WorldWideScience

Sample records for strong neutron field

  1. Radial oscillations of neutron stars in strong magnetic fields

    Indian Academy of Sciences (India)

    Abstract. The eigen frequencies of radial pulsations of neutron stars are calculated in a strong magnetic field. At low densities we use the magnetic BPS equation of state (EOS) similar to that obtained by Lai and Shapiro while at high densities the EOS obtained from the relativistic nuclear mean field theory is taken and ...

  2. Neutron star in the presence of strong magnetic field

    Indian Academy of Sciences (India)

    Stars: neutron stars; magnetic fields; equation of state. PACS Nos 26.60.Kp; 52.35.Tc; 97.10.Cv. 1. Introduction. The central density of neutron stars (NS) exceeds the nuclear saturation density (n0 ∼. 0.15 fm. −3. ), thereby giving the idea that compact stars might contain deconfined and chirally restored quark matter in them.

  3. Radial oscillations of neutron stars in strong magnetic fields

    Indian Academy of Sciences (India)

    The eigen frequencies of radial pulsations of neutron stars are calculated in a strong magnetic field. At low densities we use the magnetic BPS equation of state (EOS) similar to that obtained by Lai and Shapiro while at high densities the EOS obtained from the relativistic nuclear mean field theory is taken and extended to ...

  4. Dense matter in strong gravitational field of neutron star

    Indian Academy of Sciences (India)

    Sajad A. Bhat

    2018-02-10

    Feb 10, 2018 ... Abstract. Mass, radius and moment of inertia are direct probes of compositions and Equation of State (EoS) of dense matter in neutron star interior. These are computed for novel phases of dense matter involving hyperons and antikaon condensate and their observable consequences are discussed in this ...

  5. Neutron star in the presence of strong magnetic field

    Indian Academy of Sciences (India)

    Abstract. Compact stars such as neutron stars (NS) can have either hadronic or exotic states like strange quark or colour superconducting matter. Stars can also have a quark core surrounded by hadronic matter, known as hybrid stars (HS). The HS is likely to have a mixed phase in between the hadron and the quark phases ...

  6. Neutron star in the presence of strong magnetic field

    Indian Academy of Sciences (India)

    2014-04-22

    Apr 22, 2014 ... Compact stars such as neutron stars (NS) can have either hadronic or exotic states like strange quark or colour superconducting matter. Stars can also have a quark core surrounded by hadronic matter, known as hybrid stars (HS). The HS is likely to have a mixed phase in between the hadron and the quark ...

  7. Strongly coupled chameleon fields: Possible test with a neutron Lloyd's mirror interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Pokotilovski, Yu.N., E-mail: pokot@nf.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)

    2013-02-26

    The consideration of possible neutron Lloyd's mirror interferometer experiment to search for strongly coupled chameleon fields is presented. The chameleon scalar fields were proposed to explain the acceleration of expansion of the Universe. The presence of a chameleon field results in a change of a particle's potential energy in vicinity of a massive body. This interaction causes a phase shift of neutron waves in the interferometer. The sensitivity of the method is estimated.

  8. Direct URCA-processes in neutron star quark core with strong magnetic field.

    Directory of Open Access Journals (Sweden)

    Belyaev Vasily

    2017-01-01

    In evaluations, the strength of magnetic field corresponds to the case, where the quarks of medium occupy a lot of Landau levels, while the electrons are in ground Landau level. The analytical dependence of neutrino emissivity on chemical potentials of quarks and electrons, temperature and magnetic field strength is obtained and briefly discussed. The result could be important in application to a massive strongly magnetized neutron star with quark core.

  9. Bound-state β decay of a neutron in a strong magnetic field

    International Nuclear Information System (INIS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2005-01-01

    The β decay of a neutron into a bound (pe - ) state and an antineutrino in the presence of a strong uniform magnetic field (B > or approx. 10 13 G) is considered. The β decay process is treated within the framework of the standard model of weak interactions. A Bethe-Salpeter formalism is employed for description of the bound (pe - ) system in a strong magnetic field. For the field strengths 10 13 18 G the estimate for the ratio of the bound-state decay rate w b and the usual (continuum-state) decay rate w c is derived. It is found that in such strong magnetic fields w b /w c ∼0.1-0.4. This is in contrast to the field-free case, where w b /w c ≅4.2x10 -6 [J. N. Bahcall, Phys. Rev. 124, 495 (1961); L. L. Nemenov, Sov. J. Nucl. Phys. 15, 582 (1972); X. Song, J. Phys. G: Nucl. Phys. 13, 1023 (1987)]. The dependence of the ratio w b /w c on the magnetic field strength B exhibits a logarithmiclike behavior. The obtained results can be important for applications in astrophysics and cosmology

  10. Thermodynamical instabilities under strong magnetic fields

    Science.gov (United States)

    Chen, Y. J.

    2017-03-01

    The thermodynamical instabilities of low densities in the n p matter and n p e matter are studied within several relativistic nuclear models under some values of magnetic fields. The results are compared between each other and the effects of the symmetry energy slope at saturation density on the instability are investigated. The instability regions can exhibit bands due to the presence of Landau levels for very strong magnetic fields of the order of 1017 G, while for weaker magnetic fields, the bands are replaced by many diffused or scattered pieces. It also shows that the proton fraction in the inner crust of neutron stars may be complex under strong magnetic fields.

  11. Radio emission from the X-ray pulsar Her X-1: a jet launched by a strong magnetic field neutron star?

    Science.gov (United States)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-01-01

    Her X-1 is an accreting neutron star (NS) in an intermediate-mass X-ray binary. Like low-mass X-ray binaries (LMXBs), it accretes via Roche lobe overflow, but similar to many high-mass X-ray binaries containing a NS; Her X-1 has a strong magnetic field and slow spin. Here, we present the discovery of radio emission from Her X-1 with the Very Large Array. During the radio observation, the central X-ray source was partially obscured by a warped disc. We measure a radio flux density of 38.7 ± 4.8 μJy at 9 GHz but cannot constrain the spectral shape. We discuss possible origins of the radio emission, and conclude that coherent emission, a stellar wind, shocks and a propeller outflow are all unlikely explanations. A jet, as seen in LMXBs, is consistent with the observed radio properties. We consider the implications of the presence of a jet in Her X-1 on jet formation mechanisms and on the launching of jets by NSs with strong magnetic fields.

  12. Strong field laser physics

    CERN Document Server

    2008-01-01

    Since the invention of the laser in the 1960s, people have strived to reach higher intensities and shorter pulse durations. High intensities and ultrashort pulse durations are intimately related. Recent developments have shown that high intensity lasers also open the way to realize pulses with the shortest durations to date, giving birth to the field of attosecond science (1 asec = 10-18s). This book is about high-intensity lasers and their applications. The goal is to give an up to date introduction to the technology behind these laser systems and to the broad range of intense laser applications. These applications include AMO (atomic molecular and optical) physics, x-ray science, attosecond science, plasma physics and particle acceleration, condensed matter science and laser micromachining, and finally even high-energy physics.

  13. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  14. Neutron Dark-Field Imaging

    Science.gov (United States)

    Mullins, David

    2017-09-01

    Neutron imaging is typically used to image and reconstruct objects that are difficult to image using X-Ray imaging techniques. X-Ray absorption is primarily determined by the electron density of the material. This makes it difficult to image objects within materials that have high densities such as metal. However, the neutron scattering cross section primarily depends on the strong nuclear force, which varies somewhat randomly across the periodic table. In this project, an imaging technique known as dark field imaging using a far-field interferometer has been used to study a sample of granite. With this technique, interferometric phase images are generated. The dispersion of the microstructure of the sample dephases the beam, reducing the visibility. Collecting tomographic projections at different autocorrelation lengths (from 100 nanometers to 1.74 micrometers) essentially creates a 3D small angle scattering pattern, enabling mapping of how the microstructure is distributed throughout the sample.

  15. Neutron stars velocities and magnetic fields

    Science.gov (United States)

    Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.

    2018-01-01

    We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.

  16. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.

    1985-01-01

    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  17. Activity of Strongly Magnetized Neutron Stars

    Science.gov (United States)

    Beloborodov, Andrei

    This proposal is the continuation of a previous 3-year project that focused on modeling the nonthermal emission from magnetars and pulsars and testing the models against new observations, in particular by NuSTAR. The proposed project develops in two directions: (1) First-principle simulations of the magnetospheric electron-positron discharge using our code APERTURE (based on the particle-in-cell method), which is specifically designed for this purpose. Its performance is demonstrated by the first application to rotation-powered pulsars, and it can significantly advance our understanding of the magnetospheric activity of magnetars and pulsars. Our simulations involve a detailed implementation of radiative processes, tracking the emission and propagation of gammarays and production of electron-positron pairs. The results will provide new theoretical foundation for interpreting emission from the twisted magnetospheres of neutron stars. They will clarify, in particular, the radiative mechanism of magnetar bursts and persistent emission. (2) Investigation of magnetic field evolution inside neutron stars, which is ultimately responsible for driving the magnetospheric activity of magnetars and their surface heating. Our recent results suggest two novel phenomena in the solid crust of an active magnetar: thermoplastic waves and Hall-mediated avalanches. We propose to investigate scenarios for the global magnetic field evolution in the core and the crust, and its observables including (a) twisting of the external magnetosphere and the resulting nonthermal activity, (b) subsurface heating, and (c) sudden changes of the rotation rate. We will use our models and the rich accumulated data to disentangle the key dynamic processes inside magnetars. This analysis can constrain the magnetic fields hidden inside magnetars, the state of their core matter and its possible superfluidity.

  18. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.

    2002-01-01

    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  19. Strongly Coupled Chameleons and the Neutronic Quantum Bouncer

    International Nuclear Information System (INIS)

    Brax, Philippe; Pignol, Guillaume

    2011-01-01

    We consider the potential detection of chameleons using bouncing ultracold neutrons. We show that the presence of a chameleon field over a planar plate would alter the energy levels of ultracold neutrons in the terrestrial gravitational field. When chameleons are strongly coupled to nuclear matter, β > or approx. 10 8 , we find that the shift in energy levels would be detectable with the forthcoming GRANIT experiment, where a sensitivity of the order of 1% of a peV is expected. We also find that an extremely large coupling β > or approx. 10 11 would lead to new bound states at a distance of order 2 μm, which is already ruled out by previous Grenoble experiments. The resulting bound, β 11 , is already 3 orders of magnitude better than the upper bound, β 14 , from precision tests of atomic spectra.

  20. Magnetic Fields of Neutron Stars

    Indian Academy of Sciences (India)

    Keywords. Neutron stars: population; magnetic fields; X-ray binaries: evolution; millisecond pulsars: inter-connections. Abstract. This article briefly reviews our current understanding of the evolution of magnetic fields in neutron stars, which basically defines the evolutionary pathways between different observational classes ...

  1. Characterization of weak, fair and strong neutron absorbing materials by means of neutron transmission: Beam hardening effect

    International Nuclear Information System (INIS)

    Kharfi, F.; Bastuerk, M.; Boucenna, A.

    2006-01-01

    The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρ s ) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach

  2. Characterization of weak, fair and strong neutron absorbing materials by means of neutron transmission: Beam hardening effect

    Science.gov (United States)

    Kharfi, F.; Bastuerk, M.; Boucenna, A.

    2006-09-01

    The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρs) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach.

  3. Neutrino oscillations in strong magnetic fields

    International Nuclear Information System (INIS)

    Likhachev, G.G.; Studenikin, A.I.

    1994-07-01

    Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field B cr as a function of characteristics of neutrinos in vacuum (Δm 2 ν , mixing angle θ), effective particle density of matter n eff , neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ B cr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs

  4. High-pressure cells for study of condensed matter by diffraction and inelastic neutron scattering at low temperatures and in strong magnetic fields

    Science.gov (United States)

    Sadykov, R. A.; Strassle, Th; Podlesnyak, A.; Keller, L.; Fak, B.; Mesot, J.

    2017-12-01

    We have developed and implemented series of new original clamp high-pressure cells for neutron diffraction and inelastic neutron scattering at low temperatures. The cells design allows one to place them in the standard cryostats or cryomagnets used on neutron sources. Some results obtained for ZnCr2Se4 are demonstrated as an example.

  5. Magnetic fields in Neutron Stars

    NARCIS (Netherlands)

    Viganò, D.; Pons, J.A.; Miralles, J.A.; Rea, N.; Cenarro, A.J.; Figueras, F.; Hernández-Monteagudo, J.; Bueno, T.; Valdivielso, L.

    2015-01-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing

  6. Neutron stars, magnetic fields, and gravitational waves

    International Nuclear Information System (INIS)

    Lamb, F.K.

    2001-01-01

    The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the

  7. Magnetic Fields of Neutron Stars

    Indian Academy of Sciences (India)

    Sushan Konar

    2017-09-12

    Sep 12, 2017 ... Over the decades, one of the primary preoccupations of neutron star research has been to look for a unification scheme connecting the widely different observational classes (shown in Fig. 1). The magnetic field, ranging from 108 G in millisecond pulsars to 1015 G in mag- netars, has been central to this ...

  8. Atoms and clusters in strong laser fields

    NARCIS (Netherlands)

    Marchenko, T.

    2008-01-01

    This thesis describes experimental and theoretical studies on the interaction of strong infrared laser fields with atoms and atomic clusters. Part I provides an overview of the main strong-field phenomena in atoms, molecules and clusters and describes the state-of-the-art in strong-field science.

  9. Neutron Scattering and Its Application to Strongly Correlated Systems

    OpenAIRE

    Zaliznyak, Igor A.; Tranquada, John M.

    2013-01-01

    Neutron scattering is a powerful probe of strongly correlated systems. It can directly detect common phenomena such as magnetic order, and can be used to determine the coupling between magnetic moments through measurements of the spin-wave dispersions. In the absence of magnetic order, one can detect diffuse scattering and dynamic correlations. Neutrons are also sensitive to the arrangement of atoms in a solid (crystal structure) and lattice dynamics (phonons). In this chapter, we provide an ...

  10. Determination of the neutron flux in the reactor zones with the strong neutron absorption and leakage

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milosevic, M.

    2004-01-01

    The procedures for the numerical and experimental determination of the neutron flux in the zones with the strong neutron absorption and leakage are described in this paper. Numerical procedure is based on the SCALE-4.4a code system application with the use of Dancoff factor determined by the VEGA2DAN code. Experimental methodology consists of the irradiated foils activity measurement, and foil averaged neutron absorption cross-section determination via mentioned SCALE- 4.4a calculation procedure. The proposed procedures have been applied for the determination of the neutron flux in the internal neutron converter used with the RB reactor core configuration number 114. (author) [sr

  11. Study of neutron fields around an intense neutron generator.

    Science.gov (United States)

    Kicka, L; Machrafi, R; Miller, A

    2017-12-01

    Neutron fields in the vicinity of the newly built neutron facility, at the University of Ontario Institute of Technology (UOIT), have been investigated in a series of Monte Carlo simulations and measurements. The facility hosts a P-385 neutron generator based on a deuterium-deuterium fusion reaction. The neutron fluence at different locations around the neutron generator facility has been simulated using MCNPX 2.7E Monte Carlo particle transport program. To characterize neutron fields, three neutron sources were modeled with distributions corresponding to different incident deuteron energies of 90kV, 110kV, and 130kV. Measurements have been carried out to determine the dose rate at locations adjacent to the generator using bubble detectors (BDs). The neutron intensity was evaluated and the total dose rates corresponding to different applied acceleration potentials were estimated at various locations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Pulsed Neutron Scattering Studies of Strongly Fluctuating solids, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collin Broholm

    2006-06-22

    The conventional description of a solid is based on a static atomic structure with small amplitude so-called harmonic fluctuations about it. This is a final technical report for a project that has explored materials where fluctuations are sufficiently strong to severely challenge this approach and lead to unexpected and potentially useful materials properties. Fluctuations are enhanced when a large number of configurations share the same energy. We used pulsed spallation source neutron scattering to obtain detailed microscopic information about structure and fluctuations in such materials. The results enhance our understanding of strongly fluctuating solids and their potential for technical applications. Because new materials require new experimental techniques, the project has also developed new techniques for probing strongly fluctuating solids. Examples of material that were studied are ZrW2O8 with large amplitude molecular motion that leads to negative thermal expansion, NiGa2S4 where competing interactions lead to an anomalous short range ordered magnet, Pr1- xBixRu2O7 where a partially filled electron shell (Pr) in a weakly disordered environment produces anomalous metallic properties, and TbMnO3 where competing interactions lead to a magneto-electric phase. The experiments on TbMnO3 exemplify the relationship between research funded by this project and future applications. Magneto-electric materials may produce a magnetic field when an electric field is applied or vise versa. Our experiments have clarified the reason why electric and magnetic polarization is coupled in TbMnO3. While this knowledge does not render TbMnO3 useful for applications it will focus the search for a practical room temperature magneto-electric for applications.

  13. Do neutrons feel electric fields?

    International Nuclear Information System (INIS)

    Klein, Tony; Werner, Sam

    1991-01-01

    An accounts is given of the results of a co-operative research carried out at the University of Melbourne in Australia and the University of Missouri, Columbia in the United States on the physics of neutrons and their interactions as a test of fundamental principles in quantum mechanics and electrodynamics. In particular it comments on the verification of the Aharonov-Casher effect in electric as well as magnetic fields in the case of neutral particles. It was demonstrated that neutrons have a magnetic moment which precess and acquire phase shifts when exposed to magnetic fields. The sign of the measured phase shift agreed with the theoretical prediction and the magnitude was within one and a half standard deviations of it. 12 refs., 4 figs

  14. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  15. Atom collisions in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Smirnov, V.S.; Chaplik, A.V.

    1976-01-01

    It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed

  16. Helium atoms and molecules in strong magnetic fields

    Science.gov (United States)

    Mori, K.

    Recent theoretical studies have shown that the neutron star surface may be composed of helium or heavier elements as hydrogen may be quickly depleted by diffuse nuclear burning Chang Bildsten However while Hydrogen atmospheres have been studied in great details atomic data for helium is available only for He ion Pavlov Bezchastnov 2005 We performed Hartree-Fock type calculation for Helium atom and molecules and computed their binding ionization and dissociation energies in strong magnetic fields B sim10 12 -- 10 15 G We will present ionization balance of Helium atmospheres at typical magnetic field strengths and temperatures to radio-quiet neutron stars and AXPs We will also discuss several implications of helium atmosphere to X-ray data of isolated neutron stars focusing on the detected spectral features

  17. Neutron matter, neutron pairing, and neutron drops based on chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Thomas

    2016-10-19

    The physics of neutron-rich systems is of great interest in nuclear and astrophysics. Precise knowledge of the properties of neutron-rich nuclei is crucial for understanding the synthesis of heavy elements. Infinite neutron matter determines properties of neutron stars, a final stage of heavy stars after a core-collapse supernova. It also provides a unique theoretical laboratory for nuclear forces. Strong interactions are determined by quantum chromodynamics (QCD). However, QCD is non-perturbative at low energies and one presently cannot directly calculate nuclear forces from it. Chiral effective field theory circumvents these problems and connects the symmetries of QCD to nuclear interactions. It naturally and systematically includes many-nucleon forces and gives access to uncertainty estimates. We use chiral interactions throughout all calculation in this thesis. Neutron stars are very extreme objects. The densities in their interior greatly exceed those in nuclei. The exact composition and properties of neutron stars is still unclear but they consist mainly of neutrons. One can explore neutron stars theoretically with calculations of neutron matter. In the inner core of neutron stars exist very high densities and thus maybe exotic phases of matter. To investigate whether there exists a phase transition to such phases even at moderate densities we study the chiral condensate in neutron matter, the order parameter of chiral symmetry breaking, and find no evidence for a phase transition at nuclear densities. We also calculate the more extreme system of spin-polarised neutron matter. With this we address the question whether there exists such a polarised phase in neutron stars and also provide a benchmark system for lattice QCD. We find spin-polarised neutron matter to be an almost non-interacting Fermi gas. To understand the cooling of neutron stars neutron pairing is of great importance. Due to the high densities especially triplet pairing is of interest. We

  18. Super-strong Magnetic Field in Sunspots

    Science.gov (United States)

    Okamoto, Takenori J.; Sakurai, Takashi

    2018-01-01

    Sunspots are the most notable structure on the solar surface with strong magnetic fields. The field is generally strongest in a dark area (umbra), but sometimes stronger fields are found in non-dark regions, such as a penumbra and a light bridge. The formation mechanism of such strong fields outside umbrae is still puzzling. Here we report clear evidence of the magnetic field of 6250 G, which is the strongest field among Stokes I profiles with clear Zeeman splitting ever observed on the Sun. The field was almost parallel to the solar surface and located in a bright region sandwiched by two opposite-polarity umbrae. Using a time series of spectral data sets, we discuss the formation process of the super-strong field and suggest that this strong field region was generated as a result of compression of one umbra pushed by the horizontal flow from the other umbra, such as the subduction of the Earth’s crust in plate tectonics.

  19. Hyper-thermal neutron irradiation field for neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kanda, Keiji

    1994-01-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum of a Maxwell distribution higher than the room temperature of 300 K, has been studied in order to improve the thermal neutron flux distribution in a living body for a deep-seated tumor in neutron capture therapy (NCT). Simulation calculations using MCNP-V3 were carried out in order to investigate the characteristics of the hyper-thermal neutron irradiation field. From the results of simulation calculations, the following were confirmed: (i) The irradiation field of the hyper-thermal neutrons is feasible by using some scattering materials with high temperature, such as Be, BeO, C, SiC and ZrH 1.7 . Especially, ZrH 1.7 is thought to be the best material because of good characteristics of up-scattering for thermal neutrons. (ii) The ZrH 1.7 of 1200 K yields the hyper-thermal neutrons of a Maxwell-like distribution at about 2000 K and the treatable depth is about 1.5 cm larger comparing with the irradiation of the thermal neutrons of 300 K. (iii) The contamination by the secondary gamma-rays from the scattering materials can be sufficiently eliminated to the tolerance level for NCT through the bismuth layer, without the larger change of the energy spectrum of hyper-thermal neutrons. ((orig.))

  20. Experimental investigation of strong field trident production

    NARCIS (Netherlands)

    Esberg, J.; Kirsebom, K.; Knudsen, H.; Thomsen, H.D.; Uggerhøj, E.; Uggerhøj, U.I.; Sona, P.; Mangiarotti, A.; Ketel, T.J.; Ditzdar, A.; Dalton, M.M.; Ballestrero, S.; Connell, S.H.

    2010-01-01

    We show by experiment that an electron impinging on an electric field that is of critical magnitude in its rest frame, may produce an electron-positron pair. Our measurements address higher-order QED, using the strong electric fields obtainable along particular crystallographic directions in single

  1. Experimental investigation of strong field trident production

    CERN Document Server

    Esberg, J; Knudsen, H; Thomsen, H D; Uggerhøj, E; Uggerhøj, U I; Sona, P; Mangiarotti, A; Ketel, T J; Dizdar, A; Dalton, M M; Ballestrero, S; Connell, S H

    2010-01-01

    We show by experiment that an electron impinging on an electric field that is of critical magnitude in its rest frame, may produce an electron-positron pair. Our measurements address higher-order QED, using the strong electric fields obtainable along particular crystallographic directions in single crystals. For the amorphous material our data are in good agreement with theory, whereas a discrepancy with theory on the magnitude of the trident enhancement is found in the precisely aligned case where the strong electric field acts.

  2. Evolution of Neutron Star Magnetic Fields

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... This paper reviews the current status of the theoretical models of the evolution of the magnetic fields of neutron stars other than magnetars. It appears that the magnetic fields of neutron stars decay significantly only if they are in binary systems. Three major physical models for this, namely spindown-induced ...

  3. Electromagnetic processes in strong crystalline fields

    CERN Multimedia

    2007-01-01

    We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.

  4. Electromagnetic Processes in strong Crystalline Fields

    CERN Multimedia

    2007-01-01

    We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.

  5. Neutron energy focusing with magnetic fields

    International Nuclear Information System (INIS)

    Schwab, D.E.; Summhammer, J.; Rauch, H.

    2001-01-01

    Full text: For the majority of neutron optics instruments and many neutron scattering techniques the use of a monochromatic neutron beam is vitally important. Most monochromators are passive, and often include an interaction with matter. They cut off certain parts of the spectrum, and as a consequence, large losses of neutron density occur, and the spectral density is depleted as well. On the other hand, active energy focusing systems enrich the beam in a very narrow velocity band without considerable losses. Here, we study the active monochromatization of neutrons, generated at a pulsed neutron source by interaction with magnetic fields. The first proposed set-up consists of magnets which surround the beam-line. They produce traveling magnetic waves with desired velocity to escort a neutron pulse between the source and an instrument. During the interaction, the magnetic field forces the neutrons to accelerate or decelerate to this velocity. Simulations show that a comoving magnetic field, shaped like an harmonic oscillator, or of a sinusoidal form, effectuates an increase of neutron intensity up to an order of magnitude in a small but variable velocity band. Consequently, the precision of related neutron scattering experiments is increased or their measurement time is decreased, accordingly. Another concept arises from static and rf spinflip stages. Thereby, an appropriate number of photons of the rf-field can be transmitted to or extracted from the neutrons. Polarized neutrons entering a static magnetic field which is oriented perpendicularly to the neutrons propagation direction, are subject to acceleration or deceleration depending on their spin orientation (Zeeman shift). Flipping the neutrons spin by on rf coil inside the static field, causes a second acceleration or deceleration of the neutrons when they are leaving the static field. They immediately enter the next stage with another static field, which is much smaller than the one they have just left. Its

  6. Hydrogen atoms in a strong magnetic field

    International Nuclear Information System (INIS)

    Santos, R.R. dos.

    1975-07-01

    The energies and wave functions of the 14 lowest states of a Hydrogen atom in a strong magnetic field are calculated, using a variational scheme. The equivalence between the atomic problem and the problems related with excitons and impurities in semiconductors in the presence of a strong magnetic field are shown. The calculations of the energies and wave functions have been divided in two regions: the first, for the magnetic field ranging between zero and 10 9 G; in the second the magnetic field ranges between 10 9 and 10 11 G. The results have been compared with those obtained by previous authors. The computation time necessary for the calculations is small. Therefore this is a convenient scheme to obtain the energies and wave functions for the problem. Transition probabilities, wavelengths and oscillator strengths for some allowed transitions are also calculated. (Author) [pt

  7. Thomson scattering in strong external fields

    Science.gov (United States)

    Varró, S.; Ehlotzky, F.

    1992-09-01

    In the present paper we shall investigate relativistic Thomson scattering in two external fields. A free classical electron will be embedded in a strong, constant and homogeneous magnetic field and in a powerful electromagnetic field. Both fields will be considered in the Redmond configuration, in which case the electromagnetic wave is circularly polarized and propagates in the direction of the homogeneous magnetic field. The electron will be allowed to have arbitrary initial conditions and the electromagnetic wave will be switched on either suddenly or adiabatically. We shall present the exact solution of the Lorentz equation of motion in the above external field configuration and we shall evaluate the spectrum and cross sections of the scattered radiation. In particular, we shall consider scattering close to resonance and we shall compare our results with the findings of earlier work.

  8. Controlling Josephson dynamics by strong microwave fields

    NARCIS (Netherlands)

    Chesca, B.; Savel'ev, E.; Rakhmanov, A.L.; Smilde, H.J.H.; Hilgenkamp, Johannes W.M.

    2008-01-01

    We observe several sharp changes in the slope of the current-voltage characteristics (CVCs) of thin-film ramp-edge Josephson junctions between YBa2Cu3O7−delta and Nb when applying strong microwave fields. Such behavior indicates an intriguing Josephson dynamics associated with the switching from a

  9. Bound states in a strong magnetic field

    International Nuclear Information System (INIS)

    Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G.; Ferreira Filho, L. G.

    2013-01-01

    We expect a strong magnetic field to be produced in the perpendicular direction to the reaction plane, in a noncentral heavy-ion collision . The strength of the magnetic field is estimated to be eB∼m 2 π ∼ 0.02 GeV 2 at the RHIC and eB∼ 15m 2 π ∼ 0.3 GeV 2 at the LHC. We investigate the effects of the magnetic field on B 0 and D 0 mesons, focusing on the changes of the energy levels and of the mass of the bound states.

  10. Quantum electrodynamics in strong external fields

    International Nuclear Information System (INIS)

    Mueller, B.; Rafelski, J.; Kirsch, J.

    1981-05-01

    We review the theoretical description of quantum electrodynamics in the presence of strong and supercritical fields. In particular, the process of the spontaneous vacuum decay accompanied by the observable positron emission in heavy ion collisions is described. Emphasis is put on the proper formulation of many-body aspects in the framework of quantum field theory. The extension of the theory to the description of Bose fields and many-body effects is presented, and the Klein paradox is resolved. Some implications of the theoretical methods developed here are presented concerning non-abelian gauge theories and the quark confinement puzzle. (orig.)

  11. The Response of Alanine Dosimeters in Thermal Neutron Fields

    DEFF Research Database (Denmark)

    Schmitz, T.; Bassler, Niels; Sharpe, P.

    Purpose: Boron Neutron Capture Therapy (BNCT) is a special kind of particle therapy, based on the neutron induced fission of the boron isotope 10B [1]. We have performed dosimetry experiments on the mixed neutron and gamma fields at the TRIGA Mark II research reactor in Mainz. Commonly, dosimetry...... in such fields is realized by foil activation and ion chambers [2]. Here we investigate alanine as an easier and more robust alternative dosimeter. Methods: We have performed four phantom experiments at the TRIGA Mark II research reactor in Mainz [3], in a predominantly thermal neutron field with a strong gamma...... response of all pellets could be reproduced by calculations within a uncertainty of 5 %. For all experiments three dose components have been separated. A proton dose is generated in the 14N(n,p)14C reaction. Secondary gammas are generated by various (n,γ) reactions, dominated by the 2.2 MeV photon from...

  12. Evolution of Neutron Star Magnetic Fields

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The magnetic field of a neutron star determines the evolution of its spin, its radia- tive properties and its interaction with the ... resulting in metal-like transport properties (electrical and heat conductivities) in this region (Yakovlev & Urpin ... from the spinning neutron star via magnetic coupling. The shorter the decay time scale.

  13. Eccentric binaries of compact objects in strong-field gravity

    International Nuclear Information System (INIS)

    Gold, Roman

    2011-01-01

    In this thesis we study the dynamics as well as the resulting gravitational radiation from eccentric binaries of compact objects in the non-linear regime of General Relativity. For this purpose we solve Einstein's field equation numerically in a 3+1 decomposition using the moving-puncture technique. We focus our study on very particular orbits, arising as a purely relativistic phenomenon of the two-body problem in General Relativity, which are associated with unstable circular orbits. They are governed by a fast, nearly circular revolution at a short distance followed by a slow, radial motion on a nearly elliptic trajectory. Due to the unique features of their orbital trajectories they are called zoom-whirl orbits. We analyze how the peculiar dynamics manifests itself in the emitted gravitational radiation and to which extent one can infer the orbital properties from observations of the gravitational waves. In the first part, we consider black hole binaries. We perform a comprehensive parameter study by varying the initial eccentricity, computing and characterizing the resulting gravitational waveforms. We address aspects, which can only be obtained from non-perturbative methods, and which are crucial to the astrophysical relevance of these orbits. In particular, our results imply a fairly low amount of fine-tuning necessary to spot zoom-whirl effects. We find whirl orbits for values of the eccentricities, which fall in disjunct intervals extending to rather low values. Furthermore, we show that whirl effects just before merger cause a signal with significant amplitude. In the second part, we investigate neutron star binaries on eccentric orbits in full General Relativity, which has not been studied so far. We explore their phenomenology and study the consequences for the matter after the neutron stars have merged. In these evolutions the merged neutron stars sooner or later collapse to form a black hole. During the collapse most of the matter is accreted on to the

  14. Eccentric binaries of compact objects in strong-field gravity

    Energy Technology Data Exchange (ETDEWEB)

    Gold, Roman

    2011-09-27

    In this thesis we study the dynamics as well as the resulting gravitational radiation from eccentric binaries of compact objects in the non-linear regime of General Relativity. For this purpose we solve Einstein's field equation numerically in a 3+1 decomposition using the moving-puncture technique. We focus our study on very particular orbits, arising as a purely relativistic phenomenon of the two-body problem in General Relativity, which are associated with unstable circular orbits. They are governed by a fast, nearly circular revolution at a short distance followed by a slow, radial motion on a nearly elliptic trajectory. Due to the unique features of their orbital trajectories they are called zoom-whirl orbits. We analyze how the peculiar dynamics manifests itself in the emitted gravitational radiation and to which extent one can infer the orbital properties from observations of the gravitational waves. In the first part, we consider black hole binaries. We perform a comprehensive parameter study by varying the initial eccentricity, computing and characterizing the resulting gravitational waveforms. We address aspects, which can only be obtained from non-perturbative methods, and which are crucial to the astrophysical relevance of these orbits. In particular, our results imply a fairly low amount of fine-tuning necessary to spot zoom-whirl effects. We find whirl orbits for values of the eccentricities, which fall in disjunct intervals extending to rather low values. Furthermore, we show that whirl effects just before merger cause a signal with significant amplitude. In the second part, we investigate neutron star binaries on eccentric orbits in full General Relativity, which has not been studied so far. We explore their phenomenology and study the consequences for the matter after the neutron stars have merged. In these evolutions the merged neutron stars sooner or later collapse to form a black hole. During the collapse most of the matter is accreted on

  15. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21......) is evaluated using diagrammatic techniques. The transresistivity is given by an integral over energy and momentum transfer weighted by the product of the screened interlayer interaction and the phase space for scattering events. We demonstrate, by a numerical analysis of the transresistivity, that for well...

  16. Development of neutron calibration field using accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Mamoru [Tohoku Univ., Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan)

    2003-03-01

    A brief summary is given on the fast neutron calibration fields for 1) 8 keV to 15 MeV range, and 2) 30-80 MeV range. The field for 8 keV to 15 MeV range was developed at the Fast Neutron Laboratory (FNL) at Tohoku University using a 4.5 MV pulsed Dynamitron accelerator and neutron production reactions, {sup 45}Sc(p, n), {sup 7}Li(p, n), {sup 3}H(p, n), D(d, n) and T(d, n). The latter 30-80 MeV fields are setup at TIARA of Takasaki Establishment of Japan Atomic Energy Research Institute, and at Cyclotron Radio Isotope Center (CYRIC) of Tohoku University using a 90 MeV AVF cyclotron and the {sup 7}Li(p, n) reaction. These fields have been applied for various calibration of neutron spectrometers and dosimeters, and for irradiation purposes. (author)

  17. Stable states in a strong IR field

    Science.gov (United States)

    Zhong, Changchun; Robicheaux, Francis

    2015-05-01

    It is found that 10% of atoms stay in the quasi-stable states after being exposed to intense laser or microwave (MW) pulses, even though the pulses' intensity is much stronger than that needed for static fields ionization. The reason why atoms survive those strong pulses has attracted growing attentions. A. Arakelyan et al. have observed the optical spectra of the surviving Lithium atoms after interaction with intense 38-GHz MW fields for more than 1000 cycles, and the spectra exhibit a periodic train of peaks 38 GHz apart. It suggests that those weakly bound Rydberg electrons seldom go back to the ionic core, where the cycle average energy exchange happens. In this study, we are interested in the electron behavior in the presence of intense infrared fields with a much shorter wavelength (1000 nm). By solving the full 3D time dependent Schrodinger equation, we calculate the spectra of the surviving atoms under intense IR fields. Our numerical calculations show atoms survive the intense field in quasi-stable states for a long time, and the optical spectra are obviously modulated by the IR frequency. Through tuning the ponderomotive energy, we see how field parameters affect the behavior of electrons. Different atoms, such as Hydrogen, Helium, Lithium, and Sodium, are tested to see how atom's energy structures influence the results.

  18. Strong flux of low-energy neutrons produced by thunderstorms.

    Science.gov (United States)

    Gurevich, A V; Antonova, V P; Chubenko, A P; Karashtin, A N; Mitko, G G; Ptitsyn, M O; Ryabov, V A; Shepetov, A L; Shlyugaev, Yu V; Vildanova, L I; Zybin, K P

    2012-03-23

    We report here for the first time about the registration of an extraordinary high flux of low-energy neutrons generated during thunderstorms. The measured neutron count rate enhancements are directly connected with thunderstorm discharges. The low-energy neutron flux value obtained in our work is a challenge for the photonuclear channel of neutron generation in thunderstorm: the estimated value of the needed high-energy γ-ray flux is about 3 orders of magnitude higher than that one observed.

  19. Magnetic Fields of Neutron Stars

    Indian Academy of Sciences (India)

    Sushan Konar

    2017-09-12

    Sep 12, 2017 ... The emphasis here is on the evolution in binary systems and the newly emergent classes of millisecond pulsars. Keywords. Neutron stars: population—magnetic fields—X-ray binaries: evolution—millisecond pulsars: ...... Konar, S. 2013, in: Astronomical Society of India Conference. Series, Vol. 8, edited by ...

  20. Neutron Scattering and High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stone, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-11-01

    The workshop “Neutron Scattering and High Magnetic Fields” was held September 4-5, 2014 at the Oak Ridge National Laboratory (ORNL). The workshop was held in response to a recent report by the National Research Council of the National Academy of Sciences entitled “High Magnetic Field Science and Its Application in the United States: Current Status and Future Directions.”1 This report highlights the fact that neutron scattering measurements carried out in high magnetic fields provide important opportunities for new science. The workshop explored the range of the scientific discoveries that could be enabled with neutron scattering measurements at high fields (25 Tesla or larger), the various technologies that might be utilized to build specialized instruments and sample environment equipment to enable this research at ORNL, and possible routes to funding and constructing these facilities and portable high field sample environments.

  1. Strong Neutron-γ Competition above the Neutron Threshold in the Decay of ^{70}Co.

    Science.gov (United States)

    Spyrou, A; Liddick, S N; Naqvi, F; Crider, B P; Dombos, A C; Bleuel, D L; Brown, B A; Couture, A; Crespo Campo, L; Guttormsen, M; Larsen, A C; Lewis, R; Möller, P; Mosby, S; Mumpower, M R; Perdikakis, G; Prokop, C J; Renstrøm, T; Siem, S; Quinn, S J; Valenta, S

    2016-09-30

    The β-decay intensity of ^{70}Co was measured for the first time using the technique of total absorption spectroscopy. The large β-decay Q value [12.3(3) MeV] offers a rare opportunity to study β-decay properties in a broad energy range. Two surprising features were observed in the experimental results, namely, the large fragmentation of the β intensity at high energies, as well as the strong competition between γ rays and neutrons, up to more than 2 MeV above the neutron-separation energy. The data are compared to two theoretical calculations: the shell model and the quasiparticle random phase approximation (QRPA). Both models seem to be missing a significant strength at high excitation energies. Possible interpretations of this discrepancy are discussed. The shell model is used for a detailed nuclear structure interpretation and helps to explain the observed γ-neutron competition. The comparison to the QRPA calculations is done as a means to test a model that provides global β-decay properties for astrophysical calculations. Our work demonstrates the importance of performing detailed comparisons to experimental results, beyond the simple half-life comparisons. A realistic and robust description of the β-decay intensity is crucial for our understanding of nuclear structure as well as of r-process nucleosynthesis.

  2. Magnetic fields in mixed neutron-star-plus-wormhole systems

    International Nuclear Information System (INIS)

    Aringazin, Ascar; Dzhunushaliev, Vladimir; Folomeev, Vladimir; Kleihaus, Burkhard; Kunz, Jutta

    2015-01-01

    We consider mixed configurations consisting of a wormhole filled by a strongly magnetized isotropic or anisotropic neutron fluid. The nontrivial topology of the spacetime is allowed by the presence of exotic matter. By comparing these configurations with ordinary magnetized neutron stars, we clarify the question of how the presence of the nontrivial topology influences the magnetic field distribution inside the fluid. In the case of an anisotropic fluid, we find new solutions describing configurations, where the maximum of the fluid density is shifted from the center. A linear stability analysis shows that these mixed configurations are unstable

  3. Magnetic fields in mixed neutron-star-plus-wormhole systems

    Energy Technology Data Exchange (ETDEWEB)

    Aringazin, Ascar [Institute for Basic Research, Eurasian National University, 5, Munaitpasov Street, Astana, 010008 (Kazakhstan); Dzhunushaliev, Vladimir; Folomeev, Vladimir; Kleihaus, Burkhard; Kunz, Jutta, E-mail: aringazin@gmail.com, E-mail: v.dzhunushaliev@gmail.com, E-mail: vfolomeev@mail.ru, E-mail: b.kleihaus@uni-oldenburg.de, E-mail: jutta.kunz@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, 114-118, Ammerländer Heerstraße, D-26111 Oldenburg (Germany)

    2015-04-01

    We consider mixed configurations consisting of a wormhole filled by a strongly magnetized isotropic or anisotropic neutron fluid. The nontrivial topology of the spacetime is allowed by the presence of exotic matter. By comparing these configurations with ordinary magnetized neutron stars, we clarify the question of how the presence of the nontrivial topology influences the magnetic field distribution inside the fluid. In the case of an anisotropic fluid, we find new solutions describing configurations, where the maximum of the fluid density is shifted from the center. A linear stability analysis shows that these mixed configurations are unstable.

  4. Strong-field ionization of polar molecules: Stark-shift-corrected strong-field approximation

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Martiny, Christian P. J.; Madsen, Lars Bojer

    2010-01-01

    We extend the molecular strong-field approximation for ionization, in the tunneling limit, to include systematically the linear and quadratic static Stark shifts of the ionizing molecular orbital. This approach, simple to implement, is capable of describing the essential physics of the process of...

  5. Towards strong field tests of beyond Horndeski gravity theories

    Science.gov (United States)

    Sakstein, Jeremy; Babichev, Eugeny; Koyama, Kazuya; Langlois, David; Saito, Ryo

    2017-03-01

    Theories of gravity in the beyond Horndeski class encompass a wide range of scalar-tensor theories that will be tested on cosmological scales over the coming decade. In this work, we investigate the possibility of testing them in the strong field regime by looking at the properties of compact objects—neutron, hyperon, and quark stars—embedded in an asymptotically de Sitter space-time, for a specific subclass of theories. We extend previous works to include slow rotation and find a relation between the dimensionless moment of inertia (I ¯ =I c2/GNM3 ) and the compactness C =GNM /R c2 (an I ¯-C relation), independent of the equation of state, that is reminiscent of but distinct from the general relativity prediction. Several of our equations of state contain hyperons and free quarks, allowing us to revisit the hyperon puzzle. We find that the maximum mass of hyperon stars can be larger than 2 M⊙ for small values of the beyond Horndeski parameter, thus providing a resolution of the hyperon puzzle based on modified gravity. Moreover, stable quark stars exist when hyperonic stars are unstable, which means that the phase transition from hyperon to quark stars is predicted just as in general relativity (GR), albeit with larger quark star masses. Two important and potentially observable consequences of some of the theories we consider are the existence of neutron stars in a range of masses significantly higher than in GR and I ¯-C relations that differ from their GR counterparts. In the former case, we find objects that, if observed, could not be accounted for in GR because they violate the usual GR causality condition. We end by discussing several difficult technical issues that remain to be addressed in order to reach more realistic predictions that may be tested using gravitational wave searches or neutron star observations.

  6. Off-specular polarized neutron reflectometry study of magnetic dots with a strong shape anisotropy

    CERN Document Server

    Temst, K; Moshchalkov, V V; Bruynseraede, Y; Fritzsche, H; Jonckheere, R

    2002-01-01

    We have measured the off-specular polarized neutron reflectivity of a regular array of rectangular magnetic polycrystalline Co dots, which were prepared by a combination of electron-beam lithography, molecular beam deposition, and lift-off processes. The dots have a length-to-width ratio of 4:1 imposing a strong shape anisotropy. The intensity of the off-specular satellite reflection was monitored as a function of the magnetic field applied parallel to the rows of dots and in the plane of the sample, allowing us to analyze the magnetization-reversal process using the four spin-polarized cross sections. (orig.)

  7. Neutron oscillations and the primordial magnetic field

    International Nuclear Information System (INIS)

    Sarkar, S.

    1988-01-01

    It has been claimed that a primordial magnetic field must exist in order to suppress possible oscillations of neutrons into antineutrons which would otherwise affect the cosmological synthesis of helium. We demonstrate that such oscillations, even if they do occur, have a negligible effect on primordial nucleosynthesis, thus refuting the above claim. Hence the possible existence of a primordial magnetic field, relevant to current speculations concerning superconducting 'cosmic strings', remains an open question. (author)

  8. Dosimetry in mixed neutron-gamma fields

    International Nuclear Information System (INIS)

    Remec, I.

    1998-04-01

    The gamma field accompanying neutrons may, in certain circumstances, play an important role in the analysis of neutron dosimetry and even in the interpretation of radiation induced steel embrittlement. At the High Flux Isotope Reactor pressure vessel the gamma induced reactions dominate the responses of 237 Np and 238 U dosimeters, and 9 Be helium accumulation fluence monitors. The gamma induced atom displacement rate in steel is higher than corresponding neutron rate, and is the cause of ''accelerated embrittlement'' of HFIR materials. In a large body of water, adjacent to a fission plate, photofissions contribute significantly to the responses of fission monitors and need to be taken into account if the measurements are used for the qualification of the transport codes and cross-section libraries

  9. Neutron field features in a calibration hall

    International Nuclear Information System (INIS)

    Vega C, H.R.; Gallego, E.; Lorente, A.

    2004-01-01

    A new source facility ( 241 Am-Be) has been installed in a large size bunker-type room. To characterize the neutron fields in the facility, detailed calculations have been made with MCNP-4C, showing the different components of the neutron radiation reaching the reference points (direct, in scattered, backscattered). The contribution from neutrons scattered in the walls to the total ambient dose equivalent remains reasonably low ( 6 LiI(Eu) scintillator (0.4 cm 0 x 0.4 cm), UTA4 response matrix and BUNKIUT unfolding code. The calculated and experimentally obtained spectra are compared, with small differences found in the epithermal and thermal region, attributable to the concrete composition used in the calculations. The H*(10) rate has been determined from the spectra, and then compared to the reading of an active dosemeter (LB 6411), with differences found lower than 8%. (Author)

  10. Light bending by nonlinear electrodynamics under strong electric and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Young; Lee, Taekoon, E-mail: jykim@kunsan.ac.kr, E-mail: tlee@kunsan.ac.kr [Department of Physics, Kunsan National University, Daihakro 558, Kunsan 573-701 (Korea, Republic of)

    2011-11-01

    We calculate the bending angles of light under the strong electric and magnetic fields by a charged black hole and a magnetized neutron star according to the nonlinear electrodynamics of Euler-Heisenberg interaction. The bending angle of light by the electric field of charged black hole is computed from geometric optics and a general formula is derived for light bending valid for any orientation of the magnetic dipole. The astronomical significance of the light bending by magnetic field of a neutron star is discussed.

  11. Electromagnetic multipole fields of neutron stars

    Science.gov (United States)

    Roberts, W. J.

    1979-01-01

    A formalism is developed for treating general multipole electromagnetic fields of neutron stars. The electric multipoles induced in a neutron star by its rotation with an arbitrary magnetic multipole at its center are presented. It is shown how to express a family of off-centered multipoles having the same l weight as an infinite array of centered multipoles of increasing l weight referred to the rotational axis. General expressions are given for the linear momentum present in the superposition of arbitrary multipole fields, and the results are combined to compute the radiation rate of linear momentum by an off-centered dipole to zeroth order in the parameter Omega x R/c. The general Deutsch (1955) solution is then rederived in a clear consistent manner, and some minor additions and corrections are provided.

  12. Waves in strong centrifugal fields: dissipationless gas

    Science.gov (United States)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2015-04-01

    Linear waves are investigated in a rotating gas under the condition of strong centrifugal acceleration of the order 106 g realized in gas centrifuges for separation of uranium isotopes. Sound waves split into three families of the waves under these conditions. Dispersion equations are obtained. The characteristics of the waves strongly differ from the conventional sound waves on polarization, velocity of propagation and distribution of energy of the waves in space for two families having frequencies above and below the frequency of the conventional sound waves. The energy of these waves is localized in rarefied region of the gas. The waves of the third family were not specified before. They propagate exactly along the rotational axis with the conventional sound velocity. These waves are polarized only along the rotational axis. Radial and azimuthal motions are not excited. Energy of the waves is concentrated near the wall of the rotor where the density of the gas is largest.

  13. Strongly Interacting Matter in Magnetic Field

    Science.gov (United States)

    Mao, Shijun; Wu, Youjia; Zhuang, Pengfei

    Inverse magnetic catalysis effect on the chiral phase transition is investigated in the frame of SU(2) NJL model with Pauli-Villars regularization scheme. We consider two scenarios, the chiral chemical potential μ5 caused by sphalerons and magnetic inhibition of mesons π0. With different chiral chemical potential, we always obtain magnetic catalysis in the mean field calculation, due to the enhancement of Fermi surface of the pairing fermions by μ5. On the other hand, when going beyond the mean field approximation by including the feed-down from mesons to quarks, the competition between the magnetic catalysis effect of quarks and magnetic inhibition effect of mesons leads to the transition from inverse magnetic catalysis to delayed magnetic catalysis with increasing magnetic field.

  14. Calibration of the IRD two-component TLD albedo neutron dosemeter in some moderated neutron fields

    International Nuclear Information System (INIS)

    Freitas, Bruno M.; Silva, Ademir X. da

    2015-01-01

    In some stray neutron fields, like those found in practices involving the handling of radionuclide sources, the neutron calibration factor for albedo neutron dosemeter can vary widely compared to the factor for bare sources. This is the case for well logging, which is the area with the largest number of workers exposed to neutrons in Brazil. The companies employ routinely 241 Am-Be neutron sources. The albedo response variation is mainly due to the presence of scattered and moderated neutrons. This paper studies the response variation of the two-component TLD albedo neutron dosemeter used in the neutron individual monitoring service of Instituto de Radioprotecao e Dosimetria, in different radionuclide neutron source beams. The neutron spectra were evaluated applying a Bonner sphere spectrometer with a 6 LiI(Eu) detector in the Brazilian National Metrology Neutron Laboratory. Standard neutron sources of 241 Am-Be and 252 Cf were employed, besides 238 Pu-Be. Measurements were also made with scattered and moderated neutron beams, including 252 Cf(D 2 O) reference spectrum, 241 Am-Be moderated with paraffin and silicone and a thermal neutron flux facility. New neutron calibration factors, as a function of the incident to albedo neutron ratio, were proposed for use in the albedo algorithm for occupational fields where the primary neutron beam is one of those studied sources. (author)

  15. Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum

    Directory of Open Access Journals (Sweden)

    Psaltis Dimitrios

    2008-11-01

    Full Text Available Neutron stars and black holes are the astrophysical systems with the strongest gravitational fields in the universe. In this article, I review the prospect of using observations of such compact objects to probe some of the most intriguing general relativistic predictions in the strong-field regime: the absence of stable circular orbits near a compact object and the presence of event horizons around black-hole singularities. I discuss the need for a theoretical framework, within which future experiments will provide detailed, quantitative tests of gravity theories. Finally, I summarize the constraints imposed by current observations of neutron stars on potential deviations from general relativity.

  16. Strong terahertz field generation, detection, and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)

    2016-05-22

    This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.

  17. Strong terahertz field generation, detection, and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)

    2016-05-15

    This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.

  18. Light and neutron scattering study of strongly interacting ionic micelles

    International Nuclear Information System (INIS)

    Degiorgio, V.; Corti, M.; Piazza, R.

