WorldWideScience

Sample records for strong neutralizing antibody

  1. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-γ(+) CMI responses protects against a genital infection in minipigs

    DEFF Research Database (Denmark)

    Bøje, Sarah; Olsen, Anja Weinreich; Erneholm, Karin

    2016-01-01

    Chlamydia is the most widespread sexually transmitted bacterial disease and a prophylactic vaccine is highly needed. Ideally, this vaccine is required to induce a combined response of Th1 cell-mediated immune (CMI) response in concert with neutralizing antibodies. Using a novel Göttingen minipig...... animal model, we evaluated the immunogenicity and efficacy of a multi-subunit vaccine formulated in the strong Th1-inducing adjuvant CAF01. We evaluated a mixture of two fusion proteins (Hirep1 and CTH93) designed to promote either neutralizing antibodies or cell-mediated immunity, respectively. Hirep1...

  2. Anti-V3/Glycan and Anti-MPER Neutralizing Antibodies, but Not Anti-V2/Glycan Site Antibodies, Are Strongly Associated with Greater Anti-HIV-1 Neutralization Breadth and Potency.

    Science.gov (United States)

    Jacob, Rajesh Abraham; Moyo, Thandeka; Schomaker, Michael; Abrahams, Fatima; Grau Pujol, Berta; Dorfman, Jeffrey R

    2015-05-01

    The membrane-proximal external region (MPER), the V2/glycan site (initially defined by PG9 and PG16 antibodies), and the V3/glycans (initially defined by PGT121-128 antibodies) are targets of broadly neutralizing antibodies and potential targets for anti-HIV-1 antibody-based vaccines. Recent evidence shows that antibodies with moderate neutralization breadth are frequently attainable, with 50% of sera from chronically infected individuals neutralizing ≥ 50% of a large, diverse set of viruses. Nonetheless, there is little systematic information addressing which specificities are preferentially targeted among such commonly found, moderately broadly neutralizing sera. We explored associations between neutralization breadth and potency and the presence of neutralizing antibodies targeting the MPER, V2/glycan site, and V3/glycans in sera from 177 antiretroviral-naive HIV-1-infected (>1 year) individuals. Recognition of both MPER and V3/glycans was associated with increased breadth and potency. MPER-recognizing sera neutralized 4.62 more panel viruses than MPER-negative sera (95% prediction interval [95% PI], 4.41 to 5.20), and V3/glycan-recognizing sera neutralized 3.24 more panel viruses than V3/glycan-negative sera (95% PI, 3.15 to 3.52). In contrast, V2/glycan site-recognizing sera neutralized only 0.38 more panel viruses (95% PI, 0.20 to 0.45) than V2/glycan site-negative sera and no association between V2/glycan site recognition and breadth or potency was observed. Despite autoreactivity of many neutralizing antibodies recognizing MPER and V3/glycans, antibodies to these sites are major contributors to neutralization breadth and potency in this cohort. It may therefore be appropriate to focus on developing immunogens based upon the MPER and V3/glycans. Previous candidate HIV vaccines have failed either to induce wide-coverage neutralizing antibodies or to substantially protect vaccinees. Therefore, current efforts focus on novel approaches never before

  3. A Mouse Monoclonal Antibody against Dengue Virus Type 1 Mochizuki Strain Targeting Envelope Protein Domain II and Displaying Strongly Neutralizing but Not Enhancing Activity

    Science.gov (United States)

    Kotaki, Tomohiro; Konishi, Eiji

    2013-01-01

    Dengue fever and its more severe form, dengue hemorrhagic fever, are major global concerns. Infection-enhancing antibodies are major factors hypothetically contributing to increased disease severity. In this study, we generated 26 monoclonal antibodies (MAbs) against the dengue virus type 1 Mochizuki strain. We selected this strain because a relatively large number of unique and rare amino acids were found on its envelope protein. Although most MAbs showing neutralizing activities exhibited enhancing activities at subneutralizing doses, one MAb (D1-IV-7F4 [7F4]) displayed neutralizing activities without showing enhancing activities at lower concentrations. In contrast, another MAb (D1-V-3H12 [3H12]) exhibited only enhancing activities, which were suppressed by pretreatment of cells with anti-FcγRIIa. Although antibody engineering revealed that antibody subclass significantly affected 7F4 (IgG3) and 3H12 (IgG1) activities, neutralizing/enhancing activities were also dependent on the epitope targeted by the antibody. 7F4 recognized an epitope on the envelope protein containing E118 (domain II) and had a neutralizing activity 10- to 1,000-fold stronger than the neutralizing activity of previously reported human or humanized neutralizing MAbs targeting domain I and/or domain II. An epitope-blocking enzyme-linked immunosorbent assay (ELISA) indicated that a dengue virus-immune population possessed antibodies sharing an epitope with 7F4. Our results demonstrating induction of these antibody species (7F4 and 3H12) in Mochizuki-immunized mice may have implications for dengue vaccine strategies designed to minimize induction of enhancing antibodies in vaccinated humans. PMID:24049185

  4. Cooperativity Enables Non-neutralizing Antibodies to Neutralize Ebolavirus

    Directory of Open Access Journals (Sweden)

    Katie A. Howell

    2017-04-01

    Full Text Available Drug combinations are synergistic when their combined efficacy exceeds the sum of the individual actions, but they rarely include ineffective drugs that become effective only in combination. We identified several “enabling pairs” of neutralizing and non-neutralizing anti-ebolavirus monoclonal antibodies, whose combination exhibited new functional profiles, including transforming a non-neutralizing antibody to a neutralizer. Sub-neutralizing concentrations of antibodies 2G4 or m8C4 enabled non-neutralizing antibody FVM09 (IC50 >1 μM to exhibit potent neutralization (IC50 1–10 nM. While FVM09 or m8C4 alone failed to protect Ebola-virus-infected mice, a combination of the two antibodies provided 100% protection. Furthermore, non-neutralizers FVM09 and FVM02 exponentially enhanced the potency of two neutralizing antibodies against both Ebola and Sudan viruses. We identified a hotspot for the binding of these enabling antibody pairs near the interface of the glycan cap and GP2. Enabling cooperativity may be an underappreciated phenomenon for viruses, with implications for the design and development of immunotherapeutics and vaccines.

  5. Autologous HIV-1 neutralizing antibodies: emergence of neutralization-resistant escape virus and subsequent development of escape virus neutralizing antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Nielsen, C; Hansen, J E

    1992-01-01

    The capacity of consecutive human sera to neutralize sequentially obtained autologous virus isolates was studied. HIV-1 was isolated three times over a 48-164-week period from three individuals immediately after seroconversion and from two individuals in later stages of infection. Development...... escape virus may be part of the explanation of the apparent failure of the immune system to control HIV infection....... of neutralizing antibodies to the primary virus isolates was detected 13-45 weeks after seroconversion. Emergence of escape virus with reduced sensitivity to neutralization by autologous sera was demonstrated. The patients subsequently developed neutralizing antibodies against the escape virus but after a delay...

  6. Antibody neutralization of retargeted measles viruses

    Science.gov (United States)

    Lech, Patrycja J.; Pappoe, Roland; Nakamura, Takafumi; Tobin, Gregory J.; Nara, Peter L.; Russell, Stephen J.

    2014-01-01

    The measles virus (MV) vaccine lineage is a promising oncolytic but prior exposure to the measles vaccine or wild-type MV strains limits treatment utility due to the presence of anti-measles antibodies. MV entry can be redirected by displaying a polypeptide ligand on the Hemagglutinin (H) C-terminus. We hypothesized that retargeted MV would escape neutralization by monoclonal antibodies (mAbs) recognizing the H receptor-binding surface and be less susceptible to neutralization by human antisera. Using chimeric H proteins, with and without mutations that ablate MV receptor binding, we show that retargeted MVs escape mAbs that target the H receptor-binding surface by virtue of mutations that ablate infection via SLAM and CD46. However, C-terminally displayed domains do not mediate virus entry in the presence of human antibodies that bind to the underlying H domain. In conclusion, utility of retargeted oncolytic measles viruses does not extend to evasion of human serum neutralization. PMID:24725950

  7. Autologous HIV-1 neutralizing antibodies: emergence of neutralization-resistant escape virus and subsequent development of escape virus neutralizing antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Nielsen, C; Hansen, J E

    1992-01-01

    The capacity of consecutive human sera to neutralize sequentially obtained autologous virus isolates was studied. HIV-1 was isolated three times over a 48-164-week period from three individuals immediately after seroconversion and from two individuals in later stages of infection. Development of ...... escape virus may be part of the explanation of the apparent failure of the immune system to control HIV infection.......The capacity of consecutive human sera to neutralize sequentially obtained autologous virus isolates was studied. HIV-1 was isolated three times over a 48-164-week period from three individuals immediately after seroconversion and from two individuals in later stages of infection. Development...... of neutralizing antibodies to the primary virus isolates was detected 13-45 weeks after seroconversion. Emergence of escape virus with reduced sensitivity to neutralization by autologous sera was demonstrated. The patients subsequently developed neutralizing antibodies against the escape virus but after a delay...

  8. Neutralizing antibodies for orthobunyaviruses in Pantanal, Brazil.

    Science.gov (United States)

    Pauvolid-Corrêa, Alex; Campos, Zilca; Soares, Raquel; Nogueira, Rita Maria Ribeiro; Komar, Nicholas

    2017-11-01

    The Pantanal is a hotspot for arbovirus studies in South America. Various medically important flaviviruses and alphaviruses have been reported in domestic and wild animals in the region. To expand the knowledge of local arbovirus circulation, a serosurvey for 14 Brazilian orthobunyaviruses was conducted with equines, sheep and free-ranging caimans. Sera were tested for specific viral antibodies using plaque-reduction neutralization test (PRNT). Monotypic reactions were detected for Maguari, Xingu, Apeu, Guaroa, Murutucu, Oriboca, Oropouche and Nepuyo viruses. Despite the low titers for most of the orthobunyaviruses tested, the detection of monotypic reactions for eight orthobunyaviruses suggests the Pantanal as a region of great orthobunyavirus diversity. The present data, in conjunction with previous studies that detected a high diversity of other arboviruses, ratify the Pantanal as an important natural reservoir for sylvatic and medically important arboviruses in Brazil.

  9. Prevalence of recovirus-neutralizing antibodies in human serum samples.

    Science.gov (United States)

    Farkas, Tibor; Wong Ping Lun, Cindy

    2014-08-01

    To investigate recovirus infections and their association with zoonosis, the prevalence of the virus-neutralizing antibody against three recovirus serotypes was tested in the general population and in zookeepers. Neutralizing antibodies were detected in a significantly higher number of zookeepers than in the general population but with significantly lower titers than in macaques. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. High throughput discovery of influenza virus neutralizing antibodies from phage-displayed synthetic antibody libraries.

    Science.gov (United States)

    Chen, Ing-Chien; Chiu, Yi-Kai; Yu, Chung-Ming; Lee, Cheng-Chung; Tung, Chao-Ping; Tsou, Yueh-Liang; Huang, Yi-Jen; Lin, Chia-Lung; Chen, Hong-Sen; Wang, Andrew H-J; Yang, An-Suei

    2017-10-31

    Pandemic and epidemic outbreaks of influenza A virus (IAV) infection pose severe challenges to human society. Passive immunotherapy with recombinant neutralizing antibodies can potentially mitigate the threats of IAV infection. With a high throughput neutralizing antibody discovery platform, we produced artificial anti-hemagglutinin (HA) IAV-neutralizing IgGs from phage-displayed synthetic scFv libraries without necessitating prior memory of antibody-antigen interactions or relying on affinity maturation essential for in vivo immune systems to generate highly specific neutralizing antibodies. At least two thirds of the epitope groups of the artificial anti-HA antibodies resemble those of natural protective anti-HA antibodies, providing alternatives to neutralizing antibodies from natural antibody repertoires. With continuing advancement in designing and constructing synthetic scFv libraries, this technological platform is useful in mitigating not only the threats of IAV pandemics but also those from other newly emerging viral infections.

  11. Recent Progress towards Engineering HIV-1-specific Neutralizing Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Ming Sun

    2016-09-01

    Full Text Available The recent discoveries of broadly potent neutralizing human monoclonal antibodies (bNAbs represent a new generation of antiretrovirals for the treatment and prophylaxis. Antibodies are generally considered more effective and safer, and have been proved to provide passive protection against mucosal challenge in humanized mice and macaques. Several neutralizing Abs could protect animals against HIV-1 but are not effective when used in an established infected model for therapy. In order to overcome the limitation of antiviral activities, multiple antibody engineering technologies have been explored to generate the better neutralizing antibodies against HIV-1 since bNAbs attack viral entry by various mechanisms. Thus, a promising direction of research is to discover and exploit rational antibody combination or engineered antibodies (eAbs as potential candidate therapeutics against HIV-1. It has been reported that inclusion of fusion-neutralizing antibodies in a set of bNAbs could improve their overall activities and neutralizing spectrum. Here we review several routes for engineering bNAbs, such as design and generation of bispecific antibodies, specific glycosylation of antibodies to enhance antiviral activity, and variable region specific modification guided by structure and computer, as well as reviewing antibody-delivery technologies by non-viral vector, viral vector and human HSPCs transduced with a lentiviral construct. We also discuss the optimized antiviral activities and benefits of these strategy and potential mechanisms.

  12. Antiviral Therapy by HIV-1 Broadly Neutralizing and Inhibitory Antibodies

    Directory of Open Access Journals (Sweden)

    Zhiqing Zhang

    2016-11-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection causes acquired immune deficiency syndrome (AIDS, a global epidemic for more than three decades. HIV-1 replication is primarily controlled through antiretroviral therapy (ART but this treatment does not cure HIV-1 infection. Furthermore, there is increasing viral resistance to ART, and side effects associated with long-term therapy. Consequently, there is a need of alternative candidates for HIV-1 prevention and therapy. Recent advances have discovered multiple broadly neutralizing antibodies against HIV-1. In this review, we describe the key epitopes on the HIV-1 Env protein and the reciprocal broadly neutralizing antibodies, and discuss the ongoing clinical trials of broadly neutralizing and inhibitory antibody therapy as well as antibody combinations, bispecific antibodies, and methods that improve therapeutic efficacy by combining broadly neutralizing antibodies (bNAbs with latency reversing agents. Compared with ART, HIV-1 therapeutics that incorporate these broadly neutralizing and inhibitory antibodies offer the advantage of decreasing virus load and clearing infected cells, which is a promising prospect in HIV-1 prevention and treatment.

  13. HIV-1 binding and neutralizing antibodies of injecting drug users

    Directory of Open Access Journals (Sweden)

    Ouverney E.P.

    2005-01-01

    Full Text Available Previous studies have demonstrated a stronger seroreactivity against some synthetic peptides responsible for inducing neutralizing antibodies in injecting drug users (IDU compared to that of individuals sexually infected with HIV-1 (S, but the effectiveness in terms of the neutralizing ability of these antibodies has not been evaluated. Our objective was to study the humoral immune response of IDU by determining the specificity of their antibodies and the presence of neutralizing antibodies. The neutralization capacity against the HIV-1 isolate MN (genotype B, the primary HIV-1 isolate 95BRRJ021 (genotype F, and the seroreactivity with peptides known to induce neutralizing antibodies, from the V2 and V3 loops of different HIV-1 subtypes, were analyzed. Seroreactivity indicates that IDU plasma are more likely to recognize a broader range of peptides than S plasma, with significantly higher titers, especially of V3 peptides. Similar neutralization frequencies of the MN isolate were observed in plasma of the IDU (16/47 and S (20/60 groups in the 1:10 dilution. The neutralization of the 95BRRJ021 isolate was more frequently observed for plasma from the S group (15/23 than from the IDU group (15/47, P = 0.0108. No correlation between neutralization and seroreactivity with the peptides tested was observed. These results suggest that an important factor responsible for the extensive and broad humoral immune response observed in IDU is their infection route. There was very little difference in neutralizing antibody response between the IDU and S groups despite their differences in seroreactivity and health status.

  14. Higher Throughput Quantification of Neutralizing Antibody to Herpes Simplex Viruses.

    Directory of Open Access Journals (Sweden)

    Tamara P Blevins

    Full Text Available We report a rapid, higher throughput method for measuring neutralizing antibody to herpes simplex virus (HSV in human sera. Clinical isolates and sera from the Herpevac Trial for Women were used in a colorimetric assay in which infection of tissue culture (lack of neutralization was indicated by substrate metabolism by beta-galactosidase induced in the ELVIS cell line. The neutralization assay was optimized by addition of guinea pig complement, which particularly enhanced neutralizing antibody titers to HSV-2. Higher neutralizing antibody titers were also achieved using virus particles isolated from the supernatant of infected cells rather than lysate of infected cells as the source of virus. The effect of assay incubation time and incubation time with substrate were also optimized. We found that incubating with substrate until a standard optical density of 1.0 was reached permitted a better comparison among virus isolates, and achieved reliable measurement of neutralizing antibody activity. Interestingly, in contrast to results in the absence of complement, addition of complement allowed sera from HSV-2 gD-vaccinated subjects to neutralize HSV-1 and HSV-2 clinical and laboratory isolates with equal potency.

  15. Higher Throughput Quantification of Neutralizing Antibody to Herpes Simplex Viruses.

    Science.gov (United States)

    Blevins, Tamara P; Mitchell, Michelle C; Korom, Maria; Wang, Hong; Yu, Yinyi; Morrison, Lynda A; Belshe, Robert B

    2015-01-01

    We report a rapid, higher throughput method for measuring neutralizing antibody to herpes simplex virus (HSV) in human sera. Clinical isolates and sera from the Herpevac Trial for Women were used in a colorimetric assay in which infection of tissue culture (lack of neutralization) was indicated by substrate metabolism by beta-galactosidase induced in the ELVIS cell line. The neutralization assay was optimized by addition of guinea pig complement, which particularly enhanced neutralizing antibody titers to HSV-2. Higher neutralizing antibody titers were also achieved using virus particles isolated from the supernatant of infected cells rather than lysate of infected cells as the source of virus. The effect of assay incubation time and incubation time with substrate were also optimized. We found that incubating with substrate until a standard optical density of 1.0 was reached permitted a better comparison among virus isolates, and achieved reliable measurement of neutralizing antibody activity. Interestingly, in contrast to results in the absence of complement, addition of complement allowed sera from HSV-2 gD-vaccinated subjects to neutralize HSV-1 and HSV-2 clinical and laboratory isolates with equal potency.

  16. A focus reduction neutralization assay for hepatitis C virus neutralizing antibodies

    Directory of Open Access Journals (Sweden)

    Wychowski Czeslaw

    2007-03-01

    Full Text Available Abstract Background/Aim The role of humoral immunity in hepatitis C virus (HCV infection is poorly understood. Nevertheless, there is increasing interest in characterizing the neutralizing antibodies in the serum of HCV-infected patients. Focus reduction assays have been widely used to evaluate neutralizing antibody responses against a range of non-cytopathic viruses. Based on the recent development of a HCV cell culture system using the genotype 2 JFH-1-strain, we developed a focus reduction assay for HCV-neutralizing antibodies. Methods The focus reduction assay was based on a standard microneutralization assay in which immunostained foci on tissue culture plates are counted. The neutralizing anti-HCV antibodies titers of purified serum immunoglobulin samples from seventy-seven individuals were determined using a 50% focus reduction neutralization assay. Each titer was determined as the log value of the reciprocal antibody dilution that reduced the number of viral foci by 50%. IgG antibodies were first purified from each serum in order to avoid the facilitating effect of HDL on HCV entry. Results The assay's cut-off using an ELISA and RNA HCV-negative samples was found to be 1.25 log, corresponding to a dilution of 1:18. The assay was compared with a commercial HCV ELISA and exhibited specificity and sensitivity values of 100% and 96.5%, respectively, and good reproducibility (with intra-assay and inter-assay coefficients of variation of 6.7% and 12.6%, respectively. The assay did not show any cross-reactivity with anti-HIV, anti-HBs or heterophile antibody-positive samples. The neutralizing antibodies titers were 2.13 log (1:134 for homologous samples from HCV genotype 2 infected patients harboring the same genotype as JFH-1 and 1.93 log (1:85 for heterologous samples from patients infected by genotypes other than type 2. These results confirm the presence of broadly cross-neutralizing antibodies already reported using the HCV pseudoparticles

  17. Neutralizing Antibodies and Pathogenesis of Hepatitis C Virus Infection

    Directory of Open Access Journals (Sweden)

    Françoise Stoll-Keller

    2012-10-01

    Full Text Available Hepatitis C virus (HCV infection is a major cause of chronic liver disease worldwide. The interplay between the virus and host innate and adaptive immune responses determines the outcome of infection. There is increasing evidence that host neutralizing responses play a relevant role in the resulting pathogenesis. Furthermore, viral evasion from host neutralizing antibodies has been revealed to be an important contributor in leading both to viral persistence in acute liver graft infection following liver transplantation, and to chronic viral infection. The development of novel model systems to study HCV entry and neutralization has allowed a detailed understanding of the molecular mechanisms of virus-host interactions during antibody-mediated neutralization. The understanding of these mechanisms will ultimately contribute to the development of novel antiviral preventive strategies for liver graft infection and an urgently needed vaccine. This review summarizes recent concepts of the role of neutralizing antibodies in viral clearance and protection, and highlights consequences of viral escape from neutralizing antibodies in the pathogenesis of HCV infection.

  18. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection.

    Directory of Open Access Journals (Sweden)

    Rami Sommerstein

    2015-11-01

    Full Text Available Arenaviruses such as Lassa virus (LASV can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein's globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy.

  19. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection

    Science.gov (United States)

    Malinge, Pauline; Magistrelli, Giovanni; Fischer, Nicolas; Sahin, Mehmet; Bergthaler, Andreas; Igonet, Sebastien; ter Meulen, Jan; Rigo, Dorothée; Meda, Paolo; Rabah, Nadia; Coutard, Bruno; Bowden, Thomas A.; Lambert, Paul-Henri; Siegrist, Claire-Anne; Pinschewer, Daniel D.

    2015-01-01

    Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein’s globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy. PMID:26587982

  20. Maturation Pathways of Cross-Reactive HIV-1 Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Dimiter S. Dimitrov

    2009-11-01

    Full Text Available Several human monoclonal antibodies (hmAbs and antibody fragments, including the best characterized in terms of structure-function b12 and Fab X5, exhibit relatively potent and broad HIV-1 neutralizing activity. However, the elicitation of b12 or b12-like antibodies in vivo by vaccine immunogens based on the HIV-1 envelope glycoprotein (Env has not been successful. B12 is highly divergent from the closest corresponding germline antibody while X5 is less divergent. We have hypothesized that the relatively high degree of specific somatic hypermutations may preclude binding of the HIV-1 envelope glycoprotein (Env to closest germline antibodies, and that identifying antibodies that are intermediates in the pathways to maturation could help design novel vaccine immunogens to guide the immune system for their enhanced elicitation. In support of this hypothesis we have previously found that a germline-like b12 (monovalent and bivalent scFv as an Fc fusion protein or IgG lacks measurable binding to an Env as measured by ELISA with a sensitivity in the μM range [1]; here we present evidence confirming and expanding these findings for a panel of Envs. In contrast, a germline-like scFv X5 bound Env with high (nM affinity. To begin to explore the maturation pathways of these antibodies we identified several possible b12 intermediate antibodies and tested their neutralizing activity. These intermediate antibodies neutralized only some HIV-1 isolates and with relatively weak potency. In contrast, germline-like scFv X5 neutralized a subset of the tested HIV-1 isolates with comparable efficiencies to that of the mature X5. These results could help explain the relatively high immunogenicity of the coreceptor binding site on gp120 and the abundance of CD4-induced (CD4i antibodies in HIV-1-infected patients (X5 is a CD4i antibody as well as the maturation pathway of X5. They also can help identify antigens that can bind specifically to b12 germline and

  1. Antibodies against Marinobacter algicola and Salmonella typhimurium flagellins do not cross-neutralize TLR5 activation.

    Directory of Open Access Journals (Sweden)

    Raul Terron-Exposito

    Full Text Available Flagellins evoke strong innate and adaptive immune responses. These proteins may play a key role as radioprotectors, exert antitumoral activity in certain types of tumor and reduce graft-versus-host disease in allogeneic hematopoietic stem cell transplant recipients. Notwithstanding, flagellins are highly immunogenic, and repeated use leads to their neutralization by systemic antibodies. This neutralization is not prevented by using functional deleted flagellins. These observations led us to explore the possibility of preventing initial neutralization by means of another functional flagellin that does not belong to common pathogenic bacteria but that has the capacity to activate TLR5. Here we characterized the functional capacity of the two-phase Marinobacter algicola (MA-derived flagellins (F and FR as systemic and mucosal adjuvants and compared their performance with that of Salmonella typhimurium (STF flagellins (FljB and FliC. We also report for the first time on the in vitro and in vivo capacity of various flagellins to trigger TLR5 activation in the presence of species-specific anti-flagellin antibodies, the cross-neutralization mediated by these antibodies, and the sequential use of these flagellins for TLR5 activation. Our results showed that MA flagellins behave in a similar way to STF ones, inducing pro-inflammatory cytokines (IL8, CCL20, CCL2 and evoking a strong in vivo antibody response against a model epitope. More importantly, MA flagellins were fully functional, in vitro or in vivo, in the presence of a high concentration of neutralizing anti-flagellin STF antibodies, and STF flagellin was not inhibited by neutralizing anti-flagellin MA antibodies. The use of active flagellins from distinct bacteria could be a useful approach to prevent systemic neutralization of this group of adjuvants and to facilitate the rational design of flagellin-based vaccines and/or other therapeutic treatments (against ischemia, acute renal failure

  2. Structure and design of broadly-neutralizing antibodies against HIV.

    Science.gov (United States)

    Ryu, Seong Eon; Hendrickson, Wayne A

    2012-09-01

    Since the discovery more than 30 years ago of human immunodeficiency virus (HIV) as the causative agent of the deadly disease, acquired immune deficiency disease (AIDS), there have been no efficient vaccines against the virus. For the infection of the virus, the HIV surface glycoprotein gp120 first recognizes the CD4 receptor on the target helper T-cell, which initiates HIV fusion with the target cell and, if unchecked, leads to destruction of the patient's immune system. Despite the difficulty of developing appropriate immune responses in HIV-infected individuals, patient sera often contain antibodies that have broad neutralization activity, indicating the possibility of immunological treatment and prevention. Recently, through extensive structural studies of neutralizing antibodies of HIV in complex with gp120, the critical mechanisms of broad neutralization against HIV have been elucidated. Based on these discoveries, the structure-aided designs of antibodies and novel scaffolds were performed to create extremely potent neutralizing antibodies against HIV. These new discoveries and advances shed light on the road to development of efficient immunological therapies against AIDS.

  3. HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies

    NARCIS (Netherlands)

    Sliepen, Kwinten; Sanders, Rogier W.

    2016-01-01

    The long pursuit for a vaccine against human immunodeficiency virus 1 (HIV-1) has recently been boosted by a number of exciting developments. An HIV-1 subunit vaccine ideally should elicit potent broadly neutralizing antibodies (bNAbs), but raising bNAbs by vaccination has proved extremely difficult

  4. Hepatitis C Virus Evasion Mechanisms from Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Arvind H. Patel

    2011-11-01

    Full Text Available Hepatitis C virus (HCV represents a major public health problem, affecting 3% of the world’s population. The majority of infected individuals develop chronic hepatitis, which can progress to cirrhosis and hepatocellular carcinoma. To date, a vaccine is not available and current therapy is limited by resistance, adverse effects and high costs. Although it is very well established that cell-mediated immunity is necessary for viral clearance, the importance of host antibodies in clearing HCV infection is being increasingly recognized. Indeed, recent studies indicate that neutralizing antibodies are induced in the early phase of infection by patients who subsequently clear viral infection. Conversely, patients who do not clear the virus develop high titers of neutralizing antibodies during the chronic stage. Surprisingly, these antibodies are not able to control HCV infection. HCV has therefore developed mechanisms to evade immune elimination, allowing it to persist in the majority of infected individuals. A detailed understanding of the mechanisms by which the virus escapes immune surveillance is therefore necessary if novel preventive and therapeutic treatments have to be designed. This review summarizes the current knowledge of the mechanisms used by HCV to evade host neutralizing antibodies.

  5. Hepatitis C virus evasion mechanisms from neutralizing antibodies.

    Science.gov (United States)

    Di Lorenzo, Caterina; Angus, Allan G N; Patel, Arvind H

    2011-11-01

    Hepatitis C virus (HCV) represents a major public health problem, affecting 3% of the world's population. The majority of infected individuals develop chronic hepatitis, which can progress to cirrhosis and hepatocellular carcinoma. To date, a vaccine is not available and current therapy is limited by resistance, adverse effects and high costs. Although it is very well established that cell-mediated immunity is necessary for viral clearance, the importance of host antibodies in clearing HCV infection is being increasingly recognized. Indeed, recent studies indicate that neutralizing antibodies are induced in the early phase of infection by patients who subsequently clear viral infection. Conversely, patients who do not clear the virus develop high titers of neutralizing antibodies during the chronic stage. Surprisingly, these antibodies are not able to control HCV infection. HCV has therefore developed mechanisms to evade immune elimination, allowing it to persist in the majority of infected individuals. A detailed understanding of the mechanisms by which the virus escapes immune surveillance is therefore necessary if novel preventive and therapeutic treatments have to be designed. This review summarizes the current knowledge of the mechanisms used by HCV to evade host neutralizing antibodies.

  6. Mapping the Human Memory B Cell and Serum Neutralizing Antibody Responses to Dengue Virus Serotype 4 Infection and Vaccination.

    Science.gov (United States)

    Nivarthi, Usha K; Kose, Nurgun; Sapparapu, Gopal; Widman, Douglas; Gallichotte, Emily; Pfaff, Jennifer M; Doranz, Benjamin J; Weiskopf, Daniela; Sette, Alessandro; Durbin, Anna P; Whitehead, Steve S; Baric, Ralph; Crowe, James E; de Silva, Aravinda M

    2017-03-01

    The four dengue virus (DENV) serotypes are mosquito-borne flaviviruses responsible for dengue fever and dengue hemorrhagic fever. People exposed to DENV develop antibodies (Abs) that strongly neutralize the serotype responsible for infection. Historically, infection with DENV serotype 4 (DENV4) has been less common and less studied than infections with the other three serotypes. However, DENV4 has been responsible for recent large and sustained epidemics in Asia and Latin America. The neutralizing antibody responses and the epitopes targeted against DENV4 have not been characterized in human infection. In this study, we mapped and characterized epitopes on DENV4 recognized by neutralizing antibodies in people previously exposed to DENV4 infections or to a live attenuated DENV4 vaccine. To study the fine specificity of DENV4 neutralizing human antibodies, B cells from two people exposed to DENV4 were immortalized and screened to identify DENV-specific clones. Two human monoclonal antibodies (MAbs) that neutralized DENV4 were isolated, and their epitopes were finely mapped using recombinant viruses and alanine scan mutation array techniques. Both antibodies bound to quaternary structure epitopes near the hinge region between envelope protein domain I (EDI) and EDII. In parallel, to characterize the serum neutralizing antibody responses, convalescence-phase serum samples from people previously exposed to primary DENV4 natural infections or a monovalent DENV4 vaccine were analyzed. Natural infection and vaccination also induced serum-neutralizing antibodies that targeted similar epitope domains at the EDI/II hinge region. These studies defined a target of neutralizing antigenic site on DENV4 targeted by human antibodies following natural infection or vaccination. IMPORTANCE The four serotypes of dengue virus are the causative agents of dengue fever and dengue hemorrhagic fever. People exposed to primary DENV infections develop long-term neutralizing antibody responses

  7. Thermodynamic Mechanism for the Evasion of Antibody Neutralization in Flaviviruses

    Science.gov (United States)

    2015-01-01

    Mutations in the epitopes of antigenic proteins can confer viral resistance to antibody-mediated neutralization. However, the fundamental properties that characterize epitope residues and how mutations affect antibody binding to alter virus susceptibility to neutralization remain largely unknown. To address these questions, we used an ensemble-based algorithm to characterize the effects of mutations on the thermodynamics of protein conformational fluctuations. We applied this method to the envelope protein domain III (ED3) of two medically important flaviviruses: West Nile and dengue 2. We determined an intimate relationship between the susceptibility of a residue to thermodynamic perturbations and epitope location. This relationship allows the successful identification of the primary epitopes in each ED3, despite their high sequence and structural similarity. Mutations that allow the ED3 to evade detection by the antibody either increase or decrease conformational fluctuations of the epitopes through local effects or long-range interactions. Spatially distant interactions originate in the redistribution of conformations of the ED3 ensembles, not through a mechanically connected array of contiguous amino acids. These results reconcile previous observations of evasion of neutralization by mutations at a distance from the epitopes. Finally, we established a quantitative correlation between subtle changes in the conformational fluctuations of the epitope and large defects in antibody binding affinity. This correlation suggests that mutations that allow viral growth, while reducing neutralization, do not generate significant structural changes and underscores the importance of protein fluctuations and long-range interactions in the mechanism of antibody-mediated neutralization resistance. PMID:24950171

  8. Anomalous electrodynamics of neutral pion matter in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, Tomáš [Department of Mathematics and Natural Sciences, University of Stavanger,N-4036 Stavanger (Norway); Kadam, Saurabh V. [Indian Institute of Science Education and Research (IISER),Pune 411008 (India)

    2017-03-03

    The ground state of quantum chromodynamics in sufficiently strong external magnetic fields and at moderate baryon chemical potential is a chiral soliton lattice (CSL) of neutral pions https://arxiv.org/abs/1609.05213. We investigate the interplay between the CSL structure and dynamical electromagnetic fields. Our main result is that in presence of the CSL background, the two physical photon polarizations and the neutral pion mix, giving rise to two gapped excitations and one gapless mode with a nonrelativistic dispersion relation. The nature of this mode depends on the direction of its propagation, interpolating between a circularly polarized electromagnetic wave https://www.doi.org/10.1103/PhysRevD.93.085036 and a neutral pion surface wave, which in turn arises from the spontaneously broken translation invariance. Quite remarkably, there is a neutral-pion-like mode that remains gapped even in the chiral limit, in seeming contradiction to the Goldstone theorem. Finally, we have a first look at the effect of thermal fluctuations of the CSL, showing that even the soft nonrelativistic excitation does not lead to the Landau-Peierls instability. However, it leads to an anomalous contribution to pressure that scales with temperature and magnetic field as T{sup 5/2}(B/f{sub π}){sup 3/2}.

  9. Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library

    Directory of Open Access Journals (Sweden)

    Han Wang

    2016-09-01

    Full Text Available Tetanus neurotoxin (TeNT produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective.

  10. Structural basis of hepatitis C virus neutralization by broadly neutralizing antibody HCV1

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Leopold; Giang, Erick; Robbins, Justin B.; Stanfield, Robyn L.; Burton, Dennis R.; Wilson, Ian A.; Law, Mansun (Scripps)

    2012-10-29

    Hepatitis C virus (HCV) infects more than 2% of the global population and is a leading cause of liver cirrhosis, hepatocellular carcinoma, and end-stage liver diseases. Circulating HCV is genetically diverse, and therefore a broadly effective vaccine must target conserved T- and B-cell epitopes of the virus. Human mAb HCV1 has broad neutralizing activity against HCV isolates from at least four major genotypes and protects in the chimpanzee model from primary HCV challenge. The antibody targets a conserved antigenic site (residues 412-423) on the virus E2 envelope glycoprotein. Two crystal structures of HCV1 Fab in complex with an epitope peptide at 1.8-{angstrom} resolution reveal that the epitope is a {beta}-hairpin displaying a hydrophilic face and a hydrophobic face on opposing sides of the hairpin. The antibody predominantly interacts with E2 residues Leu{sup 413} and Trp{sup 420} on the hydrophobic face of the epitope, thus providing an explanation for how HCV isolates bearing mutations at Asn{sup 415} on the same binding face escape neutralization by this antibody. The results provide structural information for a neutralizing epitope on the HCV E2 glycoprotein and should help guide rational design of HCV immunogens to elicit similar broadly neutralizing antibodies through vaccination.

  11. Interaction of neutral particles with strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Meuren, Sebastian; Keitel, Christoph H.; Di Piazza, Antonino [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2013-07-01

    Since the invention of the laser in the 1960s the experimentally available field strengths have continuously increased. The current peak intensity record is 2 x 10{sup 22} W/cm{sup 2} and next generation facilities such as ELI, HiPER and XCELS plan to reach even intensities of the order of 10{sup 24} W/cm{sup 2}. Thus, modern laser facilities are a clean source for very strong external electromagnetic fields and promise new and interesting high-energy physics experiments. In particular, strong laser fields could be used to test non-linear effects in quantum field theory. Earlier we have investigated how radiative corrections modify the coupling of a charged particle inside a strong plane-wave electromagnetic background field. However, a charged particle couples already at tree level to electromagnetic radiation. Therefore, we have now analyzed how the coupling between neutral particles and radiation is affected by a very strong plane-wave electromagnetic background field, when loop corrections are taken into account. In particular, the case of neutrinos is discussed.

