WorldWideScience

Sample records for strong neutron absorbers

  1. Characterization of weak, fair and strong neutron absorbing materials by means of neutron transmission: Beam hardening effect

    Science.gov (United States)

    Kharfi, F.; Bastuerk, M.; Boucenna, A.

    2006-09-01

    The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρs) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach.

  2. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1996-01-01

    A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution's concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the 'Poisoned Tube Tank' because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service

  3. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  4. Self-shielding and burn-out effects in the irradiation of strongly-neutron-absorbing material

    International Nuclear Information System (INIS)

    Sekine, T.; Baba, H.

    1978-01-01

    Self-shielding and burn-out effects are discussed in the evaluation of radioisotopes formed by neutron irradiation of a strongly-neutron-absorbing material. A method of the evaluation of such effects is developed both for thermal and epithermal neutrons. Gadolinium oxide uniformly mixed with graphite powder was irradiated by reactor-neutrons together with pieces of a Co-Al alloy wire (the content of Co being 0.475%) as the neutron flux monitor. The configuration of the samples and flux monitors in each of two irradiations is illustrated. The yields of activities produced in the irradiated samples were determined by the γ-spectrometry with a Ge(Li) detector of a relative detection efficiency of 8%. Activities at the end of irradiation were estimated by corrections due to pile-up, self-absorption, detection efficiency, branching ratio, and decay of the activity. Results of the calculation are discussed in comparison with the observed yields of 153 Gd, 160 Tb, and 161 Tb for the case of neutron irradiation of disc-shaped targets of gadolinium oxide. (T.G.)

  5. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1983-01-01

    A neutron-absorber body for use in burnable poison rods in a nuclear reactor. The body is composed of a matrix of Al 2 O 3 containing B 4 C, the neutron absorber. Areas of high density polycrystalline Al 2 O 3 particles are predominantly encircled by pores in some of which there are B 4 C particles. This body is produced by initially spray drying a slurry of A1 2 O 3 powder to which a binder has been added. The powder of agglomerated spheres of the A1 2 O 3 with the binder are dry mixed with B 4 C powder. The mixed powder is formed into a green body by isostatic pressure and the green body is sintered. The sintered body is processed to form the neutron-absorber body. In this case the B 4 C particles are separate from the spheres resulting from the spray drying instead of being embedded in the sphere

  6. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooker, G.I.

    1981-01-01

    A neutron-absorbing article suitable for use in spent fuel racks is described. It comprises boron carbide particles, diluent particles, and a phenolic polymer cured to a continuous matrix. The diluent may be silicon carbide, graphite, amorphous carbon, alumina, or silica. The combined boron carbide-diluent phase contains no more than 2 percent B 2 O 3 , and the neutron-absorbing article contains from 20 to 40 percent phenol resin. The ratio of boron carbide to diluent particles is in the range 1:9 to 9:1

  7. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooher, G.I.

    1979-01-01

    A neutron absorbing article, in flat plate form and suitable for use in a storage rack for spent fuel, includes boron carbide particles, diluent particles and a solid, irreversibly cured phenolic polymer cured to a continuous matrix binding the boron carbide and diluent particles. The total conent of boron carbide and diluent particles is a major proportion of the article and the content of cured phenolic polymer present is a minor proportion. By regulation of the ratio of boron carbide particles to diluent particles, normally within the range of 1:9 and 9:1 and preferably within the range of 1:5 to 5:1, the neutron absorbing activity of the product may be controlled, which facilitates the manufacture of articles of particular absorbing activities best suitable for specific applications

  8. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  9. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.

    1993-01-01

    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  10. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1985-01-01

    This patent deals with the fabrication of pellets for neutron absorber rods. Such a pellet includes a matrix of a refractory material which may be aluminum or zirconium oxide, and a burnable poison distributed throughout the matrix. The neutron absorber material may consist of one or more elements or compounds of the metals boron, gadolinium, samarium, cadmium, europium, hafnium, dysprosium and indium. The method of fabricating pellets of these materials outlined in this patent is designed to produce pores or voids in the pellets that can be used to take up the expansion of the burnable poison and to absorb the helium gas generated. In the practice of this invention a slurry of Al 2 O 3 is produced. A hard binder is added and the slurry and binder are spray dried. This powder is mixed with dry B 4 C powder, forming a homogeneous mixture. This mixture is pressed into green tubes which are then sintered. During sintering the binder volatilizes leaving a ceramic with nearly spherical high-density regions of

  11. Neutron absorbing element

    International Nuclear Information System (INIS)

    Kasai, Shigeo.

    1991-01-01

    The present invention concerns a neutron absorbing element of a neutron shielding member used for an LMFBR type reactor. The inside of a fuel can sealed at both of the upper and the lower ends thereof with plugs is partitioned into an upper and a lower chambers by an intermediate plug. A discharging hole is disposed at the upper end plug, which is in communication with the outside. A communication tube is disposed at the intermediate end plug and it is in communication with the lower chamber containing B 4 C pellets. A cylindrical support member having three porous plugs connected in series is disposed at the lower surface of the discharging hole provided at the upper end plug. Further, the end of the discharging hole is sealed with high temperature solder and He atmosphere is present at the inside of the fuel can. With such a constitution, the supporting differential pressure of the porous plugs can be made greater while discharging He gases generated from B 4 C to the outside. Further, the porous plugs can be surely wetted by coolants. Accordingly, it is possible to increase life time and shorten the size. (I.N.)

  12. Neutron-absorbing alloys

    International Nuclear Information System (INIS)

    Portnoi, K.I.; Arabei, L.B.; Gryaznov, G.M.; Levi, L.I.; Lunin, G.L.; Kozhukhov, V.M.; Markov, J.M.; Fedotov, M.E.

    1975-01-01

    A process is described for the production of an alloy consiting of 1 to 20% In, 0.5 to 15% Sm, and from 3 to 18% Hf, the balance being Ni. Such alloys show a good absorption capacity for thermal and intermediate neutrons, good neutron capture efficiency, and good corrosion resistance, and find application in nuclear reactor automatic control and safety systems. The Hf provides for the maintenance of a reasonably high order of neutron capture efficiency throughout the lifetime of a reactor. The alloys are formed in a vacuum furnace operating with an inert gas atmosphere at 280 to 300 mm.Hg. They have a corrosion resistance from 3 to 3.5 times that of the Ag-based alloys commonly employed, and a neutron capture efficiency about twice that of the Ag alloys. Castability and structural strength are good. (U.K.)

  13. Heterogeneous neutron absorbers development

    International Nuclear Information System (INIS)

    Boccaccini, Aldo; Agueda, Horacio; Russo, Diego; Perez, Edmundo

    1987-01-01

    The use of solid burnable absorber materials in power light water reactors has increased in the last years, specially due to improvements attained in costs of generated electricity. The present work summarizes the basic studies made on an alumina-gadolinia system, where alumina is the inert matrix and gadolinia acts as burnable poison, and describes the fabrication method of pellets with that material. High density compacts were obtained in the range of concentrations used by cold pressing and sintering at 1600 deg C in inert (Ar) atmosphere. Finally, the results of the irradiation experiences made at RA-6 reactor, located at the Bariloche Atomic Center, are given where variations on negative reactivity caused by introduction of burnable poison rods were measured. The results obtained from these experiences are in good agreement with those coming from calculation codes. (Author)

  14. Absorbing rods for nuclear fast neutron reactor absorbing assembly

    International Nuclear Information System (INIS)

    Aji, M.; Ballagny, A.; Haze, R.

    1986-01-01

    The invention proposes a neutron absorber rod for neutron absorber assembly of a fast neutron reactor. The assembly comprises a bundle of vertical rods, each one comprising a stack of pellets made of a neutron absorber material contained in a long metallic casing with a certain radial play with regard to this casing; this casing includes traps for splinters from the pellets which may appear during reactor operation, at the level of contact between adjacent pellets. The present invention prevents the casing from rupture involved by the disintegration of the pellets producing pieces of boron carbide of high hardness [fr

  15. Characterization and MCNP simulation of neutron energy spectrum shift after transmission through strong absorbing materials and its impact on tomography reconstructed image.

    Science.gov (United States)

    Hachouf, N; Kharfi, F; Boucenna, A

    2012-10-01

    An ideal neutron radiograph, for quantification and 3D tomographic image reconstruction, should be a transmission image which exactly obeys to the exponential attenuation law of a monochromatic neutron beam. There are many reasons for which this assumption does not hold for high neutron absorbing materials. The main deviations from the ideal are due essentially to neutron beam hardening effect. The main challenges of this work are the characterization of neutron transmission through boron enriched steel materials and the observation of beam hardening. Then, in our work, the influence of beam hardening effect on neutron tomographic image, for samples based on these materials, is studied. MCNP and FBP simulation are performed to adjust linear attenuation coefficients data and to perform 2D tomographic image reconstruction with and without beam hardening corrections. A beam hardening correction procedure is developed and applied based on qualitative and quantitative analyses of the projections data. Results from original and corrected 2D reconstructed images obtained shows the efficiency of the proposed correction procedure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Neutron Absorbing Ability Variation in Neutron Absorbing Material Caused by the Neutron Irradiation in Spent Fuel Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hee Dong; Han, Seul Gi; Lee, Sang Dong; Kim, Ki Hong; Ryu, Eag Hyang; Park, Hwa Gyu [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2014-10-15

    In spent fuel storage facility like high density spent fuel storage racks and dry storage casks, spent fuels are stored with neutron absorbing materials installed as a part of those facilities, and they are used for absorbing neutrons emitted from spent fuels. Usually structural material with neutron absorbing material of racks and casks are located around spent fuels, so it is irradiated by neutrons for long time. Neutron absorbing ability could be changed by the variation of nuclide composition in neutron absorbing material caused by the irradiation of neutrons. So, neutron absorbing materials are continuously faced with spent fuels with boric acid solution or inert gas environment. Major nuclides in neutron absorbing material are Al{sup 27}, C{sup 12}, B{sup 11}, B{sup 10} and they are changed to numerous other ones as radioactive decay or neutron absorption reaction. The B{sup 10} content in neutron absorbing material dominates the neutron absorbing ability, so, the variation of nuclide composition including the decrease of B{sup 10} content is the critical factor on neutron absorbing ability. In this study, neutron flux in spent fuel, the activation of neutron absorbing material and the variation of nuclide composition are calculated. And, the minimum neutron flux causing the decrease of B{sup 10} content is calculated in spent fuel storage facility. Finally, the variation of neutron multiplication factor is identified according to the one of B{sup 10} content in neutron absorbing material. The minimum neutron flux to impact the neutron absorbing ability is 10{sup 10} order, however, usual neutron flux from spent fuel is 10{sup 8} order. Therefore, even though neutron absorbing material is irradiated for over 40 years, B{sup 10} content is little decreased, so, initial neutron absorbing ability could be kept continuously.

  17. Development of highly effective neutron shields and neutron absorbing materials

    International Nuclear Information System (INIS)

    Tsuda, K.; Matsuda, F.; Taniuchi, H.; Yuhara, T.; Iida, T.

    1993-01-01

    A wide range of materials, including polymers and hydrogen-occluded alloys that might be usable as the neutron shielding material were examined. And a wide range of materials, including aluminum alloys that might be usable as the neutron-absorbing material were examined. After screening, the candidate material was determined on the basis of evaluation regarding its adaptabilities as a high-performance neutron-shielding and neutron-absorbing material. This candidate material was manufactured for trial, after which material properties tests, neutron-shielding tests and neutron-absorbing tests were carried out on it. The specifications of this material were thus determined. This research has resulted in materials of good performance; a neutron-shielding material based on ethylene propylene rubber and titanium hydride, and a neutron-absorbing material based on aluminum and titanium hydride. (author)

  18. Neutron absorbed dose in a pacemaker CMOS

    International Nuclear Information System (INIS)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L.

    2012-01-01

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10 -17 Gy per neutron emitted by the source. (Author)

  19. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: fermineutron@yahoo.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-06-15

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10{sup -17} Gy per neutron emitted by the source. (Author)

  20. Aluminum alloy excellent in neutron absorbing performance

    International Nuclear Information System (INIS)

    Iida, Tetsuya; Tamamura, Tadao; Morimoto, Hiroyuki; Ouchi, Ken-ichiro.

    1987-01-01

    Purpose: To obtain structural materials made of aluminum alloys having favorable neutron absorbing performance and excellent in the performance as structural materials such as processability and strength. Constitution: Powder of Gd 2 O 3 as a gadolinium compound or metal gadolinium is uniformly mixed with the powder of aluminum or aluminum alloy. The amount of the gadolinium compound added is set to 0.1 - 30 % by weight. No sufficient neutron absorbing performance can be obtained if it is less than 0.1 % by weight, whereas the processability and mechanical property of the alloy are degraded if it exceeds 30 % by weight. Further, the grain size is set to less about 50 μm. Further, since the neutron absorbing performance varies greatly if the aluminum powder size exceeds 100 μm, the diameter is set to less than about 100 μm. These mixtures are molded in a hot press. This enables to obtain aimed structural materials. (Takahashi, M.)

  1. Method for manufacture of neutron absorbing articles

    International Nuclear Information System (INIS)

    Owens, D.

    1980-01-01

    A one-step curing method for the manufacture of a neutron absorbing article which comprises irreversibly curing, in desired article form, a form-retaining mixture of boron carbide particles, curable phenolic resin in solid state and in particula te form and a minor proportion of a liquid medium, which boils at a temperature below 200*c., at an elevated temperature so as to obtain bonding of the irreversibly cured phenolic polymer resulting to the boron carbide particles and production of the neutron absorbing article in desired form

  2. Neutron absorbers and methods of forming at least a portion of a neutron absorber

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna P; Porter, Douglas L; Swank, W David; Erickson, Arnold W

    2014-12-02

    Methods of forming at least a portion of a neutron absorber include combining a first material and a second material to form a compound, reducing the compound into a plurality of particles, mixing the plurality of particles with a third material, and pressing the mixture of the plurality of particles and the third material. One or more components of neutron absorbers may be formed by such methods. Neutron absorbers may include a composite material including an intermetallic compound comprising hafnium aluminide and a matrix material comprising pure aluminum.

  3. A transformation technique to treat strong vibrating absorbers

    International Nuclear Information System (INIS)

    Sahni, D.C.; Garis, N.S.; Pazsit, I.

    1998-06-01

    Calculation of the neutron noise, induced by small amplitude vibrations of a strong absorber, is a difficult task because the traditional linearization technique cannot be applied. Two methods, based on two different representations of the absorber, were developed earlier to solve the problem. In both methods the rod displacements are described by a Taylor expansion, such that the boundary condition needs only to be considered at the surface of a static rod. Only one of the methods is applicable in two dimensions. In this paper an alternative method is developed and used for the solution of the problem. The essence of the method is a variable transformation by which the moving boundary is transformed into a static one without Taylor expansion. The corresponding equations are solved in a linear manner and the solution is transformed back to the original parameter space. The method is equally applicable in one and two dimensions. The solutions are in complete agreement with those of the previous methods

  4. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C. Y.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The absorbed dose due to neutrons by a Complementary Metal Oxide Semiconductor (CMOS) has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes a patient that must be treated by radiotherapy with a linear accelerator; the pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. When the Linac is working in Bremsstrahlung mode an undesirable neutron field is produced due to photoneutron reactions; these neutrons could damage the CMOS putting the patient at risk during the radiotherapy treatment. In order to estimate the neutron dose in the CMOS a Monte Carlo calculation was carried out where a full radiotherapy vault room was modeled with a W-made spherical shell in whose center was located the source term of photoneutrons produced by a Linac head operating in Bremsstrahlung mode at 18 MV. In the calculations a phantom made of tissue equivalent was modeled while a beam of photoneutrons was applied on the phantom prostatic region using a field of 10 x 10 cm{sup 2}. During simulation neutrons were isotropically transported from the Linac head to the phantom chest, here a 1 {theta} x 1 cm{sup 2} cylinder made of polystyrene was modeled as the CMOS, where the neutron spectrum and the absorbed dose were estimated. Main damages to CMOS are by protons produced during neutron collisions protective cover made of H-rich materials, here the neutron spectrum that reach the CMOS was calculated showing a small peak around 0.1 MeV and a larger peak in the thermal region, both connected through epithermal neutrons. (Author)

  5. Removing fuelling transient using neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, S.; Chan, P.K.; Bonin, H.W., E-mail: Stephane.Paquette@rmc.ca [Royal Military College of Canada, Chemistry and Chemical Engineering Dept., Kingston, Ontario (Canada); Pant, A. [Cameco Fuel Manufacturing, Port Hope, Ontario (Canada)

    2012-07-01

    Preliminary criticality and burnup calculation results indicate that by employing a small amount of neutron absorber the fuelling transient, currently occurring in a CANDU 37-element fuel bundle, can be significantly reduced. A parametric study using the Los Alamos National Laboratories' MCNP 5 code and Atomic Energy of Canada Limited's WIMS-AECL 3.1 is presented in this paper. (author)

  6. Neutron absorbers, and the production method

    International Nuclear Information System (INIS)

    Kayano, Hideo; Yajima, Seishi; Oono, Hironori.

    1979-01-01

    Purpose: To integrally sinter a metal powder and a metal network material thereby to obtain a material having a high neutron absorbing function, an excellent corrosion resistance and an excellent oxidation resistance. Method: An element having a high neutron absorbing function, such as Gd, or a compound thereof and a powder of a metal having excellent corrosion resistance, oxidation resistance and ductility, such as Fe, Cr or the like are uniformly mixed with each other. In a case where a substance having a neutron absorbing function is a hydroxide an organic complex or the like, it is formed into a gel-like substance and mixed uniformly with the metal powder, the gel-like substance being pasted, and covered on the surface of the metal powder and dried. Then, the mixture or the dry coated material is extended and the metal network material having excellent corrosion resistance, oxidation resistance and ductility is covered or interposed or between at least one layer of upper, intermediate or lower layers of said laminated material, and thereafter is subjected to cold or hot rolling, and then sintered and furthermore rolled, if necessary, the thus treated material being burned in vacuum or a non-oxidizing atmosphere. (Kamimura, M.)

  7. Fluorescent converter and neutron absorber being made of boron nitride

    International Nuclear Information System (INIS)

    Matsumoto, G.; Teramura, M.; Sato, J.; Maeda, M.

    1983-01-01

    To improve the sensitivity of fluorescent converter is essential to the neutron radiography (NRG) which utilizes portable, not so strong, neutron sources. The fluorescent converter made of boron nitride (BN) is fabricated and tested. The sensitivity is about 1/20 of the NE426, but the homogeneity may be better. If 10 BN is utilized, the sensitivity will be five times as much as that of natural BN. Using the neutron beam of the Kyoto University Research Reactor, the flux of which is about 10 6 n/cm 2 sec, a good neutron television image was gained by X-ray television camera. As a bi-product of this converter, a flexible absorber was fabricated. (Auth.)

  8. Electrochemical Corrosion Testing of Neutron Absorber Materials

    International Nuclear Information System (INIS)

    Tedd Lister; Ron Mizia; Sandra Birk; Brent Matteson; Hongbo Tian

    2006-01-01

    The Yucca Mountain Project (YMP) has been directed by DOE-RW to develop a new repository waste package design based on the transport, aging, and disposal canister (TAD) system concept. A neutron poison material for fabrication of the internal spent nuclear fuel (SNF) baskets for these canisters needs to be identified. A material that has been used for criticality control in wet and dry storage of spent nuclear fuel is borated stainless steel. These stainless products are available as an ingot metallurgy plate product with a molybdenum addition and a powder metallurgy product that meets the requirements of ASTM A887, Grade A. A new Ni-Cr-Mo-Gd alloy has been developed by the Idaho National Laboratory (INL) with its research partners (Sandia National Laboratory and Lehigh University) with DOE-EM funding provided by the National Spent Nuclear Fuel Program (NSNFP). This neutron absorbing alloy will be used to fabricate the SNF baskets in the DOE standardized canister. The INL has designed the DOE Standardized Spent Nuclear Fuel Canister for the handling, interim storage, transportation, and disposal in the national repository of DOE owned spent nuclear fuel (SNF). A corrosion testing program is required to compare these materials in environmental conditions representative of a breached waste canister. This report will summarize the results of crevice corrosion tests for three alloys in solutions representative of ionic compositions inside the waste package should a breech occur. The three alloys in these tests are Neutronit A978 (ingot metallurgy, hot rolled), Neutrosorb 304B4 Grade A (powder metallurgy, hot rolled), and Ni-Cr-Mo-Gd alloy (ingot metallurgy, hot rolled)

  9. RackSaver neutron absorbing device development and testing

    International Nuclear Information System (INIS)

    Lambert, R.; O'Leary, P.; Roberts, P.

    1996-01-01

    Siemens Power Corporation (SPC), in cooperation with the Electric Power Research Institute (EPRI), has developed the RackSaver neutron absorbing insert. The RackSaver insert can be installed onto spent nuclear fuel assemblies to replace deteriorating Boraflex neutron absorbing material installed in some spent-fuel storage racks. This paper describes results of a development and in-pool demonstration program performed to support potential utilization of the RackSaver neutron absorbing insert by affected utilities. The program objective was to advance the RackSaver concept into a field-demonstrated product. This objective was accomplished through three phases: design, licensing and criticality evaluations, and demonstration testing

  10. Estimate of absorbed dose received by individuals irradiated with neutrons

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Mauricio, C.L.P.

    1995-01-01

    An innovating methodology is proposed to estimate the absorbed dose received by individuals irradiated with neutrons in an accident, even in the case that the victim is not using any kind of neutron dosemeter. The method combines direct measurements of 24 Na and 32 P activated in the human body. The calculation method was developed using data taken from previously published papers and experimental measurements. Other irradiations results in different neutron spectra prove the validity of the methodology here proposed. Using a whole body counter to measure 24 Na activity, it is possible to evaluate neutron absorbed doses in the order of 140 μGy of very soft (thermal) spectra. For fast neutron fields, the lower limit for neutron dose detection increases, but the present method continues to be very useful in accidents, with higher neutron doses. (author). 5 refs., 1 fig., 4 tabs

  11. Fast neutron radiation inactivation of Bacillus subtilis: Absorbed dose determination

    International Nuclear Information System (INIS)

    Song Lingli; Zheng Chun; Ai Zihui; Li Junjie; Dai Shaofeng

    2011-01-01

    In this paper, fast neutron inactivation effects of Bacillus subtilis were investigated with fission fast neutrons from CFBR-II reactor of INPC (Institute of Nuclear Physics and Chemistry) and mono-energetic neutrons from the Van de Graaff accelerator at Peking University. The method for determining the absorbed dose in the Bacillus subtilis suspension contained in test tubes is introduced. The absorbed dose, on account of its dependence on the volume and the form of confined state, was determined by combined experiments and Monte Carlo method. Using the calculation results of absorbed dose, the fast neutron inactivation effects on Bacillus subtilis were studied. The survival rates and absorbed dose curve was constructed. (authors)

  12. Neutron absorbing room temperature vulcanizable silicone rubber compositions

    International Nuclear Information System (INIS)

    Zoch, H.L.

    1979-01-01

    A neutron absorbing composition is described and consists of a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide. 20 claims

  13. Neutron absorbing article and method for manufacture of such article

    International Nuclear Information System (INIS)

    Hortman, M.T.; Mcmurtry, C.H.; Naum, R.G.; Owens, D.P.

    1980-01-01

    A neutron absorbing article, preferably in long, thin, flat form , suitable for but not necessarily limited to use in storage racks for spent nuclear fuel at locations between volumes of such stored fuel, to absorb neutrons from said spent fuel and prevent uncontrolled nuclear reaction of the spent fuel material, is composed of finely divided boron carbide particles and a solid, irreversibly cured phenolic polymer, forming a continuous matrix about the boron carbide particles, in such proportions that at least 6% of b10 from the boron carbide content is present therein. The described articles withstand thermal cycling from repeated spent fuel insertions and removals, withstand radiation from said spent nuclear fuel over long periods of time without losing desirable neutron absorbing and physical properties, are sufficiently chemically inert to water so as to retain neutron absorbing properties if brought into contact with it, are not galvanically corrodible and are sufficiently flexible so as to withstand operational basis earthquake and safe shutdown earthquake seismic events, without loss of neutron absorbing capability and other desirable properties, when installed in storage racks for spent nuclear fuel. The disclosure also relates to a plurality of such neutron absorbing articles in a storage rack for spent nuclear fuel and to a method for the manufacture of the articles

  14. Neutron detector using sol-gel absorber

    Science.gov (United States)

    Hiller, John M.; Wallace, Steven A.; Dai, Sheng

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  15. A neutron-absorbing porcelain enamel for coating nuclear equipment

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1988-01-01

    In 1985, nuclear safety analyses showed that under upset conditions, strict administrative controls were necessary to limit access to a new processing vessel for enriched uranium service at the Savannah River Plant (SRP). In order to increase the level of nuclear safety associated with that vessel, the traditional methods of incorporating neutron absorbers (borated stainless steel, boral, cadmium foil, etc.) were reviewed, however, process conditions did not permit their use. A neutron-absorbing porcelain enamel containing large amounts of cadmium and boron was developed as a safe, cost-effective alternative to traditional neutron-absorbing methods. Several pieces of coated process equipment have been installed or are planned for installation at SRP

  16. Crystallographic structures of absorbates and neutron diffraction

    International Nuclear Information System (INIS)

    Marti, C.; Thorel, P.

    1975-01-01

    The advantage of neutron diffraction is that it is possible to work at any pressure and therefore to study an adsorbant-adsorbate couple within a wide pressure and temperature range and at thermodynamic equilibrium. Nitrogen adsorbed on graphite and CF 4 adsorbed on graphite were measured [fr

  17. Intermediate and fast neutron absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-10-01

    The experimental fuel channel EFC is created as one of the fast neutron fields at the RB reactor. The intermediate and fast neutron spectra in EFC are measured by activation technique. The intermediate and fast neutron absorbed doses are computed on the basis of these experimental results. At the end the obtained doses are compared. (author)

  18. Integrity of neutron-absorbing components of LWR fuel systems

    International Nuclear Information System (INIS)

    Bailey, W.J.; Berting, F.M.

    1991-03-01

    A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs

  19. Safety implications of anomalous effects of neutron absorbers on criticality

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1987-04-01

    A number of ''anomalies'' in nuclear criticality have been disclosed in recent years, and as new data have become available additional anomalies have come to light. Application of existing data, without familiarity with the anomalies could lead to diminished criticality control, or more costly less efficient control. As neutron absobers are frequently used for criticality control, this paper briefly presents and discusses six apparent anomalies pertaining to the effect of neutron absorbers on the criticality of fissionable material

  20. An optimized absorbing potential for ultrafast, strong-field problems

    Science.gov (United States)

    Yu, Youliang; Esry, B. D.

    2018-05-01

    Theoretical treatments of strong-field physics have long relied on the numerical solution of the time-dependent Schrödinger equation. The most effective such treatments utilize a discrete spatial representation—a grid. Since most strong-field observables relate to the continuum portion of the wave function, the boundaries of the grid—which act as hard walls and thus cause reflection—can substantially impact the observables. Special care thus needs to be taken. While there exist a number of attempts to solve this problem—e.g., complex absorbing potentials and masking functions, exterior complex scaling, and coordinate scaling—none of them are completely satisfactory. The first of these is arguably the most popular, but it consumes a substantial fraction of the computing resources in any given calculation. Worse, this fraction grows with the dimensionality of the problem. In addition, no systematic way to design such a potential has been used in the strong-field community. In this work, we address these issues and find a much better solution. By comparing with previous widely used absorbing potentials, we find a factor of 3–4 reduction in the absorption range, given the same level of absorption over a specified energy interval.

  1. Scattering of strongly absorbed particles near the Coulomb barrier

    International Nuclear Information System (INIS)

    Fernandez, B.

    1979-01-01

    The elastic scattering of strongly absorbed particles near the Coulomb barrier is sensitive to one size parameter, which is the distance at which the real nuclear potential has some fixed value, 0.2 MeV for α-particle, 1 MeV for 16 O. This size parameter can be related in a simple way to the radial distance of the target nucleus where the density takes some given value, 2x10 -3 nucleon /fm 3 for α-particle scattering and 5x10 -3 nucleon/fm 3 for 16 O scattering

  2. Neutron physics calculation for WWER-1000 absorber element lifetime determination

    International Nuclear Information System (INIS)

    Kurakin, K.Yu.; Kushmanov, S.A.

    2009-01-01

    Absorber element with compound absorber has been operating in WWER-1000 power units since 1995. AE design meets operating organizations requirements for reliability, service life (to 10 years) and safety functions. Extension of AE service life up to 20 - 30 years by the complex of calculation and experimental work is an important problem of WWER new designs development. The paper deals with the issues related to calculation determination of main factors that influence AE service life limitation - neutron flux and fluence onto absorbing and structural materials during extended service life. (Authors)

  3. Fuelling study of CANDU reactors using neutron absorber poisoned fuel

    Energy Technology Data Exchange (ETDEWEB)

    Song, J.J.; Chan, P.K.; Bonin, H.W., E-mail: s25815@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2014-07-01

    A comparative fuelling study is conducted to determine the potential gain in operating margin for CANDU reactors incurred by implementing a change to the design of the conventional 37-element natural uranium (NU) fuel. The change involves insertion of minute quantities of neutron absorbers, Gd{sub 2}O{sub 3} and Eu{sub 2}O{sub 3}, into the fuel pellets. The Reactor Fuelling Simulation Program (RFSP) is used to conduct core-following simulations, for the regular 37-element NU fuel, which is to be used as control for comparison. Preliminary results are presented for fuelling with the regular 37-element NU fuel, which indicate constraints on fuelling that may be relaxed with addition of neutron absorbers. (author)

  4. Neutron absorber qualification and acceptance testing from the designer's perspective

    International Nuclear Information System (INIS)

    Bracey, W.; Chiocca, R.

    2004-01-01

    Starting in the mid 1990's, the USNRC began to require less than 100% credit for the 10B present in fixed neutron absorbers spent fuel transport packages. The current practice in the US is to use only 75% of the specified 10B in criticality safety calculations unless extensive acceptance testing demonstrates both the presence of the 10B and uniformity of its distribution. In practice, the NRC has accepted no more than 90% credit for 10B in recent years, while other national competent authorities continue to accept 100%. More recently, with the introduction of new neutron absorber materials, particularly aluminum / boron carbide metal matrix composites, the NRC has also expressed expectations for qualification testing, based in large part on Transnuclear's successful application to use a new composite material in the TN-68 storage / transport cask. The difficulty is that adding more boron than is really necessary to a metal has some negative effects on the material, reducing the ductility and the thermal conductivity, and increasing the cost. Excessive testing requirements can have the undesired effect of keeping superior materials out of spent fuel package designs, without a corresponding justification based on public safety. In European countries and especially in France, 100% credit has been accepted up to now with materials controls specified in the Safety Analysis Report (SAR): Manufacturing process approved by qualification testing Materials manufacturing controlled under a Quality Assurance system. During fabrication, acceptance testing directly on products or on representative samples. Acceptance criteria taking into account a statistical uncertainty corresponding to 3σ. The original and current bases for the reduced 10 B credit, the design requirements for neutron absorber materials, and the experience of Transnuclear and Cogema Logistics with neutron absorber testing are examined. Guidelines for qualification and acceptance testing and process controls

  5. Neutron absorbing article and method for manufacture thereof

    International Nuclear Information System (INIS)

    Forsyth, P.F.; Mcmurtry, C.H.; Naum, R.G.

    1980-01-01

    A composite, neutron absorbing, coated article, suitable for installation in storage racks for spent nuclear fuel and for other neutron absorbing applications, includes a backing member, preferably of flexible material such as woven fiberglass cloth, a synthetic organic polymeric coating or a plurality of such coatings on the backing member, preferably of cured phenolic resin, such as phenol formaldehyde or trimethylolphenol formaldehyde and boron carbide particles held to the backing member by the cured coating or a plurality of such coatings. Also within the invention is a method for the manufacture of the neutron absorbing coated article and the use of such an article. In a preferred method the backing member is first coated on both sides thereof with a filling coating of thermosettable liquid phenolic resin, which is then partially cured to solid state, one side of the backing member is then coated with a mixture of thermosettable liquid resin and finely divided boron carbide particles and the resin is partially cured to solid state, the other side is coated with a similar mixture, larger boron carbide particles are applied to it and the resin is partially cured to solid state, such side of the article is coated with thermosettable liquid phenolic resin, the resin is partially cured to solid state and such resin, including previously applied partially cured resins, is cured to final cross-linked and permanently set form

  6. A new neutron absorber material for criticality control

    International Nuclear Information System (INIS)

    Wells, Alan H.

    2007-01-01

    A new neutron absorber material based on a nickel metal matrix composite has been developed for applications such as the Transport, Aging, and Disposal (TAD) canister for the Yucca Mountain Project. This new material offers superior corrosion resistance to withstand the more demanding geochemical environments found in a 300,000 year to a million year repository. The lifetime of the TAD canister is currently limited to 10,000 years, reflecting the focus of current regulations embodied in 10 CFR 63. The use of DOE-owned nickel stocks from decommissioned enrichment facilities could reduce the cost compared to stainless steel/boron alloy. The metal matrix composite allows the inclusion of more than one neutron absorber compound, so that the exact composition may be adjusted as needed. The new neutron absorber material may also be used for supplementary criticality control of stored or transported PWR spent fuel by forming it into cylindrical pellets that can be inserted into a surrogate control rod. (authors)

  7. Study of neutron absorbing microspheres in research reactors - Neutronic analyse

    International Nuclear Information System (INIS)

    Gana Watkins, Ignacio A.; Prado, Miguel O.; Mazufri, Claudio; Tunon, Juan M

    2012-01-01

    Now-a-days, it is increasingly common for nuclear power plants, as well as research reactors, to be designed and built with an alternative safety system aside from control rods. The acids and/or salts in solution injection systems is most frequently used. However, these systems present several implementation and operation problems due to the physical and chemical properties of the used compounds. After analyzing these drawbacks, we developed a new alternative safety system that contains the absorbing element isolated from the aqueous medium. In this context, it's proposed the use of aluminum borosilicate microspheres. The current paper presents erosion wear experiments to determine under which conditions microspheres can be considered as a potential component of a secondary shut down system in a nuclear facility (author)

  8. Scaling neutron absorbed dose distributions from one medium to another

    International Nuclear Information System (INIS)

    Awschalom, M.; Rosenberg, I.; Ten Haken, R.K.

    1982-11-01

    Central axis depth dose (CADD) and off-axis absorbed dose ratio (OAR) measurements were made in water, muscle and whole skeletal bone TE-solutions, mineral oil and glycerin with a clinical neutron therapy beam. These measurements show that, for a given neutron beam quality and field size, there is a universal CADD distribution at infinity if the depth in the phantom is expressed in terms of appropriate scaling lengths. These are essentially the kerma-weighted neutron mean free paths in the media. The method used in ICRU No. 26 to scale the CADD by the ratio of the densities is shown to give incorrect results. the OAR's measured in different media at depths proportional to the respective mean free paths were also found to be independent of the media to a good approximation. It is recommended that relative CADD and OAR measurements be performed in water because of its universality and convenience. A table of calculated scaling lengths is given for various neutron energy spectra and for various tissues and materials of practical importance in neutron dosimetry

  9. On the perturbative calculation of the vibration noise by strong absorbers

    International Nuclear Information System (INIS)

    Pazsit, I.; Karlsson, J.

    1997-01-01

    In two previous papers the neutron noise, induced by small vibrations of a strong absorber, was treated (Pazsit 1984, 1988). In these, two different rod models and corresponding different linearization procedures were used. The first, called the Feinberg-Galanin-Williams (FGW) model, uses a δ-function approximation of both the static and the vibrating rod. This model corresponds to preserving the static boundary condition (logarithmic derivative) at the surface of the moving rod. The second, a perturbative approach called the ε/d model, starts with a finite absorber and represents the vibration by two stationary absorbing layers with strengths fluctuating in opposite phase. It was found that these two models lead to differing results, indicating a contradiction. In this paper we show that the reason for this contradiction is that the previous results based on the ε/d model are in error. The error is due to the fact that the effect of the static rod was neglected in the Green's function. The correct ε/d result is calculated here in both one and two dimensions and is shown to be equivalent to the FGW results. This serves also as a confirmation of the two-dimensional FGW result which had earlier been derived only by heuristic arguments. (Author)

  10. Neutron absorbing article and method for manufacture of such article

    International Nuclear Information System (INIS)

    McMurty, C.H.; Naum, R.G.; Owens, D.P.; Hortman, M.T.

    1981-01-01

    A neutron absorbing article is described which comprises boron carbide particles and an irreversibly-cured phenol aldehyde condensation polymer cured to a continuous matrix about the boron carbide particles. Such an article may be used in spent fuel storage racks. It can be manufactured by mixing together a curable phenolic resin with boron carbide particles, compacting the mixture to an article of desired shape, curing the resin at an elevated temperature, impregnating the cured article with curable phenolic resin in liquid state, and curing the article again

  11. Scaling neutron absorbed dose distributions from one medium to another

    International Nuclear Information System (INIS)

    Awschalom, M.; Rosenberg, I.; Ten Haken, R.K.

    1983-01-01

    Central axis depth dose (CADD) and off-axis absorbed dose ratio (OAR) measurements were made in water, muscle and whole skeletal bone tissue-equivalent (TE) solutions, mineral oil, and glycerin with a clinical neutron therapy beam. These measurements show that, for a given neutron beam quality and field size, there is a universal CADD distribution at infinity if the depth in the phantom is expressed in terms of appropriate scaling lengths. These are essentially the kerma-weighted neutron mean free paths in the media. The method used in ICRU Report No. 26 to scale the CADD by the ratio of the densities is shown to give incorrect results. The OARs measured in different media at depths proportional to the respective mean free paths were also found to be independent of the media to a good approximation. Therefore, neutron beam CADDs and OARs may be measured in either TE solution (USA practice) or water (European practice), and having determined the respective scaling lengths, all measurements may be scaled from one medium to any other. It is recommended that for general treatment planning purposes, scaling be made to TE muscle with a density of 1.04 g cm -3 , since this value represents muscle and other soft tissues better than TE solution of density 1.07 g cm -3 . For such a transformation, relative measurements made in water are found to require very small corrections. Hence, it is further recommended that relative CADD and OAR measurements be performed in water because of its universality and convenience. Finally, a table of calculated scaling lengths is given for various neutron energy spectra and for various tissues and materials of practical importance in neutron dosimetry

  12. A state-of-the-art report on the development of B{sub 4}C materials as neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Choong Hwan; Kim, Sun Jae; Park, Jee Yun; Kang, Dae Kab [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-01-01

    Boron of 10 atomic weight is one of the best neutron absorbing elements. Among the boron compounds, B{sub 4}C and its composites exhibit excellent material properties. Those materials absorb thermal and fast neutrons, are thermally and chemically very stable, and are very strong in mechanical properties. By neutron irradiation B-10 transforms into Li releasing one He atom. This He release causes swelling, cracking and fragmentation of B{sub 4}C bulks and results in degradation of the materials. The essence of technical developments of B{sub 4}C-based neutron absorbers is the minimization of the effects of He release, and this can be realized through microstructural optimizations of grain and porosity distributions. While pure B{sub 4}C is very difficult in sintering, new neutron absorbing materials of B{sub 4}C-cermets are being developed. B{sub 4}C-cermets are composite materials in which B{sub 4}C powders are dispersed in the metal matrix of Al or Cu. Those materials show easiness in sintering, mechanical forming, and B{sub 4}C content controlling. Neutron absorbing and shielding materials play an important role for the safety of reactor operations and environmental protections. Those materials are being used as monolithic pellets for control rods, burnable poison fuel rods, rack materials for spent fuel storages, shielding materials for shipping casks, and especially for shielding plates for liquid metal reactors. 37 figs., 12 tabs., 41 refs. (Author).

  13. Apparatus and method for the measurement of neutron moderating or absorbing properties of objects

    International Nuclear Information System (INIS)

    Untermyer, S.I.

    1981-01-01

    An apparatus and method for measuring the neutron moderating or absorbing properties of objects or materials is disclosed in which a fast neutron source cooperates with a neutron absorbing material which reduces the energy of the fast neutrons by inelastic scattering so that they can be readily thermalized by a moderator. A thermal neutron detector is disposed adjacent the material and serves to detect thermal neutrons emitted by a moderator placed to receive and thermalize the reduced energy neutrons. A material whose absorption is to be measured is placed between a moderator and the detector

  14. Scram device having a multiplicity of neutron absorbing masses

    International Nuclear Information System (INIS)

    Giuggio, N.; Noyes, R.C.

    1981-01-01

    An apparatus is described for holding, releasing, and resetting a multiplicity of neutron-absorbing balls within a safety assembly of a liquid metal reactor. Vertically-hinged trap doors rest on the shoulders of a generally cylindrical release valve which is actuated by either the regular or by the self-actuated scram actuator. The doors and the valve shoulder provide a floor for the balls to be suspended above the reactor core during normal operation. When the actuator displaces the release valve, the doors lose their support and swing downward, permitting the poison balls to drop into the core. In the reset mode of operation, a platform at the bottom of the core is raised to lift the balls and swing the trap doors upward until the balls are above the door hinges. The release valve is reset to support the doors and the platform is lowered to the bottom of the safety assembly

  15. Performance evaluation of METAMIC neutron absorber in spent fuel storage rack

    Directory of Open Access Journals (Sweden)

    Kiyoung Kim

    2018-06-01

    Full Text Available High-density spent fuel (SF storage racks have been installed to increase SF pool capacity. In these SF racks, neutron absorber materials were placed between fuel assemblies allowing the storage of fuel assemblies in close proximity to one another. The purpose of the neutron absorber materials is to preclude neutronic coupling between adjacent fuel assemblies and to maintain the fuel in a subcritical storage condition. METAMIC neutron absorber has been used in high-density storage racks. But, neutron absorber materials can be subject to severe conditions including long-term exposure to gamma radiation and neutron radiation. Recently, some of them have experienced degradation, such as white spots on the surface. Under these conditions, the material must continue to serve its intended function of absorbing neutrons. For the first time in Korea, this article uses a neutron attenuation test to examine the performance of METAMIC surveillance coupons. Also, scanning electron microscope analysis was carried out to verify the white spots that were detected on the surface of METAMIC. In the neutron attenuation test, there was no significant sign of boron loss in most of the METAMIC coupons, but the coupon with white spots had relatively less B-10 content than the others. In the scanning electron microscope analysis, corrosion material was detected in all METAMIC coupons. Especially, it was confirmed that the coupon with white spots contains much more corrosion material than the others. Keywords: Blister, Criticality, METAMIC, Neutron Absorber, Neutron Attenuation Test, Scanning Electron Microscope

  16. Nuclear reactor control device by vertical displacement of neutron absorber scram rods

    International Nuclear Information System (INIS)

    Defaucheux, Jacques; Pasqualini, Gilbert; Wiart, Albert; Martin, Jean.

    1981-01-01

    Nuclear reactor control system by vertical displacement of an assembly absorbing the neutrons inside a reactor core and drop of the absorbing assembly in maximum insertion position under the effect of its own weight for emergency shutdown. The absorbing assembly is secured to the bottom end of a vertical control rod, the displacement of which is actuated by an electro-magnetic device [fr

  17. Genetic effects induced by neutrons in Drosophila melanogaster I. Determination of absorbed dose

    International Nuclear Information System (INIS)

    Delfin, A.; Paredes, L.C.; Zambrano, F.; Guzman-Rincon, J.; Urena-Nunez, F.

    2001-01-01

    A method to obtain the absorbed dose in Drosophila melanogaster irradiated in the thermal column facility of the Triga Mark III Reactor has been developed. The method is based on the measurements of neutron activation of gold foils produced by neutron capture to obtain the neutron fluxes. These fluxes, combined with the calculations of kinetic energy released per unit mass, enables one to obtain the absorbed doses in Drosophila melanogaster

  18. Matter and Radiation in Strong Magnetic Fields of Neutron Stars

    International Nuclear Information System (INIS)

    Lai, D

    2006-01-01

    Neutron stars are found to possess magnetic fields ranging from 10 8 G to 10 15 G, much larger than achievable in terrestrial laboratories. Understanding the properties of matter and radiative transfer in strong magnetic fields is essential for the proper interpretation of various observations of magnetic neutron stars, including radio pulsars and magnetars. This paper reviews the atomic/molecular physics and condensed matter physics in strong magnetic fields, as well as recent works on modeling radiation from magnetized neutron star atmospheres/surface layers

  19. Thermal Evaluation of Storage Rack with an Advanced Neutron Absorber during Normal Operation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee-Jae; Kim, Mi-Jin; Sohn, Dong-Seong [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    The storage capacity of the domestic wet storage site is expected to reach saturation from Hanbit in 2024 to Sin-wolseong in 2038 and accordingly management alternatives are urgently taken. Since installation of the dense rack is considered in the short term, it is necessary to urgently develop an advanced neutron absorber which can be applied to a spent nuclear fuel storage facility. Neutron absorber is the material for controlling the reactivity. A material which has excellent thermal neutron absorption ability, high strength and corrosion resistance must be selected as the neutron absorber. Existing neutron absorbers are made of boron which has a good thermal absorption ability such as BORAL and METAMIC. However, possible problems have been reported in using the boron-based neutron absorber for wet storage facility. Gadolinium is known to have higher neutron absorption cross-section than that of boron. And the strength of duplex stainless steel is about 1.5 times higher than stainless steel 304 which has been frequently used as a structural material. Therefore, duplex stainless steel which contains gadolinium is in consideration as an advanced neutron absorber. Temperature distribution is shown in figure 4. In pool bottom region near the inlet shows a relatively low tendency and heat generated from the fuel assemblies is transmitted to the pool upper region by the vertical flow. Also, temperature gradient appear in rack structures for the axial direction and temperature is uniformly distributed in the pool upper region. Table 1 presents the calculated results. The maximum temperature is 306.63K and does not exceed the 333.15K (60℃). The maximum temperature of the neutron absorber is 306.48K.

  20. Magnetization of dense neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isaev, A.A.; Yang, J.

    2010-01-01

    Spin polarized states in neutron matter at a strong magnetic field up to 1018 G are considered in the model with the Skyrme effective interaction. Analyzing the self consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter as a function of the density corresponds to the negative spin polarization when the majority of neutron spins are oriented oppositely to the direction of the magnetic field. In addition, beginning from some threshold density dependent on the magnetic field strength, the self-consistent equations have also two other branches of solutions for the spin polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to the free energy corresponding to the thermodynamically preferable branch with the negative spin polarization. As a consequence, at a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state at the high density region in neutron matter which changes into a thermodynamically stable state with the negative spin polarization with decrease in the density at some threshold value. The calculations of the neutron spin polarization parameter, energy per neutron, and chemical potentials of spin-up and spin-down neutrons as functions of the magnetic field strength show that the influence of the magnetic field remains small at the field strengths up to 1017 G.

  1. A Study on the Design of Novel Neutron Absorber Using Artificial Rare Earth Compound

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Hyun; Shin, Chang Ho; Lee, Seung Hyun; Park, Jeia; Kim, Jong Kyung [Hanyang Univ., Seoul (Korea, Republic of); Kim, Soon Young [RADCORE Co., Ltd., Daejeon (Korea, Republic of); Park, Hwan Seo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The artificial rare earth compounds (RE{sub 2}O{sub 3}) generated by the result of the pyro-processing are radioactive wastes which have many long-live radionuclides. Due to the high and long-lived radioactivity of the article RE{sub 2}O{sub 3}, specific radiation shielding and disposal techniques are required. In this study, a simultaneous disposal method of the RE{sub 2}O{sub 3} with the spent fuels is proposed by reusing them for the neutron absorber. In this study, the neutron absorber based on artificial RE{sub 2}O{sub 3} compound was designed for the use in the spent fuel storage. The design of the storage racks for the WH 17Χ17 and PLUS7 spent fuel assemblies were designed and the criticalities were evaluated with the various RE{sub 2}O{sub 3} compositions. Also, the radioactivity and irradiation calculations were performed for the applicability and stability analyses of the neutron absorber into the spent fuel storage. The results show that the neutron absorber can sufficiently reduce the criticality under the regulation guideline. It is expected that the neutron absorber can contribute minimizing the disposal area of the radioactive wastes as well as the reducing the costs and resources for the using the other types of the neutron absorbers.

  2. Study of thermal neutron currents near cylindrical absorbers located in heavy water

    International Nuclear Information System (INIS)

    Simard, Y.N.

    1973-01-01

    The experiments reported involved determining the angular response of detectors to neutrons exterior to the surface of long cylindrical absorbers immersed in a scattering medium. The absorbers consisted of solid cylinders of copper, cadmium, or natural uranium in a fuel lattice, and combinations of copper and cadmium, as well as voided cylinders. The scattering (moderating) medium consisted of heavy water. (author)

  3. Axial distribution of absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.; Ninkovic, M.

    1988-11-01

    The coupled fast thermal system CFTS at the RB reactor is created for obtaining fast neutron fields. The axial distribution of fast neutron flux density in its second configuration (CFTS-2) is measured. The axial distribution of absorbed doses is computed on the basis of mentioned experimental results. At the end these experimental and computed results are given. (Author)

  4. Radial oscillations of neutron stars in strong magnetic fields

    Indian Academy of Sciences (India)

    The eigen frequencies of radial pulsations of neutron stars are calculated in a strong magnetic field. At low densities we use the magnetic BPS equation of state (EOS) similar to that obtained by Lai and Shapiro while at high densities the EOS obtained from the relativistic nuclear mean field theory is taken and extended to ...