    1989-01-01

    Dilute solutions of ionic micelles formed by biological glycolipids (gangliosides) have been investigated at various ionic strengths by static and dynamic light scaterring and by small-angle neutron scattering. The size and shape of the micelle is not appreciably affected by the added salt concentration in the range 0-100 mM NaCL. From the measured intensity of scattered light we derive the electric charge Z of the micelle by fitting the data to a theoretical calculation which uses a screened Coulomb potential for the intermicellar interaction, and the hypernetted chain approximation for the calculation of the radial distribution function. The correlation function derived from dynamic light scattering shows the long time contribution typical of concentrated polydisperse systems (author). 15 refs.; 6 figs

  19. Electromagnetic processes in strong crystalline fields

    CERN Document Server

    Uggerhoj, U I; Esberg, J; Knudsen, H; Lund, M; Møller, S P; Sørensen, A H; Thomsen, A H; Uggerhøj, U I; Geissel, H; Scheidenberger, C; Weick, H; Winfield, J; Sona, P; Connell S; Ballestrero, S; Ketel, T; Dizdar, A; Mangiarotti, A

    2009-01-01

    As an addendum to the NA63 proposal cite{Ande05}, we propose to measure 1) the Landau-Pomeranchuk-Migdal (LPM) effect in low-$Z$ targets, 2) Magnetic suppression of incoherent bremsstrahlung resulting from exposure to an external field during the emission event, and 3) the bremsstrahlung emission from relativistic ($gamma=170$), fully stripped Pb nuclei penetrating various amorphous targets. Concerning the LPM effect, both the 'traditional' Migdal approach and the modern treatment by Baier and Katkov display inaccuracies, i.e. a possible lack of applicability in low-$Z$ targets. Moreover, the LPM effect has been shown to have a significant impact on giant air showers for energies in the EeV range - evidently processes in a low-$Z$ material. A measurement of magnetic suppression is demanding in terms of necessary accuracy (an expected $lesssim$15% effect), but would prove the existence of a basic interplay between coherent and incoherent processes, also believed to be significant in beamstrahlung emission. For...

  20. Effective magnetic moment of neutrinos in strong magnetic fields

    CERN Document Server

    Pérez, A; Masood, S S; Gaitan, R; Rodríguez, S

    2002-01-01

    In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)

  1. Characterisation of neutron fields: challenges in assessing the directional distribution

    International Nuclear Information System (INIS)

    Cauwels, Vanessa; Vanhavere, Filip; Reginatto, Marcel

    2014-01-01

    The SCK.CEN has carried out neutron field characterisation campaigns at several nuclear reactors. The main goal of these measurement campaigns was to evaluate the performance of different neutron personal dosemeters. To be able to evaluate the performance of neutron personal dosemeters in terms of H p (10), knowledge of the directional distribution is indispensable. This distribution was estimated by placing several personal dosemeters on all six sides of a slab phantom. The interpretation and conversion of this information into a reliable value for H p (10) requires great care. The data were analysed using three methods. In the first approach, a linear interpolation was performed on three perpendicular axes. In the other two approaches, an icosahedron was used to model the angle of incidence of the neutrons and a linear interpolation or a Bayesian analysis was performed. This study describes the limitations and advantages of each of these methods and provides recommendations for their use to estimate the personal dose equivalent H p (10) for neutron dosimetry. Neutron personal dosimetry is complicated by the fact that the neutron dose quantity H p (10) is strongly energy and angular dependent. Instead of simply assuming that the fluence is unidirectional or that the fluence is isotropic, an attempt was made to estimate the directional distribution of the neutron field using a relatively simple measurement procedure. A number of active and passive personal dosemeters were placed on the six faces of a slab phantom and the results were analysed via different algorithms to obtain partial fluences in several directions of incidence. The results from all calculations in this study show the importance of introducing information about the directional distribution of the neutron fluence for the estimation of the personal dose equivalent H p (10). The difference between H p (10) dose estimates carried out using a unidirectional or an isotropic distribution can be of up

  2. Electron Dynamics in Nanostructures in Strong Laser Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kling, Matthias

    2014-09-11

    The goal of our research was to gain deeper insight into the collective electron dynamics in nanosystems in strong, ultrashort laser fields. The laser field strengths will be strong enough to extract and accelerate electrons from the nanoparticles and to transiently modify the materials electronic properties. We aimed to observe, with sub-cycle resolution reaching the attosecond time domain, how collective electronic excitations in nanoparticles are formed, how the strong field influences the optical and electrical properties of the nanomaterial, and how the excitations in the presence of strong fields decay.

  3. ESR-dosimetry in thermal and epithermal neutron fields for application in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Tobias

    2016-01-22

    Dosimetry is essential for every form of radiotherapy. In Boron Neutron Capture Therapy (BNCT) mixed neutron and gamma fields have to be considered. Dose is deposited in different neutron interactions with elements in the penetrated tissue and by gamma particles, which are always part of a neutron field. The therapeutic dose in BNCT is deposited by densely ionising particles, originating from the fragmentation of the isotope boron-10 after capture of a thermal neutron. Despite being investigated for decades, dosimetry in neutron beams or fields for BNCT remains complex, due to the variety in type and energy of the secondary particles. Today usually ionisation chambers combined with metal foils are used. The applied techniques require extensive effort and are time consuming, while the resulting uncertainties remain high. Consequently, the investigation of more effective techniques or alternative dosimeters is an important field of research. In this work the possibilities of ESR-dosimeters in those fields have been investigated. Certain materials, such as alanine, generate stable radicals upon irradiation. Using Electron Spin Resonance (ESR) spectrometry the amount of radicals, which is proportional to absorbed dose, can be quantified. Different ESR detector materials have been irradiated in the thermal neutron field of the research reactor TRIGA research reactor in Mainz, Germany, with five setups, generating different secondary particle spectra. Further irradiations have been conducted in two epithermal neutron beams. The detector response, however, strongly depends on the dose depositing particle type and energy. It is hence necessary to accompany measurements by computational modelling and simulation. In this work the Monte Carlo code FLUKA was used to calculate absorbed doses and dose components. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using amorphous track models. For the simulation, detailed models of

  4. Evolution of Neutron Star Magnetic Fields

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    neutron star (see Sauls 1989 for a review). The rotation of the neutron star causes vortices in the neutron superfluid co-existing with the proton superconductor. Pin- ning and electromagnetic interaction are expected to exist between the neutron vor- tices and proton fluxoids, causing the fluxoids to be dragged out to the crust ...

  5. Response of six neutron survey meters in mixed fields of fast and thermal neutrons.

    Science.gov (United States)

    Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S

    2013-10-01

    Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.

  6. Electrodynamics of a hydrogenlike atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Kovarskij, V.A.; Perel'man, N.F.

    1974-01-01

    The quasienergy spectrum of the hydrogen atom in strong electromagnetic radiation is studied, the luminescence of the atom under these conditions is considered. It is shown that in a strong field the atom, being even in the ground state, radiates a spectrum of frequencies corresponding to transitions from the ground state into excited states, the strong field photons being involved. The intensity of such a luminescence is basically a non-linear function of the strong field. The exposure of the atom to two strong electromagnetic fields Ω and ω (Ω>>ω) is considered, the Ω coinciding with one of the natural frquencies of the atom. The effct of modulation of the resonance shift for an atomic level by the ω-field strength is predicted. The dependence of Ω-absorption in the ω-field on the statistic properties of the latter is investigated. (author)

  7. Determination of nuclear friction in strongly damped reactions from prescission neutron multiplicities

    Energy Technology Data Exchange (ETDEWEB)

    Wilczynski, J. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland); Siwek-Wilczynska, K. [Warsaw Univ., Inst. of Experimental Physics, Warsaw (Poland); Wilschut, H.W. [Kernfysisch Verneller Instituut, Groningen (Netherlands)

    1996-12-31

    The neutron multiplicities in non-fusion reactions have been calculated in the frame of classical equation of motion with friction (Lagrange-Rayleigh equations) The calculated data were compared with the reported neutron multiplicities data. The results shown an evidence of the onset of a strong two-body dissipation at unexpected low temperatures, already at about 2 MeV. 3 refs, 1 fig.

  8. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado-Velázquez, M. [Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, 04510 (Mexico); Barrón-Palos, L., E-mail: libertad@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 (Mexico); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Snow, W.M. [Indiana University, Bloomington, IN 47405 (United States)

    2017-05-11

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10{sup −7} rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  9. Enhanced thermal photon and dilepton production in strongly coupled = 4 SYM plasma in strong magnetic field

    Science.gov (United States)

    Mamo, Kiminad A.

    2013-08-01

    We calculate the DC conductivity tensor of strongly coupled = 4 super-Yang-Mills (SYM) plasma in a presence of a strong external magnetic field B ≫ T 2 by using its gravity dual and employing both the RG flow approach and membrane paradigm which give the same results. We find that, since the magnetic field B induces anisotropy in the plasma, different components of the DC conductivity tensor have different magnitudes depending on whether its components are in the direction of the magnetic field B. In particular, we find that a component of the DC conductivity tensor in the direction of the magnetic field B increases linearly with B while the other components (which are not in the direction of the magnetic field B) are independent of it. These results are consistent with the lattice computations of the DC conductivity tensor of the QCD plasma in an external magnetic field B. Using the DC conductivity tensor, we calculate the soft or low-frequency thermal photon and dilepton production rates of the strongly coupled = 4 SYM plasma in the presence of the strong external magnetic field B ≫ T 2. We find that the strong magnetic field B enhances both the thermal photon and dilepton production rates of the strongly coupled = 4 SYM plasma in a qualitative agreement with the experimentally observed enhancements at the heavy-ion collision experiments.

  10. Field study of nanoparticles by small angle neutron scattering

    International Nuclear Information System (INIS)

    Mirebeau, I.; Hennion, M.; Bellouard, C.

    1994-01-01

    In nanometric iron particles, magnetic correlations are determined by small angle neutron scattering and compared to their values calculated in a simple superparamagnetic model. The introduction of a Lorentzian shape for the magnetic form factor is necessary to obtain a good fit of the data. This reveals two extra features: a spin disorder at the surface of the particles which persists in applied field, and a distribution in the particle sizes not probed by X-rays. The field alignment becomes easier with decreasing temperature. This is no longer true for samples with bigger and closer-packed particles, where strong dipolar interactions develop at low temperatures and oppose to the external field. 4 figs., 3 refs

  11. Strong-field-ionization suppression by light-field control

    DEFF Research Database (Denmark)

    Räsänen, Esa; Madsen, Lars Bojer

    2012-01-01

    in the intensity and thus preventing tunneling. In contrast, at high frequencies in the extreme ultraviolet regime the optimized pulses strongly couple with the (de)-excitations of the system, which leads to different pulse characteristics. Finally, we show that the applied target functional works, to some extent...

  12. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    CERN Document Server

    Vaidya, S J; Shaikh, A M; Chandorkar, A N

    2002-01-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co sup 6 sup 0 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radi...

  13. Probing strong field ionization of solids with a Thomson parabola ...

    Indian Academy of Sciences (India)

    2014-01-11

    Jan 11, 2014 ... large electric field drives the electrons to a very high energy. These hot electrons quickly move out of the solid surface, long before the ions move and the electron drift creates a strong quasistatic charge separation sheath electric field. Ions are then accelerated in this sheath field preferentially along the ...

  14. Electron dynamics in metals and semiconductors in strong THz fields

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2017-01-01

    Semiconductors and metals respond to strong electric fields in a highly nonlinear fashion. Using single-cycle THz field transients it is possible to investigate this response in regimes not accessible by transport-based measurements. Extremely high fields can be applied without material damage...

  15. The neutron imaging system fielded at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Fittinghoff D.N.

    2013-11-01

    Full Text Available We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n′ reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system is presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system is presented. We also discuss future improvements to the system hardware.

  16. Mechanism and Simulation of Generating Pulsed Strong Magnetic Field

    Science.gov (United States)

    Yang, Xian-Jun; Wang, Shuai-Chuang; Deng, Ai-Dong; Gu, Zhuo-Wei; Luo, Hao

    2014-10-01

    A strong magnetic field (over 1000 T) was recently experimentally produced at the Academy of Engineering Physics in China. The theoretical methods, which include a simple model and MHD code, are discussed to investigate the physical mechanism and dynamics of generating the strong magnetic field. The analysis and simulation results show that nonlinear magnetic diffusion contributes less as compared to the linear magnetic diffusion. This indicates that the compressible hydrodynamic effect and solid imploding compression may have a large influence on strong magnetic field generation.

  17. Magnetic Fields in neutron stars : A theoretical perspective

    NARCIS (Netherlands)

    Reisenegger, A.; Prieto, J.; Benguria, R.; Lai, D.; Araya, P.

    2005-01-01

    Abstract: We present our view of the main physical ingredients determining the evolution of neutron star magnetic fields. This includes the basic properties of neutron star matter, possible scenarios for the origin of the magnetic field, constraints and mechanisms for its evolution, and a discussion

  18. Probing Strong-field General Relativity with Gravitational Waves

    Science.gov (United States)

    Pretorius, Frans

    We are on the verge of a new era in astrophysics as a world-wide effort to observe the universe with gravitational waves takes hold---ground based laser interferometers (Hz to kHz), pulsar timing (micro to nano Hz), measurements of polarization of the cosmic microwave background (sub-nano Hz), and the planned NASA/ESA mission LISA (.1 mHz to .1 Hz). This project will study the theoretical nature of gravitational waves (GWs) emitted by two sources in the LISA band, namely supermassive-black-hole (SMBH) binary mergers, and extreme-mass-ratio-inspirals (EMRI's)---the merger of a stellar mass black hole, neutron star, or white dwarf with a SMBH. The primary goal will be to ascertain how well LISA, by observing these sources, could answer the following related questions about the fundamental nature of strong-field gravity: Does Einstein's theory of general relativity (GR) describe the geometry of black holes in the universe? What constraints can GW observations of SMBH mergers and EMRIs place on alternative theories of gravity? If there are deviations from GR, are there statistics that could give indications of a deviation if sources are detected using a search strategy based solely on GR waveforms? The primary reasons for focusing on LISA sources to answer these questions are (a) binary SMBH mergers could be detected by LISA with exquisitely high signal-to- noise, allowing enough parameters of the system to be accurately extracted to perform consistency checks of the underlying theory, (b) EMRIs will spend numerous orbits close to the central black hole, and thus will be quite sensitive to even small near-horizon deviations from GR. One approach to develop the requisite knowledge and tools to answer these questions is to study a concrete, theoretically viable alternative to GR. We will focus on the dynamical variant of Chern-Simons modified gravity (CSMG), which is interesting for several reasons, chief among which are (1) that CSMG generically arises in both string

  19. Rhie-Chow interpolation in strong centrifugal fields

    Science.gov (United States)

    Bogovalov, S. V.; Tronin, I. V.

    2015-10-01

    Rhie-Chow interpolation formulas are derived from the Navier-Stokes and continuity equations. These formulas are generalized to gas dynamics in strong centrifugal fields (as high as 106 g) occurring in gas centrifuges.

  20. Spectral confinement and current for atoms in strong magnetic fields

    DEFF Research Database (Denmark)

    Fournais, Søren

    2007-01-01

    e study confinement of the ground state of atoms in strong magnetic fields to different subspaces related to the lowest Landau band. Using the results on confinement we can calculate the quantum current in the entire semiclassical region B<3......e study confinement of the ground state of atoms in strong magnetic fields to different subspaces related to the lowest Landau band. Using the results on confinement we can calculate the quantum current in the entire semiclassical region B

  1. Selective assessment of the fast neutron component in mixed neutron-gamma field using TLD activation

    Energy Technology Data Exchange (ETDEWEB)

    Ranogajec-Komor, M. E-mail: marika@rudjer.irb.hr; Miljanic, S.; Blagus, S.; Knezevic, Z.Z.; Osvay, M

    2003-06-01

    Selective determination of the fast neutron component in a mixed radiation field by the TL dosimetry was studied. TL responses due to the induced radioactivity in Al{sub 2}O{sub 3}:C dosimeters via the {sup 27}Al(n,{alpha}){sup 24}Na reaction were used to measure the neutron part in a mixed 14.5 MeV neutron and gamma irradiation field. The lowest detectable neutron dose was found to be in order of 10 mSv of personal dose equivalent for Al{sub 2}O{sub 3}:C.

  2. Dynamic polarizability of a complex atom in strong laser fields

    International Nuclear Information System (INIS)

    Rapoport, L.P.; Klinskikh, A.F.; Mordvinov, V.V.

    1997-01-01

    An asymptotic expansion of the dynamic polarizability of a complex atom in a strong circularly polarized light field is found for the case of high frequencies. The self-consistent approximation of the Hartree-Fock type for the ''atom+field'' system is developed, within the framework of which a numerical calculation of the dynamic polarizability of Ne, Kr, and Ar atoms in a strong radiation field is performed. The strong field effect is shown to manifest itself not only in a change of the energy spectrum and the character of behavior of the wave functions of atomic electrons, but also in a modification of the one-electron self-consistent potential for the atom in the field

  3. Colloquium: Strong-field phenomena in periodic systems

    Science.gov (United States)

    Kruchinin, Stanislav Yu.; Krausz, Ferenc; Yakovlev, Vladislav S.

    2018-04-01

    The advent of visible-infrared laser pulses carrying a substantial fraction of their energy in a single field oscillation cycle has opened a new era in the experimental investigation of ultrafast processes in semiconductors and dielectrics (bulk as well as nanostructured), motivated by the quest for the ultimate frontiers of electron-based signal metrology and processing. Exploring ways to approach those frontiers requires insight into the physics underlying the interaction of strong high-frequency (optical) fields with electrons moving in periodic potentials. This Colloquium aims at providing this insight. Introduction to the foundations of strong-field phenomena defines and compares regimes of field-matter interaction in periodic systems, including (perfect) crystals as well as optical and semiconductor superlattices, followed by a review of recent experimental advances in the study of strong-field dynamics in crystals and nanostructures. Avenues toward measuring and controlling electronic processes up to petahertz frequencies are discussed.

  4. Personnel neutron dose assessment upgrade: Volume 2, Field neutron spectrometer for health physics applications

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Reece, W.D.; Miller, S.D.

    1988-07-01

    Both the (ICRP) and the (NCPR) have recommended an increase in neutron quality factors and the adoption of effective dose equivalent methods. The series of reports entitled Personnel Neutron Dose Assessment Upgrade (PNL-6620) addresses these changes. Volume 1 in this series of reports (Personnel Neutron Dosimetry Assessment) provided guidance on the characteristics, use, and calibration of personnel neutron dosimeters in order to meet the new recommendations. This report, Volume 2: Field Neutron Spectrometer for Health Physics Applications describes the development of a portable field spectrometer which can be set up for use in a few minutes by a single person. The field spectrometer described herein represents a significant advance in improving the accuracy of neutron dose assessment. It permits an immediate analysis of the energy spectral distribution associated with the radiation from which neutron quality factor can be determined. It is now possible to depart from the use of maximum Q by determining and realistically applying a lower Q based on spectral data. The field spectrometer is made up of two modules: a detector module with built-in electronics and an analysis module with a IBM PC/reg sign/-compatible computer to control the data acquisition and analysis of data in the field. The unit is simple enough to allow the operator to perform spectral measurements with minimal training. The instrument is intended for use in steady-state radiation fields with neutrons energies covering the fission spectrum range. The prototype field spectrometer has been field tested in plutonium processing facilities, and has been proven to operate satisfactorily. The prototype field spectrometer uses a 3 He proportional counter to measure the neutron energy spectrum between 50 keV and 5 MeV and a tissue equivalent proportional counter (TEPC) to measure absorbed neutron dose

  5. Selective data analysis for diamond detectors in neutron fields

    Directory of Open Access Journals (Sweden)

    Weiss Christina

    2017-01-01

    Full Text Available Detectors based on synthetic chemical vapor deposition diamond gain importance in various neutron applications. The superior thermal robustness and the excellent radiation hardness of diamond as well as its excellent electronic properties make this material uniquely suited for rough environments, such as nuclear fission and fusion reactors. The intrinsic electronic properties of single-crystal diamond sensors allow distinguishing various interactions in the detector. This can be used to successfully suppress background of γ-rays and charged particles in different neutron experiments, such as neutron flux measurements in thermal nuclear reactors or cross-section measurements in fast neutron fields. A novel technique of distinguishing background reactions in neutron experiments with diamond detectors will be presented. A proof of principle will be given on the basis of experimental results in thermal and fast neutron fields.

  6. Resonances of the helium atom in a strong magnetic field

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Al-Hujaj, Omar-Alexander; Schmelcher, Peter

    2007-01-01

    We present an investigation of the resonances of a doubly excited helium atom in a strong magnetic field covering the regime B=0–100  a.u. A full-interaction approach which is based on an anisotropic Gaussian basis set of one-particle functions being nonlinearly optimized for each field strength...

  7. Simulation analysis of radiation fields inside phantoms for neutron irradiation

    International Nuclear Information System (INIS)

    Satoh, Daiki; Takahashi, Fumiaki; Endo, Akira; Ohmachi, Y.; Miyahara, N.

    2007-01-01

    Radiation fields inside phantoms have been calculated for neutron irradiation. Particle and heavy-ion transport code system PHITS was employed for the calculation. Energy and size dependences of neutron dose were analyzed using tissue equivalent spheres of different size. A voxel phantom of mouse was developed based on CT images of an 8-week-old male C3H/HeNs mouse. Deposition energy inside the mouse was calculated for 2- and 10-MeV neutron irradiation. (author)

  8. Attosecond Electron Wave Packet Dynamics in Strong Laser Fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.

    2005-01-01

    We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (∼20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes

  9. Vortex-lattice states at strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Akera, H.; MacDonald, A.H.; Girvin, S.M. (Department of Physics, Indiana University, Bloomington, Indiana (USA)); Norman, M.R. (Materials Science Division, Argonne National Laboratory, Argonne, Illinois (USA))

    1991-10-21

    At strong magnetic fields, Landau quantization invalidates the semiclassical approximations which underly the Ginzburg-Landau (GL) theory of the mixed states of type-II superconductors. We have solved the {ital microscopic} mean-field equations for the case of a two-dimensional electron system in the strong magnetic-field limit. For delta-function attractive interactions there exist {ital n}+1 pairing channels in the {ital n}th Landau level. For {ital n}{gt}0, two channels share the maximum {ital T}{sub {ital c}}, and the order parameter differs markedly from expectations based on GL theory.

  10. NATO Advanced Study Institute on Atoms in Strong Fields

    CERN Document Server

    Clark, Charles; Nayfeh, Munir

    1990-01-01

    This book collects the lectures given at the NATO Advanced Study Institute on "Atoms in Strong Fields", which took place on the island of Kos, Greece, during the two weeks of October 9-21,1988. The designation "strong field" applies here to an external electromagnetic field that is sufficiently strong to cause highly nonlinear alterations in atomic or molecular struc­ ture and dynamics. The specific topics treated in this volume fall into two general cater­ gories, which are those for which strong field effects can be studied in detail in terrestrial laboratories: the dynamics of excited states in static or quasi-static electric and magnetic fields; and the interaction of atoms and molecules with intense laser radiation. In both areas there exist promising opportunities for research of a fundamental nature. An electric field of even a few volts per centimeter can be very strong on the atom­ ic scale, if it acts upon a weakly bound state. The study of Rydberg states with high reso­ lution laser spectroscop...

  11. Equation of state of strange quark matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2012-01-01

    Thermodynamic properties of strange quark matter (SQM) in strong magnetic fields H up to 10 20 G are considered at zero temperature within the MIT bag model. The effects of the pressure anisotropy, exhibiting in the difference between the pressures along and perpendicular to the field direction, become essential at H>H t h , with the estimate 10 17 t h 18 G. The longitudinal pressure vanishes in the critical field H c , which can be somewhat less or larger than 10 18 G, depending on the total baryon number density and bag pressure. As a result, the longitudinal instability occurs in strongly magnetized SQM. The appearance of such instability sets the upper bound on the magnetic field strength which can be reached in the interior of a neutron star with the quark core. The longitudinal and transverse pressures as well as the anisotropic equation of state of SQM are determined under the conditions relevant for the cores of magnetars

  12. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    International Nuclear Information System (INIS)

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A.; Pantell, R. H.; Feinstein, J.; Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B.

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  13. Interaction of neutral particles with strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Meuren, Sebastian; Keitel, Christoph H.; Di Piazza, Antonino [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2013-07-01

    Since the invention of the laser in the 1960s the experimentally available field strengths have continuously increased. The current peak intensity record is 2 x 10{sup 22} W/cm{sup 2} and next generation facilities such as ELI, HiPER and XCELS plan to reach even intensities of the order of 10{sup 24} W/cm{sup 2}. Thus, modern laser facilities are a clean source for very strong external electromagnetic fields and promise new and interesting high-energy physics experiments. In particular, strong laser fields could be used to test non-linear effects in quantum field theory. Earlier we have investigated how radiative corrections modify the coupling of a charged particle inside a strong plane-wave electromagnetic background field. However, a charged particle couples already at tree level to electromagnetic radiation. Therefore, we have now analyzed how the coupling between neutral particles and radiation is affected by a very strong plane-wave electromagnetic background field, when loop corrections are taken into account. In particular, the case of neutrinos is discussed.

  14. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    Science.gov (United States)

    Vaidya, S. J.; Sharma, D. K.; Shaikh, A. M.; Chandorkar, A. N.

    2002-09-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co 60 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radiation performance of pyrogenic field oxides with respect to positive charge build up as well as interface state generation. Pyrogenic oxide nitrided in N 2O is found to be the best oxynitride as damage due to neutrons is the least.

  15. Neutron field inside a PET Cyclotron vault room

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R. [UAZ, C. Cipres 10, 98068 Zacatecas (Mexico); Mendez, R. [CIEMAT, Ave. Complutense 22, 28040 Madrid (Spain); Iniguez, M.P. [Universidad de Valladolid, Po Prado de la Magdalena s/n, 47011 Valladolid (Spain); Climent, J.M.; Penuelas, I. [Servicio de Medicina Nuclear de la Clinica Universitaria de Navarra, Pamplona (Spain); Barquero, R. [Hospital Universitario Rio Hortega, Valladolid (Spain)]. e-mail: fermineutron@yahoo.com

    2006-07-01

    The neutron field around a Positron Emission Tomography cyclotron was investigated during {sup 18} F radioisotope production with an 18 MeV proton beam. In this study the Ion Beam Application cyclotron, model Cyclone 18/9, was utilized. Measurements were carried out with a Bonner sphere neutron spectrometer with pairs of thermoluminescent dosemeters (TLD600 and TLD700) as thermal neutron detector. The TLDs readouts were utilized to unfold the neutron spectra at three different positions inside the cyclotron's vault room. With the spectra the Ambient dose equivalent was calculated. Neutron spectra unfolding were performed with the BUNKIUT code and the UTA4 response matrix. Neutron spectra were also determined by Monte Carlo calculations using a detailed model of cyclotron and vault room. (Author)

  16. Neutron field inside a PET Cyclotron vault room

    International Nuclear Information System (INIS)

    Vega C, H.R.; Mendez, R.; Iniguez, M.P.; Climent, J.M.; Penuelas, I.; Barquero, R.

    2006-01-01

    The neutron field around a Positron Emission Tomography cyclotron was investigated during 18 F radioisotope production with an 18 MeV proton beam. In this study the Ion Beam Application cyclotron, model Cyclone 18/9, was utilized. Measurements were carried out with a Bonner sphere neutron spectrometer with pairs of thermoluminescent dosemeters (TLD600 and TLD700) as thermal neutron detector. The TLDs readouts were utilized to unfold the neutron spectra at three different positions inside the cyclotron's vault room. With the spectra the Ambient dose equivalent was calculated. Neutron spectra unfolding were performed with the BUNKIUT code and the UTA4 response matrix. Neutron spectra were also determined by Monte Carlo calculations using a detailed model of cyclotron and vault room. (Author)

  17. Atomic and Free Electrons in a Strong Light Field

    International Nuclear Information System (INIS)

    Fedorov, Mikhail V.

    1998-02-01

    This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated Bremsstrahlung, free-electron lasers, ave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described oo, and their results are compared with those of the existing theoretical models. An extensive general theoretical introduction gives a good basis for subsequent parts of the book and is an independent and self-sufficient description of the most efficient theoretical methods of the strong-field and multiphoton physics. This book can serve as a textbook for graduate students

  18. Numerical Hydrodynamics in Strong-Field General Relativity

    Science.gov (United States)

    East, William Edward

    In this thesis we develop and test methods for numerically evolving hydrodynamics coupled to the Einstein field equations, and then apply them to several problems in gravitational physics and astrophysics. The hydrodynamics scheme utilizes high-resolution shock-capturing techniques with flux corrections while the Einstein equations are evolved in the generalized harmonic formulation using finite difference methods. We construct initial data by solving the constraint equations using a multigrid algorithm with free data chosen based on superposing isolated compact objects. One application we consider is the merger of black hole-neutron star and neutron star-neutron star binaries that form through dynamical capture, as may occur in globular clusters or galactic nuclei. These systems can merge with non-negligible orbital eccentricity and display significant variability in dynamics and outcome as a function of initial impact parameter. We study the electromagnetic and gravitational-wave transients that these mergers may produce and their prospects for being detected with upcoming observations. We also introduce a numerical technique that allows solutions to the full Einstein equations to be obtained for extreme-mass-ratio systems where the spacetime is dominated by a known background solution. This technique is based on using the knowledge of a background solution to subtract off its contribution to the truncation error. We use this to study the tidal effects and gravitational radiation from a solar-type star falling into a supermassive black hole. Finally, we utilize general-relativistic hydrodynamics to study ultrarelativistic black hole formation. We study the head-on collision of fluid particles well within the kinetic energy dominated regime (Lorentz factors of 8-12). We find that black hole formation does occur at energies a factor of a few below simple hoop conjecture estimates. We also find that near the threshold for black hole formation, the collision leads to

  19. Quantum theory of strong-field frustrated tunneling

    Science.gov (United States)

    Popruzhenko, S. V.

    2018-01-01

    We show how the strong-field approximation, widely used for description of multiphoton and tunneling ionization, can be extended to analyse the excitation of bound states in intense low-frequency laser pulses. The proposed theory is based on the formalism of quantum trajectories and fills the gap between the numerical solution of the time-dependent Schrödinger equation and classical simulations. In particular, it allows identifying non-adiabatic and interference effects in strong-field excitation of Rydberg states.

  20. Atomic and free electrons in a strong light field

    CERN Document Server

    Fedorov, Mikhail V

    1997-01-01

    This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated bremsstrahlung, free-electron lasers, wave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described too, and their results are compared with those of the existing theoretical models.An extensive ge

  1. Discriminative deep inelastic tests of strong interaction field theories

    International Nuclear Information System (INIS)

    Glueck, M.; Reya, E.

    1979-02-01

    It is demonstrated that recent measurements of ∫ 0 1 F 2 (x, Q 2 )dx eliminate already all strong interaction field theories except QCD. A detailed study of scaling violations of F 2 (x, Q 2 ) in QCD shows their insensitivity to the gluon content of the hadron at presently measured values of Q 2 . (orig.) [de

  2. Near-field strong coupling of single quantum dots.

    Science.gov (United States)

    Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert

    2018-03-01

    Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.

  3. Feasibility study on using imaging plates to estimate thermal neutron fluence in neutron-gamma mixed fields.

    Science.gov (United States)

    Fujibuchi, Toshioh; Tanabe, Yu; Sakae, Takeji; Terunuma, Toshiyuki; Isobe, Tomonori; Kawamura, Hiraku; Yasuoka, Kiyoshi; Matsumoto, Tetsuro; Harano, Hideki; Nishiyama, Jun; Masuda, Akihiko; Nohtomi, Akihiro

    2011-11-01

    In current radiotherapy, neutrons are produced in a photonuclear reaction when incident photon energy is higher than the threshold. In the present study, a method of discriminating the neutron component was investigated using an imaging plate (IP) in the neutron-gamma-ray mixed field. Two types of IP were used: a conventional IP for beta- and gamma rays, and an IP doped with Gd for detecting neutrons. IPs were irradiated in the mixed field, and the photo-stimulated luminescence (PSL) intensity of the thermal neutron component was discriminated using an expression proposed herein. The PSL intensity of the thermal neutron component was proportional to thermal neutron fluence. When additional irradiation of photons was added to constant neutron irradiation, the PSL intensity of the thermal neutron component was not affected. The uncertainty of PSL intensities was approximately 11.4 %. This method provides a simple and effective means of discriminating the neutron component in a mixed field.

  4. Synchrotron radiation in strongly coupled conformal field theories

    Science.gov (United States)

    Athanasiou, Christiana; Chesler, Paul M.; Liu, Hong; Nickel, Dominik; Rajagopal, Krishna

    2010-06-01

    Using gauge/gravity duality, we compute the energy density and angular distribution of the power radiated by a quark undergoing circular motion in strongly coupled N=4 supersymmetric Yang-Mills theory. We compare the strong coupling results to those at weak coupling, finding them to be very similar. In both regimes, the angular distribution of the radiated power is in fact similar to that of synchrotron radiation produced by an electron in circular motion in classical electrodynamics: the quark emits radiation in a narrow beam along its velocity vector with a characteristic opening angle α˜1/γ. To an observer far away from the quark, the emitted radiation appears as a short periodic burst, just like the light from a lighthouse does to a ship at sea. Our strong coupling results are valid for any strongly coupled conformal field theory with a dual classical gravity description.

  5. Statistical relationship of strong earthquakes with planetary geomagnetic field activity

    Science.gov (United States)

    Pogrebnikov, M. M.; Komarovski, N. I.; Kopytenko, Y. A.; Pushel, A. P.

    1984-12-01

    Earlier studies reported a significant decrease in the geomagnetic field before strong earthquakes. Possible relationships between earthquakes with magnitude greater than 7 (Soviet scale) and planetary terrestrial magnetic field activity as characterized by the K sub p index were investigated. A total of 100 cases of strong earthquakes on magnetically quiet days in 1965 to 1975 were studied. The K sub p indexes were studied for two days before and two days after the earthquakes. The dispersion curve shows a significant decrease one day before each event. The relationship of the planetary K sub p index with seismic activity indicates that the period of preparation for an earthquake and at the moment of the shock are reflected in the terrestrial magnetic field.

  6. Development of An Epi-thermal Neutron Field for Fundamental Researches for BNCT with A DT Neutron Source

    Directory of Open Access Journals (Sweden)

    Osawa Yuta

    2017-01-01

    Full Text Available Boron Neutron Capture Therapy (BNCT is known to be a new promising cancer therapy suppressing influence against normal cells. In Japan, Accelerator Based Neutron Sources (ABNS are being developed for BNCT. For the spread of ABNS based BNCT, we should characterize the neutron field beforehand. For this purpose, we have been developing a low-energy neutron spectrometer based on 3He position sensitive proportional counter. In this study, a new intense epi-thermal neutron field was developed with a DT neutron source for verification of validity of the spectrometer. After the development, the neutron field characteristics were experimentally evaluated by using activation foils. As a result, we confirmed that an epi-thermal neutron field was successfully developed suppressing fast neutrons substantially. Thereafter, the neutron spectrometer was verified experimentally. In the verification, although a measured detection depth distribution agreed well with the calculated distribution by MCNP, the unfolded spectrum was significantly different from the calculated neutron spectrum due to contribution of the side neutron incidence. Therefore, we designed a new neutron collimator consisting of a polyethylene pre-collimator and boron carbide neutron absorber and confirmed numerically that it could suppress the side incident neutrons and shape the neutron flux to be like a pencil beam.

  7. X-ray studies of neutron stars and their magnetic fields

    Science.gov (United States)

    MAKISHIMA, Kazuo

    2016-01-01

    Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1–7) × 108 T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states. PMID:27169348

  8. Matter in strong fields: from molecules to living cells

    International Nuclear Information System (INIS)

    Mathur, D

    2007-01-01

    Strong optical fields induce multiple ionization in irradiated molecules. The ionization dynamics are governed by optical-field-induced distortions of molecular potential energy surfaces and molecular dissociation is the expected by-product. Recent experiments have even shown, quite counter-intuitively, that strong optical fields may even induce bond formation processes in molecules. All such processes are all manifestations of how intense light affects matter. In turn, matter also affects intense light. A visually dramatic manifestation of matter affecting light is obtained when ultrashort pulses of intense light propagate though condensed matter. The temporal and spatial properties of the incident light pulse are modified, and such modifications manifest themselves in an enlarged optical frequency sweep, resulting in the generation of broadband radiation (white light) known as supercontinuum production. Although the physics that governs supercontinuum generation is not properly understood, some recent progress is summarized. Novel applications of strong field phenomena are reported that are of relevance in the biomedical and life sciences

  9. Nonlinear dynamics of semiconductors in strong THz electric fields

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun

    weak THz and near infrared pulses as probes. Firstly, an intense THz pulse is used to study THz-induced impact ionization (IMI) dynamics in silicon. Local field enhancement by metallic dipole antenna arrays has been used to generate strong electric fields of several MV/cm in the hot spots near...... uniquely. Finally it is demonstrated for the first time that SiC can be tailored to have extremely fast THz-induced nonlinear behavior in moderate THz electric fields by addition of appropriate dopants. A 4H-SiC sample with high concentrations of nitrogen and boron dopants shows a nonlinear THz......In this thesis, we investigate nonlinear interactions of an intense terahertz (THz) field with semiconductors, in particular the technologically relevant materials silicon and silicon carbide. We reveal the time-resolved dynamics of the nonlinear processes by pump-probe experiments that involve...

  10. The Covariance and Biocovariance of the Stochartic Neutron Field

    Energy Technology Data Exchange (ETDEWEB)

    Perez, R.B.

    1998-01-01

    The use of stochastic neutron field theory (neutron noise) for the measurement of reactor physics parameters goes back to the early work of Serber, Feynmann, and Orndoff. Since then, a large variety of methods and applications has been developed. In the majority of these methods, some form of modified one-point reactor kinetics was used for the interpretation of the measurements. In fact, the high level of sophistication of the instrumentation used was not matched by the theory. In 1965, Bell developed a general theory of the stochastic neutron field, and in 1987, Munoz-Cobo et al enlarged this treatment to include the effect of the detectors in the neutron field. In both instances, the complexity of the theoretical results were beyond the computing capabilities then available thus, the mismatch between experimental and theoretical methods remained in existence because the powerful Monte-Carlo methods then at work, were only applicable to static neutron fields. This problem was eliminated by the development of a time-dependent Monte-Carlo code specially written by T. E. Valentine for the analysis of stochastic measurements that gave them relevance to the results of the general theory. The purpose of this work is to illustrate the derivation of observables of the stochastic neutron filed from its general treatment.

  11. Ion Motion in a Plasma Interacting with Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Weingarten, A.; Grabowski, C.; Chakrabarti, N.; Maron, Y.; Fruchtmant, A.

    1999-01-01

    The interaction of a plasma with strong magnetic fields takes place in many laboratory experiments and astrophysical plasmas. Applying a strong magnetic field to the plasma may result in plasma displacement, magnetization, or the formation of instabilities. Important phenomena in plasma, such as the energy transport and the momentum balance, take a different form in each case. We study this interaction in a plasma that carries a short-duration (80-ns) current pulse, generating a magnetic field of up to 17 kG. The evolution of the magnetic field, plasma density, ion velocities, and electric fields are determined before and during the current pulse. The dependence of the plasma limiting current on the plasma density and composition are studied and compared to theoretical models based on the different phenomena. When the plasma collisionality is low, three typical velocities should be taken into consideration: the proton and heavier-ion Alfven velocities (v A p and v A h , respectively) and the EMHD magnetic-field penetration velocity into the plasma (v EMHD ). If both Alfven velocities are larger than v EMHD the plasma is pushed ahead of the magnetic piston and the magnetic field energy is dissipated into ion kinetic energy. If v EMHD is the largest of three velocities, the plasma become magnetized and the ions acquire a small axial momentum only. Different ion species may drift in different directions along the current lines. In this case, the magnetic field energy is probably dissipated into electron thermal energy. When vs > V EMHD > vi, as in the case of one of our experiments, ion mass separation occurs. The protons are pushed ahead of the piston while the heavier-ions become magnetized. Since the plasma electrons are unmagnetized they cannot cross the piston, and the heavy ions are probably charge-neutralized by electrons originating from the cathode that are 'born' magnetized

  12. Approximation for a Coulomb-Volkov solution in strong fields

    Science.gov (United States)

    Reiss, H. R.; Krainov, V. P.

    1994-08-01

    A simple analytical approximation is found for the wave function of an electron simultaneously exposed to a strong, circularly polarized plane-wave field and an atomic Coulomb potential. The approximation is valid when α0>>1, where α0 is the classical radius of motion of a free electron in the plane-wave field. This constraint is sufficiently mild at low frequencies that it makes possible a major extension of the lower bound of laser intensities for which Volkov-solution-based approximations are useful.

  13. Two-level atom in a strong polychromatic field

    International Nuclear Information System (INIS)

    Kazakov, A.Ya.

    1991-01-01

    The quasienergy spectrium of a two-level atom in a polychromatic electromagnetic field can be expressed in terms of the Floquet indexes of a linear set of ordinary differential equations with periodic coefficients. An analytic expression for the quasienergy spectrum is obtained by the asymptotic technique for the case of a strong polychromatic field. It is shown that on deep modulation of the radiation incident on the atom forbidden bands for the quasilevels may arise. The Stark effect for the physical system under consideration is described

  14. Strong-field short-pulse nondipole dynamics

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Førre, Morten; Madsen, Lars Bojer

    2009-01-01

    We present a quantitative investigation of strong-field short-pulse nondipole dynamics in laser-matter interactions. We find excellent agreement between ab initio numerical and analytic results obtained using the Magnus expansion. We show that in the short-pulse limit, ultrafast transfer and cont......We present a quantitative investigation of strong-field short-pulse nondipole dynamics in laser-matter interactions. We find excellent agreement between ab initio numerical and analytic results obtained using the Magnus expansion. We show that in the short-pulse limit, ultrafast transfer...... and control of population can be achieved using nondipole effects. The relative importance of nondipole to dipole effects depends on the displacement imparted to a free classical electron....

  15. A survey on development of neutron standards and neutron measurement technique corresponding to various fields

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuro

    2007-01-01

    Various uses of neutrons are being watched in many fields such as industry, medical technology and radiation protection. Especially, high energy neutrons above 15 MeV are important in a radiation exposure issue of an aircraft and a soft error issue of a semiconductor. Therefore neutron fluence standards for the high energy region are very important. However, the standards are not almost provided all over the world. Three reasons are mainly considered: (1) poor measurement techniques for the high energy neutrons, (2) a small number of high energy neutron facilities and (3) lack of nuclear data for high energy particle reactions. In this paper, the present status of the measurement techniques, the facilities and the nuclear data is investigated and discussed. In NMIJ/AIST, the 19.0-MeV neutron fluence standard will be established by 2010, and development of high energy neutron standards above 20 MeV is also examined. An outline of the development of the high energy neutron standards is also shown in this paper. (author)

  16. Semicalssical quantization of interacting anyons in a strong magnetic field

    International Nuclear Information System (INIS)

    Levit, S.; Sivan, N.

    1992-01-01

    We represent a semiclassical theory of charged interacting anyons in strong magnetic fields. We apply this theory to a number of few anyons systems including two interacting anyons in the presence of an impurity and three interacting anyons. We discuss the dependence of their energy levels on the statistical parameter and find regions in which this dependence follows very different patterns. The semiclassical arguments allow to correlate these patterns with the change in the character of the classical motion of the system. (author)

  17. Strong field transient manipulation of electronic states and bands

    Directory of Open Access Journals (Sweden)

    I. Crassee

    2017-11-01

    Full Text Available In the present review, laser fields are so strong that they become part of the electronic potential, and sometimes even dominate the Coulomb contribution. This manipulation of atomic potentials and of the associated states and bands finds fascinating applications in gases and solids, both in the bulk and at the surface. We present some recent spectacular examples obtained within the NCCR MUST in Switzerland.

  18. Radiative electron-atom collision in a strong laser field

    International Nuclear Information System (INIS)

    Faisal, F.H.M.

    1984-01-01

    The comment is concerned with certain current problems and prospects in the theory of electron-atom collision in a strong radiation field. High energy off-shell electron-photon excitation of atoms; low-energy e-atom radiative scattering; steady state input distribution; typical distribution; low energy phenomena; and extensions of the close coupling and the algebraic methods, are all discussed. (U.K.)

  19. Experiments on plasma turbulence induced by strong, steady electric fields

    International Nuclear Information System (INIS)

    Hamberger, S.M.

    1975-01-01

    The author discusses the effect of applying a strong electric field to collisionless plasma. In particular are compared what some ideas and prejudices lead one to expect to happen, what computer simulation experiments tell one ought to happen, and what actually does happen in two laboratory experiments which have been designed to allow the relevant instability and turbulent processes to occur unobstructed and which have been studied in sufficient detail. (Auth.)

  20. Study of the neutron skin thickness of 208Pb in mean field models

    International Nuclear Information System (INIS)

    Roca-Maza, X; Centelles, M; Vinas, X; Warda, M

    2011-01-01

    We study whether the neutron skin thickness Δr np of 208 Pb originates from the bulk or from the surface of the neutron and proton density distributions in mean field models. We find that the size of the bulk contribution to Δr np of 208 Pb strongly depends on the slope of the nuclear symmetry energy, while the surface contribution does not. We note that most mean field models predict a neutron density for 208 Pb between the halo and skin type limits. We investigate the dependence of parity-violating electron scattering at the kinematics of the PREX experiment on the shape of the nucleon densities predicted by the mean field models for 208 Pb. We find an approximate formula for the parity-violating asymmetry in terms of the central radius and the surface diffuseness of the nucleon densities of 208 Pb in these models.

  1. Experimental and calculation characterization of a neutron field near a concrete container with ampoule neutron sources

    International Nuclear Information System (INIS)

    Tikhomirov, L.N.; Azarov, V.A.; Silaev, M.E.

    2003-01-01

    National Nuclear Center of Republic of Kazakhstan works on designing a specialized storage facility for ampoule neutron sources that contain fissile materials. A concrete container prototype has been designed to store such ampoules. The container protective features were experimentally studied. Models were developed and calculations performed for the container neutron field, which have good agreement with experimental results. The experimental and calculation results will be used in developing the storage facility design. (author)

  2. Theoretical Femtosecond Physics Atoms and Molecules in Strong Laser Fields

    CERN Document Server

    Grossmann, Frank

    2008-01-01

    Theoretical femtosecond physics is a new field of research. Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers of up to atomic field strengths are leading to an understanding of many challenging experimental discoveries. Laser-matter interaction is treated on a nonperturbative level in the book using approximate and numerical solutions of the time-dependent Schrödinger equation. The light field is treated classically. Physical phenomena, ranging from ionization of atoms to the ionization and dissociation of molecules and the control of chemical reactions are presented and discussed. Theoretical background for experiments with strong and short laser pulses is given. Several exercises are included in the main text. Some detailed calculations are performed in the appendices.

  3. Spin effects in strong-field laser-electron interactions

    International Nuclear Information System (INIS)

    Ahrens, S; Bauke, H; Müller, T-O; Villalba-Chávez, S; Müller, C

    2013-01-01

    The electron spin degree of freedom can play a significant role in relativistic scattering processes involving intense laser fields. In this contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac scattering in an x-ray laser field of high intensity, (ii) photo-induced electron-positron pair production in a strong laser wave and (iii) multiphoton electron-positron pair production on an atomic nucleus. We show that in all cases under consideration the electron spin can have a characteristic impact on the process properties and their total probabilities. To this end, spin-resolved calculations based on the Dirac equation in the presence of an intense laser field are performed. The predictions from Dirac theory are also compared with the corresponding results from the Klein-Gordon equation.

  4. Entanglement via atomic coherence induced by two strong classical fields

    Science.gov (United States)

    Lü, Xin-You; Huang, Pei; Yang, Wen-Xing; Yang, Xiaoxue

    2009-09-01

    Based on the standard criteria [P. van Loock and A. Furusawa, Phys. Rev. A 67, 052315 (2003)], we propose a scheme to achieve the fully tripartite continuous-variable (CV) entanglement in a Y -type atomic system driven by two strong classical fields. By numerically simulating the dynamics of system, we show that the generation of entanglement does not depend intensively on the initial condition of cavity field and the time for which the cavity modes remain entangled can be prolonged via enhancing the intensities of classical fields in our scheme. Moreover, our numerical results also show that a tripartite entanglement amplifier can be realized in the present scheme. The present research provides an efficient approach to achieve fully tripartite CV entangled state even when the three entangled modes have different frequencies and initial states, which may be useful for the progress of quantum information networks with many nodes.

  5. Maxwell Equation Violation by Density Dependent Magnetic Fields in Neutron Stars

    Science.gov (United States)

    Alloy, Marcelo D.; Menezes, Débora P.

    We show that the widely used density dependent magnetic field prescriptions, necessary to account for the variation of the field intensity from the crust to the core of neutron stars violate one of the Maxwell equations. We estimate how strong the violation is when different equations of state are used and check for which cases the pathological problem can be cured. We then propose a simple solution that allows for the usual prescriptions to be used without violating a fundamental equation of physics.

  6. Multipolar electromagnetic fields around neutron stars: general-relativistic vacuum solutions

    Science.gov (United States)

    Pétri, J.

    2017-12-01

    Magnetic fields inside and around neutron stars are at the heart of pulsar magnetospheric activity. Strong magnetic fields are responsible for quantum effects, an essential ingredient to produce leptonic pairs and the subsequent broad-band radiation. The variety of electromagnetic field topologies could lead to the observed diversity of neutron star classes. Thus, it is important to include multipolar components to a presumably dominant dipolar magnetic field. Exact analytical solutions for these multipoles in Newtonian gravity have been computed in recent literature. However, flat space-time is not adequate to describe physics in the immediate surroundings of neutron stars. We generalize the multipole expressions to the strong gravity regime by using a slowly rotating metric approximation such as the one expected around neutron stars. Approximate formulae for the electromagnetic field including frame dragging are computed from which we estimate the Poynting flux and the braking index. Corrections to leading order in compactness and spin parameter are presented. As far as spin-down luminosity is concerned, it is shown that frame dragging remains irrelevant. For high-order multipoles starting from the quadrupole, the electric part can radiate more efficiently than the magnetic part. Both analytical and numerical tools are employed.

  7. Calibration of a special neutron dosemeter based on solid-state track detectors and fission radiators in various neutron fields

    International Nuclear Information System (INIS)

    Doerschel, B.; Krusche, M.; Schuricht, V.

    1980-01-01

    The calibration of a personnel neutron dosemeter in different neutron fields is described. The badge-like dosemeter contains 5 detectors: polycarbonate foil (10 μm, Makrofol KG), 232 Th, natural uranium, natural uranium with boron, and natural uranium with cadmium. Detector sensitivity and calibration factors have been calculated and measured in radiation fields of 252 Cf fission neutrons, WWR-S reactor neutrons with and without Cd and Fe shielding, 3-MeV (d,t) generator neutrons, and 238 PuBe neutrons. Measurement range and achievable accuracy are discussed from the point of view of applying the dosemeter in routine and emergency uses

  8. Characterization of 'strong-fragile' behaviour of glass-forming aqueous solutions by neutron scattering

    CERN Document Server

    Branca, C; Galli, G; Magazù, S; Maisano, G; Migliardo, F

    2002-01-01

    Neutron-scattering measurements have been performed on trehalose/H sub 2 O and sucrose/H sub 2 O mixtures by using the spectrometer MIBEMOL at the Laboratoire Leon Brillouin (LLB, Saclay) as a function of temperature and concentration. In order to characterize the different rigidities of both the disaccharide/H sub 2 O mixtures, we have evaluated the R sub 1 (T sub g) parameter connected to the 'strong-fragile' classification of the systems according to Angell's nomenclature. (orig.)