  12. Evolution of the HIV-1 Envelope Glycoprotein Genes and Neutralizing Antibody Response in an Individual with Broadly Cross Neutralizing Antibodies

    Science.gov (United States)

    2010-08-31

    FBS, L-glutamine, penicillin, streptomycin (Gibeo), tylosin (Sigma), and puromycin. All cell cultures were maintained in a humidified atmosphere...white walled, flat- bottomed tissue culture plates (Costar, Coming NY). The virus-antibody mixtures were then combined with 1-2 x 104 HOS-CD4+-CCR5...all lineages combined obtained from 1986-1993 to sCD4 and eight cross-reactive mAbs targeting distinct neutralization epitope regions. We chose

  13. Potent dengue virus neutralization by a therapeutic antibody with low monovalent affinity requires bivalent engagement.

    Directory of Open Access Journals (Sweden)

    Melissa A Edeling

    2014-04-01

    Full Text Available We recently described our most potently neutralizing monoclonal antibody, E106, which protected against lethal Dengue virus type 1 (DENV-1 infection in mice. To further understand its functional properties, we determined the crystal structure of E106 Fab in complex with domain III (DIII of DENV-1 envelope (E protein to 2.45 Å resolution. Analysis of the complex revealed a small antibody-antigen interface with the epitope on DIII composed of nine residues along the lateral ridge and A-strand regions. Despite strong virus neutralizing activity of E106 IgG at picomolar concentrations, E106 Fab exhibited a ∼20,000-fold decrease in virus neutralization and bound isolated DIII, E, or viral particles with only a micromolar monovalent affinity. In comparison, E106 IgG bound DENV-1 virions with nanomolar avidity. The E106 epitope appears readily accessible on virions, as neutralization was largely temperature-independent. Collectively, our data suggest that E106 neutralizes DENV-1 infection through bivalent engagement of adjacent DIII subunits on a single virion. The isolation of anti-flavivirus antibodies that require bivalent binding to inhibit infection efficiently may be a rare event due to the unique icosahedral arrangement of envelope proteins on the virion surface.

  14. Viral escape from HIV-1 neutralizing antibodies drives increased plasma neutralization breadth through sequential recognition of multiple epitopes and immunotypes.

    Directory of Open Access Journals (Sweden)

    Constantinos Kurt Wibmer

    2013-10-01

    Full Text Available Identifying the targets of broadly neutralizing antibodies to HIV-1 and understanding how these antibodies develop remain important goals in the quest to rationally develop an HIV-1 vaccine. We previously identified a participant in the CAPRISA Acute Infection Cohort (CAP257 whose plasma neutralized 84% of heterologous viruses. In this study we showed that breadth in CAP257 was largely due to the sequential, transient appearance of three distinct broadly neutralizing antibody specificities spanning the first 4.5 years of infection. The first specificity targeted an epitope in the V2 region of gp120 that was also recognized by strain-specific antibodies 7 weeks earlier. Specificity for the autologous virus was determined largely by a rare N167 antigenic variant of V2, with viral escape to the more common D167 immunotype coinciding with the development of the first wave of broadly neutralizing antibodies. Escape from these broadly neutralizing V2 antibodies through deletion of the glycan at N160 was associated with exposure of an epitope in the CD4 binding site that became the target for a second wave of broadly neutralizing antibodies. Neutralization by these CD4 binding site antibodies was almost entirely dependent on the glycan at position N276. Early viral escape mutations in the CD4 binding site drove an increase in wave two neutralization breadth, as this second wave of heterologous neutralization matured to recognize multiple immunotypes within this site. The third wave targeted a quaternary epitope that did not overlap any of the four known sites of vulnerability on the HIV-1 envelope and remains undefined. Altogether this study showed that the human immune system is capable of generating multiple broadly neutralizing antibodies in response to a constantly evolving viral population that exposes new targets as a consequence of escape from earlier neutralizing antibodies.

  15. Combination effect on HIV infection in vitro of soluble CD4 and HIV-neutralizing antibodies

    DEFF Research Database (Denmark)

    Hansen, J E; Sørensen, A M; Olofsson, S

    1994-01-01

    In combination with HIV gp120 V3-loop antibody, two carbohydrate specific neutralizing antibodies (83D4 and 2G12) had a synergistic neutralizing effect on HIV infection. However, sCD4 and an antibody which blocks gp 120/CD4 binding (1B1) both displayed antagonism.......In combination with HIV gp120 V3-loop antibody, two carbohydrate specific neutralizing antibodies (83D4 and 2G12) had a synergistic neutralizing effect on HIV infection. However, sCD4 and an antibody which blocks gp 120/CD4 binding (1B1) both displayed antagonism....

  16. Structural basis for the antibody neutralization of Herpes simplex virus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheng-Chung; Lin, Li-Ling [Academia Sinica, Taipei 115, Taiwan (China); Academia Sinica, Taipei 115, Taiwan (China); Chan, Woan-Eng [Development Center for Biotechnology, New Taipei City 221, Taiwan (China); Ko, Tzu-Ping [Academia Sinica, Taipei 115, Taiwan (China); Academia Sinica, Taipei 115, Taiwan (China); Lai, Jiann-Shiun [Development Center for Biotechnology, New Taipei City 221, Taiwan (China); Ministry of Economic Affairs, Taipei 100, Taiwan (China); Wang, Andrew H.-J., E-mail: ahjwang@gate.sinica.edu.tw [Academia Sinica, Taipei 115, Taiwan (China); Academia Sinica, Taipei 115, Taiwan (China); Taipei Medical University, Taipei 110, Taiwan (China)

    2013-10-01

    The gD–E317-Fab complex crystal revealed the conformational epitope of human mAb E317 on HSV gD, providing a molecular basis for understanding the viral neutralization mechanism. Glycoprotein D (gD) of Herpes simplex virus (HSV) binds to a host cell surface receptor, which is required to trigger membrane fusion for virion entry into the host cell. gD has become a validated anti-HSV target for therapeutic antibody development. The highly inhibitory human monoclonal antibody E317 (mAb E317) was previously raised against HSV gD for viral neutralization. To understand the structural basis of antibody neutralization, crystals of the gD ectodomain bound to the E317 Fab domain were obtained. The structure of the complex reveals that E317 interacts with gD mainly through the heavy chain, which covers a large area for epitope recognition on gD, with a flexible N-terminal and C-terminal conformation. The epitope core structure maps to the external surface of gD, corresponding to the binding sites of two receptors, herpesvirus entry mediator (HVEM) and nectin-1, which mediate HSV infection. E317 directly recognizes the gD–nectin-1 interface and occludes the HVEM contact site of gD to block its binding to either receptor. The binding of E317 to gD also prohibits the formation of the N-terminal hairpin of gD for HVEM recognition. The major E317-binding site on gD overlaps with either the nectin-1-binding residues or the neutralizing antigenic sites identified thus far (Tyr38, Asp215, Arg222 and Phe223). The epitopes of gD for E317 binding are highly conserved between two types of human herpesvirus (HSV-1 and HSV-2). This study enables the virus-neutralizing epitopes to be correlated with the receptor-binding regions. The results further strengthen the previously demonstrated therapeutic and diagnostic potential of the E317 antibody.

  17. Post-infection immunodeficiency virus control by neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Yamamoto

    Full Text Available BACKGROUND: Unlike most acute viral infections controlled with the appearance of virus-specific neutralizing antibodies (NAbs, primary HIV infections are not met with such potent and early antibody responses. This brings into question if or how the presence of potent antibodies can contribute to primary HIV control, but protective efficacies of antiviral antibodies in primary HIV infections have remained elusive; and, it has been speculated that even NAb induction could have only a limited suppressive effect on primary HIV replication once infection is established. Here, in an attempt to answer this question, we examined the effect of passive NAb immunization post-infection on primary viral replication in a macaque AIDS model. METHODS AND FINDINGS: The inoculums for passive immunization with simian immunodeficiency virus mac239 (SIVmac239-specific neutralizing activity were prepared by purifying polyclonal immunoglobulin G from pooled plasma of six SIVmac239-infected rhesus macaques with NAb induction in the chronic phase. Passive immunization of rhesus macaques with the NAbs at day 7 after SIVmac239 challenge resulted in significant reduction of set-point plasma viral loads and preservation of central memory CD4 T lymphocyte counts, despite the limited detection period of the administered NAb responses. Peripheral lymph node dendritic cell (DC-associated viral RNA loads showed a remarkable peak with the NAb administration, and DCs stimulated in vitro with NAb-preincubated SIV activated virus-specific CD4 T lymphocytes in an Fc-dependent manner, implying antibody-mediated virion uptake by DCs and enhanced T cell priming. CONCLUSIONS: Our results present evidence indicating that potent antibody induction post-infection can result in primary immunodeficiency virus control and suggest direct and indirect contribution of its absence to initial control failure in HIV infections. Although difficulty in achieving requisite neutralizing titers for

  18. Development of Broadly Neutralizing Antibody Mimitopes for Characterization of CRF01_AE HIV-1 Antibody Responses

    Directory of Open Access Journals (Sweden)

    Jesse V. Schoen

    2017-10-01

    Full Text Available Mapping humoral immune responses to HIV-1 over the course of natural infection is important in understanding epitope exposure in relation to elicitation of broadly neutralizing antibodies (bNAbs, which is considered imperative for effective vaccine design. When analyzing HIV-specific immune responses, the antibody binding profiles may be a correlate for functional antibody activity. In this study, we utilized phage display technology to identify novel mimitopes that may represent Env epitope structures bound by bNAbs directed at V1V2 and V3 domains, CD4 binding site (CD4bs and the membrane proximal external region (MPER of Env. Mimitope sequence motifs were determined for each bNAb epitope. Given the ongoing vaccine development efforts in Thailand, these mimitopes that represent CD4bs and MPER epitopes were used to map immune responses of HIV-1 CRF01_AE-infected individuals with known neutralizing responses from two distinct time periods, 1996-98 and 2012-15. The more contemporary cohort showed an increase in binding breadth with binding observed for all MPER and CD4bs mimitopes, while the older cohort showed only 75% recognition of the CD4bs mimitopes and no MPER mimotope binding. Furthermore, mimitope binding profiles correlated significantly with magnitude (p=0.0036 and breadth (p=0.0358 of neutralization of a multi-subtype Tier 1 panel of pseudoviruses. These results highlight the utility of this mimitope mapping approach for detecting human plasma IgG-specificities that target known neutralizing antibody epitopes, and may also provide an indication of the plasticity of antibody binding within HIV-1 Env neutralization determinants.

  19. Development of a Coxsackievirus A16 neutralization assay based on pseudoviruses for measurement of neutralizing antibody titer in human serum.

    Science.gov (United States)

    Jin, Jun; Ma, Hongxia; Xu, Lin; An, Dong; Sun, Shiyang; Huang, Xueyong; Kong, Wei; Jiang, Chunlai

    2013-02-01

    Serum neutralizing antibody titers are indicative of protective immunity against Coxsackievirus A16 (CV-A16) and Enterovirus 71 (EV71), the two main etiological agents of hand, foot and mouth disease (HFMD), and provide the basis for evaluating vaccine efficacy. The current CV-A16 neutralization assay based on inhibition of cytopathic effects requires manual microscopic examination, which is time-consuming and labor-intensive. In this study, a high-throughput neutralization assay was developed by employing CV-A16 pseudoviruses expressing luciferase for detecting infectivity in rhabdomyosarcoma (RD) cells and measuring serum viral neutralizing antibodies. Without the need to use infectious CV-A16 strains, the neutralizing antibody titer against CV-A16 could be determined within 15h by measuring luciferase signals by this assay. The pseudovirus CV-A16 neutralization assay (pCNA) was validated by comparison with a conventional CV-A16 neutralization assay (cCNA) in testing 174 human serum samples collected from children (age <5 years). The neutralizing antibody titers determined by these two assays were well correlated (R(2)=0.7689). These results suggest that the pCNA can serve as a rapid and objective procedure for the measurement of neutralizing antibodies against CV-A16. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Natural strain variation and antibody neutralization of dengue serotype 3 viruses.

    Directory of Open Access Journals (Sweden)

    Wahala M P B Wahala

    2010-03-01

    Full Text Available Dengue viruses (DENVs are emerging, mosquito-borne flaviviruses which cause dengue fever and dengue hemorrhagic fever. The DENV complex consists of 4 serotypes designated DENV1-DENV4. Following natural infection with DENV, individuals develop serotype specific, neutralizing antibody responses. Monoclonal antibodies (MAbs have been used to map neutralizing epitopes on dengue and other flaviviruses. Most serotype-specific, neutralizing MAbs bind to the lateral ridge of domain III of E protein (EDIII. It has been widely assumed that the EDIII lateral ridge epitope is conserved within each DENV serotype and a good target for vaccines. Using phylogenetic methods, we compared the amino acid sequence of 175 E proteins representing the different genotypes of DENV3 and identified a panel of surface exposed amino acids, including residues in EDIII, that are highly variant across the four DENV3 genotypes. The variable amino acids include six residues at the lateral ridge of EDIII. We used a panel of DENV3 mouse MAbs to assess the functional significance of naturally occurring amino acid variation. From the panel of antibodies, we identified three neutralizing MAbs that bound to EDIII of DENV3. Recombinant proteins and naturally occurring variant viruses were used to map the binding sites of the three MAbs. The three MAbs bound to overlapping but distinct epitopes on EDIII. Our empirical studies clearly demonstrate that the antibody binding and neutralization capacity of two MAbs was strongly influenced by naturally occurring mutations in DENV3. Our data demonstrate that the lateral ridge "type specific" epitope is not conserved between strains of DENV3. This variability should be considered when designing and evaluating DENV vaccines, especially those targeting EDIII.

  1. Genetic signatures in the envelope glycoproteins of HIV-1 that associate with broadly neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    S Gnanakaran

    Full Text Available A steady increase in knowledge of the molecular and antigenic structure of the gp120 and gp41 HIV-1 envelope glycoproteins (Env is yielding important new insights for vaccine design, but it has been difficult to translate this information to an immunogen that elicits broadly neutralizing antibodies. To help bridge this gap, we used phylogenetically corrected statistical methods to identify amino acid signature patterns in Envs derived from people who have made potently neutralizing antibodies, with the hypothesis that these Envs may share common features that would be useful for incorporation in a vaccine immunogen. Before attempting this, essentially as a control, we explored the utility of our computational methods for defining signatures of complex neutralization phenotypes by analyzing Env sequences from 251 clonal viruses that were differentially sensitive to neutralization by the well-characterized gp120-specific monoclonal antibody, b12. We identified ten b12-neutralization signatures, including seven either in the b12-binding surface of gp120 or in the V2 region of gp120 that have been previously shown to impact b12 sensitivity. A simple algorithm based on the b12 signature pattern was predictive of b12 sensitivity/resistance in an additional blinded panel of 57 viruses. Upon obtaining these reassuring outcomes, we went on to apply these same computational methods to define signature patterns in Env from HIV-1 infected individuals who had potent, broadly neutralizing responses. We analyzed a checkerboard-style neutralization dataset with sera from 69 HIV-1-infected individuals tested against a panel of 25 different Envs. Distinct clusters of sera with high and low neutralization potencies were identified. Six signature positions in Env sequences obtained from the 69 samples were found to be strongly associated with either the high or low potency responses. Five sites were in the CD4-induced coreceptor binding site of gp120, suggesting an

  2. Quantification of Lyssavirus-Neutralizing Antibodies Using Vesicular Stomatitis Virus Pseudotype Particles

    Directory of Open Access Journals (Sweden)

    Sarah Moeschler

    2016-09-01

    Full Text Available Rabies is a highly fatal zoonotic disease which is primarily caused by rabies virus (RABV although other members of the genus Lyssavirus can cause rabies as well. As yet, 14 serologically and genetically diverse lyssaviruses have been identified, mostly in bats. To assess the quality of rabies vaccines and immunoglobulin preparations, virus neutralization tests with live RABV are performed in accordance with enhanced biosafety standards. In the present work, a novel neutralization test is presented which takes advantage of a modified vesicular stomatitis virus (VSV from which the glycoprotein G gene has been deleted and replaced by reporter genes. This single-cycle virus was trans-complemented with RABV envelope glycoprotein. Neutralization of this pseudotype virus with RABV reference serum or immune sera from vaccinated mice showed a strong correlation with the rapid fluorescent focus inhibition test (RFFIT. Importantly, pseudotype viruses containing the envelope glycoproteins of other lyssaviruses were neutralized by reference serum to a significantly lesser extent or were not neutralized at all. Taken together, a pseudotype virus system has been successfully developed which allows the safe, fast, and sensitive detection of neutralizing antibodies directed against different lyssaviruses.

  3. Structure-based Design of Cyclically Permuted HIV-1 gp120 Trimers That Elicit Neutralizing Antibodies.

    Science.gov (United States)

    Kesavardhana, Sannula; Das, Raksha; Citron, Michael; Datta, Rohini; Ecto, Linda; Srilatha, Nonavinakere Seetharam; DiStefano, Daniel; Swoyer, Ryan; Joyce, Joseph G; Dutta, Somnath; LaBranche, Celia C; Montefiori, David C; Flynn, Jessica A; Varadarajan, Raghavan

    2017-01-06

    A major goal for HIV-1 vaccine development is an ability to elicit strong and durable broadly neutralizing antibody (bNAb) responses. The trimeric envelope glycoprotein (Env) spikes on HIV-1 are known to contain multiple epitopes that are susceptible to bNAbs isolated from infected individuals. Nonetheless, all trimeric and monomeric Env immunogens designed to date have failed to elicit such antibodies. We report the structure-guided design of HIV-1 cyclically permuted gp120 that forms homogeneous, stable trimers, and displays enhanced binding to multiple bNAbs, including VRC01, VRC03, VRC-PG04, PGT128, and the quaternary epitope-specific bNAbs PGT145 and PGDM1400. Constructs that were cyclically permuted in the V1 loop region and contained an N-terminal trimerization domain to stabilize V1V2-mediated quaternary interactions, showed the highest homogeneity and the best antigenic characteristics. In guinea pigs, a DNA prime-protein boost regimen with these new gp120 trimer immunogens elicited potent neutralizing antibody responses against highly sensitive Tier 1A isolates and weaker neutralizing antibody responses with an average titer of about 115 against a panel of heterologous Tier 2 isolates. A modest fraction of the Tier 2 virus neutralizing activity appeared to target the CD4 binding site on gp120. These results suggest that cyclically permuted HIV-1 gp120 trimers represent a viable platform in which further modifications may be made to eventually achieve protective bNAb responses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Neutralizing antibodies induced by recombinant virus-like particles of enterovirus 71 genotype C4 inhibit infection at pre- and post-attachment steps.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Ku

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 is a major causative agent of hand, foot and mouth disease, which has been prevalent in Asia-Pacific regions, causing significant morbidity and mortality in young children. Antibodies elicited by experimental EV71 vaccines could neutralize infection in vitro and passively protect animal models from lethal challenge, indicating that neutralizing antibodies play an essential role in protection. However, how neutralizing antibodies inhibit infection in vitro remains unclear. METHODS/FINDINGS: In the present study, we explored the mechanisms of neutralization by antibodies against EV71 virus-like particles (VLPs. Recombinant VLPs of EV71 genotype C4 were produced in insect cells using baculovirus vectors. Immunization with the VLPs elicited a high-titer, EV71-specific antibody response in mice. Anti-VLP mouse sera potently neutralized EV71 infection in vitro. The neutralizing antibodies in the anti-VLP mouse sera were found to target mainly an extremely conserved epitope (FGEHKQEKDLEYGAC located at the GH loop of the VP1 protein. The neutralizing anti-VLP antisera were able to inhibit virus binding to target cells efficiently. In addition, post-attachment treatment of virus-bound cells with the anti-VLP antisera also neutralized virus infection, although the antibody concentration required was higher than that of the pre-attachment treatment. CONCLUSIONS: Collectively, our findings represent a valuable addition to the understanding of mechanisms of EV71 neutralization and have strong implications for EV71 vaccine development.

  5. Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan HIV Primary Infection Cohort.

    Directory of Open Access Journals (Sweden)

    Elise Landais

    2016-01-01

    Full Text Available Broadly neutralizing antibodies (bnAbs are thought to be a critical component of a protective HIV vaccine. However, designing vaccines immunogens able to elicit bnAbs has proven unsuccessful to date. Understanding the correlates and immunological mechanisms leading to the development of bnAb responses during natural HIV infection is thus critical to the design of a protective vaccine. The IAVI Protocol C program investigates a large longitudinal cohort of primary HIV-1 infection in Eastern and South Africa. Development of neutralization was evaluated in 439 donors using a 6 cross-clade pseudo-virus panel predictive of neutralization breadth on larger panels. About 15% of individuals developed bnAb responses, essentially between year 2 and year 4 of infection. Statistical analyses revealed no influence of gender, age or geographical origin on the development of neutralization breadth. However, cross-clade neutralization strongly correlated with high viral load as well as with low CD4 T cell counts, subtype-C infection and HLA-A*03(- genotype. A correlation with high overall plasma IgG levels and anti-Env IgG binding titers was also found. The latter appeared not associated with higher affinity, suggesting a greater diversity of the anti-Env responses in broad neutralizers. Broadly neutralizing activity targeting glycan-dependent epitopes, largely the N332-glycan epitope region, was detected in nearly half of the broad neutralizers while CD4bs and gp41-MPER bnAb responses were only detected in very few individuals. Together the findings suggest that both viral and host factors are critical for the development of bnAbs and that the HIV Env N332-glycan supersite may be a favorable target for vaccine design.

  6. Soluble HIV-1 envelope immunogens derived from an elite neutralizer elicit cross-reactive V1V2 antibodies and low potency neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Sara Carbonetti

    Full Text Available We evaluated four gp140 Envelope protein vaccine immunogens that were derived from an elite neutralizer, subject VC10042, whose plasma was able to potently neutralize a wide array of genetically distinct HIV-1 isolates. We sought to determine whether soluble Envelope proteins derived from the viruses circulating in VC10042 could be used as immunogens to elicit similar neutralizing antibody responses by vaccination. Each gp140 was tested in its trimeric and monomeric forms, and we evaluated two gp140 trimer vaccine regimens in which adjuvant was supplied at all four immunizations or at only the first two immunizations. Interestingly, all four Envelope immunogens elicited high titers of cross-reactive antibodies that recognize the variable regions V1V2 and are potentially similar to antibodies linked with a reduced risk of HIV-1 acquisition in the RV144 vaccine trial. Two of the four immunogens elicited neutralizing antibody responses that neutralized a wide array of HIV-1 isolates from across genetic clades, but those responses were of very low potency. There were no significant differences in the responses elicited by trimers or monomers, nor was there a significant difference between the two adjuvant regimens. Our study identified two promising Envelope immunogens that elicited anti-V1V2 antibodies and broad, but low potency, neutralizing antibody responses.

  7. Comparison of Antibody-Dependent Cell-Mediated Cytotoxicity and Virus Neutralization by HIV-1 Env-Specific Monoclonal Antibodies.

    Science.gov (United States)

    von Bredow, Benjamin; Arias, Juan F; Heyer, Lisa N; Moldt, Brian; Le, Khoa; Robinson, James E; Zolla-Pazner, Susan; Burton, Dennis R; Evans, David T

    2016-07-01

    Although antibodies to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein have been studied extensively for their ability to block viral infectivity, little data are currently available on nonneutralizing functions of these antibodies, such as their ability to eliminate virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 Env-specific antibodies of diverse specificities, including potent broadly neutralizing and nonneutralizing antibodies, were therefore tested for ADCC against cells infected with a lab-adapted HIV-1 isolate (HIV-1NL4-3), a primary HIV-1 isolate (HIV-1JR-FL), and a simian-human immunodeficiency virus (SHIV) adapted for pathogenic infection of rhesus macaques (SHIVAD8-EO). In accordance with the sensitivity of these viruses to neutralization, HIV-1NL4-3-infected cells were considerably more sensitive to ADCC, both in terms of the number of antibodies and magnitude of responses, than cells infected with HIV-1JR-FL or SHIVAD8-EO ADCC activity generally correlated with antibody binding to Env on the surfaces of virus-infected cells and with viral neutralization; however, neutralization was not always predictive of ADCC, as instances of ADCC in the absence of detectable neutralization, and vice versa, were observed. These results reveal incomplete overlap in the specificities of antibodies that mediate these antiviral activities and provide insights into the relationship between ADCC and neutralization important for the development of antibody-based vaccines and therapies for combating HIV-1 infection. This study provides fundamental insights into the relationship between antibody-dependent cell-mediated cytotoxicity (ADCC) and virus neutralization that may help to guide the development of antibody-based vaccines and immunotherapies for the prevention and treatment of HIV-1 infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses.

    Science.gov (United States)

    Moody, M Anthony; Gao, Feng; Gurley, Thaddeus C; Amos, Joshua D; Kumar, Amit; Hora, Bhavna; Marshall, Dawn J; Whitesides, John F; Xia, Shi-Mao; Parks, Robert; Lloyd, Krissey E; Hwang, Kwan-Ki; Lu, Xiaozhi; Bonsignori, Mattia; Finzi, Andrés; Vandergrift, Nathan A; Alam, S Munir; Ferrari, Guido; Shen, Xiaoying; Tomaras, Georgia D; Kamanga, Gift; Cohen, Myron S; Sam, Noel E; Kapiga, Saidi; Gray, Elin S; Tumba, Nancy L; Morris, Lynn; Zolla-Pazner, Susan; Gorny, Miroslaw K; Mascola, John R; Hahn, Beatrice H; Shaw, George M; Sodroski, Joseph G; Liao, Hua-Xin; Montefiori, David C; Hraber, Peter T; Korber, Bette T; Haynes, Barton F

    2015-09-09

    The third variable (V3) loop and the CD4 binding site (CD4bs) of the HIV-1 envelope are frequently targeted by neutralizing antibodies (nAbs) in infected individuals. In chronic infection, HIV-1 escape mutants repopulate the plasma, and V3 and CD4bs nAbs emerge that can neutralize heterologous tier 1 easy-to-neutralize but not tier 2 difficult-to-neutralize HIV-1 isolates. However, neutralization sensitivity of autologous plasma viruses to this type of nAb response has not been studied. We describe the development and evolution in vivo of antibodies distinguished by their target specificity for V3 and CD4bs epitopes on autologous tier 2 viruses but not on heterologous tier 2 viruses. A surprisingly high fraction of autologous circulating viruses was sensitive to these antibodies. These findings demonstrate a role for V3 and CD4bs antibodies in constraining the native envelope trimer in vivo to a neutralization-resistant phenotype, explaining why HIV-1 transmission generally occurs by tier 2 neutralization-resistant viruses. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Both Neutralizing and Non-Neutralizing Human H7N9 Influenza Vaccine-Induced Monoclonal Antibodies Confer Protection.

    Science.gov (United States)

    Henry Dunand, Carole J; Leon, Paul E; Huang, Min; Choi, Angela; Chromikova, Veronika; Ho, Irvin Y; Tan, Gene S; Cruz, John; Hirsh, Ariana; Zheng, Nai-Ying; Mullarkey, Caitlin E; Ennis, Francis A; Terajima, Masanori; Treanor, John J; Topham, David J; Subbarao, Kanta; Palese, Peter; Krammer, Florian; Wilson, Patrick C

    2016-06-08

    Pathogenic H7N9 avian influenza viruses continue to represent a public health concern, and several candidate vaccines are currently being developed. It is vital to assess if protective antibodies are induced following vaccination and to characterize the diversity of epitopes targeted. Here we characterized the binding and functional properties of twelve H7-reactive human antibodies induced by a candidate A/Anhui/1/2013 (H7N9) vaccine. Both neutralizing and non-neutralizing antibodies protected mice in vivo during passive transfer challenge experiments. Mapping the H7 hemagglutinin antigenic sites by generating escape mutant variants against the neutralizing antibodies identified unique epitopes on the head and stalk domains. Further, the broadly cross-reactive non-neutralizing antibodies generated in this study were protective through Fc-mediated effector cell recruitment. These findings reveal important properties of vaccine-induced antibodies and provide a better understanding of the human monoclonal antibody response to influenza in the context of vaccines. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Mechanisms of equine infectious anemia virus escape from neutralizing antibody responses define epitope specificity.

    Science.gov (United States)

    Sponseller, Brett A; Clark, Sandra K; Friedrich, Rachel A

    2012-08-01

    Determining mechanisms of viral escape to particular epitopes recognized by virus-neutralizing antibody can facilitate characterization of host-neutralizing antibody responses as type- versus group-specific, and provides necessary information for vaccine development. Our study reveals that a single N-glycan located in the 5' region of the Wyoming wild-type equine infectious anemia virus (EIAV) principal neutralizing domain (PND) accounts for the differences in neutralization phenotype observed between PND variants, while variations in charged amino acids within the PND do not appear to play a key role in viral escape. Site-directed mutagenesis and peptide mapping of a conserved epitope to neutralizing antibody in the 3' region of the PND showed rapid selective pressure for acquisition of a 5' PND N-glycan responsible for defining the specificity of the neutralizing-antibody response.

  11. Cross-reactivity and phospholipase A2 neutralization of anti-irradiated Bothrops jararaca venom antibodies

    International Nuclear Information System (INIS)

    Spencer, P.J.; Nascimento, N. do; Paula, R.A. de; Cardi, B.A.; Rogero, J.R.

    1995-01-01

    The detoxified Bothrops jararaca venom, immunized rabbits with the toxoid obtained and investigated cross-reactivity of the antibodies obtained against autologous and heterelogous venoms was presented. It was also investigated the ability of the IgGs, purified by affinity chromatography, from those sera to neutralize phospholipase. A 2 , an ubiquous enzyme in animal venoms. Results indicate that venom irradiation leads to an attenuation of toxicity of 84%. Cross-reactivity was investigated by ELISA and Western blot and all venoms were reactive to the antibodies. On what refers to phospholipase A 2 activity neutralization, the antibodies neutralized autologous venoms efficiently and, curiously, other venoms from the same genus were not neutralized, while Lachesis muta venom, a remote related specier, was neutralized by this serum. These data suggest that irradiation preserve important epitopes for induction of neutralizing antibodies and that these epitopes are not shared by all venoms assayed. (author). 8 refs, 2 figs, 3 tabs

  12. Protective efficacy of neutralizing monoclonal antibodies in a nonhuman primate model of Ebola hemorrhagic fever.

    Science.gov (United States)

    Marzi, Andrea; Yoshida, Reiko; Miyamoto, Hiroko; Ishijima, Mari; Suzuki, Yasuhiko; Higuchi, Megumi; Matsuyama, Yukie; Igarashi, Manabu; Nakayama, Eri; Kuroda, Makoto; Saijo, Masayuki; Feldmann, Friederike; Brining, Douglas; Feldmann, Heinz; Takada, Ayato

    2012-01-01

    Ebola virus (EBOV) is the causative agent of severe hemorrhagic fever in primates, with human case fatality rates up to 90%. Today, there is neither a licensed vaccine nor a treatment available for Ebola hemorrhagic fever (EHF). Single monoclonal antibodies (MAbs) specific for Zaire ebolavirus (ZEBOV) have been successfully used in passive immunization experiments in rodent models, but have failed to protect nonhuman primates from lethal disease. In this study, we used two clones of human-mouse chimeric MAbs (ch133 and ch226) with strong neutralizing activity against ZEBOV and evaluated their protective potential in a rhesus macaque model of EHF. Reduced viral loads and partial protection were observed in animals given MAbs ch133 and ch226 combined intravenously at 24 hours before and 24 and 72 hours after challenge. MAbs circulated in the blood of a surviving animal until virus-induced IgG responses were detected. In contrast, serum MAb concentrations decreased to undetectable levels at terminal stages of disease in animals that succumbed to infection, indicating substantial consumption of these antibodies due to virus replication. Accordingly, the rapid decrease of serum MAbs was clearly associated with increased viremia in non-survivors. Our results indicate that EBOV neutralizing antibodies, particularly in combination with other therapeutic strategies, might be beneficial in reducing viral loads and prolonging disease progression during EHF.

  13. Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xueling; Zhou, Tongqing; Zhu, Jiang; Zhang, Baoshan; Georgiev, Ivelin; Wang, Charlene; Chen, Xuejun; Longo, Nancy S.; Louder, Mark; McKee, Krisha; O’Dell, Sijy; Perfetto, Stephen; Schmidt, Stephen D.; Shi, Wei; Wu, Lan; Yang, Yongping; Yang, Zhi-Yong; Yang, Zhongjia; Zhang, Zhenhai; Bonsignori, Mattia; Crump, John A.; Kapiga, Saidi H.; Sam, Noel E.; Haynes, Barton F.; Simek, Melissa; Burton, Dennis R.; Koff, Wayne C.; Doria-Rose, Nicole A.; Connors, Mark; Mullikin, James C.; Nabel, Gary J.; Roederer, Mario; Shapiro, Lawrence; Kwong, Peter D.; Mascola, John R. (Tumaini); (NIH); (Duke); (Kilimanjaro Repro.); (IAVI)

    2013-03-04

    Antibody VRC01 is a human immunoglobulin that neutralizes about 90% of HIV-1 isolates. To understand how such broadly neutralizing antibodies develop, we used x-ray crystallography and 454 pyrosequencing to characterize additional VRC01-like antibodies from HIV-1-infected individuals. Crystal structures revealed a convergent mode of binding for diverse antibodies to the same CD4-binding-site epitope. A functional genomics analysis of expressed heavy and light chains revealed common pathways of antibody-heavy chain maturation, confined to the IGHV1-2*02 lineage, involving dozens of somatic changes, and capable of pairing with different light chains. Broadly neutralizing HIV-1 immunity associated with VRC01-like antibodies thus involves the evolution of antibodies to a highly affinity-matured state required to recognize an invariant viral structure, with lineages defined from thousands of sequences providing a genetic roadmap of their development.

  14. Recombinant influenza H7 hemagglutinins induce lower neutralizing antibody titers in mice than do seasonal hemagglutinins.

    Science.gov (United States)

    Blanchfield, Kristy; Kamal, Ram P; Tzeng, Wen-Pin; Music, Nedzad; Wilson, Jason R; Stevens, James; Lipatov, Aleksander S; Katz, Jacqueline M; York, Ian A

    2014-11-01

    Vaccines against avian influenza viruses often require high hemagglutinin (HA) doses or adjuvants to achieve serological titers associated with protection against disease. In particular, viruses of the H7 subtype frequently do not induce strong antibody responses following immunization. To evaluate whether poor immunogenicity of H7 viruses is an intrinsic property of the H7 hemagglutinin. We compared the immunogenicity, in naïve mice, of purified recombinant HA from two H7 viruses [A/Netherlands/219/2003(H7N7) and A/New York/107/2003(H7N2)] to that of HA from human pandemic [A/California/07/2009(H1N1pdm09)] and seasonal [A/Perth16/2009(H3N2)] viruses. After two intramuscular injections with purified hemagglutinin, mice produced antibodies to all HAs, but the response to the human virus HAs was greater than to H7 HAs. The difference was relatively minor when measured by ELISA, greater when measured by hemagglutination inhibition assays, and more marked still by microneutralization assays. H7 HAs induced little or no neutralizing antibody response in mice at either dose tested. Antibodies induced by H7 were of significantly lower avidity than for H3 or H1N1pdm09. We conclude that H7 HAs may be intrinsically less immunogenic than HA from seasonal human influenza viruses. © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  15. Feline immunodeficiency virus (FIV) vaccine efficacy and FIV neutralizing antibodies.