  5. Mitigation of end flux peaking in CANDU fuel bundles using neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, D.; Chan, P.K., E-mail: dylan.pierce@rmc.ca [Royal Military College of Canada, Kingston ON, (Canada); Shen, W. [Canadian Nuclear Safety Commission, Ottawa ON, (Canada)

    2015-07-01

    End flux peaking (EFP) is a phenomenon where a region of elevated neutron flux occurs between two adjoining fuel bundles. These peaks lead to an increase in fission rate and therefore greater heat generation. It is known that addition of neutron absorbers into fuel bundles can help mitigate EFP, yet implementation in Canada Deuterium Uranium (CANDU) type reactors using natural uranium fuel has not been pursued. Monte Carlo N-Particle code (MCNP) 6.1 was used to simulate the addition of a small amount of neutron absorbers strategically within the fuel pellets. This paper will present some preliminary results collected thus far. (author)

  6. Strong Neutron Pairing in core+4n Nuclei.

    Science.gov (United States)

    Revel, A; Marqués, F M; Sorlin, O; Aumann, T; Caesar, C; Holl, M; Panin, V; Vandebrouck, M; Wamers, F; Alvarez-Pol, H; Atar, L; Avdeichikov, V; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Bertulani, C A; Boillos, J M; Boretzky, K; Borge, M J G; Caamaño, M; Casarejos, E; Catford, W N; Cederkäll, J; Chartier, M; Chulkov, L; Cortina-Gil, D; Cravo, E; Crespo, R; Datta Pramanik, U; Díaz Fernández, P; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estradé, A; Farinon, F; Fraile, L M; Freer, M; Galaviz, D; Geissel, H; Gernhäuser, R; Golubev, P; Göbel, K; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Heinz, A; Henriques, A; Ignatov, A; Johansson, H T; Jonson, B; Kahlbow, J; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knyazev, A; Kröll, T; Kurz, N; Labiche, M; Langer, C; Le Bleis, T; Lemmon, R; Lindberg, S; Machado, J; Marganiec, J; Movsesyan, A; Nacher, E; Najafi, M; Nilsson, T; Nociforo, C; Paschalis, S; Perea, A; Petri, M; Pietri, S; Plag, R; Reifarth, R; Ribeiro, G; Rigollet, C; Röder, M; Rossi, D; Savran, D; Scheit, H; Simon, H; Syndikus, I; Taylor, J T; Tengblad, O; Thies, R; Togano, Y; Velho, P; Volkov, V; Wagner, A; Weick, H; Wheldon, C; Wilson, G; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M; Zilges, A; Zuber, K

    2018-04-13

    The emission of neutron pairs from the neutron-rich N=12 isotones ^{18}C and ^{20}O has been studied by high-energy nucleon knockout from ^{19}N and ^{21}O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay ^{19}N(-1p)^{18}C^{*}→^{16}C+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a ^{14}C core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay ^{21}O(-1n)^{20}O^{*}→^{18}O+n+n, attributed to its formation through the knockout of a deeply bound neutron that breaks the ^{16}O core and reduces the number of pairs.

  7. Long-term effects of neutron absorber and fuel matrix corrosion on criticality

    International Nuclear Information System (INIS)

    Culbreth, W.G.; Zielinski, P.R.

    1994-01-01

    Proposed waste package designs will require the addition of neutron absorbing material to prevent the possibility of a sustained chain reaction occurring in the fuel in the event of water intrusion. Due to the low corrosion rates of the fuel matrix and the Zircaloy cladding, there is a possibility that the neutron absorbing material will corrode and leak from the waste container long before the subsequent release of fuel matrix material. An analysis of the release of fuel matrix and neutron absorber material based on a probabilistic model was conducted and the results were used to prepare input to KENO-V, an neutron criticality code. The results demonstrate that, in the presence of water, the computed values of k eff exceeded the maximum of 0.95 for an extended period of time

  8. High Conduction Neutron Absorber to Simulate Fast Reactor Environment in an Existing Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna; Greenwood, Lawrence R.; Parry, James

    2014-06-22

    A need was determined for a thermal neutron absorbing material that could be cooled in a gas reactor environment without using large amounts of a coolant that would thermalize the neutron flux. A new neutron absorbing material was developed that provided high conduction so a small amount of water would be sufficient for cooling thereby thermalizing the flux as little as possible. An irradiation experiment was performed to assess the effects of radiation and the performance of a new neutron absorbing material. Neutron fluence monitors were placed inside specially fabricated holders within a set of drop-in capsules and irradiated for up to four cycles in the Advanced Test Reactor. Following irradiation, the neutron fluence monitor wires were analyzed by gamma and x-ray spectrometry to determine the activities of the activation products. The adjusted neutron fluences were calculated and grouped into three bins – thermal, epithermal and fast to evaluate the spectral shift created by the new material. Fluence monitors were evaluated after four different irradiation periods to evaluate the effects of burn-up in the absorbing material. Additionally, activities of the three highest activity isotopes present in the specimens are given.

  9. Process and device for exchanging neutron absorber rods

    International Nuclear Information System (INIS)

    Baero, G.; Kraus, W.; Stindt, W.

    1987-01-01

    The control element repair device contains lifting equipment for inserting the control element in the accommodation device. Due to the case position assigned to each absorber rod of a control element, after removing the carrier with the absorber rods fixed to it, the defective rods can be replaced by new ones. The accommodation device has a support to support the carrier. Turning the control element for the PWR through 180 0 is prevented. (DG) [de

  10. Absorbed dose conversion coefficients for embryo and foetus in neutron fields

    International Nuclear Information System (INIS)

    Chen, J.

    2007-01-01

    The Monte Carlo code MCNPX has been used to determine mean absorbed doses to the embryo and foetus when the mother is exposed to neutron fields. There are situations, such as on-board aircraft, where high-energy neutrons are often peaked in top down (TOP) direction. In addition to previous publications for standard irradiation geometries, this study provides absorbed dose conversion coefficients for the embryo of 8 weeks and the foetus of 3, 6 or 9 months at TOP irradiation geometry. The conversion coefficients are compared with the coefficients in isotropic irradiation (ISO). With increasing neutron energies, the conversion coefficients in TOP irradiation become dominant. A set of conversion coefficients is constructed from the higher value in either ISO or TOP irradiation at a given neutron energy. In cases where the irradiation geometry is not adequately known, this set of conversion coefficients can be used in a conservative dose assessment for embryo and foetus in neutron fields. (authors)

  11. The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Li Yuanxun; Xie Yunsong; Zhang Huaiwu; Liu Yingli; Wen Qiye; Ling Weiwei, E-mail: liyuanxun@uestc.edu.c [State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2009-05-07

    We simulated the metamaterial absorbers in two propagation conditions and observed the universal phenomenon of strong non-reciprocity. It is found that this non-reciprocity cannot be well interpreted using the effective medium theory, which indicates that the designing and understanding for the metamaterial absorber based on the proposed effective medium theory could not be applicable. The reason is pointed out that the metamaterial absorber does not satisfy the homogeneous-effective limit. So we put forward a three-parameter modified effective medium theory to fully describe the metamaterial absorbers. We have also investigated the relationships of S-parameters and absorptance among the metamaterial absorbers and the two components inside. Then the power absorption distributions in these three structures are discussed in detail. It can be concluded that the absorption is derived from the ERR structure and is enhanced largely by the coupling mechanism, and the strong non-reciprocity results from the different roles which wire structure plays in both propagation conditions.

  12. The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modelling

    International Nuclear Information System (INIS)

    Li Yuanxun; Xie Yunsong; Zhang Huaiwu; Liu Yingli; Wen Qiye; Ling Weiwei

    2009-01-01

    We simulated the metamaterial absorbers in two propagation conditions and observed the universal phenomenon of strong non-reciprocity. It is found that this non-reciprocity cannot be well interpreted using the effective medium theory, which indicates that the designing and understanding for the metamaterial absorber based on the proposed effective medium theory could not be applicable. The reason is pointed out that the metamaterial absorber does not satisfy the homogeneous-effective limit. So we put forward a three-parameter modified effective medium theory to fully describe the metamaterial absorbers. We have also investigated the relationships of S-parameters and absorptance among the metamaterial absorbers and the two components inside. Then the power absorption distributions in these three structures are discussed in detail. It can be concluded that the absorption is derived from the ERR structure and is enhanced largely by the coupling mechanism, and the strong non-reciprocity results from the different roles which wire structure plays in both propagation conditions.

  13. Excitation of surface waves of ultracold neutrons on absorbing trap walls as anomalous loss factor

    International Nuclear Information System (INIS)

    Bokun, R.Ch.

    2006-01-01

    One analyzed probability of excitation of surface waves of ultracold neutrons in terms of a plane model consisting of three media: vacuum, a finite depth neutron absorbing substance layer and a neutron reflecting substrate. One demonstrated the absence of the mentioned surface waves in terms of the generally accepted model of two media: vacuum contiguous to the plane surface of a substance filled half-space. One pointed out the effect of the excited surface waves of ultracold neutrons on the increase of their anomalous losses in traps [ru

  14. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    International Nuclear Information System (INIS)

    Jalali, Majid; Mohammadi, Ali

    2008-01-01

    The compounds Na 2 B 4 O 7 , H 3 BO 3 , CdCl 2 and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the γ rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H 3 BO 3 with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds

  15. Neutronic analysis of absorbing materials for the control rod system in reactor ALLEGRO

    Energy Technology Data Exchange (ETDEWEB)

    Cajko, Frantisek; Secansky, Michal; Chrebet, Tomas; Zajac, Radoslav; Darilek, Petr [VUJE, a.s., Trnava (Slovakia)

    2016-09-15

    Experimental reactor ALLEGRO is a gas cooled fast reactor in the design stage. The current design of its reactivity control system is based on control rods filled with boron carbide as the absorber. Because of disadvantages connected to high boron enrichment a possibility of using other absorbent materials was explored to lower the boron enrichment and increase the worth of the control rods. The results of neutronic Monte-Carlo analyses in a computational supercell are presented in this paper. Three absorbent materials most suitable for a use in reactor ALLEGRO (B{sub 4}C, EuB{sub 6} and ReB{sub 2}) have been analysed also in a full core model. A possible benefit of a neutron trap concept is explored as well but materials with satisfactory neutronic properties proved to be not suitable for expected high temperatures in the reactor.

  16. Measurement of neutron and gamma absorbed doses in phantoms exposed to mixed fields

    International Nuclear Information System (INIS)

    Beraud-Sudreau, E.; Lemaire, G.; Maas, J.

    1985-01-01

    In order to study the dosimetric characteristics of PIN junctions, the absorbed doses measured by junctions and FLi7 in air and water phantoms were compared with the doses measured by classical neutron dosimetry in mixed fields. The validity of the experimental responses of PIN junctions being thus checked and established, neutron and gamma dose distributions in tissue equivalent plastic phantoms (plastinaut) and mammals (piglets) were evaluated as well as the absorbed dose distributions in the pig bone-marrow producing areas. By using correlatively a Monte-Carlo calculation method and applying some simplifying assumptions, the absorbed doses were derived from the spectrum of SILENE's neutrons at various depths inside a cubic water phantom and the results were compared with some from the literature [fr

  17. Determination of the Neutron Flux in the Reactor Zones with the Strong Neutron Absorption and Leakage

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milosevic, M.

    2004-11-01

    The procedures for the numerical and experimental determination of the neutron flux in the zones with the strong neutron absorption and leakage are described in this paper. Numerical procedure is based on the application of the SCALE-4.4a code system where the Dancoff factors are determined by the VEGA2DAN code. Two main parts of the experimental methodology are measurement of the activity of irradiated foils and determination of the averaged neutron absorption cross-section in the foils by the SCALE-4.4a calculation procedure. The proposed procedures have been applied for the determination of the neutron flux in the internal neutron converter used with the RB reactor core configuration number 114. (author)

  18. Computed phase equilibria for burnable neutron absorbing materials for advanced pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Corcoran, E.C. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada)], E-mail: emily.corcoran@rmc.ca; Lewis, B.J.; Thompson, W.T. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada); Hood, J. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada); Akbari, F.; He, Z. [Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ont., K0J 1J0 (Canada); Reid, P. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada)

    2009-03-31

    Burnable neutron absorbing materials are expected to be an integral part of the new fuel design for the Advanced CANDU [CANDU is as a registered trademark of Atomic Energy of Canada Limited.] Reactor. The neutron absorbing material is composed of gadolinia and dysprosia dissolved in an inert cubic-fluorite yttria-stabilized zirconia matrix. A thermodynamic model based on Gibbs energy minimization has been created to provide estimated phase equilibria as a function of composition and temperature. This work includes some supporting experimental studies involving X-ray diffraction.

  19. First-principles investigation of neutron-irradiation-induced point defects in B4C, a neutron absorber for sodium-cooled fast nuclear reactors

    Science.gov (United States)

    You, Yan; Yoshida, Katsumi; Yano, Toyohiko

    2018-05-01

    Boron carbide (B4C) is a leading candidate neutron absorber material for sodium-cooled fast nuclear reactors owing to its excellent neutron-capture capability. The formation and migration energies of the neutron-irradiation-induced defects, including vacancies, neutron-capture reaction products, and knocked-out atoms were studied by density functional theory calculations. The vacancy-type defects tend to migrate to the C–B–C chains of B4C, which indicates that the icosahedral cage structures of B4C have strong resistance to neutron irradiation. We found that lithium and helium atoms had significantly lower migration barriers along the rhombohedral (111) plane of B4C than perpendicular to this plane. This implies that the helium and lithium interstitials tended to follow a two-dimensional diffusion regime in B4C at low temperatures which explains the formation of flat disk like helium bubbles experimentally observed in B4C pellets after neutron irradiation. The knocked-out atoms are considered to be annihilated by the recombination of the close pairs of self-interstitials and vacancies.

  20. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, Majid [Isfahan Nuclear Science and Technology Research Institute (NSTRT), Reactor and Accelerators Research and Development School, Atomic Energy Organization (Iran, Islamic Republic of)], E-mail: m_jalali@entc.org.ir; Mohammadi, Ali [Faculty of Science, Department of Physics, University of Kashan, Km. 6, Ravand Road, Kashan (Iran, Islamic Republic of)

    2008-05-15

    The compounds Na{sub 2}B{sub 4}O{sub 7}, H{sub 3}BO{sub 3}, CdCl{sub 2} and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the {gamma} rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H{sub 3}BO{sub 3} with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds.

  1. Strongly Coupled Chameleons and the Neutronic Quantum Bouncer

    International Nuclear Information System (INIS)

    Brax, Philippe; Pignol, Guillaume

    2011-01-01

    We consider the potential detection of chameleons using bouncing ultracold neutrons. We show that the presence of a chameleon field over a planar plate would alter the energy levels of ultracold neutrons in the terrestrial gravitational field. When chameleons are strongly coupled to nuclear matter, β > or approx. 10 8 , we find that the shift in energy levels would be detectable with the forthcoming GRANIT experiment, where a sensitivity of the order of 1% of a peV is expected. We also find that an extremely large coupling β > or approx. 10 11 would lead to new bound states at a distance of order 2 μm, which is already ruled out by previous Grenoble experiments. The resulting bound, β 11 , is already 3 orders of magnitude better than the upper bound, β 14 , from precision tests of atomic spectra.

  2. Investigation of reactivity change and neutron noise due to random absorber vibrations. 2

    International Nuclear Information System (INIS)

    Barthel, R.

    1984-01-01

    Perturbations of the neutron flux due to stochastically excited vibrations of absorbers have been investigated using a one-dimensional core model with N pointlike absorbers. Taking into account the flux depressions near the absorbers, pronounced peaks in the spectral power densities of the flux fluctuations have been found at multiples of the resonance frequencies in addition to the direct imaging of the resonances of absorber vibrations. Investigation of the space dependence of the corresponding transfer functions has shown that a localization is possible by means of the double frequency effect and that the dispersion of absorber vibrations can be determined by using the triple frequency effect. The conclusions of the paper are qualitatively compared with results of noise measurements at a pressurized water reactor. (author)

  3. Process and device for identifying nuclear reactor neutron absorber rod etancheity defect

    International Nuclear Information System (INIS)

    Pelletier, J.; Parrat, D.

    1990-01-01

    For identifying defects in the sealing of neutron absorbing rods. The rod is placed in a pressure tight enclosure filled with a chemically agressive solution. After a time the pressure is released to allow the solution come out of the rod. An analysis of the solution allows the detection of radioactive isotopes of metals which are in the rod [fr

  4. The influence on biotissue laser resection of a strongly absorbing layer at the optical fiber tip

    Directory of Open Access Journals (Sweden)

    Daria Kuznetsova

    2016-09-01

    Full Text Available In this paper, we consider a method of laser resection using the silica glass core from which the cladding layer has been removed as the cutting part of a laser scalpel. An absorbing layer coating the silica fiber tip markedly alters its biotissue cutting characteristics. The results of histological studies of skin after exposure to a laser scalpel with and without a strongly absorbing coating (SAC at a wavelength of 0.97μm show that resection using a coated scalpel is more sparing. When an uncoated scalpel was used, skin injury was more apparent in both its surface spread and the depth of structural damage, resulting in poorer tissue regeneration.

  5. Neutron absorbers and detector types for spent fuel verification using the self-interrogation neutron resonance densitometry

    International Nuclear Information System (INIS)

    Rossa, Riccardo; Borella, Alessandro; Labeau, Pierre-Etienne; Pauly, Nicolas; Meer, Klaas van der

    2015-01-01

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive non-destructive assay (NDA) technique that is proposed for the direct measurement of 239 Pu in a spent fuel assembly. The insertion of neutron detectors wrapped with different neutron absorbing materials, or neutron filters, in the central guide tube of a PWR fuel assembly is envisaged to measure the neutron flux in the energy region close to the 0.3 eV resonance of 239 Pu. In addition, the measurement of the fast neutron flux is foreseen. This paper is focused on the determination of the Gd and Cd neutron filters thickness to maximize the detection of neutrons within the resonance region. Moreover, several detector types are compared to identify the optimal condition and to assess the expected total neutron counts that can be obtained with the SINRD measurements. Results from Monte Carlo simulations showed that ranges between 0.1–0.3 mm and 0.5–1.0 mm ensure the optimal conditions for the Gd and Cd filters, respectively. Moreover, a 239 Pu fission chamber is better suited to measure neutrons close to the 0.3 eV resonance and it has the highest sensitivity to 239 Pu, in comparison with a 235 U fission chamber, with a 3 He proportional counter, and with a 10 B proportional counter. The use of a thin Gd filter and a thick Cd filter is suggested for the 239 Pu and 235 U fission chambers to increase the total counts achieved in a measurement, while a thick Gd filter and a thin Cd filter are envisaged for the 3 He and 10 B proportional counters to increase the sensitivity to 239 Pu. We concluded that an optimization process that takes into account measurement time, filters thickness, and detector size is needed to develop a SINRD detector that can meet the requirement for an efficient verification of spent fuel assemblies

  6. Simulation of a silicon neutron detector coated with TiB2 absorber

    International Nuclear Information System (INIS)

    Krapohl, D; Nilsson, H-E; Petersson, S; Slavicek, T; Thungström, G; Pospisil, S

    2012-01-01

    Neutron radiation cannot be directly detected in semiconductor detectors and therefore needs converter layers. Planar clean-room processing can be used in the manufacturing process of semiconductor detectors with metal layers to produce a cost-effective device. We used the Geant4 Monte-Carlo toolkit to simulate the performance of a semiconductor neutron detector. A silicon photo-diode was coated with vapour deposited titanium, aluminium thin films and a titaniumdiboride (TiB 2 ) neutron absorber layer. The neutron capture reaction 10B(n, alpha)7Li is taken advantage of to create charged particles that can be counted. Boron-10 has a natural abundance of about SI 19.8%. The emitted alpha particles are absorbed in the underlying silicon detector. We varied the thickness of the converter layer and ran the simulation with a thermal neutron source in order to find the best efficiency of the TiB 2 converter layer and optimize the clean room process.

  7. Some neutron absorbing elements and devices for fast nuclear reactors regulation systems

    International Nuclear Information System (INIS)

    Kervalishvili, P.J.

    2010-01-01

    It is shown that performed technological, physical-mechanical and radiation tests clearly indicate the prospects of using Neutron Absorbing Elements (NAE) based on B-10 and some rare-earth compounds during the creation of highly effective Control and Safety System (CSS) rods for fast neutron nuclear energetic reactors. Particular attention was paid to the development of new and upgrading of existing computing and real technologies for designing and preparing the optimizing NAE items characterized by all physical and strength properties for obtaining desirable operational parameters of CSS rods on their base

  8. Strong CP violation and the neutron electric dipole form factor

    International Nuclear Information System (INIS)

    Kuckei, J.; Dib, C.; Faessler, A.; Gutsche, T.; Kovalenko, S. G.; Lyubovitskij, V. E.; Pumsa-ard, K.

    2007-01-01

    We calculate the neutron electric dipole form factor induced by the CP-violating θ term of QCD within a perturbative chiral quark model which includes pion and kaon clouds. On this basis, we derive the neutron electric dipole moment and the electron-neutron Schiff moment. From the existing experimental upper limits on the neutron electric dipole moment, we extract constraints on the θ parameter and compare our results with other approaches

  9. Neutron absorber qualification and acceptance testing from the designer's perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bracey, W. [Transnuclear, Inc, Hawthorne, NY (United States); Chiocca, R. [Cogema Logistics, St. Quentin en Yvelines (France)

    2004-07-01

    Starting in the mid 1990's, the USNRC began to require less than 100% credit for the 10B present in fixed neutron absorbers spent fuel transport packages. The current practice in the US is to use only 75% of the specified 10B in criticality safety calculations unless extensive acceptance testing demonstrates both the presence of the 10B and uniformity of its distribution. In practice, the NRC has accepted no more than 90% credit for 10B in recent years, while other national competent authorities continue to accept 100%. More recently, with the introduction of new neutron absorber materials, particularly aluminum / boron carbide metal matrix composites, the NRC has also expressed expectations for qualification testing, based in large part on Transnuclear's successful application to use a new composite material in the TN-68 storage / transport cask. The difficulty is that adding more boron than is really necessary to a metal has some negative effects on the material, reducing the ductility and the thermal conductivity, and increasing the cost. Excessive testing requirements can have the undesired effect of keeping superior materials out of spent fuel package designs, without a corresponding justification based on public safety. In European countries and especially in France, 100% credit has been accepted up to now with materials controls specified in the Safety Analysis Report (SAR): Manufacturing process approved by qualification testing Materials manufacturing controlled under a Quality Assurance system. During fabrication, acceptance testing directly on products or on representative samples. Acceptance criteria taking into account a statistical uncertainty corresponding to 3{sigma}. The original and current bases for the reduced {sup 10}B credit, the design requirements for neutron absorber materials, and the experience of Transnuclear and Cogema Logistics with neutron absorber testing are examined. Guidelines for qualification and acceptance testing and

  10. Thermal Performance and Operation Limit of Heat Pipe Containing Neutron Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Jeong, Yeong Shin; Kim, In Guk; Bang, In Choel [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    Recently, passive safety systems are under development to ensure the core cooling in accidents involving impossible depressurization such as station blackout (SBO). Hydraulic control rod drive mechanisms, passive auxiliary feedwater system (PAFS), Passive autocatalystic recombiner (PAR), and so on are types of passive safety systems to enhance the safety of nuclear power plants. Heat pipe is used in various engineering fields due to its advantages in terms of easy fabrication, high heat transfer rate, and passive heat transfer. Also, the various concepts associated with safety system and heat transfer using the heat pipe were developed in nuclear engineering field.. Thus, our group suggested the hybrid control rod which combines the functions of existing control rod and heat pipe. If there is significant temperature difference between active core and condenser, the hybrid control rod can shutdown the nuclear fission reaction and remove the decay heat from the core to ultimate heat sink. The unique characteristic of the hybrid control rod is the presence of neutron absorber inside the heat pipe. Many previous researchers studied the effect of parameters on the thermal performance of heat pipe. However, the effect of neutron absorber on the thermal performance of heat pipe has not been investigated. Thus, the annular heat pipe which contains B{sub 4}C pellet in the normal heat pipe was prepared and the thermal performance of the annular heat pipe was studied in this study. Hybrid control rod concept was developed as a passive safety system of nuclear power plant to ensure the safety of the reactor at accident condition. The hybrid control rod must contain the neutron absorber for the function as a control rod. So, the effect of neutron absorber on the thermal performance of heat pipe was experimentally investigated in this study. Temperature distributions at evaporator section of annular heat pipe were lower than normal heat pipe due to the larger volume occupied by

  11. Apparatus for controlling a nuclear reactor by vertical displacement of a unit absorbing neutrons

    International Nuclear Information System (INIS)

    Wiart, A.; Defaucheux, J.; Martin, J.; Pasqualini, G.

    1980-01-01

    Apparatus is described for controlling a nuclear reactor by vertical displacement of a unit absorbing neutrons, comprising, inside a sealed enclosure in communication with the interior of the reactor, a movable magnetic piece connected to a control shaft which is itself connected to the absorbent unit. This magnetic piece has at least two radial projections. The magnetic piece is displaced by an inductor with at least two pole shoes corresponding to the projections on the magnetic piece and allowing magnetic coupling between the inductor and the magnetic piece. The inductor and its displacement device are disposed outside the sealed enclosure. A control means allows the control shaft to be uncoupled from a member assuring its suspension so as to drop the absorbent unit in the event of emergency shutdown. The apparatus is particularly applicable to control rods of pressurized water nuclear reactors

  12. Pulsed Neutron Scattering Studies of Strongly Fluctuating solids, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collin Broholm

    2006-06-22

    The conventional description of a solid is based on a static atomic structure with small amplitude so-called harmonic fluctuations about it. This is a final technical report for a project that has explored materials where fluctuations are sufficiently strong to severely challenge this approach and lead to unexpected and potentially useful materials properties. Fluctuations are enhanced when a large number of configurations share the same energy. We used pulsed spallation source neutron scattering to obtain detailed microscopic information about structure and fluctuations in such materials. The results enhance our understanding of strongly fluctuating solids and their potential for technical applications. Because new materials require new experimental techniques, the project has also developed new techniques for probing strongly fluctuating solids. Examples of material that were studied are ZrW2O8 with large amplitude molecular motion that leads to negative thermal expansion, NiGa2S4 where competing interactions lead to an anomalous short range ordered magnet, Pr1- xBixRu2O7 where a partially filled electron shell (Pr) in a weakly disordered environment produces anomalous metallic properties, and TbMnO3 where competing interactions lead to a magneto-electric phase. The experiments on TbMnO3 exemplify the relationship between research funded by this project and future applications. Magneto-electric materials may produce a magnetic field when an electric field is applied or vise versa. Our experiments have clarified the reason why electric and magnetic polarization is coupled in TbMnO3. While this knowledge does not render TbMnO3 useful for applications it will focus the search for a practical room temperature magneto-electric for applications.

  13. Neutron physical investigations on the use of burnable poisons and gray absorber rods in large pressurized water reactors

    International Nuclear Information System (INIS)

    Brosche, C.; Katinger, T.; Kollmar, W.; Thieme, K.; Wagner, M.R.

    1977-11-01

    Methods and results of neutron physics calculations are described using burnable poisons and gray absorber rods in large PWR's. Calculated and measured values are compared, the effort for programming has been guessed. (orig.) [de

  14. Neutron absorbers and detector types for spent fuel verification using the self-interrogation neutron resonance densitometry

    Energy Technology Data Exchange (ETDEWEB)

    Rossa, Riccardo, E-mail: rrossa@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium); Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Borella, Alessandro, E-mail: aborella@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium); Labeau, Pierre-Etienne, E-mail: pelabeau@ulb.ac.be [Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Pauly, Nicolas, E-mail: nipauly@ulb.ac.be [Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Meer, Klaas van der, E-mail: kvdmeer@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium)

    2015-08-11

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive non-destructive assay (NDA) technique that is proposed for the direct measurement of {sup 239}Pu in a spent fuel assembly. The insertion of neutron detectors wrapped with different neutron absorbing materials, or neutron filters, in the central guide tube of a PWR fuel assembly is envisaged to measure the neutron flux in the energy region close to the 0.3 eV resonance of {sup 239}Pu. In addition, the measurement of the fast neutron flux is foreseen. This paper is focused on the determination of the Gd and Cd neutron filters thickness to maximize the detection of neutrons within the resonance region. Moreover, several detector types are compared to identify the optimal condition and to assess the expected total neutron counts that can be obtained with the SINRD measurements. Results from Monte Carlo simulations showed that ranges between 0.1–0.3 mm and 0.5–1.0 mm ensure the optimal conditions for the Gd and Cd filters, respectively. Moreover, a {sup 239}Pu fission chamber is better suited to measure neutrons close to the 0.3 eV resonance and it has the highest sensitivity to {sup 239}Pu, in comparison with a {sup 235}U fission chamber, with a {sup 3}He proportional counter, and with a {sup 10}B proportional counter. The use of a thin Gd filter and a thick Cd filter is suggested for the {sup 239}Pu and {sup 235}U fission chambers to increase the total counts achieved in a measurement, while a thick Gd filter and a thin Cd filter are envisaged for the {sup 3}He and {sup 10}B proportional counters to increase the sensitivity to {sup 239}Pu. We concluded that an optimization process that takes into account measurement time, filters thickness, and detector size is needed to develop a SINRD detector that can meet the requirement for an efficient verification of spent fuel assemblies.

  15. Measurement of the Decay of Thermal Neutrons in Water Poisoned with the Non-1/v Neutron Absorber Cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, L G; Moeller, E

    1968-01-15

    Measurements have been made of the decay constant of thermal neutrons in water poisoned with the non-1/v absorber cadmium. An experimental method has been used in which proper spatial integration of the neutron flux enables data, representative of the infinite medium to be accumulated without waiting for the establishment of a fundamental mode distribution. The change in effective cross section with concentration of the dissolved cadmium, d{sigma}{sub eff}/dN. has been determined for infinite medium at 20 deg C. Two- and three parameter fits of the decay constant yield -(0.32 {+-} 0.09) x 10{sup -17} barn cm{sup 3} and -(0.47 {+-} 0.10) x 10{sup -17} barn cm{sup 3}, respectively. Earlier published measurements have resulted in two to five times larger values, whereas a published calculated value of Nelkin's model is - 0.33 x 10{sup -17} barn cm{sup 3}.

  16. Measurement of the Decay of Thermal Neutrons in Water Poisoned with the Non-1/v Neutron Absorber Cadmium

    International Nuclear Information System (INIS)

    Larsson, L.G.; Moeller, E.

    1968-01-01

    Measurements have been made of the decay constant of thermal neutrons in water poisoned with the non-1/v absorber cadmium. An experimental method has been used in which proper spatial integration of the neutron flux enables data, representative of the infinite medium to be accumulated without waiting for the establishment of a fundamental mode distribution. The change in effective cross section with concentration of the dissolved cadmium, dσ eff /dN. has been determined for infinite medium at 20 deg C. Two- and three parameter fits of the decay constant yield -(0.32 ± 0.09) x 10 -17 barn cm 3 and -(0.47 ± 0.10) x 10 -17 barn cm 3 , respectively. Earlier published measurements have resulted in two to five times larger values, whereas a published calculated value of Nelkin's model is - 0.33 x 10 -17 barn cm 3

  17. High conduction neutron absorber to simulate fast reactor environment in an existing test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Larry R. Greenwood; James R. Parry

    2014-06-22

    A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluence monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.

  18. Strong Neutron-γ Competition above the Neutron Threshold in the Decay of ^{70}Co.

    Science.gov (United States)

    Spyrou, A; Liddick, S N; Naqvi, F; Crider, B P; Dombos, A C; Bleuel, D L; Brown, B A; Couture, A; Crespo Campo, L; Guttormsen, M; Larsen, A C; Lewis, R; Möller, P; Mosby, S; Mumpower, M R; Perdikakis, G; Prokop, C J; Renstrøm, T; Siem, S; Quinn, S J; Valenta, S

    2016-09-30

    The β-decay intensity of ^{70}Co was measured for the first time using the technique of total absorption spectroscopy. The large β-decay Q value [12.3(3) MeV] offers a rare opportunity to study β-decay properties in a broad energy range. Two surprising features were observed in the experimental results, namely, the large fragmentation of the β intensity at high energies, as well as the strong competition between γ rays and neutrons, up to more than 2 MeV above the neutron-separation energy. The data are compared to two theoretical calculations: the shell model and the quasiparticle random phase approximation (QRPA). Both models seem to be missing a significant strength at high excitation energies. Possible interpretations of this discrepancy are discussed. The shell model is used for a detailed nuclear structure interpretation and helps to explain the observed γ-neutron competition. The comparison to the QRPA calculations is done as a means to test a model that provides global β-decay properties for astrophysical calculations. Our work demonstrates the importance of performing detailed comparisons to experimental results, beyond the simple half-life comparisons. A realistic and robust description of the β-decay intensity is crucial for our understanding of nuclear structure as well as of r-process nucleosynthesis.

  19. Fabrication and characterization of dysprosia and alumina based inert matrix neutron absorbers

    International Nuclear Information System (INIS)

    D Ovidio, C.; Oliber, E.; Leiva, S.; Malachevsky, M. T; Taboada, H

    2009-01-01

    Among the elements of the lanthanides series, dysprosium has interesting nuclear properties. Its high thermal neutron absorption cross-section makes it a good neutron absorber. The best ceramic compound apt for nuclear use is its oxide, the disprosia (Dy 2 O 3 ). In order to fabricate neutron absorbers diluted in an inert matrix, it is relevant to study the preparation of a ceramic compound based on alumina (Al 2 O 3 ) and disprosia. In this work, we characterize a particular composition (44,5wt% Dy 2 O 3 , 55,5wt% Al 2 O 3 ) by determining the geometrical density, microstructure and phase formation. The chosen composition corresponds to the lowest temperature eutectic of the alumina-disprosia system, allowing the sintering to proceed at 1700 oC in air. Comparing the data of the green and sinterized pellets, the relative shrinking is of about 17 %, in the same proportion both for diameter and length. The corresponding volumetric reduction is of about 43 %, indicating an increase of the relative geometric density of ∼ 70 %. X-ray diffraction analysis shows the existence of two phases corresponding to the lower eutectic: Dy 3 Al 5 O 1 2 and Al 2 O 3 . The calculated theoretical density is ∼ 5.2 g/cm3. Consequently, the relative density of the pellets is 92 %, indicating the feasibility for the fabrication of the proposed material. In a near future, samples will be irradiated to evaluate their behavior for nuclear use. [es

  20. Monte Carlo simulation of reflection spectra of random multilayer media strongly scattering and absorbing light

    International Nuclear Information System (INIS)

    Meglinskii, I V

    2001-01-01

    The reflection spectra of a multilayer random medium - the human skin - strongly scattering and absorbing light are numerically simulated. The propagation of light in the medium and the absorption spectra are simulated by the stochastic Monte Carlo method, which combines schemes for calculations of real photon trajectories and the statistical weight method. The model takes into account the inhomogeneous spatial distribution of blood vessels, water, and melanin, the degree of blood oxygenation, and the hematocrit index. The attenuation of the incident radiation caused by reflection and refraction at Fresnel boundaries of layers inside the medium is also considered. The simulated reflection spectra are compared with the experimental reflection spectra of the human skin. It is shown that a set of parameters that was used to describe the optical properties of skin layers and their possible variations, despite being far from complete, is nevertheless sufficient for the simulation of the reflection spectra of the human skin and their quantitative analysis. (laser applications and other topics in quantum electronics)

  1. One-speed neutron transport in spheres with totally absorbing cores

    International Nuclear Information System (INIS)

    Sjoestrand, N.G.

    1988-01-01

    Stationary and time-dependent transport of neutrons of one speed has been studied in spheres with totally absorbing cores. For stationary, critical reactors the number of secondaries per collision has been calculated numerically for various inner and outer radii. In the time-dependent case, the decay constant has been calculated for spherical shells of different inner radii and thicknesses. For a fixed ratio between shell thickness and inner radius, the curve of the decay constant versus shell thickness crosses the Corngold limit in the same way as the curve for a homogeneous sphere. When the ratio goes to zero the curve approaches that for an infinite slab. The behaviour is discussed in view of a new result from collision theory, viz. that the following condition must be fulfilled for a body at the point where the decay constant curve crosses the Corngold limit: the average exit distance of the neutrons is equal to the mean free path for scattering

  2. Quantitative determination of absorbed hydrogen in oxidised zircaloy by means of neutron radiography

    International Nuclear Information System (INIS)

    Grosse, M.; Lehmann, E.; Vontobel, P.; Steinbrueck, M.

    2006-01-01

    Hydrogen absorbed in steam-oxidised zircaloy can be determined quantitatively by means of neutron radiography. Correlation parameters between the total cross section and hydrogen content as well as oxide layer thickness were determined quantitatively. At H/Zr atomic ratios lower than 1.0, linear correlations between the hydrogen content and total cross section exist. The total cross section of Zr is lower and the effect of the hydrogen is higher in radiography measurements with a cold neutron spectrum than with a thermal spectrum. A Be filter reduces the effects of lower wavelength and epithermal neutrons and extends the linear correlations to higher H/Zr atomic ratios. Due to the better possibilities of background corrections, the neutron image should be detected by a CCD camera for a proper quantitative analysis with a medium spatial resolution of about 0.1 mm. A higher spatial resolution, but larger uncertainties in the quantitative hydrogen determination are achieved by measurements with imaging plates. The effect of oxygen layers on the total cross section is much smaller than the effect of hydrogen. The total cross section measured depends linearly on the oxide layer thickness

  3. Effect of absorption discontinuity on neutron spectra of water assemblies poisoned with non-1/V absorbers

    International Nuclear Information System (INIS)

    Gupta, I.J.; Trikha, S.K.

    1977-01-01

    Calculations are presented of the diffusion of thermal neutrons (2.5 x 10 -4 to 7 x 10 -1 eV) across an absorption discontinuity in a water assembly, consisting of pure water on one side and aqueous solutions of three different non-1/V absorbers on the other, which were obtained by solving the Boltzmann transport equation in the diffusion approximation using the multigroup formalism. The gradual appearance and disappearance of the depletion region in the neutron spectra (caused by the resonance absorption peaks at energies 0.096 and 0.179 eV for samarium and cadmium respectively), as one moves from the pure water assembly to the poisoned water assembly and vice versa, have also been studied. The minimum concentrations of Sm and Cd atoms in water for which the depletion region in the spectra just starts building up are found to be 60 x 10 18 Sm atom cm -3 and 125 x 10 18 Cd atom cm -3 respectively. However no such depletion region is observed in gadolinium-poisoned water assembly. At the boundary, the equilibrium neutron distribution gets disturbed and is re-established to the equilibrium distribution of the second medium at some distance from the interface. The diffusion lengths so calculated from the total neutron density curves are in good agreement with the experimental results of Goddard and Johnson (Nucl. Sci. Eng.; 37:127 (1969)) at various concentrations of Gd and Cd atoms in water. (author)

  4. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  5. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  6. Preparation and characterization of ceramic neutron absorbers based on dysprosia and gadolinia

    International Nuclear Information System (INIS)

    Burgos, F.; Oliber, E.; Leiva S; Lestani, H.; Malachevsky, M.T.; Taboada, H.; D'Ovidio, C.

    2012-01-01

    Among the elements of the lanthanide series, dysprosium and gadolinium have interesting nuclear properties. Due to their high thermal neutron absorption cross-section they are good neutron absorbers. The only compounds suitable for nuclear use are their oxides, dysprosia (Dy 2 O 3 ) and gadolinia (Gd 2 O 3 ). To fabricate neutron absorbers diluted in an inert matrix, e.g. alumina (Al 2 O 3 ), it is relevant to study the preparation of a ceramic compound based on alumina (Al 2 O 3 ) and dysprosia or gadolinia. In this work, we characterize four different nominal compositions with high contents of gadolinia and dysprosia: (a) (45 wt% Dy 2 O 3 , 55 wt% Al 2 O 3 ), (b) (93 wt% Dy 2 O 3 , 7 wt% Al 2 O 3 ), (c) (50 wt% Gd 2 O 3 , 50 wt% Al 2 O 3 ) and (d) (90 wt% Gd 2 O 3 , 10 wt% Al 2 O 3 ). These compositions were selected as their stoichiometry correspond to the eutectic phases found in the respective phase diagrams, so as to attain sinterization at lower temperatures of approximately 1700 o C in air. The investigated parameters are the geometrical density of the pellets, the microstructure and the phases observed using x-ray diffraction. Contraction of the pellets was obtained by measuring the volumetric change between the green and the sintered samples. It was observed that the relative contraction was the same both in thickness and diameter. We discuss the eutectic phase formation and densification observed for the different compositions (author)

  7. Response functions for computing absorbed dose to skeletal tissues from neutron irradiation

    Science.gov (United States)

    Bahadori, Amir A.; Johnson, Perry; Jokisch, Derek W.; Eckerman, Keith F.; Bolch, Wesley E.

    2011-11-01

    Spongiosa in the adult human skeleton consists of three tissues—active marrow (AM), inactive marrow (IM) and trabecularized mineral bone (TB). AM is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM50), defined as all tissues lying within the first 50 µm of the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent micro-CT imaging of a 40 year old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton (Hough et al 2011 Phys. Med. Biol. 56 2309-46). This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fraction (SAF) values for protons originating in axial and appendicular bone sites (Jokisch et al 2011 Phys. Med. Biol. 56 6857-72). These proton SAFs, bone masses, tissue compositions and proton production cross sections, were subsequently used to construct neutron dose-response functions (DRFs) for both AM and TM50 targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, AM, TM50 and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM50 DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged-particle equilibrium is established across the bone site. In the range of 10 eV to 100 Me

  8. Enriched boric acid as an optimized neutron absorber in the EPR primary coolant

    International Nuclear Information System (INIS)

    Cosse, Christelle; Jolivel, Fabienne; Berger, Martial

    2012-09-01

    This paper focuses on one of the most important EPR PWR reactor design optimizations, through primary coolant conditioning by enriched boric acid (EBA). On PWRs throughout the world, boric acid has already been implemented in primary coolant and associated auxiliary systems for criticality control, due to its high Boron 10 neutron absorption cross section. Boric acid also allows primary coolant pH 300C control in combination with lithium hydroxide in many PWRs. The boric acid employed in the majority of existing PWRs is the 'natural' one, with a typical isotopic atomic abundance in Boron 10 about 19.8 at.%. However, EPR requirements for neutron management are more important, due to its fully optimized design compared to older PWRs. From the boron point of view, it means that criticality could be controlled either by increased 'natural' Boron concentrations or by using EBA. Comparatively to 'natural' boric acid, EBA allows for: - the use of smaller storage volumes for an identical total Boron concentration, or lower total Boron concentration if the tank volumes are kept identical. The latter also reduces the risks of boric acid crystallization, in spite of increased neutron-absorbing properties - the application of an evolutionary chemistry operating regime called Advanced pH Control, making it possible to maintain a constant pH 300C value at 7.2 in the primary coolant at nominal conditions throughout entire cycles. This optimized stability of pH 300C will contribute to reduce the consequences of contamination of the reactor coolant system by corrosion products, and consequently, all related issues - the reduction of borated liquid wastes, thanks to maximal recycling resulting from EPR design. The increased design costs associated with EBA are consequently compensated by a reduced total consumption of this chemical. Therefore, the basic design choice for the EPR is the use of EBA. For the Flamanville 3 EPR, according to the above

  9. Light and neutron scattering study of strongly interacting ionic micelles

    International Nuclear Information System (INIS)

    Degiorgio, V.; Corti, M.; Piazza, R.

    1989-01-01

    Dilute solutions of ionic micelles formed by biological glycolipids (gangliosides) have been investigated at various ionic strengths by static and dynamic light scaterring and by small-angle neutron scattering. The size and shape of the micelle is not appreciably affected by the added salt concentration in the range 0-100 mM NaCL. From the measured intensity of scattered light we derive the electric charge Z of the micelle by fitting the data to a theoretical calculation which uses a screened Coulomb potential for the intermicellar interaction, and the hypernetted chain approximation for the calculation of the radial distribution function. The correlation function derived from dynamic light scattering shows the long time contribution typical of concentrated polydisperse systems (author). 15 refs.; 6 figs

  10. Absorbant materials

    International Nuclear Information System (INIS)

    Quetier, Monique.

    1978-11-01

    Absorbants play a very important part in the nuclear industry. They serve for the control, shut-down and neutron shielding of reactors and increase the capacity of spent fuel storage pools and of special transport containers. This paper surveys the usual absorbant materials, means of obtainment, their essential characteristics relating to their use and their behaviour under neutron irradiation [fr

  11. Utilizing strongly absorbing materials for low-loss surface-wave nonlinear optics

    Science.gov (United States)

    Grosse, Nicolai B.; Franz, Philipp; Heckmann, Jan; Pufahl, Karsten; Woggon, Ulrike

    2018-04-01

    Optical media endowed with large nonlinear susceptibilities are highly prized for their employment in frequency conversion and the generation of nonclassical states of light. Although the presence of an optical resonance can greatly increase the nonlinear response (e.g., in epsilon-near-zero materials), the non-negligible increase in linear absorption often precludes the application of such materials in nonlinear optics. Absorbing materials prepared as thin films, however, can support a low-loss surface wave: the long-range surface exciton polariton (LRSEP). Its propagation lifetime increases with greater intrinsic absorption and reduced film thickness, provided that the film is embedded in a transparent medium (symmetric cladding). We explore LRSEP propagation in a molybdenum film by way of a prism-coupling configuration. Our observations show that excitation of the LRSEP mode leads to a dramatic increase in the yield of second-harmonic generation. This implies that the LRSEP mode is an effective vehicle for utilizing the nonlinear response of absorbing materials.

  12. Understanding and predicting the behaviour of silver base neutron absorbers under irradiations

    International Nuclear Information System (INIS)

    Desgranges, C.

    1998-01-01

    The effect of neutron irradiation induced transmutations on the swelling of AgInCd (AIC) alloys used as neutron absorber in the control rods of Pressurized Water Reactors has been studied both experimentally and theoretically. Effective atomic volumes have been determined in synthetic AgCdInSn alloys with various compositions and containing fcc and hc phases, representative of irradiated AIC (Sn is a transmutation product). Swelling is shown to result first from the transmutation of Ag into Cd and of In into Sn, both with larger effective volume than the mother atom, and second from grain boundaries precipitation of s still less dense hc phase when solid solubility of transmuted products is exceeded. For both fcc and hc phases, we have determined profiles at the temperatures in the vicinity of the operating temperature. Unusual characteristics of second phase growth at grain boundaries induced by transmutations are identified on a simple binary alloy model: kinetics is controlled by irradiation temperature which scales diffusivities and flux which scales transmutation rates, as well as by the grain size in the underlying matrix. To address the AgInCdSn alloys, a novel technique is proposed to model diffusion in multicomponent alloys. It is based on a linearization of a simple atomistic model. With a single set of parameters, for each phase, our model well reproduces our interdiffusion measurements in quaternary alloys as well as existing interdiffusion experiments in binary alloys. Finally this diffusion model implemented with a moving interface algorithm is used to model the growth of the second phase induced by transmutation in the AIC under irradiation. (authors)

  13. Strongly coupled chameleon fields: Possible test with a neutron Lloyd's mirror interferometer

    International Nuclear Information System (INIS)

    Pokotilovski, Yu.N.

    2013-01-01

    The consideration of possible neutron Lloyd's mirror interferometer experiment to search for strongly coupled chameleon fields is presented. The chameleon scalar fields were proposed to explain the acceleration of expansion of the Universe. The presence of a chameleon field results in a change of a particle's potential energy in vicinity of a massive body. This interaction causes a phase shift of neutron waves in the interferometer. The sensitivity of the method is estimated

  14. Strongly coupled chameleon fields: Possible test with a neutron Lloyd's mirror interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Pokotilovski, Yu.N., E-mail: pokot@nf.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)

    2013-02-26

    The consideration of possible neutron Lloyd's mirror interferometer experiment to search for strongly coupled chameleon fields is presented. The chameleon scalar fields were proposed to explain the acceleration of expansion of the Universe. The presence of a chameleon field results in a change of a particle's potential energy in vicinity of a massive body. This interaction causes a phase shift of neutron waves in the interferometer. The sensitivity of the method is estimated.

  15. The influence of hyperons and strong magnetic field in neutron star properties

    International Nuclear Information System (INIS)

    Lopes, L.L.; Menezes, D.P.

    2012-01-01

    Neutron stars are among the most exotic objects in the universe and constitute a unique laboratory to study nuclear matter above the nuclear saturation density. In this work, we study the equation of state (EoS) of the nuclear matter within a relativistic model subject to a strong magnetic field. We then apply this EoS to study and describe some of the physical characteristics of neutron stars, especially the massradius relation and chemical compositions. To study the influence of the magnetic field and the hyperons in the stellar interior, we consider altogether four solutions: two different magnetic fields to obtain a weak and a strong influence; and two configurations: a family of neutron stars formed only by protons, electrons, and neutrons and a family formed by protons, electrons, neutrons, muons, and hyperons. The limit and the validity of the results found are discussed with some care. In all cases, the particles that constitute the neutron star are in ,B equilibrium and zero total net charge. Our work indicates that the effect of a strong magnetic field has to be taken into account in the description of magnetars, mainly if we believe that there are hyperons in their interior, in which case the influence of the magnetic field can increase the mass by more than 10 %. We have also seen that although a magnetar can reach 2.48 M0, a natural explanation of why we do not know pulsars with masses above 2.0 Mo arises. We also discuss how the magnetic field affects the strangeness fraction in some standard neutron star masses, and to conclude our paper, we revisit the direct Urca process related to the cooling of the neutron stars and show how it is affected by the hyperons and the magnetic field. (author)

  16. Isolating Weakly and Strongly-Absorbing Classes of Carbonaceous Aerosol: Optical Properties, Abundance and Lifecycle

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Tami C. [Univ. of Illinois, Urbana-Champaign, IL (United States); Rood, Mark J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Riemer, Nicole [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2013-09-15

    absorption. Aging by NH3 produces a mild increase in the hygroscopicity of BrC, and a greater increase in cloud condensation nucleus activity. Therefore, reactions with NH3 form compounds that absorb more light than the original aerosol and act as surfactants, increasing the likelihood that these particles will participate in cloud formation. The particle-resolved model PartMC was enhanced to include additional physical processes. It was calibrated against chamber results, and we needed to account for the non-spherical structure of particle agglomerates, even for ammonium sulfate. We implemented the “volatility basis set” (VBS) framework in the model. The updated PartMC-MOSAIC model was able to simulate gas and aerosol concentrations from the CARES campaign at levels similar to observations. The PartMC model was used to evaluate plume dynamics affecting CCN activity of biomass burning aerosols early in a plume. Coagulation limits emission of CCN to about 1016 per kg of fuel. Co-emitted, semi-volatile organic compounds or emission at small particle sizes can homogenize composition before plume exit, and SVOC co-emission can be the main factor determining plume-exit CCN for hydrophobic or small particles. When externally-mixed, accumulation-mode particles are emitted in the absence of SVOCs, CCN can be overestimated by up to a factor of two. This means that measurements made on aerosol from all phases of combustion gathered into a single chamber may incorrectly estimate CCN properties. Based on the findings here, we make some recommendations for use in large-scale models: (1) inventories should represent “internally” versus “externally” mixed under certain combustion conditions; (2) consideration of non-spherical particles when coagulation is important for climate-relevant properties near sources; (3) designating organic biomass particles as weakly absorbing; (4) “inherent absorption” and hygroscopicity are not altered with aging by ozone

  17. Processing requirements for property optimization of Eu2O3-W cermets for fast reactor neutron absorber applications

    International Nuclear Information System (INIS)

    Pasto, A.E.; Tennery, V.J.