  9. A design study on hyper-thermal neutron irradiation field for neutron capture therapy at Kyoto University Reactor

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kobayashi, T.

    2000-01-01

    A study about the installation of a hyper-thermal neutron converter to a clinical collimator was performed, as a series of the design study on a hyper-thermal neutron irradiation field at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. From the parametric-surveys by Monte Carlo calculation, it was confirmed that the practical irradiation field of hyper-thermal neutrons would be feasible by the modifications of the clinical collimator and the bismuth-layer structure. (author)

  10. Dynamics of dissociation versus ionization in strong laser fields

    International Nuclear Information System (INIS)

    In this paper, experimental results are presented which clearly demonstrate the effectiveness that an external field has in altering the dissociation dynamics. The experiment examines the strong-field dissociation dynamics of molecular hydrogen ions and its deuterated isotopes. These studies involve multiphoton excitation in the intensity regime of 10 11-14 W/cm 2 with the fundamental and second harmonic of a ND:YAG or ND:YLF laser system. Measurements include energy resolved electron and mass spectroscopy which provide useful probes in elucidating the interaction dynamics predicted by existing models. The example this in this paper, examines the strong-field dissociation of H 2 + , HD + , and D 2 + at green (0.5 μm) and (1μm) frequencies. The diatomic ions are formed via multiphonon ionization of the neutral precursor which is physically separable from the dissociation process. This study provides the first observation of the dynamics associated with the above threshold dissociation (ATD) process and analogies will be made with the more familiar above threshold ionization (ATI) phenomenon

  11. An active pixels spectrometers for neutronic fields metrology

    International Nuclear Information System (INIS)

    Taforeau, Julien

    2013-01-01

    The fundamental metrology is responsible for the sustainability of the measurement systems and handles to supply the reference standards. Concerning the metrology of ionizing radiations and, in particular the neutron metrology, detectors standards are used to characterize reference fields, in terms of energy and fluence. The dosimeters or particle detectors are calibrated on these reference fields. This thesis presents the development of a neutron spectrometer neutron candidate to the status of primary standard for the characterization of neutron fields in the range from 5 to 20 MeV. The spectrometer uses the recoil proton telescope as detection principle; the CMOS technology, through three sensor positions, is taking advantage to realize the tracking of protons. A Si(Li) detector handles the measure of the residual proton energy. The device simulations, realized under MCNPX, allow to estimate its performances and to validate the neutron energy reconstruction. An essential step of characterization of the telescope elements and in particular of CMOS sensors is also proposed to guarantee the validity of posterior experimental measurements. The tests realized as well in mono-energy fields as in radionuclide source show the very good performances of the system. The quantification of uncertainties indicates an energy estimation with 1.5 % accuracy and a resolution of less than 6 %. The fluence measurement is performed with an uncertainty about 4 to 6%. (author)

  12. Neutron Reference Benchmark Field Specification: ACRR Free-Field Environment (ACRR-FF-CC-32-CL).

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Richard Manuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parma, Edward J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffin, Patrick J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vehar, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity free-field reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 31 integral dosimetry measurements in the neutron field are reported.

  13. The alanine detector in BNCT dosimetry: dose response in thermal and epithermal neutron fields.

    Science.gov (United States)

    Schmitz, T; Bassler, N; Blaickner, M; Ziegner, M; Hsiao, M C; Liu, Y H; Koivunoro, H; Auterinen, I; Serén, T; Kotiluoto, P; Palmans, H; Sharpe, P; Langguth, P; Hampel, G

    2015-01-01

    The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a (60)Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes fluka and mcnp. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen & Olsen alanine response model. The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. The alanine detector can be used without

  14. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    DEFF Research Database (Denmark)

    Sales, Morten; Strobl, Markus; Shinohara, Takenao

    2018-01-01

    -destructively with the potential to probe the interior of bulk samples which is not amenable otherwise. Using a pioneering polarimetric set-up for ToF neutron instrumentation in combination with a newly developed tailored reconstruction algorithm, the magnetic field generated by a current carrying solenoid has been measured......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...

  15. Cooper Pair Breakup in YBCO under Strong Terahertz Fields

    OpenAIRE

    Glossner, Andreas; Zhang, Caihong; Kikuta, Shinya; Kawayama, Iwao; Murakami, Hironaru; Müller, Paul; Tonouchi, Masayoshi

    2012-01-01

    We show that strong electric fields of ~ 30 kV cm^(-1) at terahertz frequencies can significantly weaken the superconducting characteristics of cuprate superconductors. High-power terahertz time-domain spectroscopy (THz-TDS) was used to investigate the in-plane conductivity of YBa2Cu3O7-delta (YBCO) with highly intense single-cycle terahertz pulses. Even though the terahertz photon energy (~ 1.5 meV) was significantly smaller than the energy gap in YBCO (~ 20-30 meV), the optical conductivity...

  16. Confinement and αs in a strong magnetic field

    Directory of Open Access Journals (Sweden)

    Yu.A. Simonov

    2015-07-01

    Full Text Available Hadron decay widths are shown to increase in strong magnetic fields as Γ(eB∼eBκΓ(0. The same mechanism is shown to be present in the production of the sea quark pair inside the confining string, which decreases the string tension with the growing eB parallel to the string. On the other hand, the average energy of the qq¯ holes in the string world sheet increases, when the direction of B is perpendicular to the sheet. These two effects stipulate the spectacular picture of the B dependent confinement and αs, discovered on the lattice.

  17. Quark-gluon plasma in strong magnetic fields

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran

    2013-04-01

    One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.

  18. Quark-gluon plasma in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran

    2013-04-15

    One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.

  19. Electron-positron-photon cascades in the strong laser field

    Science.gov (United States)

    Legkov, Maxim; Fedotov, Alexander

    2012-06-01

    At nearest future several ambitious projects (such as ELI and HiPER) may provide laser filed intensity up to 10^23--10^24 W/cm^2. In such strong fields quantum effects are essential. The most important among them is production of QED cascades. In this paper external field intensity is considered as ultra-relativistic but subcritical. Using a model of two colliding counter-propagating laser beams it was shown that the number of particles during the process is growing exponentially in time. This leads to vast formation of electron-positron-photon plasma. According to numerical simulations, this plasma quickly absorbs an essential part of the energy of the laser field thus leading to its depletion. Numerical simulation has been also performed for a case of high-energetic particle and laser beam collision. Probability rates of direct and recombination processes have been theoretically studied. Under some conditions, recombination may come into play and suppress cascade development. Using approximation of radiation in forward direction, system of kinetic equations, which describes plasma evaluation, was constructed. According to qualitative estimations based on kinetic equations, it was shown that recombination processes can be neglected for optical frequencies range of external field.

  20. Strong-field control landscapes of coherent electronic excitation

    Science.gov (United States)

    Bayer, Tim; Wollenhaupt, Matthias; Baumert, Thomas

    2008-04-01

    We report on physical mechanisms behind resonant strong-field coherent control. To this end, we study multi-photon ionization of potassium atoms using intense shaped femtosecond laser pulses. The measured photoelectron spectra are discussed in terms of selective population of dressed states (SPODS). A physically motivated pulse parameterization is introduced which opens up two-dimensional parameter spaces comprising pulse sequences as well as chirped pulses. The control topologies of these subspaces are mapped out experimentally and are presented in the form of strong-field control landscapes (SFCLs). In the SFCLs, complementary realizations of SPODS via photon locking and rapid adiabatic passage are observed. Moreover, the combined effect, termed Multi-RAP, arises when both mechanisms are at play simultaneously. In order to better understand the performance of adaptive optimization procedures, we experimentally study their capability to find optimal solutions on a given parameter space. The evolution of different optimization procedures is visualized by means of control trajectories on the surface of the measured SFCL.

  1. Fast neutron fields imaging with a CCD-based luminescent detector

    CERN Document Server

    Mikerov, V

    1999-01-01

    The paper considers some questions concerned with the development of an imaging system based on a CCD-detector for visualising fast neutron fields. From those the most important are: development of fast neutron screens, detector resistance to irradiation fields, and feasibility of fast neutron radiography and tomography at various neutron sources.

  2. Field neutron spectrometer using 3He, TEPC, and multisphere detectors

    International Nuclear Information System (INIS)

    Brackenbush, L.W.

    1991-01-01

    Since the last DOE Neutron Dosimetry Workshop, there have been a number of changes in radiation protection standards proposed by national and international advisory bodies. These changes include: increasing quality factors for neutrons by a factor of two, defining quality factors as a function of lineal energy rather than linear energy transfer (see ACCRUE-40; Joint Task Group 1986), and adoption of effective dose equivalent methodologies. In order to determine the effects of these proposed changes, it is necessary to know the neutron energy spectrum in the work place. In response to the possible adoption of these proposals, the Department of Energy (DOE) initiated a program to develop practical neutron spectrometry systems for use by health physicists. One part of this program was the development of a truly portable, battery operated liquid scintillator spectrometer using proprietary electronics developed at Lawrence Livermore National Laboratory (LLNL); this instrument will be described in the following paper. The second part was the development at PNL of a simple transportable spectrometer based on commercially available electronics. This open-quotes field neutron spectrometerclose quotes described in this paper is intended to be used over a range of neutron energies extending from thermal to 20 MeV

  3. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2018-01-01

    This textbook extends from the basics of femtosecond physics all the way to some of the latest developments in the field. In this updated edition, the chapter on laser-driven atoms is augmented by the discussion of two-electron atoms interacting with strong and short laser pulses, as well as by a review of ATI rings and low energy structures in photo-electron spectra. In the chapter on laser-driven molecules a discussion of 2D infrared spectroscopy is incorporated. Theoretical investigations of atoms and molecules interacting with pulsed lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. The presentation starts with a brief introduction to pulsed laser physics. The basis for the non-perturbative treatment of laser-matter interaction in the book is the time-dependent Schrödinger equation. Its analytical as well as numerical solution are laid out in some detail. The light field is treated classically and different possi...

  4. Anomalous electrodynamics of neutral pion matter in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, Tomáš [Department of Mathematics and Natural Sciences, University of Stavanger,N-4036 Stavanger (Norway); Kadam, Saurabh V. [Indian Institute of Science Education and Research (IISER),Pune 411008 (India)

    2017-03-03

    The ground state of quantum chromodynamics in sufficiently strong external magnetic fields and at moderate baryon chemical potential is a chiral soliton lattice (CSL) of neutral pions https://arxiv.org/abs/1609.05213. We investigate the interplay between the CSL structure and dynamical electromagnetic fields. Our main result is that in presence of the CSL background, the two physical photon polarizations and the neutral pion mix, giving rise to two gapped excitations and one gapless mode with a nonrelativistic dispersion relation. The nature of this mode depends on the direction of its propagation, interpolating between a circularly polarized electromagnetic wave https://www.doi.org/10.1103/PhysRevD.93.085036 and a neutral pion surface wave, which in turn arises from the spontaneously broken translation invariance. Quite remarkably, there is a neutral-pion-like mode that remains gapped even in the chiral limit, in seeming contradiction to the Goldstone theorem. Finally, we have a first look at the effect of thermal fluctuations of the CSL, showing that even the soft nonrelativistic excitation does not lead to the Landau-Peierls instability. However, it leads to an anomalous contribution to pressure that scales with temperature and magnetic field as T{sup 5/2}(B/f{sub π}){sup 3/2}.

  5. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  6. A compact neutron generator using a field ionization source.

    Science.gov (United States)

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2012-02-01

    Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 10(6) tips∕cm(2) and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  7. Helium-burning flashes on accreting neutron stars: effects of stellar mass, radius, and magnetic field

    International Nuclear Information System (INIS)

    Joss, P.C.; Li, F.K.

    1980-01-01

    We have computed the evolution of the helium-burning shell in an accreting neutron star for various values of the stellar mass (M), radius (R), and surface magnetic fields strength (B). As shown in previous work, the helium-burning shell is often unstable and undergoes thermonuclear flashes that result in the emission of X-ray bursts from the neutron-star surface. The dependence of the properties of these bursts upon the values of M and R can be described by simple scaling relations. A strong magnetic field decreases the radiative and conductive opacities and inhibits convection in the neutron-star surface layers. For B 12 gauss, these effects are unimportant; for B> or approx. =10 13 gauss, the enhancement of the electron thermal conductivity is sufficiently large to stabilize the helium-burning shell against thermonuclear flashes. For intermediate values of B, the reduced opacities increase the recurrence intervals between bursts and the energy released per burst, while the inhibition of convection increases the burst rise times to about a few seconds. If the magnetic field funnels the accreting matter onto the magnetic polar caps, the instability of the helium-burning shell will be very strongly suppressed. These results suggest that it may eventually be possible to extract information on the macroscopic properties of neutron stars from the observed features of X-ray burst sources

  8. An integral-field spectroscopic strong lens survey

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, Adam S [Harvard-Smithsonian Center for Astrophysics, 60 Garden St. MS-20, Cambridge, MA 02138 (United States); Burles, Scott [Department of Physics and Kavli Institute, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2007-12-15

    We present the observational results of a survey for strong gravitational lens systems consisting of extended emission-line galaxies lensed by intervening early-type galaxies, conducted using integral field units (IFUs) of the Magellan IMACS and Gemini GMOS-N spectrographs. These data are highly valuable for corroborating the lensing interpretation of Hubble Space Telescope imaging data. We show that in many cases, ground-based IFU spectroscopy is in fact competitive with space-based imaging for the measurement of the mass model parameters of the lensing galaxy. We demonstrate a novel technique of three-dimensional gravitational lens modeling for a single lens system with a resolved lensed rotation curve. We also describe the details of our custom IFU data analysis software, which performs optimal multi-fiber extraction, relative and absolute wavelength calibration to a few hundredths of a pixel RMS and nearly Poisson-limited sky subtraction.

  9. Virtual detector theory for strong-field atomic ionization

    Science.gov (United States)

    Wang, Xu; Tian, Justin; Eberly, J. H.

    2018-04-01

    A virtual detector (VD) is an imaginary device located at a fixed position in space that extracts information from the wave packet passing through it. By recording the particle momentum and the corresponding probability current at each time, the VDs can accumulate and build the differential momentum distribution of the particle, in a way that resembles real experiments. A mathematical proof is given for the equivalence of the differential momentum distribution obtained by the VD method and by Fourier transforming the wave function. In addition to being a tool for reducing the computational load, VDs have also been found useful in interpreting the ultrafast strong-field ionization process, especially the controversial quantum tunneling process.

  10. Coherence and quasistable states in a strong infrared field

    Science.gov (United States)

    Zhong, Changchun; Robicheaux, F.

    2016-03-01

    We study the quasistability of UV-pulse-train-excited H atoms in a strong infrared (IR) laser as a function of the phase delay of the UV pulse train relative to the IR laser. The UV pulse train contains two frequency components. When the two components have frequencies separated by two IR photons, the population of surviving electrons is modulated by up to ten percent. When electrons are excited to right above or below the threshold, the survival probabilities have inverted phase delay dependence, which can be explained classically. When the two frequencies are one IR photon apart, the angular symmetry of the quasistable electrons is broken, and the asymmetry is also controlled by the phase delay. The asymmetrical distribution can be observed while the IR is on and smoothly evolves to a nonzero asymmetry that only weakly depends on the duration of the IR field.

  11. Mechanics of magnetic fluid column in strong magnetic fields

    International Nuclear Information System (INIS)

    Polunin, V.M.; Ryapolov, P.A.; Platonov, V.B.

    2017-01-01

    Elastic-and magnetic properties of magnetic fluid confined by ponderomotive force in a tube fixed in horizontal position are considered. The system is placed in a strong magnetic field under the influence of external static and dynamic perturbations. An experimental setup has been developed. A theoretical basis of the processes of magnetic colloid elastic deformation has been proposed. The values of the static ponderomotive elasticity coefficient and the elasticity coefficient under dynamic action are experimentally determined. The calculations of the saturation magnetization for two magnetic fluid samples, carried out according to the equation containing the dynamic elasticity coefficient, are in good agreement with the experimental magnetization curve. The described method is of interest when studying magnetophoresis and aggregation of nanoparticles in magnetic colloids.

  12. The ESRg matrix for strong field d5 systems

    Directory of Open Access Journals (Sweden)

    McGarvey Bruce R.

    1998-01-01

    Full Text Available This review has tried to collect and correlate all the various equations for the g matrix of strong field d5 systems obtained from different basis sets using full electron and hole formalism calculations. It has corrected mistakes found in the literature and shown how the failure to properly take in symmetry boundary conditions has produced a variety of apparently inconsistent equations in the literature. The review has reexamined the problem of spin-orbit interaction with excited t4e states and finds that the earlier reports that it is zero in octahedral symmetry is not correct. It has shown how redefining what x, y, and z are in the principal coordinate system simplifies, compared to previous methods, the analysis of experimental g values with the equations.

  13. An integral-field spectroscopic strong lens survey

    International Nuclear Information System (INIS)

    Bolton, Adam S; Burles, Scott

    2007-01-01

    We present the observational results of a survey for strong gravitational lens systems consisting of extended emission-line galaxies lensed by intervening early-type galaxies, conducted using integral field units (IFUs) of the Magellan IMACS and Gemini GMOS-N spectrographs. These data are highly valuable for corroborating the lensing interpretation of Hubble Space Telescope imaging data. We show that in many cases, ground-based IFU spectroscopy is in fact competitive with space-based imaging for the measurement of the mass model parameters of the lensing galaxy. We demonstrate a novel technique of three-dimensional gravitational lens modeling for a single lens system with a resolved lensed rotation curve. We also describe the details of our custom IFU data analysis software, which performs optimal multi-fiber extraction, relative and absolute wavelength calibration to a few hundredths of a pixel RMS and nearly Poisson-limited sky subtraction

  14. Probing strong-field general relativity near black holes

    CERN Multimedia

    CERN. Geneva; Alvarez-Gaumé, Luís

    2005-01-01

    Nature has sprinkled black holes of various sizes throughout the universe, from stellar mass black holes in X-ray sources to supermassive black holes of billions of solar masses in quasars. Astronomers today are probing the spacetime near black holes using X-rays, and gravitational waves will open a different view in the near future. These tools give us an unprecedented opportunity to test ultra-strong-field general relativity, including the fundamental theorem of the uniqueness of the Kerr metric and Roger Penrose's cosmic censorship conjecture. Already, fascinating studies of spectral lines are showing the extreme gravitational lensing effects near black holes and allowing crude measurements of black hole spin. When the ESA-NASA gravitational wave detector LISA begins its observations in about 10 years, it will make measurements of dynamical spacetimes near black holes with an accuracy greater even than that which theoreticians can reach with their computations today. Most importantly, when gravitational wa...

  15. Self-Organization of Polymeric Fluids in Strong Stress Fields

    Directory of Open Access Journals (Sweden)

    A. V. Semakov

    2015-01-01

    Full Text Available Analysis of literature data and our own experimental observations have led to the conclusion that, at high deformation rates, viscoelastic liquids come to behave as rubbery materials, with strong domination by elastic deformations over flow. This can be regarded as a deformation-induced fluid-to-rubbery transition. This transition is accompanied by elastic instability, which can lead to the formation of regular structures. So, a general explanation for these effects requires the treatment of viscoelastic liquids beyond critical deformation rates as rubbery media. Behaviouristic modeling of their behaviour is based on a new concept, which considers the medium as consisting of discrete elastic elements. Such a type of modeling introduces a set of discrete rotators settled on a lattice with two modes of elastic interaction. The first of these is their transformation from spherical to ellipsoidal shapes and orientation in an external field. The second is elastic collisions between rotators. Computer calculations have demonstrated that this discrete model correctly describes the observed structural effects, eventually resulting in a “chaos-to-order” transformation. These predictions correspond to real-world experimental data obtained under different modes of deformation. We presume that the developed concept can play a central role in understanding strong nonlinear effects in the rheology of viscoelastic liquids.

  16. Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field

    International Nuclear Information System (INIS)

    Chajkovskij, I.A.

    1974-01-01

    A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers

  17. Microdosimetry of epithermal neutron field at the Kyoto University reactor

    International Nuclear Information System (INIS)

    Onizuka, Y.; Endo, S.; Ishikawa, M.; Hoshi, M.; Takada, M.; Kobayashi, T.; Sakurai, Y.; Utsumi, H.; Uehara, S.; Hayabuchi, N.; Maeda, N.; Takatuji, T.; Fujika, K.

    2002-01-01

    Microdosimetric spectra were measured in order to gain the microdosimetric parameters of some epithermal neutron fields. Changes in dose mean lineal energy Y D as a function of depth of heavy water showed a trend of softening with heavy water of the beam. The neutron absorbed dose was obtained by using the frequency of mean lineal energy. Results show good agreement with measurements with the activation method using gold foil. This study demonstrated how microdosimetric parameters change in radiation quality as a function of heavy water depth. (author)

  18. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    Science.gov (United States)

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  19. Theory of strong-field attosecond transient absorption

    International Nuclear Information System (INIS)

    Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2016-01-01

    Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser–matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption

  20. Magnetic Axis Drift and Magnetic Spot Formation in Neutron Stars with Toroidal Fields

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Hollerbach, Rainer

    2018-01-01

    We explore magnetic field configurations that lead to the formation of magnetic spots on the surface of neutron stars and the displacement of the magnetic dipole axis. We find that a toroidally dominated magnetic field is essential for the generation of a single spot with a strong magnetic field. Once a spot forms, it survives for several million years, even after the total magnetic field has decayed significantly. We find that the dipole axis is not stationary with respect to the neutron star’s surface and does not in general coincide with the location of the magnetic spot. This is due to non-axisymmetric instabilities of the toroidal field that displace the poloidal dipole axis at rates that may reach 0.°4 per century. A misaligned poloidal dipole axis with the toroidal field leads to more significant displacement of the dipole axis than the fully aligned case. Finally we discuss the evolution of neutron stars with such magnetic fields on the P{--}\\dot{P} diagram and the observational implications. We find that neutron stars spend a very short time before they cross the Death Line of the P{--}\\dot{P} diagram, compared to their characteristic ages. Moreover, the maximum intensity of their surface magnetic field is substantially higher than the dipole component of the field. We argue that SGR 0418+5729 could be an example of this type of behavior, having a weak dipole field, yet hosting a magnetic spot responsible for its magnetar behavior. The evolution on the pulse profile and braking index of the Crab pulsar, which are attributed to an increase of its obliquity, are compatible with the anticipated drift of the magnetic axis.

  1. Determination of two- and three-dimensional radiation fields for neutron radiotherapy planning

    International Nuclear Information System (INIS)

    Boehm, J.K.

    1986-01-01

    The thesis deals with the computerized investigations for fast neutron radiotherapy planning, explaining the calculation and modelling of local dose distributions in patients as a result of mixed neutron and gamma radiation fields. For a computed irradiation program (elaborated for instance by the COMRAD program system), dose distribution functions are required for the simulation of multi-field or moving beam irradiations, the functions being derived semi-empirically by non-linear regression. The necessary data on stationary field doses are derived by measurements or by computed simulation with specific transport programs from the nuclear engineering sector. Transport calculations show the effects of inhomogeneities in the patient's body on the dose distribution. The determined, strong inhomogneity effects (lungs, head) have to be taken into account as precisely as possible in order to achieve optimum irradiation planning. (orig./HP) [de

  2. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-01-01

    This paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: the spontaneous californium-252 fission neutron spectrum standard field; the thermal-neutron induced uranium-235 fission neutron spectrum standard field; the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN-ΣΣ facilities; the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility; the reference neutron field at the center of the 10% enriched uranium metal, cylindrical, fast critical; the (primary) Intermediate-Energy Standard Neutron Field

  3. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-10-01

    The paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: (1) the spontaneous californium-252 fission neutron spectrum standard field; (2) the thermal-neutron induced uranium-235 fission neutron spectrum standard field; (3) the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN--ΣΣ facilities; (4) the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility (CFRMF); (5) the reference neutron field at the center of the 10 percent enriched uranium metal, cylindrical, fast critical; and (6) the (primary) Intermediate-Energy Standard Neutron Field

  4. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    CERN Document Server

    Caresana, M; Esposito, A; Ferrarini, M; Golnik, N; Hohmann, E; Leuschner, A; Luszik-Bhadra, M; Manessi, G; Mayer, S; Ott, K; Röhrich, J; Silari, M; Trompier, F; Volnhals, M; Wielunski, M

    2014-01-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instru...

  5. First-order discrete Faddeev gravity at strongly varying fields

    Science.gov (United States)

    Khatsymovsky, V. M.

    2017-11-01

    We consider the Faddeev formulation of general relativity (GR), which can be characterized by a kind of d-dimensional tetrad (typically d = 10) and a non-Riemannian connection. This theory is invariant w.r.t. the global, but not local, rotations in the d-dimensional space. There can be configurations with a smooth or flat metric, but with the tetrad that changes abruptly at small distances, a kind of “antiferromagnetic” structure. Previously, we discussed a first-order representation for the Faddeev gravity, which uses the orthogonal connection in the d-dimensional space as an independent variable. Using the discrete form of this formulation, we considered the spectrum of (elementary) area. This spectrum turns out to be physically reasonable just on a classical background with large connection like rotations by π, that is, with such an “antiferromagnetic” structure. In the discrete first-order Faddeev gravity, we consider such a structure with periodic cells and large connection and strongly changing tetrad field inside the cell. We show that this system in the continuum limit reduces to a generalization of the Faddeev system. The action is a sum of related actions of the Faddeev type and is still reduced to the GR action.

  6. Nonlinear quantum electrodynamic and electroweak processes in strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Meuren, Sebastian

    2015-06-24

    Various nonlinear electrodynamic and electroweak processes in strong plane-wave laser fields are considered with an emphasis on short-pulse effects. In particular, the momentum distribution of photoproduced electron-positron pairs is calculated numerically and a semiclassical interpretation of its characteristic features is established. By proving the optical theorem, compact double-integral expressions for the total pair-creation probability are obtained and numerically evaluated. The exponential decay of the photon wave function in a plane wave is included by solving the Schwinger-Dyson equations to leading-order in the quasistatic approximation. In this respect, the polarization operator in a plane wave is investigated and its Ward-Takahashi identity verified. A classical analysis indicates that a photoproduced electron-positron pair recollides for certain initial conditions. The contributions of such recollision processes to the polarization operator are identified and calculated both analytically and numerically. Furthermore, the existence of nontrivial electron-spin dynamics induced by quantum fluctuations is verified for ultra-short laser pulses. Finally, the exchange of weak gauge bosons is considered, which is essential for neutrino-photon interactions. In particular, the axial-vector-vector coupling tensor is calculated and the so-called Adler-Bell-Jackiw (ABJ) anomaly investigated.

  7. Solution of the Neutron transport equation in hexagonal geometry using strongly discontinuous nodal schemes

    International Nuclear Information System (INIS)

    Mugica R, C.A.; Valle G, E. del

    2005-01-01

    In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD 5,3 and WD 12,8 (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD 5,3 and WD 12,8 were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD 3 and SD 8 (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)

  8. Neutron resonance spin echo with longitudinal DC fields

    Science.gov (United States)

    Krautloher, Maximilian; Kindervater, Jonas; Keller, Thomas; Häußler, Wolfgang

    2016-12-01

    We report on the design, construction, and performance of a neutron resonance spin echo (NRSE) instrument employing radio frequency (RF) spin flippers combining RF fields with DC fields, the latter oriented parallel (longitudinal) to the neutron propagation direction (longitudinal NRSE (LNRSE)). The advantage of the longitudinal configuration is the inherent homogeneity of the effective magnetic path integrals. In the center of the RF coils, the sign of the spin precession phase is inverted by a π flip of the neutron spins, such that non-uniform spin precession at the boundaries of the RF flippers is canceled. The residual inhomogeneity can be reduced by Fresnel- or Pythagoras-coils as in the case of conventional spin echo instruments (neutron spin echo (NSE)). Due to the good intrinsic homogeneity of the B0 coils, the current densities required for the correction coils are at least a factor of three less than in conventional NSE. As the precision and the current density of the correction coils are the limiting factors for the resolution of both NSE and LNRSE, the latter has the intrinsic potential to surpass the energy resolution of present NSE instruments. Our prototype LNRSE spectrometer described here was implemented at the resonance spin echo for diverse applications (RESEDA) beamline at the MLZ in Garching, Germany. The DC fields are generated by B0 coils, based on resistive split-pair solenoids with an active shielding for low stray fields along the beam path. One pair of RF flippers at a distance of 2 m generates a field integral of ˜0.5 Tm. The LNRSE technique is a future alternative for high-resolution spectroscopy of quasi-elastic excitations. In addition, it also incorporates the MIEZE technique, which allows to achieve spin echo resolution for spin depolarizing samples and sample environments. Here we present the results of numerical optimization of the coil geometry and first data from the prototype instrument.

  9. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1996-01-01

    A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution's concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the 'Poisoned Tube Tank' because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service

  10. Neutron and photon spectrometry in mixed radiation fields

    International Nuclear Information System (INIS)

    Jancar, A.; Kopecky, Z.; Veskrna, M.

    2014-01-01

    Spectrometric measurements of the mixed fields of neutron and photon radiation in the workplaces with the L-R-0 research reactor located in the UJV Rez and with the Van de Graaff accelerator, located in the UTEF laboratories Prague, are presented in this paper. The experimental spectrometric measurements were performed using a newly developed digital measuring system, based on the technology of analog-digital converters with a very high sampling frequency (up to 2 GHz), in connection with organic scintillation detector, type BC-501A, and stilbene detector. The results of experimental measurements show high quality of spectrometry mixed fields of neutron and photon radiation across the wide dynamic range of measured energy. (authors)

  11. Correlated electron-ion collisions in a strong laser field

    International Nuclear Information System (INIS)

    Ristow, T.

    2007-01-01

    Electron-ion-collisions in plasmas in the presence of an ultra-short intensive laser pulse can cause high energy transfers to the electrons. During the collision the oscillation energy of the electron in the laser field is changed into drift energy. In this regime, multi-photon processes, known from the ionization of neutral atoms (Above-Threshold Ionization), and successive, so called correlated collisions, are important. The subject of the thesis is a study of binary Coulomb collisions in strong laser fields. The collisions are treated both in the context of classical Newtonian mechanics and in the quantum-mechanical framework by the Schroedinger equation. In the classical case a simplified instantaneous collision model and a complete dynamical treatment are discussed. Collisions can be treated instantaneously, if the ratio of the impact parameter to the quiver amplitude is small. The energy distributions calculated in this approximation show an elastic peak and a broad plateau due to rescattered electrons. At incident velocities smaller than the quiver velocity, correlated collisions are observed in the electron trajectories of the dynamical model. This effect leads to characteristic momentum distributions of the electrons, that are explicitly calculated and compared with the results of the instantaneous model. In addition, the time-dependence of the collisions is discussed in the framework of a singular perturbation theory. The complete description of the Coulomb scattering requires a quantum-mechanical description. A time-dependent method of wave-packet scattering is used and the corresponding time-dependent three-dimensional Schroedinger equation is solved by an implicit ADImethod on a spatial grid. The momentum and the energy distributions of the scattered electrons are calculated by the Fourier transformation of the wavefunction. A comparison of the scattering from a repulsive and an attractive potential is used to distinguish between simple collisions and

  12. Strongly turbulent ionizing shock wave as the mechanism for the first neutron emission in the dense plasma focus discharge

    International Nuclear Information System (INIS)

    Kobata, T.

    1987-01-01

    It is well known that high temperature thermo-nuclear plasma of several keV is very difficult to exist in the dense and small radius plasma column. So, at any time the high neutron yield from the dense plasma focus has had the tendency to be explained by the beam target mechanism based on the observation of the high energy beam emissions. However the manner of neutron emission is very complex and different among the devices and from shot to shot. Especially it is difficult to explain the first neutron emission by the beam target mechanism which is coincide with the formation of very dense plasma column. There is the ionizing shock wave in front of the plasma sheet and the gas is fully ionized after the shock wave because the Mach-number against the filling gas is very large, M--100. The thickness of the shock wave is very thin, 1≤0.5 mm for the discharge condition that the speed of the plasma sheet V/sub sh/ is 1--2 x 10/sup 7/ cm/sec and the discharge gas pressure is several Torr. The intensity of the magnetic field penetrated into the shock wave from the back side of the plasma sheet at the last converging phase will be the order of 1 kG. The plasma density in the shock wave will be n=4--9.10/sup 17//cm/sup 3/ because the density jump in the very strong shock limit is 6 times of the base gas density. Then the Alfven speed b=B/sub θ//(4πrho)/sup 1/2/ calculated from these density and magnetic field is 2.4--1.6 x 10/sup 6/ cm/sec. Similarly the sonic speed a= (γkT/m)/sup 1/2/ in the plasma is also the same order, i.e. a=2--4x10/sup 6/ cm/sec, for the temperature of 10--50 eV expected from the shock wave heating

  13. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source

    Science.gov (United States)

    Brightman, M.; Harrison, F. A.; Fürst, F.; Middleton, M. J.; Walton, D. J.; Stern, D.; Fabian, A. C.; Heida, M.; Barret, D.; Bachetti, M.

    2018-04-01

    Ultraluminous X-ray sources (ULXs) are bright X-ray sources in nearby galaxies not associated with the central supermassive black hole. Their luminosities imply they are powered by either an extreme accretion rate onto a compact stellar remnant, or an intermediate mass ( 100-105M⊙) black hole1. Recently detected coherent pulsations coming from three bright ULXs2-5 demonstrate that some of these sources are powered by accretion onto a neutron star, implying accretion rates significantly in excess of the Eddington limit, a high degree of geometric beaming, or both. The physical challenges associated with the high implied accretion rates can be mitigated if the neutron star surface field is very high (1014 G)6, since this suppresses the electron scattering cross-section, reducing the radiation pressure that chokes off accretion for high luminosities. Surface magnetic field strengths can be determined through cyclotron resonance scattering features7,8 produced by the transition of charged particles between quantized Landau levels. Here, we present the detection at a significance of 3.8σ of an absorption line at 4.5 keV in the Chandra spectrum of a ULX in M51. This feature is likely to be a cyclotron resonance scattering feature produced by the strong magnetic field of a neutron star. Assuming scattering off electrons, the magnetic field strength is implied to be 1011 G, while protons would imply a magnetic field of B 1015 G.

  14. Determination of TFTR far-field neutron detector efficiencies by local neutron flux spectrum measurement

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.; Ascione, G.; Kugel, H.W.; Roquemore, A.L.; Barcelo, T.W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Kumar, A. [University of California, Los Angeles, California 90024 (United States)

    1997-01-01

    Neutron detectors have often been located on the tokamak fusion test reactor (TFTR) test cell floor 3 m or more from the vacuum vessel for ease of detector access, to reduce radiation damage, minimize count saturation problems, and to avoid high magnetic fields. These detectors include Si surface-barrier diodes, fission chambers, natural diamond detectors, and T{sub 2} production in a moderated {sup 3}He cell. To evaluate the performance of these detectors during deuterium{endash}tritium (D{endash}T) operation, we determined the neutron flux spectrum incident on the principal detector enclosure using nuclide sample sets containing Al, Ti, Fe, Co, Cu, Zn, Ni, Zr, Nb, In, and Au activation foils. Foils were installed and then removed after ample exposure to TFTR D{endash}T neutrons. High efficiency, high purity Ge detectors were used for gamma spectroscopy of the irradiated foils. The incident neutron fluence and spectral distribution were unfolded from the measured results, and used to derive absolute detector efficiencies. {copyright} {ital 1997 American Institute of Physics.}

  15. Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field

    Science.gov (United States)

    Bethe, H. A.

    1972-09-01

    The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.

  16. Determination of nuclear friction in strongly damped reactions from prescission neutron multiplicities

    Science.gov (United States)

    Wilczyński, J.; Siwek-Wilczyńska, K.; Wilschut, H. W.

    1996-07-01

    Nonfusion, fissionlike reactions in collisions of four heavy systems (well below the fusion extra-push energy threshold), for which Hinde and co-workers had measured the prescission neutron multiplicities, have been analyzed in terms of the deterministic dynamic model of Feldmeier coupled to a time-dependent statistical cascade calculation. In order to reproduce the measured prescission multiplicities and the observed (nearly symmetric) mass divisions, the energy dissipation must be dramatically changed with regard to the standard one-body dissipation: In the entrance channel, in the process of forming a composite system, the energy dissipation has to be reduced to at least half of the one-body dissipation strength (kinsmononucleus shape to scission) it must be increased by a factor ranging for the studied reactions from kouts=4 to kouts=12. These results are compared with the temperature dependence of the friction coefficient, recently deduced by Hofman, Back, and Paul from data on the prescission giant dipole resonance emission in fusion-fission reactions. The combined picture of the temperature dependence of the friction coefficient, for both fusion-fission and nonfusion reactions, may indicate the onset of strong two-body dissipation already at a nuclear temperature of about 2 MeV.

  17. Nonradial oscillations of neutron stars and emitted gravitational waves: Computing strongly damped normal modes

    Science.gov (United States)

    Geroyannis, V. S.; Tzelati, E. E.; Karageorgopoulos, V. G.

    In this paper, we compute eigenfrequencies of strongly damped normal modes arising from the coupling of the nonradial oscillations of a neutron star to the oscillations of the space-time metric, so-called “w-modes”, by integrating all involved differential equations in the complex plane. Regarding the interior of the star, we use the so-called “complex-plane strategy”. Specifically, we integrate the differential equations of the nonradial fluid oscillations of a general-relativistic polytropic model, simulating the star, along a straight-line contour placed parallel to the real axis and at small imaginary distance from it, thus avoiding a singularity at the stellar center. Regarding the exterior of the star, we use a method proposed by Andersson, Kokkotas and Schutz, following a slightly different terminating procedure. Specifically, (i) we integrate the equations along a straight-line contour lying parallel to the so-called “anti-Stokes lines”, on which the exponential divergence of the solution is drastically suppressed, so that the outgoing and ingoing waves become comparable; and (ii) we carry out one final integration up to a “common reference point”, thus comparing all results at this point. We verify the reliability and accuracy of the method by comparing our numerical results to corresponding ones appearing in the bibliography.

  18. Photogeneration of neutrino and axions under stimulating effect of strong magnetic field

    CERN Document Server

    Skobelev, V V

    2001-01-01

    The processes of the neutrino and axions photoproduction on the gamma(Ze) -> gamma(nu nu-bar), gamma alpha nuclei, as well as the photon inelastic scattering on the gamma gamma -> gamma(nu nu-bar), gamma alpha photon are considered within the frames of the developed two-dimensional co-variant theory for calculating the matrix of the Feynman diagrams in the strong magnetic field. The contribution of the neutrino radiative photoproduction on the nuclei to the luminosity of the magnetic neutron stars on the early stages of their evolution may compete with the URCA-processes, because the matrix elements in the four-pole diagram depend linearly on the induction of B magnetic field by the B values approx 10 sup 3 -10 sup 4 B sub 0 (B sub 0 = m sub e sup 2 /|e| = 4.41 x 10 sup 1 sup 3 Gs). The evaluation of the axion mass upper boundary, compatible with other independent results, is obtained from the condition of the neutrino luminosity prevailing over the axion one at supposed temperature and magnetic field inducti...

  19. Reference radiation fields - Simulated workplace neutron fields - Part 2: Calibration fundamentals related to the basic quantities

    International Nuclear Information System (INIS)

    2008-01-01

    ISO 8529-1, ISO 8529-2 and ISO 8529-3, deal with the production, characterization and use of neutron fields for the calibration of personal dosimeters and area survey meters. These International Standards describe reference radiations with neutron energy spectra that are well defined and well suited for use in the calibration laboratory. However, the neutron spectra commonly encountered in routine radiation protection situations are, in many cases, quite different from those produced by the sources specified in the International Standards. Since personal neutron dosimeters, and to a lesser extent survey meters, are generally quite energy dependent in their dose equivalent response, it might not be possible to achieve an appropriate calibration for a device that is used in a workplace where the neutron energy spectrum and angular distribution differ significantly from those of the reference radiation used for calibration. ISO 8529-1 describes four radionuclide based neutron reference radiations in detail. This part of ISO 12789 includes the specification of neutron reference radiations that were developed to closely resemble radiation that is encountered in practice

  20. A militarily fielded thermal neutron activation sensor for landmine detection

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, E.T.H. [Bubble Technology Industries, Chalk River (Canada); McFee, J.E. [Defence R and D Canada-Suffield, Medicine Hat (Canada)], E-mail: john.mcfee@drdc-rddc.gc.ca; Ing, H.; Andrews, H.R.; Tennant, D.; Harper, E. [Bubble Technology Industries, Chalk River (Canada); Faust, A.A. [Defence R and D Canada-Suffield, Medicine Hat (Canada)

    2007-08-21

    The Canadian Department of National Defence has developed a teleoperated, vehicle-mounted, multi-sensor system to detect anti-tank landmines on roads and tracks in peacekeeping operations. A key part of the system is a thermal neutron activation (TNA) sensor which is placed above a suspect location to within a 30 cm radius and confirms the presence of explosives via detection of the 10.835 MeV gamma ray associated with thermal neutron capture on {sup 14}N. The TNA uses a 100{mu}g{sup 252}Cf neutron source surrounded by four 7.62cmx7.62cm NaI(Tl) detectors. The system, consisting of the TNA sensor head, including source, detectors and shielding, the high-rate, fast pulse processing electronics and the data processing methodology are described. Results of experiments to characterize detection performance are also described. The experiments have shown that anti-tank mines buried 10 cm or less can be detected in roughly a minute or less, but deeper mines and mines significantly displaced horizontally take considerably longer time. Mines as deep as 30 cm can be detected for long count times (1000 s). Four TNA detectors are now in service with the Canadian Forces as part of the four multi-sensor systems, making it the first militarily fielded TNA sensor and the first militarily fielded confirmation sensor for landmines. The ability to function well in adverse climatic conditions has been demonstrated, both in trials and operations.

  1. Synchrotron radiation in strongly coupled conformal field theories

    OpenAIRE

    Athanasiou, Christiana; Chesler, Paul M.; Liu, Hong; Nickel, Dominik; Rajagopal, Krishna

    2010-01-01

    Using gauge/gravity duality, we compute the energy density and angular distribution of the power radiated by a quark undergoing circular motion in strongly coupled ${\\cal N}=4$ supersymmetric Yang-Mills (SYM) theory. We compare the strong coupling results to those at weak coupling, and find the same angular distribution of radiated power, up to an overall prefactor. In both regimes, the angular distribution is in fact similar to that of synchrotron radiation produced by an electron in circula...

  2. He2+ molecular ion and the He- atomic ion in strong magnetic fields

    Science.gov (United States)

    Vieyra, J. C. Lopez; Turbiner, A. V.

    2017-08-01

    We study the question of existence, i.e., stability with respect to dissociation of the spin-quartet permutation- and reflection-symmetric 4(-3) +g (Sz=-3 /2 ,M =-3 ) state of the (α α e e e ) Coulomb system: the He2 + molecular ion, placed in a magnetic field 0 ≤B ≤10 000 a.u. We assume that the α particles are infinitely massive (Born-Oppenheimer approximation of zero order) and adopt the parallel configuration, when the molecular axis and the magnetic field direction coincide, as the optimal configuration. The study of the stability is performed variationally with a physically adequate trial function. To achieve this goal, we explore several helium-containing compounds in strong magnetic fields, in particular; we study the spin-quartet ground state of the He- ion and the ground (spin-triplet) state of the helium atom, both for a magnetic field in 100 ≤B ≤10 000 a.u. The main result is that the He2 + molecular ion in the state 4(-3) +g is stable towards all possible decay modes for magnetic fields B ≳120 a .u . and with the magnetic field increase the ion becomes more tightly bound and compact with a cigar-type form of electronic cloud. At B =1000 a .u . , the dissociation energy of He2 + into He-+α is ˜702 eV and the dissociation energy for the decay channel to He +α +e is ˜729 eV , and both energies are in the energy window for one of the observed absorption features of the isolated neutron star 1E1207.4-5209.

  3. Characterization of Monoenergetic Low Energy Neutron Fields with the {mu}TPC Detector

    Energy Technology Data Exchange (ETDEWEB)

    Golabek, C.; Lebreton, L.; Petit, M. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Billard, J.; Grignon, C.; Bosson, G.; Bourrion, O.; Guillaudin, O.; Mayet, F.; Richer, J.-P.; Santos, D. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph (France)

    2011-12-13

    The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standards. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 2 keV up to 1 MeV. We present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of such low energy neutron fields.

  4. The cross-section data from neutron activation experiments on niobium in the NPI p-7Li quasi-monoenergetic neutron field

    Directory of Open Access Journals (Sweden)

    Simakov S.P.

    2010-10-01

    Full Text Available The reaction of protons on 7Li target produces the high-energy quasi- monoenergetic neutron spectrum with the tail to lower energies. Proton energies of 19.8, 25.1, 27.6, 30.1, 32.6, 35.0 and 37.4 MeV were used to obtain quasi-monoenergetic neutrons with energies of 18, 21.6, 24.8, 27.6, 30.3, 32.9 and 35.6 MeV, respectively. Nb cross-section data for neutron energies higher than 22.5 MeV do not exist in the literature. Nb is the important material for fusion applications (IFMIF as well. The variable-energy proton beam of NPI cyclotron is utilized for the production of neutron field using thin lithium target. The carbon backing serves as the beam stopper. The system permits to produce neutron flux density about 109  n/cm2/s in peak at 30 MeV neutron energy. The niobium foils of 15 mm in diameter and approx. 0.75 g weight were activated. The nuclear spectroscopy methods with HPGe detector technique were used to obtain the activities of produced isotopes. The large set of neutron energies used in the experiment allows us to make the complex study of the cross-section values. The reactions (n,2n, (n,3n, (n,4n, (n,He3, (n,α and (n,2nα are studied. The cross-sections data of the (n,4n and (n,2nα are obtained for the first time. The cross-sections of (n,2n and (n,α reactions for higher neutron energies are strongly influenced by low energy tail of neutron spectra. This effect is discussed. The results are compared with the EAF-2007 library.

  5. Monte Carlo calculations for intermediate-energy standard neutron field

    International Nuclear Information System (INIS)

    Joneja, O.P.; Subbukutty, K.; Iyengar, S.B.D.; Navalkar, M.P.

    Intermediate-Energy Standard Neutron Field (ISNF) which produces a well characterised spectrum in the energy range of interest for fast reactors including breeders, has been set up at NBS using thin enriched 235 U fission sources. A proposal has been made for setting up a similar facility at BARC using however, easily available natural U instead of enriched U sources, to start with. In order to simulate the neutronics of such a facility Monte Carlo method of calculations has been adopted and developed. The results of these calculations have been compared with those of NBS and it is found that there may be a maximum difference of 10% in spectrum characteristics for the two cases of using thick and thin fission sources. (K.B.)

  6. Ion H2+ can dissociate in a strong magnetic field

    International Nuclear Information System (INIS)

    Turbiner, A.V.; Lopez, J.C.; Flores-Riveros, A.

    2001-01-01

    In framework of a variational method the molecular ion H 2 + in a magnetic field is studied. An optimal form of the vector potential corresponding to a given magnetic field is chosen. It is shown that for any magnetic field strength as well as for any orientation of the molecular axis the system (ppe) possesses a minimum in the potential energy. The stable configuration always corresponds to elongation along the magnetic line. However, for magnetic fields B ≥ 5 x 10 11 G and some orientations the ion H 2 + becomes instable decaying to H-atom + p [ru

  7. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. (author)

  8. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields.

    Science.gov (United States)

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields.

  9. Ionization of atoms in strong low-frequency electromagnetic field

    International Nuclear Information System (INIS)

    Krainov, V. P.

    2010-01-01

    The ionization of atoms in a low-frequency linearly polarized electromagnetic field (the photon energy is much lower than the ionization potential of an atom) is considered under new conditions, in which the Coulomb interaction of an electron with the atomic core in the final state of the continuum cannot be considered in perturbation theory in the interaction of the electron with the electromagnetic field. The field is assumed to be much weaker that the atomic field. In these conditions, the classical motion of the electron in the final state of the continuum becomes chaotic (so-called dynamic chaos). Using the well-known Chirikov method of averaging over chaotic variations of the phase of motion, the problem can be reduced to non-linear diffusion on the energy scale. We calculate the classical electron energy in the final state, which is averaged over fast chaotic oscillations and takes into account both the Coulomb field and the electromagnetic field. This energy is used to calculate the probability of ionization from the ground state of the atom to a lower-lying state in the continuum using the Landau-Dykhne approximation (to exponential accuracy). This ionization probability noticeably depends on the field frequency. Upon a decrease in frequency, a transition to the well-known tunnel ionization limit with a probability independent of the field frequency is considered.

  10. Effective Field Theories and Strong Interactions. Final Technical Report

    International Nuclear Information System (INIS)

    Fleming, Sean

    2011-01-01

    The framework of Effective Field Theories (EFTs) allows us to describe strong interactions in terms of degrees of freedom relevant to the energy regimes of interest, in the most general way consistent with the symmetries of QCD. Observables are expanded systematically in powers of M lo /M hi , where M lo (M hi ) denotes a low-(high-)energy scale. This organizational principle is referred to as 'power counting'. Terms of increasing powers in the expansion parameter are referred to as leading order (LO), next-to-leading order (NLO), etc. Details of the QCD dynamics not included explicitly are encoded in interaction parameters, or 'low-energy constants' (LECs), which can in principle be calculated from an explicit solution of QCD - for example via lattice simulations- but can also be determined directly from experimental data. QCD has an intrinsic scale M QCD ≅ 1 GeV, at which the QCD coupling constant α s (M QCD ) becomes large and the dynamics becomes non-perturbative. As a consequence M QCD sets the scale for the masses of most hadrons, such as the nucleon mass m N ≅ 940 MeV. EFTs can roughly be divided into two categories: those that can be matched onto QCD in perturbation theory, which we call high-energy EFTs, and those that cannot be matched perturbatively, which we call low-energy EFTs. In high-energy EFTs, M QCD typically sets the low-energy scale, and all the dynamics associated with this scale reside in matrix elements of EFT operators. These non-perturbative matrix elements are the LECs and are also referred to as long-distance contributions. Each matrix element is multiplied by a short-distance coefficient, which contains the dynamics from the high scale M hi . Since M hi >> M QCD , α s (M hi ) hi ∼ M Q , the heavy-quark mass, and in addition to M QCD there are low scales associated with the typical relative momentum ∼ M Q v and energy ∼ M Q v 2 of the heavy quarks. Depending on the sizes of M Q and the heavy-quark velocity v these scales can

  11. Chiral spiral induced by a strong magnetic field

    Directory of Open Access Journals (Sweden)

    Abuki Hiroaki

    2016-01-01

    Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  12. Operating a magnetic nozzle helicon thruster with strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazunori, E-mail: kazunori@ecei.tohoku.ac.jp; Komuro, Atsushi; Ando, Akira [Department of Electrical Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2016-03-15

    A pulsed axial magnetic field up to ∼2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ∼9.5 mN for magnetic field above ∼2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ∼50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.

  13. Certain relativistic effects due to strong electromagnetic fields in plasmas

    International Nuclear Information System (INIS)

    Tsintsadze, N.L.

    1974-01-01

    It is shown that the propagation of a strong electromagnetic wave in an electron plasma can lead to a generation of a constant electron current along the direction of propagation and to a large increase in the average electron density. (Auth.)

