica particles were prepared from highly basic sodium silicate solutions, having different silica modulus and SiO2 concentrations, by adding sulphuric acid at different temperatures. Pore structure of prepared silica particles (aggregates is strongly influenced by processing conditions and easy controllable in broad range of the specific surface area, pore size, pore volume and size distribution. It is shown that there is a clear correlation between volume of absorbed oil and processing parameters used in preparation of silica aggregates. Thus, oil absorption is higher in the samples prepared from sodium silicate solution with higher SiO2 concentration and at higher synthesis temperature.

  17. Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves. (United States)

    Kume, Atsushi


    Terrestrial green plants absorb photosynthetically active radiation (PAR; 400-700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO 2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density distribution and leaf anatomical structures.

  18. Photochemistry and Cytotoxicity Evaluation of Heptamethinecyanine Near Infrared (NIR) Dyes (United States)

    Conceição, David S.; Ferreira, Diana P.; Vieira Ferreira, Luís F.


    The present study investigates the photochemical properties of potential photosensitizers for photodynamic therapy, namely four commercial heptamethinecyanine dyes (IR125, IR780, IR813, IR820). Spectroscopic studies were made by means of laser induced fluorescence and laser flash photolysis in order to obtain fluorescence quantum yields and transient absorption spectra. Fluorescence lifetimes were also determined. The differences encountered were essentially related with the interaction of the sulfonate groups with the solvent, and also regarding the rigidification of the central bridge connecting the two nitrogen-containing heterocyclic groups. Transient absorption studies were performed both in aerated and oxygen free samples, to conclude about the formation of photoisomers and triplet state. For the four dyes under study, a cytotoxic evaluation in the dark and after irradiation was performed using HeLa cells as the model cell line, which revealed significant changes after irradiation mainly in IR125 and IR813 dyes. Confocal microscopy analysis showed that these dyes tend to enter to the intracellular space. PMID:24022690

  19. Titanium: light, strong, and white (United States)

    Woodruff, Laurel; Bedinger, George


    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  20. Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs (United States)

    Wu, Xiaohu; Fu, Ceji


    The wavevector of electromagnetic wave propagation in a hexagonal boron nitride (hBN) slab can be controlled by tilting its optical axis. This property can be used to manipulate the absorption in a hBN slab. By carefully analyzing the dependence of the absorptivity of a thin hBN slab on the tilted angle of its optical axis, we propose a structure that can realize great absorptivity enhancement in a band by stacking hBN slabs of different tilted angles. Our numerical results show that the absorptivity of a structure made of 91 stacked hBN slabs can be achieved higher than 0.94 in the wavenumber range from 1367 to 1580 cm-1 when the tilted angles of the slabs are properly arranged. The strong absorption is attributed to the combination of impedance matching at the slab interfaces and enlarged wavevectors in the slabs. This work reveals a novel way to realize strong absorption with anisotropic materials for applications in areas such as thermal radiative energy harvesting and conversion.

  1. Fuji apple storage time rapid determination method using Vis/NIR spectroscopy. (United States)

    Liu, Fuqi; Tang, Xuxiang


    Fuji apple storage time rapid determination method using visible/near-infrared (Vis/NIR) spectroscopy was studied in this paper. Vis/NIR diffuse reflection spectroscopy responses to samples were measured for 6 days. Spectroscopy data were processed by stochastic resonance (SR). Principal component analysis (PCA) was utilized to analyze original spectroscopy data and SNR eigen value. Results demonstrated that PCA could not totally discriminate Fuji apples using original spectroscopy data. Signal-to-noise ratio (SNR) spectrum clearly classified all apple samples. PCA using SNR spectrum successfully discriminated apple samples. Therefore, Vis/NIR spectroscopy was effective for Fuji apple storage time rapid discrimination. The proposed method is also promising in condition safety control and management for food and environmental laboratories.