    1977-01-01

    Europium sesquioxide is a candidate fast reactor neutron absorber material. It possesses several desirable characteristics for this application, but has a low thermal conductivity. This gives rise to pellet cracking during reactor operation. To increase the thermal conductivity without great sacrifice in nuclear worth, addition of tungsten to Eu 2 O 3 has been evaluated. Synthesis and fabrication techniques described allow preparation of high density compacts of Eu 2 O 3 -15 vol. percent tungsten, possessing favorable thermal conductivity and thermal expansion characteristics

  18. Standard specification for boron-Based neutron absorbing material systems for use in nuclear spent fuel storage racks

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This specification defines criteria for boron-based neutron absorbing material systems used in racks in a pool environment for storage of nuclear light water reactor (LWR) spent-fuel assemblies or disassembled components to maintain sub-criticality in the storage rack system. 1.2 Boron-based neutron absorbing material systems normally consist of metallic boron or a chemical compound containing boron (for example, boron carbide, B4C) supported by a matrix of aluminum, steel, or other materials. 1.3 In a boron-based absorber, neutron absorption occurs primarily by the boron-10 isotope that is present in natural boron to the extent of 18.3 ± 0.2 % by weight (depending upon the geological origin of the boron). Boron, enriched in boron-10 could also be used. 1.4 The materials systems described herein shall be functional – that is always be capable to maintain a B10 areal density such that subcriticality Keff <0.95 or Keff <0.98 or Keff < 1.0 depending on the design specification for the service...

  19. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lumin [Univ. of Michigan, Ann Arbor, MI (United States). Department of Nuclear Engineering and Radiological Science; Wierschke, Jonathan Brett [Univ. of Michigan, Ann Arbor, MI (United States). Department of Nuclear Engineering and Radiological Science

    2015-04-08

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised of boron trioxide and sassolite (H3BO3). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.

  20. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    Wang, Lumin; Wierschke, Jonathan Brett

    2015-01-01

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised of boron trioxide and sassolite (H 3 BO 3 ). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.

  1. Zero Sound in Neutron Stars with Dense Quark Matter under Strong Magnetic Fields

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos

    2009-01-01

    We study a neutron star with a quark matter core under extremely strong magnetic fields. We investigate the possibility of an Urca process as a mechanism for the cooling of such a star. We found that apart from very particular cases, the Urca process cannot occur. We also study the stability...

  2. Standard practice for qualification and acceptance of boron based metallic neutron absorbers for nuclear criticality control for dry cask storage systems and transportation packaging

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice provides procedures for qualification and acceptance of neutron absorber materials used to provide criticality control by absorbing thermal neutrons in systems designed for nuclear fuel storage, transportation, or both. 1.2 This practice is limited to neutron absorber materials consisting of metal alloys, metal matrix composites (MMCs), and cermets, clad or unclad, containing the neutron absorber boron-10 (10B). 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  3. Neutron relative biological effectiveness for solid cancer incidence in the Japanese A-bomb survivors: an analysis considering the degree of independent effects from γ-ray and neutron absorbed doses with hierarchical partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Linda [Federal Office for Radiation Protection, Department Radiation Protection and Health, Oberschleissheim (Germany); University of Manchester, The Faculty of Medical and Human Sciences, Manchester (United Kingdom)

    2013-03-15

    It has generally been assumed that the neutron and γ-ray absorbed doses in the data from the life span study (LSS) of the Japanese A-bomb survivors are too highly correlated for an independent separation of the all solid cancer risks due to neutrons and due to γ-rays. However, with the release of the most recent data for all solid cancer incidence and the increased statistical power over previous datasets, it is instructive to consider alternatives to the usual approaches. Simple excess relative risk (ERR) models for radiation-induced solid cancer incidence fitted to the LSS epidemiological data have been applied with neutron and γ-ray absorbed doses as separate explanatory covariables. A simple evaluation of the degree of independent effects from γ-ray and neutron absorbed doses on the all solid cancer risk with the hierarchical partitioning (HP) technique is presented here. The degree of multi-collinearity between the γ-ray and neutron absorbed doses has also been considered. The results show that, whereas the partial correlation between the neutron and γ-ray colon absorbed doses may be considered to be high at 0.74, this value is just below the level beyond which remedial action, such as adding the doses together, is usually recommended. The resulting variance inflation factor is 2.2. Applying HP indicates that just under half of the drop in deviance resulting from adding the γ-ray and neutron absorbed doses to the baseline risk model comes from the joint effects of the neutrons and γ-rays - leaving a substantial proportion of this deviance drop accounted for by individual effects of the neutrons and γ-rays. The average ERR/Gy γ-ray absorbed dose and the ERR/Gy neutron absorbed dose that have been obtained here directly for the first time, agree well with previous indirect estimates. The average relative biological effectiveness (RBE) of neutrons relative to γ-rays, calculated directly from fit parameters to the all solid cancer ERR model with both

  4. Spin ordered phase transitions in neutron matter under the presence of a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2011-01-01

    In dense neutron matter under the presence of a strong magnetic field, considered in the model with the Skyrme effective interaction, there are possible two types of spin ordered states. In one of them the majority of neutron spins are aligned opposite to magnetic field (thermodynamically preferable state), and in other one the majority of spins are aligned along the field (metastable state). The equation of state, incompressibility modulus and velocity of sound are determined in each case with the aim to find the peculiarities allowing to distinguish between two spin ordered phases.

  5. Nuclear criticality safety: general. 6. Application of Fixed Neutron Absorbers in the New Hanford PFP Horizontal Rack Design

    International Nuclear Information System (INIS)

    Lan, J.S.; Miller, E.M.; Toffer, H.; Mo, B.S.

    2001-01-01

    The Hanford Plutonium Finishing Plant (PFP) is currently in a waste cleanup and plutonium stabilization mode. Plutonium-bearing materials are processed through thermal treatment, creating forms of oxides suitable for long-term storage. Stabilized materials at PFP are stored in a variety of cans such as the bag-less transfer cans (BTCs), which are ultimately contained in the U.S. Department of Energy (DOE) 3013 can; both cans are larger than previously used plutonium storage containers and hold more plutonium. To compensate for the increased plutonium loadings, added engineered safety features were considered in the storage facilities. The vaults in PFP, subdivided into concrete-walled cubicles, will contain both new and older cans. The DOE 3013 and BTC cans may be loaded with up to 4.4 kg of plutonium as a compound (mostly oxide). New racks that store cans horizontally are being constructed to hold both new and older containers. The loading objective is to accommodate 70 kg of plutonium per cubicle. Two design analysis approaches for the new racks were considered. The first approach incorporated neutron absorption provided by the structural materials of the rack and the cans in determining a safe configuration. A rack loading arrangement was determined as shown in Fig. 1 and specified in Table I. This approach provides compliance with criticality control requirements; however, added administrative controls were needed to accommodate a sufficient number of cans in specific locations to achieve 70 kg of plutonium per cubicle. The 4.4-kg plutonium container can be placed only in predetermined locations. The second approach evaluated the addition of a fixed neutron absorber plate along the back wall of the cubicle (Fig. 1). The location of the special plate facilitates installation of the racks and provides additional criticality safety margin beyond the first approach. Its presence permits loading of racks with up to 4.4-kg plutonium cans in any storage locations

  6. Understanding the strong intervening O VI absorber at zabs ˜ 0.93 towards PG1206+459

    Science.gov (United States)

    Rosenwasser, B.; Muzahid, S.; Charlton, J. C.; Kacprzak, G. G.; Wakker, B. P.; Churchill, C. W.

    2018-05-01

    We have obtained new observations of the partial Lyman limit absorber at zabs=0.93 towards quasar PG 1206+459, and revisit its chemical and physical conditions. The absorber, with N({H I})˜ 10^{17.0} cm-2 and absorption lines spread over ≳1000 km s-1 in velocity, is one of the strongest known O VI absorbers at \\log N({{O VI}})= 15.54 ± 0.17. Our analysis makes use of the previously known low- (e.g. Mg II), intermediate- (e.g. Si IV), and high-ionization (e.g. C IV, N V, Ne VIII) metal lines along with new Hubble Space Telescope (HST)/Cosmic Origins Spectrograph (COS) observations that cover O VI and an HST/ACS image of the quasar field. Consistent with previous studies, we find that the absorber has a multiphase structure. The low-ionization phase arises from gas with a density of \\log (n_H/cm^{-3})˜ -2.5 and a solar to supersolar metallicity. The high-ionization phase stems from gas with a significantly lower density, i.e. \\log (n_H/cm^{-3}) ˜ -3.8, and a near-solar to solar metallicity. The high-ionization phase accounts for all of the absorption seen in C IV, N V, and O VI. We find the the detected Ne VIII, reported by Tripp et al. (2011), is best explained as originating in a stand-alone collisionally ionized phase at T˜ 10^{5.85} K, except in one component in which both O VI and Ne VIII can be produced via photoionization. We demonstrate that such strong O VI absorption can easily arise from photoionization at z ≳ 1, but that, due to the decreasing extragalactic UV background radiation, only collisional ionization can produce large O VI features at z ˜ 0. The azimuthal angle of ˜88° of the disc of the nearest (68 kpc) luminous (1.3L*) galaxy at zgal = 0.9289, which shows signatures of recent merger, suggests that the bulk of the absorption arises from metal enriched outflows.

  7. Burnable absorber-integrated Guide Thimble (BigT) - 1. Design concepts and neutronic characterization on the fuel assembly benchmarks

    International Nuclear Information System (INIS)

    Yahya, Mohd-Syukri; Yu, Hwanyeal; Kim, Yonghee

    2016-01-01

    This paper presents the conceptual designs of a new burnable absorber (BA) for the pressurized water reactor (PWR), which is named 'Burnable absorber-integrated Guide Thimble' (BigT). The BigT integrates BA materials into standard guide thimble in a PWR fuel assembly. Neutronic sensitivities and practical design considerations of the BigT concept are points of highlight in the first half of the paper. Specifically, the BigT concepts are characterized in view of its BA material and spatial self-shielding variations. In addition, the BigT replaceability requirement, bottom-end design specifications and thermal-hydraulic considerations are also deliberated. Meanwhile, much of the second half of the paper is devoted to demonstrate practical viability of the BigT absorbers via comparative evaluations against the conventional BA technologies in representative 17x17 and 16x16 fuel assembly lattices. For the 17x17 lattice evaluations, all three BigT variants are benchmarked against Westinghouse's existing BA technologies, while in the 16x16 assembly analyses, the BigT designs are compared against traditional integral gadolinia-urania rod design. All analyses clearly show that the BigT absorbers perform as well as the commercial BA technologies in terms of reactivity and power peaking management. In addition, it has been shown that sufficiently high control rod worth can be obtained with the BigT absorbers in place. All neutronic simulations were completed using the Monte Carlo Serpent code with ENDF/B-VII.0 library. (author)

  8. Neutron thermalization in absorbing infinite homogeneous media: theoretical methods; Methodes theoriques pour l'etude de la thermalisation des neutrons dans les milieux absorbants infinis et homogenes

    Energy Technology Data Exchange (ETDEWEB)

    Cadilhac, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-11-15

    After a general survey of the theory of neutron thermalization in homogeneous media, one introduces, through a proper formulation, a simplified model generalizing both the Horowitz model (generalized heavy free gas approximation) and the proton gas model. When this model is used, the calculation of spectra is reduced to the solution of linear second order differential equations. Since it depends on two arbitrary functions, the model gives a good approximation of any usual moderator for reactor physics purposes. The choice of these functions is discussed from a theoretical point of view; a method based on the consideration of the first two moments of the scattering law is investigated. Finally, the possibility of discriminating models by using experimental informations is considered. (author) [French] Apres un passage en revue de generalites sur la thermalisation des neutrons dans les milieux homogenes, on developpe un formalisme permettant de definir et d'etudier un modele simplifie de thermaliseur. Ce modele generalise l'approximation proposee par J. HOROWITZ (''gaz lourd generalise'') et comporte comme cas particulier le modele ''hydrogene gazeux monoatomique''. Il ramene le calcul des spectres a la resolution d'equations differentielles lineaires du second ordre. Il fait intervenir deux fonctions arbitraires, ce qui lui permet de representer les thermaliseurs usuels de facon satisfaisante pour les besoins de la physique des reacteurs. L'ajustement theorique de ces fonctions est discute; on etudie une methode basee sur la consideration des deux premiers moments de la loi de diffusion. On envisage enfin la possibilite de discriminer les modeles d'apres des renseignements d'origine experimentale. (auteur)

  9. Measurement of the neutron detection efficiency of a 80% absorber-20% scintillating fibers calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, M.; Bertolucci, S. [Laboratori Nazionali di Frascati dell' INFN, Via E.Fermi 40, I-00044 Frascati (Italy); Bini, C., E-mail: cesare.bini@roma1.infn.i [Dipartimento di Fisica, Sapienza Universita di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); INFN Sezione di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); Branchini, P. [INFN Sezione di Roma Tre, Via della Vasca Navale, 84 I-00146 Roma (Italy); Corradi, G.; Curceanu, C. [Laboratori Nazionali di Frascati dell' INFN, Via E.Fermi 40, I-00044 Frascati (Italy); De Zorzi, G.; Di Domenico, A. [Dipartimento di Fisica, Sapienza Universita di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); INFN Sezione di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); Di Micco, B. [Dipartimento di Fisica dell' Universita ' Roma Tre' , Via della Vasca Navale, 84 I-00146 Roma (Italy); INFN Sezione di Roma Tre, Via della Vasca Navale, 84 I-00146 Roma (Italy); Ferrari, A. [Institute of Safety Research and Institute of Radiation Physics, Forschungszentrum Dresden-Rossendorf, PF 510119, 01314 Dresden (Germany); Fiore, S. [Dipartimento di Fisica, Sapienza Universita di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); INFN Sezione di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); Gauzzi, P., E-mail: paolo.gauzzi@roma1.infn.i [Dipartimento di Fisica, Sapienza Universita di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); INFN Sezione di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); Giovannella, S.; Happacher, F. [Laboratori Nazionali di Frascati dell' INFN, Via E.Fermi 40, I-00044 Frascati (Italy); Iliescu, M. [Laboratori Nazionali di Frascati dell' INFN, Via E.Fermi 40, I-00044 Frascati (Italy); ' Horia Hulubei' National Institute of Physics and Nuclear Engineering, Str. Atomistilor no. 407, P.O. Box MG-6 Bucharest-Magurele (Romania); Luca, A.; Martini, M.; Miscetti, S. [Laboratori Nazionali di Frascati dell' INFN, Via E.Fermi 40, I-00044 Frascati (Italy)

    2011-01-21

    The neutron detection efficiency of a sampling calorimeter made of 1 mm diameter scintillating fibers embedded in a lead/bismuth structure has been measured at the neutron beam of The Svedberg Laboratory at Uppsala. A significant enhancement of the detection efficiency with respect to a bulk organic scintillator detector with the same thickness is observed.

  10. Direct URCA-processes in neutron star quark core with strong magnetic field.

    Directory of Open Access Journals (Sweden)

    Belyaev Vasily

    2017-01-01

    In evaluations, the strength of magnetic field corresponds to the case, where the quarks of medium occupy a lot of Landau levels, while the electrons are in ground Landau level. The analytical dependence of neutrino emissivity on chemical potentials of quarks and electrons, temperature and magnetic field strength is obtained and briefly discussed. The result could be important in application to a massive strongly magnetized neutron star with quark core.

  11. Strongly correlated electron systems and neutron scattering. Magnetism, superconductivity, structural phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron scattering experiments in our group on strongly correlated electron systems are reviewed Metal-insulator transitions caused by structural phase transitions in (La{sub 1-x}Sr{sub x}) MnO{sub 3}, a novel magnetic transition in the CeP compound, correlations between antiferromagnetism and superconductivity in UPd{sub 2}Al{sub 3} and so forth are discussed. Here, in this note, the phase transition of Mn-oxides was mainly described. (author)

  12. RBE/absorbed dose relationship of d(50)-Be neutrons determined for early intestinal tolerance in mice

    International Nuclear Information System (INIS)

    Gueulette, J.; Wambersie, A.

    1978-01-01

    RBE/absorbed dose relationship of d(50)-Be neutrons (ref.: 60 Co) was determined using intestinal tolerance in mice (LD50) after single and fractionated irradiation. RBE is 1.8 for a single fraction (about 1000 rad 60 Co dose); it increases when decreasing dose and reaches the plateau value of 2.8 for a 60 Co dose of about 200 rad. This RBE value is used for the clinical applications with the cyclotron 'Cyclone' at Louvain-la-Neuve [fr

  13. Spectra and absorbed dose by photo-neutrons in a solid water mannequin exposed to a Linac of 15 MV

    International Nuclear Information System (INIS)

    Benites R, J.; Vega C, H. R.; Velazquez F, J.

    2012-10-01

    Using Monte Carlo methods was modeled a solid water mannequin; according to the ICRU 44 (1989), Tissue substitutes in radiation dosimetry and measurements, of the International Commission on Radiation Units and Measurements; Report 44. This material Wt 1 is made of H (8.1%), C (67.2%), N (2.4%), O (19.9%), Cl (0.1%), Ca (2.3%) and its density is of 1.02 gr/cm 3 . The mannequin was put instead of the patient, inside the treatment room and the spectra and absorbed dose were determined by photo-neutrons exposed to a Linac of 15 MV. (Author)

  14. Influence of the neutron flux shape on the value of absorbed neutron dose; Uticaj oblika neutronskog spektra na vrednost apsorbovane doze neutrona

    Energy Technology Data Exchange (ETDEWEB)

    Miric, I; Miric, P [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1974-07-01

    This paper deals with the study od specific doses dependence on the type and approximation procedures of neutron spectra. Values of specific dose rates (dose per neutron cm{sub 2}) were analysed for neutron spectra from RB reactor in Vinca, Crac facility in Valduc (France) and HPRR reactor in Oak Ridge (USA). Data used in this analysis were obtained by methods used in Harwell (AERE), Oak Ridge (ORNL), Chalk River (AECL), CEN de Cadarache (CEA) and in the Boris Kidric Institute (IBK). Specific absorbed neutron doses were determined for each of the estimated spectra and presented in the form of kerma/(n.cm{sup -2}) and rad/((n.cm{sup -2}) units. The obtained results have shown the influence of the flux approximation procedure on the values of conversion factors for obtaining neutron doses from neutron flux. U okviru ovog rada radjeno je na ispitivanju zavisnosti specificnih doza od vrste i nacina aproksimacije neutronskog spektra. U radu su analizirane vrednosti specificnih doza (doza po n.cm{sup -2}) za neutronske spektre koji se dobijaju oko sledecih nuklearnih postrojenja: reaktora RB u Vinci, postrojenja CRAC u Valduc-u (Francuska), reaktora HPRR u Oak Ridge-u (SAD). Za analizu su korisceni podaci dobijeni metodama koje se koriste u nuklearnim centrima Harwell (AERE), Oak Ridge-u (ORNL), Chalk River-u (AECL), CEN de Cadarache (CEA) i Institutu Boris Kidric (IBK). Za svaki procenjeni spektar odredjene su specificne apsorbovane doze neutrona izrazene u kerma/(n.cm{sup -2}) i rad/(n.cm{sup -2}) jedinicama. Dobijeni rezultati su pokazali koliko nacin aproksimacije spektra utice na vrednost konverzionih faktora koji sluze za prelazak sa fluksa na dozu neutrona (author)

  15. The Equation of State of Neutron Star Matter in Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Broderick, A.; Prakash, M.; Lattimer, J. M.

    2000-01-01

    We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach, which permits the study of several models that differ in their behavior at high density. Effects of Landau quantization in ultrastrong magnetic fields (B>10 14 G) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for B>10 18 G that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultrastrong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of |H/B| never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields. (c) 2000 The American Astronomical Society

  16. The Equation of State of Neutron Star Matter in Strong Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, A; Prakash, M; Lattimer, J M

    2000-07-01

    We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach, which permits the study of several models that differ in their behavior at high density. Effects of Landau quantization in ultrastrong magnetic fields (B>10{sup 14} G) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for B>10{sup 18} G that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultrastrong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of |H/B| never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields. (c) 2000 The American Astronomical Society.

  17. Neutron Diffusion in a Space Lattice of Fissionable and Absorbing Materials

    Science.gov (United States)

    Feynman, R. P.; Welton, T. A.

    1946-08-27

    Methods are developed for estimating the effect on a critical assembly of fabricating it as a lattice rather than in the more simply interpreted homogeneous manner. An idealized case is discussed supposing an infinite medium in which fission, elastic scattering and absorption can occur, neutrons of only one velocity present, and the neutron m.f.p. independent of position and equal to unity with the unit of length used.

  18. Spin-polarized states in neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A. A.; Yang, J.

    2009-01-01

    Spin-polarized states in neutron matter in strong magnetic fields up to 10 18 G are considered in the model with the Skyrme effective interaction. By analyzing the self-consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin-polarization parameter as a function of density corresponds to the negative spin polarization when the majority of neutron spins are oriented opposite to the direction of the magnetic field. Besides, beginning from some threshold density dependent on magnetic field strength, the self-consistent equations also have two other branches of solutions for the spin-polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to that of the thermodynamically preferable branch. As a consequence, in a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state in the high-density region in neutron matter, which, under decreasing density, at some threshold density changes to a thermodynamically stable state with the negative spin polarization.

  19. A study on artificial rare earth (RE2O3) based neutron absorber.

    Science.gov (United States)

    Kim, Kyung-O; Kyung Kim, Jong

    2015-11-01

    A new concept of a neutron absorption material (i.e., an artificial rare earth compound) was introduced for criticality control in a spent fuel storage system. In particular, spent nuclear fuels were considered as a potential source of rare earth elements because the nuclear fission of uranium produces a full range of nuclides. It was also found that an artificial rare earth compound (RE2O3) as a High-Level Waste (HLW) was naturally extracted from pyroprocessing technology developed for recovering uranium and transuranic elements (TRU) from spent fuels. In this study, various characteristics (e.g., activity, neutron absorption cross-section) were analyzed for validating the application possibility of this waste compound as a neutron absorption material. As a result, the artificial rare earth compound had a higher neutron absorption probability in the entire energy range, and it can be used for maintaining sub-criticality for more than 40 years on the basis of the neutron absorption capability of Boral™. Therefore, this approach is expected to vastly improve the efficiency of radioactive waste management by simultaneously keeping HLW and spent nuclear fuel in a restricted space. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A study on artificial rare earth (RE2O3) based neutron absorber

    International Nuclear Information System (INIS)

    KIM, Kyung-O; Kyung KIM, Jong

    2015-01-01

    A new concept of a neutron absorption material (i.e., an artificial rare earth compound) was introduced for criticality control in a spent fuel storage system. In particular, spent nuclear fuels were considered as a potential source of rare earth elements because the nuclear fission of uranium produces a full range of nuclides. It was also found that an artificial rare earth compound (RE 2 O 3 ) as a High-Level Waste (HLW) was naturally extracted from pyroprocessing technology developed for recovering uranium and transuranic elements (TRU) from spent fuels. In this study, various characteristics (e.g., activity, neutron absorption cross-section) were analyzed for validating the application possibility of this waste compound as a neutron absorption material. As a result, the artificial rare earth compound had a higher neutron absorption probability in the entire energy range, and it can be used for maintaining sub-criticality for more than 40 years on the basis of the neutron absorption capability of Boral™. Therefore, this approach is expected to vastly improve the efficiency of radioactive waste management by simultaneously keeping HLW and spent nuclear fuel in a restricted space. - Highlights: • Quantitative analysis of rare earth elements in PWR spent fuels. • Extraction of artificial rare earth compound using pyroprocessing technology. • Characteristic analysis of artificial rare earth elements. • Performance evaluation of artificial rare earth for criticality control.

  1. Evaluation of neutron irradiation fields for BNCT by using absorbed dose in a phantom

    International Nuclear Information System (INIS)

    Aizawa, O.

    1993-01-01

    In a previous paper, the author defined the open-quotes irradiation timeclose quotes as the time of irradiation in which the maximum open-quotes total background doseclose quotes becomes 2,500 RBE-cGy. In this paper, he has modified the definition a little as the time of irradiation in which the maximum open-quotes lμg/g B-10 doseclose quotes becomes 3,000 RBE-cGy, because he assumed that normal tissue contained 1μg/g B-10. Moreover, he has modified the dose criteria for BNCT as follows: The open-quotes eye doseclose quotes, open-quotes total body doseclose quotes and open-quotes except-head doseclose quotes should be less that 200, 100 and 50 RBE-cGy, respectively. He has added one more criterion for BNCT that the thermal neutron fluence at the tumor position should be over 2.5x10 12 n/cm 2 at the open-quotes irradiation timeclose quotes. The distance from the core side to the irradiation port in the open-quotes old configurationclose quotes of the Musashi reactor (TRIGA-II, 100kW) was 160 cm. He is now planning to design an eccentric core and to move the reactor core nearer to the irradiation port, distance between the core side and the irradiation port to be 140, 130 and 120cm. The other assumptions used in this paper are as follows: (1) The B-10 concentrations in tumor are 30 and/or 10μg/g. (2) The depth of the tumor is 5.0 cm to 5.5 cm from the surface. (3) The RBE values used are 1.0 for all gamma rays and 2.3 for B 10 (n,α) reaction products. (4) The RBE values for neutrons are the following three cases: the first case is using 1.6 for all neutrons; the second one is using 3.2 for non-thermal neutrons and 1.6 for thermal neutrons; the third case is using 4.8 for fast neutrons, 3.2 for faster epithermal and epithermal neutrons, and 1.6 for thermal neutrons

  2. Characterization of 'strong-fragile' behaviour of glass-forming aqueous solutions by neutron scattering

    CERN Document Server

    Branca, C; Galli, G; Magazù, S; Maisano, G; Migliardo, F

    2002-01-01

    Neutron-scattering measurements have been performed on trehalose/H sub 2 O and sucrose/H sub 2 O mixtures by using the spectrometer MIBEMOL at the Laboratoire Leon Brillouin (LLB, Saclay) as a function of temperature and concentration. In order to characterize the different rigidities of both the disaccharide/H sub 2 O mixtures, we have evaluated the R sub 1 (T sub g) parameter connected to the 'strong-fragile' classification of the systems according to Angell's nomenclature. (orig.)

  3. Off-specular polarized neutron reflectometry study of magnetic dots with a strong shape anisotropy

    CERN Document Server

    Temst, K; Moshchalkov, V V; Bruynseraede, Y; Fritzsche, H; Jonckheere, R

    2002-01-01

    We have measured the off-specular polarized neutron reflectivity of a regular array of rectangular magnetic polycrystalline Co dots, which were prepared by a combination of electron-beam lithography, molecular beam deposition, and lift-off processes. The dots have a length-to-width ratio of 4:1 imposing a strong shape anisotropy. The intensity of the off-specular satellite reflection was monitored as a function of the magnetic field applied parallel to the rows of dots and in the plane of the sample, allowing us to analyze the magnetization-reversal process using the four spin-polarized cross sections. (orig.)

  4. Precious metals in SDSS quasar spectra. II. Tracking the evolution of strong, 0.4 < z < 2.3 Mg II absorbers with thousands of systems

    International Nuclear Information System (INIS)

    Seyffert, Eduardo N.; Simcoe, Robert A.; Cooksey, Kathy L.; O'Meara, John M.; Kao, Melodie M.; Prochaska, J. Xavier

    2013-01-01

    We have performed an analysis of over 34,000 Mg II doublets at 0.36 < z < 2.29 in Sloan Digital Sky Survey (SDSS) Data Release 7 quasar spectra; the catalog, advanced data products, and tools for analysis are publicly available. The catalog was divided into 14 small redshift bins with roughly 2500 doublets in each and from Monte Carlo simulations, we estimate 50% completeness at rest equivalent width W r ≈ 0.8 Å. The equivalent width frequency distribution is described well by an exponential model at all redshifts, and the distribution becomes flatter with increasing redshift, i.e., there are more strong systems relative to weak ones. Direct comparison with previous SDSS Mg II surveys reveals that we recover at least 70% of the doublets in these other catalogs, in addition to detecting thousands of new systems. We discuss how these surveys came by their different results, which qualitatively agree but because of the very small uncertainties, differ by a statistically significant amount. The estimated physical cross section of Mg II-absorbing galaxy halos increased approximately threefold from z = 0.4 to z = 2.3, while the W r ≥ 1 Å absorber line density, dN MgII /dX, grew by roughly 45%. Finally, we explore the different evolution of various absorber populations—damped Lyα absorbers, Lyman limit systems, strong C IV absorbers, and strong and weaker Mg II systems—across cosmic time (0 < z < 6).

  5. Effect of absorber rods on the space-energy distribution of thermal neutrons in water

    International Nuclear Information System (INIS)

    Hussein, A.Z.; Eid, Y.; Hamouda, I.

    1975-01-01

    Thermal neutron spectra have been measured in a vectorial direction with respect to cadmium, boron-filled and copper rod elements. The rods are infinite cylinders, of 21 mm diameter, each separately immersed in an infinite water moderator fed with neutrons from the ET-RR-1 research reactor. Measurement of spectra has been carried out, in the vicinity of the rod elements, at several distances by the time-of-flight method using a chopper and also by intergral flux activation method. The measured spectra near the copper rod were compared with transport calculations of the position-dependent spectrum. The calculations, based on a realistic kernel for water, were found to yield reasonable agreement with experiment. (orig.) [de

  6. Neutron star equilibrium configurations within a fully relativistic theory with strong, weak, electromagnetic, and gravitational interactions

    International Nuclear Information System (INIS)

    Belvedere, Riccardo; Pugliese, Daniela; Rueda, Jorge A.; Ruffini, Remo; Xue, She-Sheng

    2012-01-01

    We formulate the equations of equilibrium of neutron stars taking into account strong, weak, electromagnetic, and gravitational interactions within the framework of general relativity. The nuclear interactions are described by the exchange of the σ, ω, and ρ virtual mesons. The equilibrium conditions are given by our recently developed theoretical framework based on the Einstein–Maxwell–Thomas–Fermi equations along with the constancy of the general relativistic Fermi energies of particles, the “Klein potentials”, throughout the configuration. The equations are solved numerically in the case of zero temperatures and for selected parameterizations of the nuclear models. The solutions lead to a new structure of the star: a positively charged core at supranuclear densities surrounded by an electronic distribution of thickness ∼ℏ/(m e c)∼10 2 ℏ/(m π c) of opposite charge, as well as a neutral crust at lower densities. Inside the core there is a Coulomb potential well of depth ∼m π c 2 /e. The constancy of the Klein potentials in the transition from the core to the crust, imposes the presence of an overcritical electric field ∼(m π /m e ) 2 E c , the critical field being E c =m e 2 c 3 /(eℏ). The electron chemical potential and the density decrease, in the boundary interface, until values μ e crust e core and ρ crust core . For each central density, an entire family of core–crust interface boundaries and, correspondingly, an entire family of crusts with different mass and thickness, exist. The configuration with ρ crust =ρ drip ∼4.3×10 11 gcm −3 separates neutron stars with and without inner crust. We present here the novel neutron star mass–radius for the especial case ρ crust =ρ drip and compare and contrast it with the one obtained from the traditional Tolman–Oppenheimer–Volkoff treatment.

  7. TESTING THE POSSIBLE INTRINSIC ORIGIN OF THE EXCESS VERY STRONG Mg II ABSORBERS ALONG GAMMA-RAY BURST LINES-OF-SIGHT

    International Nuclear Information System (INIS)

    Cucchiara, A.; Jones, T.; Charlton, J. C.; Fox, D. B.; Einsig, D.; Narayanan, A.

    2009-01-01

    The startling discovery by Prochter et al. that the frequency of very strong (W r (2796)>1 A) Mg II absorbers along gamma-ray burst (GRB) lines of sight ([dN/dz] GRB = 0.90) is more than three times the frequency along quasar lines of sight ([dN/dz] QSO = 0.24), over similar redshift ranges, has yet to be understood. In particular, explanations appealing to dust antibias in quasar samples, partial covering of the quasar sources, and gravitational-lensing amplification of the GRBs have all been carefully examined and found wanting. We therefore reconsider the possibility that the excess of very strong Mg II absorbers toward GRBs is intrinsic either to the GRBs themselves or to their immediate environment, and associated with bulk outflows with velocities as large as v max ∼ 0.3c. In order to examine this hypothesis, we accumulate a sample of 27 W r (2796)>1 A absorption systems found toward 81 quasars, and compare their properties to those of 8 W r (2796) > 1 A absorption systems found toward six GRBs; all systems have been observed at high spectral resolution (R = 45, 000) using the Ultraviolet and Visual Echelle Spectrograph on the Very Large Telescope. We make multiple comparisons of the absorber properties across the two populations, testing for differences in metallicity, ionization state, abundance patterns, dust abundance, kinematics, and phase structure. We find no significant differences between the two absorber populations using any of these metrics, implying that, if the excess of absorbers along GRB lines of sight are indeed intrinsic, they must be produced by a process which has strong similarities to the processes yielding strong Mg II systems associated with intervening galaxies. Although this may seem a priori unlikely, given the high outflow velocities required for any intrinsic model, we note that the same conclusion was reached, recently, with respect to the narrow absorption line systems seen in some quasars.

  8. Study of neutron absorbing microspheres in research reactors - Metal systems wear

    International Nuclear Information System (INIS)

    Gana Watkins, Ignacio A.; Silin, Nicolas; Prado, Miguel O.; Mazufri, Claudio

    2012-01-01

    Now-a-days, it is increasingly common for nuclear power plants, as well as research reactors, to be designed and built with an alternative safety system aside from control rods. The acids and/or salts in solution injection systems is most frequently used. However, these systems present several implementation and operation problems due to the physical and chemical properties of the used compounds. After analyzing these drawbacks, we developed a new alternative safety system that contains the absorbing element isolated from the aqueous medium. In this context, it's proposed the use of aluminum borosilicate microspheres. The current paper presents erosion wear experiments to determine under which conditions microspheres can be considered as a potential component of a secondary shut down system in a nuclear facility (author))

  9. Bound-state β decay of a neutron in a strong magnetic field

    International Nuclear Information System (INIS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2005-01-01

    The β decay of a neutron into a bound (pe - ) state and an antineutrino in the presence of a strong uniform magnetic field (B > or approx. 10 13 G) is considered. The β decay process is treated within the framework of the standard model of weak interactions. A Bethe-Salpeter formalism is employed for description of the bound (pe - ) system in a strong magnetic field. For the field strengths 10 13 18 G the estimate for the ratio of the bound-state decay rate w b and the usual (continuum-state) decay rate w c is derived. It is found that in such strong magnetic fields w b /w c ∼0.1-0.4. This is in contrast to the field-free case, where w b /w c ≅4.2x10 -6 [J. N. Bahcall, Phys. Rev. 124, 495 (1961); L. L. Nemenov, Sov. J. Nucl. Phys. 15, 582 (1972); X. Song, J. Phys. G: Nucl. Phys. 13, 1023 (1987)]. The dependence of the ratio w b /w c on the magnetic field strength B exhibits a logarithmiclike behavior. The obtained results can be important for applications in astrophysics and cosmology

  10. Study on an innovative fast reactor utilizing hydride neutron absorber - Final report of phase I study

    International Nuclear Information System (INIS)

    Konashi, K.; Iwasaki, T.; Itoh, K.; Hirai, M.; Sato, J.; Kurosaki, K.; Suzuki, A.; Matsumura, Y.; Abe, S.

    2010-01-01

    These days, the demand to use nuclear resources efficiently is growing for long-term energy supply and also for solving the green house problem. It is indispensable to develop technologies to reduce environmental load with the nuclear energy supply for sustainable development of human beings. In this regard, the development of the fast breeder reactor (FBR) is preferable to utilize nuclear resources effectively and also to burn minor actinides which possess very long toxicity for more than thousands years if they are not extinguished. As one of the FBR developing works in Japan this phase I study started in 2006 to introduce hafnium (Hf) hydride and Gadolinium-Zirconium (Gd-Zr) hydride as new control materials in FBR. By adopting them, the FBR core control technology is improved by two ways. One is extension of control rod life time by using long life Hf hydride which leads to reduce the fabrication and disposal cost and the other is reduction of the excess reactivity by adopting Gd-Zr hydride which leads to reduce the number of control rods and simplifies the core upper structure. This three year study was successfully completed and the following results were obtained. The core design was performed to examine the applicability of the Hf hydride absorber to Japanese Sodium Fast Reactor (JSFR) and it is clarified that the control rod life time can be prolonged to 6 years by adopting Hf hydride and the excess reactivity of the beginning of the core cycle can be reduced to half and the number of the control rods is also reduced to half by using the Gd-Zr hydride burnable poison. The safety analyses also certified that the core safety can be maintained with the same reliability of JSFR Hf hydride and Gd-Zr hydride pellets were fabricated in good manner and their basic features for design use were measured by using the latest devices such as SEM-EDX. In order to reduce the hydrogen transfer through the stainless steel cladding a new technique which shares calorizing

  11. Addition of soluble and insoluble neutron absorbers to the reactor coolant system of TMI-2

    International Nuclear Information System (INIS)

    Hansen, R.F.; Silverman, J.; Queen, S.P.; Ryan, R.F.; Austin, W.E.

    1984-07-01

    The physical and chemical properties of six elements were studied and combined with cost estimates to determine the feasibility of adding them to the TMI-2 reactor coolant to depress k/sub eff/ to less than or equal to 0.95. Both soluble and insoluble forms of the elements B, Cd, Gd, Li, Sm, and Eu were examined. Criticality calculations were performed by Oak Ridge National Laboratory to determine the absorber concentration required to meet the 0.95 k/sub eff/ criterion. The conclusion reached is that all elements with the exception of boron have overriding disadvantages which preclude their use in this reactor. Solubility experiments in the reactor coolant show that boron solubility is the same as that of boron in pure aqueous solutions of sodium hydroxide and boric acid; consequently, solubility is not a limiting factor in reaching the k/sub eff/ criterion. Examination of the effect of pH on sodium requirements and costs for processing to remove radionuclides revealed a sharp dependence; small decreases in pH lead to a large decrease in both sodium requirements and processing costs. Boron addition to meet any contemplated reactor safety requirements can be accomplished with existing equipment; however, this addition must be made with the reactor coolant system filled and pressurized to ensure uniform boron concentration

  12. Solution of the Neutron transport equation in hexagonal geometry using strongly discontinuous nodal schemes

    International Nuclear Information System (INIS)

    Mugica R, C.A.; Valle G, E. del

    2005-01-01

    In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD 5,3 and WD 12,8 (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD 5,3 and WD 12,8 were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD 3 and SD 8 (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)

  13. Conceptual design of a two-phase flow absorber system for neutron flux regulation in a CANDU-PHW-1250 reactor

    International Nuclear Information System (INIS)

    Lepp, R.M.; Moeck, E.O.

    1979-07-01

    A two-phase absorber control (TOPAC) system has been under development at the Chalk River Nuclear Laboratories to meet the need for improved spatial neutron flux control for future CANDU power reactors. Aspects of the conceptual design study presented in this paper include system controllability, in-reactor noise sensitiity, the effect of equipment malfunctions on plant operation, and a comparison with competing systems. The TOPAC system is shown to be a viable alternative to existing and future neutron flux regulating systems based on liquid H 2 O zone compartments. (auth)

  14. Asymmetry of neutrino emission from neutron beta-decay in superdense matter and strong magnetic field

    International Nuclear Information System (INIS)

    Kauts, V.L.; Savochkin, A.M.; Studenikin, A.I.

    2006-01-01

    Exact solution of Dirac equation for charged particles in homogenous magnetic field for computation of probability in presence of degenerate magnetized Fermi-gas consisting of protons, neutrons, and electrons has been used. Angular distribution of antineutrino momenta is investigated. Values of main parameters of medium is realistic for physics of neutron stars. This investigation may be applied for consideration of cooling of neutron stars [ru

  15. Determination of nuclear friction in strongly damped reactions from prescission neutron multiplicities

    International Nuclear Information System (INIS)

    Wilczynski, J.; Siwek-Wilczynska, K.; Wilschut, H.W.

    1996-01-01

    Nonfusion, fissionlike reactions in collisions of four heavy systems (well below the fusion extra-push energy threshold), for which Hinde and co-workers had measured the prescission neutron multiplicities, have been analyzed in terms of the deterministic dynamic model of Feldmeier coupled to a time-dependent statistical cascade calculation. In order to reproduce the measured prescission multiplicities and the observed (nearly symmetric) mass divisions, the energy dissipation must be dramatically changed with regard to the standard one-body dissipation: In the entrance channel, in the process of forming a composite system, the energy dissipation has to be reduced to at least half of the one-body dissipation strength (k s in ≤0.5), and in the exit channel (from a mononucleus shape to scission) it must be increased by a factor ranging for the studied reactions from k s out =4 to k s out =12. These results are compared with the temperature dependence of the friction coefficient, recently deduced by Hofman, Back, and Paul from data on the prescission giant dipole resonance emission in fusion-fission reactions. The combined picture of the temperature dependence of the friction coefficient, for both fusion-fission and nonfusion reactions, may indicate the onset of strong two-body dissipation already at a nuclear temperature of about 2 MeV. copyright 1996 The American Physical Society

  16. {sup 10}B areal density: A novel approach for design and fabrication of B{sub 4}C/6061Al neutron absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuli [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Wenxian, E-mail: wangwenxian@tyut.edu.cn [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, Jun [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Mechanical Engineering, Pennsylvania State University Erie, The Behrend College, Erie, PA 16563 (United States); Chen, Hongsheng [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Peng [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-04-15

    In this paper, a novel approach to evaluate the neutron shielding performance of a boron-containing neutron absorbing material was proposed for the first time through the establishment of a direct relationship between {sup 10}B areal density ({sup 10}BAD) of the material and its neutron absorption ratio. It is found when the {sup 10}BAD of a material is greater than 0.034 g/cm{sup 2}, the material will achieve a good neutron shielding performance. Based on this proposed approach, B{sub 4}C/6061Al composite plates with different B{sub 4}C content (10 wt%, 20 wt%, 30 wt%) were successfully fabricated using vacuum hot pressing followed by hot-extrusion. The characteristics of the B{sub 4}C/Al interface were studied in details using transmission electron microscopy (TEM), and the effects of B{sub 4}C particle content on microstructure and mechanical properties of the Al matrix were investigated. Through current studies, B{sub 4}C/6061Al composite plates possessing good neutron shielding performance and tensile strength are found to be able to be fabricated using either 20 wt% of B{sub 4}C content with a plate thickness of 4.5 mm or 30 wt% B{sub 4}C content with a plate thickness of 3 mm. - Graphical abstract: In this paper, a novel approach to evaluate the neutron shielding ability of a boron-containing neutron shielding material was proposed for the first time through the establishment of a direct relationship between {sup 10}B area density ({sup 10}BAD) of the material and its neutron shielding ratio. - Highlights: •{sup 10}BAD was proposed to evaluate the boron-containing neutron absorber material’s neutron shielding performance. •The direct relationship between the {sup 10}BAD and neutron shielding performance was firstly established. •TEM analysis of the composites reveals that an amorphous layer exists at the Al/B{sub 4}C interface. •Suitable B{sub 4}C contents and thickness for the fabrication of B{sub 4}C/6061A1 NAC plate were given in the

  17. Effects of neutrino emissivity on the cooling of neutron stars in the presence of a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Eduardo Lenho, E-mail: eduardo.coelho@uva.br [Universidade Veiga de Almeida, 108 Ibituruna St., 20271-020, Rio de Janeiro (Brazil); Chiapparini, Marcelo [Instituto de Física, Universidade do Estado do Rio de Janeiro, 524 São Francisco Xavier St., 20271-020, Rio de Janeiro (Brazil); Negreiros, Rodrigo Picanço [Instituto de Física, Universidade Federal Fluminense, Gal. Milton Tavares de Souza Ave., 24210-346, Rio de Janeiro (Brazil)

    2015-12-17

    One of the most interesting kind of neutron stars are the pulsars, which are highly magnetized neutron stars with fields up to 10{sup 14} G at the surface. The strength of magnetic field in the center of a neutron star remains unknown. According to the scalar virial theorem, magnetic field in the core could be as large as 10{sup 18} G. In this work we study the influence of strong magnetic fields on the cooling of neutron stars coming from direct Urca process. Direct Urca process is an extremely efficient mechanism for cooling a neutron star after its formation. The matter is described using a relativistic mean-field model at zero temperature with eight baryons (baryon octet), electrons and muons. We obtain the relative population of each species of particles as function of baryon density for different magnetic fields. We calculate numerically the cooling of neutron stars for a parametrized magnetic field and compare the results for the case without a magnetic field.

  18. Hot deformation behaviors and processing maps of B{sub 4}C/Al6061 neutron absorber composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yu-Li [School of Materials Science and Engineering, Taiyuan University Of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Wen-Xian, E-mail: Wangwenxian@tyut.edu.cn [School of Materials Science and Engineering, Taiyuan University Of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, Jun [School of Materials Science and Engineering, Taiyuan University Of Technology, Taiyuan 030024 (China); Department of Mechanical Engineering, Pennsylvania State University Erie, The Behrend College, Erie, PA 16563 (United States); Chen, Hong-Sheng [School of Materials Science and Engineering, Taiyuan University Of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-02-15

    In this study, the hot deformation behaviors of 30 wt.% B{sub 4}C/Al6061 neutron absorber composites (NACs) have been investigated by conducting isothermal compression tests at temperatures ranging from 653 K to 803 K and strain rates from 0.01 to 10 s{sup −1}. It was found that, during hot compression, the B{sub 4}C/Al6061 NACs exhibited a steady flow characteristic which can be expressed by the Zener-Hollomon parameter as a hyperbolic-sine function of flow stress. High average activation energy (185.62 kJ/mol) of B{sub 4}C/Al6061 NACs is noted in current study owing to the high content of B{sub 4}C particle. The optimum hot working conditions for B{sub 4}C/Al6061 NACs are found to be 760–803 K/0.01–0.05 s{sup −1} based on processing map and microstructure evolution. Typical material instabilities are thought to be attributed to void formation, adiabatic shear bands (ASB), particle debonding, and matrix cracking. Finally, the effect of the plastic deformation zones (PDZs) on the microstructure evolution in this 30 wt.% B{sub 4}C/Al6061 composite is found to be very important. - Highlights: •The hot deformation behavior of the 30 wt.% B{sub 4}C/Al6061 NACs was first analyzed. •The 3D efficiency map and the instability map are developed. •The optimum hot working conditions were identified and validated by SEM and TEM. •The hot deformation schematic diagram of 30 wt.% B{sub 4}C/Al6061 NACs is developed.

  19. Atmospheres and spectra of strongly magnetized neutron stars - II. The effect of vacuum polarization

    Science.gov (United States)

    Ho, Wynn C. G.; Lai, Dong

    2003-01-01

    We study the effect of vacuum polarization on the atmosphere structure and radiation spectra of neutron stars with surface magnetic fields B= 1014-1015 G, as appropriate for magnetars. Vacuum polarization modifies the dielectric property of the medium and gives rise to a resonance feature in the opacity; this feature is narrow and occurs at a photon energy that depends on the plasma density. Vacuum polarization can also induce resonant conversion of photon modes via a mechanism analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism for neutrino oscillation. We construct atmosphere models in radiative equilibrium with an effective temperature of a few ×106 K by solving the full radiative transfer equations for both polarization modes in a fully ionized hydrogen plasma. We discuss the subtleties in treating the vacuum polarization effects in the atmosphere models and present approximate solutions to the radiative transfer problem which bracket the true answer. We show from both analytic considerations and numerical calculations that vacuum polarization produces a broad depression in the X-ray flux at high energies (a few keV <~E<~ a few tens of keV) as compared to models without vacuum polarization; this arises from the density dependence of the vacuum resonance feature and the large density gradient present in the atmosphere. Thus the vacuum polarization effect softens the high-energy tail of the thermal spectrum, although the atmospheric emission is still harder than the blackbody spectrum because of the non-grey opacities. We also show that the depression of continuum flux strongly suppresses the equivalent width of the ion cyclotron line and therefore makes the line more difficult to observe.