  14. Inherent resistivity of graphene to strong THz fields

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Mics, Zoltán; Jensen, Søren

    2014-01-01

    The nonlinear THz conductivity of graphene is characterized using nonlinear ultrafast THz spectroscopy. Efficient carrier heating by the THz field reduces carrier scattering, yet, counter-intuitively, simultaneously suppresses the high-frequency conductivity of graphene. © 2014 OSA....

  15. Investigation of the response characteristics of OSL albedo neutron dosimeters in a 241AmBe reference neutron field

    Science.gov (United States)

    Liamsuwan, T.; Wonglee, S.; Channuie, J.; Esoa, J.; Monthonwattana, S.

    2017-06-01

    The objective of this work was to systematically investigate the response characteristics of optically stimulated luminescence Albedo neutron (OSLN) dosimeters to ensure reliable personal dosimetry service provided by Thailand Institute of Nuclear Technology (TINT). Several batches of InLight® OSLN dosimeters were irradiated in a reference neutron field generated by the in-house 241AmBe neutron irradiator. The OSL signals were typically measured 24 hours after irradiation using the InLight® Auto 200 Reader. Based on known values of delivered neutron dose equivalent, the reading correction factor to be used by the reader was evaluated. Subsequently, batch homogeneity, dose linearity, lower limit of detection and fading of the OSLN dosimeters were examined. Batch homogeneity was evaluated to be 0.12 ± 0.05. The neutron dose response exhibited a linear relationship (R2=0.9974) within the detectable neutron dose equivalent range under test (0.4-3 mSv). For this neutron field, the lower limit of detection was between 0.2 and 0.4 mSv. Over different post-irradiation storage times of up to 180 days, the readings fluctuated within ±5%. Personal dosimetry based on the investigated OSLN dosimeter is considered to be reliable under similar neutron exposure conditions, i.e. similar neutron energy spectra and dose equivalent values.

  16. Activation experiments at TFTR in deuterium-tritium neutron field

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [California Univ., Los Angeles, CA (United States). School of Engineering and Applied Sciences; Kugel, H.W.; Ascione, G. [Princeton Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, NJ 08543 (United States)

    1998-09-01

    Samples of materials, of relevance to ITER and DEMO reactors, have been irradiated at TFTR in a mixed D-T and D-D neutron field over the past 3 years. The samples have been placed at various locations close to, and around, the TFTR vacuum vessel to obtain the impact of the variation of neutron energy spectrum on induced radioactivity. Intermediate measurements of decay gamma-ray activity of a number of radiated samples have contributed to an experimental database of saturation activities for aluminum, silicon, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, niobium, molybdenum, indium, silver, europium, terbium, hafnium, tungsten, rhenium, gold, 316 stainless steel, a vanadium-chromium-titanium alloy, a manganese-copper alloy, inconel 625, and inconel 718. New activity data for samples irradiated in TFTR irradiation-end 3 (external) are presented. Data for V-9Cr-5Ti alloy, inconel 718 alloy, and inconel 625 alloy are being reported for the first time. These measurements offer an invaluable opportunity for bench-marking of three-dimensional calculations of fusion neutron transport and activation for application to the design and regulatory licensing of large complex fusion reactors, such as ITER. (orig.) 7 refs.

  17. Channel-closing effects in strong-field ionization by a bicircular field

    Science.gov (United States)

    Milošević, D. B.; Becker, W.

    2018-03-01

    Channel-closing effects, such as threshold anomalies and resonantlike intensity-dependent enhancements in strong-field ionization by a bicircular laser field are analyzed. A bicircular field consists of two coplanar corotating or counter-rotating circularly polarized fields having different frequencies. For the total detachment rate of a negative ion by a bicircular field we observe threshold anomalies and explain them using the Wigner threshold law and energy and angular momentum conservation. For the corotating bicircular case, these effects are negligible, while for the counter-rotating case they are pronounced and their position depends on the magnetic quantum number of the initial state. For high-order above-threshold ionization of rare-gas atoms by a counter-rotating bicircular laser field we observe very pronounced intensity-dependent enhancements. We find all four types of threshold anomalies known from collision theory. Contrary to the case of linear polarization, channel-closing effects for a bicircular field are visible also in the cutoff region of the electron energy spectrum, which is explained using quantum-orbit theory.

  18. Influence of neutron irradiation on magnetic field sensors

    CERN Document Server

    Karpukhin, A V; Makoveev, V K; Zamiatin, N I; Bolshakova, I A; Bolshakov, M M; Matkovski, A O; Moskovets, T A

    2000-01-01

    Parameters of modern experimental set-ups depend on the precision of the magnetic field monitoring under real experimental conditions. As a rule, the conditions of modern experiments (ATLAS, CMS, ALICE, LHC- B) have their special requirements to radiation hardness of the magnetometric apparatus. Specialized magnetic-calibration stands have been manufactured to investigate magnetic field sensors for radiation hardness at the Joint Institute for Nuclear Research (JINR) and at the State University "Lviv Politechnic" (SULP). Characteristics of different magnetic field sensors were studied before and after exposure. The sensors were irradiated at the IBR-2 reactor, JINR, by fast neutrons with the mean energy =1.35 MeV up to the fluence of 10/sup 19/ n/m/sup 2/. (3 refs).

  19. On tidal phenomena in a strong gravitational field

    International Nuclear Information System (INIS)

    Mashoon, B.

    1975-01-01

    A simple framework based on the concept of quadrupole tidal potential is presented for the calculation of tidal deformation of an extended test body in a gravitational field. This method is used to study the behavior of an initially faraway nonrotating spherical body that moves close to a Schwarzschild or an extreme Kerr black hole. In general, an extended body moving in an external gravitational field emits gravitational radiation due to its center of mass motion, internal tidal deformation, and the coupling between the internal and center of mass motions. Estimates are given of the amount of tidal radiation emitted by the body in the gravitational fields considered. The results reported in this paper are expected to be of importance in the dynamical evolution of a dense stellar system with a massive black hole in its center

  20. Quantum processes in a strong electromagnetic field producing pairs. 3

    International Nuclear Information System (INIS)

    Gitman, D.M.; Gavrilov, S.P.

    1977-01-01

    The Furry picture in quantum electrodynamics with an external field producing real pairs has been generalized. For the required generalization to be achieved all operators of a spinor field are expressed through functions of production and annihilation operators and formulated are the rules for reduction to a generalized normal form, i.e., to such a form in which all the production operators in each term are on the left from all the annihilation operators. The diagram technique for matrix elements of random processes has been considered

  1. Multistage ionization of atoms in a very strong electromagnetic field

    International Nuclear Information System (INIS)

    Krajnov, V.P.; Manykin, Eh.A.

    1980-01-01

    Considered is a problem of multiple ionization of middle and heavy atoms as a function of the intensity of an electromagnetic field. The atom is considered in the Thomas -Fermi approximation. Presented are estimates of ionization degree for lead, tungsten and tantalum

  2. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes

    Directory of Open Access Journals (Sweden)

    Jennifer Tang

    2015-09-01

    Full Text Available NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains’ electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  3. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes.

    Science.gov (United States)

    Tang, Jennifer; Alsop, Richard J; Schmalzl, Karin; Epand, Richard M; Rheinstädter, Maikel C

    2015-09-29

    NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains' electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  4. Cigar-shaped quarkonia under strong magnetic field

    Science.gov (United States)

    Suzuki, Kei; Yoshida, Tetsuya

    2016-03-01

    Heavy quarkonia in a homogeneous magnetic field are analyzed by using a potential model with constituent quarks. To obtain anisotropic wave functions and corresponding eigenvalues, the cylindrical Gaussian expansion method is applied, where the anisotropic wave functions are expanded by a Gaussian basis in the cylindrical coordinates. Deformation of the wave functions and the mass shifts of the S-wave heavy quarkonia (ηc, J /ψ , ηc(2 S ), ψ (2 S ) and bottomonia) are examined for the wide range of external magnetic field. The spatial structure of the wave functions changes drastically as adjacent energy levels cross each other. Possible observables in heavy-ion collision experiments and future lattice QCD simulations are also discussed.

  5. The realization of strong, stray static magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel

    2012-01-01

    Roč. 9, č. 1 (2012), s. 71-77 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : magnetic fields * magnetic circuits * permanent NdFeB magnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/materialy/acta_content/2012_01/7_Zezulka.pdf

  6. Strong magnetic field induces superconductivity in a Weyl semimetal

    Science.gov (United States)

    Rosenstein, Baruch; Shapiro, B. Ya.; Li, Dingping; Shapiro, I.

    2017-12-01

    Microscopic theory of the normal-to-superconductor coexistence line of a multiband Weyl superconductor subjected to magnetic field is constructed. It is shown that the Weyl semimetal that is nonsuperconducting or having a small critical temperature Tc at zero field might become a superconductor at higher temperatures when the magnetic field is tuned to a series of quantized values Hn. The pairing occurs on Landau levels. It is argued that the phenomenon is detectable much easier in Weyl semimetals than in parabolic band metals since the quantum limit already has been approached in several Weyl materials. The effect of Zeeman coupling leading to splitting of the reentrant superconducting regions on the magnetic phase diagram is considered. An experimental signature of the superconductivity on Landau levels is the reduction of magnetoresistivity. This has been observed already in Cd3As2 and several other compounds. The novel kind of quantum oscillations of magnetoresistance detected in ZrTe5 is discussed along these lines.

  7. Electrohydrodynamics of drops in strong electric fields: Simulations and theory

    Science.gov (United States)

    Saintillan, David; Das, Debasish

    2016-11-01

    Weakly conducting dielectric liquid drops suspended in another dielectric liquid exhibit a wide range of dynamical behaviors when subject to an applied uniform electric field contingent on field strength and material properties. These phenomena are best described by the much celebrated Maylor-Taylor leaky dielectric model that hypothesizes charge accumulation on the drop-fluid interface and prescribes a balance between charge relaxation, the jump in Ohmic currents and charge convection by the interfacial fluid flow. Most previous numerical simulations based on this model have either neglected interfacial charge convection or restricted themselves to axisymmetric drops. In this work, we develop a three-dimensional boundary element method for the complete leaky dielectric model to systematically study the deformation and dynamics of liquid drops in electric fields. The inclusion of charge convection in our simulation permits us to investigate drops in the Quincke regime, in which experiments have demonstrated symmetry-breaking bifurcations leading to steady electrorotation. Our simulation results show excellent agreement with existing experimental data and small deformation theories. ACSPRF Grant 53240-ND9.

  8. Prospects for the use of the pulsed fields in neutron research of condensed matter

    CERN Document Server

    Nietz, V

    2003-01-01

    The peculiarities of the pulsed magnetic field usage in the research of magnetic properties of crystal substances with different pulsed and steady-state sources of neutrons are considered. The comparative characteristics of existing and some projected spectrometers intended for neutron researches are evaluated. The comparison of the efficiency of experiments on the most intensive neutron sources is discussed.

  9. Neutron Field Characterization of Irradiation Locations Applied to the Slovenian TRIGA Reactor

    International Nuclear Information System (INIS)

    Barbot, Loic; Domergue, Christophe; Breaud, Stephane; Destouches, Christophe; Villard, Jean-Francois; Snoj, Luka; Stancar, Ziga; Radulovic, Vladimir; Trkov, Andrej

    2013-06-01

    This work deals with several neutron flux measurement instruments and particle transport calculations combined in a method to assess the neutron field in experimental locations in nuclear reactor core or reflector. First test of this method in the TRIGA Mark II of Slovenia led to the assessment of three energy groups neutron fluxes in central irradiation locations within reactor core. (authors)

  10. The Application of Experimental Microdosimetry to Mixed-Field Neutron-Gamma Dosimetry

    Science.gov (United States)

    Al-Bayati, Saad Najm

    Absorbed dose distributions in lineal energy for neutrons and gamma rays were measured by using both a tissue-equivalent walled counter (TEPC) and a graphite-walled low pressure proportional counter (GPC) in the Am-Be neutron source facility at UOIT. A series of measurements were performed with the counters filled with propane-based TE gas (55.1% C3H8, 39.5% CO2 and 5.4% N2) at operating gas pressures corresponding to tissue spheres 2.0, 4.0 and 8.0 µm in diameter. The results of these measurements indicated satisfactory performance of counters to measure microdosimetric spectra extending down to event-sizes that cover the gamma component of a mixed field. The spectra and the related mean values y F and yD are compared with other similar work but with monoenergetic neutrons of different energy range, the agreement between them is good. An assessment of the performance of different size TEPC has been done. An excellent agreement between their event size spectra was found and the proton edge appears at the same position on the lineal energy scale and differences in microdosimetric parameters y F and yD is not exceeding 3%, which is in the region of counting statistics. In Am-Be neutron field, the efficiency of the TEPCs was measured to have an average value of 250 counts per µSv or equivalently about 4.17 counts per minutes per µSv/hr. This efficiency is reasonable for dose equivalent measurements but needs a long integration period. The measurements showed that the dose equivalent which depends on the measurement of energy deposition by the secondary charged particles was originated mainly from elastic collisions of the incident neutrons with hydrogen atoms. Moreover the number of events in the sensitive gas is dominated by proton recoils. A non-negligible fraction of the dose equivalent resulted from gamma interactions, alpha and recoil nuclei. The energy deposition patterns in these micro-scale targets are strongly dependent on radiation quality, so differences

  11. A study of the cosmic-ray neutron field near interfaces

    CERN Document Server

    Sheu, R J; Jiang, S H

    2002-01-01

    This study investigated the characteristics of the cosmic-ray neutron field near air/ground and air/water interfaces with an emphasis on the angular distribution. Two sets of high-efficiency neutron detecting systems were used. The first one, called the Bonner Cylinders, was used for measurements of the energy information. The other one, referred to as the eight-channel neutron detector (8CND), was used to characterize the angular information of the neutron field. The measured results were used to normalize and confirm one-dimensional transport calculations for cosmic-ray neutrons below 20 MeV in the air/ground and air/water media. Annual sea level cosmic-ray neutron doses were then determined based on the obtained characteristics of low-energy cosmic-ray neutrons near interfaces and estimated contribution from high-energy neutrons.

  12. Spin and Angular Momentum in Strong-Field Ionization

    Science.gov (United States)

    Trabert, D.; Hartung, A.; Eckart, S.; Trinter, F.; Kalinin, A.; Schöffler, M.; Schmidt, L. Ph. H.; Jahnke, T.; Kunitski, M.; Dörner, R.

    2018-01-01

    The spin polarization of electrons from multiphoton ionization of Xe by 395 nm circularly polarized laser pulses at 6 ×1013 W /cm2 has been measured. At this photon energy of 3.14 eV the above-threshold ionization peaks connected to Xe+ ions in the ground state (J =3 /2 , ionization potential Ip=12.1 eV ) and the first excited state (J =1 /2 , Ip=13.4 eV ) are clearly separated in the electron energy distribution. These two combs of above-threshold ionization peaks show opposite spin polarizations. The magnitude of the spin polarization is a factor of 2 higher for the J =1 /2 than for the J =3 /2 final ionic state. In turn, the data show that the ionization probability is strongly dependent on the sign of the magnetic quantum number.

  13. Study of the interaction of atoms with strong laser fields

    International Nuclear Information System (INIS)

    Edwards, M.

    1984-01-01

    Three aspects of the interactions of atoms with high intensity laser fields were treated. All three were motivated by experiment. The first investigation was prompted by a recent experiment (Kruit et al. 1983) involving multiphoton ionization of Xe. In this experiment it was found that the photoelectron energy spectrum contained peaks that corresponded to the absorption of more than the minimum number of photons required to ionize the atom. A model approximation here showed good qualitative agreement with experiment. An experiment (Grove et al. 1977) designed to test a theoretical calculation of the dynamical Stark effect stimulated the second part of this thesis, namely: a study of how an adiabatically and near-adiabatically changing field intensity affects the resonance fluorescence spectrum of a two-level atom. It was found that there is an asymmetry in the spectrum for off-resonance excitation produced because the field turn-on repopulates the dressed state that is depopulated by spontaneous emission. The third part of this thesis was based on an experiment (Granneman and Van der Wiel 1976) that attempted to verify a perturbation calculation of the two-photon ionization cross section of Cs. A discrepancy of four orders of magnitude near a minimum in the cross section was found between theory and experiment. To explain this discrepancy it was suggested (Armstrong and Beers 1977) that the effective order of nonlinearity (k) for this process varied significantly around the minimum. This study involves a perturbation calculation of k. It was found that k varies rapidly around the minimum, and that this variation should be experimentally observable for laser intensities of the order of tens of GW cm -2

  14. Dynamics of Molecular Gyroscopes Created by Strong Optical Fields

    Science.gov (United States)

    Mullin, Amy

    2015-03-01

    We explore the behavior of molecules in ultra-high angular momentum states prepared in an optical centrifuge and detected with transient IR absorption spectroscopy. In the optical centrifuge, the polarizable electron cloud of molecules interacts with the electric field of linearly polarized light that angularly accelerates over the time of the optical pulse. The centrifuge pulse is generated by combining oppositely chirped pulsed of light. Trapped molecules are driven into high angular momentum states that are spatially oriented with the optical field and have energies far above the average at 300 K. High resolution transient IR spectroscopy reveals the dynamics of collisional energy transfer for the super-rotors. Polarization-dependent studies show that the initial angular momentum orientation persists for many collisions, indicating that molecules in an optical centrifuge behave as quantum gyroscopes. Time-dependent population and energy profiles for individual J- states give information about the dynamics of super-rotors. Research support provided by NSF and the University of Maryland.

  15. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2013-01-01

    Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. This book deals with the basics of femtosecond physics and goes up to the latest applications of new phenomena. The book presents an introduction to laser physics with mode-locking and pulsed laser operation. The solution of the time-dependent Schrödinger equation is discussed both analytically and numerically. The basis for the non-perturbative treatment of laser-matter interaction in the book is the numerical solution of the time-dependent Schrödinger equation. The light field is treated classically, and different possible gauges are discussed. Physical phenonema, ranging from Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high harmonics, the ionization and dissociation of molecules as well as the control of chemical reactions are pre...

  16. Applying neutron transmission physics and 3D statistical full-field model to understand 2D Bragg-edge imaging

    Science.gov (United States)

    Xie, Q.; Song, G.; Gorti, S.; Stoica, A. D.; Radhakrishnan, B.; Bilheux, J. C.; Kirka, M.; Dehoff, R.; Bilheux, H. Z.; An, K.

    2018-02-01

    Bragg-edge imaging, which is also known as neutron radiography, has recently emerged as a novel crystalline characterization technique. Modelling of this novel technique by incorporating various features of the underlying microstructure (including the crystallographic texture, the morphological texture, and the grain size) of the material remains a subject of considerable research and development. In this paper, Inconel 718 samples made by additive manufacturing were investigated by neutron diffraction and neutron radiography techniques. The specimen features strong morphological and crystallographic textures and a highly heterogeneous microstructure. A 3D statistical full-field model is introduced by taking details of the microstructure into account to understand the experimental neutron radiography results. The Bragg-edge imaging and the total cross section were calculated based on the neutron transmission physics. A good match was obtained between the model predictions and experimental results at different incident beam angles with respect to the sample build direction. The current theoretical approach has the ability to incorporate 3D spatially resolved microstructural heterogeneity information and shows promise in understanding the 2D neutron radiography of bulk samples. With further development to incorporate the heterogeneity in lattice strain in the model, it can be used as a powerful tool in the future to better understand the neutron radiography data.

  17. Annular billiard dynamics in a circularly polarized strong laser field

    Science.gov (United States)

    Kamor, A.; Mauger, F.; Chandre, C.; Uzer, T.

    2012-01-01

    We analyze the dynamics of a valence electron of the buckminsterfullerene molecule (C60) subjected to a circularly polarized laser field by modeling it with the motion of a classical particle in an annular billiard. We show that the phase space of the billiard model gives rise to three distinct trajectories: “whispering gallery orbits,” which hit only the outer billiard wall; “daisy orbits,” which hit both billiard walls (while rotating solely clockwise or counterclockwise for all time); and orbits that only visit the downfield part of the billiard, as measured relative to the laser term. These trajectories, in general, maintain their distinct features, even as the intensity is increased from 1010 to 1014Wcm-2. We attribute this robust separation of phase space to the existence of twistless tori.

  18. Hydrogen atom in a strong uniform electric field

    International Nuclear Information System (INIS)

    Damburg, R.Ya.

    1989-01-01

    It has been shown that notwithstanding the separability of the Schroedinger equation for the Lo-Surdo s tark (LS-S) problem for hydrogen, the quasistationary states cannot be always characterized by parabolic quantum numbers of n 1 , n 2 ,m. It is a reason why any numerical procedure of the calculation of the LS-S parameters E 0 and Γ which ignores this circumstance can appear to be invalid for large values of n 1 and F and small ones of n 2 and m. Experimental data on the photoionization of atoms in the presence of an electric field in the vicinity of the Rydberg series limit E=0 are in an accord with theoretical predictions. 32 refs.; 6 figs

  19. Radiation effects on relativistic electrons in strong external fields

    International Nuclear Information System (INIS)

    Iqbal, Khalid

    2013-01-01

    The effects of radiation of high energy electron beams are a major issue in almost all types of charged particle accelerators. The objective of this thesis is both the analytical and numerical study of radiation effects. Due to its many applications the study of the self force has become a very active and productive field of research. The main part of this thesis is devoted to the study of radiation effects in laser-based plasma accelerators. Analytical models predict the existence of radiation effects. The investigation of radiation reaction show that in laser-based plasma accelerators, the self force effects lower the energy gain and emittance for moderate energies electron beams and increase the relative energy spread. However, for relatively high energy electron beams, the self radiation and retardation (radiation effects of one electron on the other electron of the system) effects increase the transverse emittance of the beam. The energy gain decreases to even lower value and relative energy spread increases to even higher value due to high radiation losses. The second part of this thesis investigates with radiation reaction in focused laser beams. Radiation effects are very weak even for high energy electrons. The radiation-free acceleration and the simple practical setup make direct acceleration in a focused laser beam very attractive. The results presented in this thesis can be helpful for the optimization of future electron acceleration experiments, in particular in the case of laser-plasma accelerators.

  20. Strong-field physics with singular light beams

    Science.gov (United States)

    Zürch, M.; Kern, C.; Hansinger, P.; Dreischuh, A.; Spielmann, Ch.

    2012-10-01

    Light beams carrying a point singularity with a screw-type phase distribution are associated with an optical vortex. The corresponding momentum flow leads to an orbital angular momentum of the photons. The study of optical vortices has led to applications such as particle micro-manipulation, imaging, interferometry, quantum information and high-resolution microscopy and lithography. Recent analyses showed that transitions forbidden by selection rules seem to be allowed when using optical vortex beams. To exploit these intriguing new applications, it is often necessary to shorten the wavelength by nonlinear frequency conversion. However, during the conversion the optical vortices tend to break up. Here we show that optical vortices can be generated in the extreme ultraviolet (XUV) region using high-harmonic generation. The singularity impressed on the fundamental beam survives the highly nonlinear process. Vortices in the XUV region have the same phase distribution as the driving field, which is in contradiction to previous findings, where multiplication of the momentum by the harmonic order is expected. This approach opens the way for several applications based on vortex beams in the XUV region.

  1. Test of Horizontal Magnetic Field Measurements in the Presence of a Strong Vertical Field

    CERN Document Server

    Vasserman, Isaac

    2004-01-01

    Trajectory straightness is an important parameter defining the performance of free-electron laser (FEL) devices. The first test of horizontal field measurements using Hall probes was done in 1998 as a preparation to the tuning of undulators for the FEL project at the Advanced Photon Source. This work continues the 1998 work, now associated with Linac Coherent Light Source (LCLS) project. Tolerances for the LCLS FEL undulator specify 2 um trajectory excursion in both (horizontal and vertical) planes for a particle energy of 14.1 GeV, which means that measurements of a small horizontal field in presence of strong (up to 1.5 T) vertical field are required. Hall probe measurements under such conditions are complicated due to a planar Hall probe effect. Previous tests done in 1998 showed that a 2- axis Sentron probe is a possible choice. The high sensitivity of horizontal field integrals to the vertical position of the sensor was observed. It was shown that this probe could be used for fast measurements and tuning...

  2. High Field Pulsed Magnets for Neutron Scattering at the Spallation Neutron Source

    Science.gov (United States)

    Granroth, G. E.; Lee, J.; Fogh, E.; Christensen, N. B.; Toft-Petersen, R.; Nojiri, H.

    2015-03-01

    A High Field Pulsed Magnet (HFPM) setup, is in use at the Spallation Nuetron Source(SNS), Oak Ridge National Laboratory. With this device, we recently measured the high field magnetic spin structure of LiNiPO4. The results of this study will be highlighted as an example of possible measurements that can be performed with this device. To further extend the HFPM capabilities at SNS, we have learned to design and wind these coils in house. This contribution will summarize the magnet coil design optimization procedure. Specifically by varying the geometry of the multi-layer coil, we arrive at a design that balances the maximum field strength, neutron scattering angle, and the field homogeneity for a specific set of parameters. We will show that a 6.3kJ capacitor bank, can provide a magnetic field as high as 30T for a maximum scattering angle around 40° with homogeneity of +/- 4 % in a 2mm diameter spherical volume. We will also compare the calculations to measurements from a recently wound test coil. This work was supported in part by the Lab Directors' Research and Development Fund of ORNL.

  3. Determination of nuclear friction in strongly damped reactions from prescission neutron multiplicities

    NARCIS (Netherlands)

    Wilczynski, J; SiwekWilczynska, K; Wilschut, HW

    Nonfusion, fissionlike reactions in collisions of four heavy systems (well below the fusion extra-push energy threshold), Mr which Hinde and co-workers had measured the prescission neutron multiplicities, have been analyzed in terms of the deterministic dynamic model of Feldmeier coupled to a

  4. High pressure sample container for thermal neutron spectroscopy and diffraction on strongly scattering fluids

    International Nuclear Information System (INIS)

    Verkerk, P.; Pruisken, A.M.M.

    1979-01-01

    A description is presented of the construction and performance of a container for thermal neutron scattering on a fluid sample with about 1.5 cm -1 macroscopic cross section (neglecting absorption). The maximum pressure is about 900 bar. The container is made of 5052 aluminium capillary with inner diameter 0.75 mm and wall thickness 0.25 mm; it covers a neutron beam with a cross section of 9 X 2.5 cm 2 . The container has been successfully used in neutron diffraction and time-of-flight experiments on argon-36 at 120 K and several pressures up to 850 bar. It is shown that during these measurements the temperature gradient over the sample as well as the error in the absolute temperature were both less than 0.05 K. Subtraction of the Bragg peaks due to container scattering in diffraction experiments may be dfficult, but seems feasible because of the small amount of aluminium in the neutron beam. Correction for container scattering and multiple scattering in time-of-flight experiments may be difficult only in the case of coherently scattering samples and small scattering angles. (Auth.)

  5. <strong/>Costs and benefits of cold acclimation in field released Drosophila – Associating laboratory and field results<strong>. strong>

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Sørensen, Jesper Givskov; A. Hoffmann, Ary

    2008-01-01

    Physiological and evolutionary responses to thermal variation are often investigated under controlled laboratory conditions. However, this approach may fail to account for the complexity of natural environments. Here we investigated the costs and benefits of developmental or adult cold acclimation...... that the ability to locate a field resource has a genetic basis with a high heritability since only round of selection on parental flies (F0) revealed clear differences in the ability of offspring (F1 and F2) to locate field resources at cold temperatures. Again we found a poor association between field...... and laboratory performance emphasising the importance of testing thermal resistance under relevant/natural conditions....

  6. Astronomers Use X-Rays To Probe Gravitational Field Of A Neutron Star

    Science.gov (United States)

    2002-06-01

    With NASA's Chandra X-ray Observatory, astronomers have detected features that may be the first direct evidence of the effect of gravity on radiation from a neutron star. This finding, if confirmed, could enable scientists to measure the gravitational field of neutron stars and determine whether they contain exotic forms of matter not seen on Earth. A team led by George Pavlov of Penn State University in University Park observed 1E 1207.4-5209, a neutron star in the center of a supernova remnant about 7,000 light years from Earth. The results were presented on June 6, 2002, at the American Astronomical Society in Albuquerque, NM. Pavlov's group found two dips, or absorption features, in the spectrum of X-rays from the star. If these dips are due to the absorption of X-rays near the star by helium ions in a strong magnetic field, they indicate that the gravitational field reduces the energies of X-rays escaping from near the surface of a neutron star. "This interpretation is consistent with the data," said Pavlov, "but the features may be a blend of many other features. More precise measurements, preferably with Chandra's grating spectrometer, are needed." "These absorption features may be the first evidence of the effect of gravity on radiation near the surface of an isolated neutron star," said Pavlov. "This is particularly important because it would allow us to set limits on the type of matter that comprises this star." Neutron stars are formed when a massive star runs out of fuel and its core collapses. A supernova explosion occurs and the collapsed core is compressed to a hot object about 12 miles in diameter, with a thin atmosphere of hydrogen and possibly heavier ions in a gravitational field 100 billion times as strong as Earth's. These objects, which have a density of more than 1 billion tons per teaspoonful, are called neutron stars because they have been thought to be composed mostly of neutrons. Although neutron stars have been studied extensively for

  7. Magnetic field evolution of neutron stars - I. Basic formalism, numerical techniques and first results

    Science.gov (United States)

    Bransgrove, Ashley; Levin, Yuri; Beloborodov, Andrei

    2018-01-01

    In this work we explore the evolution of magnetic fields inside strongly magnetized neutron stars in axisymmetry. We model numerically the coupled field evolution in the core and the crust. Our code models the Hall drift and Ohmic effects in the crust, the back-reaction on the field from magnetically induced elastic deformation of the crust, the magnetic twist exchange between the crust and the core, and the drift of superconducting flux tubes inside the core. The correct hydromagnetic equilibrium is enforced in the core. We find that (i) The Hall attractor found by Gourgouliatos and Cumming in the crust exists also for configurations when the B-field penetrates into the core. However, the evolution time-scale for the core-penetrating fields is dramatically different from that of the fields confined to the crust. (ii) The combination of Jones' flux tube drift and Ohmic dissipation in the crust can deplete the pulsar magnetic fields on the time-scale of 150 Myr if the crust is hot (T ∼ 2 × 108 K), but acts on much slower time-scales for cold neutron stars, such as recycled pulsars (∼1.8 Gyr, depending on impurity levels). (iii) The outward motion of superfluid vortices during the rapid spin-down of a young highly magnetized pulsar can result in a partial expulsion of flux from the core when B ≲ 1013 G. However for B ≳ 2 × 1013 G, the combination of a stronger magnetic field and a longer spin period implies that the core field cannot be expelled.

  8. Thermoluminescent (Tl) dosimetry of slow-neutron fields at radiotherapy dose level

    International Nuclear Information System (INIS)

    Gambarini, G.

    2003-01-01

    The dosimetry for radiotherapy involving neutrons is very complicated, owing to the complexity of secondary radiation components, whose contributions to the total absorbed dose have to be discriminated, owing to the different radiobiological effects. In order to separate thermal neutrons and photons, LiF dosimeters are mostly utilized. containing different percentage of Li, like as TLD-700, TLD-100 and TLD-600, but many problems arise. In the response of TLD-700 exposed to neutron-gamma mixed fields with high neutron flux, the contribution of thermal neutrons to the Tl emission is high. Moreover. TLD-100 and TLD-600 may undergo radiation damage, and great care has to be taken in order to obtain reliable results. Other TLDs showing lower sensitivity to neutrons are proposed and experimented for such high-flux neutron fields. The faced problems and various proposed solutions are here described. (Author)

  9. Calibration approaches of cosmic-ray neutron sensing for soil moisture measurement in cropped fields

    OpenAIRE

    Rivera Villarreyes, C. A.; Baroni, G.; Oswald, S. E.

    2013-01-01

    Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose-zone hydrology and catchment hydrology. This study evaluates the applicability of the cosmic-ray neutron sensing for soil moisture in cropped fields. Measurements of cosmic-ray neutrons (fast neutrons) were performed at a lowland farmland in Bornim (Brandenburg, Germany) cropped with sunflower and winter rye. Three field calibration approaches and four ...

  10. Strong neutron sources - How to cope with weapon material production capabilities of fusion and spallation neutron sources?

    International Nuclear Information System (INIS)

    Englert, M.; Franceschini, G.; Liebert, W.

    2013-01-01

    In this article we investigate the potential and relevance for weapon material production in future fusion power plants and spallation neutron sources (SNS) and sketch what should be done to strengthen these technologies against a non-peaceful use. It is shown that future commercial fusion reactors may have military implications: first, they provide an easy source of tritium for weapons, an element that does not fall under safeguards and for which diversion from a plant could probably not be detected even if some tritium accountancy is implemented. Secondly, large fusion reactors - even if not designed for fissile material breeding - could easily produce several hundred kg Pu per year with high weapon quality and very low source material requirements. If fusion-only reactors will prevail over fission-fusion hybrids in the commercialization phase of fusion technology, the safeguard challenge will be more of a legal than of a technical nature. In pure fusion reactors (and in most SNS) there should be no nuclear material present at any time by design. The presence of undeclared nuclear material would indicate a military use of the plant. This fact offers a clear-cut detection criterion for a covert use of a declared facility. Another important point is that tritium does not fall under the definition of 'nuclear material', so a pure fusion reactor or a SNS that do not use nuclear materials are not directly falling under any international non-proliferation treaty requirements. Non-proliferation treaties have to be amended to take into account that fact. (A.C.)

  11. Protein dynamics by neutron scattering: The protein dynamical transition and the fragile-to-strong dynamical crossover in hydrated lysozyme

    International Nuclear Information System (INIS)

    Magazù, Salvatore; Migliardo, Federica; Benedetto, Antonio; Vertessy, Beata

    2013-01-01

    Highlights: • The role played by the instrumental energy resolution in neutron scattering is presented. • The effect of natural bioprotectants on protein dynamics is shown. • A connection between the protein dynamical transition and the fragile-to-strong dynamical crossover is formulated. - Abstract: In this work Elastic Incoherent Neutron Scattering (EINS) results on lysozyme water mixtures in absence and in presence of bioprotectant systems are presented. The EINS data have been collected by using the IN13 and the IN10 spectrometers at the Institut Laue-Langevin (ILL, Grenoble, France) allowing to evaluate the temperature behaviour of the mean square displacement and of the relaxation time for the investigated systems. The obtained experimental findings together with theoretical calculations allow to put into evidence the role played by the spectrometer resolution and to clarify the connexion between the registered protein dynamical transition, the system relaxation time, and the instrumental energy resolution

  12. Variation of the critical slab thickness with the degree of strongly anisotropic scattering in one-speed neutron transport theory

    International Nuclear Information System (INIS)

    Yildiz, C.

    1998-01-01

    The critical slab problem is studied in one-speed neutron transport theory using a linearly anisotropic kernel which combines forward and backward scattering. It is shown that, the recently observed non-monotonic variation of the thickness also exists in this strongly anisotropic case. In addition, the influence of the linear anisotropy on the critical thickness is analysed in detail. Numerical analysis for the critical thickness are performed using the spherical harmonics method and results are tabulated for selected illustrative cases as a function of different degrees of anisotropic scattering. Finally, some results are discussed and compared with those already obtained by other methods, the agreement is satisfactory. The spherical harmonic method gives generally accurate results in one dimensional geometry, and it is very suitable for the numerical solution of the neutron transport equation with linearly anisotropic scattering

  13. Cosmic-ray neutron transport at a forest field site

    DEFF Research Database (Denmark)

    Andreasen, Mie; Jensen, Karsten Høgh; Desilets, Darin

    2017-01-01

    conceptualization is found to be significant. Modeling results show that the effect of canopy interception, soil chemistry and dry bulk density of litter and mineral soil on neutron intensity is small. On the other hand, the neutron intensity decreases significantly with added litter-layer thickness, especially......-ray neutron intensity is essential (e.g., the effect of vegetation, litter layer and soil type). In this study the environmental effect is examined by performing a sensitivity analysis using neutron transport modeling. We use a neutron transport model with various representations of the forest and different...

  14. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunckhorst, Elin

    2009-02-26

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a {sup 10}B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with {sup 6}Li and {sup 7}Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined

  15. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    International Nuclear Information System (INIS)

    Brunckhorst, Elin

    2009-01-01

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a 10 B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with 6 Li and 7 Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined with an

  16. Extraction of the strong neutron-proton mass difference from the charge symmetry breaking in pn->dpi{sup 0}

    Energy Technology Data Exchange (ETDEWEB)

    Filin, A.; Baru, V. [Institut fuer Kernphysik (Theorie) and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Theoretical and Experimental Physics, 117218, B. Cheremushkinskaya 25, Moscow (Russian Federation); Epelbaum, E. [Institut fuer Kernphysik (Theorie) and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Haidenbauer, J., E-mail: j.haidenbauer@fz-juelich.d [Institut fuer Kernphysik (Theorie) and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Hanhart, C. [Institut fuer Kernphysik (Theorie) and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Kudryavtsev, A. [Institute for Theoretical and Experimental Physics, 117218, B. Cheremushkinskaya 25, Moscow (Russian Federation); Meissner, U.-G. [Institut fuer Kernphysik (Theorie) and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2009-11-16

    We perform a complete calculation of charge symmetry breaking effects for the reaction pn->dpi{sup 0} at leading order in chiral perturbation theory. A new leading-order operator is included. From our analysis we extract deltam{sub N}{sup str}, the strong contribution to the neutron-proton mass difference. The value obtained, deltam{sub N}{sup str}=(1.5+-0.8 (exp.)+-0.5 (th.)) MeV, is consistent with the result based on the Cottingham sum rule. This agreement provides a non-trivial test of our current understanding of the chiral structure of QCD.

  17. Characterisation of mixed neutron-photon workplace fields at nuclear facilities by spectrometry (energy and direction) within the EVIDOS project

    International Nuclear Information System (INIS)

    Luszik-Bhadra, M.; Bartlett, D.; Bolognese-Milsztajn, T.; Boschung, M.; Coeck, M.; Curzio, G.; D'Errico, F.; Fiechtner, A.; Lacoste, V.; Lindborg, L.; Reginatto, M.; Schuhmacher, H.; Tanner, R.; Vanhavere, F.

    2007-01-01

    Within the EC project EVIDOS, 17 different mixed neutron-photon workplace fields at nuclear facilities (boiling water reactor, pressurised water reactor, research reactor, fuel processing, storage of spent fuel) were characterised using conventional Bonner sphere spectrometry and newly developed direction spectrometers. The results of the analysis, using Bayesian parameter estimation methods and different unfolding codes, some of them especially adapted to simultaneously unfold energy and direction distributions of the neutron fluence, showed that neutron spectra differed strongly at the different places, both in energy and direction distribution. The implication of the results for the determination of reference values for radiation protection quantities (ambient dose equivalent, personal dose equivalent and effective dose) and the related uncertainties are discussed. (authors)

  18. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations

    International Nuclear Information System (INIS)

    Galilo, Bogdan V.; Nedelko, Sergei N.

    2011-01-01

    The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.

  19. Dose Determination using alanine detectors in a Mixed Neutron and Gamma Field for Boron Neutron Capture Therapy of Liver Malignancies

    DEFF Research Database (Denmark)

    Schmitz, T.; Blaickner, M.; Ziegner, M.

    2011-01-01

    be suitable for measurements in mixed neutron and gamma fields. Materials and Methods Two experiments have been carried out in the thermal column of the TRIGA Mark II reactor at the University of Mainz. Alanine dosimeters have been irradiated in a phantom and in liver tissue. Results For the interpretation......, in combination with flux measurements and Monte Carlo calculations with FLUKA, suggest that it is possible to establish a system for monitoring the dose in a mixed neutron and gamma field for BNCT and other applications in radiotherapy....

  20. A {mu}TPC detector for the characterization of low energy neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Golabek, C., E-mail: cedric.golabek@irsn.fr [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Billard, J. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France); Allaoua, A. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Bosson, G.; Bourrion, O.; Grignon, C.; Guillaudin, O. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France); Lebreton, L., E-mail: lena.lebreton@irsn.fr [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Mayet, F. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France); Petit, M. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Richer, J.-P.; Santos, D. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France)

    2012-06-21

    The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standards. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 8 keV up to 1 MeV. In this work we present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of these neutron fields.

  1. Redshift of A 1(longitudinal optical) mode for GaN crystals under strong electric field

    Science.gov (United States)

    Gu, Hong; Wu, Kaijie; Zheng, Shunan; Shi, Lin; Zhang, Min; Liu, Zhenghui; Liu, Xinke; Wang, Jianfeng; Zhou, Taofei; Xu, Ke

    2018-01-01

    We investigated the property of GaN crystals under a strong electric field. The Raman spectra of GaN were measured using an ultraviolet laser, and a remarkable redshift of the A 1(LO) mode was observed. The role of the surface depletion layer was discussed, and the interrelation between the electric field and phonons was revealed. First-principles calculations indicated that, in particular, the phonons that vibrate along the [0001] direction are strongly influenced by the electric field. This effect was confirmed by a surface photovoltage experiment. The results revealed the origin of the redshift and presented the phonon property of GaN under a strong electric field.

  2. Classical trajectory perspective of atomic ionization in strong laser fields semiclassical modeling

    CERN Document Server

    Liu, Jie

    2014-01-01

    The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers...

  3. On the inelastic scattering of fast neutrons in strongly deformed nuclei

    International Nuclear Information System (INIS)

    Diaz, J.R.F.; Solorzano, R.C.

    1983-01-01

    A study of elastic and inelastic neutron scattering by the nucleus 186 W with incoming energies of 1.8 and 2.75 MeV using the coupled channel method has been made. The 2 + (0.122 MeV), 4 + (0.3966 MeV), 2 + (0.7375 MeV), 3 + (0.8618 MeV) and 4 + (1.031 MeV) excited states are considered. It is shown that in this range of energies, the referred process can be satisfactorily described by the Davydov-Filippov model, considering 186 W as a deformed nucleus with nonaxial symmetry, given the quadrupole and the hexadecapole deformations. The scattering process through the compound nucleus is calculated according to the Hauser-Feshbach formula. It is shown that the presence of direct excitation processes can be partly due to the consideration of the nonaxiality of 186 W. (Auth.)

  4. Effects of the Coulomb potential in interference patterns of strong-field holography with photoelectrons

    Science.gov (United States)

    Shvetsov-Shilovski, N. I.; Lein, M.

    2018-01-01

    Using the semiclassical two-step model for strong-field ionization we investigate the interference structures emerging in strong-field photoelectron holography, taking into account the Coulomb potential of the atomic core. For every kind of the interference pattern predicted by the three-step model, we calculate the corresponding structure in the presence of the Coulomb field, showing that the Coulomb potential modifies the interference patterns significantly.

  5. Applications of Bonner sphere detectors in neutron field dosimetry

    International Nuclear Information System (INIS)

    Awschalom, M.; Sanna, R.S.

    1983-09-01

    The theory of neutron moderation and spectroscopy are briefly reviewed, and moderators that are useful for Bonner sphere spectrometers are discussed. The choice of the neutron detector for a Bonner sphere spectrometer is examined. Spectral deconvolution methods are briefly reviewed, including derivative, parametric, quadrature, and Monte Carlo methods. Calibration is then discussed

  6. Ten year's activity in the field of neutron scattering workshop

    International Nuclear Information System (INIS)

    Hamaguchi, Yoshikazu

    2003-01-01

    'Neutron scattering' is in the frame of the 'Utilization of Research Reactor's of the FNCA (Forum for Nuclear Cooperation in Asia) project, which held the workshops from FY 1992. This report is a summary of the results and activities of neutron scattering workshops and sub-workshops since the start in FY 1992. (author)

  7. Development of a simple neutron irradiation facility utilizing the stray neutron field of a medical cyclotron

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar

    1995-01-01

    During the routine isotope production schedule at the Australian National Medical Cyclotron thick copper plate, electroplated with enriched target materials, are bombarded with 30 MeV protons with an average beam current of 200μA. As a result an intense high-energy, prompt neutron flux of the order of 1.72 x 10 13 neutrons·cm -2 · -1 is generated in the immediate vicinity of the target. The stray fast neutrons were moderated using a water-filled PVC bucket placed on the target station. A maximum thermal neutron flux of 3.88 x 10 9 neutrons·cm -2 ''centrdot'' s -1 was measured in the bucket using cobalt activation discs. The thermal neutrons from this irradiation facility has been used for the neutron activation analysis of trace elements in archaeological artefacts. It has also been planned to utilize the fast neutron flux by varying the geometry of the water moderator in order to estimate oxygen concentrations in high-temperature superconductors and aluminium and silicon in ceramics. (Author)

  8. Determining of the intermediate neutron spectrum in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-01-01

    The activation method for intermediate neutron spectrum determination is given in this paper. The intermediate neutron spectrum in experimental fuel channel (EFC) at the RB reactor is determined om the basis of this method. The results of measurements are treated with PRAG code and will be treated with KRIFIT and TENET codes that are also developed. (author)

  9. One-loop QCD thermodynamics in a strong homogeneous and static magnetic field

    Science.gov (United States)

    Rath, Shubhalaxmi; Patra, Binoy Krishna

    2017-12-01

    We have studied how the equation of state of thermal QCD with two light flavors is modified in a strong magnetic field. We calculate the thermodynamic observables of hot QCD matter up to one-loop, where the magnetic field affects mainly the quark contribution and the gluon part is largely unaffected except for the softening of the screening mass. We have first calculated the pressure of a thermal QCD medium in a strong magnetic field, where the pressure at fixed temperature increases with the magnetic field faster than the increase with the temperature at constant magnetic field. This can be understood from the dominant scale of thermal medium in the strong magnetic field, being the magnetic field, in the same way that the temperature dominates in a thermal medium in the absence of magnetic field. Thus although the presence of a strong magnetic field makes the pressure of hot QCD medium larger, the dependence of pressure on the temperature becomes less steep. Consistent with the above observations, the entropy density is found to decrease with the temperature in the presence of a strong magnetic field which is again consistent with the fact that the strong magnetic field restricts the dynamics of quarks to two dimensions, hence the phase space becomes squeezed resulting in the reduction of number of microstates. Moreover the energy density is seen to decrease and the speed of sound of thermal QCD medium increases in the presence of a strong magnetic field. These findings could have phenomenological implications in heavy ion collisions because the expansion dynamics of the medium produced in non-central ultra-relativistic heavy ion collisions is effectively controlled by both the energy density and the speed of sound.

  10. Effect of neutrons scattered from boundary of neutron field on shielding experiment

    International Nuclear Information System (INIS)

    Ogawa, Tatsuhiko; Abe, Takuya; Kosako, Toshiso; Iimoto, Takeshi

    2009-01-01

    Neutron shielding experiment with 49 cm-thick ordinary concrete was carried out at the reactor 'Yayoi' The University of Tokyo. System of this experiment is enclosed by heavy concrete where neutrons backscattered from heavy concrete likely affected neutron flux on the back surface of shielding concrete. Reaction rate of 197 Au(n, γ), cadmium covered 197 Au(n, γ) and 115 In(n, n') in the shielding concrete was measured using foil activation method. Neutron transport calculation was carried out in order to simulate reaction rate by calculating neutron spectra and convoluting with neutron capture cross-section in neutron shielding concrete. Comparison was made between calculated reaction rate and experimental one, and almost satisfactory agreement was found except for the back surface of shielding. To compose adequate simulation model, description of heavy concrete behind the shielding was thought to be of importance. For example, disregarding neutrons backscattered from heavy concrete, calculation underestimated reaction rate by the factor of 10. In another example, assuming that chemical composition of heavy concrete is equal to the composition adopted from a literature, the reaction rate was overestimated by factor of 5. By making the composition of heavy concrete equal to that based on facility design, overestimation was found to be the factor of 2. Therefore, adequate description of chemical composition of heavy concrete is found to be of importance in order to simulate neutron induced reaction rate on the back surface of neutron shielding concrete in shielding experiment performed in a system enclosed by heavy concrete. (author)

  11. Assessment of radiation fields from neutron irradiated structural components of the 40 MW research reactor CIRUS

    International Nuclear Information System (INIS)

    Sankaranarayanan, S.; Sharma, S.K.

    1993-01-01

    The paper summarizes the results of an assessment of the radiation fields from the long-lived neutron activation products (including the decay chain products) in the various structural components of the CIRUS reactor. Special attention is given for the analysis of neutron activation of impurity elements present in the materials of the structure. 16 refs, 4 figs, 4 tabs

  12. Neutron Crystal-Field Spectroscopy and Susceptibility in ErcY1-cA1

    DEFF Research Database (Denmark)

    Heer, H.; Furrer, A.; Walker, E.

    1974-01-01

    Inelastic neutron scattering experiments and susceptibility measurements have been carried out on polycrystalline ErcY1-cAl2. A least-squares fitting procedure has been applied to the neutron data which favours four sets of crystal-field parameters. The results are compared with the measured...

  13. Deficiency in Monte Carlo simulations of coupled neutron-gamma-ray fields

    NARCIS (Netherlands)

    Maleka, Peane P.; Maucec, Marko; de Meijer, Robert J.

    2011-01-01

    The deficiency in Monte Carlo simulations of coupled neutron-gamma-ray field was investigated by benchmarking two simulation codes with experimental data. Simulations showed better correspondence with the experimental data for gamma-ray transport only. In simulations, the neutron interactions with

  14. Quantification of the sensitivity range in neutron dark-field imaging

    International Nuclear Information System (INIS)

    Betz, B.; Harti, R. P.; Hovind, J.; Kaestner, A.; Lehmann, E.; Grünzweig, C.; Strobl, M.; Van Swygenhoven, H.

    2015-01-01

    In neutron grating interferometry, the dark-field image visualizes the scattering properties of samples in the small-angle and ultra-small-angle scattering range. These angles correspond to correlation lengths from several hundred nanometers up to several tens of micrometers. In this article, we present an experimental study that demonstrates the potential of quantitative neutron dark-field imaging. The dark-field signal for scattering from different particle sizes and concentrations of mono-dispersive polystyrene particles in aqueous solution is compared to theoretical predictions and the good agreement between measurements and calculations underlines the quantitative nature of the measured values and reliability of the technique with neutrons

  15. ZEEMANS - a new facility to probe matter at high magnetic field through neutron scattering

    International Nuclear Information System (INIS)

    Savici, A T; Granroth, G E; Broholm, C; Lee, Y S; Bird, M D

    2010-01-01

    We describe ZEEMANS, a new instrument proposed for the Spallation Neutron Source (SNS) to probe matter at extremely high magnetic fields. The complexity of the high field magnet demands a versatile neutron scattering instrument, capable of performing diffraction (powder and single crystal), SANS, reflectometry, and inelastic spectrometry, with minimal modifications between configurations. In this paper we present a conceptual design for neutron scattering instrumentation to be built around the horizontal conical high field magnet. Monte Carlo simulations and analytical calculations indicate performance on a par with other SNS instrumentation despite limited access to the sample.