    Directory of Open Access Journals (Sweden)

    Diding Suhandy


    Full Text Available This work was conducted to develop a new measuring system for nondestructive dry matter prediction in sawo fruit using short wavelength near infrared (SW-NIR spectroscopy. In this research, a number of 100 sawo fruits were used as samples. Spectra were acquired using a portable spectrometer (VIS-NIR USB4000, The Ocean Optics, USA with 100 ms integration time and 50 scans for number of scanning. Dry matter was measured using oven drying. The calibration and validation model was developed using the partial least squares (PLS regression method. The result showed that the best calibration model could be developed for original spectra in the wavelength range of  700-990 nm with F= 8, r = 0.92, SEC = 0.68 and  SEP = 0.86. Keywords:   Absorbance mode, dry matter, nondestructive method, sawo fruit, SW-NIR spectroscopy.

  3. Quantification of fructan concentration in grasses using NIR spectroscopy and PLSR

    DEFF Research Database (Denmark)

    Shetty, Nisha; Gislum, Rene


    Near-infrared reflectance (NIR) spectroscopy combined with chemometrics was used to quantify fructan concentration in samples from seven grass species. Savitzky-Golay first derivative with filter width 7 and polynomial order 2 with mean centering was applied as a spectral pre-treatment method...... to remove unimportant baseline signals. In order to model the NIR spectroscopy data the partial least squares regression (PLSR) approach was used on the full spectra. Variable selection based on PLSR by jack-knifing within a cross-model validation (CMV) framework was applied in order to remove non...... quantification of fructans by NIR spectroscopy is possible and that jack-knifing PLSR within a CMV framework is an effective way to eliminate the wavelengths of no interest. Jack-knifing PLSR did not improve the predictive ability because the root mean square error of prediction (RMSEP) increased (1.37) compared...

  4. Determination of SFC, FFA, and equivalent reaction time for enzymatically interestified oils using NIRS

    DEFF Research Database (Denmark)

    Houmøller, Lars P.; Kristensen, Dorthe; Rosager, Helle


    that NIRS could be used to replace the traditional methods for determining FFA and SFC in vegetable oils.It was possible to monitor the activity of the immobilized enzyme for interesterification of margarine oils by predicting the equivalent reaction time in a batch reactor from NIR spectra. Root mean......The use of near infrared spectroscopy (NIRS) for rapid determination of the degree of interesterification of blends of palm stearin, coconut oil, and rapeseed oil obtained using an immobilized Thermomyces lanuginosa lipase at 70 ◦C was investigated. Interesterification was carried out by applying...... square errors of prediction for two different oil blends interesterified for 300 and 170 min were 21 and 12 min, respectively....

  5. New insights in forensic chemistry: NIR/Chemometrics analysis of toners for questioned documents examination. (United States)

    Materazzi, Stefano; Risoluti, Roberta; Pinci, Sara; Saverio Romolo, Francesco


    Near-Infrared spectroscopy (NIRs) coupled to chemometrics was investigated for the first time as a new tool for the analysis of black toners to evaluate its application in forensic cases. Ten black toners from four manufacturers were included in this study and the acquired spectra were compared in order to differentiate toners. Multivariate statistical analysis based on Principal Component Analysis (PCA) was considered to develop a model of comparison of toners in questioned documents. Results demonstrated the capabilities of the approach NIR/Chemometrics to correctly identify toners when printed on different papers and to be not affected by the printing process. This study has shown that NIRs can be considered as a useful, fast, non-destructive tool providing the characterisation of toners in forensic caseworks. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A NIR-BODIPY derivative for sensing copper(II) in blood and mitochondrial imaging (United States)

    He, Shao-Jun; Xie, Yu-Wen; Chen, Qiu-Yun


    In order to develop NIR BODIPY for mitochondria targeting imaging agents and metal sensors, a side chain modified BODIPY (BPN) was synthesized and spectroscopically characterized. BPN has NIR emission at 765 nm when excited at 704 nm. The emission at 765 nm responded differently to Cu2+ and Mn2+ ions, respectively. The BPN coordinated with Cu2+ forming [BPNCu]2+ complex with quenched emission, while Mn2+ induced aggregation of BPN with specific fluorescence enhancement. Moreover, BPN can be applied to monitor Cu2+ in live cells and image mitochondria. Further, BPN was used as sensor for the detection of Cu2+ ions in serum with linear detection range of 0.45 μM-36.30 μM. Results indicate that BPN is a good sensor for the detection of Cu2+ in serum and image mitochondria. This study gives strategies for future design of NIR sensors for the analysis of metal ions in blood.