  20. Radiolysis of some aqueous solutions of neutron absorbers; Etude des effets de certains absorbeurs de neutrons en solution sur la radiolyse de l'eau

    Energy Technology Data Exchange (ETDEWEB)

    Rozenberg, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-12-15

    The initial yield of molecular hydrogen formed by radiolytic decomposition of water in reactor and {sup 60}Co gamma radiation is decreased by the presence of salts of polyvalent elements possessing only one stable valence, i.e cadmium, zinc, magnesium, gadolinium. This effect is favourable for the use of cadmium and gadolinium as soluble neutron absorber in heavy water reactors. Cations of these salts are not inert toward the primary products of water radiolysis. They have a high degree of reactivity toward the hydrated electron, which is the precursor of molecular hydrogen in neutral or alkaline aqueous media. The value of the rate constant for the reaction between cadmium ion and hydrated electron was shown to be (6.1 {+-} 1.8) 10{sup 10} M{sup -1} s{sup -1}. Boric acid at low concentration has no effect on the radiation chemistry of water. An isotope effect has been found in the radiolysis of heavy water, corresponding to a lowering of initial yield [G{sub 0}(D{sub 2}) < G{sub 0}(H{sub 2})]. additionally it was necessary to determine the influence of organic impurities, remaining after the purification of water, on the mechanism of its radiolytic decomposition. (author) [French] Le rendement initial de la formation d'hydrogene moleculaire dans la decomposition radiolytique de l'eau, sous l'effet du rayonnement des reacteurs nucleaires ou du cobalt 60, est diminue si le solute est un sel d'element polyvalent ne possedant qu'un seul etat stable de valence (cadmium, zinc, magnesium, gadolinium). Cet effet est favorable au choix des elements cadmium et gadolinium pour servir d'absorbeur soluble de neutrons dans un reacteur a eau lourde. Les cations de ces sels ne sont pas inertes vis-a-vis des produits primaires de la radiolyse. Ils ont une affinite notable pour l'electron solvate, precurseur de l'hydrogene moleculaire en milieu neutre ou alcalin. En particulier, la constante de vitesse de la reaction du cadmium ionise avec l'electron solvate a pu etre calculee. Sa

  1. Neutron absorber pellets

    International Nuclear Information System (INIS)

    Radford, K.C.

    1983-01-01

    An annular burnable poison pellet of aluminium oxide - boron carbide (Al 2 O 3 - B 4 C) adapted for positioning in the annular space of concentrically disposed zircaloy tubes. Each tubular pellet is fabricated from Al 2 O 3 powders of moderate sintering activity which serves as a matrix for B 4 C medium size particle distribution. Special pellet moisture controls are incorporated in the pellet for moisture stability and the pellet is sintered in the temperature range of 1630 deg to 1650 deg C. This method of fabrication produces a pellet about 2 inch long with a wall thickness of from 0.020 inch to 0.040 inch. Fabricating each pellet to about 70% theoretical density gives an optimum compromise between fabricability, microstructure, strength and moisture absorption. (author)

  2. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1985-01-01

    This invention provides ceramic processing including sintering schedules which produce annular pellets containing burnable poisons for use in reactor control rods. Typically the powder includes Al 2 O 3 and from 1 to 50 weight percent B 4 C. The Al 2 O 3 and B 4 C, appropriately sized, are milled in a ball mill with liquid to produce a slurry. The slurry is spray dried to produce small spheres of the mixed powder, which is mixed with adequate organic binder and plasticizer and formed into a hollow green body having the shape of a tube. The green body is sintered to produce a ceramic tube from which the pellets are cut. The tube is sintered to size so that the pellets have the required dimensions. It is an important feature of this invention that the powder is formed into the green body by applying isostatic pressure to the powder

  3. TLD-300 detectors for separate measurement of total and gamma absorbed dose distributions of single, multiple, and moving-field neutron treatments

    International Nuclear Information System (INIS)

    Rassow, J.

    1984-01-01

    Fast neutron therapy requirements, because of the poor depth dose characteristic of present therapeutical sources, are at least as complex in treatment plans as photon therapy. The physical part of the treatment planning is very important; however, it is much more complicated than for photons or electrons owing to the need for: Separation of total and gamma absorbed dose distributions (Dsub(T) and Dsub(G)); and more stringent tissue-equivalence conditions of phantoms than in photon therapy. Therefore, methods of clinical dosimetry for the separate determination of total and gamma absorbed dose distributions in irregularly shaped (inhomogeneous) phantoms are needed. A method using TLD-300 (CaF 2 :Tm) detectors is described, which is able to give an approximate solution of the above-mentioned dosimetric requirements. The two independent doses, Dsub(T) and Dsub(G), can be calculated by an on-line computer analysis of the digitalized glow curve of TLD-300 detectors, irradiated with d(14)+Be neutrons of the cyclotron isocentric neutron therapy facility CIRCE in Essen. Results are presented for depth and lateral absorbed dose distributions (Dsub(T) and Dsub(G)) for fixed neutron beams of different field sizes compared with measurements by standard procedures (TE-TE ionization chamber, GM counter) in an A-150 phantom. The TLD-300 results for multiple and moving-field treatments (with and without wedge filters) in a patient simulating irregularly shaped (inhomogeneous) phantoms, are shown together with computer calculations of these dose distributions. The probable causes for some systematic deviations are discussed, which lead to open problems for further investigations owing to features of the detector material and the evaluation method, but mainly to differences in the composition of phantom materials used for the calculations (standard dose distributions) and TLD-300 measurements. (author)

  4. A strongly heated neutron star in the transient z source MAXI J0556-332

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Jeroen; Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139 (United States); Fridriksson, Joel K.; Wijnands, Rudy [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Cackett, Edward M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St., Detroit, MI 48201 (United States); Degenaar, Nathalie [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Linares, Manuel [Instituto de Astrofísica de Canarias, c/ Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Lin, Dacheng, E-mail: jeroen@space.mit.edu [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2014-11-10

    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ∼16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M {sub ☉}. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ∼500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT{sub eff}{sup ∞} = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (∼200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT{sub eff}{sup ∞} = 190-336 eV) and a shorter e-folding time (∼160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.

  5. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields.

    Science.gov (United States)

    Brede, H J; Greif, K-D; Hecker, O; Heeg, P; Heese, J; Jones, D T L; Kluge, H; Schardt, D

    2006-08-07

    Absolute dose measurements with a transportable water calorimeter and ionization chambers were performed at a water depth of 20 mm in four different types of radiation fields, for a collimated (60)Co photon beam, for a collimated neutron beam with a fluence-averaged mean energy of 5.25 MeV, for collimated proton beams with mean energies of 36 MeV and 182 MeV at the measuring position, and for a (12)C ion beam in a scanned mode with an energy per atomic mass of 430 MeV u(-1). The ionization chambers actually used were calibrated in units of air kerma in the photon reference field of the PTB and in units of absorbed dose to water for a Farmer-type chamber at GSI. The absorbed dose to water inferred from calorimetry was compared with the dose derived from ionometry by applying the radiation-field-dependent parameters. For neutrons, the quantities of the ICRU Report 45, for protons the quantities of the ICRU Report 59 and for the (12)C ion beam, the recommended values of the International Atomic Energy Agency (IAEA) protocol (TRS 398) were applied. The mean values of the absolute absorbed dose to water obtained with these two independent methods agreed within the standard uncertainty (k = 1) of 1.8% for calorimetry and of 3.0% for ionometry for all types and energies of the radiation beams used in this comparison.

  6. Determination of nuclear friction in strongly damped reactions from prescission neutron multiplicities

    NARCIS (Netherlands)

    Wilczynski, J; SiwekWilczynska, K; Wilschut, HW

    Nonfusion, fissionlike reactions in collisions of four heavy systems (well below the fusion extra-push energy threshold), Mr which Hinde and co-workers had measured the prescission neutron multiplicities, have been analyzed in terms of the deterministic dynamic model of Feldmeier coupled to a

  7. High pressure sample container for thermal neutron spectroscopy and diffraction on strongly scattering fluids

    International Nuclear Information System (INIS)

    Verkerk, P.; Pruisken, A.M.M.

    1979-01-01

    A description is presented of the construction and performance of a container for thermal neutron scattering on a fluid sample with about 1.5 cm -1 macroscopic cross section (neglecting absorption). The maximum pressure is about 900 bar. The container is made of 5052 aluminium capillary with inner diameter 0.75 mm and wall thickness 0.25 mm; it covers a neutron beam with a cross section of 9 X 2.5 cm 2 . The container has been successfully used in neutron diffraction and time-of-flight experiments on argon-36 at 120 K and several pressures up to 850 bar. It is shown that during these measurements the temperature gradient over the sample as well as the error in the absolute temperature were both less than 0.05 K. Subtraction of the Bragg peaks due to container scattering in diffraction experiments may be dfficult, but seems feasible because of the small amount of aluminium in the neutron beam. Correction for container scattering and multiple scattering in time-of-flight experiments may be difficult only in the case of coherently scattering samples and small scattering angles. (Auth.)

  8. TRACE/VALKIN: a neutronics-thermohydraulics coupled code to analyze strong 3D transients

    Energy Technology Data Exchange (ETDEWEB)

    Rafael Miro; Gumersindo Verdu; Ana Maria Sanchez [Chemical and Nuclear Engineering Department. Polytechnic University of Valencia. Cami de Vera s/n. 46022 Valencia (Spain); Damian Ginestar [Applied Mathematics Department. Polytechnic University of Valencia. Cami de Vera s/n. 46022 Valencia (Spain)

    2005-07-01

    Full text of publication follows: A nuclear reactor simulator consists mainly of two different blocks, which solve the models used for the basic physical phenomena taking place in the reactor. In this way, there is a neutronic module which simulates the neutron balance in the reactor core, and a thermal-hydraulics module, which simulates the heat transfer in the fuel, the heat transfer from the fuel to the water, and the different condensation and evaporation processes taking place in the reactor core and in the condenser systems. TRACE is a two-phase, two-fluid thermal-hydraulic reactor systems analysis code. The TRACE acronym stands for TRAC/RELAP Advanced Computational Engine, reflecting its ability to run both RELAP5 and TRAC legacy input models. It includes a three-dimensional kinetics module called PARCS for performing advanced analysis of coupled core thermal-hydraulic/kinetics problems. TRACE-VALKIN code is a new time domain analysis code to study transients in LWR reactors. This code uses the best estimate code TRACE to give account of the heat transfer and thermal-hydraulic processes, and a 3D neutronics module. This module has two options, the MODKIN option that makes use of a modal method based on the assumption that the neutronic flux can be approximately expanded in terms of the dominant lambda modes associated with a static configuration of the reactor core, and the NOKIN option that uses a one-step backward discretization of the neutron diffusion equation. The lambda modes are obtained using the Implicit Restarted Arnoldi approach or the Jacob-Davidson algorithm. To check the performance of the coupled code TRACE-VALKIN against complex 3D neutronic transients, using the cross-sections tables generated with the translator SIMTAB from SIMULATE to TRACE/VALKIN, the Cofrentes NPP SCRAM-61 transient is simulated. Cofrentes NPP is a General Electric BWR-6 design located in Valencia-land (Spain). It is in operation since 1985 and currently in its fifteenth

  9. Measurements of strongly localized potential well profiles in an inertial electrostatic fusion neutron source

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Takiyama, K.; Koyama, T.

    2001-01-01

    Direct measurements of localized electric fields are made by the laser-induced fluorescence (LIF) method by use of the Stark effects in the central cathode core region of an Inertial-Electrostatic Confinement Fusion (IECF) neutron (proton) source, which is expected for various applications, such as luggage security inspection, non-destructive testing, land mine detector, or positron emitter production for cancer detection, currently producing continuously about 10 7 n/sec D-D neutrons. Since 1967 when the first fusion reaction was successfully proved experimentally in a very compact IECF device, potential well formation due to space charge associated with spherically converging ion beams has been a central key issue to be clarified in the beam-beam colliding fusion, which is the major mechanism of the IECF neutron source. Many experiments, but indirect, were made so far to clarify the potential well, but none of them produced definitive evidence, however. Results by the present LIF method show a double well potential profile with a slight concave for ion beams with relatively larger angular momenta, whereas for ions with smaller angular momenta, potential but much steeper peak to develop. (author)

  10. Strong neutron sources - How to cope with weapon material production capabilities of fusion and spallation neutron sources?

    International Nuclear Information System (INIS)

    Englert, M.; Franceschini, G.; Liebert, W.

    2013-01-01

    In this article we investigate the potential and relevance for weapon material production in future fusion power plants and spallation neutron sources (SNS) and sketch what should be done to strengthen these technologies against a non-peaceful use. It is shown that future commercial fusion reactors may have military implications: first, they provide an easy source of tritium for weapons, an element that does not fall under safeguards and for which diversion from a plant could probably not be detected even if some tritium accountancy is implemented. Secondly, large fusion reactors - even if not designed for fissile material breeding - could easily produce several hundred kg Pu per year with high weapon quality and very low source material requirements. If fusion-only reactors will prevail over fission-fusion hybrids in the commercialization phase of fusion technology, the safeguard challenge will be more of a legal than of a technical nature. In pure fusion reactors (and in most SNS) there should be no nuclear material present at any time by design. The presence of undeclared nuclear material would indicate a military use of the plant. This fact offers a clear-cut detection criterion for a covert use of a declared facility. Another important point is that tritium does not fall under the definition of 'nuclear material', so a pure fusion reactor or a SNS that do not use nuclear materials are not directly falling under any international non-proliferation treaty requirements. Non-proliferation treaties have to be amended to take into account that fact. (A.C.)

  11. Protein dynamics by neutron scattering: The protein dynamical transition and the fragile-to-strong dynamical crossover in hydrated lysozyme

    International Nuclear Information System (INIS)

    Magazù, Salvatore; Migliardo, Federica; Benedetto, Antonio; Vertessy, Beata

    2013-01-01

    Highlights: • The role played by the instrumental energy resolution in neutron scattering is presented. • The effect of natural bioprotectants on protein dynamics is shown. • A connection between the protein dynamical transition and the fragile-to-strong dynamical crossover is formulated. - Abstract: In this work Elastic Incoherent Neutron Scattering (EINS) results on lysozyme water mixtures in absence and in presence of bioprotectant systems are presented. The EINS data have been collected by using the IN13 and the IN10 spectrometers at the Institut Laue-Langevin (ILL, Grenoble, France) allowing to evaluate the temperature behaviour of the mean square displacement and of the relaxation time for the investigated systems. The obtained experimental findings together with theoretical calculations allow to put into evidence the role played by the spectrometer resolution and to clarify the connexion between the registered protein dynamical transition, the system relaxation time, and the instrumental energy resolution

  12. Variation of the critical slab thickness with the degree of strongly anisotropic scattering in one-speed neutron transport theory

    International Nuclear Information System (INIS)

    Yildiz, C.

    1998-01-01

    The critical slab problem is studied in one-speed neutron transport theory using a linearly anisotropic kernel which combines forward and backward scattering. It is shown that, the recently observed non-monotonic variation of the thickness also exists in this strongly anisotropic case. In addition, the influence of the linear anisotropy on the critical thickness is analysed in detail. Numerical analysis for the critical thickness are performed using the spherical harmonics method and results are tabulated for selected illustrative cases as a function of different degrees of anisotropic scattering. Finally, some results are discussed and compared with those already obtained by other methods, the agreement is satisfactory. The spherical harmonic method gives generally accurate results in one dimensional geometry, and it is very suitable for the numerical solution of the neutron transport equation with linearly anisotropic scattering

  13. Neutron physical investigations on the shutdown effect of small boronated absorbing spheres for pebble-bed high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Sgouridis, S.; Schurrer, F.; Muller, H.; Ninaus, W.; Oswald, K.; Neef, R.D.; Schaal, H.

    1987-01-01

    An emergency shutdown system for high-temperature gas-cooled pebble-bed reactors is proposed in addition to the common absorber rod shutdown system. This system is based on the strongly absorbing effect of small boronated graphite spheres (called KLAK), which trickle in case of emergency by gravity from the top reflector into the reactor core. The inner reflector of the Siemens-Argonaut reactor was substituted by an assembly of spherical Arbeitsgemeinschaft Versuchsreaktor fuel elements, and the shutdown effect was examined by installing well-defined KLAK nests inside this assembly. The purpose was to develop and prove a calculational procedure for determining criticality values for assemblies of large fuel spheres and small absorbing spheres

  14. Characterization of 'strong-fragile' behaviour of glass-forming aqueous solutions by neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Branca, C.; Faraone, A.; Galli, G.; Magazu' , S.; Maisano, G.; Migliardo, F. [Dipartimento di Fisica and INFM, Universita' di Messina, PO Box 55, 98166 Messina (Italy)

    2002-07-01

    Neutron-scattering measurements have been performed on trehalose/H{sub 2}O and sucrose/H{sub 2}O mixtures by using the spectrometer MIBEMOL at the Laboratoire Leon Brillouin (LLB, Saclay) as a function of temperature and concentration. In order to characterize the different rigidities of both the disaccharide/H{sub 2}O mixtures, we have evaluated the R{sub 1}(T{sub g}) parameter connected to the 'strong-fragile' classification of the systems according to Angell's nomenclature. (orig.)

  15. Dynamic simulation of a two-phase control absorber for neutron flux regulation in a nuclear reactor

    International Nuclear Information System (INIS)

    Plourde, J.A.; Lepp, R.M.

    1979-08-01

    A dynamic simulation of the two-phase control absorber being proposed for future Canadian nuclear power reactors has been developed at Chalk River Nuclear Laboratories. The model, implemented on a hybrid computer, was developed to study absorber dynamics at different circuit operating conditions and with different circuit configurations. The simulation is modular, with as much correspondence as possible between individual modules and the physical entities. The dynamics of several of the modules are described by partial differential equations, with space and time as independent variables. These are solved via the Continuous Space/Discrete Time technique. The simulation has been validated with data from the Two-Phase Absorber Experimental (TOPAX) Rig installed at the ZED-2 test reactor. (author)

  16. Development and mastering of production of dysprosium hafnate as absorbing material for control rods of promising thermal neutron reactors

    International Nuclear Information System (INIS)

    Zakharov, A.V.; Risovany, V.D.; Muraleva, E.M.; Sokolov, V.F.

    2011-01-01

    The main advantages of dysprosium hafnate as an absorbing material for LWR control rods are the following: -) unlimited radiation resistance; - two absorbing components, Dy and Hf, increasing physical efficiency of the material compared to Dy 2 O 3 -TiO 2 and alloy 80% Ag - 15% In - 5% Cd; -) variability of physical efficiency by changing a composition, but maintaining other performance characteristics of the material; -) high process-ability due to the absence of phase transients and single-phase structure (solid solution); -) production of high density pellets. Lab-scale mastering of dysprosium hafnate pellets production showed a possibility of material synthesis using a solid-phase method, as well as of dysprosium hafnate pellets production by cold pressing and subsequent sintering. Within a whole range of examined compositions (23 mol% - 75 mol% Dy 2 O 3 ), a single-phase material with a highly radiation resistant fluorite-like structure was produced. Experiments on cold pressing and sintering of pellets confirmed a possibility of producing high quality dysprosium hafnate pellets from synthesized powder. A pilot batch of dysprosium hafnate pellets with standard sizes was produced. The standard sizes corresponded to the absorbing elements of the WWER-1000 control rods and met the main requirements to the absorbing element columns. The pilot batch size was approximately 6 kg. Acceptance testing of the pilot batch of dysprosium hafnate pellets was conducted, fulfillment of the requirements of technical conditions was checked and preirradiation properties of the pellets were examined. High quality of the produced pellets was confirmed, thus, demonstrating a real possibility of producing large batches of the dysprosium hafnate pellets. The next step is the production of test absorbing elements and cluster assemblies for the WWER-1000 control rods with their further installation for pilot operation at one of the Russian nuclear power plants

  17. 3-D Deep Penetration Neutron Imaging of Thick Absorbing and Diffusive Objects Using Transport Theory. Final technical report

    International Nuclear Information System (INIS)

    Ragusa, Jean; Bangerth, Wolfgang

    2011-01-01

    here explores the inverse problem of optical tomography applied to heterogeneous domains. The neutral particle transport equation was used as the forward model for how neutral particles stream through and interact within these heterogeneous domains. A constrained optimization technique that uses Newtons method served as the basis of the inverse problem. Optical tomography aims at reconstructing the material properties using (a) illuminating sources and (b) detector readings. However, accurate simulations for radiation transport require that the particle (gamma and/or neutron) energy be appropriate discretize in the multigroup approximation. This, in turns, yields optical tomography problems where the number of unknowns grows (1) about quadratically with respect to the number of energy groups, G, (notably to reconstruct the scattering matrix) and (2) linearly with respect to the number of unknown material regions. As pointed out, a promising approach could rely on algorithms to appropriately select a material type per material zone rather than G2 values. This approach, though promising, still requires further investigation: (a) when switching from cross-section values unknowns to material type indices (discrete integer unknowns), integer programming techniques are needed since derivative information is no longer available; and (b) the issue of selecting the initial material zoning remains. The work reported here proposes an approach to solve the latter item, whereby a material zoning is proposed using one-group or few-groups transport approximations. The capabilities and limitations of the presented method were explored; they are briefly summarized next and later described in fuller details in the Appendices. The major factors that influenced the ability of the optimization method to reconstruct the cross sections of these domains included the locations of the sources used to illuminate the domains, the number of separate experiments used in the reconstruction, the

  18. Assessment of erbium as candidate burnable absorber for future PWR operaning cycles: A neutronic and fabrication study

    International Nuclear Information System (INIS)

    Asou, M.; Dehaudt, P.; Porta, J.

    1995-01-01

    Erbium begins to play a role in the control of PWR core reactivity. Generally speaking, burnable absorbers were only used to establish fresh core equilibrium. In France, since the possibility of extending irradiation cycles by 12 to 18 months, then up to 24 and 30 months, has been envisaged, there is renewed interest in burnable absorbers. The fabrication of PWR pellets has been investigated, providing high density and a good erbium homogeneity. The pellets characteristics were consistent with the specifications of PWR fuel. However, with the present process, the grain size remains small. Studies in progress now shows that erbium is not only a valuable alternative to gadolinium, for long fuel cycles (≥18 months) but also a new fuel concept. (orig.)

  19. Understanding and predicting the behaviour of silver base neutron absorbers under irradiations; Comprehension et prediction du comportement sous irradiation neutronique d`alliages absorbants a base d`argent

    Energy Technology Data Exchange (ETDEWEB)

    Desgranges, C

    1998-12-31

    The effect of neutron irradiation induced transmutations on the swelling of AgInCd (AIC) alloys used as neutron absorber in the control rods of Pressurized Water Reactors has been studied both experimentally and theoretically. Effective atomic volumes have been determined in synthetic AgCdInSn alloys with various compositions and containing fcc and hc phases, representative of irradiated AIC (Sn is a transmutation product). Swelling is shown to result first from the transmutation of Ag into Cd and of In into Sn, both with larger effective volume than the mother atom, and second from grain boundaries precipitation of s still less dense hc phase when solid solubility of transmuted products is exceeded. For both fcc and hc phases, we have determined profiles at the temperatures in the vicinity of the operating temperature. Unusual characteristics of second phase growth at grain boundaries induced by transmutations are identified on a simple binary alloy model: kinetics is controlled by irradiation temperature which scales diffusivities and flux which scales transmutation rates, as well as by the grain size in the underlying matrix. To address the AgInCdSn alloys, a novel technique is proposed to model diffusion in multicomponent alloys. It is based on a linearization of a simple atomistic model. With a single set of parameters, for each phase, our model well reproduces our interdiffusion measurements in quaternary alloys as well as existing interdiffusion experiments in binary alloys. Finally this diffusion model implemented with a moving interface algorithm is used to model the growth of the second phase induced by transmutation in the AIC under irradiation. (authors) 74 refs.

  20. DOSE-Analyzer. A computer program with graphical user interface to analyze absorbed dose inside a body of mouse and human upon external neutron exposure

    International Nuclear Information System (INIS)

    Satoh, Daiki; Takahashi, Fumiaki; Shigemori, Yuji; Sakamoto, Kensaku

    2010-06-01

    DOSE-Analyzer is a computer program to retrieve the dose information from a database and generate a graph through a graphical user interface (GUI). The database is constructed for absorbed dose, fluence, and energy distribution inside a body of mouse and human exposed upon external neutrons, which is calculated by our developed Monte-Carlo simulation method using voxel-based phantom and particle transport code PHITS. The input configurations of irradiation geometry, subject, and energy are set by GUI. The results are tabulated at particle types, i.e. electron, proton, deuteron, triton, and alpha particle, and target organs on a data sheet of Microsoft Office Excel TM . Simple analysis to compare the output values for two subjects is also performed on DOSE-Analyzer. This report is a user manual of DOSE-Analyzer. (author)

  1. Compilation of Existing Neutron Screen Technology

    Directory of Open Access Journals (Sweden)

    N. Chrysanthopoulou

    2014-01-01

    Full Text Available The presence of fast neutron spectra in new reactors is expected to induce a strong impact on the contained materials, including structural materials, nuclear fuels, neutron reflecting materials, and tritium breeding materials. Therefore, introduction of these reactors into operation will require extensive testing of their components, which must be performed under neutronic conditions representative of those expected to prevail inside the reactor cores when in operation. Due to limited availability of fast reactors, testing of future reactor materials will mostly take place in water cooled material test reactors (MTRs by tailoring the neutron spectrum via neutron screens. The latter rely on the utilization of materials capable of absorbing neutrons at specific energy. A large but fragmented experience is available on that topic. In this work a comprehensive compilation of the existing neutron screen technology is attempted, focusing on neutron screens developed in order to locally enhance the fast over thermal neutron flux ratio in a reactor core.

  2. Study of the strongly ionized medium in active galactic n ('Warm Absorber'): multi-wavelength modelling and plasma diagnostics in the X-ray spectral range

    International Nuclear Information System (INIS)

    Porquet, Delphine

    1999-01-01

    The so-called 'Warm Absorber' medium is observed in the central region of Active Galactic Nuclei and particularly in Seyfert l galaxies. lt is mainly characterized by O(VII) and O(VIII) absorption edges detected in the soft X-rays. Its study (modelization and observation) is an important key tool to understand Active Galactic Nuclei. The work presented here consists in modelling the Warm Absorber, and in developing X-ray spectroscopy diagnostics to constrain the physical parameters of any hot medium such as the Warm Absorber. The physical parameters of the Warm Absorber (density, temperature, ionization processes..) are difficult to determine only on the basis of present X-ray data. In particular, the value of the density cannot be derived only from the modelling of the resonance lines and of the soft X-ray absorption edges since there are almost insensitive to the density in the range of values expected for the Warm Absorber. lt is why we have developed diagnostic methods based on a multi-wavelength approach. The modelling is made with two complementary computational codes: PEGAS, and IRIS which takes into account the most accurate atomic data. With these two codes, we have modelled several types of plasma ionisation processes (photoionized plasmas and/or collisional). Results for the Warm Absorber were compared to multi-wavelength observations (mainly the optical iron coronal lines [Fe X] 6375 Angstroms, [Fe XI] 7892 Angstroms, and [Fe XIV] 5303 Angstroms). The proposed method has allowed to show that the Warm Absorber could be responsible of the emission of these lines totally or partially. All models of the Warm Absorber producing coronal line equivalent widths larger than observed were ruled out. This strongly constrains the physical parameters of the Warm Absorber, and particularly its density (n H ≥10 10 cm -3 ). The new generation of X-ray satellites (Chandra/AXAF, XMM...) will produce spectra at high spectral resolution and high sensitivity

  3. Use of borosilicate-glass raschig rings as a neutron absorber in solutions of fissile material-ANSI/ANS-8.5-1996

    International Nuclear Information System (INIS)

    Rothe, R.E.; Ketzlach, N.; Finch, D.R.

    1996-01-01

    American National Standards Institute/American Nuclear Society (ANSI/ANS)-8.5 is one of several standards prepared by the ANS Standards Committee to provide guidance to enhance criticality safety in the handling, storage, and processing of fissionable materials. American National Standard ANSI/ANS-8.5-1996 provides this guidance for one type of boron-loaded glass in one type of geometry (cylindrical rings) for use with fissile solutions. Recorded use of such fixed neutron absorbers for criticality control of fissile solutions dates back to 1958, but some less-well-documented applications were recorded as early as the mid-1940's. The first solid efforts to collect recommendations derived from experience and technology were begun in 1965. Over the next 6 yr additional experiments were performed, and supporting data for the proposed standard were gathered. The first standard on this safety matter was issued in 1971. It was reaffirmed in 1979 with only minor changes and a slight expansion of the coverage. The standard was last revised in 1986

  4. Burnable absorber coated nuclear fuel

    International Nuclear Information System (INIS)

    Chubb, W.; Radford, K.C.; Parks, B.H.

    1984-01-01

    A nuclear fuel body which is at least partially covered by a burnable neutron absorber layer is provided with a hydrophobic overcoat generally covering the burnable absorber layer and bonded directly to it. In a method for providing a UO 2 fuel pellet with a zirconium diboride burnable poison layer, the fuel body is provided with an intermediate niobium layer. (author)

  5. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  6. Mechanical shock absorber

    International Nuclear Information System (INIS)

    Vrillon, Bernard.

    1973-01-01

    The mechanical shock absorber described is made of a constant thickness plate pierced with circular holes regularly distributed in such a manner that for all the directions along which the strain is applied during the shock, the same section of the substance forming the plate is achieved. The shock absorber is made in a metal standing up to extensive deformation before breaking, selected from a group comprising mild steels and austenitic stainless steels. This apparatus is used for handling pots of fast neutron reactor fuel elements [fr

  7. Unexpected alignment patterns in high-j intruder bands evidence for a strong residual neutron proton interaction?

    International Nuclear Information System (INIS)

    Wyss, R.; Johnson, A.; Royal Inst. of Tech., Stockholm

    1990-01-01

    The alignment of h 11/12 protons in νi 13/2 intruder bands in mass A = 130 region is investigated. The lack of a clear h 11/12 band crossing is compared with the alignment pattern of i 13/2 neutrons in πi 13/2 intruder bands in mass A = 180 region. The very smooth rise in angular momentum in the intruder bands is related to a possible neutron proton interaction between the single intruder orbital and the aligned two-quasiparticle configuration. 36 refs., 3 figs

  8. Absorbed dose by a CMOS in radiotherapy

    International Nuclear Information System (INIS)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L. C.

    2011-10-01

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  9. The effect of strongly anisotropic scattering on the critical size of a slab in one-speed neutron transport theory: Modified UN method

    International Nuclear Information System (INIS)

    Öztürk, Hakan

    2014-01-01

    Highlights: • The criticality problem for one-speed neutrons in homogeneous slab is investigated. • A combination of forward–backward and linear anisotropy is used. • The effect of the strongly anisotropic scattering on the critical size is analyzed. - Abstract: The criticality problem for one-speed neutrons in a uniform finite slab is studied in the case of a combination of forward and backward scattering with linearly anisotropic scattering using U N method based on the Chebyshev polynomials of second kind. The effect of the linear anisotropy on the critical thickness of the slab is investigated. The critical slab thicknesses are calculated by using Marshak boundary condition for various values of the anisotropy parameters and they are presented in the tables. In comparison to the results obtained by other methods, the results of this study are in compatible with the former ones

  10. Spectra and absorbed dose by photo-neutrons in a solid water mannequin exposed to a Linac of 15 MV; Espectros y dosis absorbida por fotoneutrones en un maniqui de agua solida expuesta a una Linac de 15 MV

    Energy Technology Data Exchange (ETDEWEB)

    Benites R, J. [Centro Estatal de Cancerologia de Nayarit, Servicio de Seguridad Radiologica, Calz. de la Cruz 118 Sur, 63000 Tepic, Nayarit (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico); Velazquez F, J., E-mail: jlbenitesr@prodigy.net.mx [Universidad Autonoma de Nayarit, Posgrado en Ciencias Biologico Agropecuarias, Carretera Tepic-Compostela Km 9, 63780 Jalisco-Nayarit (Mexico)

    2012-10-15

    Using Monte Carlo methods was modeled a solid water mannequin; according to the ICRU 44 (1989), Tissue substitutes in radiation dosimetry and measurements, of the International Commission on Radiation Units and Measurements; Report 44. This material Wt 1 is made of H (8.1%), C (67.2%), N (2.4%), O (19.9%), Cl (0.1%), Ca (2.3%) and its density is of 1.02 gr/cm{sup 3}. The mannequin was put instead of the patient, inside the treatment room and the spectra and absorbed dose were determined by photo-neutrons exposed to a Linac of 15 MV. (Author)

  11. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  12. SUPER STRONG MAGNETIC FIELDS OF NEUTRON STARS IN BE X-RAY BINARIES ESTIMATED WITH NEW TORQUE AND MAGNETOSPHERE MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chang-Sheng; Zhang, Shuang-Nan [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Li, Xiang-Dong, E-mail: zhangsn@ihep.ac.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210093 (China)

    2015-11-10

    We re-estimate the surface magnetic fields of neutron stars (NSs) in Be X-ray binaries (BeXBs) with different models of torque, improved beyond Klus et al. In particular, a new torque model is applied to three models of magnetosphere radius. Unlike the previous models, the new torque model does not lead to divergent results for any fastness parameter. The inferred surface magnetic fields of these NSs for the two compressed magnetosphere models are much higher than that for the uncompressed magnetosphere model. The new torque model using the compressed magnetosphere radius leads to unique solutions near spin equilibrium in all cases, unlike other models that usually give two branches of solutions. Although our conclusions are still affected by the simplistic assumptions about the magnetosphere radius calculations, we show several groups of possible surface magnetic field values with our new models when the interaction between the magnetosphere and the infalling accretion plasma is considered. The estimated surface magnetic fields for NSs BeXBs in the Large Magellanic Cloud, the Small Magellanic Cloud and the Milk Way are between the quantum critical field and the maximum “virial” value by the spin equilibrium condition.

  13. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  14. Fluence-to-absorbed-dose conversion coefficients for neutron beams from 0.001 eV to 100 GeV calculated for a set of pregnant female and fetus models

    International Nuclear Information System (INIS)

    Taranenko, Valery; Xu, X George

    2008-01-01

    Protection of fetuses against external neutron exposure is an important task. This paper reports a set of absorbed dose conversion coefficients for fetal and maternal organs for external neutron beams using the RPI-P pregnant female models and the MCNPX code. The newly developed pregnant female models represent an adult female with a fetus including its brain and skeleton at the end of each trimester. The organ masses were adjusted to match the reference values within 1%. For the 3 mm cubic voxel size, the models consist of 10-15 million voxels for 35 organs. External monoenergetic neutron beams of six standard configurations (AP, PA, LLAT, RLAT, ROT and ISO) and source energies 0.001 eV-100 GeV were considered. The results are compared with previous data that are based on simplified anatomical models. The differences in dose depend on source geometry, energy and gestation periods: from 20% up to 140% for the whole fetus, and up to 100% for the fetal brain. Anatomical differences are primarily responsible for the discrepancies in the organ doses. For the first time, the dependence of mother organ doses upon anatomical changes during pregnancy was studied. A maximum of 220% increase in dose was observed for the placenta in the nine months model compared to three months, whereas dose to the pancreas, small and large intestines decreases by 60% for the AP source for the same models. Tabulated dose conversion coefficients for the fetus and 27 maternal organs are provided

  15. Nondestructive assay of subassemblies of various spent or fresh fuels by active neutron interrogation

    International Nuclear Information System (INIS)

    Ragan, G.L.; Ricker, C.W.; Chiles, M.M.; Ingersoll, D.T.; Slaughter, G.G.

    1979-01-01

    Recent studies show that subassemblies containing various spent fuels could be assayed rapidly and accurately by a nondestructive assay system using active neutron interrogation and prompt-neutron detection. Subassembly penetration is achieved by 24-keV (Sb--Be) interrogation neutrons; the spent-fuel neutron background is overridden by using strong interrogating sources and prompt-neutron signals, and background gammas are absorbed by lead. Experiments have demonstrated the potential for assaying with better than 5% accuracy, three spent plutonium-fueled subassemblies per hour. Calculations, validated by experiments, predict even better performance for fresh or uranium-fueled subassemblies; several performance estimates are given

  16. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  17. Resonant nuclear reaction 23Mg (p,γ) 24Al in strongly screening magnetized neutron star crust

    Science.gov (United States)

    Liu, Jing-Jing; Liu, Dong-Mei

    2017-12-01

    Based on the relativistic theory of superstrong magnetic fields (SMF), by using three models those of Lai (LD), Fushiki (FGP), and our own (LJ), we investigate the influence of SMFs due to strong electron screening (SES) on the nuclear reaction 23Mg (p,γ) 24Al in magnetars. In a relatively low density environment (e.g., ρ 7102), our reaction rates can be 1.58 times and about three orders of magnitude larger than those of FGP and LD, respectively (B 12, ρ 7 are in units of 1012G, 107g cm-3). The significant increase of strong screening rate can imply that more 23Mg will escape from the Ne-Na cycle due to SES in a SMF. As a consequence, the next reaction, 24Al (β+, ν) 24Mg, will produce more 24Mg to participate in the Mg-Al cycle. Thus, it may lead to synthesis of a large amount of A>20 nuclides in magnetars. Supported by National Natural Science Foundation of China (11565020), the Counterpart Foundation of Sanya (2016PT43), the Special Foundation of Science and Technology Cooperation for Advanced Academy and Regional of Sanya (2016YD28), the Scientific Research Starting Foundation for 515 Talented Project of Hainan Tropical Ocean University (RHDRC201701) and the Natural Science Foundation of Hainan Province (114012)

  18. Instrumental neutron activation analysis as a tool for assessing the solubility of soil mineral matter in strong acid

    International Nuclear Information System (INIS)

    Steinnes, E.; Naeumann, R.

    2004-01-01

    Fifty samples of natural surface soils with high but variable organic matter content were analyzed for 13 elements (Na, Al, K, Sc, V, Cr, Mn, Fe, Co, Zn, Sr, Ba, La) by INAA. The same samples were analyzed for the 'total-recoverable' fraction of these elements by ICP-OES after decomposition with 7M HNO 3 , and the results are compared. The data are discussed separately for two groups of samples with organic matter contents of respectively >80% and Mn (77)>La (60)>Fe = Zn (53)>V (33)>Cr (29)>Sc (25)>Al = Ba (17)>Sr (13)>K (5)>Na (2). The results are in good agreement with corresponding literature data for mineral soils in the case of Al, K, Sc, V, Cr, Fe, and La. In the case of Na, Mn, Co, Zn, Sr, and Ba the present surface soils showed significantly higher 'total-recoverable' fractions than the previously studied subsoils. Possible reasons for these differences are discussed. INAA remains a convenient reference technique for determination of total concentrations with the rapidly increasing use of strong mineral acids in environmental studies of elements. (author)

  19. High-pressure cells for study of condensed matter by diffraction and inelastic neutron scattering at low temperatures and in strong magnetic fields

    Science.gov (United States)

    Sadykov, R. A.; Strassle, Th; Podlesnyak, A.; Keller, L.; Fak, B.; Mesot, J.

    2017-12-01

    We have developed and implemented series of new original clamp high-pressure cells for neutron diffraction and inelastic neutron scattering at low temperatures. The cells design allows one to place them in the standard cryostats or cryomagnets used on neutron sources. Some results obtained for ZnCr2Se4 are demonstrated as an example.

  20. Radio emission from the X-ray pulsar Her X-1: a jet launched by a strong magnetic field neutron star?

    Science.gov (United States)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-01-01

    Her X-1 is an accreting neutron star (NS) in an intermediate-mass X-ray binary. Like low-mass X-ray binaries (LMXBs), it accretes via Roche lobe overflow, but similar to many high-mass X-ray binaries containing a NS; Her X-1 has a strong magnetic field and slow spin. Here, we present the discovery of radio emission from Her X-1 with the Very Large Array. During the radio observation, the central X-ray source was partially obscured by a warped disc. We measure a radio flux density of 38.7 ± 4.8 μJy at 9 GHz but cannot constrain the spectral shape. We discuss possible origins of the radio emission, and conclude that coherent emission, a stellar wind, shocks and a propeller outflow are all unlikely explanations. A jet, as seen in LMXBs, is consistent with the observed radio properties. We consider the implications of the presence of a jet in Her X-1 on jet formation mechanisms and on the launching of jets by NSs with strong magnetic fields.

  1. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  2. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2013-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  3. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  4. Patterns of Lethality and Absorbed Dose Distributions in Mice for Monoenergetic Neutrons; Letalite et Distribution de la Dose Absorbee chez la Souris pour des Neutrons Monoenergetiques; Letal'nost' i raspredelenie pogloshchennoj dozy pri obluchenii myshej monoehnergeticheskimi neitronami; Letalidad y Distribucion de las Dosis Absorbidas por el Raton para Neutrones Monoenergeticos

    Energy Technology Data Exchange (ETDEWEB)

    Frigerio, N. A.; Jordan, D. L. [Argonne National Laboratory, Argonne, IL (United States)

    1964-03-15

    The presence of strong C, N and O resonances in the 100 to 1500 keV region has permitted the study of specific neutron-nuclide interactions as reflected in lethality, RBE maxima etc. Sixty-two {mu}A of resolved Van de Graaf protons, 1882 to 2738 keV, yielded monoenergetic neutrons via Li{sup 7}(p, n)Be{sup 7}. Virgin female CF-1 mice were exposed in celluloid capsules to the mono-energetic neutrons at distances of 3.1 to 11.3 cm from the source at laboratory angles of 0 to 1 radian. Mice were exposed bilaterally while simultaneously in motion through either circular or elliptical orbits normal to the axis of the beam. Thus, control of dose distribution within the animal was possible. Absolute flux measurements were made with U{sup 235} fission counters and by absolute counting of Au wires and foils activated within Cd covers. Patterns of dose absorption were measured with micro-ionization chambers and with a specially developed FeSO{sub 4}-NH{sub 4}SCN dosimeter of high sensitivity. Relative dose measurements were made with Hurst proton-recoil gas counters and B{sup 10} , Li{sup 6} and proton-recoil scintillators. Neutron-energy distributions were measured with specially developed B{sup 10}, He{sup 3} and Li{sup 6} gas and solid-state spectrometers. Gamma contributions were measured with Ne/Ar chamber counters. These measurements showed gamma contribution to be less than 0.8%, and thermal-epithermal less than 0.01%, of the total rad dose. Animals were exposed to median midpoint doses ranging from 180 to 1200 rad at neutron energies from 396 to 658 keV {+-} 50 keV to cover the region of N and O resonances. Levels and patterns of lethality proved to be strong functions of neutron energy and equally strong, but independent, functions of dose distribution. Regardless of dose, energy or distribution, however, all animals surviving five days survived at least 144 days, dying then of the usual long-term effects. This suggests that monoenergetic fast neutrons, free of

  5. Solution of the Neutron transport equation in hexagonal geometry using strongly discontinuous nodal schemes; Solucion de la Ecuacion de transporte de neutrones en geometria hexagonal usando esquemas nodales fuertemente discontinuos

    Energy Technology Data Exchange (ETDEWEB)

    Mugica R, C.A.; Valle G, E. del [IPN, ESFM, Departamento de Ingenieria Nuclear, 07738 Mexico D.F. (Mexico)]. e-mail: cmugica@ipn.mx

    2005-07-01

    In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD{sub 5,3} and WD{sub 12,8} (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD{sub 5,3} and WD{sub 12,8} were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD{sub 3} and SD{sub 8} (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)

  6. Absorber materials in CANDU PHWR's

    International Nuclear Information System (INIS)

    Price, E.G.; Boss, C.R.; Novak, W.Z.; Fong, R.W.L.

    1995-03-01

    In a CANDU reactor the fuel channels are arranged on a square lattice in a calandria filled with heavy water moderator. This arrangement allows five types of tubular neutron absorber devices to be located in a relatively benign environment of low pressure, low temperature heavy water between neighbouring rows of columns of fuel channels. This paper will describe the roles of the devices and outline the design requirements of the absorber component from a reactor physics viewpoint. Nuclear heating and activation problems associated with the different absorbers will be briefly discussed. The design and manufacture of the devices will be also discussed. The control rod absorbers and shut off materials are cadmium and stainless steel. In the tubular arrangement, the cadmium is sandwiched between stainless steel tubes. This type of device has functioned well, but there is now concern over the availability and expense of cadmium which is used in two types of CANDU control devices. There are also concerns about the toxicity of cadmium during the fabrication of the absorbers. These concerns are prompting AECL to study alternatives. To minimize design changes, pure boron-10 alloyed in stainless steel is a favoured option. Work is underway to confirm the suitability of the boron-loaded steel and identify other encapsulated absorber materials for practical application. Because the reactivity devices or their guide tubes span the calandria vessel, the long slender components must be sufficiently rigid to resist operational vibration and also be seismically stable. Some of these components are made of Zircaloy to minimize neutron absorption. Slow irradiation growth and creep can reduce the spring tension, and periodic adjustments to the springs are required. Experience with the control absorber devices has generally been good. In one instance liquid zone controllers had a problem of vibration induced fretting but a designed back-fit resolved the problem. (author). 3 refs., 1

  7. Iterative maximum a posteriori (IMAP-DOAS for retrieval of strongly absorbing trace gases: Model studies for CH4 and CO2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT

    Directory of Open Access Journals (Sweden)

    C. Frankenberg

    2005-01-01

    Full Text Available In the past, differential optical absorption spectroscopy (DOAS has mostly been employed for atmospheric trace gas retrieval in the UV/Vis spectral region. New spectrometers such as SCIAMACHY onboard ENVISAT also provide near infrared channels and thus allow for the detection of greenhouse gases like CH4, CO2, or N2O. However, modifications of the classical DOAS algorithm are necessary to account for the idiosyncrasies of this spectral region, i.e. the temperature and pressure dependence of the high resolution absorption lines. Furthermore, understanding the sensitivity of the measurement of these high resolution, strong absorption lines by means of a non-ideal device, i.e. having finite spectral resolution, is of special importance. This applies not only in the NIR, but can also prove to be an issue for the UV/Vis spectral region. This paper presents a modified iterative maximum a posteriori-DOAS (IMAP-DOAS algorithm based on optimal estimation theory introduced to the remote sensing community by rodgers76. This method directly iterates the vertical column densities of the absorbers of interest until the modeled total optical density fits the measurement. Although the discussion in this paper lays emphasis on satellite retrieval, the basic principles of the algorithm also hold for arbitrary measurement geometries. This new approach is applied to modeled spectra based on a comprehensive set of atmospheric temperature and pressure profiles. This analysis reveals that the sensitivity of measurement strongly depends on the prevailing pressure-height. The IMAP-DOAS algorithm properly accounts for the sensitivity of measurement on pressure due to pressure broadening of the absorption lines. Thus, biases in the retrieved vertical columns that would arise in classical algorithms, are obviated. Here, we analyse and quantify these systematic biases as well as errors due to variations in the temperature and pressure profiles, which is indispensable for

  8. Strong γ-ray emission from neutron unbound states populated in β-decay: Impact on (n,γ) cross-section estimates

    International Nuclear Information System (INIS)

    Tain, J. L.; Guadilla, V.; Valencia, E.; Algora, A.

    2017-01-01

    Total absorption gamma-ray spectroscopy is used to measure accurately the intensity of γ emission from neutron-unbound states populated in the β-decay of delayed-neutron emitters. From the comparison of this intensity with the intensity of neutron emission one can deduce information on the (n,γ) cross section for unstable neutron-rich nuclei of interest in r process abundance calculations. A surprisingly large γ branching was observed for a number of isotopes. Here, the results are compared with Hauser-Feshbach calculations and discussed.

  9. A novel Fe–Cr–Nb matrix composite containing the TiB_2 neutron absorber synthesized by mechanical alloying and final hot isostatic pressing (HIP) in the Ti-tubing

    International Nuclear Information System (INIS)

    Litwa, Przemysław; Perkowski, Krzysztof; Zasada, Dariusz; Kobus, Izabela; Konopka, Gustaw; Czujko, Tomasz; Varin, Robert A.

    2016-01-01

    The Fe–Cr–Ti-Nb elemental powders were mechanically alloyed/ball milled with TiB_2 and a small quantity of Y_2O_3 ceramic to synthesize a novel Fe-based alloy-ceramic powder composite that could be processed by hot isostatic pressing (HIP) for a perceived potential application as a neutron absorber in nuclear reactors. After ball milling for the 30–80 h duration relatively uniform powders with micrometric sizes were produced. With increasing milling time a fraction of TiB_2 particles became covered with the much softer Fe-based alloy which resulted in the formation of a characteristic “core-mantel” structure. For the final HIP-ing process the mechanically alloyed powders were initially uniaxially pressed into rod-shaped compacts and then cold isostatically pressed (CIP-ed). Subsequently, the rod-shaped compacts were placed in the Ti-tubing and subjected to hot isostatic pressing (HIP) at 1150 °C/200 MPa pressure. The HIP-ing process resulted in the formation of the near-Ti and intermediate diffusional layers in the microstructure of HIP-ed samples which formed in accord with the Fe-Ti binary phase diagram. Those layers contain the phases such as α-Ti (HCP), the FeTi intermetallic and their hypo-eutectoid mixtures. In addition, needle-like particles were formed in both layers in accord with the Ti-B binary phase diagram. Nanohardness testing, using a Berkovich type diamond tip, shows that the nanohardness in the intermediate layer areas, corresponding to the composition of the hypo-eutectoid mixture of Ti-FeTi, equals 980.0 (±27.1) HV and correspondingly 1176.9 (±47.6) HV for the FeTi phase. The nanohardness in the sample's center in the areas with the fine mixture of Fe-based alloy and small TiB_2 particles equals 1048.3 (±201.8) HV. The average microhardness of samples HIP-ed from powders milled for 30 and 80 h is 588 HV and 733 HV, respectively. - Highlights: • A Fe–Cr–Nb-based composite with TiB_2 neutron absorbing ceramic was mechanically

  10. strong>A novel oral preparation of human growth hormone (hGH) is absorbed and increases serum IGF-I levels after 7 days administration to GH-deficient adultsstrong>

    DEFF Research Database (Denmark)

    Laursen, Torben; Mindeholm, Linda; Haemmerle, Sibylle

    2007-01-01

    ) as carrier has recently been developed. The aim of this study was to determine if this oral formulation of hGH could be absorbed and be bioactive. Eight GHD men (mean age 50 years) receiving sc hGH therapy were withdrawn from therapy for 7 days and then treated for 7 days orally with tablets of HGH191...