    Science.gov (United States)

    Coleman, James K; Pu, Ruiyu; Martin, Marcus M; Noon-Song, Ezra N; Zwijnenberg, Raphael; Yamamoto, Janet K

    2014-02-03

    A HIV-1 tier system has been developed to categorize the various subtype viruses based on their sensitivity to vaccine-induced neutralizing antibodies (NAbs): tier 1 with greatest sensitivity, tier 2 being moderately sensitive, and tier 3 being the least sensitive to NAbs (Mascola et al., J Virol 2005; 79:10103-7). Here, we define an FIV tier system using two related FIV dual-subtype (A+D) vaccines: the commercially available inactivated infected-cell vaccine (Fel-O-Vax(®) FIV) and its prototype vaccine solely composed of inactivated whole viruses. Both vaccines afforded combined protection rates of 100% against subtype-A tier-1 FIVPet, 89% against subtype-B tier-3 FIVFC1, 61% against recombinant subtype-A/B tier-2 FIVBang, 62% against recombinant subtype-F'/C tier-3 FIVNZ1, and 40% against subtype-A tier-2 FIVUK8 in short-duration (37-41 weeks) studies. In long-duration (76-80 weeks) studies, the commercial vaccine afforded a combined protection rate of at least 46% against the tier-2 and tier-3 viruses. Notably, protection rates observed here are far better than recently reported HIV-1 vaccine trials (Sanou et al., The Open AIDS J 2012; 6:246-60). Prototype vaccine protection against two tier-3 and one tier-2 viruses was more effective than commercial vaccine. Such protection did not correlate with the presence of vaccine-induced NAbs to challenge viruses. This is the first large-scale (228 laboratory cats) study characterizing short- and long-duration efficacies of dual-subtype FIV vaccines against heterologous subtype and recombinant viruses, as well as FIV tiers based on in vitro NAb analysis and in vivo passive-transfer studies. These studies demonstrate that not all vaccine protection is mediated by vaccine-induced NAbs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Evaluating the synergistic neutralizing effect of anti-botulinum oligoclonal antibody preparations.

    Science.gov (United States)

    Diamant, Eran; Lachmi, Bat-El; Keren, Adi; Barnea, Ada; Marcus, Hadar; Cohen, Shoshana; David, Alon Ben; Zichel, Ran

    2014-01-01

    Botulinum neurotoxins (BoNT) are considered some of the most lethal known substances. There are seven botulinum serotypes, of which types A, B and E cause most human botulism cases. Anti-botulinum polyclonal antibodies (PAbs) are currently used for both detection and treatment of the disease. However, significant improvements in immunoassay specificity and treatment safety may be made using monoclonal antibodies (MAbs). In this study, we present an approach for the simultaneous generation of highly specific and neutralizing MAbs against botulinum serotypes A, B, and E in a single process. The approach relies on immunization of mice with a trivalent mixture of recombinant C-terminal fragment (Hc) of each of the three neurotoxins, followed by a parallel differential robotic hybridoma screening. This strategy enabled the cloning of seven to nine MAbs against each serotype. The majority of the MAbs possessed higher anti-botulinum ELISA titers than anti-botulinum PAbs and had up to five orders of magnitude greater specificity. When tested for their potency in mice, neutralizing MAbs were obtained for all three serotypes and protected against toxin doses of 10 MsLD50-500 MsLD50. A strong synergistic effect of up to 400-fold enhancement in the neutralizing activity was observed when serotype-specific MAbs were combined. Furthermore, the highly protective oligoclonal combinations were as potent as a horse-derived PAb pharmaceutical preparation. Interestingly, MAbs that failed to demonstrate individual neutralizing activity were observed to make a significant contribution to the synergistic effect in the oligoclonal preparation. Together, the trivalent immunization strategy and differential screening approach enabled us to generate highly specific MAbs against each of the A, B, and E BoNTs. These new MAbs may possess diagnostic and therapeutic potential.

  17. Evaluating the synergistic neutralizing effect of anti-botulinum oligoclonal antibody preparations.

    Directory of Open Access Journals (Sweden)

    Eran Diamant

    Full Text Available Botulinum neurotoxins (BoNT are considered some of the most lethal known substances. There are seven botulinum serotypes, of which types A, B and E cause most human botulism cases. Anti-botulinum polyclonal antibodies (PAbs are currently used for both detection and treatment of the disease. However, significant improvements in immunoassay specificity and treatment safety may be made using monoclonal antibodies (MAbs. In this study, we present an approach for the simultaneous generation of highly specific and neutralizing MAbs against botulinum serotypes A, B, and E in a single process. The approach relies on immunization of mice with a trivalent mixture of recombinant C-terminal fragment (Hc of each of the three neurotoxins, followed by a parallel differential robotic hybridoma screening. This strategy enabled the cloning of seven to nine MAbs against each serotype. The majority of the MAbs possessed higher anti-botulinum ELISA titers than anti-botulinum PAbs and had up to five orders of magnitude greater specificity. When tested for their potency in mice, neutralizing MAbs were obtained for all three serotypes and protected against toxin doses of 10 MsLD50-500 MsLD50. A strong synergistic effect of up to 400-fold enhancement in the neutralizing activity was observed when serotype-specific MAbs were combined. Furthermore, the highly protective oligoclonal combinations were as potent as a horse-derived PAb pharmaceutical preparation. Interestingly, MAbs that failed to demonstrate individual neutralizing activity were observed to make a significant contribution to the synergistic effect in the oligoclonal preparation. Together, the trivalent immunization strategy and differential screening approach enabled us to generate highly specific MAbs against each of the A, B, and E BoNTs. These new MAbs may possess diagnostic and therapeutic potential.

  18. Prevalence and titers of yellow fever virus neutralizing antibodies in previously vaccinated adults

    Science.gov (United States)

    Miyaji, Karina Takesaki; Avelino-Silva, Vivian Iida; Simões, Marisol; Freire, Marcos da Silva; de Medeiros, Carlos Roberto; Braga, Patrícia Emilia; Neves, Maria Angélica Acalá; Lopes, Marta Heloisa; Kallas, Esper Georges; Sartori, Ana Marli Christovam

    2017-01-01

    ABSTRACT Introduction: The World Health Organization (WHO) recommends one single dose of the Yellow Fever (YF) vaccine based on studies of antibody persistency in healthy adults. We assessed the prevalence and titers of YF virus neutralizing antibodies in previously vaccinated persons aged ≥ 60 years, in comparison to younger adults. We also evaluated the correlation between antibody titers and the time since vaccination among participants who received one vaccine dose, and the seropositivity among participants vaccinated prior to or within the past 10 years. Methods: previously vaccinated healthy persons aged ≥ 18 years were included. YF virus neutralizing antibody titers were determined by means of the 50% Plaque Reduction Neutralization Test. Results: 46 persons aged ≥ 60 years and 48 persons aged 18 to 59 years were enrolled. There was no significant difference in the prevalence of YF virus neutralizing antibodies between the two groups (p = 0.263). However, titers were significantly lower in the elderly (p = 0.022). There was no correlation between YF virus neutralizing antibody titers and the time since vaccination. There was no significant difference in seropositivity among participants vaccinated prior to or within the past 10 years. Conclusions: the clinical relevance of the observed difference in YF virus neutralizing antibody titers between the two groups is not clear. PMID:28380113

  19. Prevalence and titers of yellow fever virus neutralizing antibodies in previously vaccinated adults.

    Science.gov (United States)

    Miyaji, Karina Takesaki; Avelino-Silva, Vivian Iida; Simões, Marisol; Freire, Marcos da Silva; Medeiros, Carlos Roberto de; Braga, Patrícia Emilia; Neves, Maria Angélica Acalá; Lopes, Marta Heloisa; Kallas, Esper Georges; Sartori, Ana Marli Christovam

    2017-04-03

    The World Health Organization (WHO) recommends one single dose of the Yellow Fever (YF) vaccine based on studies of antibody persistency in healthy adults. We assessed the prevalence and titers of YF virus neutralizing antibodies in previously vaccinated persons aged  60 years, in comparison to younger adults. We also evaluated the correlation between antibody titers and the time since vaccination among participants who received one vaccine dose, and the seropositivity among participants vaccinated prior to or within the past 10 years. previously vaccinated healthy persons aged  18 years were included. YF virus neutralizing antibody titers were determined by means of the 50% Plaque Reduction Neutralization Test. 46 persons aged  60 years and 48 persons aged 18 to 59 years were enrolled. There was no significant difference in the prevalence of YF virus neutralizing antibodies between the two groups (p = 0.263). However, titers were significantly lower in the elderly (p = 0.022). There was no correlation between YF virus neutralizing antibody titers and the time since vaccination. There was no significant difference in seropositivity among participants vaccinated prior to or within the past 10 years. the clinical relevance of the observed difference in YF virus neutralizing antibody titers between the two groups is not clear.

  20. A pilot study on an attenuated Chinese EIAV vaccine inducing broadly neutralizing antibodies.

    Science.gov (United States)

    Meng, Qinglai; Lin, Yuezhi; Ma, Jian; Ma, Yan; Zhao, Liping; Li, Shenwei; Liang, Hua; Zhou, Jianhua; Shen, Rongxian; Zhang, Xiaoyan; Shao, Yiming

    2011-08-01

    The attenuated Chinese equine infectious anemia virus (EIAV) vaccine has successfully protected millions of equine animals from EIA disease in China. In this pilot study, to determine whether this attenuated vaccine can induce broadly neutralizing antibodies, we immunized four horses with the attenuated Chinese vaccine strain EIAVFDDV and then observed the evolution of neutralizing antibodies against different EIAV strains. During the vaccination phase, all vaccinees rapidly developed high levels of neutralizing antibodies against the homologous vaccine strain (pLGFD3V), and 3 out of 4 horses showed a gradual increase in serum neutralizing activity against two relatively heterologous virulent variants of the challenge strain (pLGFD3Mu12V and DLV34). After challenge, the three horses that had developed high levels of neutralizing antibodies against pLGFD3Mu12V and DLV34 did not show signs of infection, which was demonstrated by immune suppression, while the one horse producing serum that could only neutralize pLGFD3V developed a febrile episode during the 8-month observation period. To assess whether the broadly neutralizing activity is associated with immune protection, sera drawn on the day of challenge from these four vaccinees and an additional four EIAVFDDV-vaccinated horses were analyzed for neutralizing antibodies against pLGFD3V, pLGFD3Mu12V and DLV34. Although there was no significant correlation between protection from infection and serum neutralizing activity against any of these three viral strains, protection from infection was observed to correlate better with serum neutralizing activity against the two heterologous virulent strains than against the homologous vaccine strain. These data indicate that EIAVFDDV induced broadly neutralizing antibodies, which might confer enhanced protection of vaccinees from infection by the challenge virus.

  1. Big, strong, neutral, twisted, and chiral π acids.

    Science.gov (United States)

    Zhao, Yingjie; Huang, Guangxi; Besnard, Celine; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2015-04-13

    General synthetic access to expanded π-acidic surfaces of variable size, topology, chirality, and π acidity is reported. The availability of π surfaces with these characteristics is essential to develop the functional relevance of anion-π interactions with regard to molecular recognition, translocation, and transformation. The problem is that, with expanded π surfaces, the impact of electron-withdrawing substituents decreases and the high π acidity needed for strong anion-π interactions can be more difficult to obtain. To overcome this problem, it is herein proposed to build large surfaces from smaller fragments and connect these fragments with bridges that are composed only of single atoms. Two central surfaces for powerful anion-π interactions, namely, perfluoroarenes and naphthalenediimides (NDIs), were selected as fragments and coupled with through sulfide bridges. Their oxidation to sulfoxides and sulfones, as well as fluorine substitution in the peripheral rings, provides access to the full chemical space of relevant π acidities. According to cyclic voltammetry, LUMO levels range from -3.96 to -4.72 eV. With sulfoxide bridges, stereogenic centers are introduced to further enrich the intrinsic planar chirality of the expanded surfaces. The stereoisomers were separated by chiral HPLC and characterized by X-ray crystallography. Their topologies range from chairs to π boats, and the latter are reminiscent of the cation-π boxes in operational neuronal receptors. With pentafluorophenyl acceptors, the π acidity of NDIs with two sulfoxide groups in the core reaches -4.45 eV, whereas two sulfone moieties give a value of -4.72 eV, which is as low as with four ethyl sulfone groups, that is, a π superacid near the limit of existence. Beyond anion-π interactions, these conceptually innovative π-acidic surfaces are also of interest as electron transporters in conductive materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Predicting HIV-1 transmission and antibody neutralization efficacy in vivo from stoichiometric parameters.

    Directory of Open Access Journals (Sweden)

    Oliver F Brandenberg

    2017-05-01

    Full Text Available The potential of broadly neutralizing antibodies targeting the HIV-1 envelope trimer to prevent HIV-1 transmission has opened new avenues for therapies and vaccines. However, their implementation remains challenging and would profit from a deepened mechanistic understanding of HIV-antibody interactions and the mucosal transmission process. In this study we experimentally determined stoichiometric parameters of the HIV-1 trimer-antibody interaction, confirming that binding of one antibody is sufficient for trimer neutralization. This defines numerical requirements for HIV-1 virion neutralization and thereby enables mathematical modelling of in vitro and in vivo antibody neutralization efficacy. The model we developed accurately predicts antibody efficacy in animal passive immunization studies and provides estimates for protective mucosal antibody concentrations. Furthermore, we derive estimates of the probability for a single virion to start host infection and the risks of male-to-female HIV-1 transmission per sexual intercourse. Our work thereby delivers comprehensive quantitative insights into both the molecular principles governing HIV-antibody interactions and the initial steps of mucosal HIV-1 transmission. These insights, alongside the underlying, adaptable modelling framework presented here, will be valuable for supporting in silico pre-trial planning and post-hoc evaluation of HIV-1 vaccination or antibody treatment trials.

  3. Neutralization of botulinum neurotoxin by a human monoclonal antibody specific for the catalytic light chain.

    Directory of Open Access Journals (Sweden)

    Sharad P Adekar

    2008-08-01

    Full Text Available Botulinum neurotoxins (BoNT are a family of category A select bioterror agents and the most potent biological toxins known. Cloned antibody therapeutics hold considerable promise as BoNT therapeutics, but the therapeutic utility of antibodies that bind the BoNT light chain domain (LC, a metalloprotease that functions in the cytosol of cholinergic neurons, has not been thoroughly explored.We used an optimized hybridoma method to clone a fully human antibody specific for the LC of serotype A BoNT (BoNT/A. The 4LCA antibody demonstrated potent in vivo neutralization when administered alone and collaborated with an antibody specific for the HC. In Neuro-2a neuroblastoma cells, the 4LCA antibody prevented the cleavage of the BoNT/A proteolytic target, SNAP-25. Unlike an antibody specific for the HC, the 4LCA antibody did not block entry of BoNT/A into cultured cells. Instead, it was taken up into synaptic vesicles along with BoNT/A. The 4LCA antibody also directly inhibited BoNT/A catalytic activity in vitro.An antibody specific for the BoNT/A LC can potently inhibit BoNT/A in vivo and in vitro, using mechanisms not previously associated with BoNT-neutralizing antibodies. Antibodies specific for BoNT LC may be valuable components of an antibody antidote for BoNT exposure.

  4. Latency of Herpes Simplex Virus in Absence of Neutralizing Antibody: Model for Reactivation

    Science.gov (United States)

    Sekizawa, Tsuyoshi; Openshaw, Harry; Wohlenberg, Charles; Notkins, Abner Louis

    1980-11-01

    Mice inoculated with herpes simplex virus (type 1) by the lip or corneal route and then passively immunized with rabbit antibody to herpes simplex virus developed a latent infection in the trigeminal ganglia within 96 hours. Neutralizing antibody to herpes simplex virus was cleared from the circulation and could not be detected in most of these mice after 2 months. Examination of ganglia from the antibody-negative mice revealed latent virus in over 90 percent of the animals, indicating that serum neutralizing antibody is not necessary to maintain the latent state. When the lips or corneas of these mice were traumatized, viral reactivation occurred in up to 90 percent of the mice, as demonstrated by the appearance of neutralizing antibody. This study provides a model for identifying factors that trigger viral reactivation.

  5. The effects of somatic hypermutation on neutralization and binding in the PGT121 family of broadly neutralizing HIV antibodies.

    Directory of Open Access Journals (Sweden)

    Devin Sok

    Full Text Available Broadly neutralizing HIV antibodies (bnAbs are typically highly somatically mutated, raising doubts as to whether they can be elicited by vaccination. We used 454 sequencing and designed a novel phylogenetic method to model lineage evolution of the bnAbs PGT121-134 and found a positive correlation between the level of somatic hypermutation (SHM and the development of neutralization breadth and potency. Strikingly, putative intermediates were characterized that show approximately half the mutation level of PGT121-134 but were still capable of neutralizing roughly 40-80% of PGT121-134 sensitive viruses in a 74-virus panel at median titers between 15- and 3-fold higher than PGT121-134. Such antibodies with lower levels of SHM may be more amenable to elicitation through vaccination while still providing noteworthy coverage. Binding characterization indicated a preference of inferred intermediates for native Env binding over monomeric gp120, suggesting that the PGT121-134 lineage may have been selected for binding to native Env at some point during maturation. Analysis of glycan-dependent neutralization for inferred intermediates identified additional adjacent glycans that comprise the epitope and suggests changes in glycan dependency or recognition over the course of affinity maturation for this lineage. Finally, patterns of neutralization of inferred bnAb intermediates suggest hypotheses as to how SHM may lead to potent and broad HIV neutralization and provide important clues for immunogen design.

  6. Expression of Human Immunodeficiency Virus Type 1 Neutralizing Antibody Fragments Using Human Vaginal Lactobacillus.

    Science.gov (United States)

    Marcobal, Angela; Liu, Xiaowen; Zhang, Wenlei; Dimitrov, Antony S; Jia, Letong; Lee, Peter P; Fouts, Timothy R; Parks, Thomas P; Lagenaur, Laurel A

    Eradication of human immunodeficiency virus type 1 (HIV-1) by vaccination with epitopes that produce broadly neutralizing antibodies is the ultimate goal for HIV prevention. However, generating appropriate immune responses has proven difficult. Expression of broadly neutralizing antibodies by vaginal colonizing lactobacilli provides an approach to passively target these antibodies to the mucosa. We tested the feasibility of expressing single-chain and single-domain antibodies (dAbs) in Lactobacillus to be used as a topical microbicide/live biotherapeutic. Lactobacilli provide an excellent platform to express anti-HIV proteins. Broadly neutralizing antibodies have been identified against epitopes on the HIV-1 envelope and have been made into active antibody fragments. We tested single-chain variable fragment m9 and dAb-m36 and its derivative m36.4 as prototype antibodies. We cloned and expressed the antibody fragments m9, m36, and m36.4 in Lactobacillus jensenii-1153 and tested the expression levels and functionality. We made a recombinant L. jensenii 1153-1128 that expresses dAb-m36.4. All antibody fragments m9, m36, and m36.4 were expressed by lactobacilli. However, we noted the smaller m36/m36.4 were expressed to higher levels, ≥3 μg/ml. All L. jensenii-expressed antibody fragments bound to gp120/CD4 complex; Lactobacillus-produced m36.4 inhibited HIV-1 BaL in a neutralization assay. Using a TZM-bl assay, we characterized the breadth of neutralization of the m36.4. Delivery of dAbs by Lactobacillus could provide passive transfer of these antibodies to the mucosa and longevity at the site of HIV-1 transmission.

  7. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies

    NARCIS (Netherlands)

    Doria-Rose, Nicole A.; Schramm, Chaim A.; Gorman, Jason; Moore, Penny L.; Bhiman, Jinal N.; Dekosky, Brandon J.; Ernandes, Michael J.; Georgiev, Ivelin S.; Kim, Helen J.; Pancera, Marie; Staupe, Ryan P.; Altae-Tran, Han R.; Bailer, Robert T.; Crooks, Ema T.; Cupo, Albert; Druz, Aliaksandr; Garrett, Nigel J.; Hoi, Kam H.; Kong, Rui; Louder, Mark K.; Longo, Nancy S.; McKee, Krisha; Nonyane, Molati; O'Dell, Sijy; Roark, Ryan S.; Rudicell, Rebecca S.; Schmidt, Stephen D.; Sheward, Daniel J.; Soto, Cinque; Wibmer, Constantinos Kurt; Yang, Yongping; Zhang, Zhenhai; Mullikin, James C.; Binley, James M.; Sanders, Rogier W.; Wilson, Ian A.; Moore, John P.; Ward, Andrew B.; Georgiou, George; Williamson, Carolyn; Abdool Karim, Salim S.; Morris, Lynn; Kwong, Peter D.; Shapiro, Lawrence; Mascola, John R.; Becker, Jesse; Benjamin, Betty; Blakesley, Robert; Bouffard, Gerry; Brooks, Shelise; Coleman, Holly; Dekhtyar, Mila; Gregory, Michael; Guan, Xiaobin; Gupta, Jyoti; Han, Joel; Hargrove, April; Ho, Shi-ling; Johnson, Taccara; Legaspi, Richelle; Lovett, Sean; Maduro, Quino; Masiello, Cathy; Maskeri, Baishali; McDowell, Jenny; Montemayor, Casandra; Mullikin, James; Park, Morgan; Riebow, Nancy; Schandler, Karen; Schmidt, Brian; Sison, Christina; Stantripop, Mal; Thomas, James; Thomas, Pam; Vemulapalli, Meg; Young, Alice

    2014-01-01

    Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics

  8. Comparison of a Micro-Neutralization Test with the Rapid Fluorescent Focus Inhibition Test for Measuring Rabies Virus Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Todd G. Smith

    2017-07-01

    Full Text Available The rapid fluorescent focus inhibition test (RFFIT is routinely used in the United States to measure rabies virus neutralizing antibodies (rVNA. RFFIT has a long history of reproducible and reliable results. The test has been modified over the years to use smaller volumes of reagents and samples, but requires a 50 μL minimum volume of test serum. To conduct pathogenesis studies, small laboratory animals such as mice are regularly tested for rVNA, but the minimum volume for a standard RFFIT may be impossible to obtain, particularly in scenarios of repeated sampling. To address this problem, a micro-neutralization test was developed previously. In the current study, the micro-neutralization test was compared to the RFFIT using 129 mouse serum samples from rabies vaccine studies. Using a cut-off value of 0.1 IU/mL, the sensitivity, specificity, and concordance of the micro-neutralization test were 100%, 97.5%, and 98%, respectively. The geometric mean titer of all samples above the cut-off was 2.0 IU/mL using RFFIT and 3.4 IU/mL using the micro-neutralization test, indicating that titers determined using the micro-neutralization test are not equivalent to RFFIT titers. Based on four rVNA-positive hamster serum samples, the intra-assay coefficient of variability was 24% and inter-assay coefficient of variability was 30.4%. These results support continued use of the micro-neutralization test to determine rabies virus neutralizing antibody titers for low-volume serum samples.

  9. Antibody to gp41 MPER alters functional properties of HIV-1 Env without complete neutralization.

    Directory of Open Access Journals (Sweden)

    Arthur S Kim

    2014-07-01

    Full Text Available Human antibody 10E8 targets the conserved membrane proximal external region (MPER of envelope glycoprotein (Env subunit gp41 and neutralizes HIV-1 with exceptional potency. Remarkably, HIV-1 containing mutations that reportedly knockout 10E8 binding to linear MPER peptides are partially neutralized by 10E8, producing a local plateau in the dose response curve. Here, we found that virus partially neutralized by 10E8 becomes significantly less neutralization sensitive to various MPER antibodies and to soluble CD4 while becoming significantly more sensitive to antibodies and fusion inhibitors against the heptad repeats of gp41. Thus, 10E8 modulates sensitivity of Env to ligands both pre- and post-receptor engagement without complete neutralization. Partial neutralization by 10E8 was influenced at least in part by perturbing Env glycosylation. With unliganded Env, 10E8 bound with lower apparent affinity and lower subunit occupancy to MPER mutant compared to wild type trimers. However, 10E8 decreased functional stability of wild type Env while it had an opposite, stabilizing effect on MPER mutant Envs. Clade C isolates with natural MPER polymorphisms also showed partial neutralization by 10E8 with altered sensitivity to various gp41-targeted ligands. Our findings suggest a novel mechanism of virus neutralization by demonstrating how antibody binding to the base of a trimeric spike cross talks with adjacent subunits to modulate Env structure and function. The ability of an antibody to stabilize, destabilize, partially neutralize as well as alter neutralization sensitivity of a virion spike pre- and post-receptor engagement may have implications for immunotherapy and vaccine design.

  10. Antibody to gp41 MPER Alters Functional Properties of HIV-1 Env without Complete Neutralization

    Science.gov (United States)

    Kim, Arthur S.; Leaman, Daniel P.; Zwick, Michael B.

    2014-01-01

    Human antibody 10E8 targets the conserved membrane proximal external region (MPER) of envelope glycoprotein (Env) subunit gp41 and neutralizes HIV-1 with exceptional potency. Remarkably, HIV-1 containing mutations that reportedly knockout 10E8 binding to linear MPER peptides are partially neutralized by 10E8, producing a local plateau in the dose response curve. Here, we found that virus partially neutralized by 10E8 becomes significantly less neutralization sensitive to various MPER antibodies and to soluble CD4 while becoming significantly more sensitive to antibodies and fusion inhibitors against the heptad repeats of gp41. Thus, 10E8 modulates sensitivity of Env to ligands both pre- and post-receptor engagement without complete neutralization. Partial neutralization by 10E8 was influenced at least in part by perturbing Env glycosylation. With unliganded Env, 10E8 bound with lower apparent affinity and lower subunit occupancy to MPER mutant compared to wild type trimers. However, 10E8 decreased functional stability of wild type Env while it had an opposite, stabilizing effect on MPER mutant Envs. Clade C isolates with natural MPER polymorphisms also showed partial neutralization by 10E8 with altered sensitivity to various gp41-targeted ligands. Our findings suggest a novel mechanism of virus neutralization by demonstrating how antibody binding to the base of a trimeric spike cross talks with adjacent subunits to modulate Env structure and function. The ability of an antibody to stabilize, destabilize, partially neutralize as well as alter neutralization sensitivity of a virion spike pre- and post-receptor engagement may have implications for immunotherapy and vaccine design. PMID:25058619

  11. Molecular evolution of broadly neutralizing Llama antibodies to the CD4-binding site of HIV-1.

    Directory of Open Access Journals (Sweden)

    Laura E McCoy

    2014-12-01

    Full Text Available To date, no immunization of humans or animals has elicited broadly neutralizing sera able to prevent HIV-1 transmission; however, elicitation of broad and potent heavy chain only antibodies (HCAb has previously been reported in llamas. In this study, the anti-HIV immune responses in immunized llamas were studied via deep sequencing analysis using broadly neutralizing monoclonal HCAbs as a guides. Distinct neutralizing antibody lineages were identified in each animal, including two defined by novel antibodies (as variable regions called VHH identified by robotic screening of over 6000 clones. The combined application of five VHH against viruses from clades A, B, C and CRF_AG resulted in neutralization as potent as any of the VHH individually and a predicted 100% coverage with a median IC50 of 0.17 µg/ml for the panel of 60 viruses tested. Molecular analysis of the VHH repertoires of two sets of immunized animals showed that each neutralizing lineage was only observed following immunization, demonstrating that they were elicited de novo. Our results show that immunization can induce potent and broadly neutralizing antibodies in llamas with features similar to human antibodies and provide a framework to analyze the effectiveness of immunization protocols.

  12. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection.

    Science.gov (United States)

    Collins, Matthew H; McGowan, Eileen; Jadi, Ramesh; Young, Ellen; Lopez, Cesar A; Baric, Ralph S; Lazear, Helen M; de Silva, Aravinda M

    2017-05-01

    Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus-specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity.

  13. Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tongqing; Georgiev, Ivelin; Wu, Xueling; Yang, Zhi-Yong; Dai, Kaifan; Finzi, Andrés; Kwon, Young Do; Scheid, Johannes F.; Shi, Wei; Xu, Ling; Yang, Yongping; Zhu, Jiang; Nussenzweig, Michel C.; Sodroski, Joseph; Shapiro, Lawrence; Nabel, Gary J.; Mascola, John R.; Kwong, Peter D. (NIH); (Rockefeller); (DFCI)

    2010-08-26

    During HIV-1 infection, antibodies are generated against the region of the viral gp120 envelope glycoprotein that binds CD4, the primary receptor for HIV-1. Among these antibodies, VRC01 achieves broad neutralization of diverse viral strains. We determined the crystal structure of VRC01 in complex with a human immunodeficiency virus HIV-1 gp120 core. VRC01 partially mimics CD4 interaction with gp120. A shift from the CD4-defined orientation, however, focuses VRC01 onto the vulnerable site of initial CD4 attachment, allowing it to overcome the glycan and conformational masking that diminishes the neutralization potency of most CD4-binding-site antibodies. To achieve this recognition, VRC01 contacts gp120 mainly through immunoglobulin V-gene regions substantially altered from their genomic precursors. Partial receptor mimicry and extensive affinity maturation thus facilitate neutralization of HIV-1 by natural human antibodies.

  14. Humanization and characterization of an anti-ricin neutralization monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Wei-Gang Hu

    Full Text Available Ricin is regarded as a high terrorist risk for the public due to its high toxicity and ease of production. Currently, there is no therapeutic or vaccine available against ricin. D9, a murine monoclonal antibody developed previously in our laboratory, can strongly neutralize ricin and is therefore a good candidate for humanization. Humanization of D9 variable regions was achieved by a complementarity-determining region grafting approach. The humanized D9 (hD9 variable regions were further grafted onto human heavy and light chain constant regions to assemble the complete antibody gene. A foot-and-mouth-disease virus-derived 2A self-processing sequence was introduced between heavy and light chain DNA sequences to cleave the recombinant protein into a functional full-length antibody molecule from a single open reading frame driven by a single promoter in an adenoviral vector. After expression in mammalian cells and purification, the hD9 was demonstrated to have equimolar expression of the full-length antibody heavy and light chains. More importantly, the hD9 exhibited high affinity to ricin with K(D of 1.63 nM, comparable to its parental murine D9 (2.55 nM. In a mouse model, intraperitoneal (i.p. administration of hD9, at a low dose of 5 µg per mouse, 4 hours after the i.p. challenge with 5×LD50 ricin was found to rescue 100% of the mice. In addition, administered 6 hours post-challenge, hD9 could still rescue 50% of the mice. The hD9 has the potential to be used for prophylactic or therapeutic purposes against ricin poisoning.

  15. Neutralizing antibodies in cats infected with feline immunodeficiency virus.

    NARCIS (Netherlands)

    F. Tozzini; D. Matteucci; P. Bandecchi; F. Baldinotti; C.H.J. Siebelink (Kees); A.D.M.E. Osterhaus (Albert); M. Bendinelli

    1993-01-01

    textabstractSera from cats experimentally infected with five isolates of feline immunodeficiency virus (FIV) from various geographical regions and from FIV enzyme-linked immunosorbent assay-seropositive field cats from four European countries neutralized the Petaluma strain of FIV (FIV-P),

  16. Prevalence of measles neutralizing antibody in children under 15 ...

    African Journals Online (AJOL)

    The immune status of children under 15 years in the Southwestern region of Nigeria against measles virus was determined using the neutralization test with a view to assessing the herd immunity to the virus in these communities. A total of 256 serum samples collected from children were tested by the beta method of ...

  17. Coverage of primary mother-to-child HIV transmission isolates by second-generation broadly neutralizing antibodies.

    Science.gov (United States)

    Nakamura, Kyle J; Cerini, Chiara; Sobrera, Edwin R; Heath, Laura; Sinkala, Moses; Kankasa, Chipepo; Thea, Donald M; Mullins, James I; Kuhn, Louise; Aldrovandi, Grace M

    2013-01-28

    A vaccine capable of providing cross-clade, sterilizing protection has been the holy grail of HIV-1 prevention and control since the beginning of the pandemic. A major component of this effort has been the identification and characterization of broadly neutralizing antibodies (bNAbs). Recent advances in bNAb isolation, structure-based engineering, and vector-mediated gene transfer have led to increased interest in bypassing the immune system by expressing neutralizing antibodies directly in muscle. To assess the neutralization potency and coverage of a panel of second-generation bNAbs, we cloned and phenotypically characterized 227 primary HIV-1 envelopes from 23 mother-to-child transmission (MTCT) pairs. Viral envelopes were tested for in-vitro neutralization sensitivity using a standard pseudotype assay system. A 50% inhibitory concentration (IC50) at least 10 μg/ml was used to define neutralization resistance. The combination of antibodies PG16 and NIH45-46 had the broadest activity with the highest neutralization potency, achieving full coverage of 87% of transmission pairs (at a median sampling depth of 10 envelopes per pair) and 96% of recently infected infants in a very conservative analysis. Our data strongly support the inclusion of NIH45-46, or a more extensively modified variant, in future proof-of-principle immunoprophylaxis or gene therapy-based trials. Furthermore, until robust sequence-based resistance detection becomes available, it will be necessary to conduct deeper phenotypic screening of primary isolates in order to determine the prevalence of minor resistant variants to help in selecting the best reagents for clinical trials.

  18. An improved microtiter assay for evaluating anti-HIV-1 neutralizing antibodies from sera or plasma

    Directory of Open Access Journals (Sweden)

    Chen Yunyun

    2003-12-01

    Full Text Available Abstract Background The anti-HIV-1 neutralizing antibody assay is widely used in AIDS vaccine research and other experimental and clinical studies. The vital dye staining method applied in the detection of anti-HIV-1 neutralizing antibody has been used in many laboratories. However, the unknown factor(s in sera or plasma affected cell growth and caused protection when the tested sera or plasma was continuously maintained in cell culture. In addition, the poor solubility of neutral red in medium (such as RPMI-1640 also limited the use of this assay. Methods In this study, human T cell line C8166 was used as host cells, and 3-(4,5-Dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT instead of neutral red was used as vital dye. In order to avoid the effect of the unknown factor(s, the tested sera or plasma was removed by a washout procedure after initial 3–6 h culture in the assay. Result This new assay eliminated the effect of the tested sera or plasma on cell growth, improved the reliability of detection of anti-HIV-1 neutralizing antibody, and showed excellent agreement with the p24 antigen method. Conclusion The results suggest that the improved assay is relatively simple, highly duplicable, cost-effective, and well reliable for evaluating anti-HIV-1 neutralizing antibodies from sera or plasma.

  19. Complexity of Neutralizing Antibodies against Multiple Dengue Virus Serotypes after Heterotypic Immunization and Secondary Infection Revealed by In-Depth Analysis of Cross-Reactive Antibodies.

    Science.gov (United States)

    Tsai, Wen-Yang; Durbin, Anna; Tsai, Jih-Jin; Hsieh, Szu-Chia; Whitehead, Stephen; Wang, Wei-Kung

    2015-07-01

    The four serotypes of dengue virus (DENV) cause the most important and rapidly emerging arboviral diseases in humans. The recent phase 2b and 3 studies of a tetravalent dengue vaccine reported a moderate efficacy despite the presence of neutralizing antibodies, highlighting the need for a better understanding of neutralizing antibodies in polyclonal human sera. Certain type-specific (TS) antibodies were recently discovered to account for the monotypic neutralizing activity and protection after primary DENV infection. The nature of neutralizing antibodies after secondary DENV infection remains largely unknown. In this study, we examined sera from 10 vaccinees with well-documented exposure to first and second DENV serotypes through heterotypic immunization with live-attenuated vaccines. Higher serum IgG avidities to both exposed and nonexposed serotypes were found after secondary immunization than after primary immunization. Using a two-step depletion protocol to remove different anti-envelope antibodies, including group-reactive (GR) and complex-reactive (CR) antibodies separately, we found GR and CR antibodies together contributed to more than 50% of neutralizing activities against multiple serotypes after secondary immunization. Similar findings were demonstrated in patients after secondary infection. Anti-envelope antibodies recognizing previously exposed serotypes consisted of a large proportion of GR antibodies, CR antibodies, and a small proportion of TS antibodies, whereas those recognizing nonexposed serotypes consisted of GRand CR antibodies. These findings have implications for sequential heterotypic immunization or primary immunization of DENV-primed individuals as alternative strategies for DENV vaccination. The complexity of neutralizing antibodies after secondary infection provides new insights into the difficulty of their application as surrogates of protection. The four serotypes of dengue virus (DENV) are the leading cause of arboviral diseases in

  20. Formalin-inactivated EV71 vaccine candidate induced cross-neutralizing antibody against subgenotypes B1, B4, B5 and C4A in adult volunteers.

    Directory of Open Access Journals (Sweden)

    Ai-Hsiang Chou

    Full Text Available Enterovirus 71 (EV71 has caused several epidemics of hand, foot and mouth diseases (HFMD in Asia. No effective EV71 vaccine is available. A randomized and open-label phase I clinical study registered with ClinicalTrials.gov #NCT01268787, aims to evaluate the safety, reactogenicity and immunogenicity of a formalin-inactivated EV71 vaccine candidate (EV71vac at 5- and 10-µg doses. In this study we report the cross-neutralizing antibody responses from each volunteer against different subgenotypes of EV71 and CVA16.Sixty eligible healthy adults were recruited and vaccinated. Blood samples were obtained on day 0, 21 and 42 and tested against B1, B4, B5, C2, C4A, C4B and CVA16 for cross-neutralizing antibody responses.The immunogenicity of both 5- and 10- µg doses were found to be very similar. Approximately 45% of the participants had 4-fold increase in Nt, but there was no further increase in Nt after the second dose. EV71vac induced very strong cross-neutralizing antibody responses in >85% of volunteers without pre-existing Nt against subgenotype B1, B5 and C4A. EV71vac elicited weak cross-neutralizing antibody responses (∼20% of participants against a C4B and Coxsackie virus A16. Over 90% of vaccinated volunteers did not develop cross-neutralizing antibody responses (Nt<8 against a C2 strain. EV71vac can boost and significantly enhance the neutralizing antibody responses in volunteers who already had pre-vaccination antibodies against EV71 and/or CVA16.EV71vac is efficient in eliciting cross-neutralizing antibody responses against EV71 subgenotypes B1, B4, B5, and C4A, and provides the rationale for its evaluation in phase II clinical trials.ClinicalTrials.gov NCT01268787.