  16. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields

    Science.gov (United States)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-01-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  17. High energy heavy ion collisions from the view point of the 'strong field physics'

    International Nuclear Information System (INIS)

    Itakura, Kazunori

    2012-01-01

    In the high energy heavy ion collisions at the facilities like RHIC and LHC, two strongest fields in the present universe are generated. First of all, a very strong electromagnetic field is generated, though its duration is very short due to the very high speed collisions of nuclei and the large electric charges. On the other hand, the nuclei are described as the high density saturation gluon state just before the moment of the collision and the high density gluon is released by the collision. A very strong color electromagnetic field is generated. The color glass condensate (CGC) is a reasonable picture. In this text, dynamics of the GLASMA (Glass + plasma), the new physics brought about by those 'strong fields', are introduced and are explained how the yet unsolved problems of the heavy ion collisions are going to be investigated on the new view point. The mechanism of the apparitions of the strong electromagnetic field and the strong color electromagnetic field are explained at first. The heavy ion collisions can be described as the process CGC to develop into QGP. As the phenomena under the strong electromagnetic field and the heavy ion collisions, their synchrotron radiations, the photon birefringence, the photon decay, the splitting of photons and the chiral phase transitions under high field are picked up. Concerning the strong color electromagnetic field dynamics and the heavy ion collisions, the plasma flux tube dynamics, the color magnetic flux tube, the color electric flux tube and the coexisting case of the color electric field and magnetic field are presented. (S. Funahashi)

  18. Thermal neutron standard field with a Maxwellian distribution using the KUR heavy water facility

    International Nuclear Information System (INIS)

    Kanda, K.; Kobayashi, K.; Okamoto, S.; Shibata, T.

    1978-01-01

    A heavy water facility attached to the KUR (Kyoto University Reactor, swimming pool type. 5 MW) yeilds pure thermal neutrons with a Maxwellian distribution. The facility is placed next to the core of KUR and contains about 2t of heavy water. The width of the heavy water layer is about 140 cm. The neutron spectrum was measured with the time-of-flight technique using a fast chopper. The measured spectrum was in good agreement with a Maxwellian distribution in the whole energy region for thermal neutrons. The neutron temperature was slightly higher than the heavy water temperature. The contamination of epithermal and fast neutrons caused by photo-neutrons from the γ-n reaction in heavy water is very small. The maximum intensity of thermal neutrons is 3 X 10 11 n/cm.s. When a bismuth scatterrer is attached, the gamma ray contamination is decreased to a ratio of 0.05 of gamma rays to neutrons in Rem. This standard neutron field has been used for such experiments as thermal neutron cross section measurement, diffusion length measurement, detector calibration, activation analysis and for biomedical purposes. (Auth.)

  19. In-house development of neutron moisture gauge for field measurement

    Science.gov (United States)

    Channuie, J.; Sinkaew, P.; Lekchaum, S.; Kanjana, K.

    2017-09-01

    The measurement of moisture content in soil is based on the principle of neutron back scattering. In this principle, when fast neutrons emitted from a radioactive source collide with hydrogen atoms their energies are much greater reduced than colliding with other elements. The number of slowed down neutrons, hence, represents the number of hydrogen atoms present in the vicinity of the source. As water is the main contributor of hydrogen atoms in a soil medium, the moisture content in soil, therefore, can be measured based on this principle. An in-house developed probe containing a source of fast neutrons and a slow neutron detector was inserted into soil at different depths under the ground level. The probe was made of high density polyethylene and connected to a suitably calibrated detection system by a single cable. The moisture content was determined from the slow neutron count rate. The results of field measurement tests were reported and discussed.

  20. Comparison of Out-Of-Field Neutron Equivalent Doses in Scanning Carbon and Proton Therapies for Cranial Fields

    DEFF Research Database (Denmark)

    Athar, B.; Henker, K.; Jäkel, O.

    2010-01-01

    Purpose: The purpose of this analysis is to compare the secondary neutron lateral doses from scanning carbon and proton beam therapies. Method and Materials: We simulated secondary neutron doses for out-of-field organs in an 11-year old male patient. Scanned carbon and proton beams were simulated......, absorbed neutron doses to tonsils and pharynx close to the field-edge were found to be 5x10-4 mSv/GyE and 4x10-4 mSv/GyE, respectively. Whereas, neutron equivalent doses to tonsils and pharynx were estimated to be 0.57mSv/GyE and 0.55 mSv/GyE in scanned proton therapy, respectively. In heavy ion carbon...... beams neutrons produced inside the patient are emitted at small angles, predominantly in the forward direction, whereas in proton therapy, neutrons are emitted more isotropic. Therefore the absorbed neutron doses in carbon therapy lateral to the field edge are smaller compared to the corresponding...

  1. Spectrum of absorption of a weak signal by an atom in a strong field

    International Nuclear Information System (INIS)

    Bakaev, D.S.; Vdovin, Y.A.; Ermachenko, V.M.; Yakovlenko, S.I.

    1985-01-01

    An analysis is made of the spectrum of absorption of a weak probe electromagnetic field by two-level atoms in a strong resonant laser field, undergoing collision with buffer gas atoms. The analysis is made using an approach that allows for the direct influence of a strong electromagnetic field on the dynamics of an elastic collision between an active atom and a buffer gas atom. Rate equations are analyzed for a combined ''atom--strong electromagnetic field'' system (an atom ''dressed'' by the field) allowing for spontaneous and optical collisional transitions, and also for the interaction with the probe field. In the steady-state case, an expression is derived for the electric susceptibility of the medium at the small-signal frequency. This expression contains the rates of the optical collisional transitions that depend nontrivially on the parameters of the strong electromagnetic field. The phenomenological characteristics of optical collisional transitions generally used are only valid at low intensities and for small frequency detunings of the strong electromagnetic field, i.e., in the impact limit

  2. Regularity and Chaos in the Hydrogen Atom Highly Excited with a Strong Magnetic Field

    Directory of Open Access Journals (Sweden)

    M. Amdouni

    2014-01-01

    Full Text Available The effects of the relativistic corrections on the energy spectra are analyzed. Effective simulations based on manipulations of operators in the Sturmian basis are developed. Discrete and continuous energy spectra of a hydrogen atom with realistic nucleus mass in a strong magnetic field are computed. The transition from regularity to chaos in diamagnetic problem with the effect of the nucleus recoil energy is explored. Anticrossing of energy levels is observed for strong magnetic field.

  3. Computational strong-field quantum dynamics intense light-matter interactions

    CERN Document Server

    2017-01-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time-dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi-configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  4. Computational strong-field quantum dynamics. Intense light-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Dieter (ed.) [Rostock Univ. (Germany). Inst. fuer Physik

    2017-09-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  5. Measurement of Neutron Field Characteristics at Nuclear-Physics Instalations for Personal Radiation Monitoring

    CERN Document Server

    Alekseev, A G; Britvich, G I; Kosyanenko, E V; Pikalov, V A; Gomonov, I P

    2003-01-01

    n this work the observed data of neutron spectra on Rostov NEP, Kursk NEP and Smolensk NEP and on the reactor IRT MIPHI are submitted. For measurement of neutron spectra two types of spectrometer were used: SHANS (IHEP design ) and SDN-MS01 (FEI design). The comparison of the data measurements per-formed by those spectrometers above one-type cells on the reactor RBMK is submitted. On the basis of the 1-st horizontal experimental channel HEC-1 of the IRT reactor 4 reference fields of neutrons are investigated. It is shown, that spectra of neutrons of reference fields can be used for imitation of neutron spectra for conditions of NEP with VVER and RBMK type reactors.

  6. Radiation resistance of elastomeric O-rings in mixed neutron and gamma fields: Testing methodology and experimental results

    Science.gov (United States)

    Zenoni, A.; Bignotti, F.; Donzella, A.; Donzella, G.; Ferrari, M.; Pandini, S.; Andrighetto, A.; Ballan, M.; Corradetti, S.; Manzolaro, M.; Monetti, A.; Rossignoli, M.; Scarpa, D.; Alloni, D.; Prata, M.; Salvini, A.; Zelaschi, F.

    2017-11-01

    Materials and components employed in the presence of intense neutron and gamma fields are expected to absorb high dose levels that may induce deep modifications of their physical and mechanical properties, possibly causing loss of their function. A protocol for irradiating elastomeric materials in reactor mixed neutron and gamma fields and for testing the evolution of their main mechanical and physical properties with absorbed dose has been developed. Four elastomeric compounds used for vacuum O-rings, one fluoroelastomer polymer (FPM) based and three ethylene propylene diene monomer rubber (EPDM) based, presently available on the market have been selected for the test. One EPDM is rated as radiation resistant in gamma fields, while the other elastomers are general purpose products. Particular care has been devoted to dosimetry calculations, since absorbed dose in neutron fields, unlike pure gamma fields, is strongly dependent on the material composition and, in particular, on the hydrogen content. The products have been tested up to about 2 MGy absorbed dose. The FPM based elastomer, in spite of its lower dose absorption in fast neutron fields, features the largest variations of properties, with a dramatic increase in stiffness and brittleness. Out of the three EPDM based compounds, one shows large and rapid changes in the main mechanical properties, whereas the other two feature more stable behaviors. The performance of the EPDM rated as radiation resistant in pure gamma fields does not appear significantly better than that of the standard product. The predictive capability of the accelerated irradiation tests performed as well as the applicable concepts of threshold of radiation damage is discussed in view of the use of the examined products in the selective production of exotic species facility, now under construction at the Legnaro National Laboratories of the Italian Istituto Nazionale di Fisica Nucleare. It results that a careful account of dose rate effects

  7. Topological currents in neutron stars: kicks, precession, toroidal fields, and magnetic helicity

    International Nuclear Information System (INIS)

    Charbonneau, James; Zhitnitsky, Ariel

    2010-01-01

    The effects of anomalies in high density QCD are striking. We consider a direct application of one of these effects, namely topological currents, on the physics of neutron stars. All the elements required for topological currents are present in neutron stars: degenerate matter, large magnetic fields, and parity violating processes. These conditions lead to the creation of vector currents capable of carrying momentum and inducing magnetic fields. We estimate the size of these currents for many representative states of dense matter in the neutron star and argue that they could be responsible for the large proper motion of neutron stars (kicks), the toroidal magnetic field and finite magnetic helicity needed for stability of the poloidal field, and the resolution of the conflict between type-II superconductivity and precession. Though these observational effects appear unrelated, they likely originate from the same physics — they are all P-odd phenomena that stem from a topological current generated by parity violation

  8. Time-Dependent Neutron and Photon Dose-Field Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Georgia Inst. of Technology, Atlanta, GA (United States)

    2005-08-01

    A unique tool is developed that allows the user to model physical representations of complicated glovebox facilities in two dimensions and determine neutral-particle flux and ambient dose-equivalent fields throughout that geometry. The Pandemonium code, originally designed to determine flux and dose-rates only, is improved to include realistic glovebox geometries, time-dependent source and detector positions, time-dependent shielding thickness calculations, time-integrated doses, a representative criticality accident scenario based on time-dependent reactor kinetics, and more rigorous photon treatment. A primary benefit of this work has been an extensive analysis and improvement of the photon model that is not limited to the application described in this thesis. The photon model has been extended in energy range to 10 MeV to include photons from fission and new photon buildup factors have been included that account for the effects of photon buildup at slant-path thicknesses as a function of angle, where the mean free path thickness has been preserved. The overall system of codes is user-friendly and it is directly applicable to facilities such as the plutonium facility at Los Alamos National Laboratory, where high-intensity neutron and photon emitters are regularly used. The codes may be used to determine a priori doses for given work scenarios in an effort to supply dose information to process models which will in turn assist decision makers on ensuring as low as reasonably achievable (ALARA) compliance. In addition, coupling the computational results of these tools with the process model visualization tools will help to increase worker safety and radiological safety awareness.

  9. MgB2 superconducting particles in a strong electric field

    International Nuclear Information System (INIS)

    Tao, R.; Xu, X.; Amr, E.

    2003-01-01

    The electric-field induced ball formation has been observed with MgB 2 powder in a strong static or quasi-static electric field. The effect of temperature and magnetic field on the ball formation shows surprising features. For quite a wide range of temperature from T c =39 K and below, the ball size is proportional to (1-T/T c ). As the temperature further goes below 20 K, the ball size becomes almost a constant. If MgB 2 particles are in a strong electric field and a moderate magnetic field, the electric-field induced balls align in the magnetic-field direction to form ball chains

  10. Magnetic field dependent small-angle neutron scattering on a Co nanorod array: evidence for intraparticle spin misalignment

    Science.gov (United States)

    Günther, A.; Bick, J.-P.; Szary, P.; Honecker, D.; Dewhurst, C. D.; Keiderling, U.; Feoktystov, A. V.; Tschöpe, A.; Birringer, R.; Michels, A.

    2014-01-01

    The structural and magnetic properties of a cobalt nanorod array have been studied by means of magnetic field dependent small-angle neutron scattering (SANS). Measurement of the unpolarized SANS cross section dΣ/dΩ of the saturated sample in the two scattering geometries where the applied magnetic field H is either perpendicular or parallel to the wavevector k i of the incoming neutron beam allows one to separate nuclear from magnetic SANS, without employing the usual sector-averaging procedure. The analysis of the SANS data in the saturated state provides structural parameters (rod radius and centre-to-centre distance) that are in good agreement with results from electron microscopy. Between saturation and the coercive field, a strong field dependence of dΣ/dΩ is observed (in both geometries), which cannot be explained using the conventional expression of the magnetic SANS cross section of magnetic nanoparticles in a homogeneous nonmagnetic matrix. The origin of the strong field dependence of dΣ/dΩ is believed to be related to intradomain spin misalignment, due to magnetocrystalline and magnetoelastic anisotropies and magnetostatic stray fields. PMID:24904245

  11. Magnetic field dependent small-angle neutron scattering on a Co nanorod array: evidence for intraparticle spin misalignment.

    Science.gov (United States)

    Günther, A; Bick, J-P; Szary, P; Honecker, D; Dewhurst, C D; Keiderling, U; Feoktystov, A V; Tschöpe, A; Birringer, R; Michels, A

    2014-06-01

    The structural and magnetic properties of a cobalt nanorod array have been studied by means of magnetic field dependent small-angle neutron scattering (SANS). Measurement of the unpolarized SANS cross section dΣ/dΩ of the saturated sample in the two scattering geometries where the applied magnetic field H is either perpendicular or parallel to the wavevector k i of the incoming neutron beam allows one to separate nuclear from magnetic SANS, without employing the usual sector-averaging procedure. The analysis of the SANS data in the saturated state provides structural parameters (rod radius and centre-to-centre distance) that are in good agreement with results from electron microscopy. Between saturation and the coercive field, a strong field dependence of dΣ/dΩ is observed (in both geometries), which cannot be explained using the conventional expression of the magnetic SANS cross section of magnetic nanoparticles in a homogeneous nonmagnetic matrix. The origin of the strong field dependence of dΣ/dΩ is believed to be related to intradomain spin misalignment, due to magnetocrystalline and magnetoelastic anisotropies and magnetostatic stray fields.

  12. Fundamentals and applications of neutron imaging (applications part 10). Applications of neutron imaging to medical field

    International Nuclear Information System (INIS)

    Kato, Kazuo; Wakao, Hiromi; Ogura, Kouichi; Yanagie, Hironobu; Kobayashi, Hisao

    2007-01-01

    Described is the application of neutron (Nt) imaging in 3 objects, small animals and excised organs, odontology, and BNCT (boron Nt capture therapy). Nt radiography (NR) uses the fast and thermal Nt. For the former Nt, NR is done by transferring the permeation image on In-leaf to X-ray film or by direct imaging on nitro-cellulose film; and for the latter, by imaging on X-ray film through Gd-converter, by transfer of the image on In- or Dy-leaf to the film or by use of (BaFBr-Gd 2 O 3 ) Nt imaging plate. NR in animals can image air-containing organs like the lung. For human excised organs, NR can give images of wet tissues in hard organs like malignant tumors in the bone due to a large and small Nt cross sections of H and Ca, respectively. Excised gallstones (cholesterol- and Ca-derived) have been subjected to NR. NR of the pancreatic cancer has been reported with fast Nt. Many studies of NR have been reported in odontology, involving animals', human normal, treated and prosthetic teeth. NR can give information different in nature from X-ray radiography and further development of NR in odontology is expected as one of nondestructive tests. In BNCT-related field, NCAR (NC autoradiography) has been applied for seeing the distribution of 10 B in the tumor-bearing mouse given a B compound. Thermal and cold Nts are irradiated on the mouse whole body section and yielded ( 4 He+ 7 Li) radioactivity is detected by CR-39 plastic track detector undergone with various etching treatments. The distribution in the body and tumor can be observed by NCAR and by the recently-developed, versatile high speed image acquisition microscope, respectively. Micro-dosimetry on the CR-39 is thought possible by the latter microscope. (R.T.)

  13. Hole dynamics and spin currents after ionization in strong circularly polarized laser fields

    International Nuclear Information System (INIS)

    Barth, Ingo; Smirnova, Olga

    2014-01-01

    We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields. (paper)

  14. Analysis of unstable chromosome alterations frequency induced by neutron-gamma mixed field radiation

    International Nuclear Information System (INIS)

    Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Vale, Carlos H.F.P.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F.; Calixto, Merilane S.; Santos, Neide

    2009-01-01

    Nowadays monitoring chromosome alterations in peripheral blood lymphocytes have been used to access the radiation absorbed dose in individuals exposed accidental or occupationally to gamma radiation. However there are not many studies based on the effects of mixed field neutron-gamma. The radiobiology of neutrons has great importance because in nuclear factories worldwide there are several hundred thousand individuals monitored as potentially receiving doses of neutron. In this paper it was observed the frequencies of unstable chromosome alterations induced by a gamma-neutron mixed field. Blood was obtained from one healthy donor and exposed to mixed field neutron-gamma sources 241 AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphases were analyzed for the presence of chromosome alterations by two experienced scorers. The results suggest that there is the possibility of a directly proportional relationship between absorbed dose of neutron-gamma mixed field radiation and the frequency of unstable chromosome alterations analyzed in this paper. (author)

  15. Electron cyclotron maser instability (ECMI in strong magnetic guide field reconnection

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2017-08-01

    Full Text Available The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is

  16. Electron cyclotron maser instability (ECMI) in strong magnetic guide field reconnection

    Science.gov (United States)

    Treumann, Rudolf A.; Baumjohann, Wolfgang

    2017-08-01

    The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales) electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR) in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects) involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is of particular

  17. Working with MRI: An investigation of occupational exposure to strong static magnetic fields and associated symptoms

    NARCIS (Netherlands)

    Schaap, K.

    2015-01-01

    Magnetic resonance imaging (MRI) makes use of electromagnetic fields in the non-ionizing radiation frequency ranges. One of them is a continuously present strong static magnetic field (SMF), which extends up to several meters around the scanner. Each time an MRI worker performs tasks near the

  18. Sensitivity Analysis and Simulation of Theoretical Response of Ceramics to Strong Magnetic Fields

    Science.gov (United States)

    2016-09-01

    448. 23. Song Q, Zhang ZJ. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. Journal of the American Chemical...Strong Magnetic Fields by Carli A Moorehead, Michael M Kornecki, Victoria L Blair, Raymond E Brennan Approved for... Magnetic Fields by Carli A Moorehead Drexel University, Philadelphia, Pennsylvannia Michael M Kornecki, Victoria L Blair, and Raymond E Brennan

  19. ON MULTIPLE RECONNECTION X-LINES AND TRIPOLAR PERTURBATIONS OF STRONG GUIDE MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Eriksson, S.; Gosling, J. T.; Lapenta, G.; Newman, D. L.; Goldman, M. V.; Phan, T. D.; Lavraud, B.; Khotyaintsev, Yu. V.; Carr, C. M.; Markidis, S.

    2015-01-01

    We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field B M   which is almost four times as strong as the reversing field B L . The novel tripolar field consists of two narrow regions of depressed B M , with an observed 7%–14% ΔB M magnitude relative to the external field, which are found adjacent to a wide region of enhanced B M within the exhaust. A stronger reversing field is associated with each B M depression. A kinetic reconnection simulation for realistic solar wind conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated ΔB M /ΔX N over the normal width ΔX N between a B M minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field

  20. Influence of fuel loading on neutron field in WWER-440 reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Stacho, M.; Slugen, V.; Farkas, G.; Sojak, S. [Department of Nuclear Physics and Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2010-07-01

    One of the limiting factors in terms of nuclear power plant lifetime is reactor pressure vessel neutron load. Neutron embrittlement as the most important ageing effect on the reactor pressure vessel is mainly caused by fast neutron spectra. The work is focused on mapping of neutron fields in the reactor pressure vessel of WWER-440/V-213 reactor using MCNP5 transport code. The calculation of neutron fields was performed using detailed full-core MCNP model of WWER-440 reactor developed at our department. Analysis of fuel loading pattern and burn-up influence on neutron flux density distribution in the reactor pressure vessel was realized. The fuel composition corresponds to fuel cycles of Bohunice and Mochovce nuclear power plants. The goal of this work was to improve the assessment of WWER-440 reactor pressure vessel radiation degradation and following evaluation possibility of its lifetime extension and comparison of neutron flux and neutron spectra in the most loaded place of reactor pressure vessel and surveillance specimen area. (authors)

  1. Buoyant convection during Czochralski silicon growth with a strong, non-uniform, axisymmetric magnetic field

    Science.gov (United States)

    Khine, Y. Y.; Walker, J. S.

    1995-02-01

    This paper treats the buoyant convection during the Czochralski growth of silicon crystals with a steady, strong, non-uniform, axisymmetric magnetic field. We consider a family of magnetic fields which includes a uniform axial magnetic field and a "cusp" field which is produced by identical solenoids placed symmetrically above and below the plane of the crystal-melt interface and free surface. We investigate the evolution of the buoyant convection as the magnetic field is changed continuously from a uniform axial field to a cusp field, with a constant value of the root-mean-squared magnetic flux density in the melt. We also investigate changes as the magnetic flux density is increased. While the cusp field appears very promising, perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not possible, so the effects of a slight misalignment are also investigated.

  2. Pion Production from Proton Synchrotron Radiation under Strong Magnetic Field in Relativistic Quantum Approach

    Directory of Open Access Journals (Sweden)

    Maruyama Tomoyuki

    2016-01-01

    Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum-field approach do not agree with those obtained in the semi-classical approach. Furthermore, we also find that the anomalous magnetic moment of the proton greatly enhances the production rate about by two orders of magnitude, and that the polar angle of an emitted pion is the same as that of an initial proton.

  3. Strong field approximation within a Faddeev-like formalism for laser-matter interactions

    International Nuclear Information System (INIS)

    Popov, Y.; Galstyan, A.; Piraux, B.; Mota-Furtado, F.; O'Mahony, P.F.

    2017-01-01

    We consider the interaction of atomic hydrogen with an intense laser field within the strong-field approximation (SFA). By using a Faddeev-like formalism, we introduce a new perturbative series in the binding potential of the atom. As a first test of this new approach, we calculate the electron energy spectrum in the very simple case of a photon energy higher than the ionisation potential. We show that by contrast to the standard perturbative series in the binding potential obtained within the strong field approximation, the first terms of the new series converge rapidly towards the results we get by solving the corresponding time-dependent Schroedinger equation. (authors)

  4. Charge states of high Z atoms in a strong laser field

    International Nuclear Information System (INIS)

    Susskind, S.M.; Valeo, E.J.; Oberman, C.R.; Bernstein, I.B.

    1989-11-01

    We present a numerical solution of the Thomas-Fermi atom in the presence of a static electric field as a model of the adiabatic response of a heavy atom in the presence of a strong laser field. In this semiclassical approach, we calculate the resulting charge state of the atom and its induced dipole moment after the field is turned on. Due to the scaling properties of the Thomas-Fermi approach, the resulting total atomic charge and dipole moment can be expressed as a universal function of the field. We compare our results with recent ionization experiments performed on noble gases using laser fields. 7 refs., 5 figs

  5. Imaginary potential in strongly coupled N = 4 SYM plasma in a magnetic field

    Science.gov (United States)

    Zhang, Zi-qiang; Hou, De-fu

    2018-03-01

    We study the effect of a constant magnetic field on the imaginary part of a quarkonia potential in a strongly-coupled N = 4 SYM plasma. We consider the pair axis to be aligned perpendicularly and parallel to the magnetic field, respectively. For both cases, we find that the presence of the magnetic field tends to enhance the imaginary potential thus decreasing the thermal width. In addition, the magnetic field has a stronger effect on the imaginary potential when the pair axis is perpendicular to the magnetic field rather than parallel.

  6. Sharp-front wave of strong magnetic field diffusion in solid metal

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Bo; Gu, Zhuo-wei; Kan, Ming-xian; Wang, Gang-hua; Zhao, Jian-heng [Institute of Fluid Physics, CAEP, P.O. Box 919-105, Mianyang 621900 (China)

    2016-08-15

    When a strong magnetic field diffuses into a solid metal, if the metal's resistance possesses an abrupt rise at some critical temperature and the magnetic field strength is above some critical value, the magnetic field will diffuse into the metal in the form of a sharp-front wave. Formulas for the critical conditions under which a sharp-front magnetic diffusion wave emerges and a formula for the wave-front velocity are derived in this work.

  7. Calibration of a spectrometry multisphere system for neutron fields

    International Nuclear Information System (INIS)

    Carelli, Jorge L.; Cruzate, Juan A.; Papadopulos, Susana B.; Gregori, Beatriz N.; Ciocci Brazzano, Ligia

    2005-01-01

    In this work it is presented the calibration of the neutrons spectrometric system of the Nuclear Regulatory Authority (ARN) in the Institut de Protection et Sure te Nucleaires (Ipn), Labourite dadaist et de Recherche s en Dosimetric Extern e, Cadarache, France. The multisphere system is composed of 9 polyethylene spheres of high density, with a gaseous detector of 3 He and associate electronics. The matrix of energy response to the system neutrons was obtained applying the MCNPX code for the range of energies between thermal and 100 MeV with cross sections taken from library ENDF/B-VI. The neutron spectra of the multisphere system were obtained applying the deconvolution code LOUHI82. The relationship between the theoretical responses and the experiences obtained with the AmBe and 252 Cf sources are also presented in this work [es

  8. THE EXTRAORDINARY COMPLEX MAGNETIC FIELD OF THE HELIUM-STRONG STAR HD 37776

    International Nuclear Information System (INIS)

    Kochukhov, Oleg; Lundin, Andreas; Romanyuk, Iosif; Kudryavtsev, Dmitry

    2011-01-01

    The early-type chemically peculiar stars often show strong magnetic fields on their surfaces. These magnetic topologies are organized on large scales and are believed to be close to an oblique dipole for most of the stars. In a striking exception to this general trend, the helium-strong star HD 37776 shows an extraordinary double-wave rotational modulation of the longitudinal magnetic field measurements, indicating a topologically complex and, possibly, record-strong magnetic field. Here we present a new investigation of the magnetic field structure of HD 37776, using both simple geometrical interpretation of the longitudinal field curve and detailed modeling of the time-resolved circular polarization line profiles with the help of a magnetic Doppler imaging technique. We derive a model of the magnetic field structure of HD 37776, which reconciles for the first time all magnetic observations available for this star. We find that the local surface field strength does not exceed ∼30 kG, while the overall field topology of HD 37776 is dominated by a non-axisymmetric component and represents by far the most complex magnetic field configuration found among early-type stars.

  9. Integrated field equations methods for the computation of electromagnetic fields in strongly inhomogeneous media

    NARCIS (Netherlands)

    Jorna, P.

    2005-01-01

    Electromagnetic field theory plays a very important role in present-day technology; examples of technologies based on electromagnetism that are inextricably bound up with every day life are: radar, remote sensing, geoelectromagnetics, bioelectromagnetics, antennas, wireless communication, optics,

  10. Centrifugal pumping during Czochralski silicon growth with a strong, non-uniform, axisymmetric magnetic field

    Science.gov (United States)

    Khine, Y. Y.; Walker, J. S.

    1996-08-01

    Centrifugal pumping flows are produced in the melt by the rotations of crystal and crucible during the Czochralski growth of silicon crystals. This paper treats the centrifugal pumping effects with a steady, strong, non-uniform axisymmetric magnetic field. We consider a family of magnetic fields ranging from a uniform axial field to a "cusp" field, which has a purely radial field at the crystal-melt interface and free surface. We present the numerical solutions for the centrifugal pumping flows as the magnetic field is changed continuously from a uniform axial field to a cusp one, and for arbitrary Hartmann number. Since the perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not likely, we also investigate the effects of a slight misalignment.

  11. Hot electromagnetic outflows. III. Displaced fireball in a strong magnetic field

    International Nuclear Information System (INIS)

    Thompson, Christopher; Gill, Ramandeep

    2014-01-01

    The evolution of a dilute electron-positron fireball is calculated in the regime of strong magnetization and high compactness (ℓ ∼ 10 3 -10 8 ). Heating is applied at a low effective temperature (<25 keV), appropriate to breakout from a confining medium, so that relaxation to a blackbody is inhibited by pair annihilation. The diffusion equation for Compton scattering by thermal pairs is coupled to a trans-relativistic cyclo-synchrotron source. We find that the photon spectrum develops a quasi-thermal peak at energy ∼0.1 m e c 2 in the comoving frame, with a power-law slope below it that is characteristic of gamma-ray bursts (GRBs; F ω ∼ const). The formation of a thermal high-energy spectrum is checked using the full kinetic equations. Calculations for a baryon-dominated photosphere reveal a lower spectral peak energy, and a harder low-energy spectrum, unless ion rest mass carries ≲ 10 –5 of the energy flux. We infer that (1) the GRB spectrum is inconsistent with the neutron-rich wind emitted by a young magnetar or neutron torus, and points to an event horizon in the engine; (2) neutrons play a negligible role in prompt gamma-ray emission; (3) the relation between observed peak frequency and burst energy is bounded below by the observed Amati relation if the Lorentz factor ∼(opening angle) –1 at breakout, and the jet is surrounded by a broader sheath that interacts with a collapsing stellar core; (4) X-ray flashes are consistent with magnetized jets with ion-dominated photospheres; (5) high-frequency Alfvén waves may become charge starved in the dilute pair gas; (6) limitations on magnetic reconnection from plasma collisionality have been overestimated.

  12. On Possible Reduction of Equilibrium Radius of a Neutron Star Influenced by Superstrong Magnetic Field

    Directory of Open Access Journals (Sweden)

    Vladimir V. Skobelev

    2012-01-01

    -decay suppression of a neutron in degenerate magnetized electron gas is formulated. Based on this, it is shown that, in superstrong magnetic field, equilibrium radius of a neutron star is approximately several times smaller than without the field influence. Therefore, we can make a prediction that in short-period pulsars, such fields can be observed. In fact, possible existence of new class of stellar objects is noted, the objects with superstrong magnetic field and supersmall radius about 1 km which we named minimagnetars. They can be detected by gravitational red shift of their radiation.

  13. In core measurement and monitoring of reactor (neutron) radiation field

    International Nuclear Information System (INIS)

    Erben, O.

    1985-01-01

    A survey is presented of in core radiation detectors. The principles are described of activation detectors, fission chambers, self-powered neutron detectors and thermal sensors. Systems of in core measurement for WWER nuclear power plants, nuclear reactors of power plants operated by KWU, Babcock and Wilcox, Combustion Engineering and FRAMATOME are described. (E.S.)

  14. Performance of a PADC personal neutron dosemeter at simulated and real workplace fields of the nuclear industry.

    Science.gov (United States)

    Fiechtner, A; Boschung, M; Wernli, C

    2007-01-01

    In the framework of the EVIDOS (Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields) project, funded by the EC, measurements with PADC personal neutron dosemeters were carried out at several workplace fields of the nuclear industry and at simulated workplace fields. The measured personal neutron dose equivalents of the PADC personal neutron dosemeter are compared with values that were assessed within the EVIDOS project by other partners. The detection limits for different spectra types are given. In cases were the neutron dose was too low to be measured by the PADC personal neutron dosemeter, the response is estimated by convoluting the responses to monoenergetic neutrons with the dose energy distribution measured within EVIDOS. The advantages and limitations of the PADC personal neutron dosemeter are discussed.

  15. Performance of a PADC personal neutron dosemeter at simulated and real workplace fields of the nuclear industry

    International Nuclear Information System (INIS)

    Fiechtner, A.; Boschung, M.; Wernli, C.

    2007-01-01

    In the framework of the EVIDOS (Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields) project, funded by the EC, measurements with PADC personal neutron dosemeters were carried out at several workplace fields of the nuclear industry and at simulated workplace fields. The measured personal neutron dose equivalents of the PADC personal neutron dosemeter are compared with values that were assessed within the EVIDOS project by other partners. The detection limits for different spectra types are given. In cases were the neutron dose was too low to be measured by the PADC personal neutron dosemeter, the response is estimated by convoluting the responses to monoenergetic neutrons with the dose energy distribution measured within EVIDOS. The advantages and limitations of the PADC personal neutron dosemeter are discussed. (authors)

  16. Development of monitoring method of spatial neutron distribution in neutrons-gamma rays mixed field using imaging plate for NCT--depression of the field.

    Science.gov (United States)

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu; Takada, Jun

    2011-12-01

    The degree of depression in the neutron field caused by neutron absorption in the materials of an imaging plate (IP) was investigated using MCNP-4C. Consequently, the IP doped with Gd, which reproduced the distribution of (157)Gd(n,γ)(158)Gd reaction rate in the previous study, depresses the relative distribution by about 50%. The depression for the IP in which Gd is replaced with similar amount of B atoms was estimated to be about 10%. The signal intensity for this IP is estimated to be at a similar level with that for Gd-doped IP. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Aqueous electrolyte surfaces in strong electric fields: molecular insight into nanoscale jets and bridges

    Science.gov (United States)

    Jirsák, Jan; Moučka, Filip; Škvor, Jiří; Nezbeda, Ivo

    2015-04-01

    Exposing aqueous surfaces to a strong electric field gives rise to interesting phenomena, such as formation of a floating water bridge or an eruption of a jet in electrospinning. In an effort to account for the phenomena at the molecular level, we performed molecular dynamics simulations using several protocols on both pure water and aqueous solutions of sodium chloride subjected to an electrostatic field. All simulations consistently point to the same mechanisms which govern the rearrangement of the originally planar surface. The results show that the phenomena are primarily governed by an orientational reordering of the water molecules driven by the applied field. It is demonstrated that, for pure water, a sufficiently strong field yields a columnar structure parallel to the field with an anisotropic arrangement of the water molecules with their dipole moments aligned along the applied field not only in the surface layer but over the entire cross section of the column. Nonetheless, the number of hydrogen bonds per molecule does not seem to be affected by the field regardless of its strength and molecule's orientation. In the electrolyte solutions, the ionic charge is able to overcome the effect of the external field tending to arrange the water molecules radially in the first coordination shell of an ion. The ion-water interaction interferes thus with the water-electric field interaction, and the competition between these two forces (i.e., strength of the field versus concentration) provides the key mechanism determining the stability of the observed structures.

  18. Neutron Activation Experiments on Niobium in NPI p-(7)Li Quasi-monoenergetic Neutron Field

    Czech Academy of Sciences Publication Activity Database

    Honusek, Milan; Bém, Pavel; Burjan, Václav; Götz, Miloslav; Kroha, Václav; Novák, Jan; Šimečková, Eva; Fischer, U.; Simakov, SP.

    2011-01-01

    Roč. 59, č. 2 (2011), s. 1374-1377 ISSN 0374-4884 Institutional research plan: CEZ:AV0Z10480505 Keywords : ND2010 * Nuclear data * Neutron activation * EAF, ENDF, Nb Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.447, year: 2011

  19. Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields

    CERN Document Server

    Avetissian, Hamlet K

    2016-01-01

    This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media.  The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...

  20. Electric field effects on alignment of lamellar structures in diblock copolymer thin films studied by neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiuli

    2006-12-07

    We investigated the lamellar orientation in thin films of a diblock copolymer P(S-b-MMA), under competing effects of surface interactions and an electric field applied perpendicular to the substrate. The surface effects tend to align the lamellae parallel to the substrate while the electric field tends to align the lamellae perpendicular to the substrate. Using neutron reflectivity, neutron diffuse scattering, and neutron small-angle scattering, we achieved a quantitative analysis of the internal structure of the films. Film thickness was found to play a non-trivial role in determining the structure of the films. A complete alignment by the surface effects was observed in the thinner films by annealing. The parallel orientation remains stable even if an electric field as strong as 40 V/{mu}m is applied. In the thicker films, a mixed orientation with boundary layers parallel and the central part partially perpendicular to the substrate was observed after annealing. The mixed orientation becomes unstable under a small compressive stress, and will be converted into a completely parallel orientation. The parallel orientation induced by the compressive stress remains stable as long as the electric field is weaker than several ten V/{mu}m. Only a field of about 40 V/{mu}m is able to stabilize the above mentioned mixed orientation. A fully perpendicular orientation was never observed in our experiments. Diffuse scattering shows a mosaic structure in the absence of an electric field, whose mosaicity will be increased by the torque exerted by an electric field. The lateral correlation length of the lamellar domains is estimated as 1-2 {mu}m. Limited by the small q{sub x}-range we have used, a clear statement on the existence of the electric-field-induced structural undulations predicted by the Onuki's theory cannot be made from our experiments. (orig.)

  1. Electric field effects on alignment of lamellar structures in diblock copolymer thin films studied by neutron scattering

    International Nuclear Information System (INIS)

    Jiang, Xiuli

    2006-01-01

    We investigated the lamellar orientation in thin films of a diblock copolymer P(S-b-MMA), under competing effects of surface interactions and an electric field applied perpendicular to the substrate. The surface effects tend to align the lamellae parallel to the substrate while the electric field tends to align the lamellae perpendicular to the substrate. Using neutron reflectivity, neutron diffuse scattering, and neutron small-angle scattering, we achieved a quantitative analysis of the internal structure of the films. Film thickness was found to play a non-trivial role in determining the structure of the films. A complete alignment by the surface effects was observed in the thinner films by annealing. The parallel orientation remains stable even if an electric field as strong as 40 V/μm is applied. In the thicker films, a mixed orientation with boundary layers parallel and the central part partially perpendicular to the substrate was observed after annealing. The mixed orientation becomes unstable under a small compressive stress, and will be converted into a completely parallel orientation. The parallel orientation induced by the compressive stress remains stable as long as the electric field is weaker than several ten V/μm. Only a field of about 40 V/μm is able to stabilize the above mentioned mixed orientation. A fully perpendicular orientation was never observed in our experiments. Diffuse scattering shows a mosaic structure in the absence of an electric field, whose mosaicity will be increased by the torque exerted by an electric field. The lateral correlation length of the lamellar domains is estimated as 1-2 μm. Limited by the small q x -range we have used, a clear statement on the existence of the electric-field-induced structural undulations predicted by the Onuki's theory cannot be made from our experiments. (orig.)

  2. Irradiation test of HAFM and tag gas samples at the standard neutron field of 'YAYOI'

    International Nuclear Information System (INIS)

    Iguchi, Tetsuo

    1997-03-01

    To check the accuracy of helium accumulation neutron fluence monitors (HAFM) as new technique for fast reactor neutron dosimetry and the applicability of tag gas activation analysis to fast reactor failed fuel detection, their samples were irradiated at the standard neutron field of the fast neutron source reactor 'YAYOI' (Nuclear Engineering Research Laboratory, University of Tokyo). Since October in 1996, the HAFM samples such as 93% enriched boron (B) powders of 1 mg and natural B powders of 10 mg contained in vanadium (V) capsule were intermittently irradiated at the reactor core center (Glory hole: Gy) and/or under the leakage neutron field from the reactor core (Fast column: FC). In addition, new V capsules filled with enriched B of 40 mg and Be of 100 mg, respectively, were put into an experimental hole through the blanket surrounding the core. These neutron fields were monitored by the activation foils consisting of Fe, Co, Ni, Au, 235 U, 237 Np etc., mainly to confirm the results obtained from 1995's preliminary works. In particular, neutron flux distributions in the vicinity of irradiated samples were measured in more detail. At the end of March in 1997, the irradiated neutron fluence have reached the goal necessary to produce the detectable number of He atoms more than ∼10 13 in each HAFM sample. Six kinds of tag gas samples, which are the mixed gases of isotopically adjusted Xe and Kr contained in SUS capsules, were separately irradiated three times at Gy under the neutron fluence of ∼10 16 n/cm 2 in average. After irradiation, γ-ray spectra were measured for each sample. Depending on the composition of tag gas mixtures, the different patterns of γ-ray peak spectra from 79 Kr, 125 Xe, etc. produced through tag gas activation were able to be clearly identified. These experimental data will be very useful for the benchmark test of tag gas activation calculation applied to the fast reactor failed fuel detection. (author)

  3. SPECTRUM WEIGHTED RESPONSES OF SEVERAL DETECTORS IN MIXED FIELDS OF FAST AND THERMAL NEUTRONS

    Directory of Open Access Journals (Sweden)

    SANG IN KIM

    2014-04-01

    Full Text Available The spectrum weighted responses of various detectors were calculated to provide guidance on the proper selection and use of survey instruments on the basis of their energy response characteristics on the neutron fields. To yield the spectrum weighted response, the detector response functions of 17 neutron-measuring devices were numerically folded with each of the produced calibration neutron spectra through the in-house developed software ‘K-SWR’. The detectors’ response functions were taken from the IAEA Technical Reports Series No. 403 (TRS-403. The reference neutron fields of 21 kinds with 2 spectra groups with different proportions of thermal and fast neutrons have been produced using neutrons from the 241Am-Be sources held in a graphite pile, a bare 241Am-Be source, and a DT neutron generator. Fluence-average energy (Eave varied from 3.8 MeV to 16.9 MeV, and the ambient-dose-equivalent rate [H*(10/h] varied from 0.99 to 16.5 mSv/h.

  4. Neutron calibration field of bare {sup 252}Cf source in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Le, Ngoc Thiem; Tran, Hoai Nam; Nguyen, Khai Tuan [Institute for Nuclear Science and Technology, Hanoi (Viet Nam); Trinh, Glap Van [Institute of Research and Development, Duy Tan University, Da Nang (Viet Nam)

    2017-02-15

    This paper presents the establishment and characterization of a neutron calibration field using a bare {sup 252}Cf source of low neutron source strength in Vietnam. The characterization of the field in terms of neutron flux spectra and neutron ambient dose equivalent rates were performed by Monte Carlo simulations using the MCNP5 code. The anisotropy effect of the source was also investigated. The neutron ambient dose equivalent rates at three reference distances of 75, 125, and 150 cm from the source were calculated and compared with the measurements using the Aloka TPS-451C neutron survey meters. The discrepancy between the calculated and measured values is found to be about 10%. To separate the scattered and the direct components from the total neutron flux spectra, an in-house shadow cone of 10% borated polyethylene was used. The shielding efficiency of the shadow cone was estimated using the MCNP5 code. The results confirmed that the shielding efficiency of the shadow cone is acceptable.

  5. Analysis of magnetic field orientation process of fine particles using neutron diffraction

    International Nuclear Information System (INIS)

    Terada, Noriki

    2010-01-01

    Fine structures in ceramics are important for enhancing the electrical, thermal, optical and mechanical properties of ceramics. Magnetic field alignment of the crystal orientations of fine particles is one of the most effective methods for controlling fine structures. We used neutron diffraction to investigate magnetic alignment of α-Al 2 O 3 fine particles. In situ neutron diffraction measurements of the suspension were performed to investigate the effect of applying a magnetic field. The results revealed that the balance between the magnetic anisotropy energy and thermal fluctuations is critical in determining the crystal orientations of the α-Al 2 O 3 particles in the suspension. Samples were produced by systematically varying the sintering temperature. They were used for neutron diffraction measurements to investigate the effect of sintering. We found that the crystal orientation improves dramatically at temperatures above the grain growth temperature. In this review, we present the experimental details of the neutron diffraction measurements and analyze the results. (author)

  6. INTENSE THERMAL NEUTRON FIELDS FROM A MEDICAL-TYPE LINAC: THE E_LIBANS PROJECT.

    Science.gov (United States)

    Costa, M; Durisi, E; Ferrero, M; Monti, V; Visca, L; Anglesio, S; Bedogni, R; Gomez-Ros, J M; Romano, M; Planell, O Sans; Treccani, M; Bortot, D; Pola, A; Alikaniotis, K; Giannini, G

    2017-12-22

    The e_LiBANS project aims at producing intense thermal neutron fields for diverse interdisciplinary irradiation purposes. It makes use of a reconditioned medical electron LINAC, recently installed at the Physics Department and INFN in Torino, coupled to a dedicated photo-converter, developed within this collaboration, that uses (γ,n) reaction within high Z targets. Produced neutrons are then moderated to thermal energies and concentrated in an irradiation volume. To measure and to characterize in real time the intense field inside the cavity new thermal neutron detectors were designed with high radiation resistance, low noise and very high neutron-to-photon discrimination capability. This article offers an overview of the e_LiBANS project and describes the results of the benchmark experiment. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Tabulated Neutron Star Equations of State Modelled within the Chiral Mean Field Model

    Science.gov (United States)

    Dexheimer, V.

    2017-12-01

    In this special issue article, I review some of the accomplishments of the chiral mean field (CMF) model, which contains nucleon, hyperon, and quark degrees of freedom, and its applications to proto-neutron and neutron stars. I also present a set of equation of state and particle population tables built using the CMF model subject to physical constraints necessary to reproduce different environments, such as those present in cold neutron stars, core-collapse supernova explosions, and different stages of compact star mergers.

  8. Neutron field measurements at the 590 MeV ring cyclotron of the Paul Scherrer Institute

    CERN Document Server

    Grecescu, M; Boschung, M; Fiechtner, A; Gmuer, K; Laedermann, J P; Valley, J F; Wernli, C

    2002-01-01

    A complete characterization of the neutron field was performed at 3 representative areas around the 590 MeV Ring cyclotron of the Paul Scherrer Institute. The neutron spectra were measured with a Bonner spheres system, sup 2 sup 0 sup 9 Bi and sup 2 sup 3 sup 2 Th fission track detectors. Their shapes are very different according to the location; neutron energies up to about 200 MeV were recorded. The dosimetry was performed with various active instruments: 2202D, LB 6411, LINUS, nm 500, nm 500X, HANDI, REM 500. The comparison between the H*(10) values determined by different systems is presented and discussed.

  9. Evaluation of the scattering contribution of neutron fields in a calibration lab

    International Nuclear Information System (INIS)

    Sathian, V.; Shobha, G.; Phadnis, U.V.; Shaha, V.V.; Kothai, G.

    2003-01-01

    Rem Counters are the area monitoring instrument for the neutron radiation. For proper measurement of the radiation field, the instrument used for the measurement has to be calibrated. Calibration is the process of finding the response of the detector using a standard field. In calibration, the linearity of response and the energy response of the monitors are studied. The standard field is produced using standard neutron sources. The field will have primary component and the scattered component. When Neutron monitors are being calibrated it is important to correct for scattering effects as scattering contribution in neutron field is as high as 40% unlike in case of a gamma field. In general the correction factor depends on the type of the source and monitor used and on the configuration of the calibration room. This correction factor has been evaluated for the calibration facility of BARC with different sources like 252 Cf, Am-α -Be, Am-α -B and Am- α -F recommended by ISO for calibration of neutron monitors. The scattering contribution in different cases have been evaluated by semi empirical method and shadow cone method. The measurement of the scattering component and its dependence on various parameters have been discussed in this paper. (author)

  10. Pion Production from Proton Synchrotron Radiation under Strong Magnetic Field in a Relativistic Quantum Approach

    Directory of Open Access Journals (Sweden)

    Maruyama Tomoyuki

    2016-01-01

    Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum approach do not agree with those obtained in the semi-classical approach. Then, we find that the anomalous magnetic moment of the proton greatly enhances the production rate by about two orders magnitude, and that the decay width satisfies a robust scaling law.

  11. Axion production from Landau quantization in the strong magnetic field of magnetars

    Science.gov (United States)

    Maruyama, Tomoyuki; Balantekin, A. Baha; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2018-04-01

    We utilize an exact quantum calculation to explore axion emission from electrons and protons in the presence of the strong magnetic field of magnetars. The axion is emitted via transitions between the Landau levels generated by the strong magnetic field. The luminosity of axions emitted by protons is shown to be much larger than that of electrons and becomes stronger with increasing matter density. Cooling by axion emission is shown to be much larger than neutrino cooling by the Urca processes. Consequently, axion emission in the crust may significantly contribute to the cooling of magnetars. In the high-density core, however, it may cause heating of the magnetar.

  12. Plane Couette flow in the presence of a strong centrifugal field

    International Nuclear Information System (INIS)

    Johnson, E.A.

    1982-05-01

    The Pomraning problem of plane Couette flow in a strong centrifugal field is studied by several methods: a half-range polynomial expansion of the linearized BGK equation; the Liu-Lees method; and a new matching approximation constructed to give the correct solution in the free-molecule limit. The matching approximation, which appears valid for strong enough centrifugal field, predicts major differences from hydrodynamic behaviour, and suggests ways in which the lack of convergence of one method studied may be corrected. (author)

  13. Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering

    Science.gov (United States)

    Walt, Samuel G.; Bhargava Ram, Niraghatam; Atala, Marcos; Shvetsov-Shilovski, Nikolay I; von Conta, Aaron; Baykusheva, Denitsa; Lein, Manfred; Wörner, Hans Jakob

    2017-01-01

    Strong-field photoelectron holography and laser-induced electron diffraction (LIED) are two powerful emerging methods for probing the ultrafast dynamics of molecules. However, both of them have remained restricted to static systems and to nuclear dynamics induced by strong-field ionization. Here we extend these promising methods to image purely electronic valence-shell dynamics in molecules using photoelectron holography. In the same experiment, we use LIED and photoelectron holography simultaneously, to observe coupled electronic-rotational dynamics taking place on similar timescales. These results offer perspectives for imaging ultrafast dynamics of molecules on femtosecond to attosecond timescales. PMID:28643771

  14. Field-Free Alignment and Strong Field Control of Molecular Rotors

    Science.gov (United States)

    Spanner, Michael

    2004-12-01

    Methods of controlling molecular rotations using linearly polarized femtosecond and picosecond pulses are considered and analyzed theoretically. These laser pulses, typically in the infrared, are highly non-resonant with respect to the electronic degrees of freedom of the molecules and have intensities of ~ 10^13 to 10^14 W/cm?. It is shown how these laser pulses can force small linear molecules to align with the direction of the electric field vector of the laser both in the presence of the laser field as well as after the application of a short laser pulse. Recent experiments on laser-induced molecular alignment are modeled and excellent agreement between experiment and theory is found. Additional methods of controlling molecular rotational dynamics are outlined. The first method considers the forced rotational acceleration of diatomic molecules, called the optical centrifuge. Here, the direction of polarization of a linearly polarized laser field is made to smoothly rotate faster and faster. The molecules, which tend to align with the polarization vector of the laser field, follow the rotation of the laser polarization and are accelerated to high angular momentum. The second method considers the control of field-free rotational dynamics by applying phase shifts to the molecular wave function at select times called fractional revivals. At these select moments, an initially localized wave function splits into several copies of the initial state. Adding phase shifts to the copies then induces interference effects which can be used to control the subsequent evolution of the rotational wave function. This same control scheme has a close link to quantum information and this connection is outlined. Finally, a recently proposed method of controlling the quantum dynamics of the classically chaotic kicked rotor system [J. Gong and P. Brumer, Phys. Rev. Lett. 86, 1741 (2001)] is analyzed from a phase space perspective. It is shown that the proposed quantum control can be

  15. The Vlasov equation with strong magnetic field and oscillating electric field as a model for isotop resonant separation

    Directory of Open Access Journals (Sweden)

    Emmanuel Frenod

    2002-01-01

    Full Text Available We study the qualitative behavior of solutions to the Vlasov equation with strong external magnetic field and oscillating electric field. This model is relevant to the understanding of isotop resonant separation. We show that the effective equation is a kinetic equation with a memory term. This memory term involves a pseudo-differential operator whose kernel is characterized by an integral equation involving Bessel functions. The kernel is explicitly given in some particular cases.