  11. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner [eds.

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  12. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  13. Neutronic density perturbation by probes

    International Nuclear Information System (INIS)

    Vigon, M. A.; Diez, L.

    1956-01-01

    The introduction of absorbent materials of neutrons in diffuser media, produces local disturbances of neutronic density. The disturbance depends especially on the nature and size of the absorbent. Approximated equations which relates te disturbance and the distance to the absorbent in the case of thin disks have been drawn. The experimental comprobation has been carried out in two especial cases. In both cases the experimental results are in agreement with the calculated values from these equations. (Author)

  14. Directional epithermal neutron detector

    International Nuclear Information System (INIS)

    Givens, W.W.; Mills, W.R. Jr.

    1986-01-01

    A borehole tool for epithermal neutron die-away logging of subterranean formations surrounding a borehole is described which consists of: (a) a pulsed source of fast neutrons for irradiating the formations surrounding a borehole, (b) at least one neutron counter for counting epithermal neutrons returning to the borehole from the irradiated formations, (c) a neutron moderating material, (d) an outer thermal neutron shield providing a housing for the counter and the moderating material, (e) an inner thermal neutron shield dividing the housing so as to provide a first compartment bounded by the inner thermal neutron shield and a first portion of the outer thermal neutron shield and a second compartment bounded by the inner thermal neutron shield and a second portion of the outer thermal neutron shield, the counter being positioned within the first compartment and the moderating material being positioned within the second compartment, and (f) means for positioning the borehole tool against one side of the borehole wall and azimuthally orienting the borehole tool such that the first chamber is in juxtaposition with the borehole wall, the formation epithermal neutrons penetrating into the first chamber through the first portion of the outer thermal neutron shield are detected by the neutron counter for die-away measurement, thereby maximizing the directional sensitivty of the neutron counter to formation epithermal neutrons, the borehole fluid epithermal neutrons penetrating into the second chamber through the second chamber through the second portion of the outer thermal neutron shield are largely slowed down and lowered in energy by the moderating material and absorbed by the inner thermal neutron shield before penetrating into the first chamber, thereby minimizing the directional sensitivity of the neutron counter to borehole fluid epithermal neutrons

  15. A novel Fe–Cr–Nb matrix composite containing the TiB{sub 2} neutron absorber synthesized by mechanical alloying and final hot isostatic pressing (HIP) in the Ti-tubing

    Energy Technology Data Exchange (ETDEWEB)

    Litwa, Przemysław [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Perkowski, Krzysztof [Department of Nanotechnology, Institute of Ceramics and Building Materials, Postępu 9, 02-676 Warsaw (Poland); Zasada, Dariusz [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Kobus, Izabela; Konopka, Gustaw [Department of Nanotechnology, Institute of Ceramics and Building Materials, Postępu 9, 02-676 Warsaw (Poland); Czujko, Tomasz [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Varin, Robert A., E-mail: robert.varin@uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave., Waterloo, ON N2L 3G1 (Canada)

    2016-07-25

    The Fe–Cr–Ti-Nb elemental powders were mechanically alloyed/ball milled with TiB{sub 2} and a small quantity of Y{sub 2}O{sub 3} ceramic to synthesize a novel Fe-based alloy-ceramic powder composite that could be processed by hot isostatic pressing (HIP) for a perceived potential application as a neutron absorber in nuclear reactors. After ball milling for the 30–80 h duration relatively uniform powders with micrometric sizes were produced. With increasing milling time a fraction of TiB{sub 2} particles became covered with the much softer Fe-based alloy which resulted in the formation of a characteristic “core-mantel” structure. For the final HIP-ing process the mechanically alloyed powders were initially uniaxially pressed into rod-shaped compacts and then cold isostatically pressed (CIP-ed). Subsequently, the rod-shaped compacts were placed in the Ti-tubing and subjected to hot isostatic pressing (HIP) at 1150 °C/200 MPa pressure. The HIP-ing process resulted in the formation of the near-Ti and intermediate diffusional layers in the microstructure of HIP-ed samples which formed in accord with the Fe-Ti binary phase diagram. Those layers contain the phases such as α-Ti (HCP), the FeTi intermetallic and their hypo-eutectoid mixtures. In addition, needle-like particles were formed in both layers in accord with the Ti-B binary phase diagram. Nanohardness testing, using a Berkovich type diamond tip, shows that the nanohardness in the intermediate layer areas, corresponding to the composition of the hypo-eutectoid mixture of Ti-FeTi, equals 980.0 (±27.1) HV and correspondingly 1176.9 (±47.6) HV for the FeTi phase. The nanohardness in the sample's center in the areas with the fine mixture of Fe-based alloy and small TiB{sub 2} particles equals 1048.3 (±201.8) HV. The average microhardness of samples HIP-ed from powders milled for 30 and 80 h is 588 HV and 733 HV, respectively. - Highlights: • A Fe–Cr–Nb-based composite with TiB{sub 2} neutron

  16. Neutron absorber inserts for 55-gal drums

    International Nuclear Information System (INIS)

    Wilson, R.E.; Kim, Y.S.; Toffer, H.

    2000-01-01

    Transport and temporary storage of more than 200 g of fissile material in 55-gal drums at the Rocky Flats Environmental Technology Site (RFETS) have received significant attention during the cleanup mission. This paper discusses successful applications and results of extensive computer studies. Interim storage and movement of fissile material in excess of standard drum limits (200 g) in a safe configuration have been accomplished using special drum inserts. Such inserts have constrained the contents of a drum to two 4-ell bottles. The content of the bottles was limited to 600 g Pu or U in solution or a total of 1200 g for the entire drum. The inserts were a simple design constructed of stainless steel, forming a vertical cylindrical pipe into which two bottles, one on top of the other, could be centered in the drum. The remaining drum volume was configured to preclude any additional bottle placement external to the vertical cylinder. Such inserts in drums were successfully used in moving high-concentration solution from one building to another for chemical processing. Concern about the knowledge of fissile material concentration in bottles prompted another study for drum inserts. The past practice had been to load up to fourteen 4-ell bottles into 55-gal drums, provided the fissile material concentration was < 6 g fissile/ell, and the total drum contents of 200 g fissile was not exceeded. Only one determination of the solution concentration was needed. An extensive safety analysis concluded that a single measurement of bottle content could not ensure compliance with double-contingency-criterion requirements. A second determination of the bottle contents was required before bottles could be placed in a 55-gal drum. Al alternative to a dual-measurement protocol, which is for bolstering administrative control, was to develop an engineered safety feature that would eliminate expensive tests and administrative decisions. A drum insert design was evaluated that would ensure subcriticality in a drum even if the concentration of fissile material solution exceeded 6 g/ell. The challenge posed to the study was to maximize the number of bottles with a concentration up to 150 g/ell that could be safely placed into a drum. A concentration of 150 g of fissile material per liter is the maximum expected solution concentration in bottles at RFETS. A series of computer analyses were undertaken to design special drum inserts. A design was completed for a 55-gal drum insert to hold up to ten bottles containing 600 g fissile material in solution per bottle or 6 kg per drum. This insert would protect against accidental criticality caused by misloading high-concentration-solution bottles into a drum designated for low-concentration-bottle transport. The drum with the inserts could be used for transport or temporary storage of high-concentration solutions in 4-ell bottles. Conceptually, the drum with its inserts could also be employed for interim storage and transport of fissile material in forms other than solutions in 4-ell bottles

  17. Electrochemical Corrosion Testing of Neutron Absorber Materials

    International Nuclear Information System (INIS)

    Tedd Lister; Ron Mizia; Arnold Erickson; Tammy Trowbridge

    2007-01-01

    This report summarizes the results of crevice-corrosion tests for six alloys in solutions representative of ionic compositions inside the Yucca Mountain waste package should a breech occur. The alloys in these tests are Neutronit A978a (ingot metallurgy, hot rolled), Neutrosorb Plus 304B4 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B5 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B6 Grade Ab (powder metallurgy, hot rolled), Ni-Cr-Mo-Gd alloy2 (ingot metallurgy, hot rolled), and Alloy 22 (ingot metallurgy, hot rolled)

  18. The single-collision thermalization approximation for application to cold neutron moderation problems

    International Nuclear Information System (INIS)

    Ritenour, R.L.

    1989-01-01

    The single collision thermalization (SCT) approximation models the thermalization process by assuming that neutrons attain a thermalized distribution with only a single collision within the moderating material, independent of the neutron's incident energy. The physical intuition on which this approximation is based is that the salient properties of neutron thermalization are accounted for in the first collision, and the effects of subsequent collisions tend to average out statistically. The independence of the neutron incident and outscattering energy leads to variable separability in the scattering kernel and, thus, significant simplification of the neutron thermalization problem. The approximation also addresses detailed balance and neutron conservation concerns. All of the tests performed on the SCT approximation yielded excellent results. The significance of the SCT approximation is that it greatly simplifies thermalization calculations for CNS design. Preliminary investigations with cases involving strong absorbers also indicates that this approximation may have broader applicability, as in the upgrading of the thermalization codes

  19. Evolution of uranium fission-fragment charge yields with neutron number. Strong effect of multi-chance fission on yield asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Peter [Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM (United States); Schmitt, Christelle [CEA/DSM-CNRS/IN2P3, Grand Accelerateur National d' Ions Lourds, Caen (France)

    2017-01-15

    We use the Brownian shape-motion model, with its recent extensions, which allow modeling of odd-even staggering, to calculate the evolution of fission-fragment charge distributions with neutron number for the compound-system sequence {sup 234}U, {sup 236}U, {sup 238}U, and {sup 240}U. We compare to experimental data where available, for neutron- and electromagnetic-induced fission over a compound-nucleus excitation energy range from about 6 to 20 MeV. A notable result of the study is that the evolution of the location of the peak charge yield from Z = 54 in {sup 234}U towards Z = 52 in heavier isotopes, seen in the experimental data, is present also in the calculated yields. We further show that to describe yields at higher compound-nucleus excitation energies, then, already at 20 MeV, it is necessary to take multi-chance fission into account. (orig.)

  20. Elements and process for recording direct image neutron radiographs

    International Nuclear Information System (INIS)

    Poignant, R.V. Jr.; Przybylowicz, E.P.

    1975-01-01

    An element is provided for recording a direct image neutron radiograph, thus eliminating the need for a transfer step (i.e., the use of a transfer screen). The element is capable of holding an electrostatic charge and comprises a first layer for absorbing neutrons and generating a current by dissipation of said electrostatic charge in proportion to the number of neutrons absorbed, and a second layer for conducting the current generated by the absorbed neutrons, said neutron absorbing layer comprising an insulative layer comprising neutron absorbing agents in a concentration of at least 10 17 atoms per cm 3 . An element for enhancing the effect of the neutron beam by utilizing the secondary emanations of neutron absorbing materials is also disclosed along with a process for using the device. (U.S.)

  1. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  2. Neutron activation studies on JET

    International Nuclear Information System (INIS)

    Loughlin, M.J.; Forrest, R.A.; Edwards, J.E.G.

    2001-01-01

    Extensive neutron transport calculations have been performed to determine the neutron spectrum at a number of points throughout the JET torus hall. The model has been bench-marked against a set of foil activation measurements which were activated during an experimental campaign with deuterium/tritium plasmas. The model can predict the neutron activation of the foils on the torus hall walls to within a factor of three for reactions with little sensitivity to thermal neutrons. The use of scandium foils with and without a cadmium thermal neutron absorber was a useful monitor of the thermal neutron flux. Conclusions regarding the usefulness of other foils for benchmarking the calculations are also given

  3. Effective neutron temperature measurements in well moderated reactor by the reactivity coefficient method

    International Nuclear Information System (INIS)

    Raisic, N.; Klinc, T.

    1968-11-01

    The ratio of the reactivity changes of a nuclear reactor produced by successive introduction of two different neutron absorbers in the reactor core, has been measured and information on effective neutron temperature at a particular point obtained. Boron was used as a l/v absorber and cadmium as an absorber sensiti ve to neutron temperature. Effective neutron temperature distribution has been deduced by moving absorbers across the reactor core and observing the corresponding reactivity changes. (author)

  4. A proposal on evaluation method of neutron absorption performance to substitute conventional neutron attenuation test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Je Hyun; Shim, Chang Ho [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Kim, Sung Hyun [Nuclear Fuel Cycle Waste Treatment Research Division, Research Reactor Institute, Kyoto University, Osaka (Japan); Choe, Jung Hun; Cho, In Hak; Park, Hwan Seo [Ionizing Radiation Center, Nuclear Fuel Cycle Waste Treatment Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Hyun Seo; Kim, Jung Ho; Kim, Yoon Ho [Ionizing Radiation Center, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-12-15

    For a verification of newly-developed neutron absorbers, one of guidelines on the qualification and acceptance of neutron absorbers is the neutron attenuation test. However, this approach can cause a problem for the qualifications that it cannot distinguish how the neutron attenuates from materials. In this study, an estimation method of neutron absorption performances for materials is proposed to detect both direct penetration and back-scattering neutrons. For the verification of the proposed method, MCNP simulations with the experimental system designed in this study were pursued using the polyethylene, iron, normal glass and the vitrified form. The results show that it can easily test neutron absorption ability using single absorber model. Also, from simulation results of single absorber and double absorbers model, it is verified that the proposed method can evaluate not only the direct thermal neutrons passing through materials, but also the scattered neutrons reflected to the materials. Therefore, the neutron absorption performances can be accurately estimated using the proposed method comparing with the conventional neutron attenuation test. It is expected that the proposed method can contribute to increase the reliability of the performance of neutron absorbers.

  5. A proposal on evaluation method of neutron absorption performance to substitute conventional neutron attenuation test

    International Nuclear Information System (INIS)

    Kim, Je Hyun; Shim, Chang Ho; Kim, Sung Hyun; Choe, Jung Hun; Cho, In Hak; Park, Hwan Seo; Park, Hyun Seo; Kim, Jung Ho; Kim, Yoon Ho

    2016-01-01

    For a verification of newly-developed neutron absorbers, one of guidelines on the qualification and acceptance of neutron absorbers is the neutron attenuation test. However, this approach can cause a problem for the qualifications that it cannot distinguish how the neutron attenuates from materials. In this study, an estimation method of neutron absorption performances for materials is proposed to detect both direct penetration and back-scattering neutrons. For the verification of the proposed method, MCNP simulations with the experimental system designed in this study were pursued using the polyethylene, iron, normal glass and the vitrified form. The results show that it can easily test neutron absorption ability using single absorber model. Also, from simulation results of single absorber and double absorbers model, it is verified that the proposed method can evaluate not only the direct thermal neutrons passing through materials, but also the scattered neutrons reflected to the materials. Therefore, the neutron absorption performances can be accurately estimated using the proposed method comparing with the conventional neutron attenuation test. It is expected that the proposed method can contribute to increase the reliability of the performance of neutron absorbers

  6. Neutron radiography

    International Nuclear Information System (INIS)

    Alaa eldin, M.T.

    2011-01-01

    The digital processing of the neutron radiography images gives the possibility for data quantification. In this case an exact relation between the measured neutron attenuation and the real macroscopic attenuation coefficient for every point of the sample is required. The assumption that the attenuation of the neutron beam through the sample is exponential is valid only in an ideal case where a monochromatic beam, non scattering sample and non background contribution are assumed. In the real case these conditions are not fulfilled and in dependence on the sample material we have more or less deviation from the exponential attenuation law. Because of the high scattering cross-sections of hydrogen (σs=80.26 barn) for thermal neutrons, the problem with the scattered neutrons at quantitative radiography investigations of hydrogenous materials (as PE, Oil, H 2 O, etc) is not trivial. For these strong scattering materials the neutron beam attenuation is no longer exponential and a dependence of the macroscopic attenuation coefficient on the material thickness and on the distance between the sample and the detector appears. When quantitative radiography (2 D) or tomography investigations (3 D) are performed, some image correction procedures for a description of the scattering effect are required. This thesis presents a method that can be used to enhance the neutron radiography image for objects with high scattering materials like hydrogen, carbon and other light materials. This method uses the Monte Carlo code, MCNP5, to simulate the neutron radiography process and get the flux distribution for each pixel of the image and determine the scattered neutrons distribution that causes the image blur and then subtract it from the initial image to improve its quality.

  7. A 'hybrid' neutron area survey instrument for the determination of neutron dose quantities in the workplace

    International Nuclear Information System (INIS)

    Tanner, R.J.; Jenkins, R.; Lowe, T.; Silvie, J.; Joyce, M.J.; Winsby, A.; Molinos, C.

    2005-01-01

    Full text: Neutron survey instruments are used routinely to determine the dose rates in areas where persons may be occupationally exposed. With a few exceptions, these instruments generally use a proportional counter with a high thermal neutron response located in a moderating sphere of CH 2 . The moderating sphere in such designs contains a thermal neutron absorber to reduce the over-response to thermal and intermediate energy neutrons. However, the commercially available examples of such instruments tend to have strongly energy dependent ambient dose equivalent response characteristics. In particular, they often over-respond in the energy range between 1 eV and 10 keV. A prototype of a novel design has been produced that uses seven detectors located in a moderating sphere of CH 2 , six near the surface to detect thermal and epithermal neutrons, and one in the centre to detect fast neutrons. This has been characterized using a combination of MCNP modelling and measurements to produce an instrument that has improved energy dependence of response characteristics. Additionally, the use of seven detectors offers direction and field hardness information. The design and calibration of the instrument are described and its response in workplaces calculated. (author)

  8. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  9. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  10. Hydraulic shock absorbers

    International Nuclear Information System (INIS)

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  11. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  12. Neutron beams. Tracks analysis, imaging and medicine

    International Nuclear Information System (INIS)

    Pepy, G.

    2006-01-01

    Thermal neutron beams can supply informations about the arrangement of atoms and molecules and about their movement inside the matter. This article treats of the preparation of thermal neutron beams and of the applications that use their penetration and matter activation properties: 1 - thermal neutrons production; 2 - basic properties of thermal neutrons: neutrons scattering, absorbing materials, activating materials, transparent materials, preparation of a neutron beam; 3 - tracks measurement by activation: activation method, measurement of marine pollution by heavy elements, historical evolution of glass composition; 4 - neutron radiography: neutronography, neutronoscopy: viscosity measurement; 5 - cancer treatment. (J.S.)

  13. Determination of absorbed dose in reactors

    International Nuclear Information System (INIS)

    1971-01-01

    There are many areas in the use and operation of research reactors where the absorbed dose and the neutron fluence are required. These include work on the determination of the radiolytic stability of the coolant and moderator and on the determination of radiation damage in structural materials, and reactor experiments involving radiation chemistry and radiation biology. The requirements range from rough estimates of the total heating due to radiation to precise values specifying the contributions of gamma rays, thermal neutrons and fast neutrons. To meet all these requirements a variety of experimental measurements and calculations as well as a knowledge of reactor radiations and their interactions is necessary. Realizing the complexity and importance of this field, its development at widely separated laboratories and the need to bring the experts in this work together, the IAEA has convened three panel meetings. These were: 'In-pile dosimetry', held in July 1964 (published by the Agency as Technical Reports Series No. 46); 'Neutron fluence measurements', in October 1965; and 'In-pile dosimetry', in November 1966. The recommendations of these three panels led the Agency to form a Working Group on Reactor Radiation Measurements and to commission the writing of this book and a book on Neutron Fluence Measurements. The latter was published in May 1970 (Technical Reports Series No. 107). The material on neutron fluence and absorbed dose measurements is widely scattered in reports and reviews. It was considered that it was time for all relevant information to be evaluated and put together in the form of a practical guide that would be valuable both to experienced workers and beginners in the field

  14. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  15. PWR burnable absorber evaluation

    International Nuclear Information System (INIS)

    Cacciapouti, R.J.; Weader, R.J.; Malone, J.P.

    1995-01-01

    The purpose of the study was to evaluate the relative neurotic efficiency and fuel cycle cost benefits of PWR burnable absorbers. Establishment of reference low-leakage equilibrium in-core fuel management plans for 12-, 18- and 24-month cycles. Review of the fuel management impact of the integral fuel burnable absorber (IFBA), erbium and gadolinium. Calculation of the U 3 O 8 , UF 6 , SWU, fuel fabrication, and burnable absorber requirements for the defined fuel management plans. Estimation of fuel cycle costs of each fuel management plan at spot market and long-term market fuel prices. Estimation of the comparative savings of the different burnable absorbers in dollar equivalent per kgU of fabricated fuel. (author)

  16. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  17. Neutron radiography for nondestructive testing

    International Nuclear Information System (INIS)

    John, J.

    1979-01-01

    Neutron radiography is similar to X-ray inspection in that both depend upon use of radiation that penetrates some materials and is absorbed by others to provide a contrast image of conditions not readily available for visual inspection. X-rays are absorbed by dense materials, such as metals, whereas neutrons readily penetrate metals, but are absorbed by materials containing hydrogen. The neutron radiography has been successfully applied to a number of inspection situations. These include the inspection of explosives, advanced composites, adhesively bonded structures and a number of aircraft engine components. With the availability of Californium-252, it has become feasible to construct mobile neutron radiography systems suitable for field use. Such systems have been used for in-situ inspection of flight line aircraft, particularly to locate and measure hidden corrosion

  18. Multidisk neutron velocity selectors

    International Nuclear Information System (INIS)

    Hammouda, B.

    1992-01-01

    Helical multidisk velocity selectors used for neutron scattering applications have been analyzed and tested experimentally. Design and performance considerations are discussed along with simple explanation of the basic concept. A simple progression is used for the inter-disk spacing in the 'Rosta' design. Ray tracing computer investigations are presented in order to assess the 'coverage' (how many absorbing layers are stacked along the path of 'wrong' wavelength neutrons) and the relative number of neutrons absorbed in each disk (and therefore the relative amount of gamma radiation emitted from each disk). We discuss whether a multidisk velocity selector can be operated in the 'reverse' configuration (i.e. the selector is turned by 180 0 around a vertical axis with the rotor spun in the reverse direction). Experimental tests and calibration of a multidisk selector are reported together with evidence that a multidisk selector can be operated in the 'reverse' configuration. (orig.)

  19. Dispersion-Type Absorbing Materials for the Control Organs of Thermal Reactors; Absorbants du Type a Dispersion pour les Organes de Commande des Reacteurs a Neutrons Thermiques; Pogloshchayushchie materialy dispersionnogo tipa dlya organov regulirovaniya teplovykh reaktorov; Absorbentes de Tipo Dispersion para los Organos de Mando de los Reactores Termicos

    Energy Technology Data Exchange (ETDEWEB)

    Nosov, V. I.; Ponomarjov-Stepnoj, H. H.; Portnoj, K. I.; Savel' ev, E. G.

    1964-06-15

    The paper gives the results of a study of the physical characteristics of NIMONIC-type absorbing alloys with oxides of rare-earth elements dispersed in them (gadolinium, samarium, europium etc. ). The paper discusses changes in absorbing capacity in relation to the composition of the material, describes the mechanical and thermophysical properties of the absorbing materials as a function of the concentration of absorber introduced into the alloy and, finally, gives the results of a study of the effect of radiation on the properties of the materials. It is shown that absorbing alloys with oxides of rare-earth elements dispersed in the metallic matrix possess considerable absorbing capacity for relatively small amounts of absorber in the alloy (5 to 10%). When oxides of rare-earth elements are added, NIMONIC-type alloys have relatively high resistance and thermophysical characteristics (o{sub B}, E, {lambda}) at high temperatures for absorber concentrations up to about 10%. Dispersion materials of this type have satisfactory radiation stability in a radiation field of about 3 x 10{sup 20}n/cm{sup 2} at high temperature. (author) [French] Les auteurs exposent les resultats de recherches sur les caracteristiques physiques des alliages absorbants du type nimonik, contenant des terres rares dispersees dans leur masse (gadolinium, samarium, europium, etc.). Ils examinent les variations de la capacite d'absorption selon la composition du materiau; on donne des indications sur les caracteristiques mecaniques et thermophysiques des absorbants en fonction de la concentration de Tabsorbeur incorpore dans l 'alliage ainsi que les resultats d 'une etude relative a l 'influence de l'irradiation sur ces caracteristiques. Ils montrent que les alliages absorbants contenant des oxydes de terres rares disperses dans une matrice metallique ont une capacite d'absorption importante pour une teneur de l'alliage relativement faible en'matieres absorbantes (environ 5 a 10%). Les alliages du

  20. Fundamental of neutron radiography and the present of neutron radiography in Japan

    International Nuclear Information System (INIS)

    Sekita, Junichiro

    1988-01-01

    Neutron radiography refers to the application of transmitted neutrons to analysis. In general, thermal neutron is used for neutron radiography. Thermal neutron is easily absorbed by light atoms, including hydrogen, boron and lithium, while it is not easily absorbed by such heavy atoms as tungsten, lead and uranium, permitting detection of impurities in heavy metals. Other neutrons than thermal neutron can also be applied. Cold neutron is produced from fast neutron using a moderator to reduce its energy down to below that of thermal neutron. Cold neutron is usefull for analysis of thick material. Epithermal neutron can induce resonance characteristic of each substance. With a relatively small reaction area, fast neutron permits observation of thick samples. Being electrically neutral, neutrons are difficult to detect by direct means. Thus a substance that releases charged particles is put in the path of neutrons for indirect measurement. X-ray film combined with converter screen for conversion of neutrons to charge particles is placed behind the sample. Photographing is carried out by a procedure similar to X-ray photography. Major institues and laboratories in Japan provided with neutron radiography facilities are listed. (Nogami, K.)

  1. Neutron response study

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Fix, J.J.; Thorson, M.R.; Nichols, L.L.

    1981-01-01

    Neutron response of the albedo type dosimeter is strongly dependent on the energy of the incident neutrons as well as the moderating material on the backside of the dosimeter. This study characterizes the response of the Hanford dosimeter for a variety of neutron energies for both a water and Rando phantom (a simulated human body consisting of an actual human skeleton with plastic for body muscles and certain organs). The Hanford dosimeter response to neutrons of different energies is typical of albedo type dosimeters. An approximate two orders of magnitude difference in response is observed between neutron energies of 100 keV and 10 MeV. Methods were described to compensate for the difference in dosimeter response between a laboratory neutron spectrum and the different spectra encountered at various facilities in the field. Generally, substantial field support is necessary for accurate neutron dosimetry

  2. System and apparatus for neutron radiography

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1991-01-01

    This patent describes a neutron radiography apparatus. It comprises an imaging plane; a neutron moderator having a cavity defining a convergent collimator, the cavity having a base and converging walls of neutron moderating material terminating at an aperture; a divergent collimator coaxially joined to the cavity at the aperture, the divergent collimator having diverging walls of radiation- absorbing material extending from the aperture to an expanded distal opening for irradiating the imaging plane; sources of neutrons disposed symmetrically about the base of the cavity; a neutron moderating material disposed for maximum neutron thermalization between the sources and the base of the cavity; and means for substantially shielding the plane from electromagnetic energy

  3. Spectral distribution measurements of neutrons in paraffin borax mixtures

    International Nuclear Information System (INIS)

    El-Khatib, A.M.; Gaber, M.; Abou El-Khier, M.A.

    1987-01-01

    Neutron fluxes from a compact D-T neutron source has been measured in paraffin-borax mixtures by using activation foil detectors with successive threshold energies. The absorbed doses, backscattering coefficients and build-up factors were determined as well. The contribution of thermal and intermediate neutron dose is much lower, compared to that of fast neutrons. Among the used mediums, paraffin loaded with 4% borax concentration was found to be the best absorbing medium against neutrons at near depths within the blocks, while at a depth around 12 cm the neutron absorption (or scattering) is independent on the type of the used medium. (author)

  4. Low Absorbance Measurements

    Science.gov (United States)

    Harris, T. D.; Williams, A. M.

    1983-10-01

    The application of low absorption measurements to dilute solute determination requires specific instrumental characteristics. The use of laser intracavity absorption and thermal lens calorimetry to measure concentration is shown. The specific operating parameters that determine sensitivity are delineated along with the limits different measurement strategies impose. Finally areas of improvement in components that would result in improve sensitivity, accuracy, and reliability are discussed. During the past decade, a large number of methods have been developed for measuring the light absorbed by transparent materials. These include measurements on gases, liquids, and solids. The activity has been prompted by a variety of applications and a similar variety of disciplines. In Table 1 some representative examples of these methods is shown along with their published detection limits.1 It is clear that extraordinarily small absorbances can be measured. Most of the methods can be conveniently divided into two groups. These groups are those that measure the transmission of the sample and those that measure the light absorbed by the sample. The light absorbed methods are calorimetric in character. The advantages and disadvantages of each method varies depending on the principal application for which they were developed. The most prevalent motivation has been to characterize the bulk optical properties of transparent materials. Two examples are the development of extremely transparent glasses for use as fiber optic materials and the development of substrates for high power laser operation.

  5. Neutron dosimetry in biology

    International Nuclear Information System (INIS)

    Sigurbjoernsson, B.; Smith, H.H.; Gustafsson, A.

    1965-01-01

    To study adequately the biological effects of different energy neutrons it is necessary to have high-intensity sources which are not contaminated by other radiations, the most serious of which are gamma rays. An effective dosimetry must provide an accurate measure of the absorbed dose, in biological materials, of each type of radiation at any reactor facility involved in radiobiological research. A standardized biological dosimetry, in addition to physical and chemical methods, may be desirable. The ideal data needed to achieve a fully documented dosimetry has been compiled by H. Glubrecht: (1) Energy spectrum and intensity of neutrons; (2) Angular distribution of neutrons on the whole surface of the irradiated object; (3) Additional undesired radiation accompanying the neutrons; (4) Physical state and chemical composition of the irradiated object. It is not sufficient to note only an integral dose value (e.g. in 'rad') as the biological effect depends on the above data

  6. Neutron sources and their characteristics

    International Nuclear Information System (INIS)

    McCall, R.C.; Swanson, W.P.

    1979-03-01

    The significant sources of photoneutrons within a linear-accelerator treatment head are identified and absolute estimates of neutron production per treatment dose are given for typical components. It is found that the high-Z materials within the treatment head do not significantly alter the neutron fluence but do substantially reduce the average energy of the transmitted spectrum. Reflection of neutrons from the concrete treatment room contribute to the neutron fluence, but not substantially to the patient integral dose, because of a further reduction in average energy. The ratio of maximum fluence to the treatment dose at the same distance is given as a function of electron energy. This ratio rises with energy to an almost constant value of 2.1 x 10 5 neutrons cm -2 rad -1 at electron energies above about 25 MeV. Measured data obtained at a variety of accelerator installations are presented and compared with these calculations. Reasons for apparent deviations are suggested. Absolute depth-dose and depth-dose-equivalent distributions for realistic neutron spectra that occur at therapy installations are calculated, and a rapid falloff with depth is found. The ratio of neutron integral absorbed dose to leakage photon absorbed dose is estimated to be 0.04 and 0.2 for 14 to 25 MeV incident electron energy, respectively. Possible reasons are given for lesser neutron production from betatrons than from linear accelerators. Possible ways in which neutron production can be reduced are discussed

  7. "m=1" coatings for neutron guides

    DEFF Research Database (Denmark)

    Cooper-Jensen, C.P.; Vorobiev, A.; Klinkby, Esben Bryndt

    2014-01-01

    A substantial part of the price for a neutron guide is the shielding needed because of the gamma ray produced when neutrons are absorbed. This absorption occurs in the coating and the substrate of the neutron guides. Traditional m=1 coatings have been made of Ni and if reflectivity over...... the critical angle of Ni is needed one has used Ni58 or Ni/Ti multilayer coatings. Ni has one of the highest neutron scattering density but it also has a fairly high absorption cross section for cold and thermal neutrons and when a neutron is absorbed it emits a lot of gamma rays, some with energies above 9 Me...... of diamond coatings to show the potential for using these coatings in neutron guides....

  8. Neutron personal dosimetry in criticality accidents

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Mauricio, C.L.P.

    1996-01-01

    In the present work an innovating method is proposed to estimate the absorbed dose received by individuals irradiated with neutrons in an accident, even in the case that the victim is not using any kind of neutron dosemeter. The method combines direct measurements of 24 Na and 32 P activated in the human body. The calculation method was developed using data taken from previously published papers and experimental measurements. Other irradiations results in different neutron spectra prove the validity of the method here proposed. Using a whole body counter to measure 24 Na activity, it is possible to evaluate neutron absorbed doses in the order of 140 μ Gy of very soft (thermal) spectra. For fast neutron fields, the lower limit for neutron dose detection increases, but the present method continues to be very useful in accidents, with higher neutron doses. (author)

  9. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  10. Neutron--neutron logging

    International Nuclear Information System (INIS)

    Allen, L.S.

    1977-01-01

    A borehole logging tool includes a steady-state source of fast neutrons, two epithermal neutron detectors, and two thermal neutron detectors. A count rate meter is connected to each neutron detector. A first ratio detector provides an indication of the porosity of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two epithermal neutron detectors. A second ratio detector provides an indication of both porosity and macroscopic absorption cross section of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two thermal neutron detectors. By comparing the signals of the two ratio detectors, oil bearing zones and salt water bearing zones within the formation being logged can be distinguished and the amount of oil saturation can be determined. 6 claims, 2 figures

  11. Nuclear data for neutron therapy: Status and future needs

    International Nuclear Information System (INIS)

    1997-12-01

    This report discusses the status and success of neutron therapy and some of the problems in clinical neutron dosimetry. Existing neutron interaction data, in particular results of kerma factor measurements and data evaluations, are reviewed. Nuclear data relevant for neutron source reactions, collimation, and shielding are also discussed. Finally, physical aspects of the variation of biological effectiveness of neutrons with neutron energy (radiation quality) are set out. Exchange of information between neutron therapy centers is essential, since only clinical experience can determine the optimal absorbed dose, fractionation, target volume, and clinical indications/contra-indications for neutron therapy

  12. Nuclear data for neutron therapy: Status and future needs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report discusses the status and success of neutron therapy and some of the problems in clinical neutron dosimetry. Existing neutron interaction data, in particular results of kerma factor measurements and data evaluations, are reviewed. Nuclear data relevant for neutron source reactions, collimation, and shielding are also discussed. Finally, physical aspects of the variation of biological effectiveness of neutrons with neutron energy (radiation quality) are set out. Exchange of information between neutron therapy centers is essential, since only clinical experience can determine the optimal absorbed dose, fractionation, target volume, and clinical indications/contra-indications for neutron therapy. Refs, 44 figs, 19 tabs.

  13. Neutron protection material and neutron protection devices made of such material

    International Nuclear Information System (INIS)

    Ries, W.

    1984-01-01

    This is concerned with a neutron protection material made of thermoplastic or thermosetting plastic from high molecule hydrocarbon compounds with particularly high hydrogen and carbon contents as braking or shielding material (moderator) for fast neutrons. The plastic can contain boron for absorbing low energy neutrons. The material is used to manufacture foil, plates, pipes, shielding walls, components, bodies for radiation protection equipment, devices and plant and for neutron protection clothes. (orig./HP) [de

  14. Adjustable Shock Absorbers

    OpenAIRE

    Adamiec, Radek

    2012-01-01

    Bakalářská práce obsahuje přehled používaných tlumičů osobních automobilů, závodních automobilů a motocyklů. Jsou zde popsány systémy t lumením, konstrukce tlumičů a vidlic používaných u motocyklů. Dále je zde přehled prvků používaných u podvozků automobilů. This bachelor´s thesis contains the survey of the shock absorbers of passenger cars, racing cars and motorcycles. Are described damping systems, the design used shock absorbers and forks for motorcycles. Then there is the list of the e...

  15. <strong>Mini-project>

    DEFF Research Database (Denmark)

    Katajainen, Jyrki

    2008-01-01

    In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...

  16. Kinetic energy absorbing pad

    International Nuclear Information System (INIS)

    Bricmont, R.J.; Hamilton, P.A.; Ming Long Ting, R.

    1981-01-01

    Reactors, fuel processing plants etc incorporate pipes and conduits for fluids under high pressure. Fractures, particularly adjacent to conduit elbows, produce a jet of liquid which whips the broken conduit at an extremely high velocity. An enormous impact load would be applied to any stationary object in the conduit's path. The design of cellular, corrugated metal impact pads to absorb the kinetic energy of the high velocity conduits is given. (U.K.)

  17. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  18. Neutron detector assembly

    International Nuclear Information System (INIS)

    Hanai, Koi; Shirayama, Shinpei.

    1978-01-01

    Purpose: To prevent gamma-ray from leaking externally passing through the inside of a neutron detector assembly. Constitution: In a neutron detector assembly having a protection pipe formed with an enlarged diameter portion which serves also as a spacer, partition plates with predetermined width are disposed at the upper and the lower portions in this expanded portion. A lot of metal particles are filled into spaces formed by the partition plates. In such a structure, the metal particles well-absorb the gamma-rays from above and convert them into heat to provide shielding for the gamma-rays. (Horiuchi, T.)

  19. Fast neutron dosimetry

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1993-01-01

    Research concentrated on three major areas during the last twelve months: (1) investigations of energy fluence and absorbed dose measurements using crystalline and hot pressed TLD materials exposes to ultrasoft beams of photons, (2) fast neutron kerma factor measurements for several important elements as well as NE-213 scintillation material response function determinations at the intense ''white'' source available at the WNR facility at LAMPF, and (3) kerma factor ratio determinations for carbon and oxygen to A-150 tissue equivalent plastic at the clinical fast neutron radiation facility at Harper Hospital, Detroit, MI. Progress summary reports of these efforts are given in this report

  20. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2005-01-01

    Full text: Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions. (authors)

  1. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2006-01-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions

  2. Strong interactions

    International Nuclear Information System (INIS)

    Froissart, Marcel

    1976-01-01

    Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr

  3. Shock absorber in Ignalina NPP

    International Nuclear Information System (INIS)

    Bulavas, A.; Muralis, J.

    1996-09-01

    Theoretical calculation and experimental analysis of models of shock absorber in Ignalina NPP is presented. The results obtained from the investigation with model of shock absorber coincide with the theoretical calculation. (author). 2 figs., 3 refs

  4. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  5. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  6. Self-shielding coefficient and thermal flux depression factor of voluminous sample in neutron activation analysis

    International Nuclear Information System (INIS)

    Noorddin Ibrahim; Rosnie Akang

    2009-01-01

    Full text: One of the major problems encountered during the irradiation of large inhomogeneous samples in performing activation analysis using neutron is the perturbation of the neutron field due to absorption and scattering of neutron within the sample as well as along the neutron guide in the case of prompt gamma activation analysis. The magnitude of this perturbation shown by self-shielding coefficient and flux depression depend on several factors including the average neutron energy, the size and shape of the sample, as well as the macroscopic absorption cross section of the sample. In this study, we use Monte Carlo N-Particle codes to simulate the variation of neutron self-shielding coefficient and thermal flux depression factor as a function of the macroscopic thermal absorption cross section. The simulation works was carried out using the high performance computing facility available at UTM while the experimental work was performed at the tangential beam port of Reactor TRIGA PUSPATI, Malaysia Nuclear Agency. The neutron flux measured along the beam port is found to be in good agreement with the simulated data. Our simulation results also reveal that total flux perturbation factor decreases as the value of absorption increases. This factor is close to unity for low absorbing sample and tends towards zero for strong absorber. In addition, sample with long mean chord length produces smaller flux perturbation than the shorter mean chord length. When comparing both the graphs of self-shielding factor and total disturbance, we can conclude that the total disturbance of the thermal neutron flux on the large samples is dominated by the self-shielding effect. (Author)

  7. Feynman Integrals with Absorbing Boundaries

    OpenAIRE

    Marchewka, A.; Schuss, Z.

    1997-01-01

    We propose a formulation of an absorbing boundary for a quantum particle. The formulation is based on a Feynman-type integral over trajectories that are confined to the non-absorbing region. Trajectories that reach the absorbing wall are discounted from the population of the surviving trajectories with a certain weighting factor. Under the assumption that absorbed trajectories do not interfere with the surviving trajectories, we obtain a time dependent absorption law. Two examples are worked ...

  8. Ultracold neutrons

    International Nuclear Information System (INIS)

    Steenstrup, S.

    Briefly surveys recent developments in research work with ultracold neutrons (neutrons of very low velocity, up to 10 m/s at up to 10 -7 eV and 10 -3 K). Slow neutrons can be detected in an ionisation chamber filled with B 10 F 3 . Very slow neutrons can be used for investigations into the dipole moment of neutrons. Neutrons of large wave length have properties similar to those of light. The limit angle for total reflection is governed by the wave length and by the material. Total reflection can be used to filter ultracold neutrons out of the moderator material of a reactor. Total reflection can also be used to store ultracold neutrons but certain problems with storage have not yet been clarified. Slow neutrons can be made to lose speed in a neutron turbine, and come out as ultracold neutrons. A beam of ultracold neutrons could be used in a neutron microscope. (J.S.)

  9. Solar radiation absorbing material

    Science.gov (United States)

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  10. Calculation of neutron albedo from laminated semiinfinite media

    International Nuclear Information System (INIS)

    Dobrynin, Yu.L.; Mikaehlyan, L.A.; Skorokhvatov, M.D.

    1978-01-01

    A version of a laminated neutron detector with increased efficiency for recording external neutron fluxes by gamma-quanta from neutron capture is considered. The detector comprises two zones. The first zone constitutes an absorbent layer (europium oxide) 0.5 cm thick, and the second one is a moderator (water with gadolinium salt at the concentration of 0.8 g/l). Mono-energetic neutrons fall normally onto the detector surface. Neutron energy varied from 0.1 eV to MeV. The results of calculations of the integral numerical current albedo (INCA) of neutrons by the Monte Carlo method are presented. The INCA dependences on neutron energy are obtained for one moderator with different gadolinium contents; for the absorbent with the moderator containing and lacking the gadolinium. The resultant dependences are indicative of preferential capture of neutrons by the gadolinium in the moderator, this being more desirable for recording neutrons in the (n, γ) reaction

  11. Survey on neutron pre-emission at the fusion of 11 Li halo nuclei with light targets

    International Nuclear Information System (INIS)

    Petrascu, M.

    1999-01-01

    The neutron halo nuclei characterized by very large matter radii, small separation energy and small internal momentum of the valence neutrons, were discovered by Tanihata and co-workers. Until now, the halo nuclei were investigated mostly by elastic, inelastic scattering and breakup processes. It was recently predicted, that due to the very large dimension of 11 Li, one may expect, that in a fusion experiment on a light target, the valence neutrons will not be absorbed together with the 9 Li core, but will be emitted in the early stage of the reaction process. The first experiment aiming to check this expectation, was performed at the RIKEN-RIPS facility. In the experimental setup, the MUSIC chamber, achieved in the frame of IFIN-HH - RIKEN cooperation, played an important role. The obtained results confirm the prediction, indicating to a novel pre-emission effect (near 40 %, for one or two neutrons). The pre-emission of neutron pairs was investigated by time-position coincidences. It is considered that the pre-emission of neutron pairs is responsible for the experimentally observed strong neutron focusing effect. An experiment aiming to a large number of n-n coincidences, based on a new neutron array detector built in the frame of IFIN-HH - RIKEN cooperation, is in preparation. A model for the pre-emission probabilities calculations has been also worked out. Good agreement with the experimental data has been obtained. (author)

  12. Basic research for developing the quantitative neutron radiography

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Ikeda, Yasushi; Ohkubo, Kohei; Tasaka, Kanji; Yoneda, Kenji; Fujine, Shigenori.

    1992-01-01

    This investigation concerns the basic research and development on quantitative neutron radiography by using a honeycomb collimator which reduces the effect due to scattered neutrons in objective matter. On the observation of the hydrogenate materials such as metal hydrides, water and hydrocarbons by neutron radiography, scattered neutrons from these objectives make the quantitativeness of the neutron radiographic image lower grade. In order to improve the quantitativeness of the image, a honeycomb collimator, which is a honeycomb structure of neutron absorbing material, was introduced to the conventional neutron radiography system. By setting the neutron-absorbing honeycomb collimator between objective and imaging system, neutrons scattered in the objective were absorbed by the honeycomb material and attenuated before coming to the imaging system, but neutrons which were transmitted the objective sample without any interaction reached the imaging system and formed the image of the sample. As the image by purely transmitted neutrons is intrinsic due to the neutronic character of the sample, the image data give the quantitative information. In the present experiment, aluminum honeycomb which was coated with boron nitride was prepared and used in order to image the standard stepwise samples for the evaluation of the quantitative grade of the newly proposed neutron radiography method. From the comparison between macroscopic total cross section and the attenuation coefficient of the thermal neutron for aluminum, copper and hydrocarbons, it was confirmed that they were fairly consistent each other. It can be concluded that the newly proposed neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improves remarkably the quantitativeness of the neutron radiography technique. (author)

  13. Neutrons in biology

    International Nuclear Information System (INIS)

    Funahashi, Satoru; Niimura, Nobuo.

    1993-01-01

    The start of JRR-3M in 1990 was a great epoch to the neutron scattering research in Japan. Abundant neutron beam generated by the JRR-3M made it possible to widen the research field of neutron scattering in Japan. In the early days of neutron scattering, biological materials were too difficult object to be studied by neutrons not only because of their complexity but also because of the strong incoherent scattering by hydrogen. However, the remarkable development of the recent neutron scattering and its related sciences, as well as the availability of higher flux, has made the biological materials one of the most attractive subjects to be studied by neutrons. In early September 1992, an intensive workshop titled 'Neutrons in Biology' was held in Hitachi City by making use of the opportunity of the 4th International Conference on Biophysics and Synchrotron Radiation (BSR92) held in Tsukuba. The workshop was organized by volunteers who are eager to develop the researches in this field in Japan. Numbers of outstanding neutron scattering biologists from U.S., Europe and Asian countries met together and enthusiastic discussions were held all day long. The editors believe that the presentations at the workshop were so invaluable that it is absolutely adequate to put them on record as an issue of JAERI-M and to make them available for scientists to refer to in order to further promote the research in the future. (author)

  14. Radiation and shielding around beam absorbers

    International Nuclear Information System (INIS)

    Hurkmans, A.; Maas, R.

    1978-12-01

    During operational conditions it is anticipated that a fair amount of the total available beam power is dumped in either the slit system on one of the beam dumps. Thses beam absorbers therefore become strong radioactive sources. The radiation level due to the absorption of a 100 kW electron beam is estimated and the problem of residual activity is treated. Proposed shielding materials are discussed. (C.F.)

  15. The alanine detector in BNCT dosimetry: dose response in thermal and epithermal neutron fields.

    Science.gov (United States)

    Schmitz, T; Bassler, N; Blaickner, M; Ziegner, M; Hsiao, M C; Liu, Y H; Koivunoro, H; Auterinen, I; Serén, T; Kotiluoto, P; Palmans, H; Sharpe, P; Langguth, P; Hampel, G

    2015-01-01

    The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a (60)Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes fluka and mcnp. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen & Olsen alanine response model. The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. The alanine detector can be used without

  16. Metamaterial electromagnetic wave absorbers.

    Science.gov (United States)

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preparation of rock samples for measurement of the thermal neutron macroscopic absorption cross-section

    International Nuclear Information System (INIS)

    Czubek, J.A.; Burda, J.; Drozdowicz, K.; Igielski, A.; Kowalik, W.; Krynicka-Drozdowicz, E.; Woznicka, U.

    1986-03-01

    Preparation of rock samples for the measurement of the thermal neutron macroscopic absorption cross-section in small cylindrical two-region systems by a pulsed technique is presented. Requirements which should be fulfilled during the preparation of the samples due to physical assumptions of the method are given. A cylindrical vessel is filled with crushed rock and saturated with a medium strongly absorbing thermal neutrons. Water solutions of boric acid of well-known macroscopic absorption cross-section are used. Mass contributions of the components in the sample are specified. This is necessary for the calculation of the thermal neutron macroscopic absorption cross-section of the rock matrix. The conditions necessary for assuring the required accuracy of the measurement are given and the detailed procedure of preparation of the rock sample is described. (author)

  18. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Nasrabadi, M.N.; Jalali, M.; Mohammadi, A.

    2007-01-01

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF 3 detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required

  19. ESR-dosimetry in thermal and epithermal neutron fields for application in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Tobias

    2016-01-22

    Dosimetry is essential for every form of radiotherapy. In Boron Neutron Capture Therapy (BNCT) mixed neutron and gamma fields have to be considered. Dose is deposited in different neutron interactions with elements in the penetrated tissue and by gamma particles, which are always part of a neutron field. The therapeutic dose in BNCT is deposited by densely ionising particles, originating from the fragmentation of the isotope boron-10 after capture of a thermal neutron. Despite being investigated for decades, dosimetry in neutron beams or fields for BNCT remains complex, due to the variety in type and energy of the secondary particles. Today usually ionisation chambers combined with metal foils are used. The applied techniques require extensive effort and are time consuming, while the resulting uncertainties remain high. Consequently, the investigation of more effective techniques or alternative dosimeters is an important field of research. In this work the possibilities of ESR-dosimeters in those fields have been investigated. Certain materials, such as alanine, generate stable radicals upon irradiation. Using Electron Spin Resonance (ESR) spectrometry the amount of radicals, which is proportional to absorbed dose, can be quantified. Different ESR detector materials have been irradiated in the thermal neutron field of the research reactor TRIGA research reactor in Mainz, Germany, with five setups, generating different secondary particle spectra. Further irradiations have been conducted in two epithermal neutron beams. The detector response, however, strongly depends on the dose depositing particle type and energy. It is hence necessary to accompany measurements by computational modelling and simulation. In this work the Monte Carlo code FLUKA was used to calculate absorbed doses and dose components. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using amorphous track models. For the simulation, detailed models of

  20. Reflection measurements of microwave absorbers

    Science.gov (United States)

    Baker, Dirk E.; van der Neut, Cornelis A.