  1. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Olga V. Chervyakova

    2016-06-01

    Full Text Available The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122, orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins.

  2. Antibody-Mediated Neutralization of the Exotoxin Mycolactone, the Main Virulence Factor Produced by Mycobacterium ulcerans.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Dangy

    2016-06-01

    Full Text Available Mycolactone, the macrolide exotoxin produced by Mycobacterium ulcerans, causes extensive tissue destruction by inducing apoptosis of host cells. In this study, we aimed at the production of antibodies that could neutralize the cytotoxic activities of mycolactone.Using the B cell hybridoma technology, we generated a series of monoclonal antibodies with specificity for mycolactone from spleen cells of mice immunized with the protein conjugate of a truncated synthetic mycolactone derivative. L929 fibroblasts were used as a model system to investigate whether these antibodies can inhibit the biological effects of mycolactone. By measuring the metabolic activity of the fibroblasts, we found that anti-mycolactone mAbs can completely neutralize the cytotoxic activity of mycolactone.The toxin neutralizing capacity of anti-mycolactone mAbs supports the concept of evaluating the macrolide toxin as vaccine target.

  3. Comprehensive Profiling of Immune Responses in MARV Survivors Demonstrates Robust Th1-Skewing with Short Lived Neutralizing Antibody Responses

    Science.gov (United States)

    2017-03-29

    infection would be highly valuable for the evaluation of candidate vaccines that would seek to be broadly protective. Results and Discussion T...survivors (Sobarzo et al., 2015). Neutralizing antibody responses have been achieved through vaccination against MARV GP in mouse, guinea pig and...neutralizing antibodies elicited by vaccination against filoviruses is a coveted immune response, functions of non-neutralizing antibodies have been

  4. HIV-1 Cross-Reactive Primary Virus Neutralizing Antibody Response Elicited by Immunization in Nonhuman Primates.

    Science.gov (United States)

    Wang, Yimeng; O'Dell, Sijy; Turner, Hannah L; Chiang, Chi-I; Lei, Lin; Guenaga, Javier; Wilson, Richard; Martinez-Murillo, Paola; Doria-Rose, Nicole; Ward, Andrew B; Mascola, John R; Wyatt, Richard T; Karlsson Hedestam, Gunilla B; Li, Yuxing

    2017-11-01

    Elicitation of broadly neutralizing antibody (bNAb) responses is a major goal for the development of an HIV-1 vaccine. Current HIV-1 envelope glycoprotein (Env) vaccine candidates elicit predominantly tier 1 and/or autologous tier 2 virus neutralizing antibody (NAb) responses, as well as weak and/or sporadic cross-reactive tier 2 virus NAb responses with unknown specificity. To delineate the specificity of vaccine-elicited cross-reactive tier 2 virus NAb responses, we performed single memory B cell sorting from the peripheral blood of a rhesus macaque immunized with YU2gp140-F trimers in adjuvant, using JR-FL SOSIP.664, a native Env trimer mimetic, as a sorting probe to isolate monoclonal Abs (MAbs). We found striking genetic and functional convergence of the SOSIP-sorted Ig repertoire, with predominant VH4 or VH5 gene family usage and Env V3 specificity. Of these vaccine-elicited V3-specific MAbs, nearly 20% (6/33) displayed cross-reactive tier 2 virus neutralization, which recapitulated the serum neutralization capacity. Substantial similarities in binding specificity, neutralization breadth and potency, and sequence/structural homology were observed between selected macaque cross-reactive V3 NAbs elicited by vaccination and prototypic V3 NAbs derived from natural infections in humans, highlighting the convergence of this subset of primate V3-specific B cell repertories. Our study demonstrated that cross-reactive primary virus neutralizing B cell lineages could be elicited by vaccination as detected using a standardized panel of tier 2 viruses. Whether these lineages could be expanded to acquire increased breadth and potency of neutralization merits further investigation. IMPORTANCE Elicitation of antibody responses capable of neutralizing diverse HIV-1 primary virus isolates (designated broadly neutralizing antibodies [bNAbs]) remains a high priority for the vaccine field. bNAb responses were so far observed only in response to natural infection within a subset

  5. Papillomavirus pseudovirions packaged with the L2 gene induce cross-neutralizing antibodies

    Directory of Open Access Journals (Sweden)

    Duarte-Forero Diego F

    2010-03-01

    Full Text Available Abstract Background Current vaccines against HPVs are constituted of L1 protein self-assembled into virus-like particles (VLPs and they have been shown to protect against natural HPV16 and HPV18 infections and associated lesions. In addition, limited cross-protection has been observed against closely related types. Immunization with L2 protein in animal models has been shown to provide cross-protection against distant papillomavirus types, suggesting that the L2 protein contains cross-neutralizing epitopes. However, vaccination with L2 protein or L2 peptides does not induce high titers of anti-L2 antibodies. In order to develop a vaccine with the potential to protect against other high-risk HPV types, we have produced HPV58 pseudovirions encoding the HPV31 L2 protein and compared their capacity to induce cross-neutralizing antibodies with that of HPV L1 and HPV L1/L2 VLPs. Methods The titers of neutralizing antibodies against HPV16, HPV18, HPV31 and HPV58 induced in Balb/c mice were compared after immunization with L2-containing vaccines. Results Low titers of cross-neutralizing antibodies were detected in mice when immunized with L1/L2 VLPs, and the highest levels of cross-neutralizing antibodies were observed in mice immunized with HPV 58 L1/L2 pseudovirions encoding the HPV 31 L2 protein. Conclusions The results obtained indicate that high levels of cross-neutralizing antibodies are only observed after immunization with pseudovirions encoding the L2 protein. HPV pseudovirions thus represent a possible new strategy for the generation of a broad-spectrum vaccine to protect against high-risk HPVs and associated neoplasia.

  6. Milk from Brazilian women presents secretory IgA antibodies and neutralizes rotavirus G9P[5

    Directory of Open Access Journals (Sweden)

    Simone M.R. Santos

    2013-09-01

    Conclusions: The high correlation between anti-rotavirus antibody levels and neutralizing capacity of the milk samples suggests a possible protective role of these antibodies against infection. These results also support the encouragement of the breast-feeding practice.

  7. Neutralizing activities of caprine antibodies towards conserved regions of the HCV envelope glycoprotein E2

    Directory of Open Access Journals (Sweden)

    El-Shenawy Reem

    2011-08-01

    Full Text Available Abstract Anti HCV vaccine is not currently available and the present antiviral therapies fail to cure approximately half of the treated HCV patients. This study was designed to assess the immunogenic properties of genetically conserved peptides derived from the C-terminal region of HVR-1 and test their neutralizing activities in a step towards developing therapeutic and/or prophylactic immunogens against HCV infection. Antibodies were generated by vaccination of goats with synthetic peptides derived from HCV E2. Viral neutralizing capacity of the generated anti E2 antibodies was tested using in vitro assays. Goats immunized with E2 synthetic peptides termed p412 [a.a 412-419], p430 [a.a 430-447] and p517 [a.a 517-531] generated high titers of antibody responses 2 to 4.5 fold higher than comparable titers of antibodies to the same epitopes in chronic HCV patients. In post infection experiments of native HCV into cultured Huh7.5 cells anti p412 and anti p 517 were proven to be neutralizing to HCV genotype 4a from patients' sera (87.5% and 75% respectively. On the contrary anti p430 exhibited weak viral neutralization capacity on the same samples (31.25%. Furthermore Ab mixes containing anti p430 exhibited reduced viral neutralization properties. From these experiments one could predict that neutralization by Abs towards different E2-epitopes varies considerably and success in the enrichment of neutralization epitope-specific antibodies may be accompanied by favorable results in combating HCV infection. Also, E2 conserved peptides p517 and p412 represent potential components of a candidate peptide vaccine against HCV infection.

  8. Mechanistic insights into the neutralization of cytotoxic abrin by the monoclonal antibody D6F10.

    Directory of Open Access Journals (Sweden)

    Shradha Bagaria

    Full Text Available Abrin, an A/B toxin obtained from the Abrus precatorius plant is extremely toxic and a potential bio-warfare agent. Till date there is no antidote or vaccine available against this toxin. The only known neutralizing monoclonal antibody against abrin, namely D6F10, has been shown to rescue the toxicity of abrin in cells as well as in mice. The present study focuses on mapping the epitopic region to understand the mechanism of neutralization of abrin by the antibody D6F10. Truncation and mutational analysis of abrin A chain revealed that the amino acids 74-123 of abrin A chain contain the core epitope and the residues Thr112, Gly114 and Arg118 are crucial for binding of the antibody. In silico analysis of the position of the mapped epitope indicated that it is present close to the active site cleft of abrin A chain. Thus, binding of the antibody near the active site blocks the enzymatic activity of abrin A chain, thereby rescuing inhibition of protein synthesis by the toxin in vitro. At 1∶10 molar concentration of abrin:antibody, the antibody D6F10 rescued cells from abrin-mediated inhibition of protein synthesis but did not prevent cell attachment of abrin. Further, internalization of the antibody bound to abrin was observed in cells by confocal microscopy. This is a novel finding which suggests that the antibody might function intracellularly and possibly explains the rescue of abrin's toxicity by the antibody in whole cells and animals. To our knowledge, this study is the first report on a neutralizing epitope for abrin and provides mechanistic insights into the poorly understood mode of action of anti-A chain antibodies against several toxins including ricin.

  9. Structure of a Human Astrovirus Capsid-Antibody Complex and Mechanistic Insights into Virus Neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanoff, Walter A.; Campos, Jocelyn; Perez, Edmundo I.; Yin, Lu; Alexander, David L.; DuBois, Rebecca M. (UCSC)

    2016-11-02

    ABSTRACT

    Human astroviruses (HAstVs) are a leading cause of viral diarrhea in young children, the immunocompromised, and the elderly. There are no vaccines or antiviral therapies against HAstV disease. Several lines of evidence point to the presence of protective antibodies in healthy adults as a mechanism governing protection against reinfection by HAstV. However, development of anti-HAstV therapies is hampered by the gap in knowledge of protective antibody epitopes on the HAstV capsid surface. Here, we report the structure of the HAstV capsid spike domain bound to the neutralizing monoclonal antibody PL-2. The antibody uses all six complementarity-determining regions to bind to a quaternary epitope on each side of the dimeric capsid spike. We provide evidence that the HAstV capsid spike is a receptor-binding domain and that the antibody neutralizes HAstV by blocking virus attachment to cells. We identify patches of conserved amino acids that overlap the antibody epitope and may comprise a receptor-binding site. Our studies provide a foundation for the development of therapies to prevent and treat HAstV diarrheal disease.

    IMPORTANCEHuman astroviruses (HAstVs) infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies in healthy adults protect them against reinfection. Here, we determined the crystal structure of a complex of the HAstV capsid protein and a virus-neutralizing antibody. We show that the antibody binds to the outermost spike domain of the capsid, and we provide evidence that the antibody blocks virus attachment to human cells. Importantly, our findings suggest that a subunit-based vaccine focusing the immune system on the HAstV capsid spike domain could be effective in protecting children against HAstV disease.

  10. Phage Display-Derived Cross-Reactive Neutralizing Antibody against Enterovirus 71 and Coxsackievirus A16.

    Science.gov (United States)

    Zhang, Xiao; Sun, Chunyun; Xiao, Xiangqian; Pang, Lin; Shen, Sisi; Zhang, Jie; Cen, Shan; Yang, Burton B; Huang, Yuming; Sheng, Wang; Zeng, Yi

    2016-01-01

    Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are members of the Picornaviridae family and are considered the main causative agents of hand, foot and mouth disease (HFMD). In recent decades large HFMD outbreaks caused by EV71 and CVA16 have become significant public health concerns in the Asia-Pacific region. Vaccines and antiviral drugs are unavailable to prevent EV71 and CVA16 infection. In the current study, a chimeric antibody targeting a highly conserved peptide in the EV71 VP4 protein was isolated by using a phage display technique. The antibody showed cross-neutralizing capability against EV71 and CVA16 in vitro. The results suggest that this phage display-derived antibody will have great potential as a broad neutralizing antibody against EV71 and CVA16 after affinity maturation and humanization.

  11. Challenges to the development of vaccines to hepatitis C virus that elicit neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Heidi Edelgard Drummer

    2014-07-01

    Full Text Available Despite 20 years of research, a vaccine to prevent hepatitis C virus (HCV infection has not been developed. A vaccine to prevent HCV will need to induce broadly reactive immunity able to prevent infection by the 7 genetically and antigenically distinct genotypes circulating world-wide. Hepatitis C virus encodes two surface exposed glycoproteins, E1 and E2 that function as a heterodimer to mediate viral entry. Neutralizing antibodies (NAbs to both E1 and E2 have been described with the major NAb target being E2. The function of E2 is to attach virions to host cells via cell surface receptors that include, but is not limited to, the tetraspanin CD81 and scavenger receptor B class I. However, E2 has developed a number of immune evasion strategies to limit the effectiveness of the NAb response and possibly limit the ability of the immune system to generate potent NAbs in natural infection. Hypervariable regions that shield the underlying core domain, subdominant neutralization epitopes and glycan shielding combine to make E2 a difficult target for the immune system. This review summarizes recent information on the role of neutralizing antibodies to prevent HCV infection, the targets of the neutralizing antibody response and structural information on glycoprotein E2 in complex with neutralizing antibodies. This new information should provide a framework for the rational design of new vaccine candidates that elicit highly potent broadly reactive NAbs to prevent HCV infection.

  12. Viral escape from neutralizing antibodies in early subtype A HIV-1 infection drives an increase in autologous neutralization breadth.

    Directory of Open Access Journals (Sweden)

    Megan K Murphy

    2013-02-01

    Full Text Available Antibodies that neutralize (nAbs genetically diverse HIV-1 strains have been recovered from a subset of HIV-1 infected subjects during chronic infection. Exact mechanisms that expand the otherwise narrow neutralization capacity observed during early infection are, however, currently undefined. Here we characterized the earliest nAb responses in a subtype A HIV-1 infected Rwandan seroconverter who later developed moderate cross-clade nAb breadth, using (i envelope (Env glycoproteins from the transmitted/founder virus and twenty longitudinal nAb escape variants, (ii longitudinal autologous plasma, and (iii autologous monoclonal antibodies (mAbs. Initially, nAbs targeted a single region of gp120, which flanked the V3 domain and involved the alpha2 helix. A single amino acid change at one of three positions in this region conferred early escape. One immunoglobulin heavy chain and two light chains recovered from autologous B cells comprised two mAbs, 19.3H-L1 and 19.3H-L3, which neutralized the founder Env along with one or three of the early escape variants carrying these mutations, respectively. Neither mAb neutralized later nAb escape or heterologous Envs. Crystal structures of the antigen-binding fragments (Fabs revealed flat epitope contact surfaces, where minimal light chain mutation in 19.3H-L3 allowed for additional antigenic interactions. Resistance to mAb neutralization arose in later Envs through alteration of two glycans spatially adjacent to the initial escape signatures. The cross-neutralizing nAbs that ultimately developed failed to target any of the defined V3-proximal changes generated during the first year of infection in this subject. Our data demonstrate that this subject's first recognized nAb epitope elicited strain-specific mAbs, which incrementally acquired autologous breadth, and directed later B cell responses to target distinct portions of Env. This immune re-focusing could have triggered the evolution of cross

  13. Neutralizing and IgG antibodies against simian virus 40 in healthy pregnant women in Italy.

    Directory of Open Access Journals (Sweden)

    Manola Comar

    Full Text Available Polyomavirus simian virus 40 (SV40 sequences have been detected in various human specimens and SV40 antibodies have been found in human sera from both healthy individuals and cancer patients. This study analyzed serum samples from healthy pregnant women as well as cord blood samples to determine the prevalence of SV40 antibodies in pregnancy.Serum samples were collected at the time of delivery from two groups of pregnant women as well as cord bloods from one group. The women were born between 1967 and 1993. Samples were assayed by two different serological methods, one group by neutralization of viral infectivity and the other by indirect ELISA employing specific SV40 mimotopes as antigens. Viral DNA assays by real-time polymerase chain reaction were carried out on blood samples.Neutralization and ELISA tests indicated that the pregnant women were SV40 antibody-positive with overall prevalences of 10.6% (13/123 and 12.7% (14/110, respectively. SV40 neutralizing antibodies were detected in a low number of cord blood samples. Antibody titers were generally low. No viral DNA was detected in either maternal or cord bloods.SV40-specific serum antibodies were detected in pregnant women at the time of delivery and in cord bloods. There was no evidence of transplacental transmission of SV40. These data indicate that SV40 is circulating at a low prevalence in the northern Italian population long after the use of contaminated vaccines.

  14. Neutralization Interfering Antibodies: A “Novel” Example of Humoral Immune Dysfunction Facilitating Viral Escape?

    Directory of Open Access Journals (Sweden)

    Roberto Burioni

    2012-09-01

    Full Text Available The immune response against some viral pathogens, in particular those causing chronic infections, is often ineffective notwithstanding a robust humoral neutralizing response. Several evasion mechanisms capable of subverting the activity of neutralizing antibodies (nAbs have been described. Among them, the elicitation of non-neutralizing and interfering Abs has been hypothesized. Recently, this evasion mechanism has acquired an increasing interest given its possible impact on novel nAb-based antiviral therapeutic and prophylactic approaches. In this review, we illustrate the mechanisms of Ab-mediated interference and the viral pathogens described in literature as able to adopt this “novel” evasion strategy.

  15. Neutralization Interfering Antibodies: A “Novel” Example of Humoral Immune Dysfunction Facilitating Viral Escape?

    Science.gov (United States)

    Nicasio, Mancini; Sautto, Giuseppe; Clementi, Nicola; Diotti, Roberta A.; Criscuolo, Elena; Castelli, Matteo; Solforosi, Laura; Clementi, Massimo; Burioni, Roberto

    2012-01-01

    The immune response against some viral pathogens, in particular those causing chronic infections, is often ineffective notwithstanding a robust humoral neutralizing response. Several evasion mechanisms capable of subverting the activity of neutralizing antibodies (nAbs) have been described. Among them, the elicitation of non-neutralizing and interfering Abs has been hypothesized. Recently, this evasion mechanism has acquired an increasing interest given its possible impact on novel nAb-based antiviral therapeutic and prophylactic approaches. In this review, we illustrate the mechanisms of Ab-mediated interference and the viral pathogens described in literature as able to adopt this “novel” evasion strategy. PMID:23170181

  16. Neutralization interfering antibodies: a "novel" example of humoral immune dysfunction facilitating viral escape?

    Science.gov (United States)

    Nicasio, Mancini; Sautto, Giuseppe; Clementi, Nicola; Diotti, Roberta A; Criscuolo, Elena; Castelli, Matteo; Solforosi, Laura; Clementi, Massimo; Burioni, Roberto

    2012-09-01

    The immune response against some viral pathogens, in particular those causing chronic infections, is often ineffective notwithstanding a robust humoral neutralizing response. Several evasion mechanisms capable of subverting the activity of neutralizing antibodies (nAbs) have been described. Among them, the elicitation of non-neutralizing and interfering Abs has been hypothesized. Recently, this evasion mechanism has acquired an increasing interest given its possible impact on novel nAb-based antiviral therapeutic and prophylactic approaches. In this review, we illustrate the mechanisms of Ab-mediated interference and the viral pathogens described in literature as able to adopt this "novel" evasion strategy.

  17. Enhanced neutralization potency of botulinum neurotoxin antibodies using a red blood cell-targeting fusion protein.

    Directory of Open Access Journals (Sweden)

    Sharad P Adekar

    2011-03-01

    Full Text Available Botulinum neurotoxin (BoNT potently inhibits cholinergic signaling at the neuromuscular junction. The ideal countermeasures for BoNT exposure are monoclonal antibodies or BoNT antisera, which form BoNT-containing immune complexes that are rapidly cleared from the general circulation. Clearance of opsonized toxins may involve complement receptor-mediated immunoadherence to red blood cells (RBC in primates or to platelets in rodents. Methods of enhancing immunoadherence of BoNT-specific antibodies may increase their potency in vivo. We designed a novel fusion protein (FP to link biotinylated molecules to glycophorin A (GPA on the RBC surface. The FP consists of an scFv specific for murine GPA fused to streptavidin. FP:mAb:BoNT complexes bound specifically to the RBC surface in vitro. In a mouse model of BoNT neutralization, the FP increased the potency of single and double antibody combinations in BoNT neutralization. A combination of two antibodies with the FP gave complete neutralization of 5,000 LD50 BoNT in mice. Neutralization in vivo was dependent on biotinylation of both antibodies and correlated with a reduction of plasma BoNT levels. In a post-exposure model of intoxication, FP:mAb complexes gave complete protection from a lethal BoNT/A1 dose when administered within 2 hours of toxin exposure. In a pre-exposure prophylaxis model, mice were fully protected for 72 hours following administration of the FP:mAb complex. These results demonstrate that RBC-targeted immunoadherence through the FP is a potent enhancer of BoNT neutralization by antibodies in vivo.

  18. Structural Basis for Recognition of Human Enterovirus 71 by a Bivalent Broadly Neutralizing Monoclonal Antibody.

    Directory of Open Access Journals (Sweden)

    Xiaohua Ye

    2016-03-01

    Full Text Available Enterovirus 71 (EV71 is the main pathogen responsible for hand, foot and mouth disease with severe neurological complications and even death in young children. We have recently identified a highly potent anti-EV71 neutralizing monoclonal antibody, termed D5. Here we investigated the structural basis for recognition of EV71 by the antibody D5. Four three-dimensional structures of EV71 particles in complex with IgG or Fab of D5 were reconstructed by cryo-electron microscopy (cryo-EM single particle analysis all at subnanometer resolutions. The most critical EV71 mature virion-Fab structure was resolved to a resolution of 4.8 Å, which is rare in cryo-EM studies of virus-antibody complex so far. The structures reveal a bivalent binding pattern of D5 antibody across the icosahedral 2-fold axis on mature virion, suggesting that D5 binding may rigidify virions to prevent their conformational changes required for subsequent RNA release. Moreover, we also identified that the complementary determining region 3 (CDR3 of D5 heavy chain directly interacts with the extremely conserved VP1 GH-loop of EV71, which was validated by biochemical and virological assays. We further showed that D5 is indeed able to neutralize a variety of EV71 genotypes and strains. Moreover, D5 could potently confer protection in a mouse model of EV71 infection. Since the conserved VP1 GH-loop is involved in EV71 binding with its uncoating receptor, the scavenger receptor class B, member 2 (SCARB2, the broadly neutralizing ability of D5 might attribute to its inhibition of EV71 from binding SCARB2. Altogether, our results elucidate the structural basis for the binding and neutralization of EV71 by the broadly neutralizing antibody D5, thereby enhancing our understanding of antibody-based protection against EV71 infection.

  19. Engineering Venom’s Toxin-Neutralizing Antibody Fragments and Its Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Larissa M. Alvarenga

    2014-08-01

    Full Text Available Serum therapy remains the only specific treatment against envenoming, but anti-venoms are still prepared by fragmentation of polyclonal antibodies isolated from hyper-immunized horse serum. Most of these anti-venoms are considered to be efficient, but their production is tedious, and their use may be associated with adverse effects. Recombinant antibodies and smaller functional units are now emerging as credible alternatives and constitute a source of still unexploited biomolecules capable of neutralizing venoms. This review will be a walk through the technologies that have recently been applied leading to novel antibody formats with better properties in terms of homogeneity, specific activity and possible safety.

  20. Broadly-Reactive Neutralizing and Non-neutralizing Antibodies Directed against the H7 Influenza Virus Hemagglutinin Reveal Divergent Mechanisms of Protection.

    Directory of Open Access Journals (Sweden)

    Gene S Tan

    2016-04-01

    Full Text Available In the early spring of 2013, Chinese health authorities reported several cases of H7N9 influenza virus infections in humans. Since then the virus has established itself at the human-animal interface in Eastern China and continues to cause several hundred infections annually. In order to characterize the antibody response to the H7N9 virus we generated several mouse monoclonal antibodies against the hemagglutinin of the A/Shanghai/1/13 (H7N9 virus. Of particular note are two monoclonal antibodies, 1B2 and 1H5, that show broad reactivity to divergent H7 hemagglutinins. Monoclonal antibody 1B2 binds to viruses of the Eurasian and North American H7 lineages and monoclonal antibody 1H5 reacts broadly to virus isolates of the Eurasian lineage. Interestingly, 1B2 shows broad hemagglutination inhibiting and neutralizing activity, while 1H5 fails to inhibit hemagglutination and demonstrates no neutralizing activity in vitro. However, both monoclonal antibodies were highly protective in an in vivo passive transfer challenge model in mice, even at low doses. Experiments using mutant antibodies that lack the ability for Fc/Fc-receptor and Fc/complement interactions suggest that the protection provided by mAb 1H5 is, at least in part, mediated by the Fc-fragment of the mAb. These findings highlight that a protective response to a pathogen may not only be due to neutralizing antibodies, but can also be the result of highly efficacious non-neutralizing antibodies not readily detected by classical in vitro neutralization or hemagglutination inhibition assays. This is of interest because H7 influenza virus vaccines induce only low hemagglutination inhibiting antibody titers while eliciting robust antibody titers as measured by ELISA. Our data suggest that these binding but non-neutralizing antibodies contribute to protection in vivo.

  1. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller.

    Science.gov (United States)

    Freund, Natalia T; Wang, Haoqing; Scharf, Louise; Nogueira, Lilian; Horwitz, Joshua A; Bar-On, Yotam; Golijanin, Jovana; Sievers, Stuart A; Sok, Devin; Cai, Hui; Cesar Lorenzi, Julio C; Halper-Stromberg, Ariel; Toth, Ildiko; Piechocka-Trocha, Alicja; Gristick, Harry B; van Gils, Marit J; Sanders, Rogier W; Wang, Lai-Xi; Seaman, Michael S; Burton, Dennis R; Gazumyan, Anna; Walker, Bruce D; West, Anthony P; Bjorkman, Pamela J; Nussenzweig, Michel C

    2017-01-18

    Some HIV-1-infected patients develop broad and potent HIV-1 neutralizing antibodies (bNAbs) that when passively transferred to mice or macaques can treat or prevent infection. However, bNAbs typically fail to neutralize coexisting autologous viruses due to antibody-mediated selection against sensitive viral strains. We describe an HIV-1 controller expressing HLA-B57*01 and HLA-B27*05 who maintained low viral loads for 30 years after infection and developed broad and potent serologic activity against HIV-1. Neutralization was attributed to three different bNAbs targeting nonoverlapping sites on the HIV-1 envelope trimer (Env). One of the three, BG18, an antibody directed against the glycan-V3 portion of Env, is the most potent member of this class reported to date and, as revealed by crystallography and electron microscopy, recognizes HIV-1 Env in a manner that is distinct from other bNAbs in this class. Single-genome sequencing of HIV-1 from serum samples obtained over a period of 9 years showed a diverse group of circulating viruses, 88.5% (31 of 35) of which remained sensitive to at least one of the temporally coincident autologous bNAbs and the individual's serum. Thus, bNAb-sensitive strains of HIV-1 coexist with potent neutralizing antibodies that target the virus and may contribute to control in this individual. When administered as a mix, the three bNAbs controlled viremia in HIV-1 YU2 -infected humanized mice. Our finding suggests that combinations of bNAbs may contribute to control of HIV-1 infection. Copyright © 2017, American Association for the Advancement of Science.

  2. Computational analysis of anti-HIV-1 antibody neutralization panel data to identify potential functional epitope residues.

    Science.gov (United States)

    West, Anthony P; Scharf, Louise; Horwitz, Joshua; Klein, Florian; Nussenzweig, Michel C; Bjorkman, Pamela J

    2013-06-25

    Advances in single-cell antibody cloning methods have led to the identification of a variety of broadly neutralizing anti-HIV-1 antibodies. We developed a computational tool (Antibody Database) to help identify critical residues on the HIV-1 envelope protein whose natural variation affects antibody activity. Our simplifying assumption was that, for a given antibody, a significant portion of the dispersion of neutralization activity across a panel of HIV-1 strains is due to the amino acid identity or glycosylation state at a small number of specific sites, each acting independently. A model of an antibody's neutralization IC50 was developed in which each site contributes a term to the logarithm of the modeled IC50. The analysis program attempts to determine the set of rules that minimizes the sum of the residuals between observed and modeled IC50 values. The predictive quality of the identified rules may be assessed in part by whether there is support for rules within individual viral clades. As a test case, we analyzed antibody 8ANC195, an anti-glycoprotein gp120 antibody of unknown specificity. The model for this antibody indicated that several glycosylation sites were critical for neutralization. We evaluated this prediction by measuring neutralization potencies of 8ANC195 against HIV-1 in vitro and in an antibody therapy experiment in humanized mice. These experiments confirmed that 8ANC195 represents a distinct class of glycan-dependent anti-HIV-1 antibody and validated the utility of computational analysis of neutralization panel data.

  3. Interferon beta-1b-neutralizing antibodies 5 years after clinically isolated syndrome

    NARCIS (Netherlands)

    Hartung, H.P.; Freedman, M.S.; Polman, C.H.; Edan, G.; Kappos, L.; Miller, D. H.; Montalban, X.; Barkhof, F.; Petkau, J.; White, R.; Sahajpal, V.; Knappertz, V.; Beckmann, K.; Lanius, V.; Sandbrink, R.; Pohl, C.

    2011-01-01

    Objective: To determine the frequency and consequences of neutralizing antibodies (NAbs) in patients with a first event suggestive of multiple sclerosis (MS) treated with interferon β-1b (IFNβ-1b). Methods: In the Betaseron/Betaferon in Newly Emerging MS For Initial Treatment (BENEFIT) study,

  4. High Rates of Neutralizing Antibodies to Toscana and Sandfly Fever Sicilian Viruses in Livestock, Kosovo.

    Science.gov (United States)

    Ayhan, Nazli; Sherifi, Kurtesh; Taraku, Arber; Bërxholi, Kristaq; Charrel, Rémi N

    2017-06-01

    Toscana and sandfly fever Sicilian viruses (TOSV and SFSV, respectively), both transmitted by sand flies, are prominent human pathogens in the Old World. Of 1,086 serum samples collected from cattle and sheep during 2013 in various regions of Kosovo (Balkan Peninsula), 4.7% and 53.4% had neutralizing antibodies against TOSV and SFSV, respectively.

  5. Reporter gene assay for the quantification of the activity and neutralizing antibody response to TNFα antagonists

    DEFF Research Database (Denmark)

    Lallemand, Christophe; Kavrochorianou, Nadia; Steenholdt, Casper

    2011-01-01

    A cell-based assay has been developed for the quantification of the activity of TNFa antagonists based on human erythroleukemic K562 cells transfected with a NF¿B regulated firefly luciferase reporter-gene construct. Both drug activity and anti-drug neutralizing antibodies can be quantified...

  6. A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection

    International Nuclear Information System (INIS)

    Pierson, Theodore C.; Sanchez, Melissa D.; Puffer, Bridget A.; Ahmed, Asim A.; Geiss, Brian J.; Valentine, Laura E.; Altamura, Louis A.; Diamond, Michael S.; Doms, Robert W.

    2006-01-01

    West Nile virus (WNV) is a neurotropic flavivirus within the Japanese encephalitis antigenic complex that is responsible for causing West Nile encephalitis in humans. The surface of WNV virions is covered by a highly ordered icosahedral array of envelope proteins that is responsible for mediating attachment and fusion with target cells. These envelope proteins are also primary targets for the generation of neutralizing antibodies in vivo. In this study, we describe a novel approach for measuring antibody-mediated neutralization of WNV infection using virus-like particles that measure infection as a function of reporter gene expression. These reporter virus particles (RVPs) are produced by complementation of a sub-genomic replicon with WNV structural proteins provided in trans using conventional DNA expression vectors. The precision and accuracy of this approach stem from an ability to measure the outcome of the interaction between antibody and viral antigens under conditions that satisfy the assumptions of the law of mass action as applied to virus neutralization. In addition to its quantitative strengths, this approach allows the production of WNV RVPs bearing the prM-E proteins of different WNV strains and mutants, offering considerable flexibility for the study of the humoral immune response to WNV in vitro. WNV RVPs are capable of only a single round of infection, can be used under BSL-2 conditions, and offer a rapid and quantitative approach for detecting virus entry and its inhibition by neutralizing antibody

  7. Respiratory syncytial virus neutralizing antibodies in cord blood, respiratory syncytial virus hospitalization, and recurrent wheeze

    DEFF Research Database (Denmark)

    Stensballe, Lone Graff; Ravn, Henrik; Kristensen, Kim

    2008-01-01

    Cohort, we selected a subcohort of 459 randomly selected children, 408 children with RSV hospitalization, 408 children with recurrent wheeze, and all 289 children who experienced both RSV hospitalization and recurrent wheeze. The influence of cord blood RSV neutralizing antibodies was examined...

  8. Antibody-mediated neutralization of Ebola virus can occur by two distinct mechanisms

    International Nuclear Information System (INIS)

    Shedlock, Devon J.; Bailey, Michael A.; Popernack, Paul M.; Cunningham, James M.; Burton, Dennis R.; Sullivan, Nancy J.

    2010-01-01

    Human Ebola virus causes severe hemorrhagic fever disease with high mortality and there is no vaccine or treatment. Antibodies in survivors occur early, are sustained, and can delay infection when transferred into nonhuman primates. Monoclonal antibodies (mAbs) from survivors exhibit potent neutralizing activity in vitro and are protective in rodents. To better understand targets and mechanisms of neutralization, we investigated a panel of mAbs shown previously to react with the envelope glycoprotein (GP). While one non-neutralizing mAb recognized a GP epitope in the nonessential mucin-like domain, the rest were specific for GP1, were neutralizing, and could be further distinguished by reactivity with secreted GP. We show that survivor antibodies, human KZ52 and monkey JP3K11, were specific for conformation-dependent epitopes comprising residues in GP1 and GP2 and that neutralization occurred by two distinct mechanisms; KZ52 inhibited cathepsin cleavage of GP whereas JP3K11 recognized the cleaved, fusion-active form of GP.

  9. Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein

    International Nuclear Information System (INIS)

    Bates, John T.; Keefer, Christopher J.; Slaughter, James C.; Kulp, Daniel W.; Schief, William R.; Crowe, James E.

    2014-01-01

    The role of binding kinetics in determining neutralizing potency for antiviral antibodies is poorly understood. While it is believed that increased steady-state affinity correlates positively with increased virus-neutralizing activity, the relationship between association or dissociation rate and neutralization potency is unclear. We investigated the effect of naturally-occurring antibody resistance mutations in the RSV F protein on the kinetics of binding to palivizumab. Escape from palivizumab-mediated neutralization of RSV occurred with reduced association rate (K on ) for binding to RSV F protein, while alteration of dissociation rate (K off ) did not significantly affect neutralizing activity. Interestingly, linkage of reduced K on with reduced potency mirrored the effect of increased K on found in a high-affinity enhanced potency palivizumab variant (motavizumab). These data suggest that association rate is the dominant factor driving neutralization potency for antibodies to RSV F protein antigenic site A and determines the potency of antibody somatic variants or efficiency of escape of viral glycoprotein variants. - Highlights: • The relationship of affinity to neutralization for virus antibodies is uncertain. • Palivizumab binds to RSV escape mutant fusion proteins, but with reduced affinity. • Association rate (K on ) correlated well with the potency of neutralization

  10. Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein

    Energy Technology Data Exchange (ETDEWEB)

    Bates, John T. [The Vanderbilt Vaccine Center, Departments of Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States); Keefer, Christopher J. [The Vanderbilt Vaccine Center, Departments of Pediatrics, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States); Slaughter, James C. [The Vanderbilt Vaccine Center, Departments of Biostatistics and Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States); Kulp, Daniel W. [IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (United States); Schief, William R. [IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (United States); Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA (United States); Crowe, James E., E-mail: james.crowe@vanderbilt.edu [The Vanderbilt Vaccine Center, Departments of Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States); The Vanderbilt Vaccine Center, Departments of Pediatrics, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States)

    2014-04-15

    The role of binding kinetics in determining neutralizing potency for antiviral antibodies is poorly understood. While it is believed that increased steady-state affinity correlates positively with increased virus-neutralizing activity, the relationship between association or dissociation rate and neutralization potency is unclear. We investigated the effect of naturally-occurring antibody resistance mutations in the RSV F protein on the kinetics of binding to palivizumab. Escape from palivizumab-mediated neutralization of RSV occurred with reduced association rate (K{sub on}) for binding to RSV F protein, while alteration of dissociation rate (K{sub off}) did not significantly affect neutralizing activity. Interestingly, linkage of reduced K{sub on} with reduced potency mirrored the effect of increased K{sub on} found in a high-affinity enhanced potency palivizumab variant (motavizumab). These data suggest that association rate is the dominant factor driving neutralization potency for antibodies to RSV F protein antigenic site A and determines the potency of antibody somatic variants or efficiency of escape of viral glycoprotein variants. - Highlights: • The relationship of affinity to neutralization for virus antibodies is uncertain. • Palivizumab binds to RSV escape mutant fusion proteins, but with reduced affinity. • Association rate (K{sub on}) correlated well with the potency of neutralization.