  7. Fuji apple storage time rapid determination method using Vis/NIR spectroscopy (United States)

    Liu, Fuqi; Tang, Xuxiang


    Fuji apple storage time rapid determination method using visible/near-infrared (Vis/NIR) spectroscopy was studied in this paper. Vis/NIR diffuse reflection spectroscopy responses to samples were measured for 6 days. Spectroscopy data were processed by stochastic resonance (SR). Principal component analysis (PCA) was utilized to analyze original spectroscopy data and SNR eigen value. Results demonstrated that PCA could not totally discriminate Fuji apples using original spectroscopy data. Signal-to-noise ratio (SNR) spectrum clearly classified all apple samples. PCA using SNR spectrum successfully discriminated apple samples. Therefore, Vis/NIR spectroscopy was effective for Fuji apple storage time rapid discrimination. The proposed method is also promising in condition safety control and management for food and environmental laboratories. PMID:25874818

  8. NIR hyperspectral compressive imager based on a modified Fabry–Perot resonator (United States)

    Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Stern, Adrian


    The acquisition of hyperspectral (HS) image datacubes with available 2D sensor arrays involves a time consuming scanning process. In the last decade, several compressive sensing (CS) techniques were proposed to reduce the HS acquisition time. In this paper, we present a method for near-infrared (NIR) HS imaging which relies on our rapid CS resonator spectroscopy technique. Within the framework of CS, and by using a modified Fabry–Perot resonator, a sequence of spectrally modulated images is used to recover NIR HS datacubes. Owing to the innovative CS design, we demonstrate the ability to reconstruct NIR HS images with hundreds of spectral bands from an order of magnitude fewer measurements, i.e. with a compression ratio of about 10:1. This high compression ratio, together with the high optical throughput of the system, facilitates fast acquisition of large HS datacubes.

  9. Phytases for improved iron absorption

    DEFF Research Database (Denmark)

    Nielsen, Anne Veller Friis; Meyer, Anne S.


    Phytase enzymes present an alternative to iron supplements, because they have been shown to improve iron absorption by means of catalysing the degradation of a potent iron absorption inhibitor: phytic acid. Phytic acid is a hexaphosphate of inositol and is particularly prevalent in cereal grains...

  10. Atomic absorption instrument functional description

    International Nuclear Information System (INIS)

    Bystroff, R.I.; Boyle, W.G. Jr.; Barton, G.W. Jr.


    This report describes a proposed system for automating atomic absorption analysis. The system consists of two atomic absorption instruments and an automatic sampler that can be attached to either instrument. A computer program controls the sampling and gathers data. The program then uses the data to perform bookkeeping, data processing, and report writing

  11. Multifunctional hybrids for electromagnetic absorption

    Energy Technology Data Exchange (ETDEWEB)

    Huynen, I. [Research Center in Micro and Nanoscopic Materials and Electronic Devices, CeRMiN, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Quievy, N. [Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Bailly, C. [Research Center in Micro and Nanoscopic Materials and Electronic Devices, CeRMiN, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Mechanics, Materials and Civil Engineering (iMMC), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Bollen, P. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Mechanics, Materials and Civil Engineering (iMMC), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Detrembleur, C. [Center for Education and Research on Macromolecules (CERM), University of Liege, Sart-Tilman B6a, 4000 Liege (Belgium); Eggermont, S.; Molenberg, I. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Thomassin, J.M.; Urbanczyk, L. [Center for Education and Research on Macromolecules (CERM), University of Liege, Sart-Tilman B6a, 4000 Liege (Belgium)


    Highlights: > EM absorption requires low dielectric constant and {approx}1 S/m electrical conductivity. > New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. > The EM absorption in the GHz range is superior to any known material. > A closed form model is used to guide the design of the hybrid. > The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  12. Optical absorption of irradiated carbohydrates

    International Nuclear Information System (INIS)

    Supe, A.A.; Tiliks, Yu.E.