    1988-12-01

    A swept-frequency interferometer is described for making rapid, real-time assessments of localized inhomogeneities in planar microwave absorber panels. An aperture-matched exponential horn is used to reduce residual reflections in the system to about -37 dB. This residual reflection is adequate for making comparative measurements on planar absorber panels whose reflectivities usually fall in the -15 to -25 dB range. Reflectivity measurements on a variety of planar absorber panels show that multilayer Jaumann absorbers have the greatest inhomogeneity, while honeycomb absorbers generally have excellent homogeneity within a sheet and from sheet to sheet. The test setup is also used to measure the center frequencies of resonant absorbers. With directional couplers and aperture-matched exponential horns, the technique can be easily applied in the standard 2 to 40 GHz waveguide bands.

  1. Aperiodic-metamaterial-based absorber

    Directory of Open Access Journals (Sweden)

    Quanlong Yang

    2017-09-01

    Full Text Available The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber, how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.

  2. Neutron reflectometry

    International Nuclear Information System (INIS)

    Van Well, A.A.

    1999-01-01

    Neutron research where reflection, refraction, and interference play an essential role is generally referred to as 'neutron optics'. The neutron wavelength, the scattering length density and the magnetic properties of the material determine the critical angle for total reflection. The theoretical background of neutron reflection, experimental methods and the interpretation of reflection data are presented. (K.A.)

  3. Study of scattering in bi-dimensional neutron radiographic images

    International Nuclear Information System (INIS)

    Oliveira, K.A.M. de; Crispim, V.R.; Silva, F.C.

    2009-01-01

    The effect of neutron scattering frequently causes distortions in neutron radiographic images and, thus, reduces the quality. In this project, a type of filter, comprised of cadmium (a neutron absorber), was used in the form of a grid to correct this effect. This device generated image data in the discrete shadow bands of the absorber, components relative to neutron scattering on the test object and surroundings. Scattering image data processing, together with the original neutron radiographic image, resulted in a corrected image with improved edge delineation and, thus, greater definition in the neutron radiographic image of the test object. The objective of this study is to propose a theoretical/experimental methodology that is capable of eliminating the components relative to neutron scattering in neutron radiographic images, coming from the material that composes the test object and the materials that compose the surrounding area. (author)

  4. Applications of polarized neutrons

    International Nuclear Information System (INIS)

    Mezei, F.

    1993-01-01

    The additional spin degree of freedom of the neutron can be made use of in neutron scattering work in two fundamental ways: (a) directly for the identification of magnetic scattering effects and (b) indirectly as a spectroscopic tool for modulating and analysing beams. Although strong magnetic scattering contributions can often be studied by unpolarized neutrons, a fully unambiguous separation of nuclear and magnetic phenomena can only be achieved by the additional information provided by polarized neutrons, especially if one of the two kinds of contributions is weak compared to the other. In the most general case a sample with both magnetic and nuclear features can be characterized by as many as 16 independent dynamic correlation functions instead of the single well known S(q, ω) for non-magnetic nuclear scattering only. Polarization analysis in principle allows one to determine all these 16 functions. The indirect applications of polarized neutrons are also steadily gaining importance. The most widely used method of this kind, the application of Larmor precessions for high resolution energy analysis in Neutron Spin Echo spectroscopy opened up a whole new domain in inelastic neutron scattering which was not accessible to any other spectroscopic method with or without neutrons before. (author)

  5. Neutron radiography with ultracold neutrons

    International Nuclear Information System (INIS)

    Bates, J.C.

    1981-01-01

    The neutron transmission factor of very thin films may be low if the neutron energy is comparable to the pseudo-potential of the film material. Surprisingly, perhaps, it is relatively easy to obtain neutrons with such low energies in sufficient numbers to produce neutron radiographs. (orig.)

  6. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  7. Improvements in or relating to neutron beam collimators

    International Nuclear Information System (INIS)

    Lundberg, D.A.

    1975-01-01

    Reference is made to collimators suitable for use in neutron therapy equipment. The design of such collimators presents considerable difficulties, since neutrons are very penetrating. Scattering processes are also much more significant with neutrons than with x-rays or γ-rays. A further difficulty is that neutron activation causes some materials to become radioactive, which may present a hazard to users of the equipment. A novel form of collimator is described that overcomes these disadvantages to some extent. It comprises a body containing W for moderating the neutrons by inelastic collision processes, a slow neutron absorbing material intimately mixed with the W for reducing collisions between slow neutrons and the W atoms, a hydrogenous material for further moderating the neutrons to thermal energies by elastic collision processes with H atoms and for absorbing the thermal neutrons by capture processes, and a material having a density of at least 10g/cm 3 for attenuating γ-radiation produced in the hydrogenous material during neutron capture processes. The collimator is of sufficient thickness to be substantially opaque to neutrons of predetermined energy. The slow neutron absorbing material may be B, the hydrogenous material may be polyethylene, and the high density material may be Pb. Alternative methods of using and packing the various materials are described. (U.K.)

  8. Neutron Skins and Neutron Stars

    OpenAIRE

    Piekarewicz, J.

    2013-01-01

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ("PREX") at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in 208Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron be...

  9. Discrimination of various contributions to the absorbed dose in BNCT: Fricke-gel imaging and intercomparison with other experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G. E-mail: grazia.gambarini@mi.infn.it; Agosteo, S.; Marchesi, P.; Nava, E.; Palazzi, P.; Pecci, A.; Rosi, G.; Tinti, R

    2000-11-15

    A method is described for the 3D measurements of absorbed dose in a ferrous sulphate gel phantom, exposed in the thermal column of a nuclear reactor. The method, studied for Boron Neutron Capture Therapy (BNCT) purposes, allows absorbed dose imaging and profiling, with the separation of different contributions coming from different secondary radiations, generated from thermal neutrons. In fact, the biological effectiveness of the different radiations is different. Tests with conventional dosimeters were performed too.

  10. Neutron self-shielding with k0-NAA irradiations

    International Nuclear Information System (INIS)

    Chilian, C.; Chambon, R.; Kennedy, G.

    2010-01-01

    A sample of SMELS Type II reference material was mixed with powdered Cd-nitrate neutron absorber and analysed by k 0 NAA for 10 elements. The thermal neutron self-shielding effect was found to be 34.8%. When flux monitors were irradiated sufficiently far from the absorbing sample, it was found that the self-shielding could be corrected accurately using an analytical formula and an iterative calculation. When the flux monitors were irradiated 2 mm from the absorbing sample, the calculations over-corrected the concentrations by as much as 30%. It is recommended to irradiate flux monitors at least 14 mm from a 10 mm diameter absorbing sample.

  11. Visible light broadband perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: wxo@hit.edu.cn [School of Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-15

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  12. Fault Detection for Automotive Shock Absorber

    Science.gov (United States)

    Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis

    2015-11-01

    Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.

  13. New applications and developments in the neutron shielding

    Directory of Open Access Journals (Sweden)

    Uğur Fatma Aysun

    2017-01-01

    Full Text Available Shielding neutrons involve three steps that are slowing neutrons, absorption of neutrons, and impregnation of gamma rays. Neutrons slow down with thermal energy by hydrogen, water, paraffin, plastic. Hydrogenated materials are also very effective for the absorption of neutrons. Gamma rays are produced by neutron (radiation retention on the neutron shield, inelastic scattering, and degradation of activation products. If a source emits gamma rays at various energies, high-energy gamma rays sometimes specify shielding requirements. Multipurpose Materials for Neutron Shields; Concrete, especially with barium mixed in, can slow and absorb the neutrons, and shield the gamma rays. Plastic with boron is also a good multipurpose shielding material. In this study; new applications and developments in the area of neutron shielding will be discussed in terms of different materials.

  14. New applications and developments in the neutron shielding

    Science.gov (United States)

    Uğur, Fatma Aysun

    2017-09-01

    Shielding neutrons involve three steps that are slowing neutrons, absorption of neutrons, and impregnation of gamma rays. Neutrons slow down with thermal energy by hydrogen, water, paraffin, plastic. Hydrogenated materials are also very effective for the absorption of neutrons. Gamma rays are produced by neutron (radiation) retention on the neutron shield, inelastic scattering, and degradation of activation products. If a source emits gamma rays at various energies, high-energy gamma rays sometimes specify shielding requirements. Multipurpose Materials for Neutron Shields; Concrete, especially with barium mixed in, can slow and absorb the neutrons, and shield the gamma rays. Plastic with boron is also a good multipurpose shielding material. In this study; new applications and developments in the area of neutron shielding will be discussed in terms of different materials.

  15. A long neutron optical horn for the ILL neutron-antineutron oscillation experiment

    International Nuclear Information System (INIS)

    Bitter, T.; Eisert, F.; El-Muzeini, P.; Kessler, M.; Klemt, E.; Lippert, W.; Meienburg, W.; Dubbers, D.

    1992-01-01

    In the neutron-antineutron oscillation experiment at ILL the divergence of the free flying cold neutron beam was strongly reduced without loss of intensity by the use of a 34 m long neutron-optical horn system. The divergence reduction was accurately studied in order to maintain the total width of the neutron beam below 1.1 m after a neutron free flight distance of about 80 m. The fabrication and performance of this system are described. (orig.)

  16. Neutron Dosimetry

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2001-01-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding

  17. Neutron Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vanhavere, F

    2001-04-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding.

  18. Pulsed thermal neutron source at the fast neutron generator.

    Science.gov (United States)

    Tracz, Grzegorz; Drozdowicz, Krzysztof; Gabańska, Barbara; Krynicka, Ewa

    2009-06-01

    A small pulsed thermal neutron source has been designed based on results of the MCNP simulations of the thermalization of 14 MeV neutrons in a cluster-moderator which consists of small moderating cells decoupled by an absorber. Optimum dimensions of the single cell and of the whole cluster have been selected, considering the thermal neutron intensity and the short decay time of the thermal neutron flux. The source has been built and the test experiments have been performed. To ensure the response is not due to the choice of target for the experiments, calculations have been done to demonstrate the response is valid regardless of the thermalization properties of the target.

  19. Magnetic properties of strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Kutschera, M.; Wojcik, W.

    1988-01-01

    We investigate stability of neutron matter containing a small proton admixture with respect to spin fluctuations. We establish conditions under which strongly asymmetric nuclear matter could acquire a permanent magnetization. It is shown that if the protons are localized, the system becomes unstable to spin fluctuations for arbitrarily weak proton-neutron spin interactions. For non-localized protons there exists a threshold value of the spin interaction above which the system can develop a spontaneous polarization. 12 refs., 2 figs. (author)

  20. Photoelectron antibunching and absorber theory

    International Nuclear Information System (INIS)

    Pegg, D.T.

    1980-01-01

    The recently detected photoelectron antibunching effect is considered to be evidence for the quantised electromagnetic field, i.e. for the existence of photons. Direct-action quantum absorber theory, on the other hand, has been developed on the basis that the quantised field is illusory, with quantisation being required only for atoms. In this paper it is shown that photoelectron antibunching is readily explicable in terms of absorber theory and in fact is directly attributable to the quantum nature of the emitting and detecting atoms alone. The physical nature of the reduction of the wavepacket associated with the detection process is briefly discussed in terms of absorber theory. (author)

  1. Liquid metal reactor absorber technology

    International Nuclear Information System (INIS)

    Pitner, A.L.

    1990-10-01

    The selection of boron carbide as the reference liquid metal reactor absorber material is supported by results presented for irradiation performance, reactivity worth compatibility, and benign failure consequences. Scram response requirements are met easily with current control rod configurations. The trend in absorber design development is toward larger sized pins with fewer pins per bundle, providing economic savings and improved hydraulic characteristics. Very long-life absorber designs appear to be attainable with the application of vented pin and sodium-bonded concepts. 3 refs., 3 figs

  2. Neutron Depolarization in Superconductors

    Science.gov (United States)

    Zhuchenko, N. K.

    1995-04-01

    The dependences of neutron depolarization on applied magnetic field are deduced along the magnetization hysteresis loop in terms of the Bean model of the critical state. The depolarization in uniaxial superconductors with the reversible magnetization, including uniaxial magnetic superconductors, is also considered. A strong depolarization is expected if the neutrons travel along the vortex lines. On calcule la dépendance en champ magnétique de la dépolarisation des neutrons le long du cycle d'hystérésis en termes du modèle critique de Bean. On considère aussi la dépolarisation dans les supraconducteurs uniaxiaux en fonction de l'aimantation réversible, y compris pour les supraconducteurs magnétiques. On attend une forte dépolarisation si les neutrons se propagent le long des vortex.

  3. Neutron radiography

    International Nuclear Information System (INIS)

    Hrdlicka, Z.

    1977-01-01

    Neutron radiography is a radiographic method using a neutron beam of a defined geometry. The neutron source usually consists of a research reactor, a specialized neutron radiography reactor or the 252 Cf radioisotope source. There are two types of the neutron radiography display system, viz., a system producing neutron radiography images by a photographic process or a system allowing a visual display, eg., using a television monitor. The method can be used wherever X-ray radiography is used except applications in the radiography of humans. The neutron radiography unit at UJV uses the WWR-S reactor as the neutron source and both types of the above mentioned display system. (J.P.)

  4. Corrosion behaviour of borated aluminium used as neutron absorber

    Energy Technology Data Exchange (ETDEWEB)

    Emmerich, R. [EaglePicher Technologies GmbH, Oehringen (Germany); Ensinger, W.; Enders, B. [Philipps-Univ. of Marburg, Dept. of Chemistry, Material Science Centre (Germany)

    2004-07-01

    The electrochemical behaviour of pure and borated aluminium was examined. Measurements were performed in two different electrolytes at 90 C containing different trace-amounts of chloride. For borated aluminium current transients, i.e. metastable depassivation events were found. It is suggested to attribute these transients to less stable passivation layers in comparison to pure aluminium.

  5. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  6. The neutron

    International Nuclear Information System (INIS)

    Kredov, B.M.

    1979-01-01

    The history of the neutron is displayed on the basis of contributions by scientists who produced outstanding results in neutron research (part 1), of summarizing discoveries and theories which led to the discovery of the neutron and the resulting development of nuclear physics (part 2), and of fundamental papers written by Rutherford, Chadwick, Iwanenko, and others (appendix). Of interest to physicists, historians, and students

  7. Neutron techniques

    International Nuclear Information System (INIS)

    Charlton, J.S.

    1986-01-01

    The way in which neutrons interact with matter such as slowing-down, diffusion, neutron absorption and moderation are described. The use of neutron techniques in industry, in moisture gages, level and interface measurements, the detection of blockages, boron analysis in ore feedstock and industrial radiography are discussed. (author)

  8. Measuring background by the DIN-1M spectrometer using the oscillating absorbing screen method

    International Nuclear Information System (INIS)

    Glazkov, Yu.Yu.; Liforov, V.G.; Novikov, A.G.; Parfenov, V.A.; Semenov, V.A.

    1982-01-01

    Technique for measuring background by a double pulse slow neutron spectrometer is described. To measure the background on oscillating absorbing screen (OAS) periodically overlapping primary neutron beam at the input of a mechanical interrupter was used. During the overlapping monochromatic neutrons conditioned the effect are removed out of the beam and general background conditions are not practically applied. Screen oscillation permits to realize the condition of simultaneous measurement of effect and background neutrons. The optimal period of oscillations amounts to approximately 3 min. Analysis of neutron spectra scattered with different materials and corresponding background curves measured by means of the OAS technique shows that the share of monochromatic neutrons passing through the screen constitutes less than 1% of elastic peak and relative decrease of the total background level doesn't exceed 1.5-2%

  9. Fast neutron biological effects on normal and tumor chromatin

    International Nuclear Information System (INIS)

    Constantinescu, B.; Bugoi, Roxana; Paunica, Tatiana; Radu, Liliana

    1997-01-01

    the relative absorbencies (E/E 0 ) obtained for the thermal transitions of chromatin samples versus fast neutron dose, lower values at higher neutron dose, were observed, indicating a damaged chromatin DNA. The treatment with gyrostan accelerates the damage process, but adding thyroxine and D3 vitamin the negative effect is partially recovered. Some conclusions on the role of gyrostan and of thyroxine and D3 vitamin are presented. To study the influence of metal ions on DNA strand breakage induced by fast neutrons, chromatin irradiations with 100, 200 and 300 Gy were performed separately and in presence of CsCl, CuCl 2 and AlCl 3 in a 5 x 10 -2 M concentration. Fluorescence lifetime values for chromatin-ethidium bromide complexes were determined using a Fluorimeter Edinburgh Anal. Instr. FL-900 CD. Greater values denote a damaged chromatin DNA. The presence of metal cations strongly decreases the time of life values, acting as a trap for the water radiolysis products. Our results suggest a combination of fast neutron irradiation with anticancer drug gyrostan for tumor destruction enhancement and the use of metal ions with hormonal thyroxine and D3 vitamin for a normal cells better protection during neutron therapy.(authors)

  10. Development of a bandwidth limiting neutron chopper for CSNS

    Science.gov (United States)

    Wang, P.; Yang, B.; Cai, W. L.

    2015-08-01

    Bandwidth limiting neutron choppers are indispensable key equipments for the time-of-flight neutron scattering spectrometers of China Spallation Neutron Source (CSNS). The main principle is to chop the neutron beam to limit the neutron wavelength bandwidth at the neutron detector. We have successfully developed a bandwidth limiting neutron chopper for CSNS in the CSNS advance research project II. The transmission rate of the neutron absorbing coating is less than 1×10-4 (for 1 angstrom neutron). The phase control accuracy is ±0.084° (±9.4 μs at 25 Hz). The dynamic balance grade is G1.0. Various experimental technical features have met the design requirements, and it also runs stably and reliably during the long-term tests.

  11. Development of a bandwidth limiting neutron chopper for CSNS

    International Nuclear Information System (INIS)

    Wang, P.; Yang, B.; Cai, W.L.

    2015-01-01

    Bandwidth limiting neutron choppers are indispensable key equipments for the time-of-flight neutron scattering spectrometers of China Spallation Neutron Source (CSNS). The main principle is to chop the neutron beam to limit the neutron wavelength bandwidth at the neutron detector. We have successfully developed a bandwidth limiting neutron chopper for CSNS in the CSNS advance research project II. The transmission rate of the neutron absorbing coating is less than 1×10 −4 (for 1 angstrom neutron). The phase control accuracy is ±0.084° (±9.4 μs at 25 Hz). The dynamic balance grade is G1.0. Various experimental technical features have met the design requirements, and it also runs stably and reliably during the long-term tests

  12. Neutron source for a reactor

    International Nuclear Information System (INIS)

    Kobayashi, Hiromasa.

    1975-01-01

    Object: To easily increase a start-up power of a reactor without irradiation in other reactors. Structure: A neutron source comprises Cf 252 , a natural antimony rod, a layer of beryllium, and a vessel of neutron source. On upper and lower portion of Cf 252 are arranged natural antimony rods, which are surrounded by the Be layer, the entirety being charged into the vessel. The Cf 252 may emit neutron, has a half life more than a period of operating cycle of the reactor and is less deteriorated even irradiated by radioactive rays while being left within the reactor. The natural antimony rod is radioactivated by neutron from Cf 252 and neutron as reactor power increases to emit γ rays. The Be absorbs γ rays to emit the neutron. The antimony rod is irradiated within the reactor. Further, since the Cf 252 is small in neutron absorption cross section, it is hard to be deteriorated even while being inserted within the reactor. (Kamimura, M.)

  13. Neutron spectrum measurement by TOF

    International Nuclear Information System (INIS)

    Aizawa, Otohiko

    1982-01-01

    The TOF experiments by using various facilities are described. The steady neutron spectra in light water which contains non-1/V absorbing materials were measured by the TOF method at a LINAC facility. The results were compared with the calculations based on the Koppel-Haywood model and two others. The leakage neutron spectra from a heavy-water assembly were measured and compared with model calculations. The time-dependent energy spectra in a small graphite assembly were measured. For this measurement, a chopper system was also used. The two-region calculation explains the spectrum just after the neutron burst. The time-dependent spectra in a small Be assembly and in an assembly of coolant-moderator containing hydrogen were also measured. The calculations based on various models are in progress. The TOF experiments at the reactor-chopper facility were carried out for measuring the total cross sections of crystalline moderators, the thermal neutron total cross section of high temperature beryllium, the thermal neutron total cross sections of granular lead and high temperature liquid lead, and the angle-dependent scattering spectra. A pseudo-chopper was designed and constructed. The spectra of the neutron field for medical use were measured by the chopper-TOF system. The thermal neutron total cross sections of Fe, Zr, Nb and Mg were measured, and the results were compared with the calculations by THRUSH and UNCLE-TOM codes. The random-trigger TOF experiments were made by using Cf-252. (Kato, T.)

  14. Radiation resistance of elastomeric O-rings in mixed neutron and gamma fields: Testing methodology and experimental results

    Science.gov (United States)

    Zenoni, A.; Bignotti, F.; Donzella, A.; Donzella, G.; Ferrari, M.; Pandini, S.; Andrighetto, A.; Ballan, M.; Corradetti, S.; Manzolaro, M.; Monetti, A.; Rossignoli, M.; Scarpa, D.; Alloni, D.; Prata, M.; Salvini, A.; Zelaschi, F.

    2017-11-01

    Materials and components employed in the presence of intense neutron and gamma fields are expected to absorb high dose levels that may induce deep modifications of their physical and mechanical properties, possibly causing loss of their function. A protocol for irradiating elastomeric materials in reactor mixed neutron and gamma fields and for testing the evolution of their main mechanical and physical properties with absorbed dose has been developed. Four elastomeric compounds used for vacuum O-rings, one fluoroelastomer polymer (FPM) based and three ethylene propylene diene monomer rubber (EPDM) based, presently available on the market have been selected for the test. One EPDM is rated as radiation resistant in gamma fields, while the other elastomers are general purpose products. Particular care has been devoted to dosimetry calculations, since absorbed dose in neutron fields, unlike pure gamma fields, is strongly dependent on the material composition and, in particular, on the hydrogen content. The products have been tested up to about 2 MGy absorbed dose. The FPM based elastomer, in spite of its lower dose absorption in fast neutron fields, features the largest variations of properties, with a dramatic increase in stiffness and brittleness. Out of the three EPDM based compounds, one shows large and rapid changes in the main mechanical properties, whereas the other two feature more stable behaviors. The performance of the EPDM rated as radiation resistant in pure gamma fields does not appear significantly better than that of the standard product. The predictive capability of the accelerated irradiation tests performed as well as the applicable concepts of threshold of radiation damage is discussed in view of the use of the examined products in the selective production of exotic species facility, now under construction at the Legnaro National Laboratories of the Italian Istituto Nazionale di Fisica Nucleare. It results that a careful account of dose rate effects

  15. Method to produce a neutron shielding

    International Nuclear Information System (INIS)

    Merkle, H.J.

    1978-01-01

    The neutron shielding for armoured vehicles consists of preshaped plastic plates which are coated on the armoured vehicle walls by conversion of the thermoplast. Suitable plastics or thermoplasts are PVC, PVC acetate, or mixtures of these, into which more than 50% B, B 4 C, or BN is embedded. The colour of the shielding may be determined by the choice of the neutron absorber, e.g. a white colour for BN. The plates are produced using an extruder or calender. (DG) [de

  16. Neutron Diffractometer; Neutronski difraktometar

    Energy Technology Data Exchange (ETDEWEB)

    Zivadinovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    RA nuclear reactor is considered as a relatively strong neutron source producing the thermal neutron flux of about 3x10{sup 13} n/cm{sup 2} sec when operating at nominal power of 6.5 MW. Neutron diffraction method is applied in the field of solid state physics, material science, crystallography, magnetism, nuclear physic. Neutron diffractometer at the RA reactor consists of: system for obtaining collimated neutron beam from the horizontal experimental channel neutron monochromator; goniometer and electronic equipment for measurements and collecting the the measurement data. Nuklearni reaktor RA koji pri radu na snazi od 6,5 MW ima fluks termalnih neutrona oko 3x10{sup 13} n/cm{sup 2} sec predstavlja relativno jak izvor neutrona. Tehnika difrakcije neutrona primenjuje se u istrazivanjima fizike crvstog stanja, strukture materijala, kristalografije, magnetizma, nuklearne fizike. Neutronski difraktometar na reaktoru RA sastoji se od sistema za dobijanje kolimisanog snopa neutrona kroz horizontalni kanal reaktora; neutroskog monohromatora; goniometra i elektronskih uredjaja za merenja i registrovanje rezultata. Ovaj izvestaj sadrzi detaljan opis i seme neutronskog difraktometra sa pratecom opremom i elektronskim komponentama.

  17. Experiments at the GELINA facility for the validation of the self-indication neutron resonance densitometry technique

    Directory of Open Access Journals (Sweden)

    Rossa Riccardo

    2017-01-01

    Full Text Available Self-Indication Neutron Resonance Densitometry (SINRD is a passive non-destructive method that is being investigated to quantify the 239Pu content in a spent fuel assembly. The technique relies on the energy dependence of total cross sections for neutron induced reaction. The cross sections show resonance structures that can be used to quantify the presence of materials in objects, e.g. the total cross-section of 239Pu shows a strong resonance close to 0.3 eV. This resonance will cause a reduction of the number of neutrons emitted from spent fuel when 239Pu is present. Hence such a reduction can be used to quantify the amount of 239Pu present in the fuel. A neutron detector with a high sensitivity to neutrons in this energy region is used to enhance the sensitivity to 239Pu. This principle is similar to self-indication cross section measurements. An appropriate detector can be realized by surrounding a 239Pu-loaded fission chamber with appropriate neutron absorbing material. In this contribution experiments performed at the GELINA time-of-flight facility of the JRC at Geel (Belgium to validate the simulations are discussed. The results confirm that the strongest sensitivity to the target material was achieved with the self-indication technique, highlighting the importance of using a 239Pu fission chamber for the SINRD measurements.

  18. Tissue equivalence in neutron dosimetry

    International Nuclear Information System (INIS)

    Nutton, D.H.; Harris, S.J.

    1980-01-01

    A brief review is presented of the essential features of neutron tissue equivalence for radiotherapy and gives the results of a computation of relative absorbed dose for 14 MeV neutrons, using various tissue models. It is concluded that for the Bragg-Gray equation for ionometric dosimetry it is not sufficient to define the value of W to high accuracy and that it is essential that, for dosimetric measurements to be applicable to real body tissue to an accuracy of better than several per cent, a correction to the total absorbed dose must be made according to the test and tissue atomic composition, although variations in patient anatomy and other radiotherapy parameters will often limit the benefits of such detailed dosimetry. (U.K.)

  19. Neutronic density perturbation by probes; Pertubacion de densidades neutronicas por sondas

    Energy Technology Data Exchange (ETDEWEB)

    Vigon, M A; Diez, L

    1956-07-01

    The introduction of absorbent materials of neutrons in diffuser media, produces local disturbances of neutronic density. The disturbance depends especially on the nature and size of the absorbent. Approximated equations which relates te disturbance and the distance to the absorbent in the case of thin disks have been drawn. The experimental comprobation has been carried out in two especial cases. In both cases the experimental results are in agreement with the calculated values from these equations. (Author)

  20. Additive manufacturing of RF absorbers

    Science.gov (United States)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  1. Neutron radiography

    International Nuclear Information System (INIS)

    Hiraoka, Eiichi

    1988-01-01

    The thermal neutron absorption coefficient is essentially different from the X-ray absorption coefficient. Each substance has a characteristic absorption coefficient regardless of its density. Neutron deams have the following features: (1) neutrons are not transmitted efficiently by low molecular weight substances, (2) they are transmitted efficiently by heavy metals, and (3) the transmittance differs among isotopes. Thus, neutron beams are suitable for cheking for foreign matters in heavy metals and testing of composites consisting of both heavy and light materials. A neutron source generates fast neutrons, which should be converted into thermal neutrons by reducing their energy. Major neutron souces include nuclear reactors, radioisotopes and particle accelerators. Photographic films and television systems are mainly used to observe neutron transmission images. Computers are employed for image processing, computerized tomography and three-dimensional analysis. The major applications of neutron radiography include inspection of neclear fuel; evaluation of material for airplane; observation of fuel in the engine and oil in the hydraulic systems in airplanes; testing of composite materials; etc. (Nogami, K.)

  2. Lethal Effect of Thermal Neutrons on Hypoxic Elirlich Ascites Tumour Cells in vitro

    OpenAIRE

    MITSUHIKO, AKABOSHI; KENICHI, KAWAI; HIROTOSHI, MAKI; Research Reactor Institute, Kyoto University; Research Reactor Institute, Kyoto University; Research Reactor Institute, Kyoto University

    1985-01-01

    Ehrlich ascites tumour cells were irradiated in vitro with thermal neutrons under aerobic and hypoxic conditions, and the survival of their reproductive capacity was assayed in vivo. Only a slight hypoxic protection was observed for thermal neutron irradiation with an oxygen enhancement ratio (OER) of 1.2, as compared with OER of 3.3 for ^Co-γ-rays. Absorbed dose of thermal neutrons was calculated by assuming that the energies of recoiled nuclei were completely absorbed within a cell nucleus....

  3. Burnable absorber for the PIK reactor

    International Nuclear Information System (INIS)

    Gostev, V.V.; Smolskii, S.L.; Tchmshkyan, D.V.; Zakharov, A.S.; Zvezdkin, V.S.; Konoplev, K.A.

    1998-01-01

    In the reactor PIK design a burnable absorber is not used and the cycle duration is limited by the rods weight. Designed cycle time is two weeks and seams to be not enough for the 100 MW power research reactor equipped by many neutron beams and experimental facilities. Relatively frequent reloading reduces the reactor time on full power and in this way increases the maintenance expenses. In the reactor core fuel elements well mastered by practice are used and its modification was not approved. We try to find the possibilities of installation in the core separate burnable elements to avoid poison of the fuel. It is possible to replace a part of the fuel elements by absorbers, since the fuel elements are relatively small (diameter 5.15mm, uranium 235 content 7.14g) and there are more then 3800 elements in the core. Nevertheless, replacing decreases the fuel burnup and its consumption. In the PIK fuel assembles a little part of the volume is occupied by the dumb elements to create a complete package of the assembles shroud, that is necessary in the hydraulic reasons. In the presented report the assessment of such a replacement is done. As a burnable material Gadolinium was selected. The measurements or the beginning of cycle were performed on the critical facility PIK. The burning calculation was confirmed by measurements on the 18MW reactor WWR-M. The results give the opportunity to twice the cycle duration. The proposed modification of the fuel assembles does not lead to alteration in the other reactor systems, but it touch the burned fuel reprocessing technology. (author)

  4. Imaging with cold neutrons

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-01-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  5. Measurements and analyses on reactivity effects of absorber rods in a light-water moderated UO2 lattices

    International Nuclear Information System (INIS)

    Murakami, Kiyonobu; Miyoshi, Yoshinori; Hirose, Hideyuki; Suzaki, Takenori

    1985-03-01

    Reactivity effects and reactivity-interference effects of absorber rods were measured with a cylindrical core aiming to obtain bench-marks for verification of the calculational methods. The core consisted of 2.6 w/o enriched UO 2 fuel rods lattice of which water-to-fuel volume ratio was 1.83. In the experiment, the critical water levels were measured changing neutron absorber content of absorber rods and the distance between two absorber rods in the core center. Monte Calro codes KENO-IV and MULTI-KENO were used to calculate reactivity worthes of absorber rods. The calculational results of effective multiplication factors ranged from 0.978 to 0.999 for the 60 cases of critical cores with inserted absorber rods. The calculational results of absorber worthes agreed to the experimental results within twice of the standerd deviation accompanied with the Monte Calro calculation. (author)

  6. Monte Carlo calculations of neutron thermalization in a heterogeneous system

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, T

    1959-07-15

    The slowing down of neutrons in a heterogeneous system (a slab geometry) of uranium and heavy water has been investigated by Monte Carlo methods. Effects on the neutron spectrum due to the thermal motions of the scattering and absorbing atoms are taken into account. It has been assumed that the speed distribution of the moderator atoms are Maxwell-Boltzmann in character.

  7. Characterization of plastic and boron carbide additive manufactured neutron collimators

    Science.gov (United States)

    Stone, M. B.; Siddel, D. H.; Elliott, A. M.; Anderson, D.; Abernathy, D. L.

    2017-12-01

    Additive manufacturing techniques allow for the production of materials with complicated geometries with reduced costs and production time over traditional methods. We have applied this technique to the production of neutron collimators for use in thermal and cold neutron scattering instrumentation directly out of boron carbide. We discuss the design and generation of these collimators. We also provide measurements at neutron scattering beamlines which serve to characterize the performance of these collimators. Additive manufacturing of parts using neutron absorbing material may also find applications in radiography and neutron moderation.

  8. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  9. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  10. Neutron spectometers

    International Nuclear Information System (INIS)

    Poortmans, F.

    1977-01-01

    Experimental work in the field of low-energy neutron physics can be subdivided into two classes: 1)Study of the decay process of the compound-nucleus state as for example the study of the capture gamma rays and of the neutron induced fission process; 2)Study of the reaction mechanism, mainly by measuring the reaction cross-sections and resonance parameters. These neutron cross-sections and resonance parameters are also important data required for many technological applications especially for reactor development programmes. In general, the second class of experiments impose other requirements on the neutron spectrometer than the first class. In most cases, a better neutron energy resolution and a broader neutron energy range are required for the study of the reaction mechanism than for the study of various aspects of the decay process. (author)

  11. Adaptive inertial shock-absorber

    International Nuclear Information System (INIS)

    Faraj, Rami; Holnicki-Szulc, Jan; Knap, Lech; Seńko, Jarosław

    2016-01-01

    This paper introduces and discusses a new concept of impact absorption by means of impact energy management and storage in dedicated rotating inertial discs. The effectiveness of the concept is demonstrated in a selected case-study involving spinning management, a recently developed novel impact-absorber. A specific control technique performed on this device is demonstrated to be the main source of significant improvement in the overall efficiency of impact damping process. The influence of various parameters on the performance of the shock-absorber is investigated. Design and manufacturing challenges and directions of further research are formulated. (paper)

  12. New opportunities in neutron capture research using advanced pulsed neutron sources

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1987-08-01

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. Prospective experiments are reviewed with particular attention to those with a strong connection to capture gamma-ray spectroscopy

  13. Studying the effect of xenon poisoning on the power of the Syrian miniature neutron source reactor

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    1999-07-01

    The uranium 235 is often used as a fuel to produce the energy in nuclear reactors. Uranium nuclei are fissioned with thermal neutrons and produce energy plus a number of neutrons. A fraction of such fission neutrons is involved in other fission with new nuclei to sustain the fission reactions. The remain fraction of the neutrons is lost from the reactor in two ways: escaped from the reactor, or absorbed with other nuclei that exist in the reactor before or produced from fission. Fission nuclei which absorb neutrons heavily are called p oison , such as Xe 135. Because Xe 135 absorbs neutrons heavily, it reduces the number of neutrons in the reactor. Hence, Xe 135 is studied explicitly in the MNSR reactor, and calculation of its negative reactivity is presented in this research during the operation, equilibrium, and after the shutting down of the reactor. (author)

  14. Influence of materials and counting-rate effects on 3He neutron spectrometry

    International Nuclear Information System (INIS)

    Evans, A.E.

    1984-01-01

    The high energy resolution of the Cuttler-Shalev 3 He neutron spectrometer causes spectral measurements with this instrument to be strongly susceptible to artifacts caused by the presence of scattering or absorbing materials in or near the detector or the source, and to false peaks generated by pileup coincidences of the rather long-risetime pulses from the detector. These effects are particularly important when pulse-height distributions vary over several orders of magnitude in count rate versus channel. A commercial pile-up elimination circuit greatly improves but does not eliminate the pileup problem. Previously reported spurious peaks in the pulse-height distributions from monoenergetic neutron sources have been determined to be due to the influence of the iron in the detector wall. 6 references, 9 figures

  15. Neutron exposure

    International Nuclear Information System (INIS)

    Prillinger, G.; Konynenburg, R.A. van

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 6, LWR-PV neutron transport calculations and dosimetry methods and how they are combined to evaluate the neutron exposure of the steel of pressure vessels are discussed. An effort to correlate neutron exposure parameters with damage is made

  16. Atmospheric neutrons

    International Nuclear Information System (INIS)

    Preszler, A.M.; Moon, S.; White, R.S.

    1976-01-01

    Additional calibrations of the University of California double-scatter neutron and additional analysis corrections lead to the slightly changed neutron fluxes reported here. The theoretical angular distributions of Merker (1975) are in general agreement with our experimental fluxes but do not give the peaks for vertical upward and downward moving neutrons. The theoretical neutron escape current J 2 /sub pi/ (Merker, 1972; Armstrong et al., 1973) is in agreement with the experimental values from 10 to 100 MeV. Our experimental fluxes agree with those of the Kanbach et al. (1974) in the overlap region from 70 to 100 MeV

  17. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  18. Neutronic performance issues for the Spallation Neutron Source moderators

    International Nuclear Information System (INIS)

    Iverson, E.B.; Murphy, B.D.

    2001-01-01

    We continue to develop the neutronic models of the Spallation Neutron Source target station and moderators in order to better predict the neutronic performance of the system as a whole and in order to better optimize that performance. While we are not able to say that every model change leads to more intense neutron beams being predicted, we do feel that such changes are advantageous in either performance or in the accuracy of the prediction of performance. We have computationally and experimentally studied the neutronics of hydrogen-water composite moderators such as are proposed for the SNS Project. In performing these studies, we find that the composite moderator, at least in the configuration we have examined, does not provide performance characteristics desirable for the instruments proposed and being designed for this neutron scattering facility. The pulse width as a function of energy is significantly broader than for other moderators, limiting attainable resolution-bandwidth combinations. Furthermore, there is reason to expect that higher-energy (0.1-1 eV) applications will be significantly impacted by bimodal pulse shapes requiring enormous effort to parameterize. As a result of these studies, we have changed the SNS design, and will not use a composite moderator at this time. We have analyzed the depletion of a gadolinium poison plate in a hydrogen moderator at the Spallation Neutron Source, and found that conventional poison thicknesses will be completely unable to last the desired component lifetime of three operational years. A poison plate 300-600 μm thick will survive for the required length of time, but will somewhat degrade the intensity (by as much as 15% depending on neutron energy) and the consistency of the neutron source performance. Our results should scale fairly easily to other moderators on this or any other spallation source. While depletion will be important for all highly-absorbing materials in high-flux regions, we feel it likely that

  19. Neutron-scattering study of the vibrational behavior of trehalose aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Branca, C.; Magazu, S.; Migliardo, F.; Romeo, G.; Villari, V.; Wanderlingh, U. [Dipartimento di Fisica and INFM, Universita' di Messina, PO Box 55, 98166 Messina (Italy); Colognesi, D. [DRAL-ISIS,Chilton, Oxford OX1 3PU (United Kingdom)

    2002-07-01

    Neutron spectra for hydrated trehalose samples have been obtained by using the time-of-flight spectrometer TOSCA at the ISIS Pulse Neutron Facility (Rutherford Appleton Laboratory, Chilton, UK). Neutron spectra have been compared to the absorbance spectra obtained by Fourier-transform infrared spectroscopy. Finally, a comparison with findings obtained by density functional theory has been performed. (orig.)

  20. Determination of neutron flux distribution in an Am-Be irradiator using the MCNP.

    Science.gov (United States)

    Shtejer-Diaz, K; Zamboni, C B; Zahn, G S; Zevallos-Chávez, J Y

    2003-10-01

    A neutron irradiator has been assembled at IPEN facilities to perform qualitative-quantitative analysis of many materials using thermal and fast neutrons outside the nuclear reactor premises. To establish the prototype specifications, the neutron flux distribution and the absorbed dose rates were calculated using the MCNP computer code. These theoretical predictions then allow one to discuss the optimum irradiator design and its performance.

  1. Quasi-energy of ultracold neutrons

    International Nuclear Information System (INIS)

    Frank, A.I.; Nosov, V.G.

    1992-01-01

    A solution is found to the problem of the propagation of a neutron beam transmitted through a periodically acting high-speed chopper. It is a generalization of the Moshinsky's problem of the evolution of a plane wave in the right half-space after an ideal absorber at the origin of coordinates has been instantaneously removed. The energy spectrum of transmitted neutrons is found to be discrete and corresponding to their quasi-energy. Interference of the states corresponding to different satellite lines leads to a complex spatial pattern with typical beats. A number of experiments with ultracold neutrons are suggested and discussed. 12 refs.; 1 fig

  2. Selective solar absorber emittance measurement at elevated temperature

    Science.gov (United States)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  3. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  4. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1994-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  5. Development of absorber rod drive mechanisms for PFBR

    International Nuclear Information System (INIS)

    Veerasamy, R.; Dash, S.K.; Natarajan, S.; Rajan, M.; Prabhakar, R.; Kale, R.D.

    1997-01-01

    The Prototype Fast Breeder Reactor has two independent, diverse and fast acting shutdown systems each having its own neutron detectors, logic circuits, drive mechanisms and absorber rods. The respective drive mechanisms are called the control and safety rod drive mechanism and the diverse safety rod drive mechanism. The reliability of the shutdown systems has a direct bearing on the safety of the reactor. Hence a lot of development and testing efforts are required to optimise the design of the drive mechanisms and finally to qualify the same for reactor application. (author)

  6. Neutron fluence measurements

    International Nuclear Information System (INIS)

    1970-01-01

    For research reactor work dealing with such subjects as radiation effects on solids and such disciplines as radiochemistry and radiobiology, the radiation dose or neutron fluence is an essential parameter in evaluating results. Unfortunately it is very difficult to determine. Even when the measurements have been accurate, it is difficult to compare results obtained in different experiments because present methods do not always reflect the dependence of spectra or of different types of radiation on the induced processes. After considering the recommendations of three IAEA Panels, on 'In-pile dosimetry' held in July 1964, on 'Neutron fluence measurements' in October 1965, and on 'In-pile dosimetry' in November 1966, the Agency established a Working Group on Reactor Radiation Measurements. This group consisted of eleven experts from ten different Member States and two staff members of the Agency. In the measurement of energy absorbed by materials from neutrons and gamma rays, there are various reports and reviews scattered throughout the literature. The group, however, considered that the time was ripe for all relevant information to be evaluated and gathered together in the form of a practical guide, with the aim of promoting consistency in the measurement and reporting of reactor radiation. The group arranged for the material to be divided into two manuals, which are expected to be useful both for experienced workers and for beginners

  7. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield

  8. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  9. Neutron holography

    International Nuclear Information System (INIS)

    Beynon, T.D.

    1986-01-01

    the paper concerns neutron holography, which allows an image to be constructed of the surfaces, as well as the interiors, of objects. The technique of neutron holography and its applications are described. Present and future use of the method is briefly outlined. (U.K.)

  10. Secure data storage by three-dimensional absorbers in highly scattering volume medium

    International Nuclear Information System (INIS)

    Matoba, Osamu; Matsuki, Shinichiro; Nitta, Kouichi

    2008-01-01

    A novel data storage in a volume medium with highly scattering coefficient is proposed for data security application. Three-dimensional absorbers are used as data. These absorbers can not be measured by interferometer when the scattering in a volume medium is strong enough. We present a method to reconstruct three-dimensional absorbers and present numerical results to show the effectiveness of the proposed data storage.

  11. Neutron source

    International Nuclear Information System (INIS)

    Cason, J.L. Jr.; Shaw, C.B.

    1975-01-01

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap

  12. Neutron transport

    International Nuclear Information System (INIS)

    Berthoud, Georges; Ducros, Gerard; Feron, Damien; Guerin, Yannick; Latge, Christian; Limoge, Yves; Santarini, Gerard; Seiler, Jean-Marie; Vernaz, Etienne; Coste-Delclaux, Mireille; M'Backe Diop, Cheikh; Nicolas, Anne; Andrieux, Catherine; Archier, Pascal; Baudron, Anne-Marie; Bernard, David; Biaise, Patrick; Blanc-Tranchant, Patrick; Bonin, Bernard; Bouland, Olivier; Bourganel, Stephane; Calvin, Christophe; Chiron, Maurice; Damian, Frederic; Dumonteil, Eric; Fausser, Clement; Fougeras, Philippe; Gabriel, Franck; Gagnier, Emmanuel; Gallo, Daniele; Hudelot, Jean-Pascal; Hugot, Francois-Xavier; Dat Huynh, Tan; Jouanne, Cedric; Lautard, Jean-Jacques; Laye, Frederic; Lee, Yi-Kang; Lenain, Richard; Leray, Sylvie; Litaize, Olivier; Magnaud, Christine; Malvagi, Fausto; Mijuin, Dominique; Mounier, Claude; Naury, Sylvie; Nicolas, Anne; Noguere, Gilles; Palau, Jean-Marc; Le Pallec, Jean-Charles; Peneliau, Yannick; Petit, Odile; Poinot-Salanon, Christine; Raepsaet, Xavier; Reuss, Paul; Richebois, Edwige; Roque, Benedicte; Royer, Eric; Saint-Jean, Cyrille de; Santamarina, Alain; Serot, Olivier; Soldevila, Michel; Tommasi, Jean; Trama, Jean-Christophe; Tsilanizara, Aime; Behar, Christophe; Provitina, Olivier; Lecomte, Michael; Forestier, Alain; Bender, Alexandra; Parisot, Jean-Francois; Finot, Pierre

    2013-10-01

    This bibliographical note presents a reference book which addresses the study of neutron transport in matter, the study of conditions for a chain reaction and the study of modifications of matter composition due to nuclear reactions. This book presents the main nuclear data, their measurement, assessment and processing, and the spallation. It proposes an overview of methods applied for the study of neutron transport: basic equations and their derived forms, deterministic methods and Monte Carlo method of resolution of the Boltzmann equation, methods of resolution of generalized Bateman equations, methods of time resolution of space kinetics coupled equations. It presents the main calculation codes, discusses the qualification and experimental aspects, and gives an overview of neutron transport applications: neutron transport calculation of reactors, neutron transport coupled with other disciplines, physics of fuel cycle, criticality

  13. Radiation sterilization of absorbent cotton and of absorbent gauze

    International Nuclear Information System (INIS)

    Hosobuchi, Kazunari; Oka, Mitsuru; Kaneko, Akira; Ishiwata, Hiroshi.

    1986-01-01

    The bioburden of absorbent cotton and of absorbent gauze and their physical and chemical characteristics after irradiation are investigated. The survey conducted on contaminants of 1890 cotton samples from 53 lots and 805 gauze samples from 56 lots showed maximum numbers of microbes per g of the cotton and gauze were 859 (an average of 21.4) and 777 (an average of 42.2), respectively. Isolation and microbiological and biochemical tests of representative microbes indicated that all of them, except one, were bacilli. The sterilization dose at 10 -6 of sterlity assurance level was found to be 2.0 Mrad when irradiated the spores loaded on paper strips and examined populations having graded D values from 0.10 to 0.28 Mrad. The sterilization dose would be about 1.5 Mrad if subjected the average numbers of contaminants observed in this study to irradiation. No significant differences were found between the irradiated samples and control up to 2 Mrad in tensile strength, change of color, absorbency, sedimentation rate, soluble substances, and pH of solutions used for immersion and other tests conventionally used. These results indicate that these products can be sterilized by irradiation. (author)

  14. Neutron slowing-down time in matter

    Energy Technology Data Exchange (ETDEWEB)

    Chabod, Sebastien P., E-mail: sebastien.chabod@lpsc.in2p3.fr [LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 38000 Grenoble (France)

    2012-03-21

    We formulate the neutron slowing-down time through elastic collisions in a homogeneous, non-absorbing, infinite medium. Our approach allows taking into account for the first time the energy dependence of the scattering cross-section as well as the energy and temporal distribution of the source neutron population in the results. Starting from this development, we investigate the specific case of the propagation in matter of a mono-energetic neutron pulse. We then quantify the perturbation on the neutron slowing-down time induced by resonances in the scattering cross-section. We show that a resonance can induce a permanent reduction of the slowing-down time, preceded by two discontinuities: a first one at the resonance peak position and an echo one, appearing later. From this study, we suggest that a temperature increase of the propagating medium in presence of large resonances could modestly accelerate the neutron moderation.

  15. Experiment of neutron multiplication in lead

    International Nuclear Information System (INIS)

    Jiang Wenmian; Chen Yuan; Liu Rong; Guo Haiping; Shen Jian

    1994-01-01

    The experiments of neutron multiplication in bulk lead have been performed with a total absorption detector (TAD). A hollow polyethylene sphere is used as neutron moderator and absorber of the TAD, which inner and outer diameters are 56 cm and 138 cm respectively. Slow neutron density in TAD is detected with a 6 Li glass scintillator. For Pb thicknesses of 5, 10, 15, 19.6 and 23.1 cm, the neutron multiplications are 1.301, 1.492, 1.599, 1.713 and 1.745 respectively. Overall experimental error is 2.7%. The calculational neutron multiplications with the 1-D ANISN code and ENDF/B-VI file are agreed with experimental ones within experimental error. Moreover, some factors of systematic error of TAD were investigated experimentally, but obvious factors have not been observed yet. (author)

  16. Transmission of Thermal Neutrons through Boral

    Energy Technology Data Exchange (ETDEWEB)

    Aakerhielm, F

    1960-06-15

    Transmission measurements have been performed using Maxwellian distributed neutrons from the R1 reactor perpendicularly incident upon a boral absorption plate. American, English, German, Swedish and Swiss samples have been investigated and the results are compared to calculated values. The influence of the absorber grain size is discussed.

  17. Transmission of Thermal Neutrons through Boral

    International Nuclear Information System (INIS)

    Aakerhielm, F.

    1960-06-01

    Transmission measurements have been performed using Maxwellian distributed neutrons from the R1 reactor perpendicularly incident upon a boral absorption plate. American, English, German, Swedish and Swiss samples have been investigated and the results are compared to calculated values. The influence of the absorber grain size is discussed

  18. Single Crystal Diffuse Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Richard Welberry

    2018-01-01

    Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.