  11. [Screening of full human anthrax lethal factor neutralizing antibody in transgenic mice].

    Science.gov (United States)

    Wang, Xiaolin; Chi, Xiangyang; Liu, Ju; Liu, Weicen; Liu, Shuling; Qiu, Shunfang; Wen, Zhonghua; Fan, Pengfei; Liu, Kun; Song, Xiaohong; Fu, Ling; Zhang, Jun; Yu, Changming

    2016-11-25

    Anthrax is a highly lethal infectious disease caused by the spore-forming bacterium Bacillus anthracis. The major virulence factor of B. anthracis consists of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA binds with LF to form lethal toxin (LT), and PA binds with EF to form edema toxin (ET). Antibiotics is hard to work in advanced anthrax infections, because injuries and deaths of the infected are mainly caused by lethal toxin (LT). Thus, the therapeutic neutralizing antibody is the most effective treatment of anthrax. Currently most of the anthrax toxin antibodies are monoclonal antibodies (MAbs) for PA and US FDA has approved ABTHRAX humanized PA monoclonal antibody for the treatment of inhalational anthrax. Once B. anthracis was artificially reconstructed or PA had mutations within recognized neutralization epitopes, anti-PA MAbs would no longer be effective. Therefore, anti-LF MAbs is an important supplement for anthrax treatment. Most of the anti-LF antibodies are murine or chimeric antibodies. By contrast, fully human MAbs can avoid the high immunogenicity of murine antibodies. First, we used LF to immunize the transgenic mice and used fluorescent cell sorting to get antigen-specific memory B cells from transgenic mice spleen lymphocytes. By single cell PCR method, we quickly found two strains of anti-LF MAbs with binding activity, 1D7 and 2B9. Transiently transfected Expi 293F cells to obtain MAbs protein after purification. Both 1D7 and 2B9 efficiently neutralized LT in vitro, and had good synergistic effect when mixed with anti-PA MAbs. In summary, combining the advantages of transgenic mice, fluorescent cell sorting and single-cell PCR methods, this study shows new ideas and methods for the rapid screening of fully human monoclonal antibodies.

  12. HIV-specific Fc effector function early in infection predicts the development of broadly neutralizing antibodies.

    Science.gov (United States)

    Richardson, Simone I; Chung, Amy W; Natarajan, Harini; Mabvakure, Batsirai; Mkhize, Nonhlanhla N; Garrett, Nigel; Abdool Karim, Salim; Moore, Penny L; Ackerman, Margaret E; Alter, Galit; Morris, Lynn

    2018-04-01

    While the induction of broadly neutralizing antibodies (bNAbs) is a major goal of HIV vaccination strategies, there is mounting evidence to suggest that antibodies with Fc effector function also contribute to protection against HIV infection. Here we investigated Fc effector functionality of HIV-specific IgG plasma antibodies over 3 years of infection in 23 individuals, 13 of whom developed bNAbs. Antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD), cellular cytotoxicity (ADCC) and cellular trogocytosis (ADCT) were detected in almost all individuals with levels of activity increasing over time. At 6 months post-infection, individuals with bNAbs had significantly higher levels of ADCD and ADCT that correlated with antibody binding to C1q and FcγRIIa respectively. In addition, antibodies from individuals with bNAbs showed more IgG subclass diversity to multiple HIV antigens which also correlated with Fc polyfunctionality. Germinal center activity represented by CXCL13 levels and expression of activation-induced cytidine deaminase (AID) was found to be associated with neutralization breadth, Fc polyfunctionality and IgG subclass diversity. Overall, multivariate analysis by random forest classification was able to group bNAb individuals with 85% sensitivity and 80% specificity based on the properties of their antibody Fc early in HIV infection. Thus, the Fc effector function profile predicted the development of neutralization breadth in this cohort, suggesting that intrinsic immune factors within the germinal center provide a mechanistic link between the Fc and Fab of HIV-specific antibodies.

  13. Development and characterization of novel chimeric monoclonal antibodies for broad spectrum neutralization of rabies virus.

    Directory of Open Access Journals (Sweden)

    Pan Kyeom Kim

    Full Text Available Current post-exposure prophylaxis for rabies virus infection has several limitations in terms of supply, cost, safety, and efficacy. Attempts to replace human or equine rabies immune globulins (HRIG or ERIG have been made by several companies and institutes. We developed potent monoclonal antibodies to neutralize a broad spectrum of rabies viruses by screening hybridomas received from the U.S. Centers for Disease Control and Prevention (CDC. Two kinds of chimeric human antibodies (chimeric #7 and #17 were constructed by cloning the variable regions from selected hybridomas and the constant region of a human antibody. Two antibodies were bound to antigenic site III and I/IV, respectively, and were able to neutralize 51 field isolates of rabies virus that were isolated at different times and places such as Asia, Africa, North America, South America, and Australia. These two antibodies neutralize rabies viruses with high efficacy in an in vivo test using Syrian hamster and mouse models and show low risk for adverse immunogenicity.

  14. Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice.

    Science.gov (United States)

    Escolano, Amelia; Steichen, Jon M; Dosenovic, Pia; Kulp, Daniel W; Golijanin, Jovana; Sok, Devin; Freund, Natalia T; Gitlin, Alexander D; Oliveira, Thiago; Araki, Tatsuya; Lowe, Sarina; Chen, Spencer T; Heinemann, Jennifer; Yao, Kai-Hui; Georgeson, Erik; Saye-Francisco, Karen L; Gazumyan, Anna; Adachi, Yumiko; Kubitz, Michael; Burton, Dennis R; Schief, William R; Nussenzweig, Michel C

    2016-09-08

    A vaccine that elicits broadly neutralizing antibodies (bNAbs) against HIV-1 is likely to be protective, but this has not been achieved. To explore immunization regimens that might elicit bNAbs, we produced and immunized mice expressing the predicted germline PGT121, a bNAb specific for the V3-loop and surrounding glycans on the HIV-1 spike. Priming with an epitope-modified immunogen designed to activate germline antibody-expressing B cells, followed by ELISA-guided boosting with a sequence of directional immunogens, native-like trimers with decreasing epitope modification, elicited heterologous tier-2-neutralizing responses. In contrast, repeated immunization with the priming immunogen did not. Antibody cloning confirmed elicitation of high levels of somatic mutation and tier-2-neutralizing antibodies resembling the authentic human bNAb. Our data establish that sequential immunization with specifically designed immunogens can induce high levels of somatic mutation and shepherd antibody maturation to produce bNAbs from their inferred germline precursors. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Development and characterization of novel chimeric monoclonal antibodies for broad spectrum neutralization of rabies virus.

    Science.gov (United States)

    Kim, Pan Kyeom; Keum, Sun Ju; Osinubi, Modupe O V; Franka, Richard; Shin, Ji Young; Park, Sang Tae; Kim, Man Su; Park, Mi Jung; Lee, Soo Young; Carson, William; Greenberg, Lauren; Yu, Pengcheng; Tao, Xiaoyan; Lihua, Wang; Tang, Qing; Liang, Guodong; Shampur, Madhusdana; Rupprecht, Charles E; Chang, Shin Jae

    2017-01-01

    Current post-exposure prophylaxis for rabies virus infection has several limitations in terms of supply, cost, safety, and efficacy. Attempts to replace human or equine rabies immune globulins (HRIG or ERIG) have been made by several companies and institutes. We developed potent monoclonal antibodies to neutralize a broad spectrum of rabies viruses by screening hybridomas received from the U.S. Centers for Disease Control and Prevention (CDC). Two kinds of chimeric human antibodies (chimeric #7 and #17) were constructed by cloning the variable regions from selected hybridomas and the constant region of a human antibody. Two antibodies were bound to antigenic site III and I/IV, respectively, and were able to neutralize 51 field isolates of rabies virus that were isolated at different times and places such as Asia, Africa, North America, South America, and Australia. These two antibodies neutralize rabies viruses with high efficacy in an in vivo test using Syrian hamster and mouse models and show low risk for adverse immunogenicity.

  16. Structural Basis for Escape of Human Astrovirus from Antibody Neutralization: Broad Implications for Rational Vaccine Design

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanoff, Walter A.; Perez, Edmundo I.; López, Tomás; Arias, Carlos F.; DuBois, Rebecca M. (UNAM-Mexico); (UCSC)

    2017-10-25

    ABSTRACT

    Human astroviruses are recognized as a leading cause of viral diarrhea worldwide in children, immunocompromised patients, and the elderly. There are currently no vaccines available to prevent astrovirus infection; however, antibodies developed by healthy individuals during previous infection correlate with protection from reinfection, suggesting that an effective vaccine could be developed. In this study, we investigated the molecular mechanism by which several strains of human astrovirus serotype 2 (HAstV-2) are resistant to the potent HAstV-2-neutralizing monoclonal antibody PL-2 (MAb PL-2). Sequencing of the HAstV-2 capsid genes reveals mutations in the PL-2 epitope within the capsid's spike domain. To understand the molecular basis for resistance from MAb PL-2 neutralization, we determined the 1.35-Å-resolution crystal structure of the capsid spike from one of these HAstV-2 strains. Our structure reveals a dramatic conformational change in a loop within the PL-2 epitope due to a serine-to-proline mutation, locking the loop in a conformation that sterically blocks binding and neutralization by MAb PL-2. We show that mutation to serine permits loop flexibility and recovers MAb PL-2 binding. Importantly, we find that HAstV-2 capsid spike containing a serine in this loop is immunogenic and elicits antibodies that neutralize all HAstV-2 strains. Taken together, our results have broad implications for rational selection of vaccine strains that do not contain prolines in antigenic loops, so as to elicit antibodies against diverse loop conformations.

    IMPORTANCEHuman astroviruses (HAstVs) infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. In this study, we investigated how several strains of HAstV are resistant to a virus-neutralizing monoclonal antibody. We determined the crystal structure of the capsid protein spike domain from one of these HAstV strains and found that

  17. A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield

    Energy Technology Data Exchange (ETDEWEB)

    Pejchal, Robert; Doores, Katie J.; Walker, Laura M.; Khayat, Reza; Huang, Po-Ssu; Wang, Sheng-Kai; Stanfield, Robyn L.; Julien, Jean-Philippe; Ramos, Alejandra; Crispin, Max; Depetris, Rafael; Katpally, Umesh; Marozsan, Andre; Cupo, Albert; Maloveste, Sebastien; Liu, Yan; McBride, Ryan; Ito, Yukishige; Sanders, Rogier W.; Ogohara, Cassandra; Paulson, James C.; Feizi, Ten; Scanlan, Christopher N.; Wong, Chi-Huey; Moore, John P.; Olson, William C.; Ward, Andrew B.; Poignard, Pascal; Schief, William R.; Burton, Dennis R.; Wilson, Ian A. (UWASH); (Progenics); (ICL); (Weill-Med); (NIH); (JSTA); (Scripps); (Oxford)

    2015-10-15

    The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man{sub 9} at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short {beta}-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificify. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.

  18. Structural basis of potent Zika-dengue virus antibody cross-neutralization.

    Science.gov (United States)

    Barba-Spaeth, Giovanna; Dejnirattisai, Wanwisa; Rouvinski, Alexander; Vaney, Marie-Christine; Medits, Iris; Sharma, Arvind; Simon-Lorière, Etienne; Sakuntabhai, Anavaj; Cao-Lormeau, Van-Mai; Haouz, Ahmed; England, Patrick; Stiasny, Karin; Mongkolsapaya, Juthathip; Heinz, Franz X; Screaton, Gavin R; Rey, Félix A

    2016-08-04

    Zika virus is a member of the Flavivirus genus that had not been associated with severe disease in humans until the recent outbreaks, when it was linked to microcephaly in newborns in Brazil and to Guillain-Barré syndrome in adults in French Polynesia. Zika virus is related to dengue virus, and here we report that a subset of antibodies targeting a conformational epitope isolated from patients with dengue virus also potently neutralize Zika virus. The crystal structure of two of these antibodies in complex with the envelope protein of Zika virus reveals the details of a conserved epitope, which is also the site of interaction of the envelope protein dimer with the precursor membrane (prM) protein during virus maturation. Comparison of the Zika and dengue virus immunocomplexes provides a lead for rational, epitope-focused design of a universal vaccine capable of eliciting potent cross-neutralizing antibodies to protect simultaneously against both Zika and dengue virus infections.

  19. Human Neutralizing Monoclonal Antibody Inhibition of Middle East Respiratory Syndrome Coronavirus Replication in the Common Marmoset.

    Science.gov (United States)

    Chen, Zhe; Bao, Linlin; Chen, Cong; Zou, Tingting; Xue, Ying; Li, Fengdi; Lv, Qi; Gu, Songzhi; Gao, Xiaopan; Cui, Sheng; Wang, Jianmin; Qin, Chuan; Jin, Qi

    2017-06-15

    Middle East respiratory syndrome coronavirus (MERS-CoV) infection in humans is highly lethal, with a fatality rate of 35%. New prophylactic and therapeutic strategies to combat human infections are urgently needed. We isolated a fully human neutralizing antibody, MCA1, from a human survivor. The antibody recognizes the receptor-binding domain of MERS-CoV S glycoprotein and interferes with the interaction between viral S and the human cellular receptor human dipeptidyl peptidase 4 (DPP4). To our knowledge, this study is the first to report a human neutralizing monoclonal antibody that completely inhibits MERS-CoV replication in common marmosets. Monotherapy with MCA1 represents a potential alternative treatment for human infections with MERS-CoV worthy of evaluation in clinical settings. © Crown copyright 2017.

  20. Synthetic multivalent V3 glycopeptides display enhanced recognition by glycan-dependent HIV-1 broadly neutralizing antibodies.

    Science.gov (United States)

    Cai, Hui; Orwenyo, Jared; Guenaga, Javier; Giddens, John; Toonstra, Christian; Wyatt, Richard T; Wang, Lai-Xi

    2017-05-14

    We describe here the synthesis of novel multivalent HIV V3 domain glycopeptides and their binding to broadly neutralizing antibodies PGT128 and 10-1074. Our binding data reveal a distinct mode of antigen recognition by the two antibodies and further suggest that multivalent glycopeptides could mimic the neutralizing epitopes more efficiently than the monomeric glycopeptide.

  1. Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting.

    Directory of Open Access Journals (Sweden)

    Nicole A Doria-Rose

    2017-01-01

    Full Text Available Computational neutralization fingerprinting, NFP, is an efficient and accurate method for predicting the epitope specificities of polyclonal antibody responses to HIV-1 infection. Here, we present next-generation NFP algorithms that substantially improve prediction accuracy for individual donors and enable serologic analysis for entire cohorts. Specifically, we developed algorithms for: (a selection of optimized virus neutralization panels for NFP analysis, (b estimation of NFP prediction confidence for each serum sample, and (c identification of sera with potentially novel epitope specificities. At the individual donor level, the next-generation NFP algorithms particularly improved the ability to detect multiple epitope specificities in a sample, as confirmed both for computationally simulated polyclonal sera and for samples from HIV-infected donors. Specifically, the next-generation NFP algorithms detected multiple specificities in twice as many samples of simulated sera. Further, unlike the first-generation NFP, the new algorithms were able to detect both of the previously confirmed antibody specificities, VRC01-like and PG9-like, in donor CHAVI 0219. At the cohort level, analysis of ~150 broadly neutralizing HIV-infected donor samples suggested a potential connection between clade of infection and types of elicited epitope specificities. Most notably, while 10E8-like antibodies were observed in infections from different clades, an enrichment of such antibodies was predicted for clade B samples. Ultimately, such large-scale analyses of antibody responses to HIV-1 infection can help guide the design of epitope-specific vaccines that are tailored to take into account the prevalence of infecting clades within a specific geographic region. Overall, the next-generation NFP technology will be an important tool for the analysis of broadly neutralizing polyclonal antibody responses against HIV-1.

  2. Mimotopes selected by biopanning with high-titer HIV-neutralizing antibodies in plasma from Chinese slow progressors

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    Full Text Available OBJECTIVE: One approach to identifying HIV-1 vaccine candidates is to dissect the natural antiviral immune response in treatment-naïve individuals infected for over ten years, considered slow progressor patients (SPs. It is suspected that SP plasma has strongly neutralizing antibodies (NAb targeting specific HIV viral epitopes. METHODS: NAbs levels of 11 HIV-1-infected SPs were detected by PBMC-based neutralization assays. To investigate SP NAb epitope, this study used a biopanning approach to obtain mimotopes of HIV-1 that were recognized by SP plasma NAbs. IgG was purified from hightiter NAb SP plasma, and used as the ligand for three rounds of biopanning to select HIV-specific mimotopes from a phage-displayed random peptide library. Double-antibody sandwich ELISA, competitive inhibition assays, and peptide sequence analysis were used to evaluate the characteristics of phage-borne mimotopes. RESULTS: SPs had significantly more plasma neutralizing activity than typical progressors (TPs (p = 0.04. P2 and P9 plasma, which have highest-titer HIV-NAb, were selected as ligands for biopanning. After three rounds of biopanning, 48 phage clones were obtained, of which 22 clones were consistent with requirement, binding with HIV-1 positive plasma and unbinding with HIV-1 negative plasma. Compared with linear HIV-1 protein sequence and HIV-1 protein structure files, only 12 clones were possible linear mimotopes of NAbs. In addition, the C40 clone located in gp41 CHR was found to be a neutralizing epitope, which could inhibit pooled HIV-1 positive plasma reaction. CONCLUSION: Biopanning of serum IgG can yield mimotopes of HIV-1-related antigen epitopes. This methodology provides a basis for exploration into HIV-1-related antigen-antibody interactions and furthers NAb immunotherapy and vaccine design.

  3. Ability of vaccine strain induced antibodies to neutralize field isolates of caliciviruses from Swedish cats.

    Science.gov (United States)

    Wensman, Jonas Johansson; Samman, Ayman; Lindhe, Anna; Thibault, Jean-Christophe; Berndtsson, Louise Treiberg; Hosie, Margaret J

    2015-12-12

    Feline calicivirus (FCV) is a common cause of upper respiratory tract disease in cats worldwide. Its characteristically high mutation rate leads to escape from the humoral immune response induced by natural infection and/or vaccination and consequently vaccines are not always effective against field isolates. Thus, there is a need to continuously investigate the ability of FCV vaccine strain-induced antibodies to neutralize field isolates. Seventy-eight field isolates of FCV isolated during the years 2008-2012 from Swedish cats displaying clinical signs of upper respiratory tract disease were examined in this study. The field isolates were tested for cross-neutralization using a panel of eight anti-sera raised in four pairs of cats following infection with four vaccine strains (F9, 255, G1 and 431). The anti-sera raised against F9 and 255 neutralised 20.5 and 11.5 %, and 47.4 and 64.1 % of field isolates tested, respectively. The anti-sera against the more recently introduced vaccine strains G1 and 431 neutralized 33.3 and 55.1 % (strain G1) or 69.2 and 89.7 % (strain 431) of the field isolates with titres ≥5. [corrected]. Dual vaccine strains displayed a higher cross-neutralization. This study confirms previous observations that more recently introduced vaccine strains induce antibodies with a higher neutralizing capacity compared to vaccine strains that have been used extensively over a long period of time. This study also suggests that dual FCV vaccine strains might neutralize more field isolates compared to single vaccine strains. Vaccine strains should ideally be selected based on updated knowledge on the antigenic properties of field isolates in the local setting, and there is thus a need for continuously studying the evolution of FCV together with the neutralizing capacity of vaccine strain induced antibodies against field isolates at a national and/or regional level.

  4. Acceleration of neutral atoms in strong short-pulse laser fields.

    Science.gov (United States)

    Eichmann, U; Nubbemeyer, T; Rottke, H; Sandner, W

    2009-10-29

    A charged particle exposed to an oscillating electric field experiences a force proportional to the cycle-averaged intensity gradient. This so-called ponderomotive force plays a major part in a variety of physical situations such as Paul traps for charged particles, electron diffraction in strong (standing) laser fields (the Kapitza-Dirac effect) and laser-based particle acceleration. Comparably weak forces on neutral atoms in inhomogeneous light fields may arise from the dynamical polarization of an atom; these are physically similar to the cycle-averaged forces. Here we observe previously unconsidered extremely strong kinematic forces on neutral atoms in short-pulse laser fields. We identify the ponderomotive force on electrons as the driving mechanism, leading to ultrastrong acceleration of neutral atoms with a magnitude as high as approximately 10(14) times the Earth's gravitational acceleration, g. To our knowledge, this is by far the highest observed acceleration on neutral atoms in external fields and may lead to new applications in both fundamental and applied physics.

  5. Longitudinal studies of neutralizing antibody responses to rotavirus in stools and sera of children following severe rotavirus gastroenteritis.

    Science.gov (United States)

    Coulson, B S

    1998-11-01

    Rotavirus-neutralizing antibody responses in sera and stools of children hospitalized with rotavirus gastroenteritis and then monitored longitudinally were optimally detected by using local rotavirus strains. Stool responses were highest on days 5 to 8 after the onset of diarrhea. Longitudinal monitoring suggested that serum neutralizing antibody responses were a more useful measure of severely symptomatic rotavirus infection than stool responses but that stool antibody responses may be a useful measure of rotavirus immunity.

  6. Longitudinal Studies of Neutralizing Antibody Responses to Rotavirus in Stools and Sera of Children following Severe Rotavirus Gastroenteritis

    OpenAIRE

    Coulson, Barbara S.

    1998-01-01

    Rotavirus-neutralizing antibody responses in sera and stools of children hospitalized with rotavirus gastroenteritis and then monitored longitudinally were optimally detected by using local rotavirus strains. Stool responses were highest on days 5 to 8 after the onset of diarrhea. Longitudinal monitoring suggested that serum neutralizing antibody responses were a more useful measure of severely symptomatic rotavirus infection than stool responses but that stool antibody responses may be a use...

  7. Structures of phlebovirus glycoprotein Gn and identification of a neutralizing antibody epitope.

    Science.gov (United States)

    Wu, Yan; Zhu, Yaohua; Gao, Feng; Jiao, Yongjun; Oladejo, Babayemi O; Chai, Yan; Bi, Yuhai; Lu, Shan; Dong, Mengqiu; Zhang, Chang; Huang, Guangmei; Wong, Gary; Li, Na; Zhang, Yanfang; Li, Yan; Feng, Wen-Hai; Shi, Yi; Liang, Mifang; Zhang, Rongguang; Qi, Jianxun; Gao, George F

    2017-09-05

    Severe fever with thrombocytopenia syndrome virus (SFTSV) and Rift Valley fever virus (RVFV) are two arthropod-borne phleboviruses in the Bunyaviridae family, which cause severe illness in humans and animals. Glycoprotein N (Gn) is one of the envelope proteins on the virus surface and is a major antigenic component. Despite its importance for virus entry and fusion, the molecular features of the phleboviruse Gn were unknown. Here, we present the crystal structures of the Gn head domain from both SFTSV and RVFV, which display a similar compact triangular shape overall, while the three subdomains (domains I, II, and III) making up the Gn head display different arrangements. Ten cysteines in the Gn stem region are conserved among phleboviruses, four of which are responsible for Gn dimerization, as revealed in this study, and they are highly conserved for all members in Bunyaviridae Therefore, we propose an anchoring mode on the viral surface. The complex structure of the SFTSV Gn head and human neutralizing antibody MAb 4-5 reveals that helices α6 in subdomain III is the key component for neutralization. Importantly, the structure indicates that domain III is an ideal region recognized by specific neutralizing antibodies, while domain II is probably recognized by broadly neutralizing antibodies. Collectively, Gn is a desirable vaccine target, and our data provide a molecular basis for the rational design of vaccines against the diseases caused by phleboviruses and a model for bunyavirus Gn embedding on the viral surface.

  8. Atypical and classical memory B cells produce Plasmodium falciparum neutralizing antibodies

    DEFF Research Database (Denmark)

    Muellenbeck, Matthias F; Ueberheide, Beatrix; Amulic, Borko

    2013-01-01

    Antibodies can protect from Plasmodium falciparum (Pf) infection and clinical malaria disease. However, in the absence of constant reexposure, serum immunoglobulin (Ig) levels rapidly decline and full protection from clinical symptoms is lost, suggesting that B cell memory is functionally impaired....... We show at the single cell level that natural Pf infection induces the development of classical memory B cells (CM) and atypical memory B cells (AtM) that produce broadly neutralizing antibodies against blood stage Pf parasites. CM and AtM contribute to anti-Pf serum IgG production, but only AtM show...... signs of active antibody secretion. AtM and CM were also different in their IgG gene repertoire, suggesting that they develop from different precursors. The findings provide direct evidence that natural Pf infection leads to the development of protective memory B cell antibody responses and suggest...

  9. Monoclonal Antibodies Follow Distinct Aggregation Pathways During Production-Relevant Acidic Incubation and Neutralization

    DEFF Research Database (Denmark)

    Pedersen, Thomas Skamris; Tian, Xinsheng; Thorolfsson, Matthias

    2016-01-01

    PURPOSE: Aggregation aspects of therapeutic monoclonal antibodies (mAbs) are of common concern to the pharmaceutical industry. Low pH treatment is applied during affinity purification and to inactivate endogenous retroviruses, directing interest to the mechanisms of acid-induced antibody aggregat......PURPOSE: Aggregation aspects of therapeutic monoclonal antibodies (mAbs) are of common concern to the pharmaceutical industry. Low pH treatment is applied during affinity purification and to inactivate endogenous retroviruses, directing interest to the mechanisms of acid-induced antibody...... identified, which may lead to two distinct pathways of reversible and irreversible aggregation, respectively. CONCLUSIONS: We conclude that subtle variations in mAb sequence greatly affect responses towards low-pH incubation and subsequent neutralization, and demonstrate how orthogonal biophysical methods...... distinguish between reversible and irreversible mAb aggregation pathways at early stages of acidic treatment....

  10. Adjuvant-Mediated Epitope Specificity and Enhanced Neutralizing Activity of Antibodies Targeting Dengue Virus Envelope Protein

    Directory of Open Access Journals (Sweden)

    Denicar Lina Nascimento Fabris Maeda

    2017-09-01

    Full Text Available The heat-labile toxins (LT produced by enterotoxigenic Escherichia coli display adjuvant effects to coadministered antigens, leading to enhanced production of serum antibodies. Despite extensive knowledge of the adjuvant properties of LT derivatives, including in vitro-generated non-toxic mutant forms, little is known about the capacity of these adjuvants to modulate the epitope specificity of antibodies directed against antigens. This study characterizes the role of LT and its non-toxic B subunit (LTB in the modulation of antibody responses to a coadministered antigen, the dengue virus (DENV envelope glycoprotein domain III (EDIII, which binds to surface receptors and mediates virus entry into host cells. In contrast to non-adjuvanted or alum-adjuvanted formulations, antibodies induced in mice immunized with LT or LTB showed enhanced virus-neutralization effects that were not ascribed to a subclass shift or antigen affinity. Nonetheless, immunosignature analyses revealed that purified LT-adjuvanted EDIII-specific antibodies display distinct epitope-binding patterns with regard to antibodies raised in mice immunized with EDIII or the alum-adjuvanted vaccine. Notably, the analyses led to the identification of a specific EDIII epitope located in the EF to FG loop, which is involved in the entry of DENV into eukaryotic cells. The present results demonstrate that LT and LTB modulate the epitope specificity of antibodies generated after immunization with coadministered antigens that, in the case of EDIII, was associated with the induction of neutralizing antibody responses. These results open perspectives for the more rational development of vaccines with enhanced protective effects against DENV infections.

  11. Broad Neutralization as a Byproduct of Antibody Maturation during HIV-1 Infection: a Personal Perspective

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2016-07-01

    Full Text Available Broadly neutralizing antibodies (bnAbs may be key for an effective HIV-1 vaccine. Although bnAbs can be detected in a small percentage of HIV-1-infected individuals, they have not been successfully elicited by any vaccines. Germline ancestors of bnAbs generally do not neutralize HIV-1, but they can gradually gain potency and breadth for neutralization of heterologous HIV-1 strains when they become more mature through accumulation of high levels of somatic mutations after a few years of infection. Since bnAbs develop in the absence of diverse heterologous HIV-1 variants in an infected individual, one plausible hypothesis is that broad neutralization of diverse heterologous viruses is a byproduct of the antibody maturation process. This hypothesis is supported by observations that bnAbs continuously evolve to gain neutralization breadth and potency, even after the vast majority of autologous plasma viruses become resistant to bnAbs in infected individuals. Importantly, those individuals do not benefit from the development of continuously more matured bnAbs because autologous viruses have completely escaped from these bnAbs. This theory may have significant implication in AIDS vaccine development.

  12. How HIV-1 entry mechanism and broadly neutralizing antibodies guide structure-based vaccine design.

    Science.gov (United States)

    Pancera, Marie; Changela, Anita; Kwong, Peter D

    2017-05-01

    An HIV-1 vaccine that elicits broadly neutralizing antibodies (bNAbs) remains to be developed. Here, we review how knowledge of bNAbs and HIV-1 entry mechanism is guiding the structure-based design of vaccine immunogens and immunization regimens. Isolation of bNAbs from HIV-1-infected donors has led to an unprecedented understanding of the sites of vulnerability that these antibodies target on the HIV-1 envelope (Env) as well as of the immunological pathways that these antibody lineages follow to develop broad and potent neutralization. Sites of vulnerability, however, reside in the context of diverse Env conformations required for HIV-1 entry, including a prefusion-closed state, a single-CD4-bound intermediate, a three-CD4-bound intermediate, a prehairpin intermediate and postfusion states, and it is not always clear which structural state optimally presents a particular site of vulnerability in the vaccine context. Furthermore, detailed knowledge of immunological pathways has led to debate among vaccine developers as to how much of the natural antibody-developmental pathway immunogens should mimic, ranging from only the recognized epitope to multiple antigens from the antibody-virus coevolution process. A plethora of information on bNAbs is guiding HIV-1-vaccine development. We highlight consideration of the appropriate structural context from the HIV-1-entry mechanism and extraordinary progress with replicating template B-cell ontogenies.

  13. A synthetic peptide derived from domain III envelope glycoprotein of Dengue virus induces neutralizing antibody.

    Science.gov (United States)

    Mary, J Asnet; Jittmittraphap, Akanitt; Chattanadee, Siriporn; Leaungwutiwong, Pornsawan; Shenbagarathai, R

    2018-02-01

    Dengue virus (DENV) is an arthropod-borne human pathogen that represents a severe public health threat in both endemic and non-endemic regions. So far, there is no licensed vaccine or specific drugs available for dengue fever. A fifteen-amino-acid-long peptide that includes the NGR motif was chemically synthesized and conjugated with keyhole limpet hemocyanin. A standard immunization protocol was followed for the production of polyclonal antibodies by immunizing rabbits against the synthetic peptide. The immune response elicited high-titer polyclonal antibodies with the reactivity of the anti-peptide antibody against both synthetic peptide and four serotypes of DENV confirmed by DOT-ELISA. Neutralizing activity of anti-peptide antibody was found to be cross-reactive and effective resulting in 60% reduction of infectivity at 1:200 dilution in all four serotypes of DENV. Our findings have the potential to further improve our understanding of virus-host interactions and provide new insights into neutralizing antibodies and could also be used as a drug target.

  14. Hepatitis C virus epitope exposure and neutralization by antibodies is affected by time and temperature

    DEFF Research Database (Denmark)

    Sabo, Michelle C; Luca, Vincent C; Ray, Stuart C

    2012-01-01

    at 37°C or after longer pre-incubation periods, and a corresponding loss-of-neutralization was observed when pre-binding was performed at 4°C. A similar profile of changes was observed with acute and chronic phase sera from HCV-infected patients. Our data suggest that time and temperature of incubation...... by a glycan shield, apolipoprotein interactions, and the hypervariable region on the E2 envelope protein, we assessed how time and temperature of pre-incubation altered monoclonal antibody (MAb) neutralization of HCV. Notably, several MAbs showed increased inhibitory activity when pre-binding was performed...

  15. Chemokine receptor polymorphism and autologous neutralizing antibody response in long-term HIV-1 infection

    DEFF Research Database (Denmark)

    Schønning, Kristian; Joost, Mette; Gram, G J

    1998-01-01

    heterozygous for the CCR5 deletion were infected with virus of NSI phenotype. In contrast, all RPI individuals who were heterozygous for the CCR5 deletion were infected with virus of SI phenotype (p = .028). Thus, a beneficial effect of having a partly nonfunctional CCR5 coreceptor may depend on the viral SI......We have previously reported that slowly progressing HIV infection (SPI) was associated with the presence of contemporaneous autologous neutralizing antibodies. In contrast, a group of individuals with more rapidly progressing infection (RPI) generally lacked these antibodies. To understand...

  16. Chemokine receptor polymorphism and autologous neutralizing antibody response in long-term HIV-1 infection

    DEFF Research Database (Denmark)

    Schønning, Kristian; Joost, Mette; Gram, G J

    1998-01-01

    samples. Finally, late virus isolates from individuals with SPI generally remained sensitive to neutralization by early serum samples. Virus phenotype (SI/NSI) and CCR5 genotype was determined for all individuals. Neither showed significant correlation with SPI. However, all SPI individuals who were...... heterozygous for the CCR5 deletion were infected with virus of NSI phenotype. In contrast, all RPI individuals who were heterozygous for the CCR5 deletion were infected with virus of SI phenotype (p = .028). Thus, a beneficial effect of having a partly nonfunctional CCR5 coreceptor may depend on the viral SI......We have previously reported that slowly progressing HIV infection (SPI) was associated with the presence of contemporaneous autologous neutralizing antibodies. In contrast, a group of individuals with more rapidly progressing infection (RPI) generally lacked these antibodies. To understand...

  17. Role of the Antigen Capture Pathway in the Induction of a Neutralizing Antibody Response to Anthrax Protective Antigen

    Directory of Open Access Journals (Sweden)

    Anita Verma

    2018-02-01

    Full Text Available Toxin neutralizing antibodies represent the major mode of protective immunity against a number of toxin-mediated bacterial diseases, including anthrax; however, the cellular mechanisms that lead to optimal neutralizing antibody responses remain ill defined. Here we show that the cellular binding pathway of anthrax protective antigen (PA, the binding component of anthrax toxin, determines the toxin neutralizing antibody response to this antigen. PA, which binds cellular receptors and efficiently enters antigen-presenting cells by receptor-mediated endocytosis, was found to elicit robust anti-PA IgG and toxin neutralizing antibody responses. In contrast, a receptor binding-deficient mutant of PA, which does not bind receptors and only inefficiently enters antigen-presenting cells by macropinocytosis, elicited very poor antibody responses. A chimeric protein consisting of the receptor binding-deficient PA mutant tethered to the binding subunit of cholera toxin, which efficiently enters cells using the cholera toxin receptor rather than the PA receptor, elicited an anti-PA IgG antibody response similar to that elicited by wild-type PA; however, the chimeric protein elicited a poor toxin neutralizing antibody response. Taken together, our results demonstrate that the antigen capture pathway can dictate the magnitudes of the total IgG and toxin neutralizing antibody responses to PA as well as the ratio of the two responses.

  18. Neutralizing antibodies to hepatitis C virus in perinatally infected children followed up prospectively

    DEFF Research Database (Denmark)

    Meunier, Jean-Christophe; Bukh, Jens; Diaz, Giacomo

    2011-01-01

    Little is known about the presence and role of neutralizing antibodies (NtAbs) in perinatal hepatitis C virus (HCV) infection. Using HCV pseudoparticles, NtAbs were studied longitudinally in 12 HCV-infected children with or without evidence of acute hepatitis during the first year of life. Broadly...... of children, but their appearance did not correlate with better control of viremia or HCV clearance....