    The optical absorption spectra of γ-irradiated carbohydrates (glucose, lactose, sucrose, maltose, and starch) and their aqueous solutions were studied. The comparison of the data obtained with the determination of the concentrations of molecular and radical products of radiolysis allows the absorption bands with maxima at 250 and 310 nm to be assigned to the radicals trapped in the irradiated carbohydrates

  13. Water absorption in brick masonry

    NARCIS (Netherlands)

    Brocken, H.J.P.; Smolders, H.R.


    The water absorption in brick, mortar that was cured separately, and masonry samples was studied using NMR. Models of the moisture transport are usually formulated on the basis of a diffusion equation. In the case of water absorption in separate brick and mortar samples, the moisture diffusivity in

  14. Multifunctional hybrids for electromagnetic absorption

    International Nuclear Information System (INIS)

    Huynen, I.; Quievy, N.; Bailly, C.; Bollen, P.; Detrembleur, C.; Eggermont, S.; Molenberg, I.; Thomassin, J.M.; Urbanczyk, L.


    Highlights: → EM absorption requires low dielectric constant and ∼1 S/m electrical conductivity. → New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. → The EM absorption in the GHz range is superior to any known material. → A closed form model is used to guide the design of the hybrid. → The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  15. Atmospheric absorption of sound - Update (United States)

    Bass, H. E.; Sutherland, L. C.; Zuckerwar, A. J.


    Best current expressions for the vibrational relaxation times of oxygen and nitrogen in the atmosphere are used to compute total absorption. The resulting graphs of total absorption as a function of frequency for different humidities should be used in lieu of the graph published earlier by Evans et al (1972).

  16. Intestinal Absorption of Thyroid Hormone

    NARCIS (Netherlands)

    N. Kelderman-Bolk (Nienke)


    textabstractIn this thesis the treatment of hypothyroidism and absorption of T4 is described from a clinical and basic point of view. Put together the thesis gives insight in the factors influencing LT4 absorption and its results have influenced the timing of LT4 intake.

  17. Design, construction, and testing of an automated NIR in-line analysis system for potatoes. Part I: Off-line NIR feasibility study for the characterization of potato composition

    NARCIS (Netherlands)

    Brunt, K.; Drost, W.C.


    An off-line near-infrared reflectance (NIR) feasibility study was conducted to explore the critical steps in the NIR determination of the major potato constituents (dry matter, starch, and protein) in relatively large (10 kg) potato samples. The results were important for the design of an automated

  18. [Rapid identification of potato cultivars using NIR-excited fluorescence and Raman spectroscopy]. (United States)

    Dai, Fen; Bergholt, Mads Sylvest; Benjamin, Arnold Julian Vinoj; Hong, Tian-Sheng; Zhiwei, Huang


    Potato is one of the most important food in the world. Rapid and noninvasive identification of potato cultivars plays a important role in the better use of varieties. In this study, The identification ability of optical spectroscopy techniques, including near-infrared (NIR) Raman spectroscopy and NIR fluorescence spectroscopy, for invasive detection of potato cultivars was evaluated. A rapid NIR Raman spectroscopy system was applied to measure the composite Raman and NIR fluorescence spectroscopy of 3 different species of potatoes (98 samples in total) under 785 nm laser light excitation. Then pure Raman and NIR fluorescence spectroscopy were abstracted from the composite spectroscopy, respectively. At last, the partial least squares-discriminant analysis (PLS-DA) was utilized to analyze and classify Raman spectra of 3 different types of potatoes. All the samples were divided into two sets at random: the calibration set (74samples) and prediction set (24 samples), the model was validated using a leave-one-out, cross-validation method. The results showed that both the NIR-excited fluorescence spectra and pure Raman spectra could be used to identify three cultivars of potatoes. The fluorescence spectrum could distinguish the Favorita variety well (sensitivity: 1, specificity: 0.86 and accuracy: 0.92), but the result for Diamant (sensitivity: 0.75, specificity: 0.75 and accuracy: 0. 75) and Granola (sensitivity: 0.16, specificity: 0.89 and accuracy: 0.71) cultivars identification were a bit poorer. We demonstrated that Raman spectroscopy uncovered the main biochemical compositions contained in potato species, and provided a better classification sensitivity, specificity and accuracy (sensitivity: 1, specificity: 1 and accuracy: 1 for all 3 potato cultivars identification) among the three types of potatoes as compared to fluorescence spectroscopy.