  19. Microdosimetric investigations at the fast neutron therapy facility at Fermilab

    International Nuclear Information System (INIS)

    Langen, K.M.

    1997-01-01

    Microdosimetry was used to investigate three issues at the neutron therapy facility (NTF) at Fermilab. Firstly, the conversion factor from absorbed dose in A-150 tissue equivalent plastic to absorbed dose in ICRU tissue was determined. For this, the effective neutron kerma factor ratios, i.e., oxygen tissue equivalent plastic and carbon to A-150 tissue equivalent plastic, were measured in the neutron beam. An A-150 tissue equivalent plastic to ICRU tissue absorbed dose conversion factor of 0.92 ± 0.04 was determined. Secondly, variations in the radiobiological effectiveness (RBE) in the beam were mapped by determining variations in two related quantities, e * and R, with field size and depth in tissue. Maximal variation in e * and R of 9% and 15% respectively were determined. Lastly, the feasibility of utilizing the boron neutron capture reaction on boron-10 to selectively enhance the tumor dose in the NTF beam was investigated

  20. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions

    Science.gov (United States)

    La Tessa, C.; Berger, T.; Kaderka, R.; Schardt, D.; Burmeister, S.; Labrenz, J.; Reitz, G.; Durante, M.

    2014-04-01

    Short- and long-term side effects following the treatment of cancer with radiation are strongly related to the amount of dose deposited to the healthy tissue surrounding the tumor. The characterization of the radiation field outside the planned target volume is the first step for estimating health risks, such as developing a secondary radioinduced malignancy. In ion and high-energy photon treatments, the major contribution to the dose deposited in the far-out-of-field region is given by neutrons, which are produced by nuclear interaction of the primary radiation with the beam line components and the patient’s body. Measurements of the secondary neutron field and its contribution to the absorbed dose and equivalent dose for different radiotherapy technologies are presented in this work. An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5 × 2 × 5 cm3 cancer volume located in the center of the head. The experiment was repeated with 25 MV IMRT (intensity modulated radiation therapy) photons and charged particles (protons and carbon ions) delivered with both passive modulation and spot scanning in different facilities. The measurements were performed with active (silicon-scintillation) and passive (bubble, thermoluminescence 6LiF:Mg, Ti (TLD-600) and 7LiF:Mg, Ti (TLD-700)) detectors to investigate the production of neutral particles both inside and outside the phantom. These techniques provided the whole energy spectrum (E ⩽ 20 MeV) and corresponding absorbed dose and dose equivalent of photo neutrons produced by x-rays, the fluence of thermal neutrons for all irradiation types and the absorbed dose deposited by neutrons with 0.8 energy x-rays, the contribution of secondary neutrons to the dose equivalent is of the same order of magnitude as the primary radiation. In carbon therapy delivered with raster scanning, the absorbed dose deposited by neutrons in the energy region between 0.8 and 10 MeV is almost two orders of

  1. A neutron amplifier: prospects for reactor-based waste transmutation

    International Nuclear Information System (INIS)

    Blanovsky, A.

    2004-01-01

    A design concept and characteristics for an epithermal breeder controlled by variable feedback and external neutron source intensity are presented. By replacing the control rods with neutron sources, we could maintain good power distribution and perform radioactive waste burning in high flux subcritical reactors (HFSR) that have primary system size, power density and cost comparable to a pressurized water reactor (PWR). Another approach for actinide transmutation is a molten salt subcritical reactor proposed by Russian scientists. To increase neutron source intensity the HFSR is divided into two zones: a booster and a blanket with solid and liquid fuels. A neutron gate (absorber and moderator) imposed between two zones permits fast neutrons from the booster to flow to the blanket. Neutrons moving in the reverse direction are moderated and absorbed in the absorber zone. In the HFSR, neptunium-plutonium fuel is circulated in the booster and blanket, and americium-curium in the absorber zone and outer reflector. Use of a liquid actinide fuel permits transport of the delayed-neutron emitters from the blanket to the booster, where they can provide additional neutrons (source-dominated mode) or all the necessary excitation without an external neutron source (self-amplifying mode). With a blanket neutron multiplication gain of 20 and a booster gain of 50, an external neutron source rate of at least 10 15 n/s (0.7 MW D-T or 2.5 MW electron beam power) is needed to control the HFSR that produces 300 MWt. Most of the power could be generated in the blanket that burns about 100 kg of actinides a year. The analysis takes into consideration a wide range of HFSR design aspects including the wave model of observed relativistic phenomena, plant seismic diagnostics, fission electric cells (FEC) with a multistage collector (anode) and layered cathode. (author)

  2. Digital Alloy Absorber for Photodetectors

    Science.gov (United States)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  3. Insight into magnetorheological shock absorbers

    CERN Document Server

    Gołdasz, Janusz

    2015-01-01

    This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.

  4. Ultrathin microwave metamaterial absorber utilizing embedded resistors

    Science.gov (United States)

    Kim, Young Ju; Hwang, Ji Sub; Yoo, Young Joon; Khuyen, Bui Xuan; Rhee, Joo Yull; Chen, Xianfeng; Lee, YoungPak

    2017-10-01

    We numerically and experimentally studied an ultrathin and broadband perfect absorber by enhancing the bandwidth with embedded resistors into the metamaterial structure, which is easy to fabricate in order to lower the Q-factor and by using multiple resonances with the patches of different sizes. We analyze the absorption mechanism in terms of the impedance matching with the free space and through the distribution of surface current at each resonance frequency. The magnetic field, induced by the antiparallel surface currents, is formed strongly in the direction opposite to the incident electromagnetic wave, to cancel the incident wave, leading to the perfect absorption. The corresponding experimental absorption was found to be higher than 97% in 0.88-3.15 GHz. The agreement between measurement and simulation was good. The aspects of our proposed structure can be applied to future electronic devices, for example, advanced noise-suppression sheets in the microwave regime.

  5. Acoustic Properties of Absorbent Asphalts

    Science.gov (United States)

    Trematerra, Amelia; Lombardi, Ilaria

    2017-08-01

    Road traffic is one of the greater cause of noise pollution in urban centers; a prolonged exposure to this source of noise disturbs populations subjected to it. In this paper is reported a study on the absorbent coefficients of asphalt. The acoustic measurements are carried out with a impedance tube (tube of Kundt). The sample are measured in three conditions: with dry material (traditional), “wet” asphalt and “dirty” asphalt.

  6. Neutron therapy

    International Nuclear Information System (INIS)

    Riesler, Rudi

    1995-01-01

    Standard radiotherapy uses Xrays or electrons which have low LET (linear energy transfer); in contrast, particles such as neutrons with high LET have different radiobiological responses. In the late 1960s, clinical trials by Mary Catterall at the Hammersmith Hospital in London indicated that fast neutron radiation had clinical advantages for certain malignant tumours. Following these early clinical trials, several cyclotron facilities were built in the 1980s for fast neutron therapy, for example at the University of Washington, Seattle, and at UCLA. Most of these newer machines use extracted cyclotron proton beams in the range 42 to 66 MeV with beam intensities of 15 to 60 microamps. The proton beams are transported to dedicated therapy rooms, where neutrons are produced from beryllium targets. Second-generation clinical trials showed that accurate neutron beam delivery to the tumour site is more critical than for photon therapy. In order to achieve precise beam geometries, the extracted proton beams have to be transported through a gantry which can rotate around the patient and deliver beams from any angle; also the neutron beam outline (''field shape'') must be adjusted to extremely irregular shapes using a flexible collimation system. A therapy procedure has to be appropriately organized, with physicians, radiotherapists, nurses, medical physicists and other staff in attendance; other specialized equipment, such as CT or MRI scanners and radiation simulators must be made available. Neutron therapy is usually performed only in radiation oncology departments of major medical centres

  7. Wide-range neutron dose determination with CR-39

    International Nuclear Information System (INIS)

    Arneja, A.R.; Waker, A.J.

    1995-01-01

    Optical density measurements of CR-30 irradiated with 252 Cf neutrons and chemically etched with 6.5 N KOH solution have been used to determine neutron absorbed doses between 0.1 and 10 Gy. Optimum etching conditions will depend upon the absorbed dose. Since it is not always possible to know the range of absorbed dose on a CR-39 dosemeter collected from personnel and area monitor stations in a criticality accident situation, a three-step two-hour chemical etch at 60 o C has been found to be appropriate. If after a total of six hours of chemical etching the optical density is found to be below 0.04 for 500 nm light (transmission > 90%) then further treatment in the form of electrochemical etching can be carried out to determine the lower absorbed dose. In this manner, absorbed doses below 0.1 Gy can be determined by counting tracks over a unit area. (author)

  8. Neutronics codes

    International Nuclear Information System (INIS)

    Buckel, G.

    1983-01-01

    The objectives are the development, testing and cultivation of reliable, efficient and user-optimized neutron-physical calculation methods and conformity with users' requirements concerning design of power reactors, planning and analysis of experiments necessary for their protection as well as research on physical key problems. A short outline of available computing programmes for the following objectives is given: - Provision of macroscopic group constants, - Calculation of neutron flux distribution in transport theory and diffusion approximation, - Evaluation of neutron flux-distribution, - Execution of disturbance calculations for the determination reactivity coefficients, and - graphical representation of results. (orig./RW) [de

  9. A checkerboard selective absorber with excellent spectral selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liu, E-mail: optyang@zju.edu.cn [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); School of Electrical, Computer, and Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Mo, Lei; Chen, Tuo [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); Department of Physics, Zhejiang University, Hangzhou 310027 (China); Forsberg, Erik [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); He, Sailing [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); Department of Electromagnetic Engineering, JORCEP, Roy Institute of Technology (KTH), S-100 44 Stockholm (Sweden)

    2015-11-14

    A selective absorber with excellent spectral selectivity is proposed and analyzed. The absorber is based on a germanium (Ge) checkerboard on top of a tantalum (Ta) substrate. At wavelengths shorter than the 1.2 μm cutoff, a very high absorption is achieved due to strong cavity resonances in the Ge nanosquares, and their interactions with adjacent nanocavities and the bottom Ta substrate. At longer wavelengths, absorption is greatly suppressed due to destructive interference between the transparent checkerboard layer and the highly reflective Ta substrate. To better describe the superior selectivity of our configuration, a new figure of merit (FOM) is introduced. We observe a FOM value of 0.88 compared to 0.69 for its planar counterpart. We also conduct a thermal analysis to verify the excellent selectivity of our absorber. A high temperature can be achieved and maintained, promising good potential for applications in solar thermophotovoltaic systems.

  10. Neutron radiography for the characterization of porous structure in degraded building stones

    International Nuclear Information System (INIS)

    Barone, G; Mazzoleni, P; Raneri, S; Crupi, V; Longo, F; Majolino, D; Venuti, V; Teixeira, J

    2014-01-01

    As it is well known, the porous structure of stones can change due to different degradation processes that modify the characteristics of freshly quarried blocks. Their knowledge is fundamental for predicting the behavior of stones and the efficacy of conservative treatments. In this context, neutron radiography is a useful tool not only to visualize the structure of porous materials, but also to evaluate the degree of degradation and surface modifications resulting from weathering processes. Furthermore, since thermal neutrons suffer a strong attenuation by hydrogen, this technique is effective in order to investigate the amount of absorbed water in building materials. In the present work, we report a neutron radiography investigation of limestones cropping out in the South-Eastern Sicily and widely used as building stones in Baroque monuments of the Noto Valley. The analyzed samples have been submitted to cyclic salt crystallization that simulate degradation processes acting in exposed stones of buildings. The obtained results demonstrate the interest of neutron radiography to better understand deterioration processes in limestones and to acquire information useful for restoration projects

  11. Advances in absorbed dose measurement standards at the australian radiation laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N. [Australian Radiation Laboratory, Yallambie, VIC (Australia)

    1996-12-31

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within {+-} 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry.

  12. Utilization of RP-10 reactor for neutron therapy

    International Nuclear Information System (INIS)

    Paucar, R.; Nieto, M.; Parreno, F.; Vela, M.; Pozo, Z.

    1997-01-01

    In the Nuclear Energy Peruvian Institute, IPEN, a research area has established of Neutron Radiotherapy, know as NCT. This research joins the physics of particles (Neutrons and photons) and Medical Physics, and this one is an applied investigation where in considering the construction of a treatment hall in Huarangal (Peru) Reactor's irradiation facility, it can treat patients with brain tumors. In Neutron Therapy (NCT), it tries to use neutrons to destroy tumor cells where other therapeutic techniques are not effective. This process consist on to incise a neutrons beam of adequate characteristics over the tumor area of the patient. The neutrons used are of thermal energy and therefore irradiations are developed in experimental reactors. For this one, it is used horizontal channels prepared suitably. Before the irradiation, it is injected to the patient a substance which is absorbed by tumoral tissue. The substance components will be B-10, nuclide with an absorption cross section high to thermal neutrons (3837 b). The B-10 irradiate with thermal neutrons produce alpha particles of short reach (10 μm. on soft tissue) and with LET values (lineal energy transference) very high. The result is a cell preferential destruction which have absorbed the substance and it's next neighbors, like the cell size is 10 μm. This process as know as Boron Neutron Capture Therapy (BNCT). This work describes Peruvian RP-10 reactor and recently efforts to assess the design and feasibility of the medical neutron irradiation facility for NCT. (author). 22 refs., 6 tabs

  13. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    of desired information. In the course, an introduction into the method and an overview on selected instruments at large scale facilities will be presented. Examples will be given that illustrate the potential of the method, mostly based on organic films. Results from the investigation of layered films......Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... films or films with magnetic properties. The reason is the peculiar property of neutron light since the mass of a neutron is close to the one of a proton, and since it bears a magnetic moment. The optical properties of matter, when interacting with neutrons, are described by a refractive index...

  14. Neutron scattering

    International Nuclear Information System (INIS)

    Furrer, A.

    1993-01-01

    This report contains the text of 16 lectures given at the Summer School and the report on a panel discussion entitled ''the relative merits and complementarities of x-rays, synchrotron radiation, steady- and pulsed neutron sources''. figs., tabs., refs

  15. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon

  16. Fast neutron dosimetry and spectrometry using radioactivation (1963); Dosimetrie et spectrometrie des neutrons rapides par radioactivation (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Lamberieux, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The author first recalls rapidly a few generalities concerning induced radioactivity detectors and gives, in an appendix, tables summarizing the properties of detector elements which may be used in radioprotection. The excitation functions found in the literature and also given. The technological characteristics of the detectors used are given, together with the counting methods. The many advantages of activation dosimetry for strong or periodic neutron fluxes and for those in the presence of {gamma}-radiation are stressed. The main problem in activation dosimetry is, however, the calculation of the dose absorbed from the results of the measurements. It is shown how the dose is expressed, fairly accurately, as a function of the radioactivities induced in a series of detectors. As an example, the spectrometry and the dosimetry of the neutron flux emitted by a Po-Be source are presented. (author) [French] L'auteur fait d'abord un bref rappel des generalites sur les detecteurs a radioactivite induite, accompagne, en annexe, des tableaux resumant les proprietes d'elements detecteurs utilisables en radioprotection. Les fonctions d'excitation trouvees dans la litterature y sont egalement annexees. On donne ensuite les caracteristiques technologiques des detecteurs employes ainsi que les methodes de comptage utilisees. On souligne les nombreux avantages de la dosimetrie par activation dans les flux de neutrons intenses ou periodiques et en presence de rayonnement {gamma}. Il reste que le probleme central de la dosimetrie par activation est le calcul de la dose absorbee a partir des resultats de mesure. On montre comment la dose s'exprime, de maniere approchee, en fonction des radioactivites induites dans une serie de detecteurs. A titre d'exemple, la spectrometrie et la dosimetrie du flux de neutrons emis par une source de Po-Be sont presentees. (auteur)

  17. Neutron storage

    International Nuclear Information System (INIS)

    Strelkov, A.V.

    2004-01-01

    The report is devoted to neutron storage (NS) and describes the history of experiments on the NS development. Great attention is paid to ultracold neutron (UCN) storage. The experiments on the UCN generation, transport, spectroscopy, storage and detection are described. Experiments on searching the UCN electric-dipole moment and electric charge are continued. Possible using of UCN for studying the nanoparticles is discussed [ru

  18. Neutron radiography

    International Nuclear Information System (INIS)

    Bayon, G.

    1989-01-01

    Neutronography or neutron radiography, a non-destructive test method which is similar in its principle to conventional X-ray photography, presently occupies a marginal position among non-destructive test methods (NDT) (no source of suitable performance or cost). Neutron radiography associated with the ORPHEE reactor permits industrial testing; it can very quickly meet a cost requirement comparable to that of conventional test methods. In 1988, 2500 parts were tested on this unit [fr

  19. Neutron detector

    International Nuclear Information System (INIS)

    Endo, Hiroshi.

    1993-01-01

    The device of the present invention detects neutrons in a reactor container under a high temperature and reduces the noise level in an FBR type reactor. That is, the detection section comprises a high heat resistant vessel containing a scintillator therein for detecting neutrons. Neutron signals sent from the detection section are inputted to a neutron measuring section by way of a signal transmission section. The detection section is disposed at the inside of the reactor container. Further, the signal transmission section is connected optically to the detection section. With such a constitution, since the detection section comprising the high temperature resistant vessel is disposed at the inside of the reactor container, neutron fluxes can be detected and measured at high sensitivity even under a high temperature circumstance. Since the signal transmission section is optically connected to the detection section, influence of radiation rays upon transmission of the neutron detection signals can be reduced. Accordingly, the noise level can be kept low. (I.S.)

  20. Neutron Scattering

    International Nuclear Information System (INIS)

    Fayer, Michael J.; Gee, Glendon W.

    2005-01-01

    The neutron probe is a standard tool for measuring soil water content. This article provides an overview of the underlying theory, describes the methodology for its calibration and use, discusses example applications, and identifies the safety issues. Soil water makes land-based life possible by satisfying plant water requirements, serving as a medium for nutrient movement to plant roots and nutrient cycling, and controlling the fate and transport of contaminants in the soil environment. Therefore, a successful understanding of the dynamics of plant growth, nutrient cycling, and contaminant behavior in the soil requires knowledge of the soil water content as well as its spatial and temporal variability. After more than 50 years, neutron probes remain the most reliable tool available for field monitoring of soil water content. Neutron probes provide integrated measurements over relatively large volumes of soil and, with proper access, allow for repeated sampling of the subsurface at the same locations. The limitations of neutron probes include costly and time-consuming manual operation, lack of data automation, and costly regulatory requirements. As more non-radioactive systems for soil water monitoring are developed to provide automated profiling capabilities, neutron-probe usage will likely decrease. Until then, neutron probes will continue to be a standard for reliable measurements of field water contents in soils around the globe

  1. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Higashi, N. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Igarashi, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Iwashita, Y. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Ino, T. [High Energy Accelerator Research Organization, Ibaraki (Japan); Katayama, R. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Kitaguchi, M. [Kobayashi-Maskawa Institute, Nagoya University, Aichi (Japan); Kitahara, R. [Graduate School of Science, Kyoto University, Kyoto (Japan); Matsumura, H.; Mishima, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); Nagakura, N.; Oide, H. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Otono, H., E-mail: otono@phys.kyushu-u.ac.jp [Research Centre for Advanced Particle Physics, Kyushu University, Fukuoka (Japan); Sakakibara, R. [Department of Physics, Nagoya University, Aichi (Japan); Shima, T. [Research Center for Nuclear Physics, Osaka University, Osaka (Japan); Shimizu, H.M.; Sugino, T. [Department of Physics, Nagoya University, Aichi (Japan); Sumi, N. [Faculty of Sciences, Kyushu University, Fukuoka (Japan); Sumino, H. [Department of Basic Science, University of Tokyo, Tokyo (Japan); Taketani, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); and others

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with {sup 6}Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  2. Energy response of neutron area monitor with silicon semiconductor detector

    International Nuclear Information System (INIS)

    Kitaguchi, Hiroshi; Izumi, Sigeru; Kobayashi, Kaoru; Kaihara, Akihisa; Nakamura, Takashi.

    1993-01-01

    A prototype neutron area monitor with a silicon semiconductor detector has been developed which has the energy response of 1 cm dose equivalent recommended by the ICRP-26. Boron and proton radiators are coated on the surface of the silicon semiconductor detector. The detector is set at the center of a cylindrical polyethylene moderator. This moderator is covered by a porous cadmium board which serves as the thermal neutron absorber. Neutrons are detected as α-particles generated by the nuclear reaction 10 B(n,α) 7 Li and as recoil protons generated by the interaction of fast neutrons with hydrogen. The neutron energy response of the monitor was measured using thermal neutrons and monoenergetic fast neutrons generated by an accelerator. The response was consistent with the 1 cm dose equivalent response required for the monitor within ±34% in the range of 0.025 - 15 Mev. (author)

  3. Neutronics issues for a laboratory microfusion facility

    International Nuclear Information System (INIS)

    Tobin, M.T.

    1987-01-01

    Discussion concerning goals or design of the Laboratory Microfusion Facility (LMF) should include an understanding of the neutronics issues involved. We consider such aspects as first wall shielding requirements, safety standards as they will apply to such an Inertial Confinement Fusion (ICF) facility, and the interior chamber environment. The selection of materials for the first wall, neutron moderator and absorber, and gamma ray shielding is discussed. We conclude that water or carbon are the choices for bulk neutron moderation and boron placed just in front of the first wall the choice for neutron absorber. Selection of the in-chamber materials and diagnostic design will greatly affect the relative hazards after a shot. Lead is the high-Z material of choice and plastic expendables for the diagnostics. Although a poor gamma ray attenuator, carbon is the choice for this function since it also compensates for the direct neutron shine effects and does not itself activate. Electronics may need to be hardened to the prompt gamma and neutron dose

  4. Microdosimetry for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Maughan, R.L.; Kota, C.

    2000-01-01

    The specific aims of the research proposal were as follows: (1) To design and construct small volume tissue equivalent proportional counters for the dosimetry and microdosimetry of high intensity thermal and epithermal neutron beams used in BNCT, and of modified fast neutron beams designed for boron neutron capture enhanced fast neutron therapy (BNCEFNT). (2) To develop analytical methods for estimating the biological effectiveness of the absorbed dose in BNCT and BNCEFNT based on the measured microdosimetric spectra. (3) To develop an analytical framework for comparing the biological effectiveness of different epithermal neutron beams used in BNCT and BNCEFNT, based on correlated sets of measured microdosimetric spectra and radiobiological data. Specific aims (1) and (2) were achieved in their entirety and are comprehensively documented in Jay Burmeister's Ph.D. dissertation entitled ''Specification of physical and biologically effective absorbed dose in radiation therapies utilizing the boron neutron capture reaction'' (Wayne State University, 1999). Specific aim (3) proved difficult to accomplish because of a lack of sufficient radiobiological data

  5. Neutron shielding characteristics of nano-B2O3 dispersed Poly Vinyl Alcohol

    International Nuclear Information System (INIS)

    Kim, Jae Woo; Uhm, Young Rang; Lee, Min Ku; Lee, Hee Min; Rhee, Chang Kyu

    2008-01-01

    Neutron is sometimes beneficiary to human beings while they are unwanted for most cases same as the other radiations such as gamma, beta, and alpha, etc. do. Shielding for neutrons therefore is extremely important to keep the radiation environment safe. Especially, it is critical to absorb (or shield) neutrons generated from the spent fuel in a container/storage, nuclear reactor, and cyclotron, etc. In this regard, light materials containing neutron absorbers such as borated-polymers are very useful to shield neutrons in those radiation environments. This investigation is focused on the development of borated polymer-based materials whose neutron shielding efficiency is greatly enhanced by using nano sized boron compounds. Boron is well known as a thermal neutron absorber due to its large thermal neutron absorption cross-section (σ th = 760 b, b = 10 -2 - 4 cm 2 ). Although absorption of neutrons in the medium is mainly dependent on the boron atomic weight concentration, we firstly observed the size of boron particles also has an important role in neutron shielding. Mean free path of neutrons colliding with the smaller particles dispersed in the medium might be decreased when it is compared to the larger particles at the same atomic weight concentration. This means that the neutron shielding efficiency of a polymer mixed with the smaller boron compounds is higher than that of a polymer mixed with the larger boron compounds at the same atomic weight boron concentration

  6. Neutron-neutron probe for uranium exploration

    International Nuclear Information System (INIS)

    Smith, R.C.

    1979-01-01

    A neutron activation probe for assaying the amount of fissionable isotopes in an ore body is described which comprises a casing which is movable through a borehole in the ore body, a neutron source and a number of delayed neutron detectors arranged colinearly in the casing below the neutron source for detecting delayed neutrons

  7. Transmission line model and fields analysis of metamaterial absorber in the terahertz band.

    Science.gov (United States)

    Wen, Qi-Ye; Xie, Yun-Song; Zhang, Huai-Wu; Yang, Qing-Hui; Li, Yuan-Xun; Liu, Ying-Li

    2009-10-26

    Metamaterial (MM) absorber is a novel device to provide near-unity absorption to electromagnetic wave, which is especially important in the terahertz (THz) band. However, the principal physics of MM absorber is still far from being understood. In this work, a transmission line (TL) model for MM absorber was proposed, and with this model the S-parameters, energy consumption, and the power loss density of the absorber were calculated. By this TL model, the asymmetric phenomenon of THz absorption in MM absorber is unambiguously demonstrated, and it clarifies that strong absorption of this absorber under studied is mainly related to the LC resonance of the split-ring-resonator structure. The distribution of power loss density in the absorber indicates that the electromagnetic wave is firstly concentrated into some specific locations of the absorber and then be strongly consumed. This feature as electromagnetic wave trapper renders MM absorber a potential energy converter. Based on TL model, some design strategies to widen the absorption band were also proposed for the purposes to extend its application areas.

  8. Piezooptic effect of absorbing environment

    Directory of Open Access Journals (Sweden)

    Ю. А. Рудяк

    2013-07-01

    Full Text Available Application of piezooptic effect of absorbing environment for the definition of the parameter of stress deformation state was examined. The analysis of dielectric permeability tensor of imaginary parts was done. It is shown that changes in the real part dielectric permeability tensor mainly the indicator of fracture was fixed by means of mechanics interference methods and the changes in the imaginary part (α – real rate of absorption can be measured by means of analysis of light absorption and thus stress deformation state can be determined

  9. Energy absorbers as pipe supports

    International Nuclear Information System (INIS)

    Khlafallah, M.Z.; Lee, H.M.

    1985-01-01

    With the exception of springs, pipe supports currently in use are designed with the intent of maintaining their rigidity under load. Energy dissipation mechanisms in these pipe supports result in system damping on the order presented by Code Case N-411 of ASME Section III code. Examples of these energy dissipation mechanisms are fluids and gaps in snubbers, gaps in frame supports, and friction in springs and frame supports. If energy absorbing supports designed in accordance with Code Case N-420 are used, higher additional damping will result

  10. American Conference on Neutron Scattering 2014

    International Nuclear Information System (INIS)

    Dillen, J. Ardie

    2014-01-01

    Scientists from the around the world converged in Knoxville, TN to have share ideas, present technical information and contribute to the advancement of neutron scattering. Featuring over 400 oral/poster presentations, ACNS 2014 offered a strong program of plenary, invited and contributed talks and poster sessions covering topics in soft condensed matter, hard condensed matter, biology, chemistry, energy and engineering applications in neutron physics - confirming the great diversity of science that is enabled by neutron scattering.

  11. American Conference on Neutron Scattering 2014

    Energy Technology Data Exchange (ETDEWEB)

    Dillen, J. Ardie [Materials Research Society, Warrendale, PA (United States)

    2014-12-31

    Scientists from the around the world converged in Knoxville, TN to have share ideas, present technical information and contribute to the advancement of neutron scattering. Featuring over 400 oral/poster presentations, ACNS 2014 offered a strong program of plenary, invited and contributed talks and poster sessions covering topics in soft condensed matter, hard condensed matter, biology, chemistry, energy and engineering applications in neutron physics – confirming the great diversity of science that is enabled by neutron scattering.

  12. Neutron effects on living things

    International Nuclear Information System (INIS)

    1964-01-01

    Scientific interest in neutrons and protons - two fundamental particles of the atomic nucleus - has grown in recent years as the technology of peaceful uses of atomic energy has progressed. Such interest also has increased because both protons and neutrons are encountered in outer space. However, only recently has a thorough study of the biological effects of neutrons and protons become possible, as a result of progress in making physical measurements of the radiation dose absorbed in biological systems (of plants and animals, for example). Reports of work in that field were presented in December 1962, when IAEA sponsored at Harwell Laboratory in the United Kingdom the first international symposium on detection dosimetry (measurement) and standardization of neutron radiation sources. The Harwell meeting was followed in October 1963 at Brookhaven National Laboratory, Long Island, New York, by the first scientific meeting sponsored by IAEA in the U. S. Entitled 'Biological Effects of Neutron Irradiations', the Symposium continued the review of problems of measuring radiation absorption in living things and provided in addition for several reports dealing with the effects of radiation on living organisms - plant, animal and human - and with delayed consequences of exposure to radiation, such as: change in life span; tumour incidence; and fertility. Eighteen countries were represented. Although much has been learned about X-ray and gamma-ray effects, comparatively little is known about the biological effects of neutrons, and therefore many of the Symposium papers reviewed the various aspects of neutron experimentation. Similarly, since there is increasing interest in the biological effects of protons, papers were given on that related subject.

  13. New thermal neutron solid-state electronic detector based on HgI2 crystals

    International Nuclear Information System (INIS)

    Melamud, M.; Burshtein, Z.

    1983-07-01

    We describe the development of a new solid-state electronic neutron detector, based on HgI 2 single crystals. Incident neutrons are absorbed in high neutron absorbing foils, such as cadmium or gadolinium, which are placed in front of a HgI 2 detector. Gamma rays, emitted as a result of the neutron absorbtion, are then absorbed in the HgI 2 , generating free charge carriers, which are collected by the electric field. The advantage of this system lies in it's manufacturing simplicity, low weight and small physical dimensions, compared to gas-filled conventional neutron detectors. The disadvantage is that the system does not discriminate between gamma rays and neutrons. A method to minimize this disadvantage is pointed out. It is as well possible to count neutrons by direct exposure of the HgI 2 to neutrons. The neutron-to-gamma transformation in that case takes place by the material nuclei themselves. This method, however, is impractical due to the interference of delayed radioactivity whose origin are 129 I nuclei. They are generated from 128 I by absorbing a neutron, and decay with a 25 min half lifetime involving gamma emissions. (author)

  14. Cadmium depletion impacts on hardening neutron spectrum for advanced fuel testing in ATR

    International Nuclear Information System (INIS)

    Chang, Gray S.

    2011-01-01

    For transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products effectively is in a fast neutron spectrum reactor. In the absence of a fast spectrum test reactor in the United States of America (USA), initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. A test region is achieved with a Cadmium (Cd) filter which can harden the neutron spectrum to a spectrum similar (although still somewhat softer) to that of the liquid metal fast breeder reactor (LMFBR). A fuel test loop with a Cd-filter has been installed within the East Flux Trap (EFT) of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). A detailed comparison analyses between the cadmium (Cd) filter hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum have been performed using MCWO. MCWO is a set of scripting tools that are used to couple the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2.2. The MCWO-calculated results indicate that the Cd-filter can effectively flatten the Rim-Effect and reduce the linear heat rate (LHGR) to meet the advanced fuel testing project requirements at the beginning of irradiation (BOI). However, the filtering characteristics of Cd as a strong absorber quickly depletes over time, and the Cd-filter must be replaced for every two typical operating cycles within the EFT of the ATR. The designed Cd-filter can effectively depress the LHGR in experimental fuels and harden the neutron spectrum enough to adequately flatten the Rim-Effect in the test region. (author)

  15. The Diversity of Neutron Stars

    Science.gov (United States)

    Kaplan, David L.

    2004-12-01

    Neutron stars are invaluable tools for exploring stellar death, the physics of ultra-dense matter, and the effects of extremely strong magnetic fields. The observed population of neutron stars is dominated by the >1000 radio pulsars, but there are distinct sub-populations that, while fewer in number, can have significant impact on our understanding of the issues mentioned above. These populations are the nearby, isolated neutron stars discovered by ROSAT, and the central compact objects in supernova remnants. The studies of both of these populations have been greatly accelerated in recent years through observations with the Chandra X-ray Observatory and the XMM-Newton telescope. First, we discuss radio, optical, and X-ray observations of the nearby neutron stars aimed at determining their relation to the Galactic neutron star population and at unraveling their complex physical processes by determining the basic astronomical parameters that define the population---distances, ages, and magnetic fields---the uncertainties in which limit any attempt to derive basic physical parameters for these objects. We conclude that these sources are 1e6 year-old cooling neutron stars with magnetic fields above 1e13 Gauss. Second, we describe the hollow supernova remnant problem: why many of the supernova remnants in the Galaxy have no indication of central neutron stars. We have undertaken an X-ray census of neutron stars in a volume-limited sample of Galactic supernova remnants, and from it conclude that either many supernovae do not produce neutron stars contrary to expectation, or that neutron stars can have a wide range in cooling behavior that makes many sources disappear from the X-ray sky.

  16. Spin polarized states in strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2004-01-01

    The possibility of appearance of spin polarized states in strongly asymmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the Skyrme effective interaction. The zero temperature dependence of the neutron and proton spin polarization parameters as functions of density is found for SLy4 and SLy5 effective forces. It is shown that at some critical density strongly asymmetric nuclear matter undergoes a phase transition to the state with the oppositely directed spins of neutrons and protons while the state with the same direction of spins does not appear. In comparison with neutron matter, even small admixture of protons strongly decreases the threshold density of spin instability. It is clarified that protons become totally polarized within a very narrow density domain while the density profile of the neutron spin polarization parameter is characterized by the appearance of long tails near the transition density

  17. Load testing of neutron absorbent materials by using neutron radiographic pictures

    International Nuclear Information System (INIS)

    Bayon, G.; Laporte, A.

    1986-06-01

    By using standards whose characteristics are known, quantitative measurement of the neutronographic negatives density, makes possible the estimation of a neutrophagic constituent proportion in each point of a given material. This presentation describes the methodology, the automatic equipment developed at Saclay and the method performance characteristics applied to mass-produced components

  18. Using multi spherical spectrometry for determination of dosimetric characteristics of mixed neutron and gamma radiation fields of fission sources

    International Nuclear Information System (INIS)

    Fyulep, M.; Nikodemova, D.; Grabovtsova, A.; Galan, P.; Trousil, J.

    1977-01-01

    Possibilities of the application of multispherical spectrometry in personnel dosimetry of neutrons (n) and gamma radiation (γ) are considered. Studies were made to elucidate a possibility of using albedo dosemeters to increase the sensitivity of personnel dosemeters. Determined were the dose due to the (n,γ) reaction in a human body, absorbed dose and dose equivalent. The effect of (n,γ) dose on the reading of personnel gamma dosemeter was considered. It is shown that the above effect on the dosemeter readings for frontal irradiation by a broad neutron beam in everyday personnel dosimetry near 252 Cf sources may be neglected. Only in the case of strongly slowed-down fission spectrum the effect of the (n,γ) reaction is considerable. The application of albedo dosemeter is expedient to take into account the corrections of personnel dosemeter readings [ru

  19. Neutron guides and scientific neutron equipment at CILAS/GMI

    International Nuclear Information System (INIS)

    Gautier-Picard, P.

    2001-01-01

    The French company CILAS is the world's leading supplier of complete neutron guide systems. The neutron optics with multilayer coatings produced by CILAS has become an international standard for neutron beam transportation at modern research institutes. During the last 30 years, CILAS designed, produced and installed more than 5000 meters of guides in many European, American and Asian countries. By these projects the company has acquired a very strong experience with: conception, design, manufacturing, setting up of Neutron Guides. In most cases, CILAS was in charge of the design, as well as the manufacturing of the whole system, comprising optical and mechanical components, vacuum system, shutter and shielding definition. By our long experience we have also acquired good knowledge of the materials used in this specific nuclear environment and their behavior under radiation such as glass, borated or not, coatings, glue or metal. To reinforce its leadership and presence in neutron research, CILAS acquired the company Grenoble Modular Instruments (GMI) a leading company in high precision mechanics, engineering and manufacturing of spectrometers and scientific equipment for neutron and synchrotron research. This merger allows us to design and to supply a complete range of high precision optical and mechanical eqipment for neutron research. CILAS and GMI have designed, manufactured and installed a High Resolution Powder Diffractometer for the 30MW Korean Hanaro Reactor. This project included the calculation, design and supply of the complete biological shielding of the instrument as well as for the primary beam shutter on the thermal beamport. (author)

  20. New Neutron Dosimeter

    CERN Multimedia

    2001-01-01

    CERN has been operating an Individual Dosimetry Service for neutrons for about 35 years. The service was based on nuclear emulsions in the form of film packages which were developed and scanned in the Service. In 1999, the supplier of theses packages informed CERN that they will discontinue production of this material. TIS-RP decided to look for an external service provider for individual neutron dosimetry. After an extensive market survey and an invitation for tender, a supplier that met the stringent technical requirements set up by CERN's host states for personal dosimeters was identified. The new dosimeter is based on a track-etching technique. Neutrons have the capability of damaging plastic material. The microscopic damage centres are revealed by etching them in a strong acid. The resulting etch pits can be automatically counted and their density is proportional to dose equivalent from neutrons. On the technical side, the new dosimeter provides an improved independence of its response from energy and th...

  1. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  2. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping; Wu, Ying; Lai, Yun

    2016-01-01

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  3. Evaluation of Neutron Response of Criticality Accident Alarm System Detector to Quasi-Monoenergetic 24 keV Neutrons

    Science.gov (United States)

    Tsujimura, Norio; Yoshida, Tadayoshi; Yashima, Hiroshi

    The criticality accident alarm system (CAAS), which was recently developed and installed at the Japan Atomic Energy Agency's Tokai Reprocessing Plant, consists of a plastic scintillator combined with a cadmium-lined polyethylene moderator and thereby responds to both neutrons and gamma rays. To evaluate the neutron absorbed dose rate response of the CAAS detector, a 24 keV quasi-monoenergetic neutron irradiation experiment was performed at the B-1 facility of the Kyoto University Research Reactor. The detector's evaluated neutron response was confirmed to agree reasonably well with prior computer-predicted responses.

  4. Evaluation of neutron response of criticality accident alarm system detector to quasi-monoenergetic 24 keV neutrons

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Yashima, Hiroshi

    2016-01-01

    The criticality accident alarm system (CAAS), which was recently developed and installed at the Japan Atomic Energy Agency's Tokai Reprocessing Plant, consists of a plastic scintillator combined with a cadmium-lined polyethylene moderator and thereby responds to both neutrons and gamma rays. To evaluate the neutron absorbed dose rate response of the CAAS detector, a 24 keV quasi-monoenergetic neutron irradiation experiment was performed at the B-1 facility of the Kyoto University Research Reactor. The detector's evaluated neutron response was confirmed to agree reasonably well with prior computer-predicted responses. (author)

  5. Search for a neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Morse, J [Rutherford Appleton Laboratory, Chilton (U.K.)

    1984-03-01

    To search for evidence of a breakdown of symmetry under the time reversal transformation, a magnetic resonance measurement is made to detect an electric dipole moment (EDM) of ultracold neutrons stored for periods approximately= 60s in the presence of a strong electric field. The measured neutron EDM is (0.3 +- 4.8) x 10/sup -25/ ecm.

  6. Efimov effect in 2-neutron halo nuclei

    Indian Academy of Sciences (India)

    This paper presents an overview of our theoretical investigations in search of Efimov states in light 2-neutron halo nuclei. The calculations have been carried out within a three-body formalism, assuming a compact core and two valence neutrons forming the halo. The calculations provide strong evidence for the occurrence ...

  7. High resolution neutron tomography applied to tooth fillings on real teeth by use of neutron lens

    International Nuclear Information System (INIS)

    Masschaele, B.; Cauwels, P.; Mondelaers, W.; Baechler, S.; Jolie, J.; Materna, T.

    2000-01-01

    Today tomography is a well known technique for nondestructive analysis of samples. By taking several X-ray pictures from an object, it is possible to make a 3D reconstruction. The same thing can be done with neutrons. Since very recent it is possible to produce a high-flux neutron beam. By looking at the attenuation of the neutron beam in the sample from different angles, it is possible to make a neutron tomography. The properties of neutrons are so much different from X-rays that a new era in tomography has started. Where X-rays have a hard time penetrating samples containing heavy elements (Pb, Bi, U, Hg, Au), neutrons just seem to walk through. But when the neutrons encounter samples containing light compounds like water, oil, paper, B, Li,... they are easily absorbed. This makes the use of neutrons for imaging complementary to the well known X-ray imaging. The most used tooth filling material nowadays is amalgam. Amalgam is a mixture of different metals, like silver, tin, copper, mercury. Mercury is dangerous for the human body when it enters the blood stream. These fillings are very dense and X-rays have a very hard time penetrating it. Neutrons are the ideal probe for investigation of these high density regions. The result of the tomography reveals information on the long term stability of amalgam fillings and could help the still ongoing debate on the safety of the fillings. (author)

  8. Electro neutrons around a 12 MV Linac

    International Nuclear Information System (INIS)

    Vega C, H. R.; Perez L, L. H.

    2012-10-01

    Neutron contamination around Linacs for radiotherapy is a source of undesirable doses for the patient. The main source of these neutrons is the photonuclear reactions occurring in the Linac head and the patient body. Electrons also produce neutrons through (e, en) reactions. This reaction is known as electro disintegration and is carried out by the electron scattering that produce a virtual photon that is absorbed by the scattering nucleus producing the reaction e + A → (A-1) + n + e'. In this work the electron-neutron spectrum to 100 cm from the isocenter of a 12 MV Linac has been measured using a passive Bonner spheres spectrometer in a novel procedure named Planetary mode. (Author)

  9. Method of manufacturing neutron protection materials

    Energy Technology Data Exchange (ETDEWEB)

    Kakibana, Hidetake; Okamoto, Masazane; Fujii, Yasuhiko; Koguchi, Noboru; Takesute, Morito; Miyamatsu, Tokuhisa

    1985-06-22

    To obtain protection materials easily moldable, flexible and capable of minimizing the workers' neutron exposure dose, a fine fiberous assembly is prepared by dispersing compounds of atoms having neutron absorbing performance such as Li or B, for example, finely powderous compounds of LiF or /sup 6/LiF into a solution of spinnable polymer, particularly, polyolefin polymer such as polyethylene in CH/sub 2/Cl and then flash spinning them. The fine fibers are fabricated into mat-like material, blankets, cloths and the likes for use in neutron exposure protection. In the case of neutron irradiation therapy, protection materials of reduced weight, flexible and giving preferred contact with human body can be obtained with ease for protecting the regions other than the lesion area.

  10. Three dimensional measurements of absorbed dose in BNCT by Fricke-gel imaging

    International Nuclear Information System (INIS)

    Gambarini, G.; Agosteo, S.; Marchesi, P.; Nava, E.; Palazzi, P.; Pecci, A.; Rosa, R.; Rosi, G.; Tinti, R.

    2001-01-01

    A method has been studied for absorbed dose imaging and profiling in a phantom exposed to thermal or epithermal neutron fields, also discriminating between various contributions to the absorbed dose. The proposed technique is based on optical imaging of FriXy-gel phantoms, which are proper tissue-equivalent phantoms acting as continuous dosimeters. Convenient modifications in phantom composition allow, from differential measurements, the discrimination of various contributions to the absorbed dose. The dosimetry technique is based on a chemical dosimeter incorporated in a tissue-equivalent gel (Agarose). The chemical dosimeter is a ferrous sulphate solution (which is the main component of the standard Fricke dosimeter) added with a metal ion indicator (Xylenol Orange). The absorbed dose is measured by analysing the variation of gel optical absorption in the visible spectrum, imaged by means of a CCD camera provided with a suitable filter. The technique validity has been tested by irradiating and analysing phantoms in the thermal facility of the fast research reactor TAPIRO (ENEA, Casaccia, Italy). In a cylindrical phantom simulating a head, we have imaged the therapy dose from thermal neutron reactions with 10 B and the dose in healthy tissue not containing boron. In tissue without boron, we have discriminated between the two main contributions to the absorbed dose, which comes from the 1 H(n,γ) 2 H and 14 N(n,p) 14 C reactions. The comparison with the results of other experimental techniques and of simulations reveals that the technique is very promising. A method for the discrimination of fast neutron contribution to the absorbed dose, still in an experimental stage, is proposed too. (author)

  11. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  12. Neutron matter, neutron pairing, and neutron drops based on chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Thomas

    2016-10-19

    The physics of neutron-rich systems is of great interest in nuclear and astrophysics. Precise knowledge of the properties of neutron-rich nuclei is crucial for understanding the synthesis of heavy elements. Infinite neutron matter determines properties of neutron stars, a final stage of heavy stars after a core-collapse supernova. It also provides a unique theoretical laboratory for nuclear forces. Strong interactions are determined by quantum chromodynamics (QCD). However, QCD is non-perturbative at low energies and one presently cannot directly calculate nuclear forces from it. Chiral effective field theory circumvents these problems and connects the symmetries of QCD to nuclear interactions. It naturally and systematically includes many-nucleon forces and gives access to uncertainty estimates. We use chiral interactions throughout all calculation in this thesis. Neutron stars are very extreme objects. The densities in their interior greatly exceed those in nuclei. The exact composition and properties of neutron stars is still unclear but they consist mainly of neutrons. One can explore neutron stars theoretically with calculations of neutron matter. In the inner core of neutron stars exist very high densities and thus maybe exotic phases of matter. To investigate whether there exists a phase transition to such phases even at moderate densities we study the chiral condensate in neutron matter, the order parameter of chiral symmetry breaking, and find no evidence for a phase transition at nuclear densities. We also calculate the more extreme system of spin-polarised neutron matter. With this we address the question whether there exists such a polarised phase in neutron stars and also provide a benchmark system for lattice QCD. We find spin-polarised neutron matter to be an almost non-interacting Fermi gas. To understand the cooling of neutron stars neutron pairing is of great importance. Due to the high densities especially triplet pairing is of interest. We

  13. neutron radiography

    International Nuclear Information System (INIS)

    Barton, J.P.

    1993-01-01

    Neutron radiography (or radiology) is a diverse filed that uses neutrons of various energies, subthermal, thermal, epithermal or fast in either steady state or pulsed mode to examine objects for industrial, medical, or other purposes, both microscopic and macroscopic. The applications include engineering design, biological studies, nondestructive inspection and materials evaluation. In the past decade, over 100 different centers in some 30 countries have published reports of pioneering activities using reactors, accelerators and isotopic neutron sources. While film transparency and electronic video are most common imaging methods for static or in motion objects respectively, there are other important data gathering techniques, including track etch, digital gauging and computed tomography. A survey of the world-wide progress shows the field to be gaining steadily in its diversity, its sophistication and its importance. (author)

  14. Orion, a high efficiency 4π neutron detector

    International Nuclear Information System (INIS)

    Crema, E.; Piasecki, E.; Wang, X.M.; Doubre, H.; Galin, J.; Guerreau, D.; Pouthas, J.; Saint-Laurent, F.

    1990-01-01

    In intermediate energy heavy ion collisions the multiplicity of emitted neutrons is strongly connected to energy dissipation and to impact parameter. We present the 4π detector ORION, a high efficiency liquid scintillator detector which permits to get information on the multiplicity of neutrons measured event-wise and on the spatial distribution of these neutrons [fr

  15. Oxalate: Effect on calcium absorbability

    International Nuclear Information System (INIS)

    Heaney, R.P.; Weaver, C.M.

    1989-01-01

    Absorption of calcium from intrinsically labeled Ca oxalate was measured in 18 normal women and compared with absorption of Ca from milk in these same subjects, both when the test substances were ingested in separate meals and when ingested together. Fractional Ca absorption from oxalate averaged 0.100 +/- 0.043 when ingested alone and 0.140 +/- 0.063 when ingested together with milk. Absorption was, as expected, substantially lower than absorption from milk (0.358 +/- 0.113). Nevertheless Ca oxalate absorbability in these women was higher than we had previously found for spinach Ca. When milk and Ca oxalate were ingested together, there was no interference of oxalate in milk Ca absorption and no evidence of tracer exchange between the two labeled Ca species

  16. NEUTRONIC REACTOR

    Science.gov (United States)

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  17. Neutron dosimeter

    International Nuclear Information System (INIS)

    Bartko, J.; Schoch, K.F. Jr.; Congedo, T.V.; Anderson, S.L. Jr.

    1989-01-01

    This patent describes a nuclear reactor. It comprises a reactor core; a thermal shield surrounding the reactor core; a pressure vessel surrounding the thermal shield; a neutron dosimeter positioned outside of the thermal shield, the neutron dosimeter comprising a layer of fissile material and a second layer made of a material having an electrical conductivity which permanently varies as a function of its cumulative ion radiation dose; and means, outside the pressure vessel and electrically connected to the layer of second material, for measuring electrical conductivity of the layer of second material

  18. LANSCE: Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Kippen, Karen Elizabeth

    2017-01-01

    The principle goals of this project is to increase flux and improve resolution for neutron energies above 1 keV for nuclear physics experiments; and preserve current strong performance at thermal energies for material science.

  19. LANSCE: Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-02

    The principle goals of this project is to increase flux and improve resolution for neutron energies above 1 keV for nuclear physics experiments; and preserve current strong performance at thermal energies for material science.

  20. European protocol for neutron dosimetry for external beam therapy

    International Nuclear Information System (INIS)

    Broerse, J.J.; Mijnheer, B.J.; Williams, J.R.