  19. Toward Effective HIV Vaccination INDUCTION OF BINARY EPITOPE REACTIVE ANTIBODIES WITH BROAD HIV NEUTRALIZING ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Yasuhiro; Planque, Stephanie; Mitsuda, Yukie; Nitti, Giovanni; Taguchi, Hiroaki; Jin, Lei; Symersky, Jindrich; Boivin, Stephane; Sienczyk, Marcin; Salas, Maria; Hanson, Carl V.; Paul, Sudhir; (Texas-MED); (Viral Rickettsial)

    2009-11-23

    We describe murine monoclonal antibodies (mAbs) raised by immunization with an electrophilic gp120 analog (E-gp120) expressing the rare ability to neutralize genetically heterologous human immunodeficiency virus (HIV) strains. Unlike gp120, E-gp120 formed covalent oligomers. The reactivity of gp120 and E-gp120 with mAbs to reference neutralizing epitopes was markedly different, indicating their divergent structures. Epitope mapping with synthetic peptides and electrophilic peptide analogs indicated binary recognition of two distinct gp120 regions by anti-E-gp120 mAbs, the 421-433 and 288-306 peptide regions. Univalent Fab and single chain Fv fragments expressed the ability to recognize both peptides. X-ray crystallography of an anti-E-gp120 Fab fragment revealed two neighboring cavities, the typical antigen-binding cavity formed by the complementarity determining regions (CDRs) and another cavity dominated by antibody heavy chain variable (VH) domain framework (FR) residues. Substitution of the FR cavity VH Lys-19 residue by an Ala residue resulted in attenuated binding of the 421-433 region peptide probe. The CDRs and VH FR replacement/silent mutation ratios exceeded the ratio for a random mutation process, suggesting adaptive development of both putative binding sites. All mAbs studied were derived from VH1 family genes, suggesting biased recruitment of the V gene germ line repertoire by E-gp120. The conserved 421-433 region of gp120 is essential for HIV binding to host CD4 receptors. This region is recognized weakly by the FR of antibodies produced without exposure to HIV, but it usually fails to induce adaptive synthesis of neutralizing antibodies. We present models accounting for improved CD4-binding site recognition and broad HIV neutralizing activity of the mAbs, long sought goals in HIV vaccine development.

  20. Investigating the Fundamentals of Molecular Depth Profiling Using Strong-field Photoionization of Sputtered Neutrals.

    Science.gov (United States)

    Willingham, D; Brenes, D A; Winograd, N; Wucher, A

    2011-01-01

    Molecular depth profiles of model organic thin films were performed using a 40 keV C 60 + cluster ion source in concert with TOF-SIMS. Strong-field photoionization of intact neutral molecules sputtered by 40 keV C 60 + primary ions was used to analyze changes in the chemical environment of the guanine thin films as a function of ion fluence. Direct comparison of the secondary ion and neutral components of the molecular depth profiles yields valuable information about chemical damage accumulation as well as changes in the molecular ionization probability. An analytical protocol based on the erosion dynamics model is developed and evaluated using guanine and trehalose molecular secondary ion signals with and without comparable laser photoionization data.

  1. Structure-based, targeted deglycosylation of HIV-1 gp120 and effects on neutralization sensitivity and antibody recognition

    International Nuclear Information System (INIS)

    Koch, Markus; Pancera, Marie; Kwong, Peter D.; Kolchinsky, Peter; Grundner, Christoph; Wang Liping; Hendrickson, Wayne A.; Sodroski, Joseph; Wyatt, Richard

    2003-01-01

    The human immunodeficiency virus (HIV-1) exterior envelope glycoprotein, gp120, mediates receptor binding and is the major target for neutralizing antibodies. Primary HIV-1 isolates are characteristically more resistant to broadly neutralizing antibodies, although the structural basis for this resistance remains obscure. Most broadly neutralizing antibodies are directed against functionally conserved gp120 regions involved in binding to either the primary virus receptor, CD4, or the viral coreceptor molecules that normally function as chemokine receptors. These antibodies are known as CD4 binding site (CD4BS) and CD4-induced (CD4i) antibodies, respectively. Inspection of the gp120 crystal structure reveals that although the receptor-binding regions lack glycosylation, sugar moieties lie proximal to both receptor-binding sites on gp120 and thus in proximity to both the CD4BS and the CD4i epitopes. In this study, guided by the X-ray crystal structure of gp120, we deleted four N-linked glycosylation sites that flank the receptor-binding regions. We examined the effects of selected changes on the sensitivity of two prototypic HIV-1 primary isolates to neutralization by antibodies. Surprisingly, removal of a single N-linked glycosylation site at the base of the gp120 third variable region (V3 loop) increased the sensitivity of the primary viruses to neutralization by CD4BS antibodies. Envelope glycoprotein oligomers on the cell surface derived from the V3 glycan-deficient virus were better recognized by a CD4BS antibody and a V3 loop antibody than were the wild-type glycoproteins. Absence of all four glycosylation sites rendered a primary isolate sensitive to CD4i antibody-mediated neutralization. Thus, carbohydrates that flank receptor-binding regions on gp120 protect primary HIV-1 isolates from antibody-mediated neutralization

  2. Cross neutralizing antibodies in hamsters vaccinated with leptospiral bacterins produced with three serovars of serogroup Sejroe

    Directory of Open Access Journals (Sweden)

    Rosana Tabata

    2002-09-01

    Full Text Available Three leptospiral bacterins, produced with different serovars of Serogroup Sejroe, namely the hardjo (bacterin A, wolffi (bacterin B and guaricura (bacterin C, were evaluated in male hamsters (Mesocricetus auratus by comparing the agglutinating and neutralizing antibodies titers using microscopic agglutination (MAT and in vitro growth inhibition (GIT tests. The immunization schedule was based on two 1.0 mL doses of non-diluted formalininactivated whole culture bacterin given through subcutaneous route with 10-day interval. The challenge was performed ten days after the second vaccine dose, when the animals were inoculated with 0.2 mL of non-inactivated cultures of each serovar through intraperitoneal route. On the 21st post-challenge day (PCD, all animals were bled and their sera were joined in pools (n=8 and tested by MAT and GIT. All vaccinated and control animals presented no clinical signs of leptospirosis after the challenge, but the serovar guaricura was isolated from the kidneys of control animals on the 21st PCD. The MAT results showed cross agglutinins between serovars hardjo and wolffi, and between wolffi and guaricura. The GIT results revealed the presence of cross neutralizing antibodies between serovars wolffi or guaricura against hardjo, wolffi and guaricura. It was found that the tested strain of serovar hardjo did not produce detectable levels of neutralizing antibodies, indicating its poor immunogenicity.

  3. An efficiently cleaved HIV-1 clade C Env selectively binds to neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Saikat Boliar

    Full Text Available An ideal HIV-1 Env immunogen is expected to mimic the native trimeric conformation for inducing broadly neutralizing antibody responses. The native conformation is dependent on efficient cleavage of HIV-1 Env. The clade B isolate, JRFL Env is efficiently cleaved when expressed on the cell surface. Here, for the first time, we report the identification of a native clade C Env, 4-2.J41 that is naturally and efficiently cleaved on the cell surface as confirmed by its biochemical and antigenic characteristics. In addition to binding to several conformation-dependent neutralizing antibodies, 4-2.J41 Env binds efficiently to the cleavage-dependent antibody PGT151; thus validating its native cleaved conformation. In contrast, 4-2.J41 Env occludes non-neutralizing epitopes. The cytoplasmic-tail of 4-2.J41 Env plays an important role in maintaining its conformation. Furthermore, codon optimization of 4-2.J41 Env sequence significantly increases its expression while retaining its native conformation. Since clade C of HIV-1 is the prevalent subtype, identification and characterization of this efficiently cleaved Env would provide a platform for rational immunogen design.

  4. Screening test for neutralizing antibodies against yellow fever virus, based on a flavivirus pseudotype.

    Directory of Open Access Journals (Sweden)

    Séverine Mercier-Delarue

    Full Text Available Given the possibility of yellow fever virus reintroduction in epidemiologically receptive geographic areas, the risk of vaccine supply disruption is a serious issue. New strategies to reduce the doses of injected vaccines should be evaluated very carefully in terms of immunogenicity. The plaque reduction test for the determination of neutralizing antibodies (PRNT is particularly time-consuming and requires the use of a confinement laboratory. We have developed a new test based on the use of a non-infectious pseudovirus (WN/YF17D. The presence of a reporter gene allows sensitive determination of neutralizing antibodies by flow cytometry. This WN/YF17D test was as sensitive as PRNT for the follow-up of yellow fever vaccinees. Both tests lacked specificity with sera from patients hospitalized for acute Dengue virus infection. Conversely, both assays were strictly negative in adults never exposed to flavivirus infection or vaccination, and in patients sampled some time after acute Dengue infection. This WN/YF17D test will be particularly useful for large epidemiological studies and for screening for neutralizing antibodies against yellow fever virus.

  5. An efficiently cleaved HIV-1 clade C Env selectively binds to neutralizing antibodies.

    Science.gov (United States)

    Boliar, Saikat; Das, Supratik; Bansal, Manish; Shukla, Brihaspati N; Patil, Shilpa; Shrivastava, Tripti; Samal, Sweety; Goswami, Sandeep; King, C Richter; Bhattacharya, Jayanta; Chakrabarti, Bimal K

    2015-01-01

    An ideal HIV-1 Env immunogen is expected to mimic the native trimeric conformation for inducing broadly neutralizing antibody responses. The native conformation is dependent on efficient cleavage of HIV-1 Env. The clade B isolate, JRFL Env is efficiently cleaved when expressed on the cell surface. Here, for the first time, we report the identification of a native clade C Env, 4-2.J41 that is naturally and efficiently cleaved on the cell surface as confirmed by its biochemical and antigenic characteristics. In addition to binding to several conformation-dependent neutralizing antibodies, 4-2.J41 Env binds efficiently to the cleavage-dependent antibody PGT151; thus validating its native cleaved conformation. In contrast, 4-2.J41 Env occludes non-neutralizing epitopes. The cytoplasmic-tail of 4-2.J41 Env plays an important role in maintaining its conformation. Furthermore, codon optimization of 4-2.J41 Env sequence significantly increases its expression while retaining its native conformation. Since clade C of HIV-1 is the prevalent subtype, identification and characterization of this efficiently cleaved Env would provide a platform for rational immunogen design.

  6. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, James R.R.; Zhang, Ruijun; Khurana, Surender; King, Lisa R.; Manischewitz, Jody; Golding, Hana; Dormitzer, Philip R.; Haynes, Barton F.; Walter, Emmanuel B.; Moody, M. Anthony; Kepler, Thomas B.; Liao, Hua-Xin; Harrison, Stephen C. (Harvard-Med); (Novartis); (US-FDA); (Duke)

    2011-09-20

    Seasonal antigenic drift of circulating influenza virus leads to a requirement for frequent changes in vaccine composition, because exposure or vaccination elicits human antibodies with limited cross-neutralization of drifted strains. We describe a human monoclonal antibody, CH65, obtained by isolating rearranged heavy- and light-chain genes from sorted single plasma cells, coming from a subject immunized with the 2007 trivalent influenza vaccine. The crystal structure of a complex of the hemagglutinin (HA) from H1N1 strain A/Solomon Islands/3/2006 with the Fab of CH65 shows that the tip of the CH65 heavy-chain complementarity determining region 3 (CDR3) inserts into the receptor binding pocket on HA1, mimicking in many respects the interaction of the physiological receptor, sialic acid. CH65 neutralizes infectivity of 30 out of 36 H1N1 strains tested. The resistant strains have a single-residue insertion near the rim of the sialic-acid pocket. We conclude that broad neutralization of influenza virus can be achieved by antibodies with contacts that mimic those of the receptor.

  7. Acquired Resistance to Corticotropin Therapy in Nephrotic Syndrome: Role of De Novo Neutralizing Antibody.

    Science.gov (United States)

    Wang, Pei; Zhang, Yan; Wang, Yu; Brem, Andrew S; Liu, Zhangsuo; Gong, Rujun

    2017-07-01

    There is increasing evidence supporting the use of corticotropin as an alternative treatment of refractory proteinuric glomerulopathies. The efficacy of short-acting corticotropin, however, remains unknown and was tested here in an adolescent with steroid-dependent nephrotic syndrome caused by minimal change disease. After developing Cushing syndrome and recently being afflicted with severe cellulitis, the patient was weaned off all immunosuppressants, including corticosteroids. This resulted in a relapse of generalized anasarca, associated with massive proteinuria and hypoalbuminemia. Subsequently, mono-therapy with short-acting animal-derived natural corticotropin was initiated and resulted in a rapid response, marked by substantial diuresis, reduction in body weight, and partial remission of proteinuria. Ten days later, the patient developed mild skin rash and subcutaneous nodules at injection sites. A relapse followed despite doubling the dose of corticotropin, consistent with delayed-onset resistance to treatment. Immunoblot-based antibody assay revealed de novo formation of antibodies in the patient's serum that were reactive to the natural corticotropin. In cultured melanoma cells known to express abundant melanocortin receptors, addition of the patient's serum strikingly mitigated dendritogenesis and cell signaling triggered by natural corticotropin, denoting neutralizing properties of the newly formed antibodies. Collectively, short-acting natural corticotropin seems effective in steroid-dependent nephrotic syndrome. De novo formation of neutralizing antibodies is likely responsible for acquired resistance to corticotropin therapy. The proof of concept protocols established in this study to examine the anticorticotropin neutralizing antibodies may aid in determining the cause of resistance to corticotropin therapy in future studies. Copyright © 2017 by the American Academy of Pediatrics.

  8. Broadly neutralizing antibodies with few somatic mutations and hepatitis C virus clearance.

    Science.gov (United States)

    Bailey, Justin R; Flyak, Andrew I; Cohen, Valerie J; Li, Hui; Wasilewski, Lisa N; Snider, Anna E; Wang, Shuyi; Learn, Gerald H; Kose, Nurgun; Loerinc, Leah; Lampley, Rebecca; Cox, Andrea L; Pfaff, Jennifer M; Doranz, Benjamin J; Shaw, George M; Ray, Stuart C; Crowe, James E

    2017-05-04

    Here, we report the isolation of broadly neutralizing mAbs (bNAbs) from persons with broadly neutralizing serum who spontaneously cleared hepatitis C virus (HCV) infection. We found that bNAbs from two donors bound the same epitope and were encoded by the same germline heavy chain variable gene segment. Remarkably, these bNAbs were encoded by antibody variable genes with sparse somatic mutations. For one of the most potent bNAbs, these somatic mutations were critical for antibody neutralizing breadth and for binding to autologous envelope variants circulating late in infection. However, somatic mutations were not necessary for binding of the bNAb unmutated ancestor to envelope proteins of early autologous transmitted/founder viruses. This study identifies a public B cell clonotype favoring early recognition of a conserved HCV epitope, proving that anti-HCV bNAbs can achieve substantial neutralizing breadth with relatively few somatic mutations, and identifies HCV envelope variants that favored selection and maturation of an anti-HCV bNAb in vivo. These data provide insight into the molecular mechanisms of immune-mediated clearance of HCV infection and present a roadmap to guide development of a vaccine capable of stimulating anti-HCV bNAbs with a physiologic number of somatic mutations characteristic of vaccine responses.

  9. Cure of Chronic Viral Infection and Virus-Induced Type 1 Diabetes by Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Mette Ejrnaes

    2006-01-01

    Full Text Available The use of neutralizing antibodies is one of the most successful methods to interfere with receptor-ligand interactions in vivo. In particular blockade of soluble inflammatory mediators or their corresponding cellular receptors was proven an effective way to regulate inflammation and/or prevent its negative consequences. However, one problem that comes along with an effective neutralization of inflammatory mediators is the general systemic immunomodulatory effect. It is therefore important to design a treatment regimen in a way to strike at the right place and at the right time in order to achieve maximal effects with minimal duration of immunosuppression or hyperactivation. In this review we reflect on two examples of how short time administration of such neutralizing antibodies can block two distinct inflammatory consequences of viral infection. First, we review recent findings that blockade of IL-10/IL-10R interaction can resolve chronic viral infection and second, we reflect on how neutralization of the chemokine CXCL10 can abrogate virus-induced type 1 diabetes.

  10. Cure of Chronic Viral Infection and Virus-Induced Type 1 Diabetes by Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Mette Ejrnaes

    2006-01-01

    Full Text Available The use of neutralizing antibodies is one of the most successful methods to interfere with receptor–ligand interactions in vivo. In particular blockade of soluble inflammatory mediators or their corresponding cellular receptors was proven an effective way to regulate inflammation and/or prevent its negative consequences. However, one problem that comes along with an effective neutralization of inflammatory mediators is the general systemic immunomodulatory effect. It is, therefore, important to design a treatment regimen in a way to strike at the right place and at the right time in order to achieve maximal effects with minimal duration of immunosuppression or hyperactivation. In this review, we reflect on two examples of how short time administration of such neutralizing antibodies can block two distinct inflammatory consequences of viral infection. First, we review recent findings that blockade of IL-10/IL-10R interaction can resolve chronic viral infection and second, we reflect on how neutralization of the chemokine CXCL10 can abrogate virus-induced type 1 diabetes.

  11. Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro

    Science.gov (United States)

    Bartolini, Erika; Ianni, Elvira; Frigimelica, Elisabetta; Petracca, Roberto; Galli, Giuliano; Berlanda Scorza, Francesco; Norais, Nathalie; Laera, Donatello; Giusti, Fabiola; Pierleoni, Andrea; Donati, Manuela; Cevenini, Roberto; Finco, Oretta; Grandi, Guido; Grifantini, Renata

    2013-01-01

    Background Outer membrane vesicles (OMVs) are spheroid particles released by all Gram-negative bacteria as a result of the budding out of the outer membrane. Since they carry many of the bacterial surface-associated proteins and feature a potent built-in adjuvanticity, OMVs are being utilized as vaccines, some of which commercially available. Recently, methods for manipulating the protein content of OMVs have been proposed, thus making OMVs a promising platform for recombinant, multivalent vaccines development. Methods Chlamydia muridarum DO serine protease HtrA, an antigen which stimulates strong humoral and cellular responses in mice and humans, was expressed in Escherichia coli fused to the OmpA leader sequence to deliver it to the OMV compartment. Purified OMVs carrying HtrA (CM rHtrA-OMV) were analyzed for their capacity to induce antibodies capable of neutralizing Chlamydia infection of LLC-MK2 cells in vitro. Results CM rHtrA-OMV immunization in mice induced antibodies that neutralize Chlamydial invasion as judged by an in vitro infectivity assay. This was remarkably different from what observed with an enzymatically functional recombinant HtrA expressed in, and purified from the E. coli cytoplasm (CM rHtrA). The difference in functionality between anti-CM rHtrA and anti-CM rHtrA-OMV antibodies was associated to a different pattern of protein epitopes recognition. The epitope recognition profile of anti-CM HtrA-OMV antibodies was similar to that induced in mice during Chlamydial infection. Conclusions When expressed in OMVs HtrA appears to assume a conformation similar to the native one and this results in the elicitation of functional immune responses. These data further support the potentiality of OMVs as vaccine platform. PMID:24009891

  12. Lack of protection following passive transfer of polyclonal highly functional low-dose non-neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Dugast

    Full Text Available Recent immune correlates analysis from the RV144 vaccine trial has renewed interest in the role of non-neutralizing antibodies in mediating protection from infection. While neutralizing antibodies have proven difficult to induce through vaccination, extra-neutralizing antibodies, such as those that mediate antibody-dependent cellular cytotoxicity (ADCC, are associated with long-term control of infection. However, while several non-neutralizing monoclonal antibodies have been tested for their protective efficacy in vivo, no studies to date have tested the protective activity of naturally produced polyclonal antibodies from individuals harboring potent ADCC activity. Because ADCC-inducing antibodies are highly enriched in elite controllers (EC, we passively transferred highly functional non-neutralizing polyclonal antibodies, purified from an EC, to assess the potential impact of polyclonal non-neutralizing antibodies on a stringent SHIV-SF162P3 challenge in rhesus monkeys. Passive transfer of a low-dose of ADCC inducing antibodies did not protect from infection following SHIV-SF162P3 challenge. Passively administered antibody titers and gp120-specific, but not gp41-specific, ADCC and antibody induced phagocytosis (ADCP were detected in the majority of the monkeys, but did not correlate with post infection viral control. Thus these data raise the possibility that gp120-specific ADCC activity alone may not be sufficient to control viremia post infection but that other specificities or Fc-effector profiles, alone or in combination, may have an impact on viral control and should be tested in future passive transfer experiments.

  13. Somatic Hypermutation-Induced Changes in the Structure and Dynamics of HIV-1 Broadly Neutralizing Antibodies.

    Science.gov (United States)

    Davenport, Thaddeus M; Gorman, Jason; Joyce, M Gordon; Zhou, Tongqing; Soto, Cinque; Guttman, Miklos; Moquin, Stephanie; Yang, Yongping; Zhang, Baoshan; Doria-Rose, Nicole A; Hu, Shiu-Lok; Mascola, John R; Kwong, Peter D; Lee, Kelly K

    2016-08-02

    Antibody somatic hypermutation (SHM) and affinity maturation enhance antigen recognition by modifying antibody paratope structure to improve its complementarity with the target epitope. SHM-induced changes in paratope dynamics may also contribute to antibody maturation, but direct evidence of this is limited. Here, we examine two classes of HIV-1 broadly neutralizing antibodies (bNAbs) for SHM-induced changes in structure and dynamics, and delineate the effects of these changes on interactions with the HIV-1 envelope glycoprotein (Env). In combination with new and existing structures of unmutated and affinity matured antibody Fab fragments, we used hydrogen/deuterium exchange with mass spectrometry to directly measure Fab structural dynamics. Changes in antibody structure and dynamics were positioned to improve complementarity with Env, with changes in dynamics primarily observed at the paratope peripheries. We conclude that SHM optimizes paratope complementarity to conserved HIV-1 epitopes and restricts the mobility of paratope-peripheral residues to minimize clashes with variable features on HIV-1 Env. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Neutralizing antibody response during human immunodeficiency virus type 1 infection: type and group specificity and viral escape

    DEFF Research Database (Denmark)

    Arendrup, M; Sönnerborg, A; Svennerholm, B

    1993-01-01

    demonstrated, suggesting that the majority of the change in neutralization sensitivity is driven by the selective pressure of type-specific NA. Furthermore, no differences were observed in sensitivity to neutralization by anti-carbohydrate neutralizing monoclonal antibodies or the lectin concanavalin A......The paradox that group-specific neutralizing antibodies (NA) exist in the majority of human immunodeficiency virus type 1 (HIV-1)-infected patients, whereas the NA response against autologous HIV-1 virus isolates is highly type-specific, motivated us to study the type- and group-specific NA...

  15. A potent human neutralizing antibody Fc-dependently reduces established HBV infections.

    Science.gov (United States)

    Li, Dan; He, Wenhui; Liu, Ximing; Zheng, Sanduo; Qi, Yonghe; Li, Huiyu; Mao, Fengfeng; Liu, Juan; Sun, Yinyan; Pan, Lijing; Du, Kaixin; Ye, Keqiong; Li, Wenhui; Sui, Jianhua

    2017-09-26

    Hepatitis B virus (HBV) infection is a major global health problem. Currently-available therapies are ineffective in curing chronic HBV infection. HBV and its satellite hepatitis D virus (HDV) infect hepatocytes via binding of the preS1 domain of its large envelope protein to sodium taurocholate cotransporting polypeptide (NTCP). Here, we developed novel human monoclonal antibodies that block the engagement of preS1 with NTCP and neutralize HBV and HDV with high potency. One antibody, 2H5-A14, functions at picomolar level and exhibited neutralization-activity-mediated prophylactic effects. It also acts therapeutically by eliciting antibody-Fc-dependent immunological effector functions that impose durable suppression of viral infection in HBV-infected mice, resulting in reductions in the levels of the small envelope antigen and viral DNA, with no emergence of escape mutants. Our results illustrate a novel antibody-Fc-dependent approach for HBV treatment and suggest 2H5-A14 as a novel clinical candidate for HBV prevention and treatment of chronic HBV infection.

  16. Early detection of neutralizing antibodies to interferon-beta in multiple sclerosis patients

    DEFF Research Database (Denmark)

    Hegen, H; Millonig, A; Bertolotto, A

    2014-01-01

    BACKGROUND: Neutralizing antibodies (NAb) affect efficacy of interferon-beta (IFN-b) treatment in multiple sclerosis (MS) patients. NAbs evolve in up to 44% of treated patients, usually between 6-18 months on therapy. OBJECTIVES: To investigate whether early binding antibody (BAb) titers or diffe......BACKGROUND: Neutralizing antibodies (NAb) affect efficacy of interferon-beta (IFN-b) treatment in multiple sclerosis (MS) patients. NAbs evolve in up to 44% of treated patients, usually between 6-18 months on therapy. OBJECTIVES: To investigate whether early binding antibody (BAb) titers...... or different IFN-b biomarkers predict NAb evolution. METHODS: We included patients with MS or clinically isolated syndrome (CIS) receiving de novo IFN-b treatment in this prospective European multicenter study. Blood samples were collected at baseline, before and after the first IFN-b administration, and again...... after 3, 12 and 24 months on that therapy; for determination of NAbs, BAbs, gene expression of MxA and protein concentrations of MMP-9, TIMP-1, sTRAIL, CXCL-10 and CCL-2. RESULTS: We found that 22 of 164 (13.4%) patients developed NAbs during a median time of 23.8 months on IFN-b treatment...

  17. Germline V-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Christy A.; Bryson, Steve; McLean, Gary R.; Creagh, A. Louise; Pai, Emil F.; Schrader, John W. (Toronto); (UBC)

    2008-10-17

    Immunoglobulin genes are generated somatically through specialized mechanisms resulting in a vast repertoire of antigen-binding sites. Despite the stochastic nature of these processes, the V-genes that encode most of the antigen-combining site are under positive evolutionary selection, raising the possibility that V-genes have been selected to encode key structural features of binding sites of protective antibodies against certain pathogens. Human, neutralizing antibodies to human cytomegalovirus that bind the AD-2S1 epitope on its gB envelope protein repeatedly use a pair of well-conserved, germline V-genes IGHV3-30 and IGKV3-11. Here, we present crystallographic, kinetic and thermodynamic analyses of the binding site of such an antibody and that of its primary immunoglobulin ancestor. These show that these germline V-genes encode key side chain contacts with the viral antigen and thereby dictate key structural features of the hypermutated, high-affinity neutralizing antibody. V-genes may thus encode an innate, protective immunological memory that targets vulnerable, invariant sites on multiple pathogens.

  18. An HIV-1 Env-Antibody Complex Focuses Antibody Responses to Conserved Neutralizing Epitopes.

    Science.gov (United States)

    Chen, Yajing; Wilson, Richard; O'Dell, Sijy; Guenaga, Javier; Feng, Yu; Tran, Karen; Chiang, Chi-I; Arendt, Heather E; DeStefano, Joanne; Mascola, John R; Wyatt, Richard T; Li, Yuxing

    2016-11-15

    Elicitation of broadly neutralizing Ab (bNAb) responses to the conserved elements of the HIV-1 envelope glycoproteins (Env), including the primary receptor CD4 binding site (CD4bs), is a major focus of vaccine development yet to be accomplished. However, a large number of CD4bs-directed bNAbs have been isolated from HIV-1-infected individuals. Comparison of the routes of binding used by the CD4bs-directed bNAbs from patients and the vaccine-elicited CD4bs-directed mAbs indicates that the latter fail to neutralize primary virus isolates because they approach the Env spike with a vertical angle and contact the specific surface residues occluded in the native spike, including the bridging sheet on gp120. To preferentially expose the CD4bs and direct the immune response away from the bridging sheet, resulting in an altered angle of approach, we engineered an immunogen consisting of gp120 core in complex with the prototypic CD4-induced Ab, 17b. This mAb directly contacts the bridging sheet but not the CD4bs. The complex was further stabilized by chemical crosslinking to prevent dissociation. Rabbits immunized with the crosslinked complex displayed earlier affinity maturation, achieving tier 1 virus neutralization compared with animals immunized with gp120 core alone. Immunization with the crosslinked complex induced transient Ab responses with binding specificity similar to the CD4bs-directed bNAbs. mAbs derived from complex-immunized rabbits displayed footprints on gp120 more distal from the bridging sheet as compared with previous vaccine-elicited CD4bs Abs, indicating that Env-Ab complexes effectively dampen immune responses to undesired immunodominant bridging sheet determinants. Copyright © 2016 by The American Association of Immunologists, Inc.

  19. Pseudovirion particles bearing native HIV envelope trimers facilitate a novel method for generating human neutralizing monoclonal antibodies against HIV.

    Science.gov (United States)

    Hicar, Mark D; Chen, Xuemin; Briney, Bryan; Hammonds, Jason; Wang, Jaang-Jiun; Kalams, Spyros; Spearman, Paul W; Crowe, James E

    2010-07-01

    Monomeric HIV envelope vaccines fail to elicit broadly neutralizing antibodies or to protect against infection. Neutralizing antibodies against HIV bind to native functionally active Env trimers on the virion surface. Gag-Env pseudovirions recapitulate the native trimer and could serve as an effective epitope presentation platform for study of the neutralizing antibody response in HIV-infected individuals. To address if pseudovirions can recapitulate native HIV virion epitope structures, we carefully characterized these particles, concentrating on the antigenic structure of the coreceptor binding site. By blue native gel shift assays, Gag-Env pseudovirions were shown to contain native trimers that were competent for binding to neutralizing monoclonal antibodies. In enzyme-linked immunosorbent assay, pseudovirions exhibited increased binding of known CD4-induced antibodies after addition of CD4. Using flow cytometric analysis, fluorescently labeled pseudovirions specifically identified a subset of antigen-specific B cells in HIV-infected subjects. Interestingly, the sequence of one of these novel human antibodies, identified during cloning of single HIV-specific B cells and designated 2C6, exhibited homology to mAb 47e, a known anti-CD4-induced coreceptor binding site antibody. The secreted monoclonal antibody 2C6 did not bind monomeric gp120, but specifically bound envelope on pseudovirions. A recombinant form of the antibody 2C6 acted as a CD4-induced epitope-specific antibody in neutralization assays, yet did not bind monomeric gp120. These findings imply specificity against a quaternary epitope presented on the pseudovirion envelope spike. These data demonstrate that Gag-Env pseudovirions recapitulate CD4 and coreceptor binding pocket antigenic structures and can facilitate identification of B-cell clones that secrete neutralizing antibodies.

  20. Development and evaluation of an anti-rabies virus phosphoprotein-specific monoclonal antibody for detection of rabies neutralizing antibodies using RFFIT.

    Science.gov (United States)

    Um, Jihye; Chun, Byung Chul; Lee, Yeong Seon; Hwang, Kyu Jam; Yang, Dong-Kun; Park, Jun-Sun; Kim, Su Yeon

    2017-12-01

    Rabies is a major public health problem with a fatality rate close to 100%; however, complete prevention can be achieved through pre- or post-exposure prophylaxis. The rapid fluorescent focus inhibition test (RFFIT) is one of the recommended testing methods to determine the production of neutralizing antibodies after vaccination. Here, we report the development of a new monoclonal antibody (mAb) designed to react specifically with Rabies virus (RABV) phosphoprotein (P protein), and the evaluation of its applicability to the RFFIT and its effectiveness as a diagnostic reagent for human rabies. The mAb KGH P 16B8 was produced to target the P protein of the Korean KGH RABV strain. An indirect immunofluorescence assay (IFA) was conducted to detect various strains of RABV in various cell lines. Alexa-conjugated KGH P 16B8 (16B8-Alexa) was developed for the RFFIT. The IFA test could detect RABV up to a 1:2,500 dilution, with a detection limit comparable to that of a commercial diagnostic reagent. The sensitivity, specificity, positive predictive value, and negative predictive value of the RFFIT using 16B8-Alexa in 414 clinical specimens were 98.67%, 99.47%, 99.55%, and 98.42%, respectively. The results of the RFFIT with 16B8-Alexa were strongly correlated with those obtained using an existing commercial diagnostic reagent (r = 0.995, prabies neutralizing antibody titer and establish a diagnosis in human. Thus, 16B8-Alexa is expected to serve as an alternative diagnostic reagent that is widely accessible, with potentially broad applications beyond those of the RFFIT in Korea. Further studies with 16B8-Alexa should provide insight into the immunological mechanism of the P protein of Korean RABV.

  1. Structural Bases of Coronavirus Attachment to Host Aminopeptidase N and Its Inhibition by Neutralizing Antibodies

    Science.gov (United States)

    Mudgal, Gaurav; Ordoño, Desiderio; Enjuanes, Luis; Casasnovas, José M.

    2012-01-01

    The coronaviruses (CoVs) are enveloped viruses of animals and humans associated mostly with enteric and respiratory diseases, such as the severe acute respiratory syndrome and 10–20% of all common colds. A subset of CoVs uses the cell surface aminopeptidase N (APN), a membrane-bound metalloprotease, as a cell entry receptor. In these viruses, the envelope spike glycoprotein (S) mediates the attachment of the virus particles to APN and subsequent cell entry, which can be blocked by neutralizing antibodies. Here we describe the crystal structures of the receptor-binding domains (RBDs) of two closely related CoV strains, transmissible gastroenteritis virus (TGEV) and porcine respiratory CoV (PRCV), in complex with their receptor, porcine APN (pAPN), or with a neutralizing antibody. The data provide detailed information on the architecture of the dimeric pAPN ectodomain and its interaction with the CoV S. We show that a protruding receptor-binding edge in the S determines virus-binding specificity for recessed glycan-containing surfaces in the membrane-distal region of the pAPN ectodomain. Comparison of the RBDs of TGEV and PRCV to those of other related CoVs, suggests that the conformation of the S receptor-binding region determines cell entry receptor specificity. Moreover, the receptor-binding edge is a major antigenic determinant in the TGEV envelope S that is targeted by neutralizing antibodies. Our results provide a compelling view on CoV cell entry and immune neutralization, and may aid the design of antivirals or CoV vaccines. APN is also considered a target for cancer therapy and its structure, reported here, could facilitate the development of anti-cancer drugs. PMID:22876187

  2. Developmental Pathway of the MPER-Directed HIV-1-Neutralizing Antibody 10E8.

    Directory of Open Access Journals (Sweden)

    Cinque Soto

    Full Text Available Antibody 10E8 targets the membrane-proximal external region (MPER of HIV-1 gp41, neutralizes >97% of HIV-1 isolates, and lacks the auto-reactivity often associated with MPER-directed antibodies. The developmental pathway of 10E8 might therefore serve as a promising template for vaccine design, but samples from time-of-infection-often used to infer the B cell record-are unavailable. In this study, we used crystallography, next-generation sequencing (NGS, and functional assessments to infer the 10E8 developmental pathway from a single time point. Mutational analysis indicated somatic hypermutation of the 2nd-heavy chain-complementarity determining region (CDR H2 to be critical for neutralization, and structures of 10E8 variants with V-gene regions reverted to genomic origin for heavy-and-light chains or heavy chain-only showed structural differences >2 Å relative to mature 10E8 in the CDR H2 and H3. To understand these developmental changes, we used bioinformatic sieving, maximum likelihood, and parsimony analyses of immunoglobulin transcripts to identify 10E8-lineage members, to infer the 10E8-unmutated common ancestor (UCA, and to calculate 10E8-developmental intermediates. We were assisted in this analysis by the preservation of a critical D-gene segment, which was unmutated in most 10E8-lineage sequences. UCA and early intermediates weakly bound a 26-residue-MPER peptide, whereas HIV-1 neutralization and epitope recognition in liposomes were only observed with late intermediates. Antibody 10E8 thus develops from a UCA with weak MPER affinity and substantial differences in CDR H2 and H3 from the mature 10E8; only after extensive somatic hypermutation do 10E8-lineage members gain recognition in the context of membrane and HIV-1 neutralization.