  16. Spin ordering in dense matter and magnetic fields of neutron stars

    International Nuclear Information System (INIS)

    Kutschera, M.; Wojcik, W.

    1990-08-01

    The spin properties of the ground-state dense baryon matter are discussed in the nucleon as well as in the quark phase. Predictions for magnetic properties of neutron stars possessing a ferromagnetic core are given. Astrophysical measurements of the magnetic fields of neutron stars are reviewed. An attempt is made to reproduce the data with the ferromagnetic core model. 29 refs., 8 figs. (author)

  17. The use of a Bonner sphere spectrometer for determining the spatial distribution of neutron fields

    CERN Document Server

    Varela, A; Jimenez, F; Calvillo, J

    1999-01-01

    The directional properties of a modified Bonner-type spectrometer, using spheres with a radial hole, are described in this report. It was found that spheres with these modifications are able to detect the spatial distribution of a neutron field. The neutrons were generated by the sup 9 Be(d,n) sup 1 sup 0 B reaction, produced by bombarding a thick Be target with 4 MeV deutrons provided by a tandem Van de Graaff accelerator.

  18. One-electron atomic-molecular ions containing lithium in a strong magnetic field

    International Nuclear Information System (INIS)

    Olivares-Pilon, H; Turbiner, A V; Vieyra, J C Lopez; Baye, D

    2010-01-01

    The one-electron lithium-containing Coulomb systems of atomic type Li 2+ and molecular type Li 5+ 2 , LiHe 4+ and LiH 3+ are studied in the presence of a strong magnetic field B ≤ 10 7 au in a non-relativistic framework. They are considered at the Born-Oppenheimer approximation of zero order (infinitely massive centres) within the parallel configuration (molecular axis parallel to the magnetic field). The variational and Lagrange-mesh methods are employed, complementing each other. It is demonstrated that the molecular systems LiH 3+ , LiHe 4+ and Li 5+ 2 can exist for sufficiently strong magnetic fields B ∼> 10 4 au and that Li 5+ 2 can even be stable at magnetic fields typical of magnetars.

  19. Interference effects at photoionization of Rydberg atoms by a strong electromagnetic field

    International Nuclear Information System (INIS)

    Movsesyan, A.M.; Fedorov, M.V.

    1989-01-01

    The photoionization of Rydberg atoms in a strong electromagnetic field is considered. Degeneration of the levels with respect to the orbital moment, their Stark splitting and the possibility of resonant interaction with levels of lower energy are taken into account. The complex quasi-energies of the system, photoelectron spectrum in the limit of an infinite duration of interaction and the time dependence of the total ionization probability are found. It is shown that a narrowing of the quasi-energy levels occurs in a strong field. Against a background of the quasi- continuum the quasi-energy spectrum consists of more or less narrow levels. In this case the photoelectron spectrum acquires a multi-peak form. With increasing field strength the height of the peaks increases, whereas their width decreases. The ionization rate decreases with increasing field strength. The presence of a quasi-continuum is the cause of the partially non-exponential nature of the atomic disintegration

  20. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field.

    Science.gov (United States)

    Feng, Yan; Lin, Wei; Murillo, M S

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  1. Heavy quark potential in a static and strong homogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mujeeb; Chatterjee, Bhaswar; Patra, Binoy Krishna [Indian Institute of Technology Roorkee, Department of Physics, Roorkee (India)

    2017-11-15

    We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon self-energy, which in the sequel gives the effective gluon propagator. As an artifact of strong magnetic field approximation (eB >> T{sup 2} and eB >> m{sup 2}), the Debye mass for massless flavors is found to depend only on the magnetic field which is the dominant scale in comparison to the scales prevalent in the thermal medium. However, for physical quark masses, it depends on both magnetic field and temperature in a low temperature and high magnetic field but the temperature dependence is very meager and becomes independent of the temperature beyond a certain temperature and magnetic field. With the above mentioned ingredients, the potential between heavy quark (Q) and anti-quark (anti Q) is obtained in a hot QCD medium in the presence of a strong magnetic field by correcting both short- and long-range components of the potential in the real-time formalism. It is found that the long-range part of the quarkonium potential is affected much more by magnetic field as compared to the short-range part. This observation facilitates us to estimate the magnetic field beyond which the potential will be too weak to bind Q anti Q together. For example, the J/ψ is dissociated at eB ∝ 10 m{sub π}{sup 2} and Υ is dissociated at eB ∝ 100 m{sub π}{sup 2} whereas its excited states, ψ{sup '} and Υ{sup '} are dissociated at smaller magnetic field eB = m{sub π}{sup 2}, 13 m{sub π}{sup 2}, respectively. (orig.)

  2. Dipole magnetic field of neutron stars in f(R) gravity

    Science.gov (United States)

    Bakirova, Elizat; Folomeev, Vladimir

    2016-10-01

    The structure of an interior dipole magnetic field of neutron stars in f( R) gravity is considered. For this purpose, the perturbative approaches are used when both the deviations from general relativity and the deformations of spherically symmetric configurations associated with the presence of the magnetic field are assumed to be small. Solutions are constructed which describe relativistic, spherically symmetric configurations consisting of a gravitating magnetized perfect fluid modeled by a realistic equation of state. Comparing configurations from general relativity and modified gravity, we reveal possible differences in the structure of the magnetic field which occur in considering neutron stars in modified gravity.

  3. Two regimes in conductivity and the Hall coefficient of underdoped cuprates in strong magnetic fields.

    Science.gov (United States)

    Gor'kov, L P; Teitel'baum, G B

    2014-01-29

    We address recent experiments shedding light on the energy spectrum of under and optimally doped cuprates at temperatures above the superconducting transition. Angle resolved photoemission reveals coherent excitation only near nodal points on parts of the 'bare' Fermi surface known as the Fermi arcs. The question debated in the literature is whether the small normal pocket, seen via quantum oscillations, exists at higher temperatures or forms below a charge order transition in strong magnetic fields. Assuming the former case as a possibility, expressions are derived for the resistivity and the Hall coefficient (in weak and strong magnetic fields) with both types of carriers participating in the transport. There are two regimes. At higher temperatures (at a fixed field) electrons are dragged by the Fermi arcs' holes. The pocket being small, its contribution to conductivity and the Hall coefficient is negligible. At lower temperatures electrons decouple from holes behaving as a Fermi gas in the magnetic field. As the mobility of holes on the arcs decreases in strong fields with a decrease of temperature, below a crossover point the pocket electrons prevail, changing the sign of the Hall coefficient in the low temperature limit. Such behavior finds its confirmation in recent high-field experiments.

  4. Do strong, static magnetic fields act on living beings and chemical reactions

    International Nuclear Information System (INIS)

    Demmer, W.

    1986-01-01

    In general, magnetic fields are said to have no direct influence on living beings or simple chemical reactions. There is, however, evidence to confirm that changes in the earth's magnetic field or of artificially produced magnetic fields can alter the activity of different neuronal enzyme systems. An effect on the synthesis of β-galactosidase in the bacterium Escherichia coli by a feeble magnetic field (0.2 to 0.8 mT) and disturbances of the embryogenesis of frogs by a strong magnetic field (1.0 T) have been described. These and similar investigations with whole cells raise the question as to what the effect of magnetic fields on isolated and purified enzymes will be. (orig./SHA) [de

  5. Monte Carlo solutions of Schroedinger's equation for H2+ ion in strong magnetic fields

    International Nuclear Information System (INIS)

    Ozaki, Jiro; Tomishima, Yasuo

    1980-01-01

    The analytical expressions suitable for the Monte Carlo calculation to obtain the solution of Schroedinger's equation of hydrogen molecular ion in a strong magnetic field are derived. The wave functions, the energy values and the equilibrium internuclear distances of 1σsub(g) state of H 2 + are obtained numerically through the Monte Carlo simulation and compared with other results based on the variational method. The agreement between them is fairly good over a wide range of magnetic field. The calculation of the energy values of 1πsub(g) state of H 2 + for various internuclear distances taking a constant magnetic field as a parameter, shows that the antibonding 1πsub(g) state in the absence of the external magnetic field changes to a bonding state with an increasing magnetic field. The lowest energy values and the equilibrium internuclear distances of 1πsub(g) state are also calculated for various magnetic field. (author)

  6. Development of a filtered neutron field in KUR. In behalf of biological irradiation experiments

    International Nuclear Information System (INIS)

    Sato, Takashi; Utsuro, Masahiko; Utsumi, Hiroshi

    1995-07-01

    Very little direct measurements have been made of the biological effects of neutrons below 100keV. Recently, an iron-filtered 24keV neutron beam of Harwell Materials Testing Reactor, PLUTO, was reported to be highly efficient in inducing chromosome aberrations; the efficiency being comparable to that of fission neutrons. This results could have serious repercussions for radiation protection standards as the ICRP assume a decrease in neutron RBE below 100keV. The investigations reported here have as their primary purpose the production of neutron beams at the 24keV iron window energy, using the B-1 experimental facility of the Kyoto University Research Reactor (KUR) at the Research Reactor Institute, Kyoto University (KURRI). The filtered neutron filed for biomedical applications is designed to maximized the contributions of neutrons with other energies and gamma-rays. The characteristics of the radiation field were obtained by the simple transmission calculations for Fe(45cm) and Al(35cm) filters, by using the Monte Carlo code MCN P, and by the measurement of nuclear heating for Fe and Al filter pieces. The 24keV neutron flux and gamma-ray dose rate were measured using a proton recoil counter and TLDs, respectively. The measured findings are as follows: The 24keV neutron flux at the irradiation field was approximately 1x10 6 n/cm 2 /s, and the gamma-ray dose rate was 1.0Gy/h at the surface of the B-1 plug. Nuclear heating of the filter materials was 5.2mW/g for Fe and 4mW/g for Al, in maximum. (author)

  7. LiCaAlF6 scintillators in neutron and gamma radiation fields

    Science.gov (United States)

    Viererbl, L.; Klupák, V.; Vinš, M.; Koleška, M.; Šoltés, J.; Yoshikawa, A.; Nikl, M.

    2016-09-01

    Intentionally doped LiCaAlF6 (LiCAF) single crystals are prospective scintillators, especially for thermal neutron detection through the 6Li(n,t)4He nuclear reaction. Four different LiCAF scintillator samples were tested in various neutron and gamma fields. Two of the tested samples were LiCAF:Eu and LiCAF:Eu,Na single crystals, and another two samples were made of LiCAF:Eu micro crystals dispersed in transparent rubber, with different rubber dimensions. All LiCAF samples contain lithium enriched to6Li. A plutonium-beryllium source was used as a neutron source. The neutron spectrum was modified by moderator and filter to get different ratios between thermal, epithermal and fast neutron fluence rates. The MCNP code was used for calculations of the fluence rates for different configurations. Radionuclides 137Cs and 60Co were applied as gamma radiation sources. The light signal from the scintillator was evaluated with a photomultiplier and a multichannel analyzer. The purpose of this work was to study the characteristics of LiCAF scintillators, especially the ability to discriminate signals from neutron and gamma radiation, which is the basic scintillator condition for neutron detection in mixed neutron-gamma radiation fields. Generally, the discrimination can be done by the pulse height and/or the pulse shape of the evaluated signals. Both methods can be used for a LiCAF scintillator. However, only the pulse height discrimination method is discussed in this paper. The possibility of fast neutron detection with LiCAF scintillators was also tested.

  8. Study and development of detectors dedicated to reference measurements of monoenergetic neutron fields

    International Nuclear Information System (INIS)

    Allaouan, Amokrane

    2009-01-01

    One of the main activities of the LMDN laboratory (Laboratory for neutron metrology and dosimetry ) is the development of a technical set of facilities producing neutron yields, in form of mono-energetic or broad yields. The provision of these yields allows the calibration and the development of instruments of measurements devoted to neutrons. The AMANDE facility produces fields of monoenergetic neutrons between 2 keV and 20 MeV with a metrological quality. The facility requires determining in an absolute way, characteristics of energy and fluence of the neutron fields. The development of an instrument allowing a direct measurement of neutron energy and fluence was planned for recognition of this facility as reference. The constituent elements of the system were studied in order to increase the efficiency of the detector in comparison with that of some existing proton recoil telescope. To cover the wide energy range of the produced neutrons, two solutions are investigated. A recoil proton telescope using CMOS sensor (RPT-CMOS) is studied for measurements at the high energies; it is developed in collaboration with the IPHC RAMSES laboratory of Strasbourg. The gaseous μ-time projection chamber for the neutron detection (μ-TPC neutron) will be dedicated to the lowest energies. The study of this device for application at the AMANDE facility is performed in collaboration with the LPSC Grenoble. Simulations of systems and comparisons with the literature were performed with the transport Monte Carlo code MCNPX, to choose the components and the geometry, and thereby assess and optimize efficiency and detection limits of these devices. These computation results are presented. Measurement campaigns were realised during last three years with the first prototypes. Thanks to these, a comparison between experimental results and calculations was enabled, to validate the modelling and to estimate performances expected from these systems. These results are also presented. (author)

  9. Neutron scattering techniques for betaine calcium chloride dihydrate under applied external field (temperature, electric field and hydrostatic pressure)

    International Nuclear Information System (INIS)

    Hernandez, O.

    1997-01-01

    We have studied with neutron scattering techniques betaine calcium chloride dihydrate (BCCD), a dielectric aperiodic crystal which displays a Devil's staircase type phase diagram made up of several incommensurate and commensurate phases, having a range of stability very sensitive to temperature, electric field and hydrostatic pressure. We have measured a global hysteresis of δ(T) of about 2-3 K in the two incommensurate phases. A structural study of the modulated commensurate phases 1/4 and 1/5 allows us to evidence that the atomic modulation functions are anharmonic. The relevance of the modelization of the modulated structure by polar Ising pseudo-spins is then directly established. On the basis of group theory calculation in the four dimensional super-space, we interpret this anharmonic modulation as a soliton regime with respect to the lowest-temperature non modulated ferroelectric phase. The continuous character of the transition to the lowest-temperature non modulated phase and the diffuse scattering observed in this phase are accounted for the presence of ferroelectric domains separated by discommensurations. Furthermore, we have shown that X-rays induce in BCCD a strong variation with time of irradiation of the intensity of satellite peaks, and more specifically for third order ones. This is why the 'X-rays' structural model is found more harmonic than the 'neutron' one. Under electric field applied along the vector b axis, we confirm that commensurate phases with δ = even/odd are favoured and hence are polar along this direction. We have evidenced at 10 kV / cm two new higher order commensurate phases in the phase INC2, corroborating the idea of a 'complete' Devil's air-case phase diagram. A phenomenon of generalized coexistence of phases occurs above 5 kV / cm. We have characterized at high field phase transitions between 'coexisting' phases, which are distinguishable from classical lock-in transitions. Under hydrostatic pressure, our results contradict

  10. Ehrenfest's theorem and the validity of the two-step model for strong-field ionization

    DEFF Research Database (Denmark)

    Shvetsov-Shilovskiy, Nikolay; Dimitrovski, Darko; Madsen, Lars Bojer

    By comparison with the solution of the time-dependent Schrodinger equation we explore the validity of the two-step semiclassical model for strong-field ionization in elliptically polarized laser pulses. We find that the discrepancy between the two-step model and the quantum theory correlates...

  11. Parity violation effects in the hydrogen atom in the field of a strong electromagnetic wave

    International Nuclear Information System (INIS)

    Labzovsky, L.N.; Mitrushchenkov, A.O.

    1989-01-01

    The parity violation effects in the hydrogen atom in a strong electromagnetic laser field are considered. It is shown that there is the possibility of hyperrate measurements of different constants of the weak interaction in the hydrogen magnetic resonance experiments. (orig.)

  12. Interaction of a neutral composite particle with a strong Coulomb field

    International Nuclear Information System (INIS)

    Wong, Cheuk-Yin.

    1988-01-01

    The author discusses the interaction of the quasi-composite (e/sup /plus//e/sup /minus//) system with an external electromagnetic field. This problem addresses the question of the origin of strong positron lines in quasi-elastic heavy-ion reactions. 3 refs

  13. Numerical analysis of blood flow in realistic arteries subjected to strong non-uniform magnetic fields

    NARCIS (Netherlands)

    Kenjeres, S.

    2008-01-01

    The paper reports on a comprehensive mathematical model for simulations of blood flow under the presence of strong non-uniform magnetic fields. The model consists of a set of Navier–Stokes equations accounting for the Lorentz and magnetisation forces, and a simplified set of Maxwell’s equations

  14. The permanent magnet systems generating strong stray fields with large localization region

    International Nuclear Information System (INIS)

    Samofalov, V.N.; Belozorov, D.P.; Ravlik, A.G.

    2008-01-01

    Three systems of permanent magnets, which produce strong magnetic stray fields (SFs) with H>B r =4πM r were studied in this work. Remarkable feature of the developed systems is localization of the strong fields in large region with linear dimension Δr comparable to characteristic magnet dimension a. The first system composed of uniformly magnetized magnets generates sufficiently homogeneous strong SFs, which amounts up to 1.5 of magnets induction B r . The second system with nonuniform magnetization is represented by cylindrical and hemispheric magnets their magnetization vector directed at every point along the radius. Such distribution of magnetization is assumed to be the consequence of magnet radial crystal texture resulting in a high uniaxial anisotropy field H K . It is shown that maximal SFs can exist on the flat surface of cylindrical magnet at the distance r from its axis and their limiting value equals to 4πM r ln(2a/r). Here, the localization region of the fields is comparable to diameter of cylindrical magnet Δr∼2R. As for the hemisphere its SFs are less than corresponding SFs for the cylinder. The third so-called quasi-nonuniform system consists of uniformly magnetized cylindrical sectors their magnetization vector is directed along the sector bisectrix. The strong SFs and their localization region are calculated in details for this case. The passage to radial magnetized cylinder is considered

  15. The Bekenstein bound in strongly coupled O(N) scalar field theory

    International Nuclear Information System (INIS)

    Magalhaes, T. Santos; Svaiter, N.F.; Menezes, G.

    2009-09-01

    We discuss the O(N) self-interacting scalar field theory, in the strong-coupling regime and also in the limit of large N. Considering that the system is in thermal equilibrium with a reservoir at temperature β -1 , we assume the presence of macroscopic boundaries conning the field in a hypercube of side L. Using the strong-coupling perturbative expansion, we generalize previous results, i.e., we obtain the renormalized mean energy E and entropy S for the system in rst order of the strong-coupling perturbative expansion, presenting an analytical proof that the specific entropy also satisfies in some situations a quantum bound. When considering the low temperature behavior of the specific entropy, the sign of the renormalized zero-point energy can invalidate this quantum bound. If the renormalized zero point-energy is a positive quantity, at intermediate temperatures and in the low temperature limit, there is a quantum bound. (author)

  16. Anisotropy of the structure factor of magnetic fluids under a field probed by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Gazeau, F.; Bacri, J.-C.; Perzynski, R.; Dubois, E.; Boue, F.; Cebers, A.

    2002-01-01

    Small-angle neutron scattering is used to measure the two-dimensional diffraction pattern of a monophasic magnetic colloid, under an applied magnetic field. This dipolar system presents in zero field a fluidlike structure. It is well characterized by an interaction parameter K T 0 proportional to the second virial coefficient, which is here positive, expressing a repulsion of characteristic length κ 0 -1 . Under the field a strong anisotropy is observed at the lowest q vectors. The length κ 0 -1 remains isotropic, but the interaction parameter K T becomes anisotropic due to the long-range dipolar interaction. However, the system remains stable, the interaction being repulsive in all directions. Thus No.No.we do not observe any chaining of the nanoparticles under magnetic field. On the contrary, the revealed structure of our anisotropic colloid is a lowering of the concentration fluctuations along the field while the fluidlike structure, observed without field, is roughly preserved perpendicularly to the field. It expresses a strong anisotropy of the Brownian motion of the nanoparticles in the solution under applied field

  17. Anisotropy of the structure factor of magnetic fluids under a field probed by small-angle neutron scattering.

    Science.gov (United States)

    Gazeau, F; Dubois, E; Bacri, J C; Boué, F; Cebers, A; Perzynski, R

    2002-03-01

    Small-angle neutron scattering is used to measure the two-dimensional diffraction pattern of a monophasic magnetic colloid, under an applied magnetic field. This dipolar system presents in zero field a fluidlike structure. It is well characterized by an interaction parameter K(0)(T) proportional to the second virial coefficient, which is here positive, expressing a repulsion of characteristic length kappa-10. Under the field a strong anisotropy is observed at the lowest q vectors. The length kappa-10 remains isotropic, but the interaction parameter K(T) becomes anisotropic due to the long-range dipolar interaction. However, the system remains stable, the interaction being repulsive in all directions. Thus we do not observe any chaining of the nanoparticles under magnetic field. On the contrary, the revealed structure of our anisotropic colloid is a lowering of the concentration fluctuations along the field while the fluidlike structure, observed without field, is roughly preserved perpendicularly to the field. It expresses a strong anisotropy of the Brownian motion of the nanoparticles in the solution under applied field.

  18. Particle Production in Strong Electromagnetic Fields in Relativistic Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Kirill Tuchin

    2013-01-01

    Full Text Available I review the origin and properties of electromagnetic fields produced in heavy-ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches ~mπ2 at RHIC and ~10mπ2 at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma lives as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane, and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J/ψ dissociation via Lorentz ionization mechanism, and examine electromagnetic radiation by plasma. I conclude that all processes in QGP are affected by strong electromagnetic field and call for experimental investigation.

  19. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-16

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  20. Spin dynamics in relativistic ionization with highly charged ions in super-strong laser fields

    International Nuclear Information System (INIS)

    Klaiber, Michael; Yakaboylu, Enderalp; Bauke, Heiko; Hatsagortsyan, Karen Z; Müller, Carsten; Paulus, Gerhard G

    2014-01-01

    Spin dynamics and induced spin effects in above-threshold ionization of hydrogenlike highly charged ions in super-strong laser fields are investigated. Spin-resolved ionization rates in the tunnelling regime are calculated by employing two versions of a relativistic Coulomb-corrected strong-field approximation (SFA). An intuitive simpleman model is developed which explains the derived scaling laws for spin flip and spin asymmetry effects. The intuitive model as well as our ab initio numerical simulations support the analytical results for the spin effects obtained in the dressed SFA where the impact of the laser field on the electron spin evolution in the bound state is taken into account. In contrast, the standard SFA is shown to fail in reproducing spin effects in ionization even at a qualitative level. The anticipated spin-effects are expected to be measurable with modern laser techniques combined with an ion storage facility. (paper)

  1. Probing strong-field electron-nuclear dynamics of polyatomic molecules using proton motion

    International Nuclear Information System (INIS)

    Markevitch, Alexei N.; Smith, Stanley M.; Levis, Robert J.; Romanov, Dmitri A.

    2007-01-01

    Proton ejection during Coulomb explosion is studied for several structure-related organic molecules (anthracene, anthraquinone, and octahydroanthracene) subjected to 800 nm, 60 fs laser pulses at intensities from 0.50 to 4.0x10 14 W cm -2 . The proton kinetic energy distributions are found to be markedly structure specific. The distributions are bimodal for anthracene and octahydroanthracene and trimodal for anthraquinone. Maximum (cutoff) energies of the distributions range from 50 eV for anthracene to 83 eV for anthraquinone. The low-energy mode (∼10 eV) is most pronounced in octahydroanthracene. The dependence of the characteristic features of the distributions on the laser intensity provides insights into molecular specificity of such strong-field phenomena as (i) nonadiabatic charge localization and (ii) field-mediated restructuring of polyatomic molecules polarized by a strong laser field

  2. Evaluation of uncertainty in field soil moisture estimations by cosmic-ray neutron sensing

    Science.gov (United States)

    Scheiffele, Lena Maria; Baroni, Gabriele; Schrön, Martin; Ingwersen, Joachim; Oswald, Sascha E.

    2017-04-01

    Cosmic-ray neutron sensing (CRNS) has developed into a valuable, indirect and non-invasive method to estimate soil moisture at the field scale. It provides continuous temporal data (hours to days), relatively large depth (10-70 cm), and intermediate spatial scale measurements (hundreds of meters), thereby overcoming some of the limitations in point measurements (e.g., TDR/FDR) and of remote sensing products. All these characteristics make CRNS a favorable approach for soil moisture estimation, especially for applications in cropped fields and agricultural water management. Various studies compare CRNS measurements to soil sensor networks and show a good agreement. However, CRNS is sensitive to more characteristics of the land-surface, e.g. additional hydrogen pools, soil bulk density, and biomass. Prior to calibration the standard atmospheric corrections are accounting for the effects of air pressure, humidity and variations in incoming neutrons. In addition, the standard calibration approach was further extended to account for hydrogen in lattice water and soil organic material. Some corrections were also proposed to account for water in biomass. Moreover, the sensitivity of the probe was found to decrease with distance and a weighting procedure for the calibration datasets was introduced to account for the sensors' radial sensitivity. On the one hand, all the mentioned corrections showed to improve the accuracy in estimated soil moisture values. On the other hand, they require substantial additional efforts in monitoring activities and they could inherently contribute to the overall uncertainty of the CRNS product. In this study we aim (i) to quantify the uncertainty in the field soil moisture estimated by CRNS and (ii) to understand the role of the different sources of uncertainty. To this end, two experimental sites in Germany were equipped with a CRNS probe and compared to values of a soil moisture network. The agricultural fields were cropped with winter

  3. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun

    2015-01-01

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector

  4. Position sensitive detection of neutrons in high radiation background field

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Jakůbek, Jan; Vacík, Jiří; Pospíšil, S.

    2014-01-01

    Roč. 85, č. 1 (2014), s. 013304 ISSN 0034-6748 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0060; GA ČR(CZ) GBP108/12/G108; GA TA ČR(CZ) TA01010237 Institutional support: RVO:68378297 ; RVO:61389005 Keywords : neutrons * pattern recognition * position sensitive detectors * radiation detectors * silicon detectors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; BG - Nuclear, Atomic and Molecular Physics, Colliders (UJF-V) Impact factor: 1.614, year: 2014 http://scitation.aip.org/content/aip/journal/rsi/85/1/10.1063/1.4862478

  5. Density-matrix-functional calculations for matter in strong magnetic fields: Ground states of heavy atoms

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Yngvason, Jakob

    1996-01-01

    We report on a numerical study of the density matrix functional introduced by Lieb, Solovej, and Yngvason for the investigation of heavy atoms in high magnetic fields. This functional describes exactly the quantum mechanical ground state of atoms and ions in the limit when the nuclear charge Z...... and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...... by other methods. For iron at B=1012 G the ground-state energy differs by less than 2% from the Hartree-Fock value. We have also studied the maximal negative ionization of heavy atoms in this model at various field strengths. In contrast to Thomas-Fermi type theories atoms can bind excess negative charge...

  6. NEUTRON FIELD MEASUREMENT OF P(35)+Be SOURCE USING THE MULTI-FOIL ACTIVATION METHOD.

    Science.gov (United States)

    Stefanik, Milan; Bem, Pavel; Majerle, Mitja; Novak, Jan; Simeckova, Eva; Stursa, Jan

    2017-12-05

    Neutron field from the p+Be interaction was investigated at the NPI CAS for a proton beam energy of 35 MeV and thick beryllium target. Broad neutron spectra at close source-to-sample distances were determined using the multi-foil activation technique. Two large sets of dosimetry foils containing the Ni, Co, Au, In, Ti, Al, Y, Lu, Nb and Fe were irradiated at a distance of 74 mm at direct neutron beam axis and at a distance of 34 mm from beam axis. Supporting Monte-Carlo MCNPX calculations of the irradiation system were performed as well. From measured reaction rates, the neutron energy spectra at both positions were reconstructed employing the modified version of the SAND-II unfolding code and activation cross-section data from the EAF-2010 library. At the position of irradiated samples, the total fast neutron flux reaches the value up to 1010 cm-2 s-1, and the neutron field is utilizable for radiation hardness study and integral benchmark experiments within the International Fusion Material Irradiation Facility (IFMIF) program. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Are neutron stars crushed? Gravitomagnetic tidal fields as a mechanism for binary-induced collapse

    International Nuclear Information System (INIS)

    Favata, Marc

    2006-01-01

    Numerical simulations of binary neutron stars by Wilson, Mathews, and Marronetti indicated that neutron stars that are stable in isolation can be made to collapse to black holes when placed in a binary. This claim was surprising as it ran counter to the Newtonian expectation that a neutron star in a binary should be more stable, not less. After correcting an error found by Flanagan, Wilson and Mathews found that the compression of the neutron stars was significantly reduced but not eliminated. This has motivated us to ask the following general question: Under what circumstances can general-relativistic tidal interactions cause an otherwise stable neutron star to be compressed? We have found that if a nonrotating neutron star possesses a current-quadrupole moment, interactions with a gravitomagnetic tidal field can lead to a compressive force on the star. If this current quadrupole is induced by the gravitomagnetic tidal field, it is related to the tidal field by an equation-of-state-dependent constant called the gravitomagnetic Love number. This is analogous to the Newtonian Love number that relates the strength of a Newtonian tidal field to the induced mass quadrupole moment of a star. The compressive force is almost never larger than the Newtonian tidal interaction that stabilizes the neutron star against collapse. In the case in which a current quadrupole is already present in the star (perhaps as an artifact of a numerical simulation), the compressive force can exceed the stabilizing one, leading to a net increase in the central density of the star. This increase is small (< or approx. 1%) but could, in principle, cause gravitational collapse in a star that is close to its maximum mass. This paper also reviews the history of the Wilson-Mathews-Marronetti controversy and, in an appendix, extends the discussion of tidally induced changes in the central density to rotating stars

  8. Spontaneous scalarization with an extremely massive field and heavy neutron stars

    Science.gov (United States)

    Morisaki, Soichiro; Suyama, Teruaki

    2017-10-01

    We investigate the internal structure and the mass-radius relation of neutron stars in a recently proposed scalar-tensor theory dubbed asymmetron in which a massive scalar field undergoes spontaneous scalarization inside neutron stars. We focus on the case where the Compton wavelength is shorter than 10 km, which has not been investigated in the literature. By solving the modified Einstein equations, either purely numerically or by partially using a semianalytic method, we find that not only the weakening of gravity by spontaneous scalarization but also the scalar force affect the internal structure significantly in the massive case. We also find that the maximum mass of neutron stars is larger for certain parameter sets than that in general relativity and reaches 2 M⊙ even if the effect of strange hadrons is taken into account. There is even a range of parameters where the maximum mass of neutron stars largely exceeds the threshold that violates the causality bound in general relativity.

  9. Characterization of the neutron field of the 241AmBe in a calibration room

    International Nuclear Information System (INIS)

    Vega C, H.R.; Gallego, E.; Lorente, A.

    2003-01-01

    The field of neutrons produced by an isotopic source of neutrons of 241 Am Be had been characterized. The characterization was carried out modeling those relevant details of the calibration room and simulating the neutron transport at different distances of the source. The calculated spectra were used to determine the equivalent environmental dose rate. A series of experiments were carried out with the Bonner sphere spectrometric system to measure the spectra in the same points where the calculations were carried out and with these spectra the rates of environmental dose were calculated. By means of a one sphere dosemeter type Berthold the rates of environmental dose were measured. To the one to compare the calculated spectra and measured its were found small differences in the group of the thermal neutrons due to the elementary composition used during the simulation. When comparing the derived rates starting from the calculated spectra with those measured it was found a maxim difference smaller to 13%. (Author)

  10. A method for evaluating personal dosemeters in workplace with neutron fields.

    Science.gov (United States)

    de Freitas Nascimento, Luana; Cauwels, Vanessa; Vanhavere, Filip

    2012-04-01

    Passive detectors, as albedo or track-etch, still dominate the field of neutron personal dosimetry, mainly due to their low-cost, high-reliability and elevated throughput. However, the recent appearance in the market of electronic personal dosemeters for neutrons presents a new option for personal dosimetry. In addition to passive detectors, electronic personal dosemeters necessitate correction factors, concerning their energy and angular response dependencies. This paper reports on the results of a method to evaluate personal dosemeters for workplace where neutrons are present. The approach here uses few instruments and does not necessitate a large mathematical workload. Qualitative information on the neutron energy spectrum is acquired using a simple spectrometer (Nprobe), reference values for H*(10) are derived from measurements with ambient detectors (Studsvik, Berthold and Harwell) and angular information is measured using personal dosemeters (electronic and bubbles dosemeters) disposed in different orientations on a slab phantom.

  11. Measurements of H*(10) in reference neutron fields using Bonner sphere spectrometry and LET spectrometry

    CERN Document Server

    Golnik, N; Králik, M

    2002-01-01

    A Bonner sphere spectrometer and the REM-2 recombination chamber were used for inter-comparison measurements of the neutron component of ambient dose equivalent, H sub n *(10) in reference neutron fields. The sup 2 sup 4 sup 1 Am-Be and sup 2 sup 5 sup 2 Cf neutron sources were exposed either free-in-air or placed in iron or paraffin filters. The REM-2 recombination chamber was used as a LET spectrometer. The agreement of H sub n *(10) values measured with both the methods was within experimental uncertainties of few percent. The determined neutron spectra were used for calculations of the REM-2 chamber response to H*(10).

  12. Miniature neutron sources: Thermal neutron sources and their users in the academic field

    International Nuclear Information System (INIS)

    Egelstaff, P.A.

    1992-01-01

    The three levels of thermal neutron sources are introduced - University laboratory sources infrastructure sources and world-class sources - and the needs for each kind and their inter-dependence will be emphasized. A description of the possibilities for University sources based on α-Be reactions or spontaneous fission emission is given, and current experience with them is described. A new generation of infrastructure sources is needed to continue the regional programs based on small reactors. Some possibilities for accelerator sources that could meet this need are considered

  13. Dynamic chaos in the tunnelling ionization produced by a strong low-frequency electromagnetic field

    International Nuclear Information System (INIS)

    Krainov, V P

    2014-01-01

    Ionization of atoms by a strong low-frequency linearly polarized electromagnetic field (the photon energy is small compared to the atomic ionization potential) is considered under new conditions compared to the well known Keldysh approach. The field strength is supposed to be small in comparison to the atomic field strength. But the Coulomb interaction of an electron with atomic core is assumed to be of the same order of magnitude as the interaction between an electron and the external electromagnetic field. It was shown that then classical electron motion in the continuum becomes chaotic (this is so-called dynamic chaos). Using the averaging procedure of Chirikov about the chaotic variation of the phase of motion, the considered Newton problem is transformed into the problem of nonlinear electron diffusion over energy scale. In this work we derive the classical electron energy averaged over fast chaotic oscillations of an electron in the final continuum state which takes into account both the Coulomb field and electromagnetic field. This energy is used for analytic calculation of the ionization rate of the ground atomic state into the low lying continuum state based on the Landau–Dykhne approximation (with exponential accuracy). We found that the ionization rate depends significantly on the field frequency. When field frequency decreases, the well known tunnelling limit has been obtained, and then the ionization rate does not depend on the field frequency. (paper)

  14. High-latitude dayside electric fields and currents during strong northward interplanetary magnetic field: Observations and model simulation

    International Nuclear Information System (INIS)

    Clauer, C.R.; Friis-Christensen, E.

    1988-01-01

    On July 23, 1983, the Interplanetary Magnetic Field turned strongly northward, becoming about 22 nT for several hours. Using a combined data set of ionospheric convection measurements made by the Sondre Stromfjord incoherent scatter radar and convection inferred from Greenland magnetometer measurements, we observe the onset of the reconfiguration of the high-latitude ionospheric currents to occur about 3 min following the northward IMF encountering the magnetopause. The large-scale reconfiguration of currents, however, appears to evolve over a period of about 22 min. Using a computer model in which the distribution of field-aligned current in the polar cleft is directly determined by the strength and orientation of the interplanetary electric field, we are able to simulate the time-varying pattern of ionospheric convection, including the onset of high-latitude ''reversed convection'' cells observed to form during the interval of strong northward IMF. These observations and the simulation results indicate that the dayside polar cap electric field observed during strong northward IMF is produced by a direct electrical current coupling with the solar wind. copyright American Geophysical Union 1988

  15. Neutron spectrometry in mixed fields: characterisation of the Ra-1- reactor workplace

    International Nuclear Information System (INIS)

    Gregori, B.; Carelli, J.; Cruzate, J.; Papadopulos, S.

    2006-01-01

    The characterisation of the neutron spectrum of a workplace is an essential dosimetric tool for improving the assessment of the personal equivalent dose of the workers. In addition, if the operational conditions of the facility are well defined, the set of field spectra obtained may be used as a reference for comparing the performance of different type of neutron detectors. Recently, using a neutron spectrometric system based on a set of moderated spheres with 3 He detector, the characterisation of the neutron spectra in workplaces of the Argentine Reactor No. 1 (R.A. -1) has been carried out. The spectrometric system consists of 12 spheres made of the high density polyethylene d mean δ =0.95 g cm 3 , with diameters between 3'' and 12'' and a proportional counter of 3 He, 4 atm of nominal pressure, Centronic trade mark, located in the centre of the spheres. The neutron response matrix was calculated using the M.C.N.P. -I.V.B. code and E.N.D.F./B-VI library in the energy range between thermal neutron and 100 MeV. The neutron spectrum was unfolded using the M.A.X.E.D. unfolding code. The validation of the spectrometric system was performed at Cea-Cadarache (France) with of 252 Cf, Am Be, and 252 Cf + D 2 O sources. Therefore, in this work, the spectral fluence of the field in the selected points of the facility (R.A.-1) has been presented and the ambient dose equivalent, H *(10), and the personal dose equivalent, Hp(10), have been derived from the neutron fluence, applying ICRP-74 recommended fluence to dose conversion factors. The quantities evaluated have uncertainties less than 15%, which is considered good enough for radiation protection requirements. (authors)

  16. Neutrons field in the neutronic measurements room of the Polytechnic University of Madrid; Campo de neutrones en la sala de medidas neutronicas de la Universidad Politecnica de Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A.; Rubio O, I. P., E-mail: hrvegacarrillo@yahoo.com.m [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, C/Jose Gutierrez Abascal No. 2, 28006 Madrid (Spain)

    2010-09-15

    Through of measurements and calculations of a Monte Carlo series has been characterized the neutronic field of the neutronic measurements room of Nuclear Engineering Department of the Polytechnic University of Madrid. The measurements were realized with the Bonner Spheres Spectrometer that allowed establish the spectra on the new stainless steel panel and at different distances measured regarding the source. The values of the speed of environmental equivalent dose were measured with an area monitor Bert hold Lb 6411. Through of Monte Carlo methods was built a detailed model of the room with the panel and the spectra were calculated and, with these the values of the environmental equivalent dose were obtained using the conversion coefficients of the ICRP 74 and the Bert hold Lb 6411 response. The calculated values were compared with those measured and was consistency among the results. (Author)

  17. Critical point in the QCD phase diagram for extremely strong background magnetic fields

    International Nuclear Information System (INIS)

    Endrödi, Gergely

    2015-01-01

    Lattice simulations have demonstrated that a background (electro)magnetic field reduces the chiral/deconfinement transition temperature of quantum chromodynamics for eB<1 GeV 2 . On the level of observables, this reduction manifests itself in an enhancement of the Polyakov loop and in a suppression of the light quark condensates (inverse magnetic catalysis) in the transition region. In this paper, we report on lattice simulations of 1+1+1-flavor QCD at an unprecedentedly high value of the magnetic field eB=3.25 GeV 2 . Based on the behavior of various observables, it is shown that even at this extremely strong field, inverse magnetic catalysis prevails and the transition, albeit becoming sharper, remains an analytic crossover. In addition, we develop an algorithm to directly simulate the asymptotically strong magnetic field limit of QCD. We find strong evidence for a first-order deconfinement phase transition in this limiting theory, implying the presence of a critical point in the QCD phase diagram. Based on the available lattice data, we estimate the location of the critical point.

  18. Time-Resolved Photoelectron Angular Distributions from Strong-Field Ionization of Rotating Naphthalene Molecules

    DEFF Research Database (Denmark)

    Hansen, Jonas Lerche; Stapelfeldt, Henrik; Dimitrovski, Darko

    2011-01-01

    A nanosecond laser pulse confines the spatial orientation of naphthalene in 1D or 3D while a femtosecond kick pulse initiates rotation of the molecular plane around the fixed long axis. Time-dependent photoelectron angular distributions (PADs), resulting from ionization by an intense femtosecond...... probe pulse, exhibit pronounced changes as the molecular plane rotates. Enhanced 3D alignment, occurring shortly after the kick pulse, provides strongly improved contrast in molecular-frame PADs. Calculations in the strong-field approximation show that the striking structures observed in the PADs...

  19. Drag force in strongly coupled { N }=4 supersymmetric Yang–Mills plasma in a magnetic field

    Science.gov (United States)

    Zhang, Zi-qiang; Ma, Ke; Hou, De-fu

    2018-02-01

    Applying AdS/CFT correspondence, we study the effect of a constant magnetic field { B } on the drag force associated with a heavy quark moving through a strongly-coupled { N }=4 supersymmetric Yang–Mills plasma. The quark is considered moving transverse and parallel to { B }. It is shown that for transverse case, the drag force is linearly dependent on { B } in all regions, while for parallel case, the drag force increases monotonously with increasing { B } and also reveals a linear behavior in the regions of strong { B }. In addition, we find that { B } has a more important effect in the transverse case than for the parallel.

  20. The measurement of internal stress fields in weldments and around cracks using high resolution neutron diffraction

    International Nuclear Information System (INIS)

    Allen, A.J.; Hutchings, M.T.; Windsor, C.G.

    1987-01-01

    The paper describes and illustrates the capability of neutron diffraction to measure the complete internal lattice macrostrain field, and hence the stress field, within steel components and weldments arising from their fabrication. A brief outline is given of the theory of the neutron method. The experimental considerations are discussed. The method is illustrated by its application to the measurement of the stress distribution in a:- uniaxially stressed mild steel rod, a double - V test weld, a tube-plate weld, and a cracked fatigue test specimen. (U.K.)

  1. Neutron study of crystal-field transitions in ErPO[sub 4

    Energy Technology Data Exchange (ETDEWEB)

    Loong, C.-K.; Soderholm, L.; Hammonds, J.P. (Argonne National Lab., IL (United States)); Abraham, M.M.; Boatner, L.A. (Oak Ridge National Lab., TN (United States)); Edelstein, N.M. (Lawrence Berkeley Lab., CA (United States))

    1992-01-01

    The crystal-field splitting of the Er[sup 3+] ground multiplet, [sup 4]I[sub 15/2], in ErPO[sub 4] is investigated by inelastic neutron scattering. Four excitations from the [Gamma][sub 7] ground state to the excited states and several transitions between the excited states have been identified. The observed transition energies and intensities are used to refine the parameters of the crystal-field potential. The calculated magnetic susceptibility, [chi](T), agrees well with experimental values from single-crystal measurements. A comparison of the neutron data with optical absorption and both nonresonance and resonance Raman scattering measurements has been made.

  2. Neutron study of crystal-field transitions in ErPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Loong, C.-K.; Soderholm, L.; Hammonds, J.P. [Argonne National Lab., IL (United States); Abraham, M.M.; Boatner, L.A. [Oak Ridge National Lab., TN (United States); Edelstein, N.M. [Lawrence Berkeley Lab., CA (United States)

    1992-12-01

    The crystal-field splitting of the Er{sup 3+} ground multiplet, {sup 4}I{sub 15/2}, in ErPO{sub 4} is investigated by inelastic neutron scattering. Four excitations from the {Gamma}{sub 7} ground state to the excited states and several transitions between the excited states have been identified. The observed transition energies and intensities are used to refine the parameters of the crystal-field potential. The calculated magnetic susceptibility, {chi}(T), agrees well with experimental values from single-crystal measurements. A comparison of the neutron data with optical absorption and both nonresonance and resonance Raman scattering measurements has been made.

  3. Note: versatile sample stick for neutron scattering experiments in high electric fields.

    Science.gov (United States)

    Bartkowiak, M; White, J S; Rønnow, H M; Prša, K

    2014-02-01

    We present a versatile high voltage sample stick that fits into all cryomagnets and standard cryostats at the Swiss Spallation Neutron Source, Paul Scherrer Institut, and which provides a low effort route to neutron scattering experiments that combine electric field with low temperature and magnetic field. The stick allows for voltages up to 5 kV and can be easily adapted for different scattering geometries. We discuss the design consideration and thermal behavior of the stick, and give one example to showcase the abilities of the device.

  4. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    International Nuclear Information System (INIS)

    Bastrukov, S I; Yang, J; Podgainy, D V; Weber, F

    2003-01-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameters taken from early and current works on transport coefficients of dense matter. It is found that the effect of viscosity is crucial for the lifetime of magneto-torsion vibrations but it does not appreciably affect the periods of this seismic mode which fall in the realm of periods of pulsed emission of soft gamma-ray repeaters and anomalous x-ray pulsars - young super-magnetized neutron stars, radiating, according to the magnetar model, at the expense of the magnetic energy release. Finally, we present arguments that the long periodic pulsed emission of these stars in a quiescent regime of radiation can be interpreted as a manifestation of weakly damped seismic magneto-torsion vibrations exhibiting the field induced spin polarization of baryon matter

  5. Experimental observation of strong radiation reaction in the field of an ultra-intense laser

    Science.gov (United States)

    Sarri, G.; Poder, K.; Tamburini, M.; di Piazza, A.; Keitel, C. H.; Zepf, M.

    2017-10-01

    Describing radiation reaction in an electromagnetic field is one of the most fundamental outstanding problems in electrodynamics. It consists of determining the dynamics of a charged particle fully taking into account self-forces (loosely referred to as radiation reaction) resulting from the radiation fields generated by the particle whilst it is accelerated. Radiation reaction has only been invoked to explain the radiative properties of powerful astrophysical objects, such as pulsars and quasars. From a theoretical standpoint, this phenomenon is subject of fervent debate and this impasse is worsened by the lack of experimental data, due to extremely high fields required to trigger these effects. Here, we report on the first experimental evidence of strong radiation reaction during the interaction of an ultra-relativistic electron beam with an intense laser field, beyond a purely classical description.

  6. A Simple Model of Fields Including the Strong or Nuclear Force and a Cosmological Speculation

    Directory of Open Access Journals (Sweden)

    David L. Spencer

    2016-10-01

    Full Text Available Reexamining the assumptions underlying the General Theory of Relativity and calling an object's gravitational field its inertia, and acceleration simply resistance to that inertia, yields a simple field model where the potential (kinetic energy of a particle at rest is its capacity to move itself when its inertial field becomes imbalanced. The model then attributes electromagnetic and strong forces to the effects of changes in basic particle shape. Following up on the model's assumption that the relative intensity of a particle's gravitational field is always inversely related to its perceived volume and assuming that all black holes spin, may create the possibility of a cosmic rebound where a final spinning black hole ends with a new Big Bang.

  7. Electric conductivity of TlInTe2 monocrystal in strong electric fields

    International Nuclear Information System (INIS)

    Zarbaliev, M.M.; Godzhaev, Eh.M.; Gadzhiev, V.A.

    1980-01-01

    Electric condUctivity of the TlInTe 2 single crystal in strong electric fields has been studied in the range of 77-300 K. The electron part of the TlInTe 2 dielectric constant has been found to be 4. The dependence of the activation energy of current carriers on the electric field strength is constructed and the value of the activation energy of current carriers in the absence of an electric field is determined by the extrapolation method. The results of the experiments are in good agreement with the Frenkel-Pool theory, and this affords grounds for asserting that the obtained dependences of electric conductivity on temperature and the electric field strength are defined by variation in the current carrier concentration due to action of the thermal-electron ionization mechanism

  8. Strong-field effects in Rabi oscillations between a single state and a superposition of states

    International Nuclear Information System (INIS)

    Zhdanovich, S.; Milner, V.; Hepburn, J. W.

    2011-01-01

    Rabi oscillations of quantum population are known to occur in two-level systems driven by spectrally narrow laser fields. In this work we study Rabi oscillations induced by shaped broadband femtosecond laser pulses. Due to the broad spectral width of the driving field, the oscillations are initiated between a ground state and a coherent superposition of excited states, or a ''wave packet,'' rather than a single excited state. Our experiments reveal an intricate dependence of the wave-packet phase on the intensity of the laser field. We confirm numerically that the effect is associated with the strong-field nature of the interaction and provide a qualitative picture by invoking a simple theoretical model.

  9. Resonance enhancement of two photon absorption by magnetically trapped atoms in strong rf-fields

    Science.gov (United States)

    Chakraborty, A.; Mishra, S. R.

    2018-01-01

    Applying a many mode Floquet formalism for magnetically trapped atoms interacting with a polychromatic rf-field, we predict a large two photon transition probability in the atomic system of cold 87Rb atoms. The physical origin of this enormous increase in the two photon transition probability is due to the formation of avoided crossings between eigen-energy levels originating from different Floquet sub-manifolds and redistribution of population in the resonant intermediate levels to give rise to the resonance enhancement effect. Other exquisite features of the studied atom-field composite system include the splitting of the generated avoided crossings at the strong field strength limit and a periodic variation of the single and two photon transition probabilities with the mode separation frequency of the polychromatic rf-field. This work can find applications to characterize properties of cold atom clouds in the magnetic traps using rf-spectroscopy techniques.

  10. First Detection of a Strong Magnetic Field on a Bursty Brown Dwarf: Puzzle Solved

    Science.gov (United States)

    Berdyugina, S. V.; Harrington, D. M.; Kuzmychov, O.; Kuhn, J. R.; Hallinan, G.; Kowalski, A. F.; Hawley, S. L.

    2017-09-01

    We report the first direct detection of a strong, 5 kG magnetic field on the surface of an active brown dwarf. LSR J1835+3259 is an M8.5 dwarf exhibiting transient radio and optical emission bursts modulated by fast rotation. We have detected the surface magnetic field as circularly polarized signatures in the 819 nm sodium lines when an active emission region faced the Earth. Modeling Stokes profiles of these lines reveals the effective temperature of 2800 K and log gravity acceleration of 4.5. These parameters place LSR J1835+3259 on evolutionary tracks as a young brown dwarf with the mass of 55+/- 4{M}{{J}} and age of 22 ± 4 Myr. Its magnetic field is at least 5.1 kG and covers at least 11% of the visible hemisphere. The active region topology recovered using line profile inversions comprises hot plasma loops with a vertical stratification of optical and radio emission sources. These loops rotate with the dwarf in and out of view causing periodic emission bursts. The magnetic field is detected at the base of the loops. This is the first time that we can quantitatively associate brown dwarf non-thermal bursts with a strong, 5 kG surface magnetic field and solve the puzzle of their driving mechanism. This is also the coolest known dwarf with such a strong surface magnetic field. The young age of LSR J1835+3259 implies that it may still maintain a disk, which may facilitate bursts via magnetospheric accretion, like in higher-mass T Tau-type stars. Our results pave a path toward magnetic studies of brown dwarfs and hot Jupiters.

  11. Quantum-orbit theory of high-order atomic processes in strong fields

    International Nuclear Information System (INIS)

    Milosevic, D.B.