  19. Nonlinear absorbing cationic iridium(III) complexes bearing benzothiazolylfluorene motif on the bipyridine (N∧N) ligand: synthesis, photophysics and reverse saturable absorption. (United States)

    Li, Yuhao; Dandu, Naveen; Liu, Rui; Hu, Lei; Kilina, Svetlana; Sun, Wenfang


    Four new heteroleptic cationic Ir(III) complexes bearing benzothiazolylfluorene motif on the bipyridine (N∧N) (1 and 2) and phenylpyridine (C∧N) (3 and 4) ligands are synthesized and characterized. The influence of the position of the substituent and the extent of π-conjugation on the photophysics of these complexes is systematically investigated by spectroscopic methods and simulated by time-dependent density functional theory (TDDFT). The complexes exhibit ligand-centered (1)π,π* transitions with admixtures of (1)ILCT (π(benzothiazolylfluorene) → π*(bpy)) and (1)MLCT (metal-to-ligand charge transfer) characters below 475 nm, and very weak (1,3)MLCT and (1,3)LLCT (ligand-to-ligand charge transfer) transitions above 475 nm. The emission of these complexes at room temperature in CH2Cl2 solutions is ascribed to be predominantly from the (3)MLCT/(3)LLCT states for 1 and from the (3)π,π* state for 2, while the emitting state of 3 and 4 are assigned to be an admixture of (3)MLCT, (3)LLCT, and (3)π,π* characters. The variations of the photophysical properties of 1-4 are attributed to different degrees of π-conjugation in the bipyridine and phenylpyridine ligands induced by different positions of the benzothiazolylfluorenyl substituents on the bipyridine ligand and different extents of π-conjugation in the phenylpyridine ligands, which alters the energy and lifetime of the lowest singlet and triplet excited states. 1-4 all possess broadband transient absorption (TA) upon nanosecond laser excitation, which extends from the visible to the NIR region. Therefore, 1-4 all exhibit strong reverse saturable absorption (RSA) at 532 nm for ns laser pulses. However, the TA of complexes 1, 2, and 3 are much stronger than that of 4. This feature, combined with the difference in ground-state absorption and triplet excited-state quantum yield, result in the difference in RSA strength, which follows this trend: 1 ≈ 2 ≈ 3 > 4. Therefore, complexes 1-3 are strong

  20. Optical absorption of silicon nanowires

    International Nuclear Information System (INIS)

    Xu, T.; Lambert, Y.; Krzeminski, C.; Grandidier, B.; Stiévenard, D.; Lévêque, G.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.


    We report on simulations and measurements of the optical absorption of silicon nanowires (NWs) versus their diameter. We first address the simulation of the optical absorption based on two different theoretical methods: the first one, based on the Green function formalism, is useful to calculate the scattering and absorption properties of a single or a finite set of NWs. The second one, based on the finite difference time domain (FDTD) method, is well-adapted to deal with a periodic set of NWs. In both cases, an increase of the onset energy for the absorption is found with increasing diameter. Such effect is experimentally illustrated, when photoconductivity measurements are performed on single tapered Si nanowires connected between a set of several electrodes. An increase of the nanowire diameter reveals a spectral shift of the photocurrent intensity peak towards lower photon energies that allow to tune the absorption onset from the ultraviolet radiations to the visible light spectrum.