  3. Wide prevalence of heterosubtypic broadly neutralizing human anti-influenza A antibodies.

    Science.gov (United States)

    Sui, Jianhua; Sheehan, Jared; Hwang, William C; Bankston, Laurie A; Burchett, Sandra K; Huang, Chiung-Yu; Liddington, Robert C; Beigel, John H; Marasco, Wayne A

    2011-04-15

    Lack of life-long immunity against influenza viruses represents a major global health care problem with profound medical and economic consequences. A greater understanding of the broad-spectrum "heterosubtypic" neutralizing human antibody (BnAb) response to influenza should bring us closer toward a universal influenza vaccine. Serum samples obtained from 77 volunteers in an H5N1 vaccine study were analyzed for cross-reactive antibodies (Abs) against both subtype hemagglutinins (HAs) and a highly conserved pocket on the HA stem of Group 1 viruses. Cross-reactive Abs in commercial intravenous immunoglobulin were affinity purified using H5-coupled beads followed by step-wise monoclonal antibody competition or acid elution. Enzyme-linked immunosorbent assays were used to quantify cross-binding, and neutralization activity was determined with HA-pseudotyped viruses. Prevaccination serum samples have detectable levels of heterosubtypic HA binding activity to both Group 1 and 2 influenza A viruses, including subtypes H5 and H7, respectively, to which study subjects had not been vaccinated. Two different populations of Broadly neutralizing Abs (BnAbs) were purified from intravenous immunoglobulin by H5 beads: ~0.01% of total immunoglobulin G can bind to HAs from both Group 1 and 2 and neutralize H1N1 and H5N1 viruses; ~0.001% is F10-like Abs directed against the HA stem pocket on Group 1 viruses. These data--to our knowledge, for the first time--quantitatively show the presence, albeit at low levels, of two populations of heterosubtypic BnAbs against influenza A in human serum. These observations warrant further investigation to determine their origin, host polymorphism(s) that may affect their expression levels and how to boost these BnAb responses by vaccination to reach sustainable protective levels.

  4. Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Juan Reguera

    Full Text Available The coronaviruses (CoVs are enveloped viruses of animals and humans associated mostly with enteric and respiratory diseases, such as the severe acute respiratory syndrome and 10-20% of all common colds. A subset of CoVs uses the cell surface aminopeptidase N (APN, a membrane-bound metalloprotease, as a cell entry receptor. In these viruses, the envelope spike glycoprotein (S mediates the attachment of the virus particles to APN and subsequent cell entry, which can be blocked by neutralizing antibodies. Here we describe the crystal structures of the receptor-binding domains (RBDs of two closely related CoV strains, transmissible gastroenteritis virus (TGEV and porcine respiratory CoV (PRCV, in complex with their receptor, porcine APN (pAPN, or with a neutralizing antibody. The data provide detailed information on the architecture of the dimeric pAPN ectodomain and its interaction with the CoV S. We show that a protruding receptor-binding edge in the S determines virus-binding specificity for recessed glycan-containing surfaces in the membrane-distal region of the pAPN ectodomain. Comparison of the RBDs of TGEV and PRCV to those of other related CoVs, suggests that the conformation of the S receptor-binding region determines cell entry receptor specificity. Moreover, the receptor-binding edge is a major antigenic determinant in the TGEV envelope S that is targeted by neutralizing antibodies. Our results provide a compelling view on CoV cell entry and immune neutralization, and may aid the design of antivirals or CoV vaccines. APN is also considered a target for cancer therapy and its structure, reported here, could facilitate the development of anti-cancer drugs.

  5. Methylprednisolone does not restore biological response in multiple sclerosis patients with neutralizing antibodies against interferon-beta

    DEFF Research Database (Denmark)

    Hesse, D; Frederiksen, J L; Koch-Henriksen, N

    2009-01-01

    BACKGROUND AND PURPOSE: Neutralizing antibodies (NAbs) appearing during treatment with Interferon-beta (IFN-beta) reduce or abolish bioactivity and therapeutic efficacy. Initial combination therapy with methylprednisolone (MP) may reduce the frequency of NAb positive patients. We hypothesized tha...

  6. Effect of Booster Vaccination with Inactivated Porcine Epidemic Diarrhea Virus on Neutralizing Antibody Response in Mammary Secretions.

    Science.gov (United States)

    Gillespie, Thomas; Song, Qinye; Inskeep, Megan; Stone, Suzanne; Murtaugh, Michael P

    Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, dehydration in pigs, and high mortality rates in piglets gilts through a feedback program before introduction into the sow herd. Since neutralizing antibodies in the gut are critical for protection against enteric viral infections such as PEDV, we evaluated the effect of a conditionally licensed, adjuvanted inactivated PEDV vaccine on neutralizing antibody levels in milk and colostrum in both naive and previously naturally exposed sow herds. The results illustrate that intramuscular vaccination increased neutralizing antibody titers, and anti-PEDV IgA and IgG in milk and colostrum of sows that were previously infected. Thus, inactivated PEDV vaccines may provide increased protection to piglets nursing on previously infected sows against exposure to PEDV through increased delivery of lactogenic neutralizing antibodies to the enteric site of infection.

  7. Analysis of cross-reactive neutralizing antibodies in human HFMD serum with an EV71 pseudovirus-based assay.

    Directory of Open Access Journals (Sweden)

    Huafei Zhang

    Full Text Available Hand, foot and mouth disease, associated with enterovirus 71 (EV71 infections, has recently become an important public health issue throughout the world. Serum neutralizing antibodies are major indicators of EV71 infection and protective immunity. However, the potential for cross-reactivity of neutralizing antibodies for different EV71 genotypes and subgenotypes is unclear. Here we measured the cross-reactive neutralizing antibody titers against EV71 of different genotypes or subgenotypes in sera collected from EV71-infected children and vaccine-inoculated children in a phase III clinical trial (ClinicalTrials.gov Identifier: NCT01636245 using a new pseudovirus-based neutralization assay. Antibodies induced by EV71-C4a were cross-reactive for different EV71 genotypes, demonstrating that C4a is a good candidate strain for an EV71 vaccine. Our study also demonstrated that this new assay is practical for analyses of clinical samples from epidemiological and vaccine studies.

  8. Neutralization resistance of hepatitis C virus can be overcome by recombinant human monoclonal antibodies

    DEFF Research Database (Denmark)

    Pedersen, Jannie L; Carlsen, Thomas H R; Prentoe, Jannick

    2013-01-01

    Immunotherapy and vaccine development for hepatitis C virus (HCV) will depend on broadly reactive neutralizing antibodies (NAbs). However, studies in infectious strain JFH1-based culture systems expressing patient-derived Core-NS2 proteins have suggested neutralization resistance for specific HCV...... demonstrated that the novel genotype 2 viruses as well as prototype strains J6/JFH1(2a) and J8/JFH1(2b), all with authentic envelope proteins, were resistant to neutralization by genotype 2a, 2b, 2c, 2j, 2i, and 2q patient sera. However, these patient sera had high titers of HCV-specific NAbs, because...... they efficiently reduced the infectivity of J6(2a) and J8(2b) with deleted hypervariable region 1. The genotype 2a, 2b, and 2c viruses, found resistant to polyclonal patient sera neutralization, were efficiently neutralized by two lead HMAbs (AR4A and HC84.26). Conclusion: Using novel 2a, 2b, and 2c cell...

  9. H7N9 influenza virus neutralizing antibodies that possess few somatic mutations.

    Science.gov (United States)

    Thornburg, Natalie J; Zhang, Heng; Bangaru, Sandhya; Sapparapu, Gopal; Kose, Nurgun; Lampley, Rebecca M; Bombardi, Robin G; Yu, Yingchun; Graham, Stephen; Branchizio, Andre; Yoder, Sandra M; Rock, Michael T; Creech, C Buddy; Edwards, Kathryn M; Lee, David; Li, Sheng; Wilson, Ian A; García-Sastre, Adolfo; Albrecht, Randy A; Crowe, James E

    2016-04-01

    Avian H7N9 influenza viruses are group 2 influenza A viruses that have been identified as the etiologic agent for a current major outbreak that began in China in 2013 and may pose a pandemic threat. Here, we examined the human H7-reactive antibody response in 75 recipients of a monovalent inactivated A/Shanghai/02/2013 H7N9 vaccine. After 2 doses of vaccine, the majority of donors had memory B cells that secreted IgGs specific for H7 HA, with dominant responses against single HA subtypes, although frequencies of H7-reactive B cells ranged widely between donors. We isolated 12 naturally occurring mAbs with low half-maximal effective concentrations for binding, 5 of which possessed neutralizing and HA-inhibiting activities. The 5 neutralizing mAbs exhibited narrow breadth of reactivity with influenza H7 strains. Epitope-mapping studies using neutralization escape mutant analysis, deuterium exchange mass spectrometry, and x-ray crystallography revealed that these neutralizing mAbs bind near the receptor-binding pocket on HA. All 5 neutralizing mAbs possessed low numbers of somatic mutations, suggesting the clones arose from naive B cells. The most potent mAb, H7.167, was tested as a prophylactic treatment in a mouse intranasal virus challenge study, and systemic administration of the mAb markedly reduced viral lung titers.

  10. Neutralizing antibody response in the patients with hand, foot and mouth disease to enterovirus 71 and its clinical implications

    Directory of Open Access Journals (Sweden)

    Zhu Liye

    2011-06-01

    Full Text Available Abstract Enterovirus 71 (EV71 has emerged as a significant pathogen causing large outbreaks in China for the past 3 years. Developing an EV71 vaccine is urgently needed to stop the spread of the disease; however, the adaptive immune response of humans to EV71 infection remains unclear. We examined the neutralizing antibody titers in HFMD patients and compared them to those of asymptomatic healthy children and young adults. We found that 80% of HFMD patients became positive for neutralizing antibodies against EV71 (GMT = 24.3 one day after the onset of illness. The antibody titers in the patients peaked two days (GMT = 79.5 after the illness appeared and were comparable to the level of adults (GMT = 45.2. Noticeably, the antibody response was not correlated with disease severity, suggesting that cellular immune response, besides neutralizing antibodies, could play critical role in controlling the outcome of EV71 infection in humans.

  11. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117.

    Science.gov (United States)

    Caskey, Marina; Klein, Florian; Lorenzi, Julio C C; Seaman, Michael S; West, Anthony P; Buckley, Noreen; Kremer, Gisela; Nogueira, Lilian; Braunschweig, Malte; Scheid, Johannes F; Horwitz, Joshua A; Shimeliovich, Irina; Ben-Avraham, Sivan; Witmer-Pack, Maggi; Platten, Martin; Lehmann, Clara; Burke, Leah A; Hawthorne, Thomas; Gorelick, Robert J; Walker, Bruce D; Keler, Tibor; Gulick, Roy M; Fätkenheuer, Gerd; Schlesinger, Sarah J; Nussenzweig, Michel C

    2015-06-25

    HIV-1 immunotherapy with a combination of first generation monoclonal antibodies was largely ineffective in pre-clinical and clinical settings and was therefore abandoned. However, recently developed single-cell-based antibody cloning methods have uncovered a new generation of far more potent broadly neutralizing antibodies to HIV-1 (refs 4, 5). These antibodies can prevent infection and suppress viraemia in humanized mice and nonhuman primates, but their potential for human HIV-1 immunotherapy has not been evaluated. Here we report the results of a first-in-man dose escalation phase 1 clinical trial of 3BNC117, a potent human CD4 binding site antibody, in uninfected and HIV-1-infected individuals. 3BNC117 infusion was well tolerated and demonstrated favourable pharmacokinetics. A single 30 mg kg(-1) infusion of 3BNC117 reduced the viral load in HIV-1-infected individuals by 0.8-2.5 log10 and viraemia remained significantly reduced for 28 days. Emergence of resistant viral strains was variable, with some individuals remaining sensitive to 3BNC117 for a period of 28 days. We conclude that, as a single agent, 3BNC117 is safe and effective in reducing HIV-1 viraemia, and that immunotherapy should be explored as a new modality for HIV-1 prevention, therapy and cure.

  12. Strategy to confirm the presence of anti-erythropoietin neutralizing antibodies in human serum.

    Science.gov (United States)

    Sanchez, Sergio; Barger, Troy; Zhou, Lei; Hale, Michael; Mytych, Daniel; Gupta, Shalini; Swanson, Steven J; Civoli, Francesca

    2011-07-15

    Functional cell-based assays are the preferred method to test for the presence of anti-rHuEPO neutralizing antibodies (NAbs). However, due to the unpredictable nature of test serum matrix effects on cell-based assays, confirmatory assays are essential for verifying NAb positive results observed during the course of sample testing. The cell-based assay used for the detection of NAbs described by Wei et al. [1] used 32D-EPOR cells, a murine myeloid cell line transfected with the human EPO receptor (EPOR). The 32D-EPOR cell line responded to either rHuEPO or murine interleukin 3 (mIL-3) with proliferation. NAbs were expected to only inhibit rHuEPO-induced cell proliferation and not mIL-3 induced proliferation. Due to reliance on proliferation, the results from this cell-based assay can be confounded by the presence of non-antibody inhibitory serum factors. This paper describes a strategy for confirming that the inhibition of rHuEPO-induced proliferation in a cell-based assay is only attributable to NAbs. The strategy of antibody depletion uses a resin mixture composed of Protein G Sepharose and Protein L Sepharose (Protein G/L resin) to significantly reduce the concentration of immunoglobulins of IgG, IgM and IgA isotypes from human serum prior to testing in the cell-based assay. If the reduction in immunoglobulins in a serum sample corresponds to a reduction in inhibition of EPO-induced proliferation, it would infer that EPO neutralizing activity is antibody-mediated and not due to non-antibody inhibitory serum factors. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Accurate identification of neutralizing antibodies to adenovirus Ad36, -a putative contributor of obesity in humans.

    Science.gov (United States)

    Dubuisson, Olga; Day, Rena Sue; Dhurandhar, Nikhil V

    2015-01-01

    In children and adults, human adenovirus serotype 36 (Ad36) is linked with increased adiposity, and important metabolic alterations. Since this property is not shared by many other human adenovirus serotypes, it is imperative to specifically identify exposure to Ad36. Although serum neutralization assay (SNA) is the gold standard to specifically detect neutralizing antibodies (NA) to Ad36, it requires 2-weeks to complete and considerable training to interpret the results. Whereas, an enzyme-immuno assay (EIA) may provide a quicker and objective determination. Evaluate the accuracy of commercially available EIA kits to detect NA to Ad36. Modify SNA to reduce time and increase objectivity. Sera of 15 seropositive or 16 seronegative subjects confirmed by SNA were used to test: 1) reproducibility of SNA to detect Ad36 exposure, by repeating assays twice; 2) an EIA that detects antibodies to all human adenovirus serotypes (NS-EIA) (Abcam-108705); 3) an EIA supposedly specific for Ad36 antibody (Ad36-EIA) (MyBioSource,#MBS705802), and 4) the concordance of SNA with a novel combination of SNA and immune-staining (SN-IS) kit (Cell BioLabs,#VPK-111). The SNA showed exact reproducibility. NS-EIA detected adenovirus antibodies in 94% samples, confirming the non-specificity of the assay for Ad36 serotype. All seronegative samples (as determined by SNA) were false positive by Ad36-EIA. In 97% samples, SN-IS showed fidelity with Ad36-antibody status as determined by SNA. The available EIA kits are not specific for detecting NA to Ad36. The modified SNA with immune-staining reduces assay time and increases accuracy of detecting by reducing subjectivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A critical HA1 neutralizing domain of H5N1 influenza in an optimal conformation induces strong cross-protection.

    Directory of Open Access Journals (Sweden)

    Lanying Du

    Full Text Available The highly pathogenic avian influenza (HPAI H5N1 viruses, especially the laboratory-generated H5N1 mutants, have demonstrated the potential to cross the species barrier and infect mammals and humans. Consequently, the design of an effective and safe anti-H5N1 vaccine is essential. We previously demonstrated that the full-length hemagglutinin 1 (HA1 could induce significant neutralizing antibody response and protection. Here, we intended to identify the critical neutralizing domain (CND in an optimal conformation that can elicit strong cross-neutralizing antibodies and protection against divergent H5N1 strains. We thus constructed six recombinant proteins covering different regions of HA1 of A/Anhui/1/2005(H5N1, each of which was fused with foldon (Fd and Fc of human IgG. We found that the critical fragment fused with Fd/Fc (HA-13-263-Fdc, H5 numbering that could elicit the strongest neutralizing antibody response is located in the N-terminal region of HA1 (residues 13-263, which covers the receptor-binding domain (RBD, residues 112-263. We then constructed three additional recombinants fused with Fd plus His tag (HA-13-263-Fd-His, Fc only (HA-13-263-Fc, and His tag only (HA-13-263-His, respectively. We found that the HA-13-263-Fdc, which formed an oligomeric conformation, induced the strongest neutralizing antibody response and cross-protection against challenges of two tested H5N1 virus strains covering clade 1: A/VietNam/1194/2004 (VN/1194 or clade 2.3.4: A/Shenzhen/406H/06 (SZ/406H, while HA-13-263-Fc dimer and HA-13-263-Fd-His trimer elicited higher neutralizing antibody response and protection than HA-13-263-His monomer. These results suggest that the oligomeric form of the CND containing the RBD can be further developed as an effective and safe vaccine for cross-protection against divergent strains of H5N1 viruses.

  15. Recombinant Encephalomyocarditis Viruses Elicit Neutralizing Antibodies against PRRSV and CSFV in Mice.

    Science.gov (United States)

    Zhu, Shu; Guo, Xin; Keyes, Lisa R; Yang, Hanchun; Ge, Xinna

    2015-01-01

    Encephalomyocarditis virus (EMCV) is capable of infecting a wide range of species and the infection can cause myocarditis and reproductive failure in pigs as well as febrile illness in human beings. In this study, we introduced the entire ORF5 of the porcine reproductive and respiratory syndrome virus (PRRSV) or the neutralization epitope regions in the E2 gene of the classical swine fever virus (CSFV), into the genome of a stably attenuated EMCV strain, T1100I. The resultant viable recombinant viruses, CvBJC3m/I-ΔGP5 and CvBJC3m/I-E2, respectively expressed partial PRRSV envelope protein GP5 or CSFV neutralization epitope A1A2 along with EMCV proteins. These heterologous proteins fused to the N-terminal of the nonstructural leader protein could be recognized by anti-GP5 or anti-E2 antibody. We also tested the immunogenicity of these fusion proteins by immunizing BALB/c mice with the recombinant viruses. The immunized animals elicited neutralizing antibodies against PRRSV and CSFV. Our results suggest that EMCV can be engineered as an expression vector and serve as a tool in the development of novel live vaccines in various animal species.

  16. Structural basis of selectivity and neutralizing activity of a TGFα/epiregulin specific antibody.

    Science.gov (United States)

    Boyles, Jeffrey S; Atwell, Shane; Druzina, Zhanna; Heuer, Josef G; Witcher, Derrick R

    2016-11-01

    Recent studies have implicated a role of the epidermal growth factor receptor (EGFR) pathway in kidney disease. Skin toxicity associated with therapeutics which completely block the EGFR pathway precludes their use in chronic dosing. Therefore, we developed antibodies which specifically neutralize the EGFR ligands TGFα (transforming growth factor-alpha) and epiregulin but not EGF (epidermal growth factor), amphiregulin, betacellulin, HB-EGF (heparin-binding epidermal growth factor), or epigen. The epitope of one such neutralizing antibody, LY3016859, was characterized in detail to elucidate the structural basis for ligand specificity. Here we report a crystal structure of the LY3016859 Fab fragment in complex with soluble human TGFα. Our data demonstrate a conformational epitope located primarily within the C-terminal subdomain of the ligand. In addition, point mutagenesis experiments were used to highlight specific amino acids which are critical for both antigen binding and neutralization, most notably Ala 41 , Glu 44 , and His 45 . These results illustrate the structural basis for the ligand specificity/selectivity of LY3016859 and could also provide insight into further engineering to alter specificity and/or affinity of LY3016859. © 2016 The Protein Society.

  17. Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike

    Science.gov (United States)

    Lee, Jeong Hyun; Leaman, Daniel P.; Kim, Arthur S.; Torrents de La Peña, Alba; Sliepen, Kwinten; Yasmeen, Anila; Derking, Ronald; Ramos, Alejandra; de Taeye, Steven W.; Ozorowski, Gabriel; Klein, Florian; Burton, Dennis R.; Nussenzweig, Michel C.; Poignard, Pascal; Moore, John P.; Klasse, Per Johan; Sanders, Rogier W.; Zwick, Michael B.; Wilson, Ian A.; Ward, Andrew B.

    2015-09-01

    The recent identification of three broadly neutralizing antibodies (bnAbs) against gp120-gp41 interface epitopes has expanded the targetable surface on the HIV-1 envelope glycoprotein (Env) trimer. By using biochemical, biophysical and computational methods, we map the previously unknown trimer epitopes of two related antibodies, 3BC315 and 3BC176. A cryo-EM reconstruction of a soluble Env trimer bound to 3BC315 Fab at 9.3 Å resolution reveals that the antibody binds between two gp41 protomers, and neutralizes the virus by accelerating trimer decay. In contrast, bnAb 35O22 binding to a partially overlapping quaternary epitope at the gp120-gp41 interface does not induce decay. A conserved gp41-proximal glycan at N88 was also shown to play a role in the binding kinetics of 3BC176 and 3BC315. Finally, our data suggest that the dynamic structure of the Env trimer influences exposure of bnAb epitopes.

  18. Broadly Neutralizing Antibody 8ANC195 Recognizes Closed and Open States of HIV-1 Env.

    Science.gov (United States)

    Scharf, Louise; Wang, Haoqing; Gao, Han; Chen, Songye; McDowall, Alasdair W; Bjorkman, Pamela J

    2015-09-10

    The HIV-1 envelope (Env) spike contains limited epitopes for broadly neutralizing antibodies (bNAbs); thus, most neutralizing antibodies are strain specific. The 8ANC195 epitope, defined by crystal and electron microscopy (EM) structures of bNAb 8ANC195 complexed with monomeric gp120 and trimeric Env, respectively, spans the gp120 and gp41 Env subunits. To investigate 8ANC195's gp41 epitope at higher resolution, we solved a 3.58 Å crystal structure of 8ANC195 complexed with fully glycosylated Env trimer, revealing 8ANC195 insertion into a glycan shield gap to contact gp120 and gp41 glycans and protein residues. To determine whether 8ANC195 recognizes the CD4-bound open Env conformation that leads to co-receptor binding and fusion, one of several known conformations of virion-associated Env, we solved EM structures of an Env/CD4/CD4-induced antibody/8ANC195 complex. 8ANC195 binding partially closed the CD4-bound trimer, confirming structural plasticity of Env by revealing a previously unseen conformation. 8ANC195's ability to bind different Env conformations suggests advantages for potential therapeutic applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Broad neutralizing human monoclonal antibodies against influenza virus from vaccinated healthy donors

    Energy Technology Data Exchange (ETDEWEB)

    Kubota-Koketsu, Ritsuko; Mizuta, Hiroyuki [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan); Oshita, Masatoshi; Ideno, Shoji [Osaka Research Laboratory, Benesis Corporation, Yodogawa-ku, Osaka 532-6505 (Japan); Yunoki, Mikihiro [Osaka Research Laboratory, Benesis Corporation, Yodogawa-ku, Osaka 532-6505 (Japan); Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan); Kuhara, Motoki [Ina Laboratory, Medical and Biological Laboratories Corporation, Ltd., Ina, Nagano 396-0002 (Japan); Yamamoto, Naomasa [Department of Biochemistry, School of Pharmaceutical Sciences, Ohu University, Koriyama, Fukushima 963-8611 (Japan); Okuno, Yoshinobu [Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa 768-0061 (Japan); Ikuta, Kazuyoshi, E-mail: ikuta@biken.osaka-u.ac.jp [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan)

    2009-09-11

    Human monoclonal antibodies (HuMAbs) prepared from patients with viral infections could provide information on human epitopes important for the development of vaccines as well as potential therapeutic applications. Through the fusion of peripheral blood mononuclear cells from a total of five influenza-vaccinated volunteers, with newly developed murine-human chimera fusion partner cells, named SPYMEG, we obtained 10 hybridoma clones stably producing anti-influenza virus antibodies: one for influenza A H1N1, four for influenza A H3N2 and five for influenza B. Surprisingly, most of the HuMAbs showed broad reactivity within subtype and four (two for H3N2 and two for B) showed broad neutralizing ability. Importantly, epitope mapping revealed that the two broad neutralizing antibodies to H3N2 derived from different donors recognized the same epitope located underneath the receptor-binding site of the hemagglutinin globular region that is highly conserved among H3N2 strains.

  20. Broad neutralizing human monoclonal antibodies against influenza virus from vaccinated healthy donors

    International Nuclear Information System (INIS)

    Kubota-Koketsu, Ritsuko; Mizuta, Hiroyuki; Oshita, Masatoshi; Ideno, Shoji; Yunoki, Mikihiro; Kuhara, Motoki; Yamamoto, Naomasa; Okuno, Yoshinobu; Ikuta, Kazuyoshi

    2009-01-01

    Human monoclonal antibodies (HuMAbs) prepared from patients with viral infections could provide information on human epitopes important for the development of vaccines as well as potential therapeutic applications. Through the fusion of peripheral blood mononuclear cells from a total of five influenza-vaccinated volunteers, with newly developed murine-human chimera fusion partner cells, named SPYMEG, we obtained 10 hybridoma clones stably producing anti-influenza virus antibodies: one for influenza A H1N1, four for influenza A H3N2 and five for influenza B. Surprisingly, most of the HuMAbs showed broad reactivity within subtype and four (two for H3N2 and two for B) showed broad neutralizing ability. Importantly, epitope mapping revealed that the two broad neutralizing antibodies to H3N2 derived from different donors recognized the same epitope located underneath the receptor-binding site of the hemagglutinin globular region that is highly conserved among H3N2 strains.

  1. Fusion of C3d molecule with neutralization epitope(s) of hepatitis E virus enhances antibody avidity maturation and neutralizing activity following DNA immunization.

    Science.gov (United States)

    Yang, Shucai; Wang, Chunling; Fang, Xuefeng; Zhai, Lijie; Dong, Chen; Ding, Lei; Meng, Jihong; Wang, Lixin

    2010-08-01

    Previous studies have identified that a hepatits E virus peptide (HEV-p179), spanning amino acids (aa) 439-617 in the 660-aa protein encoded by open reading frame 2(ORF2) of the Chinese epidemic strain (genotype 4), is the minimal size fragment of conformation-dependent neutralization epitope(s). We report here the successful immunization of mice with DNA vaccines expressing the secreted form of HEV-p179 (fused with a human tissue plasminogen activator (tPA) signal sequence) and the tPA-p179-C3d fusion protein (fused with three tandem copies of the murine complement C3d). Analysis of antibody responses in vaccinated mice revealed that immunizations with tPA-p179-C3d3 DNA vaccine dramatically increased both the level and avidity maturation of antibodies against HEV-p179 compared to p179 and tPA-p179 DNA vaccines. In addition, this increased antibody response correlated with neutralizing titers in a PCR-based cell culture neutralization assay. These results indicate that vaccination with C3d conjugated p179 DNA vaccine enhances antibody responses to HEV, and this approach may be applied to overcome the poor immunogenicity of DNA vaccines to generate HEV neutralizing antibodies. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals.

    Directory of Open Access Journals (Sweden)

    Davide Corti

    2010-01-01

    Full Text Available The isolation of human monoclonal antibodies (mAbs that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine.We immortalized IgG(+ memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16 specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194 bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20 with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity.This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design.

  3. The Effect of Induced Antibodies with Respect to Neutralization, Clearance Rate and Functional Activity in a Rabbit/Infliximab Model

    DEFF Research Database (Denmark)

    Henriksen, Maiken Lumby; Søgaard Teisner, Ane; Kjeldsen, Jens

    2016-01-01

    BACKGROUND: Therapeutic antibodies are a developing field for treatment of an expanding number of inflammatory diseases, including Crohn's disease. Treatment with monoclonal antibodies is frequently hampered by development of anti-drug antibodies (ADAs) that may compromise the treatment. MATERIALS...... AND METHODS: We addressed this issue in a rabbit model of treatment with the anti-tumor-necrosis factor alpha (TNFα) antibody, infliximab (IFX). We developed an inhibition ELISA to selectively measure absolute concentrations of neutralizing antibodies and another ELISA for measuring the concentration...... of functional IFX in the circulation. RESULTS: We found that the concentration of functional IFX was inversely proportional to the concentration of neutralizing antibodies. CONCLUSION: Administration of IFX to rabbits showed diversity in immune responses/tolerance toward IFX, corresponding to responses observed...

  4. The Effect of Induced Antibodies with Respect to Neutralization, Clearance Rate and Functional Activity in a Rabbit/Infliximab Model

    DEFF Research Database (Denmark)

    Henriksen, Maiken Lumby; Teisner, Ane; Kjeldsen, Jens

    2016-01-01

    Background: Therapeutic antibodies are a developing field for treatment of an expanding number of inflammatory diseases, including Crohn's disease. Treatment with monoclonal antibodies is frequently hampered by development of anti-drug antibodies (ADAs) that may compromise the treatment. Materials...... and Methods: We addressed this issue in a rabbit model of treatment with the anti-tumor-necrosis factor alpha (TNF) antibody, infliximab (IFX). We developed an inhibition ELISA to selectively measure absolute concentrations of neutralizing antibodies and another ELISA for measuring the concentration...... of functional IFX in the circulation. Results: We found that the concentration of functional IFX was inversely proportional to the concentration of neutralizing antibodies. Conclusion: Administration of IFX to rabbits showed diversity in immune responses/tolerance toward IFX, corresponding to responses observed...

  5. ELISA to measure neutralizing capacity of anti-C1-inhibitor antibodies in plasma of angioedema patients.

    Science.gov (United States)

    Engel, Ruchira; Rensink, Irma; Roem, Dorina; Brouwer, Mieke; Kalei, Asma; Perry, Dawn; Zeerleder, Sacha; Wouters, Diana; Hamann, Dörte

    2015-11-01

    Neutralizing autoantibodies (NAbs) against plasma serpin C1-inhibitor (C1-inh) are implicated in the rare disorder, acquired angioedema (AAE). There is insufficient understanding of the process of antibody formation and its correlation with disease progression and severity. We have developed an ELISA for detecting neutralizing capacity of anti-C1-inh positive plasma samples that can be used to study changes in NAb repertoire in patient plasma over the course of disease. The ELISA is based on the specific interaction of active C1-inh with its target protease C1s. Decrease in the amount of C1s bound to immobilized C1-inh in the presence of test samples is proportional to the neutralizing capacity of the sample. Assay specificity, intra- and inter-assay variation and assay cut-off are determined using anti-C1-inh antibodies. Assay capability is demonstrated using plasma samples from AAE patients. The assay is specific to a neutralizing anti-C1-inh antibody and shows no interference by a non-neutralizing anti-C1-inh antibody or by the plasma matrix. Intra-assay and inter-assay variations are determined as 17 and 18% respectively. Neutralizing capacity of antibody positive AAE patient plasma samples (n=16) with IgG or IgM type antibodies is readily determined. All samples show positive neutralizing capacity. We have developed a robust, specific and semi-quantitative assay to detect the neutralizing capacity of plasma samples containing anti-C1-inh antibodies. This assay can be an important tool for the study of clinical implications of anti-C1-inh NAbs. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Optimal Combinations of Broadly Neutralizing Antibodies for Prevention and Treatment of HIV-1 Clade C Infection.

    Directory of Open Access Journals (Sweden)

    Kshitij Wagh

    2016-03-01

    Full Text Available The identification of a new generation of potent broadly neutralizing HIV-1 antibodies (bnAbs has generated substantial interest in their potential use for the prevention and/or treatment of HIV-1 infection. While combinations of bnAbs targeting distinct epitopes on the viral envelope (Env will likely be required to overcome the extraordinary diversity of HIV-1, a key outstanding question is which bnAbs, and how many, will be needed to achieve optimal clinical benefit. We assessed the neutralizing activity of 15 bnAbs targeting four distinct epitopes of Env, including the CD4-binding site (CD4bs, the V1/V2-glycan region, the V3-glycan region, and the gp41 membrane proximal external region (MPER, against a panel of 200 acute/early clade C HIV-1 Env pseudoviruses. A mathematical model was developed that predicted neutralization by a subset of experimentally evaluated bnAb combinations with high accuracy. Using this model, we performed a comprehensive and systematic comparison of the predicted neutralizing activity of over 1,600 possible double, triple, and quadruple bnAb combinations. The most promising bnAb combinations were identified based not only on breadth and potency of neutralization, but also other relevant measures, such as the extent of complete neutralization and instantaneous inhibitory potential (IIP. By this set of criteria, triple and quadruple combinations of bnAbs were identified that were significantly more effective than the best double combinations, and further improved the probability of having multiple bnAbs simultaneously active against a given virus, a requirement that may be critical for countering escape in vivo. These results provide a rationale for advancing bnAb combinations with the best in vitro predictors of success into clinical trials for both the prevention and treatment of HIV-1 infection.

  7. Alterations of HIV-1 envelope phenotype and antibody-mediated neutralization by signal peptide mutations.

    Directory of Open Access Journals (Sweden)

    Chitra Upadhyay

    2018-01-01

    Full Text Available HIV-1 envelope glycoprotein (Env mediates virus attachment and entry into the host cells. Like other membrane-bound and secreted proteins, HIV-1 Env contains at its N terminus a signal peptide (SP that directs the nascent Env to the endoplasmic reticulum (ER where Env synthesis and post-translational modifications take place. SP is cleaved during Env biosynthesis but potentially influences the phenotypic traits of the Env protein. The Env SP sequences of HIV-1 isolates display high sequence variability, and the significance of such variability is unclear. We postulate that changes in the Env SP influence Env transport through the ER-Golgi secretory pathway and Env folding and/or glycosylation that impact on Env incorporation into virions, receptor binding and antibody recognition. We first evaluated the consequences of mutating the charged residues in the Env SP in the context of infectious molecular clone HIV-1 REJO.c/2864. Results show that three different mutations affecting histidine at position 12 affected Env incorporation into virions that correlated with reduction of virus infectivity and DC-SIGN-mediated virus capture and transmission. Mutations at positions 8, 12, and 15 also rendered the virus more resistant to neutralization by monoclonal antibodies against the Env V1V2 region. These mutations affected the oligosaccharide composition of N-glycans as shown by changes in Env reactivity with specific lectins and by mass spectrometry. Increased neutralization resistance and N-glycan composition changes were also observed when analogous mutations were introduced to another HIV-1 strain, JRFL. To the best of our knowledge, this is the first study showing that certain residues in the HIV-1 Env SP can affect virus neutralization sensitivity by modulating oligosaccharide moieties on the Env N-glycans. The HIV-1 Env SP sequences thus may be under selective pressure to balance virus infectiousness with virus resistance to the host antibody

  8. A Three Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin Serotype E Subtypes.

    Science.gov (United States)

    Garcia-Rodriguez, Consuelo; Razai, Ali; Geren, Isin N; Lou, Jianlong; Conrad, Fraser; Wen, Wei-Hua; Farr-Jones, Shauna; Smith, Theresa J; Brown, Jennifer L; Skerry, Janet C; Smith, Leonard A; Marks, James D

    2018-03-01

    Human botulism is most commonly caused by botulinum neurotoxin (BoNT) serotypes A, B, and E. For this work, we sought to develop a human monoclonal antibody (mAb)-based antitoxin capable of binding and neutralizing multiple subtypes of BoNT/E. Libraries of yeast-displayed single chain Fv (scFv) antibodies were created from the heavy and light chain variable region genes of humans immunized with pentavalent-toxoid- and BoNT/E-binding scFv isolated by Fluorescence-Activated Cell Sorting (FACS). A total of 10 scFv were isolated that bound one or more BoNT/E subtypes with nanomolar-level equilibrium dissociation constants (K D ). By diversifying the V-regions of the lead mAbs and selecting for cross-reactivity, we generated three scFv that bound all four BoNT/E subtypes tested at three non-overlapping epitopes. The scFvs were converted to IgG that had K D values for the different BoNT/E subtypes ranging from 9.7 nM to 2.28 pM. An equimolar combination of the three mAbs was able to potently neutralize BoNT/E1, BoNT/E3, and BoNT/E4 in a mouse neutralization assay. The mAbs have potential utility as therapeutics and as diagnostics capable of recognizing multiple BoNT/E subtypes. A derivative of the three-antibody combination (NTM-1633) is in pre-clinical development with an investigational new drug (IND) application filing expected in 2018.

  9. A human inferred germline antibody binds to an immunodominant epitope and neutralizes Zika virus.

    Directory of Open Access Journals (Sweden)

    Diogo M Magnani

    2017-06-01

    Full Text Available The isolation of neutralizing monoclonal antibodies (nmAbs against the Zika virus (ZIKV might lead to novel preventative strategies for infections in at-risk individuals, primarily pregnant women. Here we describe the characterization of human mAbs from the plasmablasts of an acutely infected patient. One of the 18 mAbs had the unusual feature of binding to and neutralizing ZIKV despite not appearing to have been diversified by affinity maturation. This mAb neutralized ZIKV (Neut50 ~ 2 μg/ml but did not react with any of the four dengue virus serotypes. Except for the expected junctional diversity created by the joining of the V-(D-J genes, there was no deviation from immunoglobulin germline genes. This is a rare example of a human mAb with neutralizing activity in the absence of detectable somatic hypermutation. Importantly, binding of this mAb to ZIKV was specifically inhibited by human plasma from ZIKV-exposed individuals, suggesting that it may be of value in a diagnostic setting.