    2005-01-01

    Full text: Atoms submitted to strong laser fields can emit electrons and photons of very high energies. These processes find a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits. The quantum-orbit formalism is particularly useful for high-order atomic processes in strong laser fields. For such multi-step processes there is an intermediate step during which the electron is approximately under the influence of the laser field only and can absorb energy from the field. This leads to the appearance of the plateau structures in the emitted electron or photon spectra. Usual examples of such processes are high-order harmonic generation (HHG) and high-order above threshold ionization (HATI). These structures were also observed in high-order above-threshold detachment, laser-assisted x-ray-atom scattering, laser-assisted electron-ion recombination, and electron-atom scattering. We will present high-order strong-field approximation (SFA) and show how the quantum-orbit formalism follows from it. This will be done for various above-mentioned processes. For HHG a classification of quantum orbits will be given [10) and generalized to the presence of a static field. The low-energy part of the HHG spectra and the enhancement of HHG near the channel closings can be explained taking into account a large number of quantum orbits. For HATI we will concentrate on the case of few-cycle laser pulse. The influence of the carrier-envelope relative phase on the HATI spectrum can easily be explained in terms of quantum orbits. The SFA and the quantum-orbit results will be compared with the results obtained by Dieter Bauer using ab initio solutions of the time-dependent Schroedinger equation. It will be shown that the Coulomb effects are important for low-energy electron spectra. Refs. 11 (author)

  12. Acceleration of neutral atoms in strong short-pulse laser fields.

    Science.gov (United States)

    Eichmann, U; Nubbemeyer, T; Rottke, H; Sandner, W

    2009-10-29

    A charged particle exposed to an oscillating electric field experiences a force proportional to the cycle-averaged intensity gradient. This so-called ponderomotive force plays a major part in a variety of physical situations such as Paul traps for charged particles, electron diffraction in strong (standing) laser fields (the Kapitza-Dirac effect) and laser-based particle acceleration. Comparably weak forces on neutral atoms in inhomogeneous light fields may arise from the dynamical polarization of an atom; these are physically similar to the cycle-averaged forces. Here we observe previously unconsidered extremely strong kinematic forces on neutral atoms in short-pulse laser fields. We identify the ponderomotive force on electrons as the driving mechanism, leading to ultrastrong acceleration of neutral atoms with a magnitude as high as approximately 10(14) times the Earth's gravitational acceleration, g. To our knowledge, this is by far the highest observed acceleration on neutral atoms in external fields and may lead to new applications in both fundamental and applied physics.

  13. Study of Strong Magnetic Fields Using Parametric Instability in a Magnetised Plasma

    Science.gov (United States)

    Ivanov, V. V.; Maximov, A. V.; Anderson, A. A.; Bauer, B. S.; Yates, K.

    2014-10-01

    Generation of strong magnetic fields with a strength of 10--50 MG plays a key role in some recent conceptions for controlled fusion. We suggest a laser method for measuring the local magnetic field, B > 10 MG, based on the parametric decay of the laser radiation to ω/2 and 3/2 ω harmonics which are generated in the area with the electron density of a quarter of the critical plasma density. Spectral components of parametric harmonics carry a signature of both the plasma temperature and strong magnetic field. A two-plasmon decay of laser radiation was studied in a magnetized plasma at the 1 MA pulsed power Zebra facility at the University of Nevada, Reno. Dense magnetized plasma with a magnetic field of 1--3 MG was created by the 1MA current flowing in the metal rod 0.7--2 mm in diameter. Radiation from the narrowband laser with intensity >1014 W/cm2 was focused on the surface plasma. Spectrum of the backscattering 3/2 ω harmonic included ``red'' and ``blue'' shifted components. Large 2-3 nm shifts of spectral components was identified with laser heating of plasma. Components with a small 0.1 nm spectral shift of may be linked to the magnetic field. Work was supported by the DOE Grant DE-SC0008824 and DOE/NNSA UNR Grant DE-FC52-06NA27616.

  14. Chiral soliton lattice and charged pion condensation in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, Tomáš [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Yamamoto, Naoki [Department of Physics, Keio University,Yokohama 223-8522 (Japan)

    2017-04-21

    The Chiral Soliton Lattice (CSL) is a state with a periodic array of topological solitons that spontaneously breaks parity and translational symmetries. Such a state is known to appear in chiral magnets. We show that CSL also appears as a ground state of quantum chromodynamics at nonzero chemical potential in a magnetic field. By analyzing the fluctuations of the CSL, we furthermore demonstrate that in strong but achievable magnetic fields, charged pions undergo Bose-Einstein condensation. Our results, based on a systematic low-energy effective theory, are model-independent and fully analytic.

  15. Attosecond counter-rotating-wave effect in xenon driven by strong fields

    Science.gov (United States)

    Anand, M.; Pabst, Stefan; Kwon, Ojoon; Kim, Dong Eon

    2017-05-01

    We investigate the subfemtosecond dynamics of a highly excited xenon atom coherently driven by a strong control field at which the Rabi frequency of the system is comparable to the frequency of a driving laser. The widely used rotating-wave approximation breaks down at such fields, resulting in features such as the counter-rotating-wave (CRW) effect. We present a time-resolved observation of the CRW effect in the highly excited 4 d-1n p xenon using attosecond transient absorption spectroscopy. Time-dependent many-body theory confirms the observation and explains the various features of the absorption spectrum seen in experiment.

  16. Integrated electronic transport and thermometry at milliKelvin temperatures and in strong magnetic fields.

    Science.gov (United States)

    Samkharadze, N; Kumar, A; Manfra, M J; Pfeiffer, L N; West, K W; Csáthy, G A

    2011-05-01

    We fabricated a He-3 immersion cell for transport measurements of semiconductor nanostructures at ultra low temperatures and in strong magnetic fields. We have a new scheme of field-independent thermometry based on quartz tuning fork Helium-3 viscometry which monitors the local temperature of the sample's environment in real time. The operation and measurement circuitry of the quartz viscometer is described in detail. We provide evidence that the temperature of two-dimensional electron gas confined to a GaAs quantum well follows the temperature of the quartz viscometer down to 4 mK.

  17. The Conformer Specific Rotational Spectrum of 3-PHENYLPROPIONITRILE Utilizing Strong Field Coherence Breaking

    Science.gov (United States)

    Fritz, Sean; Hernandez-Castillo, Alicia O.; Abeysekera, Chamara; Zwier, Timothy S.

    2017-06-01

    The 8-18 GHz conformer specific rotational spectrum of gauche- and anti-3-phenylpropionitrile (C6H5-CH2-CH2-CN) conformers has been recorded using the strong field coherence breaking (SFCB) technique [1] with a modified line picking scheme for multiple selective excitations (MSE). As the recombination product of benzyl and cyanomethyl resonance-stabilized radicals, 3-phenylpropionitrile is a likely component of the complex organics in Titan's atmosphere, motivating its structural characterization. Details of the modified line picking scheme, hyperfine constants and relative population ratios of the two conformers will be presented. [1] A.O Hernandez-Castillo, Chamara Abeysekera, Brian M. Hays, Timothy S. Zwier, "Broadband Multi-Resonant Strong Field Coherence Breaking as a Tool for Single Isomer Microwave Spectroscopy." J. Chem. Phys. 145, 114203 (2016).

  18. Null Geodesics and Strong Field Gravitational Lensing of Black Hole with Global Monopole

    International Nuclear Information System (INIS)

    Iftikhar, Sehrish; Sharif, M.

    2015-01-01

    We study two interesting features of a black hole with an ordinary as well as phantom global monopole. Firstly, we investigate null geodesics which imply unstable orbital motion of particles for both cases. Secondly, we evaluate deflection angle in strong field regime. We then find Einstein rings, magnifications, and observables of the relativistic images for supermassive black hole at the center of galaxy NGC4486B. We also examine time delays for different galaxies and present our results numerically. It is found that the deflection angle for ordinary/phantom global monopole is greater/smaller than that of Schwarzschild black hole. In strong field limit, the remaining properties of these black holes are quite different from the Schwarzschild black hole

  19. Spin polarization in high density quark matter under a strong external magnetic field

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; Da Providência, João; Providência, Constança

    2016-01-01

    In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor-type interact......In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor...... phase appears in the wide range of the quark chemical potential. In both the interactions, the quark mass in zero and small chemical potential regions increases which indicates that the chiral symmetry breaking is enhanced, namely the magnetic catalysis occurs....

  20. Higher Order QED Contributions to the Atomic Structure at Strong Central Fields

    International Nuclear Information System (INIS)

    Mokler, P H

    2007-01-01

    An accurate determination of the precise structure of highly charged, very heavy ions is crucial for understanding QED at strong fields. The experimental advances in the spectroscopy of very heavy, highly charged ions-in particular H-, He- and Li-like species-are reviewed: Presently the ground state Lamb shift for H-like U ions is measured on a 1% level of accuracy; the screening terms in two-electron QED have just been touched by experiments for He-like U; and two-loop QED terms have been determined with ultimate accuracy for Li-like heavy species. The different approaches on QED measurements in strong fields will be discussed and the results compared to theory

  1. Carrier envelope phase effects in molecular dissociation by few-cycle strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Dimitriou, K I [Hellenic Army Academy, Department of Natural Science and Applications, Vari (Greece); Constantoudis, V [Institute of Microelectronics, NCSR ' Demokritos' , Athens (Greece); Mercouris, Th [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens (Greece); Nicolaides, C A, E-mail: dimi@eie.g [Physics Department, National Technical University, Athens (Greece)

    2009-11-01

    Multiphoton molecular dissociation produced by few-cycle strong laser fields of mid-infrared wave lengths is studied theoretically. The dependence of the carrier envelope phase (CEP) on the photodissociation dynamics is investigated using both quantum and classical nonperturbative approaches. Our results show that dissociation is affected by the changes of the CEP. A detailed analysis shows that this dependence is sensitive to the duration and to the shape of the pulse.

  2. Time profile of harmonics generated by a single atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Antoine, P.; Piraux, B.; Maquet, A.

    1995-01-01

    We show that the time profile of the harmonics emitted by a single atom exposed to a strong electromagnetic field may be obtained through a wavelet or a Gabor analysis of the acceleration of the atomic dipole. This analysis is extremely sensitive to the details of the dynamics and sheds some light on the competition between the atomic excitation or ionization processes and photon emission. For illustration we study the interaction of atomic hydrogen with an intense laser pulse

  3. Role of high-order dispersion on strong-field laser-molecule interactions

    Science.gov (United States)

    Dantus, Marcos; Nairat, Muath

    2016-05-01

    Strong-field (1012- 1016 W/ cm2) laser-matter interactions are characterized by the extent of fragmentation and charge of the resulting ions as a function of peak intensity and pulse duration. Interactions are influenced by high-order dispersion, which is difficult to characterize and compress. Fourth-order dispersion (FOD) causes a time-symmetric pedestal, while third-order dispersion (TOD) causes a leading (negative) or following (positive) pedestal. Here, we report on strong-field interactions with pentane and toluene molecules, tracking the molecular ion and the doubly charged carbon ion C2+ yields as a function of TOD and FOD for otherwise transform-limited (TL) 35fs pulses. We find TL pulses enhance molecular ion yield and suppress C2+ yield, while FOD reverses this trend. Interestingly, the leading pedestal in negative TOD enhances C2+ yield compared to positive TOD. Pulse pedestals are of particular importance in strong-field science because target ionization or alignment can be induced well before the main pulse arrives. A pedestal following an intense laser pulse can cause sequential ionization or accelerate electrons causing cascaded ionization. Control of high-order dispersion allows us to provide strong-field measurements that can help address the mechanisms responsible for different product ions in the presence and absence of pedestals. Financial support of this work comes from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, DOE SISGR (DE-SC0002325)

  4. Unilateral irradiation of pigs in a mixed neutrons+gamma field. Early results

    International Nuclear Information System (INIS)

    Lemaitre, Guy; Maas, Jean.

    1982-08-01

    Pigs (16-20kg) were irradiated with 60 Co gamma or in a mixed field (neutron + gamma from the pulsed reactor SILENE). Pigs were unilaterally exposed by the left side. Each experimental group was composed of twelve animals and one control. Within the dose range explored (reference dose is mid-line tissue dose): 4-9.8 Gy of gamma rays only; 4.6 - 5.7 Gy of neutrons and gamma rays, pigs presented the haematopioetic form of the acute radiation sickness. At 5 Gy mixed field was more harmful than gamma rays only. Therefore the numerical value of neutron RBE (lethality 50 p cent within 30 days) is more than one. Experiments will be carried out in order to determine RBE values more accurately. Bone marrow dose will also be determined [fr

  5. μ-TPC: a future standard instrument for low energy neutron field characterization

    International Nuclear Information System (INIS)

    Maire, D.; Lebreton, L.; Petit, M.; Billard, J.; Bourrion, O.; Bosson, G.; Guillaudin, O.; Lamblin, J.; Mayet, F.; Medard, J.; Muraz, J.F.; Richer, J.P.; Riffard, Q.; Santos, D.

    2013-06-01

    In order to measure energy of neutron fields, with energy ranging from 8 keV to 1 MeV, a new primary standard is being developed at the IRSN (Institute for Radioprotection and Nuclear Safety). This project, μ-TPC (Micro Time Projection Chamber), carried out in collaboration with the LPSC (Laboratoire de Physique Subatomique et de Cosmologie), is based on the nucleus recoil detector principle. The instrument will be presented with the associated method to measure the neutron energy. This article will emphasize the proton energy calibration procedure and energy measurements of a neutron field produced at 127 keV on the IRSN facility AMANDE. Finally the COMIMAC device, dedicated to the calibration, will be described. This original device, developed at the LPSC, is able to produce proton and electron beams with an accurate energy ranging from 1 keV to 50 keV. (authors)

  6. Simulation of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation

    International Nuclear Information System (INIS)

    Kluson, J.; Jansky, B.

    2009-01-01

    Reference mixed neutron-gamma fields are used for test and calibration of dosimetric and spectrometric systems, intercomparison measurements, and benchmark tests and represent experimental base for reactor studies. Set of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation was build in the NRI Rez. Extended sets of measurements and simulation calculations were done to describe the reference mixed field dosimetry and spectral characteristics with best achievable precision. The Monte Carlo technique was used for different experimental setups models description, comparison and verification and field characteristics simulation. Effects (hardly distinguishable experimentally) were also studied ( contributions from individual parts of experimental setup, field individual components and next effects as shadow shield cones transparency, etc.). Some results and main conclusions of these studies and calculations are presented and discussed. (authors)

  7. Ultra-High Field Magnets for X-Ray and Neutron Scattering using High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Broholm, C. [Johns Hopkins Univ., Baltimore, MD (United States); Bird, M. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Breneman, Bruce C. [General Atomics, San Diego, CA (United States); Coffey, Michael [Cryomagnetics, Oak Ridge, TN (United States); Cutler, Roy I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duckworth, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erwin, R. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Hahn, Seungyong [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Hernandez, Yamali [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Herwig, Kenneth W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holland, Leo D. [General Atomics, San Diego, CA (United States); Lonergan, Kevin M. [Oxford Instruments, Abingdon (United Kingdom); Melhem, Ziad [Oxford Instruments, Abingdon (United Kingdom); Minter, Stephen J. [Cryomagnetics, Oak Ridge, TN (United States); Nelson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Paranthaman, M. Parans [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pierce, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruff, Jacob [Cornell Univ., Ithaca, NY (United States); Shen, Tengming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherline, Todd E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smeibidl, Peter G. [Helmholtz-Zentrum Berlin (HZB), (Germany); Tennant, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); van der Laan, Danko [Advanced Conductor Technologies, LLC, Boulder, CO (United States); Wahle, Robert J. [Helmholtz-Zentrum Berlin (HZB), (Germany); Zhang, Yifei [SuperPower, Inc., Schenectady, NY (United States)

    2017-01-01

    X-ray and neutron scattering techniques are capable of acquiring information about the structure and dynamics of quantum matter. However, the high-field magnet systems currently available at x-ray and neutron scattering facilities in the United States are limited to fields of 16 tesla (T) at maximum, which precludes applications that require and/or study ultra-high field states of matter. This gap in capability—and the need to address it—is a central conclusion of the 2005 National Academy of Sciences report by the Committee on Opportunities in High Magnetic Field Science. To address this gap, we propose a magnet development program that would more than double the field range accessible to scattering experiments. With the development and use of new ultra-high field–magnets, the program would bring into view new worlds of quantum matter with profound impacts on our understanding of advanced electronic materials.

  8. Angular-momentum-assisted dissociation of CO in strong optical fields

    Science.gov (United States)

    Mullin, Amy; Ogden, Hannah; Murray, Matthew; Liu, Qingnan; Toro, Carlos

    2017-04-01

    Filaments are produced in CO gas by intense, chirped laser pulses. Visible emission from C2 is observed as a result of chemical reactions of highly excited CO. At laser intensities greater than 1014 W cm-2, the C2 emission shows a strong dependence on laser polarization. Oppositely chirped pulses of light with ω0 = 800 nm are recombined spatially and temporally to generate angularly accelerating electric fields (up to 30 THz) that either have an instantaneous linear polarization or act as a dynamic polarization grating that oscillates among linear and circular polarizations. The angularly accelerating linear polarization corresponds to an optical centrifuge that concurrently drives molecules into high rotational states (with J 50) and induces strong-field dissociation. Higher order excitation is observed for the time-varying laser polarization configuration that does not induce rotational excitation. The results indicate that the presence of rotational angular momentum lowers the threshold for CO dissociation in strong optical fields by coupling nuclear and electronic degrees of freedom. Support from NSF CHE-1058721 and the University of Maryland.

  9. Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seipt, Daniel

    2012-12-20

    The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10{sup 24} W/cm{sup 2} and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton

  10. Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering

    International Nuclear Information System (INIS)

    Seipt, Daniel

    2012-01-01

    The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10 24 W/cm 2 and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton scattering. An

  11. Investigation of Workplace-like Calibration Fields via a Deuterium-Tritium (D-T) Neutron Generator.

    Science.gov (United States)

    Mozhayev, Andrey V; Piper, Roman K; Rathbone, Bruce A; McDonald, Joseph C

    2017-04-01

    Radiation survey meters and personal dosimeters are typically calibrated in reference neutron fields based on conventional radionuclide sources, such as americium-beryllium (Am-Be) or californium-252 (Cf), either unmodified or heavy-water moderated. However, these calibration neutron fields differ significantly from the workplace fields in which most of these survey meters and dosimeters are being used. Although some detectors are designed to yield an approximately dose-equivalent response over a particular neutron energy range, the response of other detectors is highly dependent upon neutron energy. This, in turn, can result in significant over- or underestimation of the intensity of neutron radiation and/or personal dose equivalent determined in the work environment. The use of simulated workplace neutron calibration fields that more closely match those present at the workplace could improve the accuracy of worker, and workplace, neutron dose assessment. This work provides an overview of the neutron fields found around nuclear power reactors and interim spent fuel storage installations based on available data. The feasibility of producing workplace-like calibration fields in an existing calibration facility has been investigated via Monte Carlo simulations. Several moderating assembly configurations, paired with a neutron generator using the deuterium tritium (D-T) fusion reaction, were explored.

  12. Development of highly efficient proton recoil counter telescope for absolute measurement of neutron fluences in quasi-monoenergetic neutron calibration fields of high energy

    International Nuclear Information System (INIS)

    Shikaze, Yoshiaki; Tanimura, Yoshihiko; Saegusa, Jun; Tsutsumi, Masahiro

    2010-01-01

    Precise calibration of monitors and dosimeters for use with high energy neutrons necessitates reliable and accurate neutron fluences being evaluated with use of a reference point. A highly efficient Proton Recoil counter Telescope (PRT) to make absolute measurements with use of a reference point was developed to evaluate neutron fluences in quasi-monoenergetic neutron fields. The relatively large design of the PRT componentry and relatively thick, approximately 2 mm, polyethylene converter contributed to high detection efficiency at the reference point over a large irradiation area at a long distance from the target. The polyethylene converter thickness was adjusted to maintain the same carbon density per unit area as the graphite converter for easy background subtraction. The high detection efficiency and thickness adjustment resulted in efficient absolute measurements being made of the neutron fluences of sufficient statistical precision over a short period of time. The neutron detection efficiencies of the PRT were evaluated using MCNPX code at 2.61x10 -6 , 2.16x10 -6 and 1.14x10 -6 for the respective neutron peak energies of 45, 60 and 75 MeV. The neutron fluences were determined to have been evaluated at an uncertainty of within 6.5% using analysis of measured data and the detection efficiencies. The PRT was also designed so as to be capable of simultaneously obtaining TOF data. The TOF data also increased the reliability of neutron fluence measurements and provided useful information for use in interpreting the source of proton events.

  13. Experimental study of transport of relativistic electron beams in strong magnetic mirror field

    Science.gov (United States)

    Sakata, Shohei; Kondo, Kotaro; Bailly-Grandvaux, Mathiu; Bellei, Claudio; Santos, Joao; Firex Project Team

    2015-11-01

    Relativistic electron beams REB produced by ultra high intense laser pulses have generally a large divergence angle that results in degradation of energy coupling between the REB and a fuel core in the fast ignition scheme. Guiding and focusing of the REB by a strong external magnetic field was proposed to achieve high efficiency. We investigated REB transport through 50 μm or 250 μm thick plastic foils CuI doped under external magnetic fields, in magnetic mirror configurations of 1.2 or 4 mirror ratio. The experiment was carried out at the GEKKO XII and LFEX laser facility. Spatial pattern of the REB was measured by coherent transition radiation and/or Cu Ka x ray emission from the rear surface of the foil targets. Strong collimation of the REB by the external magnetic field was observed with 50 μm thick plastic targets, while the REB scattered in 250 μm thick targets. The experimental results are compared with computer simulations to understand the physical mechanisms of the REB transport in the external magnetic field. This work is supported by NIFS (Japan), MEXT/JSPS KAKENHI (Japan), JSPS Fellowship (Japan), ANR (France) and COST (Europe).

  14. Numerical analysis of blood flow in realistic arteries subjected to strong non-uniform magnetic fields

    International Nuclear Information System (INIS)

    Kenjeres, Sasa

    2008-01-01

    The paper reports on a comprehensive mathematical model for simulations of blood flow under the presence of strong non-uniform magnetic fields. The model consists of a set of Navier-Stokes equations accounting for the Lorentz and magnetisation forces, and a simplified set of Maxwell's equations (Biot-Savart/Ampere's law) for treating the imposed magnetic fields. The relevant hydrodynamic and electromagnetic properties of human blood were taken from the literature. The model is then validated for different test cases ranging from a simple cylindrical geometry to real-life right-coronary arteries in humans. The time-dependency of the wall-shear-stress for different stenosis growth rates and the effects of the imposed strong non-uniform magnetic fields on the blood flow pattern are presented and analysed. It is concluded that an imposed non-uniform magnetic field can create significant changes in the secondary flow patterns, thus making it possible to use this technique for optimisations of targeted drug delivery

  15. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    CERN Document Server

    Bastrukov, S I; Podgainy, D V; Weber, F

    2003-01-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameter...

  16. Inverse beta decay of arbitrarily polarized neutrons in a magnetic field

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 62; Issue 5. Inverse beta decay of arbitrarily polarized neutrons in a magnetic field. Kaushik Bhattacharya Palash B Pal. Research Articles Volume 62 Issue 5 May 2004 pp 1041-1058. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Doublet channel neutron-deuteron scattering in leading order effective field theory

    International Nuclear Information System (INIS)

    Blankleider, B.; Gegelia, J.

    2001-01-01

    The doublet channel neutron-deuteron scattering amplitude is calculated in leading order effective field theory (EFT). It is shown that this amplitude does not depend on a constant contact interaction three-body force. Satisfactory agreement with available data is obtained when only two-body forces are included

  18. Dosimetry of the Embalse nuclear power plant neutron/gamma mixed fields

    International Nuclear Information System (INIS)

    Salas, C.A.

    1990-01-01

    The aim of this work is to describe the method used at the Embalse nuclear power plant for carrying out personal dosimetry of the agents affected to the tasks on the Embalse nuclear power plant neutron-gamma mixed fields. (Author) [es

  19. Characterisation of neutron fields around high-energy x-ray radiotherapy machines

    Czech Academy of Sciences Publication Activity Database

    Králík, M.; Turek, Karel

    2004-01-01

    Roč. 110, 1-4 (2004), s. 503-507 ISSN 0144-8420 Institutional research plan: CEZ:AV0Z1048901 Keywords : radiotherapy machines * neutron fields * high-energy Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 0.617, year: 2003

  20. Process γγ → νν-bar in a strong magnetic field

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Mikheev, N.V.; Rumyantsev, D.A.

    2003-01-01

    The three-vertex loop amplitude in a strong magnetic field are analyzed in a general form by using the asymptotic behavior of the electron propagator in an external field. The process γγ → νν-bar is studied in terms of the scalar-vector-vector (SVV), pseudoscalar-vector-vector (PVV), vector-vector-vector (VVV), and axial-vector-vector-vector (AVV) combinations of couplings. It is shown that only in the case of the SVV combination does the amplitude grow linearly with increasing magnetic-field strength, the amplitudes evaluated with the other combinations of couplings (PVV, VVV, and AVV) featuring no linearly increasing terms. The process γγ → νν-bar is also studied within the left-right model, which is an extension of the Standard Model of electroweak interactions and which may involve an effective scalar ννee coupling. Possible astrophysical manifestations of this process are discussed

  1. Characteristics of electron emission from PZT ferroelectric cathode under strong accelerating field

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Yasushi [Department of Energy Sciences, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama (Japan)]. E-mail: hayashi@es.titech.ac.jp; Hotta, Eiki [Department of Energy Sciences, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama (Japan); Flechtner, Donald [High Voltage Laboratory, Cornell University, Ithaca, NY (United States)

    2002-02-07

    We have studied emission characteristics of a PZT ferroelectric cathode under the influence of a strong accelerating field by varying the triggering conditions. The beam current pulse reveals a rising and a steady phase. In the rising phase, the time variation of the beam current is found to be linearly dependent on both the trigger voltage and the diode voltage at the time when the current starts. In the steady phase, field emission characteristics are observed. The results show that the diode voltage is not only accelerating the emitted electrons but also assisting the electron emission from the ferroelectric cathode. An empirical model is proposed and is found to yield a reasonable beam current pulse when the electric field on the surface of the cathode is uniformly distributed. It also provides us with a new possibility to diagnose the emission process of a ferroelectric electron gun. (author)

  2. Metal-insulator crossover in superconducting cuprates in strong magnetic fields

    International Nuclear Information System (INIS)

    Marchetti, P.A.; Su Zhaobin; Yu Lu

    2001-02-01

    The metal-insulator crossover of the in-plane resistivity upon temperature decrease, recently observed in several classes of cuprate superconductors, when a strong magnetic field suppresses the superconductivity, is explained using the U(1)xSU(2) Chern-Simons gauge field theory. The origin of this crossover is the same as that for a similar phenomenon observed in heavily underdoped cuprates without magnetic field. It is due to the interplay between the diffusive motion of the charge carriers and the 'peculiar' localization effect due to short-range antiferromagnetic order. We also calculate the in-plane transverse magnetoresistance which is in a fairly good agreement with available experimental data. (author)

  3. The process γγ → νν-bar in a strong magnetic field

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Mikheev, N.V.; Rumyantsev, D.A.

    2003-01-01

    A general analysis of the three-vertex loop amplitude in a strong magnetic field, based on the asymptotic form of the electron propagator in the field, is performed. In order to investigate the photon-neutrino process γγ → νν-bar, the vertex combinations of the scalar-vector-vector (SVV), pseudoscalar- vector-vector (PVV), 3-vector (VVV), and axial-vector-vector (AVV) types are considered. It is shown that only the SVV amplitude grows linearly with the magnetic-field strength, while in the other amplitudes, PVV, VVV, and AVV, the linearly growing terms are cancelled. The process γγ → νν-bar is investigated in the left-right-symmetric extension of the standard model of electroweak interaction, where the effective scalar ννee coupling could exist. Possible astrophysical manifestations of the considered process are discussed [ru

  4. Control and dynamics of attosecond electron wave packets in strong laser fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier; Lopez-Martens, R.; Valentin, C.; Balcou, P.; Kazamias, S.; Mauritsson, J.; Gaarde, M.B.; Schafer, K.J.; Mairess, Y.; Wabnitz, H.; Boutu, W.; Salieres, P.

    2005-01-01

    Full text: Trains of attosecond pulses, emerging from the phase-locking of high-order harmonics generated in a strong laser field are now being routinely produced and characterized in a few laser laboratories. Attosecond pulse trains (APTs) are flexible attosecond sources, since the amplitude and relative phase of the spectral components (the harmonics) can be tailored, allowing us to vary both the duration and the carrier frequency of the pulses. Attosecond pulses interacting with a gas of atoms generate electron wave packets (EWPs), which are temporally localized with approximately the same duration as the attosecond pulses. In contrast to the tunneling electron wave packets giving rise to processes such as high-order harmonic generation and above-threshold-ionization (ATI), the properties of these EWPs are inherited from the attosecond pulses through the single-photon ionization step. Thus the energy and temporal characteristics of the EWPs can be varied independently of the process under investigation, by controlling the properties of the attosecond pulses. This talk will describe two recent experiments done in Lund. First we report on the generation, compression and delivery on target of ultrashort extreme-ultraviolet light pulses using external amplitude and phase control. The APT is synthesized from the 13 th to 35 th harmonics of a 35 fs Ti:sapphire laser. The harmonics are generated by focusing the laser beam into a window-less gas cell, filled with argon. To achieve the required on-target attosecond pulses, the harmonics are filtered spatially, using a fixed aperture, and spectrally using aluminum filters. The aluminum filters also serve the purpose of compressing the attosecond pulses, using the negative group-delay dispersion of aluminum to compensate for the intrinsic positive chirp of the attosecond pulses. This experiment demonstrates a practical method for the synthesis and control of attosecond waveforms, and in this case the production of pulses

  5. Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum

    Science.gov (United States)

    Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi

    2006-05-01

    Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.

  6. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields

    Science.gov (United States)

    Zhu, Wuming; Trickey, S. B.

    2017-12-01

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

  7. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields.

    Science.gov (United States)

    Zhu, Wuming; Trickey, S B

    2017-12-28

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B

  8. An automated analysis workflow for optimization of force-field parameters using neutron scattering data

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Vickie E.; Borreguero, Jose M. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Bhowmik, Debsindhu [Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Ganesh, Panchapakesan; Sumpter, Bobby G. [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Proffen, Thomas E. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Goswami, Monojoy, E-mail: goswamim@ornl.gov [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States)

    2017-07-01

    Graphical abstract: - Highlights: • An automated workflow to optimize force-field parameters. • Used the workflow to optimize force-field parameter for a system containing nanodiamond and tRNA. • The mechanism relies on molecular dynamics simulation and neutron scattering experimental data. • The workflow can be generalized to any other experimental and simulation techniques. - Abstract: Large-scale simulations and data analysis are often required to explain neutron scattering experiments to establish a connection between the fundamental physics at the nanoscale and data probed by neutrons. However, to perform simulations at experimental conditions it is critical to use correct force-field (FF) parameters which are unfortunately not available for most complex experimental systems. In this work, we have developed a workflow optimization technique to provide optimized FF parameters by comparing molecular dynamics (MD) to neutron scattering data. We describe the workflow in detail by using an example system consisting of tRNA and hydrophilic nanodiamonds in a deuterated water (D{sub 2}O) environment. Quasi-elastic neutron scattering (QENS) data show a faster motion of the tRNA in the presence of nanodiamond than without the ND. To compare the QENS and MD results quantitatively, a proper choice of FF parameters is necessary. We use an efficient workflow to optimize the FF parameters between the hydrophilic nanodiamond and water by comparing to the QENS data. Our results show that we can obtain accurate FF parameters by using this technique. The workflow can be generalized to other types of neutron data for FF optimization, such as vibrational spectroscopy and spin echo.

  9. Evolution of the surface magnetic field of rotating proto-neutron stars

    Science.gov (United States)

    Obergaulinger, M.; Aloy, M. Á.

    2017-12-01

    We study the evolution of the field on the surface of proto-neutron stars in the immediate aftermath of stellar core collapse by analyzing the results of self-consistent, axisymmetric simulations of the cores of rapidly rotating high-mass stars. To this end, we compare the field topology and the angular spectra of the poloidal and toroidal field components over a time of about one seconds for cores. Both components are characterized by a complex geometry with high power at intermediate angular scales. The structure is mostly the result of the accretion of magnetic flux embedded in the matter falling through the turbulent post-shock layer onto the PNS. Our results may help to guide further studies of the long-term magneto-thermal evolution of proto-neutron stars. We find that the accretion of stellar progenitor layers endowed with low or null magnetization bury the magnetic field on the PNS surface very effectively.

  10. Improvement of neutron irradiation field of research reactors for BNCT

    International Nuclear Information System (INIS)

    Aizawa, Otohiko

    1992-01-01

    The modification of research reactors for an improvement of the irradiation field for BNCT has been investigated in comparison with the field characteristics of the 'old' configuration at the Musashi reactor. The new point of this study is that the evaluation has been done by using an arrangement including both the facility structure and a whole-body phantom, and also by considering the whole-body absorbed dose. (author)

  11. Neutron field characterization at the independent spent fuel storage installation of the Trillo nuclear power plant.

    Science.gov (United States)

    Campo, Xandra; Méndez, Roberto; Embid, Miguel; Ortego, Alberto; Novo, Manuel; Sanz, Javier

    2018-05-01

    Neutron fields inside and outside the independent spent fuel storage installation of Trillo Nuclear Power Plant are characterized exhaustively in terms of neutron spectra and ambient dose equivalent, measured by Bonner sphere system and LB6411 monitor. Measurements are consistent with storage casks and building shield characteristics, and also with casks distribution inside the building. Outer values at least five times lower than dose limit for free access area are found. Measurements with LB6411 and spectrometer are consistent with each other. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Neutron Star masses from the Field Correlator Method Equation of State

    Directory of Open Access Journals (Sweden)

    Zappalà D.

    2014-04-01

    Full Text Available We analyse the hadron-quark phase transition in neutron stars by confronting the hadronic Equation of State (EoS obtained according to the microscopic Brueckner-Hartree-Fock many body theory, with the quark matter EoS derived within the Field Correlator Method. In particular, the latter EoS is only parametrized in terms of the gluon condensate and the large distance quark-antiquark potential, so that the comparison of the results of this analysis with the most recent measurements of heavy neutron star masses provides some physical constraints on these two parameters.

  13. Neutron reflectivity studies of electric field driven structural transformations of surfactants

    CERN Document Server

    Majewski, J; Burgess, I; Zamlynny, V; Szymanski, G; Lipkowski, J; Satija, S

    2002-01-01

    We employed electrochemical methods together with in situ neutron reflectometry to describe the aggregation of organic surfactant molecules at a solid-liquid interface. The neutron reflectometry allowed us to determine the surface coverage, thickness, roughness and the relative positions of the aggregates. We found that the applied electric field may be used to reversibly manipulate the architecture of the organic molecules: from uniform monolayers to adsorbed hemi-micelles. These studies are expected to provide a new insight into the roles played by entropic and electrostatic forces in complex fluids or biomaterials. (orig.)

  14. Diversity in Neutron Stars: X-ray Observations of High-Magnetic-Field Radio Pulsars

    Science.gov (United States)

    Kaspi, Victoria M.

    2011-09-01

    Young neutron stars show a surprising diversity in observational behavior. Many different `classes' of these objects are presently inferred, including rotation-powered pulsars, magnetars, CCOs, INSs, among others. In this presentation I review a critical group of neutron stars that sit at the juncture of multiple such classes: the high-magnetic field rotation-powered pulsars. Deep X-ray studies of multiple high-B sources have now been done, and have revealed possible evidence for enhanced thermal emission, as predicted by models of magneto-thermal evolution. These observations will be described, and the evidence for enhanced cooling presented.

  15. Neutron spin filter based on optically polarized sup 3 He in a near-zero magnetic field

    CERN Document Server

    Skoy, V R; Sorokin, V N; Kolachevsky, N N; Sobelman, I I; Sermyagin, A V

    2003-01-01

    A test of polarization of sup 3 He nuclei via spin-exchange collisions with optically pumped rubidium atoms in an extremely low applied magnetic field was carried out. Permalloy magnetic shields were used to prevent a fast relaxation of sup 3 He polarization owing to the inhomogeneity of a surrounding magnetic field. The whole installation was placed at the neutron beam line of the IBR-30 facility, and used as a neutron spin filter. Thus, a prototype of new design of neutron polarizer was introduced. We intend to apply this experience for the full-scale KaTRIn facility to test the time reversal violation in neutron-nuclear reactions.

  16. The random transverse field Ising model in d = 2: analysis via boundary strong disorder renormalization

    Science.gov (United States)

    Monthus, Cécile; Garel, Thomas

    2012-09-01

    To avoid the complicated topology of surviving clusters induced by standard strong disorder RG in dimension d > 1, we introduce a modified procedure called ‘boundary strong disorder RG’ where the order of decimations is chosen a priori. We apply this modified procedure numerically to the random transverse field Ising model in dimension d = 2. We find that the location of the critical point, the activated exponent ψ ≃ 0.5 of the infinite-disorder scaling, and the finite-size correlation exponent νFS ≃ 1.3 are compatible with the values obtained previously using standard strong disorder RG. Our conclusion is thus that strong disorder RG is very robust with respect to changes in the order of decimations. In addition, we analyze the RG flows within the two phases in more detail, to show explicitly the presence of various correlation length exponents: we measure the typical correlation exponent νtyp ≃ 0.64 for the disordered phase (this value is very close to the correlation exponent {\

  17. Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields

    International Nuclear Information System (INIS)

    Markevitch, Alexei N.; Levis, Robert J.; Romanov, Dmitri A.; Smith, Stanley M.; Schlegel, H. Bernhard; Ivanov, Misha Yu.

    2004-01-01

    Electronic processes leading to dissociative ionization of polyatomic molecules in strong laser fields are investigated experimentally, theoretically, and numerically. Using time-of-flight ion mass spectroscopy, we study the dependence of fragmentation on laser intensity for a series of related molecules and report regular trends in this dependence on the size, symmetry, and electronic structure of a molecule. Based on these data, we develop a model of dissociative ionization of polyatomic molecules in intense laser fields. The model is built on three elements: (i) nonadiabatic population transfer from the ground electronic state to the excited-state manifold via a doorway (charge-transfer) transition; (ii) exponential enhancement of this transition by collective dynamic polarization of all electrons, and (iii) sequential energy deposition in both neutral molecules and resulting molecular ions. The sequential nonadiabatic excitation is accelerated by a counterintuitive increase of a large molecule's polarizability following its ionization. The generic theory of sequential nonadiabatic excitation forms a basis for quantitative description of various nonlinear processes in polyatomic molecules and ions in strong laser fields

  18. Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide

    Science.gov (United States)

    Li, Dehui; Cheng, Rui; Zhou, Hailong; Wang, Chen; Yin, Anxiang; Chen, Yu; Weiss, Nathan O.; Huang, Yu; Duan, Xiangfeng

    2015-07-01

    The layered transition metal dichalcogenides have attracted considerable interest for their unique electronic and optical properties. While the monolayer MoS2 exhibits a direct bandgap, the multilayer MoS2 is an indirect bandgap semiconductor and generally optically inactive. Here we report electric-field-induced strong electroluminescence in multilayer MoS2. We show that GaN-Al2O3-MoS2 and GaN-Al2O3-MoS2-Al2O3-graphene vertical heterojunctions can be created with excellent rectification behaviour. Electroluminescence studies demonstrate prominent direct bandgap excitonic emission in multilayer MoS2 over the entire vertical junction area. Importantly, the electroluminescence efficiency observed in multilayer MoS2 is comparable to or higher than that in monolayers. This strong electroluminescence can be attributed to electric-field-induced carrier redistribution from the lowest energy points (indirect bandgap) to higher energy points (direct bandgap) in k-space. The electric-field-induced electroluminescence is general for other layered materials including WSe2 and can open up a new pathway towards transition metal dichalcogenide-based optoelectronic devices.

  19. Photoluminescence spectrum changes of GaN quantum wells caused by the strong piezoelectric fields

    International Nuclear Information System (INIS)

    Herrera, H.; Calderon, A.; Gonzalez de la Cruz, G.

    2007-01-01

    Full text: Spontaneous and piezoelectric fields are known to be the key to understanding the optical properties of nitride heterostructures. This effect modifies the electronic states in the quantum well (QW) and the emission energy in the photoluminescence (PL) spectrum. These fields induce a reduction of the oscillator strength on the transition energy between the confined electron and hole states in GaN/Al x Ga 1-x N QW's and dramatically increase the carrier life time as the QW thickness increases. In this work we solve analytically the Schrodinger equation for moderate electric fields when the electron-hole transition energy in the QW is larger than the energy gap of the GaN. Furthermore, the large redshifts of the PL energy position and the spatial separation of the electron and hole by several times of the Bohr radius caused by the strong piezoelectric fields are explained using a triangular potential in the Schrodinger equation. The transition energy calculations between the electron-hole pair as a function of the well width with the electric field as a fitting parameter are in agreement with the measured photoluminescence energy peaks. (Author)

  20. Photoluminescence spectrum changes of GaN quantum wells caused by the strong piezoelectric fields

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, H.; Calderon, A. [CICATA-IPN, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D.F. (Mexico); Gonzalez de la Cruz, G. [CINVESTAV-IPN, A.P. 14-740, 07000 Mexico D.F. (Mexico)

    2006-07-01

    Spontaneous and piezoelectric fields are known to be the key to understanding the optical properties of nitride heterostructures. This effect modifies the electronic states in the quantum well (QW) and the emission energy in the photoluminescence (PL) spectrum. These fields induce a reduction of the oscillator strength on the transition energy between the confined electron and hole states in GaN/Al{sub x}Ga{sub 1-x}N QW's and dramatically increase the carrier life time as the QW thickness increases. In this work, we solve analytically the Schroedinger equation for moderate electric fields when the electron-hole transition energy in the QW is larger than the energy gap of the GaN. Furthermore, the large redshifts of the PL energy position and the spatial separation of the electron and hole by several times of the Bohr radius caused by the strong piezoelectric fields are explained using a triangular potential in the Schrodinger equation. The transition energy calculations between the electron-hole pair as a function of the well width with the electric field as a fitting parameter are in agreement with the measured photoluminescence energy peaks. (Author)

  1. Two-photon annihilation of thermal pairs in strong magnetic fields

    Science.gov (United States)

    Baring, Matthew G.; Harding, Alice K.

    1992-01-01

    The annihilation spectrum of pairs with 1-D thermal distributions in the presence of a strong magnetic field is calculated. Numerical analysis of the spectrum are performed for mildly relativistic temperatures and for different angles of emission with respect to field lines. Teragauss magnetic fields are assumed so that conditions are typical of gamma ray burst and pulsar environments. The spectra at each viewing angle reveal asymmetric line profiles that are signatures of the magnetic broadening and red shifting of the line: these asymmetries are more prominent for small viewing angles. Thermal Doppler broadening tends to dominate in the right wing of the line and obscures the magnetic broadening more at high temperatures and smaller viewing angles. This angular dependence of the line asymmetry may prove a valuable diagnostic tool. For low temperatures and magnetic field strengths, useful analytic expressions are presented for the line width, and also for the annihilation spectrum at zero viewing angle. The results presented find application in gamma ray burst and pulsar models, and may prove very helpful in deducing field strengths and temperatures of the emission regions of these objects from line observations made by Compton GRO and future missions.

  2. Monte Carlo simulation of mixed neutron-gamma radiation fields and dosimetry devices

    International Nuclear Information System (INIS)

    Zhang, Guoqing

    2011-01-01

    Monte Carlo methods based on random sampling are widely used in different fields for the capability of solving problems with a large number of coupled degrees of freedom. In this work, Monte Carlos methods are successfully applied for the simulation of the mixed neutron-gamma field in an interim storage facility and neutron dosimeters of different types. Details are discussed in two parts: In the first part, the method of simulating an interim storage facility loaded with CASTORs is presented. The size of a CASTOR is rather large (several meters) and the CASTOR wall is very thick (tens of centimeters). Obtaining the results of dose rates outside a CASTOR with reasonable errors costs usually hours or even days. For the simulation of a large amount of CASTORs in an interim storage facility, it needs weeks or even months to finish a calculation. Variance reduction techniques were used to reduce the calculation time and to achieve reasonable relative errors. Source clones were applied to avoid unnecessary repeated calculations. In addition, the simulations were performed on a cluster system. With the calculation techniques discussed above, the efficiencies of calculations can be improved evidently. In the second part, the methods of simulating the response of neutron dosimeters are presented. An Alnor albedo dosimeter was modelled in MCNP, and it has been simulated in the facility to calculate the calibration factor to get the evaluated response to a Cf-252 source. The angular response of Makrofol detectors to fast neutrons has also been investigated. As a kind of SSNTD, Makrofol can detect fast neutrons by recording the neutron induced heavy charged recoils. To obtain the information of charged recoils, general-purpose Monte Carlo codes were used for transporting incident neutrons. The response of Makrofol to fast neutrons is dependent on several factors. Based on the parameters which affect the track revealing, the formation of visible tracks was determined. For

  3. Monte Carlo simulation of mixed neutron-gamma radiation fields and dosimetry devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoqing

    2011-12-22

    Monte Carlo methods based on random sampling are widely used in different fields for the capability of solving problems with a large number of coupled degrees of freedom. In this work, Monte Carlos methods are successfully applied for the simulation of the mixed neutron-gamma field in an interim storage facility and neutron dosimeters of different types. Details are discussed in two parts: In the first part, the method of simulating an interim storage facility loaded with CASTORs is presented. The size of a CASTOR is rather large (several meters) and the CASTOR wall is very thick (tens of centimeters). Obtaining the results of dose rates outside a CASTOR with reasonable errors costs usually hours or even days. For the simulation of a large amount of CASTORs in an interim storage facility, it needs weeks or even months to finish a calculation. Variance reduction techniques were used to reduce the calculation time and to achieve reasonable relative errors. Source clones were applied to avoid unnecessary repeated calculations. In addition, the simulations were performed on a cluster system. With the calculation techniques discussed above, the efficiencies of calculations can be improved evidently. In the second part, the methods of simulating the response of neutron dosimeters are presented. An Alnor albedo dosimeter was modelled in MCNP, and it has been simulated in the facility to calculate the calibration factor to get the evaluated response to a Cf-252 source. The angular response of Makrofol detectors to fast neutrons has also been investigated. As a kind of SSNTD, Makrofol can detect fast neutrons by recording the neutron induced heavy charged recoils. To obtain the information of charged recoils, general-purpose Monte Carlo codes were used for transporting incident neutrons. The response of Makrofol to fast neutrons is dependent on several factors. Based on the parameters which affect the track revealing, the formation of visible tracks was determined. For

  4. Neutron reflection and refraction on matter with a rotating magnetic field

    International Nuclear Information System (INIS)

    Frank, A.I.; Kozlov, A.V.

    1997-01-01

    The general approach to the problem of neutron interaction with a sample of matter in the presence of rotating magnetic field as a part of the task dealing with nonstationary quantum effects in neutron optics is discussed. The plane neutron wave scattering by a matter is considered. Basing on the expression for a time-dependent potential for neutrons with the energy E incident to the matter normally to the sample surface the formulae describing the interaction of neutrons with a matter are derived. Consideration is started with the problem of reflection, and it is supposed for simplicity that the sample is semi-infinite one. The expressions for intensities of reflected waves are obtained using the Schroedinger equations for the neutron in vacuum and in a matter respectively. The curves characterizing the dependence of usual (with falling angle parallel to the surface component of the wave vector which as a result does not change) and unusual (appeared after spin-flip process which is reflected at the angle differing from the initial one) reflected wave intensities on the normal-to-boundary velocity are given. It is shown that in the case considered it is possible to achieve waves with remarkable space separation. The intensity of the unusual wave is about 20-25% of the intensity of the initial wave, so observation of the phenomenon should present no difficulty if the usual techniques of neutron reflectometry are applied. The conclusion is made that the separating ability of the magnetic separator based on the effect discussed is more preferable as compared with that of the diffraction grating

  5. Crystalline Electric Field Levels in the Neodymium Monopnictides Determined by Neutron Spectroscopy

    DEFF Research Database (Denmark)

    Furrer, A.; Kjems, Jørgen; Vogt, O.

    1972-01-01

    Neutron inelastic scattering experiments have been carried out to determine the energies and widths of the crystalline electric field levels in the neodymium monopnictides NdP, NdAs, and NdSb. The energy level sequence is derived from the observed crystal field transition peak intensities, which...... are in good agreement with calculations based on elementary crystal field theory. The energy level widths are qualitatively discussed. It is found that the point-charge model cannot reproduce the crystal field levels satisfactorily....

  6. Monitoring of neutron field parameters of pressure vessels of russian WWER in compliance with regulatory demands

    International Nuclear Information System (INIS)

    Borodkin, P.G.; Khrennikov, N.N.; Miroshnichenko, M.I.

    2015-01-01

    Results of finished calculational-experimental measurements which are performed on the number of Russian power units with WWER-440 and WWER-1000 are presented. The analysis of core power distribution of WWER-1000 and its influence on measurements and calculations of the integral through-vessel neutron leak-age are proposed. It is shown how to get improved estimation of parameters with reasonable uncertainty from actual reactor data (core operational parameters (from in-core monitoring system) and experimentally evaluated the integral leakage at the reactor vessel (neutron activation measurements). In the present paper discusses the results of such investigations and gives the conclusions on the necessity and sufficiency of monitoring of neutron field parameters on RPV [ru

  7. Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    International Nuclear Information System (INIS)

    Fritzsche, S.; Stoehlker, T.

    2005-03-01

    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-Z ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of quantum electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-Z ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in nature. (orig.)

  8. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field.

    Science.gov (United States)

    Schuster, D I; Wallraff, A; Blais, A; Frunzio, L; Huang, R-S; Majer, J; Girvin, S M; Schoelkopf, R J

    2005-04-01

    We have performed spectroscopy of a superconducting charge qubit coupled nonresonantly to a single mode of an on-chip resonator. The strong coupling induces a large ac Stark shift in the energy levels of both the qubit and the resonator. The dispersive shift of the resonator frequency is used to nondestructively determine the qubit state. Photon shot noise in the measurement field induces qubit level fluctuations leading to dephasing which is characteristic for the measurement backaction. A crossover in line shape with measurement power is observed and theoretically explained. For weak measurement a long intrinsic dephasing time of T2>200 ns of the qubit is found.

  9. Peculiarities of two-electron atom ionization in strong electromagnetic field

    International Nuclear Information System (INIS)

    Ovodova, O.V.; Popov, A.M.; Tikhonova, O.V.

    1997-01-01

    One-dimensional model of helium atom in strong field of electromagnetic wave of femtosecond activity is plotted within the Hartree method frames. Comparison of 'exact' calculations with the calculations conducted within the frames of the 'frozen' and 'passive' electrons is made. The nonmonotonous dependence of one-dimensional ionization probability on the radiation intensity is found. It is shown that the ionization minima are connected with multiphoton resonances between various atomic states, originating due to the Stark effect. It is supposed that the effect of ionization suppression in this case is related to interference stabilization

  10. An analytical method for the investigation of instability of a collisionless plasma in strong magnetic fields

    International Nuclear Information System (INIS)

    Zakharov, V.U.

    1993-01-01

    An analytical method for the investigation of special types of dispersion relations is presented. In particular, analysis of the propagation of small-amplitude hydromagnetic waves in a collisionless plasma in a strong magnetic field leads to such dispersion relations. The fifth-degree dispersion relation corresponding to a particular case is considered. The necessary stability condition for a steady state and conditions for the degeneration of small-amplitude waves are derived. A comparison with other methods for the analysis of similar dispersion relations is also presented. (author)

  11. Strong Field-Induced Frequency Conversion of Laser Radiation in Plasma Plumes: Recent Achievements

    Directory of Open Access Journals (Sweden)

    R. A. Ganeev

    2013-01-01

    Full Text Available New findings in plasma harmonics studies using strong laser fields are reviewed. We discuss recent achievements in the growth of the efficiency of coherent extreme ultraviolet (XUV radiation sources based on frequency conversion of the ultrashort pulses in the laser-produced plasmas, which allowed for the spectral and structural studies of matter through the high-order harmonic generation (HHG spectroscopy. These studies showed that plasma HHG can open new opportunities in many unexpected areas of laser-matter interaction. Besides being considered as an alternative method for generation of coherent XUV radiation, it can be used as a powerful tool for various spectroscopic and analytical applications.