    1981-01-01

    The paper attempts to serve the needs of European centres participating in the High LET Therapy Project Group set up under the sponsorship of The European Organization for Research on Treatment of Cancer, to promote cooperation between physicists involved in fast neutron therapy and establish a common basis for neutron dosimetry. Differences in dosimetry procedures between European and American Groups are indicated if relevant. The subject is dealt with under the following main headings: principles of dosimetry of neutron fields, dosimetric methods, physical parameters, determination of absorbed dose at a reference point, determination of absorbed dose at any point, check of absorbed dose given to a patient, dosimetry intercomparisons between institutes. There is an ample bibliography. (U.K.)

  1. Self-powered neutron detector

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1974-01-01

    The invention relates a self-powered neutron detector comprising an emitting body, an insulating material surrounding said body, and a conducting outer cover, a power conductor connected to the emitting body and passing through the insulating material permitting to insert an ammeter between said emitting body and said cover. The invention is characterized in that said emitting body is surrounded by a thin conducting layer of small cross section for neutrons made of high density material said material being capable of absorbing the beta-radiations due to the degradation of the emitting body activating product, while transmitting the fast electrons of high average energy emitted by said emitting body. This can be applied to safety control devices required to provide a quick answer [fr

  2. Current in-pile absorbed dose measurements at the Boris Kidric Institute of nuclear sciences - Vinca, Status report

    Energy Technology Data Exchange (ETDEWEB)

    Draganic, G I [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    So far in-pile absorbed dose measurements have been limited only to experiments in the RA reactor at the Boris Kidric Institute of Nuclear Sciences at Vinca (6.5 D{sub 2}O moderated and 2% enriched uranium). The methods used for absorbed dose and neutron flux measurements were 1,2 discussed in some earlier reports at the IAEA meetings. The purpose of the present report is to illustrate the further development of methods of determining in-pile absorbed doses (author)

  3. Production of neutron shielding material

    International Nuclear Information System (INIS)

    Roszler, J.J.

    1979-01-01

    A neutron-absorbing material consisting of a layer of boron carbide sandwiched between layers of aluminum is produced by constructing a rectangular box from aluminum plate leaving one end open. The box is filled with a uniform mixture of finely-divided boron carbide and anodized aluminum powders and the open end is sealed by welding an aluminum plate in place. The box is then heated to 800-850 deg F and rolled to reduce its thickness to the desired amount. The hot rolling bonds or sinters the particles of metal powder or boron carbide. (LL)

  4. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  5. Neutron stars velocities and magnetic fields

    Science.gov (United States)

    Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.

    2018-01-01

    We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.

  6. Preliminary neutron shielding calculations of the electronics in the EAST BES systems focusing on neutron induced displacement damage

    Energy Technology Data Exchange (ETDEWEB)

    Náfrádi, Gábor, E-mail: nafradi@reak.bme.hu [Institute of Nuclear Techniques (NTI), Budapest University of Technology and Economics (BME), H-1111 Budapest (Hungary); Kovácsik, Ákos, E-mail: kovacsik.akos@reak.bme.hu [Institute of Nuclear Techniques (NTI), Budapest University of Technology and Economics (BME), H-1111 Budapest (Hungary); Németh, József, E-mail: nemeth.jozsef@wigner.mta.hu [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics (Wigner RCP), Hungarian Academy of Sciences (HAS), POB 49, 1525 Budapest (Hungary); Pór, Gábor, E-mail: por@reak.bme.hu [Institute of Nuclear Techniques (NTI), Budapest University of Technology and Economics (BME), H-1111 Budapest (Hungary); Zoletnik, Sándor, E-mail: zoletnik.sandor@wigner.mta.hu [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics (Wigner RCP), Hungarian Academy of Sciences (HAS), POB 49, 1525 Budapest (Hungary)

    2016-11-15

    Monte Carlo N-Particle (MCNP) calculations were carried out to compare neutron shielding capabilities of three frequently used neutron shielding materials: polyethylene without neutron absorbers, polyethylene with boron absorbers and polyethylene with lithium absorbers, according to Non Ionizing Energy Loss (NIEL). The results of 1D shielding calculations showed that simple neutron moderating materials can provide sufficient and cheap shielding against 2.45 MeV and 14.1 MeV fusion neutrons, in terms of 1 MeV neutron equivalent flux, in silicon targets, which is the most commonly used material of electronic components. Based on these results a new shielding concept is proposed which can be taken into consideration where the reduction of displacement damage is the main goal and the free space available for shielding is limited. Based on this shielding concept detailed 3D calculations were carried out to describe the properties of the neutron shielding of the Beam Emission Spectroscopy (BES) system installed at the EAST tokamak.

  7. Neutron stars. [quantum mechanical processes associated with magnetic fields

    Science.gov (United States)

    Canuto, V.

    1978-01-01

    Quantum-mechanical processes associated with the presence of high magnetic fields and the effect of such fields on the evolution of neutron stars are reviewed. A technical description of the interior of a neutron star is presented. The neutron star-pulsar relation is reviewed and consideration is given to supernovae explosions, flux conservation in neutron stars, gauge-invariant derivation of the equation of state for a strongly magnetized gas, neutron beta-decay, and the stability condition for a neutron star.

  8. Universal behavior of strongly correlated Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, Vasilii R [B.P. Konstantinov St. Petersburg Institute of Nuclear Physics, Russian Academy of Sciences, Gatchina, Leningrad region, Rusian Federation (Russian Federation); Amusia, M Ya [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Popov, Konstantin G [Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar (Russian Federation)

    2007-06-30

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T{sub c} superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  9. Universal behavior of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Shaginyan, Vasilii R; Amusia, M Ya; Popov, Konstantin G

    2007-01-01

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T c superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  10. Transportable type neutron level indicators

    International Nuclear Information System (INIS)

    Khatskevich, M.V.; Kalinin, O.V.; Moskovkin, V.N.; Molchanov, A.V.; Bobkov, A.D.; Rabotnov, Yu.A.

    1979-01-01

    Some peculiarities of designing level neutron converters (LNC) for portable indicators or level neutron relays are considered. The effect of the LNC geometry and other factors on measurement errors has been studied. Calibration results of the LNC with a neutron reflector and without it are presented. It is shown that the problem of level monitoring with the help of portable indicators can be solved practically for any volume, provided two LNC modifications with reflectors are available: the NPU-G modification with horizontal location of a counter for large volumes and the NPU-V with vertical location of a counter for lesser volumes. A possibility of perfecting LNC performances by shielding the counter with thermal neutron absorbers has been studied. The design of the NPU-V modification for the NIUP-2 level indicator is described. It is intended for tubes and cylinders 30-100 mm in diameter. Measurements carried out on different steel and aluminium vessels with a diameter ranging from 300 to 100 mm and a wall thickness of up to 16 mm with the help of the NPU-V and NPU-G modifications proved the efficiency of the LNC to control a variety of products (kerosine, gasoline, oils, acids, alkalis) [ru

  11. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.

    2002-01-01

    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  12. Application of neutron radiography to plant research

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko

    1995-01-01

    Neutron radiography was used to image plant roots in soils. Soybeans were used as experimental plants. When the length of the soybean root was 3-5 cm, the plant was transferred to an alminum foil and cultivated by adding polyvinyl alcoholic polymer (polymer A) and pulm-derived polymer (polymer B) as water absorbing polymers to soils. Plant samples were removed sequentially and irradiated with neutrons for 19 seconds at the JRR-3M neutron radiography facility. After irradiation, X-ray film images were obtained to observe water dynamics of roots and soils. Neutron images of soybean roots showed that secondary roots had grown on the side of water absorbing polymer-added soils in the case of polymer A, but on the side of non-added soils in the case of polymer B. When polymer B was added just below the soils where roots were grown, root growth was restricted only to the soil surface, and plant growth condition and dry weight were similar to those in the control plants. Thus the design of root shape may be possible by using polymer B. Similar experiment was made on 5 kinds of trees. Images of cross section of Japanese Cypress revealed that water contained in the tree is not always present along with growth ring of the tree. These findings may have an important implication for the potential application of neutron radiography in plant research. (N.K.)

  13. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    The method of operating a water-cooled neutronic reactor having a graphite moderator is described which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40--60 volume percent of the mixture, in contact with the graphite moderator. 2 claims, 4 figures

  14. Neutron reflectivity

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples and two examples related to the materials for energy.

  15. Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casey, D. T., E-mail: casey21@llnl.gov; Munro, D. H.; Grim, G. P.; Landen, O. L.; Spears, B. K.; Fittinghoff, D. N.; Field, J. E.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Volegov, P. L.; Merrill, F. E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.

  16. An omnidirectional electromagnetic absorber made of metamaterials

    International Nuclear Information System (INIS)

    Cheng Qiang; Cui Tiejun; Jiang Weixiang; Cai Bengeng

    2010-01-01

    In a recent theoretical work by Narimanov and Kildishev (2009 Appl. Phys. Lett. 95 041106) an optical omnidirectional light absorber based on metamaterials was proposed, in which theoretical analysis and numerical simulations showed that all optical waves hitting the absorber are trapped and absorbed. Here we report the first experimental demonstration of an omnidirectional electromagnetic absorber in the microwave frequency. The proposed device is composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields. It is shown that the absorption rate can reach 99 per cent in the microwave frequency. The all-directional full absorption property makes the device behave like an 'electromagnetic black body', and the wave trapping and absorbing properties simulate, to some extent, an 'electromagnetic black hole.' We expect that such a device could be used as a thermal emitting source and to harvest electromagnetic waves.

  17. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.

    Science.gov (United States)

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-04-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber-based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m(-2)). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices.

  18. A Simple Correlation for Neutron Capture Rates from Nuclear Masses

    Energy Technology Data Exchange (ETDEWEB)

    Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-30

    Recent studies of neutron capture performed at LANL have revealed a previously unrecognized connection between nuclear masses and the average neutron capture cross section. A team of three scientists from Los Alamos (P-27), Yale Univ., and Istanbul Univ. (Turkey) recently discovered this connection and have published their results as a Rapid Communication in Physical Review C. Neutron capture is a reaction in which a free neutron is absorbed by the nucleus, keeping the element unchanged, but changing isotopes. This reaction is typically exothermic. As a result, the reaction can proceed even when many other reaction channels are closed. In an astrophysical environment, this means that neutron capture is the primary mechanism by which all of the elements with atomic number greater than nickel are produced is neutron capture.

  19. Comments on liquid hydrogen absorbers for MICE

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    This report describes the heat transfer problems associated with a liquid hydrogen absorber for the MICE experiment. This report describes a technique for modeling heat transfer from the outside world, to the absorber case and in its vacuum vessel, to the hydrogen and then into helium gas at 14 K. Also presented are the equation for free convection cooling of the liquid hydrogen in the absorber

  20. Multiband Negative Permittivity Metamaterials and Absorbers

    Directory of Open Access Journals (Sweden)

    Yiran Tian

    2013-01-01

    Full Text Available Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.

  1. Time reversal tests in polarized neutron reactions

    International Nuclear Information System (INIS)

    Asahi, Koichiro; Bowman, J.D.; Crawford, B.

    1998-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In recent years the nuclear weak interaction has been studied in the compound nucleus via parity violation. The observed parity-violating effects are strongly enhanced by nuclear structure. The predictions are that the interaction of polarized neutrons with polarized nuclear targets could be also used to perform sensitive tests of time-reversal-violation because of the nuclear enhancements. The author has designed experiments to search for time-reversal violation in neutron-nucleus interactions. He has also developed techniques to polarize neutrons with laser-polarized 3 He gas targets. Using the polarized 3 He neutron spin filter, he has performed two experiments at LANSCE: an absolute neutron beam polarization measurement with an accuracy of 0.2--0.3% and a neutron spin-rotation measurement on a 139 La sample

  2. Neutron star in the presence of strong magnetic field

    Indian Academy of Sciences (India)

    thereby giving the idea that compact stars might contain deconfined and chirally restored quark matter in them. Recently [1], the mass measurement of mil- lisecond pulsar PSR J1614-2230 has set a new robust mass limit for compact stars to be. M = 1.97 ± 0.04M⊙. This value, together with the mass of pulsar J1903+0327 ...

  3. Neutron stars as cosmic neutron matter laboratories

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    Recent developments which have radically changed our understanding of the dynamics of neutron star superfluids and the free precession of neutron stars are summarized, and the extent to which neutron stars are cosmic neutron matter laboratories is discussed. 17 refs., 1 tab

  4. Personnel neutron dosimeter for use in a plutonium processing plant

    International Nuclear Information System (INIS)

    Brunskill, R.T.; Hwang, F.S.W.

    1978-01-01

    A thermoluminesence dosimeter for personnel neutron dose measurement, which is based on the albedo principle, has been developed at Windscale works. The dosimeter has been calibrated against a 238 Pu/Be neutron source using different degrees of moderation and against a variety of neutron spectra prevailing in different areas of the Plutonium Finishing Plant. The dosimeter consists of two identical parts in which the sensitive elements are graphite discs which have thermoluminescent crystals sealed to the plane faces with a high temperature resin. The graphite discs are supported in teflon washers which fit into a body of tufnol. A circular insert of boronated polythene in each tufnol body provides a thermal neutron absorber for the sensitive element in the other half of the dosimeter. Natural lithium borate was used as the neutron sensitive phosphor and a lithium borate made from isotopes 7 Li (99.9%) and 11 B (99.2%) as the neutron insensitive materials. Neutron-sensitive lithium borate is sealed to one face of each disc and the neutron-insensitive material to the opposite face. The dosimeter is so assembled that the neutron-sensitive faces both lie in the central plane. The design is such that one neutron sensitive face responds to the incident flux of neutron only while the other responds to the albedo flux

  5. Preparation of super absorbent by irradiation polymerization

    International Nuclear Information System (INIS)

    Hua Fengjun; Tan Chunhong; Qian Mengping

    1995-01-01

    A kind of absorbent is prepared by gamma-rays irradiated by reversed-phase suspension polymerization. Drying particles have 1400 (g/g) absorbency in de-ionic water. Effects of reactive conditions, e.g.: dose-rate, dose, monomer concentration, degree of monomer neutralization and crosslinking agents on absorbency in de-ionic water are discussed. The cause of absorbing de-ionic water by polymer is related to its network structure and ionic equilibrium in particle. Accordingly, a suit reactive condition is chosen for preparation of hydro gel spheres

  6. Absorber rod drive for nuclear reactors

    International Nuclear Information System (INIS)

    Acher, H.

    1985-01-01

    The invention concerns a further addition to the invention of DE 33 42 830 A1. The free contact of the hollow piston with the nut due to hydraulic pressure is replaced by a hydraulic or spring attachment. The pressure system required to produce the hydraulic pressure is therefore omitted, and the electrical power required for driving the pump or the mass flow is also omitted. The absorber rod slotted along its longitudinal axis is replaced by an absorber rod, in the longitudinal axis of which a hollow piston is connected together with the absorber rod. This makes the absorber rod more stable, and assembly is simplified. (orig./HP) [de

  7. TPX/TFTR Neutral Beam energy absorbers

    International Nuclear Information System (INIS)

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-01-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET

  8. Neutron diffusion in spheroidal, bispherical, and toroidal systems

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1986-01-01

    The neutron flux has been studied around absorbing bodies of spheroidal, bispherical, and toroidal shapes in an infinite nonabsorbing medium. Exact solutions have been obtained by using effective boundary conditions at the surfaces of the absorbing bodies. The problems considered are as follows: 1. Neutron flux and current distributions around prolate and oblate spheroids. It is shown that an equivalent sphere approximation can lead to accurate values for the rate of absorption. 2. Neutron flux and current in a bispherical system of unequal spheres. Three separate situations arise here: (a) two absorbing spheres, (b) two spherical sources, and (c) one spherical source and one absorbing sphere. It is shown how the absorption rate in the two spheres depends on their separation. 3. Neutron flux and current in a toroidal system: (a) an absorbing toroid and (b) a toroidal source. The latter case simulates the flux distribution from a thermonuclear reactor vessel. Finally, a brief description of how these techniques can be extended to multiregion problems is given

  9. Cyclotron Lines in Accreting Neutron Star Spectra

    Science.gov (United States)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  10. Basic of Neutron NDA

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of 3He detector function and designs; and differentiate between passive and active assay techniques.

  11. Calculation of isotope burn-up and change in efficiency of absorbing elements of WWER-1000 control and protection system during burn-up

    International Nuclear Information System (INIS)

    Timofeeva, O.A.; Kurakin, K.U.

    2006-01-01

    The report deals with fast and thermal neutron flows distribution in structural elements of WWER-1000 fuel assembly and absorbing rods, determination of absorbing isotope burn-up and worth variation in WWER reactor control and protection system rods. Simulation of absorber rod burn-up is provided using code package SAPPHIRE 9 5 end RC W WER allowing detailed description of the core segment spatial model. Maximum burn-up of absorbing rods and respective worth variation of control and protection system rods is determined on the basis of a number of calculations considering known characteristics of fuel cycles (Authors)

  12. German neutron scattering conference. Programme and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas (ed.)

    2012-07-01

    The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.

  13. German neutron scattering conference. Programme and abstracts

    International Nuclear Information System (INIS)

    Brueckel, Thomas

    2012-01-01

    The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.

  14. Gaseous carbon dioxide absorbing column

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1994-01-01

    The absorbing column of the present invention comprises a cyclone to which CO 2 gas and Ca(OH) 2 are blown to form CaCO 3 , a water supply means connected to an upper portion of the cyclone for forming a thin water membrane on the inner wall thereof, and a water processing means connected to a lower portion of the cyclone for draining water incorporating CaCO 3 . If a mixed fluid of CO 2 gas and Ca(OH) 2 is blown in a state where a flowing water membrane is formed on the inner wall of the cyclone, formation of CaCO 3 is promoted also in the inside of the cyclone in addition to the formation of CaCO 3 in the course of blowing. Then, formed CaCO 3 is discharged from the lower portion of the cyclone together with downwardly flowing water. With such procedures, solid contents such as CaCO 3 separated at the inner circumferential wall are sent into the thin water membrane, adsorbed and captured, and the solid contents are successively washed out, so that a phenomenon that the solid contents deposit and grow on the inner wall of the cyclone can be prevented effectively. (T.M.)

  15. Radiation absorbed doses in cephalography

    International Nuclear Information System (INIS)

    Eliasson, S.; Julin, P.; Richter, S.; Stenstroem, B.

    1984-01-01

    Radiation absorbed doses to different organs in the head and neck region in lateral (LAT) and postero-anterior (PA) cephalography were investigated. The doses were measured by thermoluminescence dosimeters (TLD) on a tissue equivalent phantom head. Lanthanide screens in speed group 4 were used at 90 and 85 k Vp. A near-focus aluminium dodger was used and the radiation beam was collimated strictly to the face. The maximum entrance dose from LAT was 0.25 mGy and 0.42 mGy from a PA exposure. The doses to the salivary glands ranged between 0.2 and 0.02 mGy at LAT and between 0.15 and 0.04 mGy at PA exposures. The average thyroid gland dose without any shielding was 0.11 mGy (LAT) and 0.06 mGy (PA). When a dodger was used the dose was reduced to 0.07 mGy (LAT). If the thyroid gland was sheilded off, the dose was further reduced to 0.01 mGy and if the thyroid region was collimated out of the primary radiation field the dose was reduced to only 0.005 mGy. (authors)

  16. A comparison of Nodal methods in neutron diffusion calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tavron, Barak [Israel Electric Company, Haifa (Israel) Nuclear Engineering Dept. Research and Development Div.

    1996-12-01

    The nuclear engineering department at IEC uses in the reactor analysis three neutron diffusion codes based on nodal methods. The codes, GNOMERl, ADMARC2 and NOXER3 solve the neutron diffusion equation to obtain flux and power distributions in the core. The resulting flux distributions are used for the furl cycle analysis and for fuel reload optimization. This work presents a comparison of the various nodal methods employed in the above codes. Nodal methods (also called Coarse-mesh methods) have been designed to solve problems that contain relatively coarse areas of homogeneous composition. In the nodal method parts of the equation that present the state in the homogeneous area are solved analytically while, according to various assumptions and continuity requirements, a general solution is sought out. Thus efficiency of the method for this kind of problems, is very high compared with the finite element and finite difference methods. On the other hand, using this method one can get only approximate information about the node vicinity (or coarse-mesh area, usually a feel assembly of a 20 cm size). These characteristics of the nodal method make it suitable for feel cycle analysis and reload optimization. This analysis requires many subsequent calculations of the flux and power distributions for the feel assemblies while there is no need for detailed distribution within the assembly. For obtaining detailed distribution within the assembly methods of power reconstruction may be applied. However homogenization of feel assembly properties, required for the nodal method, may cause difficulties when applied to fuel assemblies with many absorber rods, due to exciting strong neutron properties heterogeneity within the assembly. (author).

  17. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  18. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    International Nuclear Information System (INIS)

    Verbeke, Jerome M.

    1999-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only

  19. Hydrogen Absorption in Metal Thin Films and Heterostructures Investigated in Situ with Neutron and X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Sara J. Callori

    2016-05-01

    Full Text Available Due to hydrogen possessing a relatively large neutron scattering length, hydrogen absorption and desorption behaviors in metal thin films can straightforwardly be investigated by neutron reflectometry. However, to further elucidate the chemical structure of the hydrogen absorbing materials, complementary techniques such as high resolution X-ray reflectometry and diffraction remain important too. Examples of work on such systems include Nb- and Pd-based multilayers, where Nb and Pd both have strong affinity to hydrogen. W/Nb and Fe/Nb multilayers were measured in situ with unpolarized and polarized neutron reflectometry under hydrogen gas charging conditions. The gas-pressure/hydrogen-concentration dependence, the hydrogen-induced macroscopic film swelling as well as the increase in crystal lattice plane distances of the films were determined. Ferromagnetic-Co/Pd multilayers were studied with polarized neutron reflectometry and in situ ferromagnetic resonance measurements to understand the effect of hydrogen absorption on the magnetic properties of the system. This electronic effect enables a novel approach for hydrogen sensing using a magnetic readout scheme.

  20. Need for improved standards in neutron personnel dosimetry

    International Nuclear Information System (INIS)

    Auxier, J.A.

    1976-01-01

    There is a continuing need for standards in neutron monitoring. A discussion of special problem areas and the benefits of intercomparisons is given. The RBE for leukemia induction in the survivors of the nuclear bombings of Hiroshima and Nagasaki is greater than ten for absorbed doses in the bone marrow of less than 100 rads; this may have an important impact on neutron standards preparation

  1. Calculated characteristics of subcritical assembly with anisotropic transport of neutrons

    International Nuclear Information System (INIS)

    Gorin, N.V.; Lipilina, E.N.; Lyutov, V.D.; Saukov, A.I.

    2003-01-01

    There was considered possibility of creating enough sub-critical system that multiply neutron fluence from a primary source by many orders. For assemblies with high neutron tie between parts, it is impossible. That is why there was developed a construction consisting of many units (cascades) having weak feedback with preceding cascades. The feedback attenuation was obtained placing layers of slow neutron absorber and moderators between the cascades of fission material. Anisotropy of fast neutron transport through the layers was used. The system consisted of many identical cascades aligning one by another. Each cascade consists of layers of moderator, fissile material and absorber of slow neutrons. The calculations were carried out using the code MCNP.4a with nuclear data library ENDF/B5. In this construction neutrons spread predominantly in one direction multiplying in each next fissile layer, and they attenuate considerably in the opposite direction. In a calculated construction, multiplication factor of one cascade is about 1.5 and multiplication factor of whole construction composed of n cascades is 1.5 n . Calculated keff value is 0.9 for one cascade and does not exceed 0.98 for a system containing any number of cascades. Therefore the assembly is always sub-critical and therefore it is safe in respect of criticality. There was considered using such a sub-critical assembly to create a powerful neutron fluence for neutron boron-capturing therapy. The system merits and demerits were discussed. (authors)

  2. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally...

  3. Strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Goldman, M.V.

    1984-01-01

    After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)

  4. Radiation-Induced Color Centers in LiF for Dosimetry at High Absorbed Dose Rates

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Ellis, S. C.

    1980-01-01

    Color centers formed by irradiation of optically clear crystals of pure LiF may be analyzed spectrophotometrically for dosimetry in the absorbed dose range from 102 to 107 Gy. Routine monitoring of intense electron beams is an important application. Both 6LiF and 7LiF forms are commercially...... available, and when used with filters as albedo dosimeters in pairs, they provide discrimination of neutron and gamma-ray doses....

  5. Cell death following thermal neutron exposure

    Energy Technology Data Exchange (ETDEWEB)

    Paterson, L.C. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Atanackovic, J. [Ontario Power Generation, Toronto, Ontario (Canada); Boyer, C. [Canadian Neutron Beam Centre, Chalk River, Ontario (Canada); El-Jaby, S.; Priest, N.D. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Seymour, C.B.; Boreham, D.R. [McMaster Univ., Hamilton, Ontario (Canada); Richardson, R.B. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2014-07-01

    When individuals are exposed to unknown external ionizing radiation, it is desirable to have the means to assess both the absorbed dose received (Gy) and the radiation quality. Yet, conventional biodosimetry techniques, specifically the dicentric chromosome assay, cannot differentiate between the damage caused by high- and low-linear energy transfer (LET) exposures. Frequencies of apoptosis and necrosis, may provide an alternative method that assesses both the absorbed dose and radiation quality after unknown exposures. For this preliminary study, human lymphocytes were irradiated with {sup 60}Co gamma rays and thermal neutrons. Both apoptosis and necrosis increased with increasing gamma dose. In contrast, no dose-response was observed following thermal neutron exposure at doses up to 2.61 Gy. (author)

  6. Neutron dosimetric measurements in shuttle and MIR

    International Nuclear Information System (INIS)

    Reitz, G.

    2001-01-01

    Detector packages consisting of thermoluminescence detectors (TLD), nuclear emulsions and plastic track detectors were exposed at identical positions inside MIR space station and on shuttle flights inside Spacelab and Spacehab during different phases of the solar cycle. The objectives of the investigations are to provide data on charge and energy spectra of heavy ions, and the contribution of events with low-energy deposit (protons, electrons, gamma, etc.) to the dose, as well as the contribution of secondaries, such as nuclear disintegration stars and neutrons. For neutron dosimetry 6 LiF (TLD600) and 7 LiF (TLD700) chips were used both of which have almost the same response to gamma rays but different response to neutrons. Neutrons in space are produced mainly in evaporation and knock-on processes with energies mainly of 1-10 MeV and up to several 100 MeV, respectively. The energy spectrum undergoes continuous changes toward greater depth in the attenuating material until an equilibrium is reached. In equilibrium, the spectrum is a wide continuum extending down to thermal energies to which the 6 LiF is sensitive. Based on the difference of absorbed doses in the 6 LiF and 7 LiF chips, thermal neutron fluxes from 1 to 2.3 cm -2 s -1 are calculated using the assumption that the maximum induced dose in TLD600 for 1 neutron cm -2 is 1.6x10 -10 Gy (Horrowitz and Freeman, Nucl. Instr. and Meth. 157 (1978) 393). It is assumed that the flux of high-energy neutrons is at least of that quantity. Tissue doses were calculated taking as a mean ambient absorbed dose per neutron 6x10 -12 Gy cm 2 (for a 10 MeV neutron). The neutron equivalent doses for the above-mentioned fluxes are 52 μGy d -1 and 120 μGy d -1 . In recent experiments, a personal neutron dosimeter was integrated into the dosimeter packages. First results of this dosimeter which is based on nuclear track detectors with converter foils are reported. For future measurements, a scintillator counter with

  7. Pulsed neutron generator

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Bykovskii, Yu.A.; Vergun, I.I.; Kozlovskii, K.I.; Kozyrev, Yu.P.; Leonov, R.K.; Simagin, B.I.; Tsybin, A.S.; Shikanov, A.Ie.

    1986-03-01

    The paper describes a new device for generating pulsed neutron fields, utilized in nuclear geophysics for carrying out pulsed neutron logging and activation analysis under field conditions. The invention employs a sealed-off neutron tube with a laser ion source which increases neutron yield to the level of 10 neutrons per second or higher. 2 refs., 1 fig

  8. Absorbing Property of Multi-layered Short Carbon Fiber Absorbing Coating

    OpenAIRE

    Liu, Zhaohui; Tao, Rui; Ban, Guodong; Luo, Ping

    2018-01-01

    The radar absorbing coating was prepared with short carbon fiber asabsorbent and waterborne polyurethane (WPU) as matrix resin. The coating’s absorbing property was tested with vectornetwork analyzer, using aramid honeycomb as air layer which was matched withcarbon fiber coating. The results demonstrate that the single-layered carbonfiber absorbing coating presented relatively poor absorbing property when thelayer was thin, and the performance was slightly improved after the matched airlayer ...

  9. Absorber element for fast breeder reactor

    International Nuclear Information System (INIS)

    Verset, L.

    1987-01-01

    This absorber element is characterized by a new head which avoids an accident disconnection of the mobil absorber. This head is made by a superior piece which can take shore up an adjusting ring on an adjusting bearing on the inferior piece. The intermediate piece is catched at the superior piece by a link of chain [fr

  10. Analysis of absorbing times of quantum walks

    International Nuclear Information System (INIS)

    Yamasaki, Tomohiro; Kobayashi, Hirotada; Imai, Hiroshi

    2003-01-01

    Quantum walks are expected to provide useful algorithmic tools for quantum computation. This paper introduces absorbing probability and time of quantum walks and gives both numerical simulation results and theoretical analyses on Hadamard walks on the line and symmetric walks on the hypercube from the viewpoint of absorbing probability and time

  11. Absorber transmissivities in 57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ballet, O.

    1985-01-01

    Some useful relations are derived for the polarization dependent optical index of 57 Fe Moessbauer absorbers. Real rotation matrices are extensively used and, besides wave-direction dependence, their properties simplify also the treatment of texture and f-anisotropy. The derivation of absorber transmissivities from the optical index is discussed with a special emphasis on line overlapping. (Auth.)

  12. Neutron scattering

    International Nuclear Information System (INIS)

    1991-02-01

    The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research

  13. Neutron radiotherapy

    International Nuclear Information System (INIS)

    Thomas, F.J.

    1987-01-01

    The rationale for the application of neutron radiation for the treatment of malignancies is well established based on radiobiological studies. These factors include the presence of tissue hypoxia, radiation response as a function of cell cycle kinetics, the repair capacity of the malignant cells and the regeneration of malignant cells during a fractionated course of radiation. Despite the constraints under which the clinical trials to date have been conducted, promising results have been obtained. Randomized trials have demonstrated that neutron therapy is the treatment of choice for inoperable salivary gland carcinomas. A randomized trial of the RTOG has demonstrated a probable advantage for neutron radiation in the treatment of advanced prostate carcinomas but is yet to be confirmed. An improvement in local control has also been observed for selected sarcomas. Equivocal or contradictory results have been obtained for squamous cell carcinomas of the head and neck, bronchogenic carcinomas, advanced rectal, transitional cell carcinomas of the bladder and cervical carcinomas. The practical consequences of these radiobiological and clinical observations on the current generation of clinical trials is discussed

  14. Neutron diffraction on CeMnAlD{sub x} (0{<=}x{<=}2.5)

    Energy Technology Data Exchange (ETDEWEB)

    Spatz, P.; Gross, K.; Schlapbach, L. [Fribourg Univ. (Switzerland); Fischer, P.; Fauth, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    CeMnAl was found to absorb considerable amounts of hydrogen. Part of the totally stored hydrogen is absorbed at low pressures (< 10 mbar). Additional hydrogen can be absorbed and desorbed reversible in a wide pressure range (10 mbar to 10 bar) at room temperature. In order to a better understanding of this new metal-hydride system, we performed neutron diffraction on deuterated CeMnAl samples with different D-concentrations. (author) 1 fig., 2 refs.

  15. Physical aspects on the neutron irradiation. 4. Dosimetry with ionization chamber

    International Nuclear Information System (INIS)

    Hiraoka, Takeshi; Takada, Masashi

    2008-01-01

    Absolute measurements of the absorbed dose for irradiation are generally made using ionization chambers, which should be calibrated by the standard radiation source. The neutron dose measurements are not simple since gamma rays always contaminate the neutron flux and a variety of charged particles are induced by neutrons. Following subjects are described: (1) The method by ICRU 45 to estimate total dose of neutrons and gamma ray, (2) The method to measure the neutron dose and the gamma ray dose separately using paired ionization-chambers, and (3) The calibration of ionization chambers. The stability of the standard ionization-chambers is also presented. (K.Y.)

  16. Liquid absorber experiments in ZED-2

    International Nuclear Information System (INIS)

    McDonnell, F.N.

    1975-07-01

    A set of liquid absorber experiments was performed in ZED-2 to provide data with which to test the adequacy of calculational methods for zone controller and refuelling studies associated with advanced reactor concepts. The absorber consisted of a full length aluminum tube, containing either i)H 2 O, ii)H 2 O + boron (2.5 mg/ml) or iii)H 2 O + boron (8.0 mg/ml). The tube was suspended vertically at interstitial or in-channel locations. A U-tube absorber was also simulated using two absorber tubes with appropriate spacers. Experiments were carried out at two different square lattice pitches, 22.86 and 27.94 cm. Measurements were made of the reactivity effects of the absorbers and, in some cases, of the detailed flux distribution near the perturbation. The results from one calculational method, the source-sink approach, were compared with the data from selected experiments. (author)

  17. The Time Structure of Hadronic Showers in Highly Granular Calorimeters with Tungsten and Steel Absorbers

    CERN Document Server

    Adloff, C.; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.; Repond, J.; Schlereth, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Eigen, G.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Arfaoui, A.; Benoit, M.; Dannheim, D.; Elsener, K.; Folger, G.; Grefe, C.; Ivantchenko, V.; Killenberg, M.; Klempt, W.; van der Kraaij, E.; Linssen, L.; Lucaci-Timoce, A.-I.; Münnich, A.; Poss, S.; Ribon, A.; Roloff, P.; Sailer, A.; Schlatter, D.; Sicking, E.; Strube, J.; Uzhinskiy, V.; Carloganu, C.; Gay, P.; Manen, S.; Royer, L.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Feege, N.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Fagot, A.; Tytgat, M.; Zaganidis, N.; Hostachy, J.-Y.; Morin, L.; Garutti, E.; Laurien, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Ueno, H.; Yoshioka, T.; Dauncey, P.D.; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Ete, R.; Grenier, G.; Han, R.; Ianigro, J-C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kozlov, V.; Soloviev, Y.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Popova, E.; Tikhomirov, V.; Gabriel, M.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Conforti di Lorenzo, S.; Cornebise, P.; Fleury, J.; Frisson, T.; van der Kolk, N.; Richard, F.; Pöschl, R.; Rouene, J.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Ruan, M.; Tran, T.H.; Videau, H.; Callier, S.; Dulucq, F.; Martin-Chassard, G.; de la Taille, Ch.; Raux, L.; Seguin-Moreau, N.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Ono, H.; Takeshita, T.; Uozumi, S.; Chai, J.S.; Song, H.S.; Lee, S.H.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2014-01-01

    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.

  18. Metal–insulator–metal light absorber: a continuous structure

    International Nuclear Information System (INIS)

    Yan, M

    2013-01-01

    A type of light absorber made of continuous layers of metal and dielectric films is studied. The metal films can have thicknesses close to their skin depths in the wavelength range concerned, which allows for both light transmission and reflection. Resonances induced by multiple reflections in the structure, when combined with the inherent lossy nature of metals, result in strong absorption spectral features. An eigen-mode analysis is carried out for the plasmonic multilayer nanostructures which provides a generic understanding of the absorption features. Experimentally, the calculation is verified by a reflection measurement with a representative structure. Such an absorber is simple to fabricate. The highly efficient absorption characteristics can be potentially deployed for optical filter designs, sensors, accurate photothermal temperature control in a micro-environment and even for backscattering reduction of small particles, etc. (paper)

  19. Strong intrinsic motivation

    OpenAIRE

    Dessi, Roberta; Rustichini, Aldo

    2015-01-01

    A large literature in psychology, and more recently in economics, has argued that monetary rewards can reduce intrinsic motivation. We investigate whether the negative impact persists when intrinsic motivation is strong, and test this hypothesis experimentally focusing on the motivation to undertake interesting and challenging tasks, informative about individual ability. We find that this type of task can generate strong intrinsic motivation, that is impervious to the effect of monetary incen...

  20. Bitcoin Meets Strong Consistency

    OpenAIRE

    Decker, Christian; Seidel, Jochen; Wattenhofer, Roger

    2014-01-01

    The Bitcoin system only provides eventual consistency. For everyday life, the time to confirm a Bitcoin transaction is prohibitively slow. In this paper we propose a new system, built on the Bitcoin blockchain, which enables strong consistency. Our system, PeerCensus, acts as a certification authority, manages peer identities in a peer-to-peer network, and ultimately enhances Bitcoin and similar systems with strong consistency. Our extensive analysis shows that PeerCensus is in a secure state...

  1. Strong gravity and supersymmetry

    International Nuclear Information System (INIS)

    Chamseddine, Ali H.; Salam, A.; Strathdee, J.

    1977-11-01

    A supersymmetric theory is constructed for a strong f plus a weak g graviton, together with their accompanying massive gravitinos, by gaugin the gradel 0Sp(2,2,1)x 0Sp(2,2,1) structure. The mixing term between f and g fields, which makes the strong graviton massive, can be introduced through a spontaneous symmetry-breaking mechanism implemented in this note by constructing a non-linear realization of the symmetry group

  2. Theory of Pulsed Neutron Experiments in Highly Heterogeneous Multiplying Media

    International Nuclear Information System (INIS)

    Corno, S.E.

    1965-01-01

    In this work we investigate the time and space dependence of the neutron flux within a highly heterogeneous assembly, in which pulsed or sinusoidally modulated neutrons are injected. We consider, for the sake of simplicity, a device consisting of a cylindrical block of heavy moderator, along the axis of which a line-shaped region of fissionable material is located. The driving neutron source is assumed to be located on one of the end faces of the cylinder. The extent of the fissionable region allows us to deal with it as with an absorbing and multiplying singularity of the neutron field. As our attention is mostly concentrated on space and time variation of the neutron flux, rather crude approximations are assumed as far as the energy dependence of the neutron population is concerned. Within the limits of the age-diffusion theory, the response of the device to any neutron excitation may be found in closed form. For a sinusoidally modulated source of given frequency, it may easily be shown that, if the axial singularity were a purely absorbing one, the neutron waves being propagated along the device would possess a phase shift; a wavelength and an attenuation constant depending on the absorbing properties of the singularity. This picture becomes more and more complicated when neutron multiplication occurs. For this general case the solution derived in our paper obviously turns out to be dependent on both absorption and multiplication properties of the singularity. This circumstance suggests, among others, the idea of using a device of the type described above for testing fuel elements of heterogeneous reactors. (author) [fr

  3. Dual-sided microstructured semiconductor neutron detectors (DSMSNDs)

    International Nuclear Information System (INIS)

    Fronk, Ryan G.; Bellinger, Steven L.; Henson, Luke C.; Ochs, Taylor R.; Smith, Colten T.; Kenneth Shultis, J.; McGregor, Douglas S.

    2015-01-01

    Microstructured semiconductor neutron detectors (MSNDs) have in recent years received much interest as high-efficiency replacements for thin-film-coated thermal neutron detectors. The basic device structure of the MSND involves micro-sized trenches that are etched into a vertically-oriented pvn-junction diode that are backfilled with a neutron converting material. Neutrons absorbed within the converting material induce fission of the parent nucleus, producing a pair of energetic charged-particle reaction products that can be counted by the diode. The MSND deep-etched microstructures produce good neutron-absorption and reaction-product counting efficiencies, offering a 10× improvement in intrinsic thermal neutron detection efficiency over thin-film-coated devices. Performance of present-day MSNDs are nearing theoretical limits; streaming paths between the conversion-material backfilled trenches, allow a considerable fraction of neutrons to pass undetected through the device. Dual-sided microstructured semiconductor neutron detectors (DSMSNDs) have been developed that utilize a complementary second set of trenches on the back-side of the device to count streaming neutrons. DSMSND devices are theoretically capable of greater than 80% intrinsic thermal neutron detection efficiency for a 1-mm thick device. The first such prototype DSMSNDs, presented here, have achieved 29.48±0.29% nearly 2× better than MSNDs with similar microstructure dimensions.

  4. Study of the RP-10 reactor neutron beam applied to the neutron radiography

    International Nuclear Information System (INIS)

    Zegarra, Manuel; Lopez, Alcides

    2013-01-01

    We have studied the RP-10 reactor radial neutron beam No. 3, which is used for neutron radiographies, by comparing radiograph's with and without the inner duct, and neutron flux determination with in flakes along the external duct, being the presence of photons creating signals at comparable levels of neutron effects, which reduce the quality of the analysis, values around 10 6 and 10 4 n/cm 2 s for thermal and epithermal flux were obtained respectively. It is recommended evaluate the design of the internal duct which presents strong photon emission. (authors).

  5. Design of a nonlinear torsional vibration absorber

    Science.gov (United States)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  6. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  7. A calibration method for realistic neutron dosimetry in radiobiological experiments assisted by MCNP simulation.

    Science.gov (United States)

    Shahmohammadi Beni, Mehrdad; Krstic, Dragana; Nikezic, Dragoslav; Yu, Kwan Ngok

    2016-09-01

    Many studies on biological effects of neutrons involve dose responses of neutrons, which rely on accurately determined absorbed doses in the irradiated cells or living organisms. Absorbed doses are difficult to measure, and are commonly surrogated with doses measured using separate detectors. The present work describes the determination of doses absorbed in the cell layer underneath a medium column (D A ) and the doses absorbed in an ionization chamber (D E ) from neutrons through computer simulations using the MCNP-5 code, and the subsequent determination of the conversion coefficients R (= D A /D E ). It was found that R in general decreased with increase in the medium thickness, which was due to elastic and inelastic scattering. For 2-MeV neutrons, conspicuous bulges in R values were observed at medium thicknesses of about 500, 1500, 2500 and 4000 μm, and these were attributed to carbon, oxygen and nitrogen nuclei, and were reflections of spikes in neutron interaction cross sections with these nuclei. For 0.1-MeV neutrons, no conspicuous bulges in R were observed (except one at ~2000 μm that was due to photon interactions), which was explained by the absence of prominent spikes in the interaction cross-sections with these nuclei for neutron energies <0.1 MeV. The ratio R could be increased by ~50% for small medium thickness if the incident neutron energy was reduced from 2 MeV to 0.1 MeV. As such, the absorbed doses in cells (D A ) would vary with the incident neutron energies, even when the absorbed doses shown on the detector were the same. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  8. Elaboration and qualification of a reference calculation routes for the absorbers in the PWR reactors

    International Nuclear Information System (INIS)

    Blanc-Tranchant, P.

    1999-11-01

    The general field in which this work takes place is the field of the accuracy improvement of neutronic calculations, required to operate Pressurized Water Reactors (PWR) with a better precision and a lower cost. More specifically, this thesis deals with the calculation of the absorber clusters used to control these reactors. The first aim of that work was to define and validate a reference calculation route of such an absorber cluster, based on the deterministic code Apollo 2. This calculation scheme was then to be checked against experimental data. This study of the complex situation of absorber clusters required several intermediate studies, of simpler problems, such as the study of fuel rods lattices and the study of single absorber rods (B 4 C, AIC, Hafnium) isolated in such lattices. Each one of these different studies led to a particular reference calculation route. All these calculation routes were developed against reference continuous energy Monte-Carlo calculations, carried out with the stochastic code TRIPOLI14. They were then checked against experimental data measured during french experimental programs, undertaken within the EOLE experimental reactor, at the Nuclear Research Center of Cadarache: the MISTRAL experiments for the study of isolated absorber rods and the EPICURE experiments for the study of absorber clusters. This work led to important improvements in the calculation of isolated absorbers and absorber clusters. The reactivity worth of these clusters in particular, can now be obtained with a great accuracy: the discrepancy observed between the calculated and the experimental values is less than 2.5 %, and then slightly lower than the experimental uncertainty. (author)

  9. Development and qualification of reference calculation schemes for absorbers in pressured water reactor

    International Nuclear Information System (INIS)

    Blanc-Tranchant, P.

    2001-01-01

    The general field in which this work takes place is the field of the accuracy improvement of neutronic calculations, required to operate Pressurized Water Reactors (PWR) with a better precision and a lower cost. More specifically, this thesis deals with the calculation of the absorber clusters used to control these reactors. The first aim of that work was to define and validate a reference calculation route of such an absorber cluster, based on the deterministic code APOLLO2. This calculation scheme was then to be checked against experimental data. This study of the complex situation of absorber clusters required several intermediate studies, of simpler problems, such as the study of fuel rods lattices and the study of single absorber rods (B4C, AIC, Hafnium) isolated in such lattices. Each one of these different studies led to a particular reference calculation route. All these calculation routes were developed against reference continuous energy Monte-Carlo calculations, carried out with the stochastic code TRIPOLI4. They were then checked against experimental data measured during French experimental programs, undertaken within the EOLE experimental reactor, at the Nuclear Research Center of Cadarache: the MISTRAL experiments for the study of isolated absorber rods and the EPICURE experiments for the study of absorber clusters. This work led to important improvements in the calculation of isolated absorbers and absorber clusters. The reactivity worth of these clusters in particular, can now be obtained with a great accuracy: the discrepancy observed between the calculated and the experimental values is less than 2.5 %, and then slightly lower than the experimental uncertainty. (author)

  10. Fast neutron dosemeter from the 103 Rh (n,n') 103m Rh reaction

    International Nuclear Information System (INIS)

    Arriola, H.; Monroy, F.

    1998-01-01

    Neutron dosimetry presents problems due to the form of neutron interaction with matter. Therefore, we propose an activation method using Rhodium foils to measure the neutron flux and thus calculate the doses. Rhodium has a reasonably large cross section proportional to the absorbed doses from 0.8 to 10 MeV. This method would be useful for personal dosimetry in nuclear reactors. (Author)

  11. Self-shielding for thick slabs in a converging neutron beam

    CERN Document Server

    Mildner, D F R

    1999-01-01

    We have previously given a correction to the neutron self-shielding for a thin slab to account for the increased average path length through the slab when irradiated in a converging neutron beam. This expression overstates the case for the self-shielding for a thick (or highly absorbing) slab. We give a better approximation to the increase in effective shielding correction for a slab placed in a converging neutron beam. It is negligible at large absorption mean free paths. (author)

  12. Method of absorbing UF6 from gaseous mixtures in alkamine absorbents

    International Nuclear Information System (INIS)

    Lafferty, R.H.; Smiley, S.H.; Radimer, K.J.

    1976-01-01

    A method is described for recovering UF 6 from gaseous mixtures by absorption in a liquid. The liquid absorbent must have a relatively low viscosity and at least one component of the absorbent is an alkamine having less than 3 carbon atoms bonded to the amino nitrogen, less than 2 of the carbon atoms other than those bonded to the amino nitrogen are free of the hydroxy radical and precipitate the absorbed uranium from the absorbent. At least one component of the absorbent is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2

  13. Calorimetric measurement of strong γ emitting sources

    International Nuclear Information System (INIS)

    Brangier, B.; Herczeg, C.; Henry, R.

    1968-01-01

    This publication gives the principle and a description of an adiabatic calorimeter for measuring the real activity of strong gamma-emitting sources by absorbing the emitted energy in a mass of copper. Because of the difficulty of evaluating the amount self- absorption, we have built a calorimeter for measuring the self- absorption, and a description of it is given.The results of these three measurements are fairly satisfactory. The calibration and the actual measurements obtained are given with a few corrections made necessary by the design of the apparatus. The correlation of the various results is discussed. (author) [fr

  14. Neutron measurements in search of cold fusion

    International Nuclear Information System (INIS)

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T.

    1990-01-01

    We have conducted a research for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 145 neutrons in 500-μs intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also to lead to long-term ''neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observe neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior. 13 refs., 14 figs

  15. Neutron gauging to detect voids in polyurethane

    International Nuclear Information System (INIS)

    Tsang, F.Y.; Alger, D.M.; Brugger, R.M.

    1978-01-01

    Thermal-neutron radiography and fast-neutron gauging measurements were made to evaluate the feasibility of detecting voids in a polyurethane block placed between steel plates. This sandwich of polyurethane and steel simulates the walls of a canister being designed to hold explosive devices. The polyurethane would act as a shock absorber in the canister. A large fabrication cost saving would result by casting the polyurethane, but a nondestructive testing (NDT) method is needed to determine the uniformity of the polyurethane fill. The radiography measurements used a beam of thermal neutrons, while the gauging used filtered beams of 24 keV and fission spectrum neutrons. For the 83-mm-thick polyurethane and 130-mm-thick steel matrix, the thermal-neutron radiography was able to detect only those voids equal to about one-half the polyurethane thickness. The gauging detected voids in the path of the neutron beam of a few millimetres thickness in seconds to minutes. The gauging is feasible as an NDT method for the canister application

  16. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  17. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  18. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  19. Neutron dosimetry using proportional counters with tissue equivalent walls

    International Nuclear Information System (INIS)

    Kerviller, H. de

    1965-01-01

    The author reminds the calculation method of the neutron absorbed dose in a material and deduce of it the conditions what this material have to fill to be equivalent to biological tissues. Various proportional counters are mode with walls in new tissue equivalent material and filled with various gases. The multiplication factor and neutron energy response of these counters are investigated and compared with those obtained with ethylene lined polyethylene counters. The conditions of working of such proportional counters for neutron dosimetry in energy range 10 -2 to 15 MeV are specified. (author) [fr

  20. Theory of neutron slowing down in nuclear reactors

    CERN Document Server

    Ferziger, Joel H; Dunworth, J V

    2013-01-01

    The Theory of Neutron Slowing Down in Nuclear Reactors focuses on one facet of nuclear reactor design: the slowing down (or moderation) of neutrons from the high energies with which they are born in fission to the energies at which they are ultimately absorbed. In conjunction with the study of neutron moderation, calculations of reactor criticality are presented. A mathematical description of the slowing-down process is given, with particular emphasis on the problems encountered in the design of thermal reactors. This volume is comprised of four chapters and begins by considering the problems