  12. Vibrational Excitation of Diatomic Molecular Ions in Strong Field Ionization of Diatomic Molecules

    International Nuclear Information System (INIS)

    Kjeldsen, Thomas K.; Madsen, Lars Bojer

    2005-01-01

    A model based on the strong-field and Born-Oppenheimer approximations qualitatively describes the distribution over vibrational states formed in a diatomic molecular ion following ionization of the neutral molecule by intense laser pulses. Good agreement is found with a recent experiment [X. Urbain et al., Phys. Rev. Lett. 92, 163004 (2004)]. In particular, the observed deviation from a Franck-Condon-like distribution is reproduced. Additionally, we demonstrate control of the vibrational distribution by a variation of the peak intensity or a change of frequency of the laser pulse

  13. Numerical Detector Theory for the Longitudinal Momentum Distribution of the Electron in Strong Field Ionization

    Science.gov (United States)

    Tian, Justin; Wang, Xu; Eberly, J. H.

    2017-05-01

    The lack of analytical solutions for the exit momentum in the laser-driven tunneling theory is a well-recognized problem in strong field physics. Theoretical studies of electron momentum distributions in the neighborhood of the tunneling exit depend heavily on ad hoc assumptions. In this Letter, we apply a new numerical method to study the exiting electron's longitudinal momentum distribution under intense short-pulse laser excitation. We present the first realizations of the dynamic behavior of an electron near the so-called tunneling exit region without adopting a tunneling approximation.

  14. Laser-driven platform for generation and characterization of strong quasi-static magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Santos, J.J.; Bailly-Grandvaux, M.; Giuffrida, Lorenzo; Forestier-Colleoni, P.; Fujioka, H.; Zhang, Z.; Korneev, P.; Bouillaud, R.; Dorard, S.; Batani, D.; Chevrot, M.; Cross, J. E.; Crowston, R.; Dubois, J.L.; Gazave, J.; Gregori, G.; d'Humieres, E.; Hulin, S.; Ishihara, K.; Kojima, S.; Loyez, E.; Marqués, J.-R.; Morace, A.; Nicolaï, P.; Peyrusse, O.; Poyé, A.; Raffestin, D.; Ribolzi, J.; Roth, M.; Schaumann, G.; Serres, F.; Tikhonchuk, V.T.; Vacar, P.; Woolsey, N.

    2015-01-01

    Roč. 17, Aug (2015), s. 1-10, č. článku 083051. ISSN 1367-2630 R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : strong magnetic field * laser-driven coil targets * laser-plasma interaction Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.570, year: 2015

  15. Viscosity in strongly interacting quantum field theories from black hole physics.

    Science.gov (United States)

    Kovtun, P K; Son, D T; Starinets, A O

    2005-03-25

    The ratio of shear viscosity to volume density of entropy can be used to characterize how close a given fluid is to being perfect. Using string theory methods, we show that this ratio is equal to a universal value of variant Planck's over 2pi/4pik(B) for a large class of strongly interacting quantum field theories whose dual description involves black holes in anti-de Sitter space. We provide evidence that this value may serve as a lower bound for a wide class of systems, thus suggesting that black hole horizons are dual to the most ideal fluids.

  16. Transport coefficients of InSb in a strong magnetic field

    International Nuclear Information System (INIS)

    Nakamura, Hiroaki; Ikeda, Kazuaki; Yamaguchi, Satarou

    1998-02-01

    Improvement of a superconducting magnet system makes induction of a strong magnetic field easier. This fact gives us a possibility of energy conversion by the Nernst effect. As the first step to study the Nernst element, we measured the conductivity, the Hall coefficient, the thermoelectric power and the Nernst coefficient of the InSb, which is one of candidates of the Nernst elements. From this experiment, it is concluded that the Nernst coefficient is smaller than the theoretical values. On the other hand, the conductivity, the Hall coefficient and the thermoelectric power has the values expected by the theory. (author)

  17. Ehrenfest's theorem and the validity of the two-step model for strong-field ionization

    DEFF Research Database (Denmark)

    Shvetsov-Shilovskiy, Nikolay; Dimitrovski, Darko; Madsen, Lars Bojer

    2013-01-01

    with situations where the ensemble average of the force deviates considerably from the force calculated at the average position of the trajectories of the ensemble. We identify the general trends for the applicability of the semiclassical model in terms of intensity, ellipticity, and wavelength of the laser pulse......By comparison with the solution of the time-dependent Schrödinger equation we explore the validity of the two-step semiclassical model for strong-field ionization in elliptically polarized laser pulses. We find that the discrepancy between the two-step model and the quantum theory correlates...

  18. Influence of neutron irradiation on magnetic field sensors

    NARCIS (Netherlands)

    Karpukhin, AV; Lachinov, VM; Makoveev, VK; Zamiatin, NI; Bolshakova, IA; Bolshakov, MM; Matkovski, AO; Moskovets, TA

    Parameters of modern experimental set-ups depend on the precision of the magnetic field monitoring under real experimental conditions. As a rule, the conditions of modern experiments (ATLAS, CMS, ALISE, LRC-B) have their special requirements to radiation hardness of the magnetometric apparatus,

  19. Revisiting Field Burial by Accretion onto Neutron Stars

    Indian Academy of Sciences (India)

    Dipanjan Mukherjee

    2017-09-12

    Sep 12, 2017 ... mechanism of the apparent reduction of field strength in MSPs is still a subject of debate. One of the proposed mechanisms is ... involving pulsar population studies (Bailes 1989; Bhat- tacharya et al. 1992; Faucher-Giguère ...... fully capture the growth of the instabilities. Lower res- olution results in higher ...

  20. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  1. Development of a moderated neutron detector for establishment of reference field

    Energy Technology Data Exchange (ETDEWEB)

    Tanimura, Yoshihiko; Saegusa, Jun; Yoshizawa, Michio; Yoshida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    A neutron detector with a cylindrical moderator and a position sensitive {sup 3}He proportional counter was developed for application of transferring standard in calibration fields with continuous spectra. The structure of the cylindrical moderator was optimized with two devices by using MCNP-4B code. One was to use low-hydrogen density material as a part of the moderator. The other was to set a cadmium plate in the moderator so as to prevent thermal neutron from diffusing to other position. The position sensitive {sup 3}He proportional counter was designed and manufactured with suitable size and suitable gas composition. It was confirmed with thermal neutrons from graphite pile that the counter had enough performance of position measuring to use in the neutron detector. Neutrons from {sup 252}Cf and {sup 241}Am-Be sources are measured with the detector which consist of the moderator and the counter. The distributions of detected position obtained by measurements consisted with the distribution simulated by MCNP-4B code. (author)

  2. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    International Nuclear Information System (INIS)

    Comer, G.L.; Joynt, R.

    2003-01-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of 'relativistic': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons

  3. Time dependet behaviour of the neutron field in in two interacting cylindrical disks

    International Nuclear Information System (INIS)

    Hedlund, T.

    1979-01-01

    The influence of a void on the neutron flux in a moderating system has been studied mainly by the Monte Carlo method. The calculations simulate the decay of the neutron field in a pulsed neutron source measurement. The neutron flux was studied as a function of space, angle, energy and time for a system of two flat cylindrical polyethylene disks. The slab thickness was varied between 1.1 and 4.4 cm and the radius was 9.0 cm. The gap between the slabs was varied from zero to 18 cm. Some calculations have also been made for absorbers in the gap. The purpose of these absorbers was to eliminate the time delay effect for the low velocity neutrons accumulating in the gap. The calculations showed the usefulness of the absorber method. From the results in the time dependent cases the interaction parameter for the two slabs in the corresponding stationary cases has been calculated. The agreement with measurements made by Grosshoeg is good. In the one velocity cases some other methods have also been used to predict the decay rates. For small gap widths the best agreement with the Monte Carlo results was obtained with the variational method. (author)

  4. Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field

    Science.gov (United States)

    Luo, Sui

    Ultrastrong laser-matter interaction has direct bearing to next generation technologies including plasma acceleration, laser fusion and attosecond X-ray generation. The commonly known physics in strong field becomes different as one progress to ultrastrong field. The works presented in this dissertation theoretically study the influence of relativistic effect and magnetic component of the laser field on the ionization, photoelectron dynamics and elastic scattering processes. The influence of magnetic component (B laser) of circularly polarized (CP) ultrastrong fields (up to3 x 1022 W/cm2) on atomic bound state dynamics is investigated. The Poincare plots are used to find the changes in trajectory energies are on the order of a few percent for intensities up to1 x 1022 W/cm2. It is found that at intensities where ionization approaches 50% for the bound state, the small changes from Blaser of the circular polarized light can actually result in a several-fold decrease in ionization probability. The force on the bound electron exerted by the Lorentz force from B laser is perpendicular to the rotating plane of the circular polarized light, and this nature makes those trajectories which are aligned away from the minimum in the potential barrier stabilized against tunneling ionization. Our results provide a classical understanding for ionization in ultrastrong fields and indicate that relativistic effects in ultrastrong field ionization may most easily be seen with CP fields. The photoelectron energy spectra from elastic rescattering in ultrastrong laser fields (up to 2x1019 W/cm2) is studied by using a relativistic adaption of a semi-classical three-step recollision model. The Hartree-Fock scattering potentials are used in calculating the elastic rescattering for both hydrogenlike and noble gas species. It is found that there is a reduction in elastic rescattering for intensities beyond 6 x 1016 W/cm2 when the laser Lorentz deflection of the photoelectron exceeds its

  5. The design of the inelastic neutron scattering mode for the Extreme Environment Diffractometer with the 26 T High Field Magnet

    Science.gov (United States)

    Bartkowiak, Maciej; Stüßer, Norbert; Prokhnenko, Oleksandr

    2015-10-01

    The Extreme Environment Diffractometer is a neutron time-of-flight instrument, designed to work with a constant-field hybrid magnet capable of reaching fields over 26 T, unprecedented in neutron science; however, the presence of the magnet imposes both spatial and technical limitations on the surrounding instrument components. In addition to the existing diffraction and small-angle neutron scattering modes, the instrument will operate also in an inelastic scattering mode, as a direct time-of-flight spectrometer. In this paper we present the Monte Carlo ray-tracing simulations, the results of which illustrate the performance of the instrument in the inelastic-scattering mode. We describe the focussing neutron guide and the chopper system of the existing instrument and the planned design for the instrument upgrade. The neutron flux, neutron spatial distribution, divergence distribution and energy resolution are calculated for standard instrument configurations.

  6. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field

    Science.gov (United States)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.

    2012-08-01

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  7. Strong-field photoelectron holography of atoms by bicircular two-color laser pulses

    Science.gov (United States)

    Li, Min; Jiang, Wei-Chao; Xie, Hui; Luo, Siqiang; Zhou, Yueming; Lu, Peixiang

    2018-02-01

    We study photoelectron holography in strong bicircular two-color laser fields by solving the time-dependent Schrödinger equation (TDSE) and a semiclassical rescattering model with implementing interference effect. The holographic patterns observed in the TDSE are well recaptured by the semiclassical rescattering model. Four types of photoelectron holographic interferences between the forward scattered and nonscattered trajectories are predicted by the semiclassical rescattering model in the bicircular two-color laser field. We find that those holographic patterns are spatially separated from each other in the electron momentum distribution. We further show that the dependence of the initial transverse momentum at the tunnel exit on the ionization time for the rescattering electron is recorded by the holographic patterns.

  8. Semiclassical quantization of integrable systems of few interacting anyons in a strong magnetic field

    International Nuclear Information System (INIS)

    Sivan, N.; Levit, S.

    1992-01-01

    We present a semiclassical theory of charged interacting anyons in a strong magnetic field. We derive the appropriate generalization of the WKB quantization conditions and determine the corresponding wave functions for non separable integrable anyonic systems. This theory is applies to a system of two interacting anyons, two interacting anyons in the presence of an impurity and three interacting anyons. We calculate the dependence of the semiclassical energy levels on the statistical parameter and find regions in which dependence follows very different patterns. The semiclassical treatment allows to find the correlation between these patterns and the change in the character of the classical motion of the system. We also test the accuracy of the mean field approximation for low and high energy states of the three anyons. (author)

  9. Influence of the initial angular distribution on strong-field molecular dissociation

    Science.gov (United States)

    Yu, Youliang; Zeng, Shuo; Hernández, J. V.; Wang, Yujun; Esry, B. D.

    2016-08-01

    We study few-cycle, strong-field dissociation of aligned H2+ by solving the time-dependent Schrödinger equation including rotation. We examine the dependence of the final angular distribution, the kinetic energy release spectrum, and the total dissociation yield on the initial nuclear angular distribution. In particular, we look at the dependence on the relative angle θ0 between the laser polarization and the symmetry axis of a well-aligned initial distribution, as well as the dependence on the delay between the "pump" pulse that prepares the alignment and the few-cycle probe pulse. Surprisingly, we find the dissociation probability for θ0=90∘ can be appreciable even though the transitions involved are purely parallel. We therefore address the limits of the commonly held "ball-and-stick" picture for molecules in intense fields as well as the validity of the axial recoil approximation.

  10. Neutron investigations of magnetic properties of crystal substances with use of a pulsed magnetic field

    CERN Document Server

    Nitts, V V

    2001-01-01

    Bases for neutron researches of magnetic properties of crystal substances with use of a pulsed magnetic field and analysis of possible application of various neutron sources in this area are submitted. The review of the most interesting physical results is presented. Main investigations on pulsed reactors of JINR are researches on kinetics of the first order reorientational phase transitions induced in single crystals, and also measurements of antiferromagnetic ordering induced by an external magnetic field. Magnetic phase transitions, induced by a field up to 160 kOe in several magnetic ordering substances, were studied in KEK (Japan). Experiment on observation of spin-flop transition in MnF sub 2 was carried out on TRIGA-reactor in a mode of single flashes of power

  11. Effects of magnetic field topology in black hole-neutron star mergers: Long-term simulations

    Science.gov (United States)

    Wan, Mew-Bing

    2017-05-01

    We report long-term simulations of black hole-neutron star binary mergers where the neutron star possesses an asymmetric magnetic field dipole. Focusing on the scenario where the neutron star is tidally disrupted by the black hole, we track the evolution of the binary up to ≈100 ms after the merger. We uncover more than one episode of thermally driven winds being launched along a funnel wall in all these cases beginning from ≈25 ms after the merger. On the other hand, we are unable to conclude presently whether the amount of ejected mass increases with the degree of asymmetry. A large-scale magnetic field configuration in the poloidal direction is formed along the funnel wall accompanied by the generation of a large Poynting flux. The magnetic field in the accretion disk around the black hole remnant is amplified by both magnetic winding and the nonaxisymmetric magnetorotational instability (MRI). The MRI growth is estimated to be in the ideal magnetohydrodynamics (MHD) regime and thus would be free from significant effects induced by potential neutrino radiation. However, the asymmetry in the magnetic field leads to increased turbulence, which causes the vertical magnetic field in the accretion disk to grow largely in a nonlinear manner.

  12. A strong magnetic field around the supermassive black hole at the centre of the Galaxy.

    Science.gov (United States)

    Eatough, R P; Falcke, H; Karuppusamy, R; Lee, K J; Champion, D J; Keane, E F; Desvignes, G; Schnitzeler, D H F M; Spitler, L G; Kramer, M; Klein, B; Bassa, C; Bower, G C; Brunthaler, A; Cognard, I; Deller, A T; Demorest, P B; Freire, P C C; Kraus, A; Lyne, A G; Noutsos, A; Stappers, B; Wex, N

    2013-09-19

    Earth's nearest candidate supermassive black hole lies at the centre of the Milky Way. Its electromagnetic emission is thought to be powered by radiatively inefficient accretion of gas from its environment, which is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which the black hole can be fed. The magnetization of the gas, however, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of accretion, remove angular momentum from the infalling gas, expel matter through relativistic jets and lead to synchrotron emission such as that previously observed. Here we report multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre and show that the pulsar's unusually large Faraday rotation (the rotation of the plane of polarization of the emission in the presence of an external magnetic field) indicates that there is a dynamically important magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission--from radio to X-ray wavelengths--from the black hole.

  13. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.

    Science.gov (United States)

    Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne

    2015-04-17

    Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole. Copyright © 2015, American Association for the Advancement of Science.

  14. Dynamics of liquid metal droplets and jets influenced by a strong axial magnetic field

    Science.gov (United States)

    Hernández, D.; Karcher, Ch

    2017-07-01

    Non-contact electromagnetic control and shaping of liquid metal free surfaces is crucial in a number of high-temperature metallurgical processes like levitation melting and electromagnetic sealing, among others. Other examples are the electromagnetic bending or stabilization of liquid metal jets that frequently occur in casting or fusion applications. Within this context, we experimentally study the influence of strong axial magnetic fields on the dynamics of falling metal droplets and liquid metal jets. GaInSn in eutectic composition is used as test melt being liquid at room temperature. In the experiments, we use a cryogen-free superconducting magnet (CFM) providing steady homogeneous fields of up to 5 T and allowing a tilt angle between the falling melt and the magnet axis. We vary the magnetic flux density, the tilt angle, the liquid metal flow rate, and the diameter and material of the nozzle (electrically conducting/insulating). Hence, the experiments cover a parameter range of Hartmann numbers Ha, Reynolds numbers Re, and Weber numbers We within 0 rotation ceases and the droplets are stretched in the field direction. Moreover, we observe that the jet breakup into droplets (spheroidization) is suppressed, and in the case of electrically conducting nozzles and tilt, the jets are bent towards the field axis.

  15. Nonlinear propagation of strong-field THz pulses in doped semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2012-01-01

    We report on nonlinear propagation of single-cycle THz pulses with peak electric fields reaching 300 kV/cm in n-type semiconductors at room temperature. Dramatic THz saturable absorption effects are observed in GaAs, GaP, and Ge, which are caused by the nonlinear electron transport in THz fields......-effective-mass states in the energy-momentum space of the conduction band. Further, we observe the typical accompanying effects of saturable absorption on the THz pulses, such as an increase of the group delay, as the peak electric field of the pulse increases. In this paper we present the results of nonlinear THz time....... The semiconductor conductivity, and hence the THz absorption, is modulated due to the acceleration of carriers in strong THz fields, leading to an increase of the effective mass of the electron population, as the electrons are redistributed from the low-momentum, low-effective-mass states to the high-momentum, high...

  16. Breakdown of the Chiral Anomaly in Weyl Semimetals in a Strong Magnetic Field

    Science.gov (United States)

    Kim, Pilkwang; Ryoo, Ji Hoon; Park, Cheol-Hwan

    2017-12-01

    The low-energy quasiparticles of Weyl semimetals are a condensed-matter realization of the Weyl fermions introduced in relativistic field theory. Chiral anomaly, the nonconservation of the chiral charge under parallel electric and magnetic fields, is arguably the most important phenomenon of Weyl semimetals and has been explained as an imbalance between the occupancies of the gapless, zeroth Landau levels with opposite chiralities. This widely accepted picture has served as the basis for subsequent studies. Here we report the breakdown of the chiral anomaly in Weyl semimetals in a strong magnetic field based on ab initio calculations. A sizable energy gap that depends sensitively on the direction of the magnetic field may open up due to the mixing of the zeroth Landau levels associated with the opposite-chirality Weyl points that are away from each other in the Brillouin zone. Our study provides a theoretical framework for understanding a wide range of phenomena closely related to the chiral anomaly in topological semimetals, such as magnetotransport, thermoelectric responses, and plasmons, to name a few.

  17. Radiative Processes in Graphene and Similar Nanostructures in Strong Electric Fields

    Science.gov (United States)

    Gavrilov, S. P.; Gitman, D. M.

    2017-03-01

    Low-energy single-electron dynamics in graphene monolayers and similar nanostructures is described by the Dirac model, being a 2+1 dimensional version of massless QED with the speed of light replaced by the Fermi velocity vF ≃ c/300. Methods of strong-field QFT are relevant for the Dirac model, since any low-frequency electric field requires a nonperturbative treatment of massless carriers in the case it remains unchanged for a sufficiently long time interval. In this case, the effects of creation and annihilation of electron-hole pairs produced from vacuum by a slowly varying and small-gradient electric field are relevant, thereby substantially affecting the radiation pattern. For this reason, the standard QED text-book theory of photon emission cannot be of help. We construct the Fock-space representation of the Dirac model, which takes exact accounts of the effects of vacuum instability caused by external electric fields, and in which the interaction between electrons and photons is taken into account perturbatively, following the general theory (the generalized Furry representation). We consider the effective theory of photon emission in the first-order approximation and construct the corresponding total probabilities, taking into account the unitarity relation.

  18. Particle production in field theories coupled to strong external sources, I: Formalism and main results

    International Nuclear Information System (INIS)

    Gelis, Francois; Venugopalan, Raju

    2006-01-01

    We develop a formalism for particle production in a field theory coupled to a strong time-dependent external source. An example of such a theory is the color glass condensate. We derive a formula, in terms of cut vacuum-vacuum Feynman graphs, for the probability of producing a given number of particles. This formula is valid to all orders in the coupling constant. The distribution of multiplicities is non-Poissonian, even in the classical approximation. We investigate an alternative method of calculating the mean multiplicity. At leading order, the average multiplicity can be expressed in terms of retarded solutions of classical equations of motion. We demonstrate that the average multiplicity at next-to-leading order can be formulated as an initial value problem by solving equations of motion for small fluctuation fields with retarded boundary conditions. The variance of the distribution can be calculated in a similar fashion. Our formalism therefore provides a framework to compute from first principles particle production in proton-nucleus and nucleus-nucleus collisions beyond leading order in the coupling constant and to all orders in the source density. We also provide a transparent interpretation (in conventional field theory language) of the well-known Abramovsky-Gribov-Kancheli (AGK) cancellations. Explicit connections are made between the framework for multi-particle production developed here and the framework of reggeon field theory

  19. Pair production in a strong electric field with back-reaction

    International Nuclear Information System (INIS)

    Eisenberg, J.M.; Kluger, Y.; Svetitsky, B.

    1992-01-01

    We present a summary of the present status of efforts to solve the problem in which pairs are produced in a strong electric field, are accelerated by it, and then react back on it through the counter-field produced by their current. This picture has been used by Bialas and Czyz and others as a model for effects that may possibly arise in the study of the quark-gluon plasma. We here give a didactic review of recent developments in this back-reaction problem. We first present a simple version of the theory of pair tunneling from a fixed electric field, and then sketch how this has been applied to the quark-gluon plasma. Then we turn to a field formulation of the problem for charged bosons, which leads to the need to carry out a renormalization program, outlined again in simple terms. Numerical results for this program are presented for one spatial dimension, the corresponding physical behaviour of the system is discussed, and the implications for three spatial dimensions are considered. We exhibit a phenomenological transport equation embodying physics that is essentially identical to that of the field formulation, thus helping to tie the model of Bialas and Czyz for the quark-gluon plasma to a field-theory formulation. Last, we note the status of extensions to the problem with three space dimensions; the fermion case; the formulation in terms of boost-invariant variables (as desirable for the quark-gluon plasma); and transport equations derived in a fundamental and consistent fashion. 5 figs., 13 refs. (author)

  20. Neutron Stars : Magnetism vs Gravity

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Neutron Stars : Magnetism vs Gravity. WHY do neutron stars have such strong magnetic fields? Conservation of magnetic flux of the collapsing stellar core. ∫ B.ds (over surface of the star) = constant; Radius of the star collapses from ~ 5x108 to 1x104 metres; Hence, ...

  1. Charge transfer of He2 + with H in a strong magnetic field

    Science.gov (United States)

    Liu, Chun-Lei; Zou, Shi-Yang; He, Bin; Wang, Jian-Guo

    2015-09-01

    By solving a time-dependent Schrödinger equation (TDSE), we studied the electron capture process in the He2 + +H collision system under a strong magnetic field in a wide projectile energy range. The strong enhancement of the total charge transfer cross section is observed for the projectile energy below 2.0 keV/u. With the projectile energy increasing, the cross sections will reduce a little and then increase again, compared with those in the field-free case. The cross sections to the states with different magnetic quantum numbers are presented and analyzed where the influence due to Zeeman splitting is obviously found, especially in the low projectile energy region. The comparison with other models is made and the tendency of the cross section varying with the projectile energy is found closer to that from other close coupling models. Project supported by the National Natural Science Foundation of China (Grants Nos. 11104017, 11025417, 11275029, and 11474032), the National Basic Research Programm of China (Grant No. 2013CB922200), and the Foundation for the Development of Science and Technology of the Chinese Academy of Engineering Physics (Grant Nos. 2014B09036 and 2013A0102005).

  2. Attosecond transient-absorption dynamics of xenon core-excited states in a strong driving field

    Science.gov (United States)

    Kobayashi, Yuki; Timmers, Henry; Sabbar, Mazyar; Leone, Stephen R.; Neumark, Daniel M.

    2017-03-01

    We present attosecond transient-absorption experiments on xenon 4 d-16 p core-level states resonantly driven by intense (1.6 ×1014W/cm 2 ) few-cycle near-infrared laser pulses. In this strongly driven regime, broad induced absorption features with half-cycle (1.3-fs) delay-dependent modulation are observed over the range of 58-65 eV, predicted as a signature of the breakdown of the rotating-wave approximation in strong-field driving of Autler-Townes splitting [A. N. Pfeiffer and S. R. Leone, Phys. Rev. A 85, 053422 (2012), 10.1103/PhysRevA.85.053422]. Relevant atomic states are identified by a numerical model involving three electronic states, and the mechanism behind the broad induced absorption is discussed in the Floquet formalism. These results demonstrate that a near-infrared field well into the tunneling regime can still control the optical properties of an atomic system over a several-electron-volt spectral range and with attosecond precision.

  3. Behavior of Particle Depots in Molten Silicon During Float-Zone Growth in Strong Magnetic Fields

    Science.gov (United States)

    Jauss, T.; Croell, A.; SorgenFrei, T.; Azizi, M.; Reimann, C.; Friedrich, J.; Volz, M. P.

    2014-01-01

    Solar cells made from directionally solidified silicon cover 57% of the photovoltaic industry's market [1]. One major issue during directional solidification of silicon is the precipitation of foreign phase particles. These particles, mainly SiC and Si3N4, are precipitated from the dissolved crucible coating, which is made of silicon nitride, and the dissolution of carbon monoxide from the furnace atmosphere. Due to their hardness and size of several hundred micrometers, those particles can lead to severe problems during the wire sawing process for wafering the ingots. Additionally, SiC particles can act as a shunt, short circuiting the solar cell. Even if the particles are too small to disturb the wafering process, they can lead to a grit structure of silicon micro grains and serve as sources for dislocations. All of this lowers the yield of solar cells and reduces the performance of cells and modules. We studied the behaviour of SiC particle depots during float-zone growth under an oxide skin, and strong static magnetic fields. For high field strengths of 3T and above and an oxide layer on the sample surface, convection is sufficiently suppressed to create a diffusive like regime, with strongly dampened convection [2, 3]. To investigate the difference between atomically rough phase boundaries and facetted growth, samples with [100] and [111] orientation were processed.

  4. Adiabatic theory of strong-field photoelectron momentum distributions near a backward rescattering caustic

    Science.gov (United States)

    Morishita, Toru; Tolstikhin, Oleg I.

    2017-11-01

    We present a comprehensive treatise on the derivation of the factorization formula describing strong-field photoelectron momentum distributions near the outermost backward rescattering caustic within the adiabatic theory and its validation by calculations. The formula derived holds for ionization by linearly polarized laser pulses of sufficiently low frequency and becomes exact as the frequency tends to zero for a fixed pulse amplitude. The convergence of the results obtained from the formula to accurate photoelectron momentum distributions obtained by solving the time-dependent Schrödinger equation is demonstrated. The formula is shown to work quantitatively in both tunneling and over-the-barrier regimes of ionization for finite-range potentials as well as potentials with a Coulomb tail. This paves the way for future applications of the present theory in strong-field physics. In particular, the explicit analytical form of the returning photoelectron wave packet given here enables one to extract differential cross sections for elastic scattering of a photoelectron on the parent ion from experimental photoelectron momentum distributions.

  5. Describing nonequilibrium behavior in strongly correlated materials via dynamical mean-field theory

    Science.gov (United States)

    Freericks, James

    2010-03-01

    Dynamical mean-field theory was introduced in 1989 and has become one of the most successful methods for solving models of strongly correlated electrons in equilibrium (it becomes exact in the infinite-dimensional limit). In this talk, I show how to generalize dynamical mean-field theory to nonequilibrium situations. For transient response, one discretizes the Kadanoff-Baym-Keldysh contour then solves the discrete problem directly. For steady-state response, one can formulate a theory directly in the long-time limit for the retarded Green's functions. These techniques are applied to the problem of the quenching of Bloch oscillations due to electron-electron interactions and to the problem of time-resolved pump/probe photoemission spectroscopy of strongly correlated electrons when a system is driven to a nonequilibrium steady state and cannot be described by the quasiequilibrium approximation with an effective temperature. This work was completed in collaboration with Tom Devereaux, Sasha Joura, Hulikal Krishnamurthy, Brian Moritz, Thomas Pruschke, Volodomyr Turkowski, and Velko Zlati'c. Recent references include: J. K. Freericks, V. M. Turkowski, and V. Zlati'c, Phys. Rev. Lett. 97, 266408 (2006); J. K. Freericks, Phys. Rev. B 77, 075109 (2008); A. V.Joura, J. K. Freericks, and Th. Pruschke, Phys. Rev. Lett. 101, 196401 (2008); J. K. Freericks, H. R. Krishnamurthy and Th. Pruschke, Phys. Rev. Lett. 102, 136401 (2009); and B. Moritz, T. P. Devereaux, and J. K. Freericks, arXiv:0908.1807.

  6. DOSIMETRIC response of a REM-500 in low energy neutron fields typical of nuclear power plants.

    Science.gov (United States)

    Aslam; Matysiak, W; Atanackovic, J; Waker, A J

    2012-06-01

    This study investigates the response of a REM-500 to assess neutron quality factor and dose equivalent in low energy neutron fields, which are commonly encountered in the workplace environment of nuclear power stations. The McMaster University 3 MV Van de Graaff accelerator facility was used to measure the response of the instrument in monoenergetic neutron fields in the energy range 51 to 727 keV by bombarding a thin LiF target with 1.93-2.50 MeV protons. The energy distribution of the neutron fields produced in the facility was measured by a (3)He filled gas ionization chamber. The MCA mode of the REM-500 instrument was used to collect lineal energy distributions at varying neutron energies and to calculate the frequency and dose-mean lineal energies. The effective quality factor, Q-, was also calculated using the values of Q(y)listed in the REM-500 operation manual and compared with those of ICRP 60. The authors observed a continuously increasing trend in y - F, y-D, and Q-with an increase in neutron energy. It is interesting to note that standard tissue equivalent proportional counters (TEPCs) filled with tissue equivalent(TE) gas give rise to a similar trend for these microdosimetric quantities of interest in the same energy range; however, the averages calculated in this study are larger by about 15%compared to a TEPC filled with propane-based TE gas probably because of the larger stopping power of protons in propane compared to TE gas. These somewhat larger event sizes did not result in any significant increase in the Q-compared to those obtained from a TEPC filled with TE gas and were found to be in good agreement with other measurements reported earlier at corresponding neutron energies. The instrument quality factor response, R(Q), defined as the ratio of measured quality factor to the calculated quality factor in an ICRU tissue sphere,was found to vary with neutron energy. The instrument response,R(Q), was ~0.6 at 727 keV, which deteriorates further to

  7. Neutron detection in a high-gamma field using solution-grown stilbene

    Energy Technology Data Exchange (ETDEWEB)

    Bourne, M.M., E-mail: mmbourne@umich.edu [University of Michigan, Ann Arbor, MI 48109 (United States); Clarke, S.D., E-mail: clarkesd@umich.edu [University of Michigan, Ann Arbor, MI 48109 (United States); Adamowicz, N., E-mail: nicka@umich.edu [University of Michigan, Ann Arbor, MI 48109 (United States); Pozzi, S.A., E-mail: pozzisa@umich.edu [University of Michigan, Ann Arbor, MI 48109 (United States); Zaitseva, N., E-mail: zaitseva1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Carman, L., E-mail: carman1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2016-01-11

    A solution-based technique for growing large-volume stilbene scintillators was developed in 2013; crystals up to diameters of 10 cm, or larger, have been grown while preserving excellent pulse shape discrimination (PSD) properties. The goal of this study is to evaluate the PSD capabilities of 5.08 by 5.08-cm stilbene crystals grown by Lawrence Livermore National Laboratory and Inrad Optics when exposed to a 1000 to 1 gamma ray-neutron ratio and operating at a 100-kHz count rate. Results were compared to an equivalent EJ-309 liquid scintillation detector. {sup 252}Cf neutron pulses were recorded in two experiments where {sup 60}Co and {sup 137}Cs sources created the high-gamma field. The high count rate created numerous double pulses that were cleaned using fractional and template approaches designed to remove double pulses while preserving neutron counts. PSD was performed at a threshold of 42 keVee (440-keV proton) for stilbene and 60 keVee (610-keV proton) for EJ-309 liquid. The lower threshold in stilbene resulted in a neutron intrinsic efficiency of approximately 14.5%, 10% higher than EJ-309 liquid, for bare {sup 252}Cf and 13% for {sup 252}Cf in the high-gamma field. Despite the lower threshold, the gamma misclassification rate in stilbene was approximately 3×10{sup −6}, nearly a factor-of-five lower than what we found with the EJ-309 liquid.

  8. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions.

    Science.gov (United States)

    Tessa, C La; Berger, T; Kaderka, R; Schardt, D; Burmeister, S; Labrenz, J; Reitz, G; Durante, M

    2014-04-21

    Short- and long-term side effects following the treatment of cancer with radiation are strongly related to the amount of dose deposited to the healthy tissue surrounding the tumor. The characterization of the radiation field outside the planned target volume is the first step for estimating health risks, such as developing a secondary radioinduced malignancy. In ion and high-energy photon treatments, the major contribution to the dose deposited in the far-out-of-field region is given by neutrons, which are produced by nuclear interaction of the primary radiation with the beam line components and the patient's body. Measurements of the secondary neutron field and its contribution to the absorbed dose and equivalent dose for different radiotherapy technologies are presented in this work. An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5 × 2 × 5 cm³ cancer volume located in the center of the head. The experiment was repeated with 25 MV IMRT (intensity modulated radiation therapy) photons and charged particles (protons and carbon ions) delivered with both passive modulation and spot scanning in different facilities. The measurements were performed with active (silicon-scintillation) and passive (bubble, thermoluminescence ⁶LiF:Mg, Ti (TLD-600) and ⁷LiF:Mg, Ti (TLD-700)) detectors to investigate the production of neutral particles both inside and outside the phantom. These techniques provided the whole energy spectrum (E ≤ 20 MeV) and corresponding absorbed dose and dose equivalent of photo neutrons produced by x-rays, the fluence of thermal neutrons for all irradiation types and the absorbed dose deposited by neutrons with 0.8 neutrons is observed for photons and, among ions, for passively modulated beams. For the treatment with high-energy x-rays, the contribution of secondary neutrons to the dose equivalent is of the same order of magnitude as the primary radiation. In carbon therapy delivered with raster

  9. Field calibration of PADC track etch detectors for local neutron dosimetry in man using different radiation qualities

    Energy Technology Data Exchange (ETDEWEB)

    Haelg, Roger A., E-mail: rhaelg@phys.ethz.ch [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Besserer, Juergen [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Boschung, Markus; Mayer, Sabine [Division for Radiation Safety and Security, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Clasie, Benjamin [Department of Radiation Oncology, Massachusetts General Hospital, 30 Fruit Street, Boston, MA 02114 (United States); Kry, Stephen F. [Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Schneider, Uwe [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 204, CH-8057 Zurich (Switzerland)

    2012-12-01

    In order to quantify the dose from neutrons to a patient for contemporary radiation treatment techniques, measurements inside phantoms, representing the patient, are necessary. Published reports on neutron dose measurements cover measurements performed free in air or on the surface of phantoms and the doses are expressed in terms of personal dose equivalent or ambient dose equivalent. This study focuses on measurements of local neutron doses inside a radiotherapy phantom and presents a field calibration procedure for PADC track etch detectors. An initial absolute calibration factor in terms of H{sub p}(10) for personal dosimetry is converted into neutron dose equivalent and additional calibration factors are derived to account for the spectral changes in the neutron fluence for different radiation therapy beam qualities and depths in the phantom. The neutron spectra used for the calculation of the calibration factors are determined in different depths by Monte Carlo simulations for the investigated radiation qualities. These spectra are used together with the energy dependent response function of the PADC detectors to account for the spectral changes in the neutron fluence. The resulting total calibration factors are 0.76 for a photon beam (in- and out-of-field), 1.00 (in-field) and 0.84 (out-of-field) for an active proton beam and 1.05 (in-field) and 0.91 (out-of-field) for a passive proton beam, respectively. The uncertainty for neutron dose measurements using this field calibration method is less than 40%. The extended calibration procedure presented in this work showed that it is possible to use PADC track etch detectors for measurements of local neutron dose equivalent inside anthropomorphic phantoms by accounting for spectral changes in the neutron fluence.

  10. International key comparison of neutron fluence measurements in mono-energetic neutron fields: C.C.R.I.(3)-K10

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Wang, Z.; Rong, C. [China Institute of Atomic Energy (CIAE), Beijing, People' s Republic of China (China); Lovestam, G.; Plompen, A.; Puglisi, N. [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Geel (Belgium); Gilliam, D.M.; Eisenhauer, C.M.; Nico, J.S.; Dewey, M.S. [National Institute of Standards and Technology (NIST), Gaithersburg (United States); Kudo, K.; Uritani, A.; Harano, H.; Takeda, N. [National Metrology Institute of Japan (NMIJ), Tsukuba (Japan); Thomas, D.J.; Roberts, N.J.; Bennett, A.; Kolkowski, P. [National Physical Laboratory (NPL), Teddington (United Kingdom); Moisseev, N.N.; Kharitonov, I.A. [Mendeleyev Institute for Metrology (VNIIM), St Petersburg (Russian Federation); Guldbakke, S.; Klein, H.; Nolte, R.; Schlegel, D. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2007-12-15

    C.C.R.I. Section III (neutron measurements) conducted a unique key comparison of neutron fluence measurements in mono-energetic neutron fields. In contrast to former comparisons, here the fluence measurements were performed with the participants' instruments in the same neutron fields at the P.T.B. accelerator facility. Seven laboratories- the C.I.A.E. (China), I.R.M.M. (E.C.), N.M.I.J. (Japan), N.I.S.T. (USA), N.P.L. (UK), P.T.B. (Germany) and the V.N.I.I.M. (Russia)-employed their primary standard reference methods or transfer instruments carefully calibrated against their primary standards, to determine the fluence of 0.144 MeV, 1.2 MeV, 5.0 MeV and 14.8 MeV neutrons and reported calibration coefficients for a selected neutron monitor and each neutron energy with a detailed uncertainty budget for the measurements. The key comparison reference values (K.C.R.V.) were finally evaluated as the weighted mean values of the neutron fluence at 1 m distance from the target in vacuum per neutron monitor count. The uncertainties of each K.C.R.V. amounted to about 1%. The degree of equivalence (D.o.E.), defined as the deviation of the result reported by the laboratories for each energy from the corresponding K.C.R.V., and the associated expanded uncertainty are also reported. The deviations between the results of two laboratories each with the corresponding expanded uncertainties complete the documentation of the degrees of equivalence. (authors)

  11. International key comparison of neutron fluence measurements in mono-energetic neutron fields: C.C.R.I.(3)-K10

    International Nuclear Information System (INIS)

    Chen, J.; Wang, Z.; Rong, C.; Lovestam, G.; Plompen, A.; Puglisi, N.; Gilliam, D.M.; Eisenhauer, C.M.; Nico, J.S.; Dewey, M.S.; Kudo, K.; Uritani, A.; Harano, H.; Takeda, N.; Thomas, D.J.; Roberts, N.J.; Bennett, A.; Kolkowski, P.; Moisseev, N.N.; Kharitonov, I.A.; Guldbakke, S.; Klein, H.; Nolte, R.; Schlegel, D.

    2007-01-01

    C.C.R.I. Section III (neutron measurements) conducted a unique key comparison of neutron fluence measurements in mono-energetic neutron fields. In contrast to former comparisons, here the fluence measurements were performed with the participants' instruments in the same neutron fields at the P.T.B. accelerator facility. Seven laboratories- the C.I.A.E. (China), I.R.M.M. (E.C.), N.M.I.J. (Japan), N.I.S.T. (USA), N.P.L. (UK), P.T.B. (Germany) and the V.N.I.I.M. (Russia)-employed their primary standard reference methods or transfer instruments carefully calibrated against their primary standards, to determine the fluence of 0.144 MeV, 1.2 MeV, 5.0 MeV and 14.8 MeV neutrons and reported calibration coefficients for a selected neutron monitor and each neutron energy with a detailed uncertainty budget for the measurements. The key comparison reference values (K.C.R.V.) were finally evaluated as the weighted mean values of the neutron fluence at 1 m distance from the target in vacuum per neutron monitor count. The uncertainties of each K.C.R.V. amounted to about 1%. The degree of equivalence (D.o.E.), defined as the deviation of the result reported by the laboratories for each energy from the corresponding K.C.R.V., and the associated expanded uncertainty are also reported. The deviations between the results of two laboratories each with the corresponding expanded uncertainties complete the documentation of the degrees of equivalence. (authors)

  12. The random transverse field Ising model in d = 2: analysis via boundary strong disorder renormalization

    International Nuclear Information System (INIS)

    Monthus, Cécile; Garel, Thomas

    2012-01-01

    To avoid the complicated topology of surviving clusters induced by standard strong disorder RG in dimension d > 1, we introduce a modified procedure called ‘boundary strong disorder RG’ where the order of decimations is chosen a priori. We apply this modified procedure numerically to the random transverse field Ising model in dimension d = 2. We find that the location of the critical point, the activated exponent ψ ≃ 0.5 of the infinite-disorder scaling, and the finite-size correlation exponent ν FS ≃ 1.3 are compatible with the values obtained previously using standard strong disorder RG. Our conclusion is thus that strong disorder RG is very robust with respect to changes in the order of decimations. In addition, we analyze the RG flows within the two phases in more detail, to show explicitly the presence of various correlation length exponents: we measure the typical correlation exponent ν typ ≃ 0.64 for the disordered phase (this value is very close to the correlation exponent ν pure Q (d=2)≅0.6 3 of the pure two-dimensional quantum Ising model), and the typical exponent ν h ≃ 1 for the ordered phase. These values satisfy the relations between critical exponents imposed by the expected finite-size scaling properties at infinite-disorder critical points. We also measure, within the disordered phase, the fluctuation exponent ω ≃ 0.35 which is compatible with the directed polymer exponent ω DP (1+1)= 1/3 in (1 + 1) dimensions. (paper)

  13. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    Science.gov (United States)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  14. Molecules in strong laser fields. In depth study of H2 molecule

    International Nuclear Information System (INIS)

    Awasthi, Manohar

    2009-01-01

    -threshold-ionization peaks is also demonstrated. The CI-TDSE results for H 2 are used for testing the validity of SAE approximation. In strong field physics, there are models based on the SAE approximation. Most popular are the Ammosov-Delone-Krainov (ADK) model, a molecular version of the ADK model called MO-ADK (MO stands for molecular orbital) and the strong field approximation (SFA). The validity of the second method for the solution of TDSE in SAE approximation is investigated by applying it to H 2 molecule where the exact two-electron results were already calculated using CI-TDSE. The SAE method uses density-functional-theory (DFT) for the description of field-free eigenstates and is thus abbreviated as DFT-SAE-TDSE. Since DFT is used for the calculation of field-free states, different functionals were also tested. The validity of MO-ADK model is also investigated. After establishing the DFT-SAE-TDSE method, the first excited state B 1 Σ u + of H 2 is studied over a large range of laser parameters. The effect of the closely lying excited states on ionization and excitation is studied. After successful testing of DFT-SAE-TDSE method on H 2 molecule, the results for larger molecules like N 2 , O 2 and C 2 H 2 in the DFT-SAE framework are presented. (orig.)

  15. Molecules in strong laser fields. In depth study of H{sub 2} molecule

    Energy Technology Data Exchange (ETDEWEB)

    Awasthi, Manohar

    2009-10-29

    above-threshold-ionization peaks is also demonstrated. The CI-TDSE results for H{sub 2} are used for testing the validity of SAE approximation. In strong field physics, there are models based on the SAE approximation. Most popular are the Ammosov-Delone-Krainov (ADK) model, a molecular version of the ADK model called MO-ADK (MO stands for molecular orbital) and the strong field approximation (SFA). The validity of the second method for the solution of TDSE in SAE approximation is investigated by applying it to H{sub 2} molecule where the exact two-electron results were already calculated using CI-TDSE. The SAE method uses density-functional-theory (DFT) for the description of field-free eigenstates and is thus abbreviated as DFT-SAE-TDSE. Since DFT is used for the calculation of field-free states, different functionals were also tested. The validity of MO-ADK model is also investigated. After establishing the DFT-SAE-TDSE method, the first excited state B{sup 1}{sigma}{sub u}{sup +} of H{sub 2} is studied over a large range of laser parameters. The effect of the closely lying excited states on ionization and excitation is studied. After successful testing of DFT-SAE-TDSE method on H{sub 2} molecule, the results for larger molecules like N{sub 2}, O{sub 2} and C{sub 2}H{sub 2} in the DFT-SAE framework are presented. (orig.)

  16. Neutron scattering study of the field-induced soliton lattice in CuGeO3

    DEFF Research Database (Denmark)

    Rønnow, H.M.; Enderle, M.; McMorrow, D.F.

    2000-01-01

    CuGeO3 undergoes a transition from a spin-Peierls phase to an incommensurate phase at a critical field of H-c approximate to 12.5 T. In the high-field phase a lattice of solitons forms, with both structural and magnetic components, and these have been studied using neutron scattering techniques....... Our results provide direct evidence for a long-ranged magnetic soliton structure which has both staggered and uniform magnetizations with amplitudes that are broadly in accord with theoretical estimates. The magnetic soliton width Gamma(m) and the field dependence of the incommensurability delta k...

  17. The influence of a high-frequency magnetic field on the neutron diffraction by perfect crystals

    International Nuclear Information System (INIS)

    Michalec, R.; Chalupa, B.; Vavra, J.

    1989-01-01

    Measurements of the influence of a high-frequency magnetic field on the neutron diffraction by perfect monocrystals of InSb were performed at a frequency of 25 MHz. The ratios of the integrated reflectivities with and without a magnetic field as a function of the output voltage from the amplifier are shown for different parts of the crystal. The time dependence of the integrated reflectivity after switching on and off the high-frequency field is given. Results may be interpreted on the basis of the dynamical theory of diffraction on elastically deformed crystals (caused by the temperature gradient). Similar phenomena were observed also with a perfect Si monocrystal

  18. Limitations of the strong field approximation in ionization of the hydrogen atom by ultrashort pulses

    International Nuclear Information System (INIS)

    Arbo, D.G.; Toekesi, K.; Miraglia, J.E.; FCEN, University of Buenos Aires

    2008-01-01

    Complete text of publication follows. We presented a theoretical study of the ionization of hydrogen atoms as a result of the interaction with an ultrashort external electric field. Doubly-differential momentum distributions and angular momentum distributions of ejected electrons calculated in the framework of the Coulomb-Volkov and strong field approximations, as well as classical calculations are compared with the exact solution of the time dependent Schroedinger equation. We have shown that the Coulomb-Volkov approximation (CVA) describes the quantum atomic ionization probabilities exactly when the external field is described by a sudden momentum transfer [1]. The velocity distribution of emitted electrons right after ionization by a sudden momentum transfer is given through the strong field approximation (SFA) within both the CVA and CTMC methods. In this case, the classical and quantum time dependent evolutions of an atom subject to a sudden momentum transfer are identical. The difference between the classical and quantum final momentum distributions resides in the time evolution of the escaping electron under the subsequent action of the Coulomb field. Furthermore, classical mechanics is incapable of reproducing the quantum angular momentum distribution due to the improper initial radial distribution used in the CTMC calculations, i.e., the microcanonical ensemble. We find that in the limit of high momentum transfer, based on the SFA, there is a direct relation between the cylindrical radial distribution dP/dρ and the final angular momentum distribution dP/dL. This leads to a close analytical expression for the partial wave populations (dP/dL) SFA-Q given by dP SFA-Q / dL = 4Z 3 L 2 / (Δp) 3 K 1 (2ZL/Δp) which, together with the prescription L = l + 1/2, reproduces quite accurately the quantum (CVA) results. Considering the inverse problem, knowing the final angular momentum distribution can lead to the inference of the initial probability distribution

  19. A boundary condition to the Khokhlov-Zabolotskaya equation for modeling strongly focused nonlinear ultrasound fields

    Energy Technology Data Exchange (ETDEWEB)

    Rosnitskiy, P., E-mail: pavrosni@yandex.ru; Yuldashev, P., E-mail: petr@acs366.phys.msu.ru; Khokhlova, V., E-mail: vera@acs366.phys.msu.ru [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation)

    2015-10-28

    An equivalent source model was proposed as a boundary condition to the nonlinear parabolic Khokhlov-Zabolotskaya (KZ) equation to simulate high intensity focused ultrasound (HIFU) fields generated by medical ultrasound transducers with the shape of a spherical shell. The boundary condition was set in the initial plane; the aperture, the focal distance, and the initial pressure of the source were chosen based on the best match of the axial pressure amplitude and phase distributions in the Rayleigh integral analytic solution for a spherical transducer and the linear parabolic approximation solution for the equivalent source. Analytic expressions for the equivalent source parameters were derived. It was shown that the proposed approach allowed us to transfer the boundary condition from the spherical surface to the plane and to achieve a very good match between the linear field solutions of the parabolic and full diffraction models even for highly focused sources with F-number less than unity. The proposed method can be further used to expand the capabilities of the KZ nonlinear parabolic equation for efficient modeling of HIFU fields generated by strongly focused sources.

  20. The mass limit of white dwarfs with strong magnetic fields in general relativity

    International Nuclear Information System (INIS)

    Wen De-Hua; Liu He-Lei; Zhang Xiang-Dong

    2014-01-01

    Recently, U. Das and B. Mukhopadhyay proposed that the Chandrasekhar limit of a white dwarf could reach a new high level (2.58M⊙) if a superstrong magnetic field were considered (Das U and Mukhopadhyay B 2013 Phys. Rev. Lett. 110 071102), where the structure of the strongly magnetized white dwarf (SMWD) is calculated in the framework of Newtonian theory (NT). As the SMWD has a far smaller size, in contrast with the usual expectation, we found that there is an obvious general relativistic effect (GRE) in the SMWD. For example, for the SMWD with a one Landau level system, the super-Chandrasekhar mass limit in general relativity (GR) is approximately 16.5% lower than that in NT. More interestingly, the maximal mass of the white dwarf will be first increased when the magnetic field strength keeps on increasing and reaches the maximal value M = 2.48M⊙ with B D = 391.5. Then if we further increase the magnetic fields, surprisingly, the maximal mass of the white dwarf will decrease when one takes the GRE into account. (geophysics, astronomy, and astrophysics)