  10. A Role for Small Antibody Fragments to Bind and Neutralize HIV | Center for Cancer Research

    Science.gov (United States)

    The surface of the Human Immunodeficiency Virus (HIV) is studded with numerous copies of the glycoprotein Env. Each Env spike is composed of three copies of the proteins gp41, which sits in the viral membrane, and gp120, which rests on top of each gp41 molecule. Env is essential for HIV-mediated infection because the binding of gp120 to the T cell surface receptor CD4 initiates a conformational change in Env exposing the fusion peptide, which inserts into the T cell membrane and helps fuse the T cell and virus together. This makes Env an attractive target for designing therapeutic inhibitory antibodies. However, the complexities of the HIV surface proteins and the tight association of the virus and T cell during infection have hampered the identification of full-length antibodies with effective HIV neutralizing activity.

  11. Broadly neutralizing antibodies targeted to mucin-type carbohydrate epitopes of human immunodeficiency virus

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Arendrup, M

    1991-01-01

    The cancer-related mucin-type carbohydrate neoantigen Tn was found on gp160 and gp120 of human immunodeficiency virus (HIV). Immunoglobulin G (IgG) and IgM monoclonal antibodies (MAbs) against Tn neutralized infection with cell-free virus and blocked fusion between HIV-infected and uninfected cells....... This inhibition was found in infection of both lymphocytic cells and monocytoid cells. Viruses tested included six HIV-1 and five HIV-2 isolates propagated in different cells, as well as infectious plasma from AIDS patients. The antiviral effect of anti-Tn MAbs occurred by specific binding of the MAb to the virus...

  12. Vaccine-induced cross-genotype reactive neutralizing antibodies against hepatitis C virus

    DEFF Research Database (Denmark)

    Meunier, Jean-Christophe; Gottwein, Judith M; Houghton, Michael

    2011-01-01

    We detected cross-reactive neutralizing antibodies (NtAb) against hepatitis C virus (HCV) in chimpanzees vaccinated with HCV-1 (genotype 1a) recombinant E1/E2 envelope glycoproteins. Five vaccinated chimpanzees, protected following HCV-1 challenge, were initially studied using the heterologous H77...... (genotype 1a) HCVpp assay. All animals had developed NtAb after the second vaccination; 4 animals had reciprocal titers of =200 at the time of challenge. Using genotypes 1a-6a HCV pseudoparticles (HCVpp) and cell culture-derived HCV (HCVcc) assays, cross-reactive NtAb were detected against 1a, 4a, 5a, and 6...

  13. Reporter gene assay for the quantification of the activity and neutralizing antibody response to TNFα antagonists

    DEFF Research Database (Denmark)

    Lallemand, Christophe; Kavrochorianou, Nadia; Steenholdt, Casper

    2011-01-01

    A cell-based assay has been developed for the quantification of the activity of TNFα antagonists based on human erythroleukemic K562 cells transfected with a NFκB regulated firefly luciferase reporter-gene construct. Both drug activity and anti-drug neutralizing antibodies can be quantified...... with a high degree of precision within 2h, and without interference from cytokines and other factors known to activate NFκB. The assay cells also contain the Renilla luciferase reporter gene under the control of a constitutive promoter that allows TNFα-induced firefly luciferase activity to be normalized...

  14. Intrasubtype B HIV-1 Superinfection Correlates with Delayed Neutralizing Antibody Response

    Science.gov (United States)

    Landais, Elise; Caballero, Gemma; Phung, Pham; Kosakovsky Pond, Sergei L.; Poignard, Pascal; Richman, Douglas D.; Little, Susan J.; Smith, Davey M.

    2017-01-01

    ABSTRACT Understanding whether the neutralizing antibody (NAb) response impacts HIV-1 superinfection and how superinfection subsequently modulates the NAb response can help clarify correlates of protection from HIV exposures and better delineate pathways of NAb development. We examined associations between the development of NAb and the occurrence of superinfection in a well-characterized, antiretroviral therapy (ART)-naive, primary infection cohort of men who have sex with men. Deep sequencing was applied to blood plasma samples from the cohort to detect cases of superinfection. We compared the NAb activity against autologous and heterologous viruses between 10 participants with intrasubtype B superinfection and 19 monoinfected controls, matched to duration of infection and risk behavior. Three to 6 months after primary infection, individuals who would later become superinfected had significantly weaker NAb activity against tier 1 subtype B viruses (P = 0.003 for SF-162 and P = 0.017 for NL4-3) and marginally against autologous virus (P = 0.054). Lower presuperinfection NAb responses correlated with weaker gp120 binding and lower plasma total IgG titers. Soon after superinfection, the NAb response remained lower, but between 2 and 3 years after primary infection, NAb levels strengthened and reached those of controls. Superinfecting viruses were typically not susceptible to neutralization by presuperinfection plasma. These observations suggest that recently infected individuals with a delayed NAb response against primary infecting and tier 1 subtype B viruses are more susceptible to superinfection. IMPORTANCE Our findings suggest that within the first year after HIV infection, a relatively weak neutralizing antibody response against primary and subtype-specific neutralization-sensitive viruses increases susceptibility to superinfection in the face of repeated exposures. As natural infection progresses, the immune response strengthens significantly in some

  15. Neutralization of Clostridium difficile Toxin B Mediated by Engineered Lactobacilli That Produce Single-Domain Antibodies

    Science.gov (United States)

    Andersen, Kasper Krogh; Strokappe, Nika M.; Hultberg, Anna; Truusalu, Kai; Smidt, Imbi; Mikelsaar, Raik-Hiio; Mikelsaar, Marika; Verrips, Theo; Hammarström, Lennart

    2015-01-01

    Clostridium difficile is the primary cause of nosocomial antibiotic-associated diarrhea in the Western world. The major virulence factors of C. difficile are two exotoxins, toxin A (TcdA) and toxin B (TcdB), which cause extensive colonic inflammation and epithelial damage manifested by episodes of diarrhea. In this study, we explored the basis for an oral antitoxin strategy based on engineered Lactobacillus strains expressing TcdB-neutralizing antibody fragments in the gastrointestinal tract. Variable domain of heavy chain-only (VHH) antibodies were raised in llamas by immunization with the complete TcdB toxin. Four unique VHH fragments neutralizing TcdB in vitro were isolated. When these VHH fragments were expressed in either secreted or cell wall-anchored form in Lactobacillus paracasei BL23, they were able to neutralize the cytotoxic effect of the toxin in an in vitro cell-based assay. Prophylactic treatment with a combination of two strains of engineered L. paracasei BL23 expressing two neutralizing anti-TcdB VHH fragments (VHH-B2 and VHH-G3) delayed killing in a hamster protection model where the animals were challenged with spores of a TcdA− TcdB+ strain of C. difficile (P survived until the termination of the experiment at day 5 and showed either no damage or limited inflammation of the colonic mucosa despite having been colonized with C. difficile for up to 4 days. The protective effect in the hamster model suggests that the strategy could be explored as a supplement to existing therapies for patients. PMID:26573738

  16. Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape.

    Directory of Open Access Journals (Sweden)

    Katharine J Bar

    Full Text Available Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1∶20 to 1∶50 (IC(50 selecting for virus escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env in a strain-specific, conformationally sensitive manner. In subject CH40, virus escape was first mediated by mutations in the V1 region of the Env, followed by V3. HIV-1 specific monoclonal antibodies from this subject mapped to an immunodominant region at the base of V3 and exhibited neutralizing patterns indistinguishable from polyclonal antibody responses, indicating V1-V3 interactions within the Env trimer. In subject CH77, escape mutations mapped to the V2 region of Env, several of which selected for alterations of glycosylation. And in subject CH58, escape mutations mapped to the Env outer domain. In all three subjects, initial Nab recognition was followed by sequential rounds of virus escape and Nab elicitation, with Nab escape variants exhibiting variable costs to replication fitness. Although delayed in comparison with autologous CD8 T-cell responses, our findings show that Nabs appear earlier in HIV-1 infection than previously recognized, target diverse sites on HIV-1 Env, and impede virus replication at surprisingly low titers. The unexpected in vivo sensitivity of early transmitted/founder virus to Nabs raises the possibility that similarly low concentrations of vaccine-induced Nabs could impair virus acquisition in natural HIV-1 transmission, where the risk of infection is low and the number of viruses responsible for transmission and productive clinical

  17. The heptide repeat 2 and upstream region of TGEV induces potent cross-neutralizing antibodies against group I coronaviruses.

    Science.gov (United States)

    Shi, Huiling; Wu, Nannan; Wang, Xiaoming; Wang, Tianhou

    2012-10-01

    The coronavirus heptide repeat (HR) region in the spike protein induces neutralizing antibodies that block the postfusion core formation and inhibit virus entry into target cells. The HR2 regions for coronaviruses of the same serogroup share high homology. We found that polyclonal antibodies derived from transmissible gastroenteritis coronavirus HR2 and upstream region were cross-reactive with the S proteins of the same serogroup in western blotting. The polyclonal antibodies also potently cross-neutralized viruses from the same serogroup. This study provides new insight for designing vaccine and therapeutic reagents against coronavirus infections.

  18. Neutralizing antibodies obtained in a persistent immune response are effective against deleterious effects induced by the Thalassophryne nattereri fish venom.

    Science.gov (United States)

    Piran-Soares, Ana Amélia; Komegae, Evilin Naname; Souza, Valdênia Maria Oliveira; Fonseca, Luiz Alberto; Lima, Carla; Lopes-Ferreira, Mônica

    2007-06-01

    Thalassophryne nattereri envenoming represents a great cost to North and Northeast Brazilian communities in terms of public healths, leisure and tourism. Victims rapidally develop symptoms as pain, local swelling, erythema followed by intense necrosis that persist for long days. The aim of this work was tested the immune competence of neutralizing antibodies in pre-immunized mice against principal toxic activities induced by venom. During the primary antibody response in mice, an elevation of IgG antibody levels was only observed on day 28. After boosting, high antibody levels were detected between days 49 and 70, with a 12-fold increase in IgG level over control values at day 49. We confirmed the in vitro neutralizing capacity of T. nattereri anti-venom against toxic effects and thereafter we show that neutralizing antibodies obtained in a persistent immune response are more effective, inclusive against edematous reaction. After boosting during the secondary response mice with high antibody levels do not present any alterations in venule or arteriole after topical application of venom on cremaster muscle. In addition, CK activity diminished in these mice with high neutralizing antibody levels corroborating the attenuation of the myonecrotic effect by venom. In addition, we determined the presence of high IgG antibodies levels in patients 6 months after injury by T. nattereri. In conclusion, the presence of neutralizing antibodies against to T. nattereri venom in the serum of pre-immunized mice could change the outcome of lesion at site of posterior envenoming. Antigen-specific antibodies of high affinity in consequence to specific immune response, dependent of T lymphocyte activation, could minimize the symptoms of intense and immediate inflammatory reaction caused by T. nattereri venom. These finding prompt us to the possibility of development of immune therapeutic strategies using specific anti-venom as an efficient intervention for protecting human victims.

  19. Single mutation induced H3N2 hemagglutinin antibody neutralization: a free energy perturbation study.

    Science.gov (United States)

    Zhou, Ruhong; Das, Payel; Royyuru, Ajay K

    2008-12-11

    The single mutation effect on the binding affinity of H3N2 viral protein hemagglutinin (HA) with the monoclonical antibody fragment (Fab) is studied in this paper using the free energy perturbation (FEP) simulations. An all-atom protein model with explicit solvents is used to perform an aggregate of several microsecond FEP molecular dynamics simulations. A recent experiment shows that a single mutation in H3N2 HA, T131I, increases the antibody-antigen dissociation constant Kd by a factor of approximately 4000 (equivalent to a binding affinity decrease of approximately 5 kcal/mol), thus introducing an escape of the antibody (Ab) neutralization. Our FEP result confirms this experimental finding by estimating the HA-Ab binding affinity decrease of 5.2 +/- 0.9 kcal/mol but with a somewhat different molecular mechanism from the experimental findings. Detailed analysis reveals that this large binding affinity decrease in the T131I mutant is mainly due to the displacement of two bridge water molecules otherwise present in the wild-type HA/Ab interface. The decomposition of the binding free energy supports this observation, as the major contribution to the binding affinity is from the electrostatic interactions. In addition, we find that the loss of the binding affinity is also related to the large conformational distortion of one loop (loop 155-161) in the unbound state of the mutant. We then simulate all other possible mutations for this specific mutation site T131, and predict a few more mutations with even larger decreases in the binding affinity (i.e., better candidates for antibody neutralization), such as T131W, T131Y, and T131F. As for further validation, we have also modeled another mutation, S157L, with experimental binding affinity available (Kd increasing approximately 500 times), and found a binding affinity decrease of 4.1 +/- 1.0 kcal/mol, which is again in excellent agreement with experiment. These large scale simulations might provide new insights into the

  20. Stoichiometry of monoclonal antibody neutralization of T-cell line-adapted human immunodeficiency virus type 1

    DEFF Research Database (Denmark)

    Schønning, Kristian; Lund, O; Lund, O S

    1999-01-01

    In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes...... neutralization gradually increased. Virus neutralization by virion aggregation was minimal, as MAb binding to HIV-1 Env did not interfere with an AMLV Env-mediated infection by HIV-1(AMLV/HIV-1) pseudotypes of CD4(-) HEK293 cells. MAb neutralization of chimeric virions could be described as a third...... neutralization of T-cell line-adapted HIV-1 is incremental rather than all or none and that each MAb binding an Env oligomer reduces the likelihood of infection....

  1. Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies.

    Science.gov (United States)

    Kamal, Ram P; Blanchfield, Kristy; Belser, Jessica A; Music, Nedzad; Tzeng, Wen-Pin; Holiday, Crystal; Burroughs, Ashley; Sun, Xiangjie; Maines, Taronna R; Levine, Min Z; York, Ian A

    2017-10-15

    Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutination inhibition (HI) and microneutralization (MN) assays, H7 viruses and vaccines are found to induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate prepandemic vaccines. We have previously shown that purified recombinant H7 HA appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. In this study, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and neuraminidase (NA) from 3 different H7 viruses [A/Shanghai/2/2013(H7N9), A/Netherlands/219/2003(H7N7), and A/New York/107/2003(H7N2)] or with human A(H1N1)pdm09 (A/California/07/2009-like) or A(H3N2) (A/Perth16/2009) viruses. Mice produced equivalent titers of antibodies to all viruses as measured by enzyme-linked immunosorbent assay (ELISA). However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for prepandemic vaccines. IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of prepandemic vaccines. For seasonal influenza viruses, protection is correlated with antibody

  2. Cell-to-cell spread of HIV-1 and evasion of neutralizing antibodies.

    Science.gov (United States)

    Schiffner, Torben; Sattentau, Quentin J; Duncan, Christopher J A

    2013-12-02

    Cell-to-cell spread of human immunodeficiency virus (HIV-1) between immune cells was first observed over 20 years ago. During this time, the question of whether this infection route favours viral evasion of neutralizing antibodies (NAbs) targeting the virus envelope glycoprotein (Env) has been repeatedly investigated, but with conflicting results. A clearer picture has formed in the last few years as more broadly neutralizing antibodies have been isolated and we gain further insight into the mechanisms of HIV-1 transmission at virological and infectious synapses. Nevertheless consensus is still lacking, a situation which may be at least partly explained by variability in the experimental approaches used to study the activity of NAbs in the cell-to-cell context. In this review we focus on the most critical question concerning the activity of NAbs against cell-to-cell transmission: is NAb inhibition of cell-to-cell HIV-1 quantitatively or qualitatively different from cell-free infection? Overall, data consistently show that NAbs are capable of blocking HIV-1 infection at synapses, supporting the concept that cell-to-cell infection occurs through directed transfer of virions accessible to the external environment. However, more recent findings suggest that higher concentrations of certain NAbs might be needed to inhibit synaptic infection, with important potential implications for prophylactic vaccine development. We discuss several mechanistic explanations for this relative and selective loss of activity, and highlight gaps in knowledge that are still to be explored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Neutralizing Activity of Broadly Neutralizing Anti-HIV-1 Antibodies against Clade B Clinical Isolates Produced in Peripheral Blood Mononuclear Cells.

    Science.gov (United States)

    Cohen, Yehuda Z; Lorenzi, Julio C C; Seaman, Michael S; Nogueira, Lilian; Schoofs, Till; Krassnig, Lisa; Butler, Allison; Millard, Katrina; Fitzsimons, Tomas; Daniell, Xiaoju; Dizon, Juan P; Shimeliovich, Irina; Montefiori, David C; Caskey, Marina; Nussenzweig, Michel C

    2018-03-01

    Recently discovered broadly neutralizing antibodies (bNAbs) against HIV-1 demonstrate extensive breadth and potency against diverse HIV-1 strains and represent a promising approach for the treatment and prevention of HIV-1 infection. The breadth and potency of these antibodies have primarily been evaluated by using panels of HIV-1 Env-pseudotyped viruses produced in 293T cells expressing molecularly cloned Env proteins. Here we report on the ability of five bNAbs currently in clinical development to neutralize circulating primary HIV-1 isolates derived from peripheral blood mononuclear cells (PBMCs) and compare the results to those obtained with the pseudovirus panels used to characterize the bNAbs. The five bNAbs demonstrated significantly less breadth and potency against clinical isolates produced in PBMCs than against Env-pseudotyped viruses. The magnitude of this difference in neutralizing activity varied, depending on the antibody epitope. Glycan-targeting antibodies showed differences of only 3- to 4-fold, while antibody 10E8, which targets the membrane-proximal external region, showed a nearly 100-fold decrease in activity between published Env-pseudotyped virus panels and PBMC-derived primary isolates. Utilizing clonal PBMC-derived primary isolates and molecular clones, we determined that the observed discrepancy in bNAb performance is due to the increased sensitivity to neutralization exhibited by 293T-produced Env-pseudotyped viruses. We also found that while full-length molecularly cloned viruses produced in 293T cells exhibit greater sensitivity to neutralization than PBMC-derived viruses do, Env-pseudotyped viruses produced in 293T cells generally exhibit even greater sensitivity to neutralization. As the clinical development of bNAbs progresses, it will be critical to determine the relevance of each of these in vitro neutralization assays to in vivo antibody performance. IMPORTANCE Novel therapeutic and preventive strategies are needed to contain the

  4. Protection against Chlamydia trachomatis infection and upper genital tract pathological changes by vaccine-promoted neutralizing antibodies directed to the VD4 of the major outer membrane protein

    DEFF Research Database (Denmark)

    Olsen, Anja W.; Follmann, Frank; Erneholm, Karin Susanne

    2015-01-01

    bacterial numbers in vagina and prevention of pathological changes in the upper genital tract. Adoptive transfer of serumand T-cell depletion experiments demonstrated a dominant role for antibodies and CD4+ T cells in the protective immune response. Integrating a multivalent VD4 construct into the sequence......The VD4 region from the Chlamydia trachomatis major outer membrane protein contains important neutralizing B-cell epitopes of relevance for antibody-mediated protection against genital tract infection. We developed a multivalent vaccine construct based on VD4s and their surrounding constant...... segments from serovars D, E, and F. Adjuvanted with cationic liposomes, this construct promoted strong immune responses to serovar-specific epitopes, the conserved LNPTIAG epitope and neutralized serovars D, E, and F. Vaccinated mice were protected against challenge, with protection defined as reduced...

  5. Combination of the immunization with the sequence close to the consensus sequence and two DNA prime plus one VLP boost generate H5 hemagglutinin specific broad neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Guiqin Wang

    Full Text Available Hemagglutinin (HA head has long been considered to be able to elicit only a narrow, strain-specific antibody response as it undergoes rapid antigenic drift. However, we previously showed that a heterologous prime-boost strategy, in which mice were primed twice with DNA encoding HA and boosted once with virus-like particles (VLP from an H5N1 strain A/Thailand/1(KAN-1/2004 (noted as TH DDV, induced anti-head broad cross-H5 neutralizing antibody response. To explain why TH DDV immunization could generate such breadth, we systemically compared the neutralization breadth and potency between TH DDV sera and immune sera elicited by TH DDD (three times of DNA immunizations, TH VVV (three times of VLP immunizations, TH DV (one DNA prime plus one VLP boost and TK DDV (plasmid DNA and VLP derived from another H5N1 strain, A/Turkey/65596/2006. Then we determined the antigenic sites (AS on TH HA head and the key residues of the main antigenic site. Through the comparison of different regiments, we found that the combination of the immunization with the sequence close to the consensus sequence and two DNA prime plus one VLP boost caused that TH DDV immunization generate broad neutralizing antibodies. Antigenic analysis showed that TH DDV, TH DV, TH DDD and TH VVV sera recognize the common antigenic site AS1. Antibodies directed to AS1 contribute to the largest proportion of the neutralizing activity of these immune sera. Residues 188 and 193 in AS1 are the key residues which are responsible for neutralization breadth of the immune sera. Interestingly, residues 188 and 193 locate in classical antigen sites but are relatively conserved among the 16 tested strains and 1,663 HA sequences from NCBI database. Thus, our results strongly indicate that it is feasible to develop broad cross-H5 influenza vaccines against HA head.

  6. A three monoclonal antibody combination potently neutralizes multiple botulinum neurotoxin serotype F subtypes.

    Directory of Open Access Journals (Sweden)

    Yongfeng Fan

    Full Text Available Human botulism is primarily caused by botulinum neurotoxin (BoNT serotypes A, B and E, with around 1% caused by serotype F (BoNT/F. BoNT/F comprises at least seven different subtypes with the amino acid sequence difference between subtypes as high as 36%. The sequence differences present a significant challenge for generating monoclonal antibodies (mAbs that can bind, detect and neutralize all BoNT/F subtypes. We used repertoire cloning of immune mouse antibody variable (V regions and yeast display to generate a panel of 33 lead single chain Fv (scFv mAbs that bound one or more BoNT/F subtypes with a median equilibrium dissociation constant (KD of 4.06 × 10-9 M. By diversifying the V-regions of the lead mAbs and selecting for cross reactivity we generated five mAbs that bound each of the seven subtypes. Three scFv binding non-overlapping epitopes were converted to IgG that had KD for the different BoNT/F subtypes ranging from 2.2×10-8 M to 1.47×10-12 pM. An equimolar combination of the mAbs was able to potently neutralize BoNT/F1, F2, F4 and F7 in the mouse neutralization assay. The mAbs have potential utility as diagnostics capable of recognizing the known BoNT/F subtypes and could be developed as antitoxins to prevent and treat type F botulism.

  7. Dengue virus neutralizing antibody levels associated with protection from infection in thai cluster studies.

    Directory of Open Access Journals (Sweden)

    Darunee Buddhari

    2014-10-01

    Full Text Available Long-term homologous and temporary heterologous protection from dengue virus (DENV infection may be mediated by neutralizing antibodies. However, neutralizing antibody titers (NTs have not been clearly associated with protection from infection.Data from two geographic cluster studies conducted in Kamphaeng Phet, Thailand were used for this analysis. In the first study (2004-2007, cluster investigations of 100-meter radius were triggered by DENV-infected index cases from a concurrent prospective cohort. Subjects between 6 months and 15 years old were evaluated for DENV infection at days 0 and 15 by DENV PCR and IgM ELISA. In the second study (2009-2012, clusters of 200-meter radius were triggered by DENV-infected index cases admitted to the provincial hospital. Subjects of any age ≥6 months were evaluated for DENV infection at days 0 and 14. In both studies, subjects who were DENV PCR positive at day 14/15 were considered to have been "susceptible" on day 0. Comparison subjects from houses in which someone had documented DENV infection, but the subject remained DENV negative at days 0 and 14/15, were considered "non-susceptible." Day 0 samples were presumed to be from just before virus exposure, and underwent plaque reduction neutralization testing (PRNT. Seventeen "susceptible" (six DENV-1, five DENV-2, and six DENV-4, and 32 "non-susceptible" (13 exposed to DENV-1, 10 DENV-2, and 9 DENV-4 subjects were evaluated. Comparing subjects exposed to the same serotype, receiver operating characteristic (ROC curves identified homotypic PRNT titers of 11, 323 and 16 for DENV-1, -2 and -4, respectively, to differentiate "susceptible" from "non-susceptible" subjects.PRNT titers were associated with protection from infection by DENV-1, -2 and -4. Protective NTs appeared to be serotype-dependent and may be higher for DENV-2 than other serotypes. These findings are relevant for both dengue epidemiology studies and vaccine development efforts.

  8. A camelid single-domain antibody neutralizes botulinum neurotoxin A by blocking host receptor binding

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Guorui; Lam, Kwok-ho; Weisemann, Jasmin; Peng, Lisheng; Krez, Nadja; Perry, Kay; Shoemaker, Charles B.; Dong, Min; Rummel, Andreas; Jin, Rongsheng (BCH); (Cornell); (Tufts CTSI); (UCI); (MHH)

    2017-08-07

    Antibody treatment is currently the only available countermeasure for botulism, a fatal illness caused by flaccid paralysis of muscles due to botulinum neurotoxin (BoNT) intoxication. Among the seven major serotypes of BoNT/A-G, BoNT/A poses the most serious threat to humans because of its high potency and long duration of action. Prior to entering neurons and blocking neurotransmitter release, BoNT/A recognizes motoneurons via a dual-receptor binding process in which it engages both the neuron surface polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Previously, we identified a potent neutralizing antitoxin against BoNT/A1 termed ciA-C2, derived from a camelid heavy-chain-only antibody (VHH). In this study, we demonstrate that ciA-C2 prevents BoNT/A1 intoxication by inhibiting its binding to neuronal receptor SV2. Furthermore, we determined the crystal structure of ciA-C2 in complex with the receptor-binding domain of BoNT/A1 (HCA1) at 1.68 Å resolution. The structure revealed that ciA-C2 partially occupies the SV2-binding site on HCA1, causing direct interference of HCA1 interaction with both the N-glycan and peptide-moiety of SV2. Interestingly, this neutralization mechanism is similar to that of a monoclonal antibody in clinical trials, despite that ciA-C2 is more than 10-times smaller. Taken together, these results enlighten our understanding of BoNT/A1 interactions with its neuronal receptor, and further demonstrate that inhibiting toxin binding to the host receptor is an efficient countermeasure strategy.

  9. Development and characterization of neutralizing monoclonal antibodies against canine distemper virus hemagglutinin protein.

    Science.gov (United States)

    Bi, Zhenwei; Xia, Xingxia; Wang, Yongshan; Mei, Yongjie

    2015-04-01

    Canine distemper virus (CDV) causes a serious multisystemic disease in dogs and other carnivora. Hemagglutinin (H) protein-specific antibodies are mainly responsible for protective immunity against CDV infection. In the present study, six neutralizing MAbs to the H protein of CDV were newly obtained and characterized by immunizing BALB/c mice with a recent Chinese field isolate. Competitive binding inhibition assay revealed that they recognized four distinct antigenic regions of the H protein. Immunofluorescence assay and western blotting showed that all MAbs recognize the conformational rather than the linear epitopes of the H protein. Furthermore, in immunofluorescence and virus neutralization assays, two of the MAbs were found to react only with the recent Chinese field isolate and not with older CDV strains, including vaccine strain Onderstepoort, indicating there are neutralization-related antigenic variations between the recent Chinese field isolate and the older CDV strains examined in this study. The newly established MAbs are useful for differentiating the expanding CDV strains and could be used in immunotherapy and immunodiagnosis against infection with CDV. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  10. Evidence that active protection following oral immunization of mice with live rotavirus is not dependent on neutralizing antibody.

    Science.gov (United States)

    Ward, R L; McNeal, M M; Sheridan, J F

    1992-05-01

    Studies were performed to determine whether active immunity against murine rotavirus (EDIM) infection of mice correlated with titers of neutralizing antibody to the challenge virus. Neonatal mice administered either murine or heterologous rotaviruses all developed diarrhea and high titers of serum rotavirus IgG. However, only mice given EDIM, the murine EB, or simian SA11-FEM strains were protected against EDIM infection when challenged 60 days later. Other serotype 3 strains (RRV, SA11-SEM), as well as strains belonging to serotypes 5 and 6 (OSU, NCDV, WC3), were not protective. Serum neutralizing antibody titers to EDIM were almost undetectable after rotavirus infection with any strain and could not, therefore, be correlated with protection. Likewise, intestinal neutralizing antibody titers were extremely low 21 days after EDIM infection, and by 60 days after inoculation, EDIM-infected mice had no greater intestinal neutralizing antibody titers than uninoculated controls. Mice inoculated with SA11-FEM as neonates had much higher serum rotavirus IgG responses than mice inoculated as adults, and only those infected with this virus as neonates were protected. Thus, although immunity to EDIM did not correlate with the presence of neutralizing antibody to EDIM, it did correlate with the overall magnitude of the immune response after inoculation with SA11-FEM.

  11. Plasma CXCL13 but Not B Cell Frequencies in Acute HIV Infection Predicts Emergence of Cross-Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Jenniffer M. Mabuka

    2017-09-01

    Full Text Available Immunological events in acute HIV-1 infection before peak viremia (hyperacute phase may contribute to the development of broadly cross-neutralizing antibodies. Here, we used pre-infection and acute-infection peripheral blood mononuclear cells and plasma samples from 22 women, including 10 who initiated antiretroviral treatment in Fiebig stages I–V of acute infection to study B cell subsets and B-cell associated cytokines (BAFF and CXCL13 kinetics for up to ~90 days post detection of plasma viremia. Frequencies of B cell subsets were defined by flow cytometry while plasma cytokine levels were measured by ELISA. We observed a rapid but transient increase in exhausted tissue-like memory, activated memory, and plasmablast B cells accompanied by decline in resting memory cells in untreated, but not treated women. B cell subset frequencies in untreated women positively correlated with viral loads but did not predict emergence of cross-neutralizing antibodies measured 12 months post detection of plasma viremia. Plasma BAFF and CXCL13 levels increased only in untreated women, but their levels did not correlate with viral loads. Importantly, early CXCL13 but not BAFF levels predicted the later emergence of detectable cross-neutralizing antibodies at 12 months post detection of plasma viremia. Thus, hyperacute HIV-1 infection is associated with B cell subset changes, which do not predict emergence of cross-neutralizing antibodies. However, plasma CXCL13 levels during hyperacute infection predicted the subsequent emergence of cross-neutralizing antibodies, providing a potential biomarker for the evaluation of vaccines designed to elicit cross-neutralizing activity or for natural infection studies to explore mechanisms underlying development of neutralizing antibodies.

  12. Stoichiometry of monoclonal antibody neutralization of T-cell line-adapted human immunodeficiency virus type 1

    DEFF Research Database (Denmark)

    Schønning, Kristian; Lund, O; Lund, O S

    1999-01-01

    In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes are coexpr......In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes...... are coexpressed. By the coexpression of Env glycoproteins that either can or cannot bind a neutralizing MAb in an env transcomplementation assay, virions were generated in which the proportion of MAb binding sites could be regulated. As the proportion of MAb binding sites in Env chimeric virus increased, MAb...... neutralization gradually increased. Virus neutralization by virion aggregation was minimal, as MAb binding to HIV-1 Env did not interfere with an AMLV Env-mediated infection by HIV-1(AMLV/HIV-1) pseudotypes of CD4(-) HEK293 cells. MAb neutralization of chimeric virions could be described as a third...

  13. A human monoclonal antibody with neutralizing activity against highly divergent influenza subtypes.

    Directory of Open Access Journals (Sweden)

    Nicola Clementi

    Full Text Available The interest in broad-range anti-influenza A monoclonal antibodies (mAbs has recently been strengthened by the identification of anti-hemagglutinin (HA mAbs endowed with heterosubtypic neutralizing activity to be used in the design of "universal" prophylactic or therapeutic tools. However, the majority of the single mAbs described to date do not bind and neutralize viral isolates belonging to highly divergent subtypes clustering into the two different HA-based influenza phylogenetic groups: the group 1 including, among others, subtypes H1, H2, H5 and H9 and the group 2 including, among others, H3 subtype. Here, we describe a human mAb, named PN-SIA28, capable of binding and neutralizing all tested isolates belonging to phylogenetic group 1, including H1N1, H2N2, H5N1 and H9N2 subtypes and several isolates belonging to group 2, including H3N2 isolates from the first period of the 1968 pandemic. Therefore, PN-SIA28 is capable of neutralizing isolates belonging to subtypes responsible of all the reported pandemics, as well as other subtypes with pandemic potential. The region recognized by PN-SIA28 has been identified on the stem region of HA and includes residues highly conserved among the different influenza subtypes. A deep characterization of PN-SIA28 features may represent a useful help in the improvement of available anti-influenza therapeutic strategies and can provide new tools for the development of universal vaccinal strategies.

  14. Neutralization of feline immunodeficiency virus by polyclonal cat antibody: Simultaneous involvement of hypervariable regions 4 and 5 of the surface glycoprotein.

    NARCIS (Netherlands)

    C.H.J. Siebelink (Kees); W. Huisman (Willem); J.A. Karlas (Jos); G.F. Rimmelzwaan (Guus); M.L. Bosch (Marnix); A.D.M.E. Osterhaus (Albert)

    1995-01-01

    textabstractSites involved in antibody-mediated neutralization of feline immunodeficiency virus were mapped by reciprocal exchange of envelope fragments or amino acids between molecular clones of feline immunodeficiency virus with different susceptibilities to neutralization by a polyclonal cat

  15. Is the treatment effect of IFN-beta restored after the disappearance of neutralizing antibodies?

    DEFF Research Database (Denmark)

    Sorensen, P S; Koch-Henriksen, Nils; Flachs, Esben Meulengracht

    2008-01-01

    OBJECTIVE: To establish whether multiple sclerosis (MS) patients, who have lost the therapeutic effect of interferon-beta (IFN-beta) owing to neutralizing antibodies (NAbs) and subsequently revert from a NAb-positive to a NAb-negative state under continued IFN-beta-1b therapy, regain clinical...... effect after reversion. BACKGROUND: Several studies have shown that a significant proportion of patients treated with IFN-beta develop NAbs that hamper or abolish the therapeutic effect of IFN-beta. However, some patients, who become NAb-positive under treatment with IFN-beta-1b, may revert to a NAb......-positive and reverted to a NAb-negative state regained treatment effect with the relapse rate as before the NAb-positive period adjusting for the effect of time, and the relapse rate was the same as in the permanently NAb-negative patients in corresponding time periods. The relapse rate ratio comparing the NAb...

  16. Tandem bispecific broadly neutralizing antibody - a novel approach to HIV-1 treatment.

    Science.gov (United States)

    Ferrari, Guido

    2018-04-23

    The last decade has led to a significant advance in our knowledge of HIV-1 latency and immunity. However, we are still not close to finding a cure for HIV-1. Although combination antiretroviral therapy (cART) has led to increased survival, almost close to that of the general population, it is still not curative. In the current issue of the JCI, Wu et al. studied the prophylactic and therapeutic potential of an engineered tandem bispecific broadly neutralizing antibody (bs-bnAb), BiIA-SG. This bnAb's breadth and potency were highly effective in protection and treatment settings, as measured by complete viremia control following direct infusion, as well as elimination of infected cells and delay in viral rebound when delivered with a recombinant vector. These observations underscore the need for the clinical development of BiIA-SG for the prevention of HIV-1.

  17. Global panel of HIV-1 Env reference strains for standardized assessments of vaccine-elicited neutralizing antibodies.

    Science.gov (United States)

    deCamp, Allan; Hraber, Peter; Bailer, Robert T; Seaman, Michael S; Ochsenbauer, Christina; Kappes, John; Gottardo, Raphael; Edlefsen, Paul; Self, Steve; Tang, Haili; Greene, Kelli; Gao, Hongmei; Daniell, Xiaoju; Sarzotti-Kelsoe, Marcella; Gorny, Miroslaw K; Zolla-Pazner, Susan; LaBranche, Celia C; Mascola, John R; Korber, Bette T; Montefiori, David C

    2014-03-01

    Standardized assessments of HIV-1 vaccine-elicited neutralizing antibody responses are complicated by the genetic and antigenic variability of the viral envelope glycoproteins (Envs). To address these issues, suitable reference strains are needed that are representative of the global epidemic. Several panels have been recommended previously, but no clear answers have been available on how many and which strains are best suited for this purpose. We used a statistical model selection method to identify a global panel of reference Env clones from among 219 Env-pseudotyped viruses assayed in TZM-bl cells with sera from 205 HIV-1-infected individuals. The Envs and sera were sampled globally from diverse geographic locations and represented all major genetic subtypes and circulating recombinant forms of the virus. Assays with a panel size of only nine viruses adequately represented the spectrum of HIV-1 serum neutralizing activity seen with the larger panel of 219 viruses. An optimal panel of nine viruses was selected and augmented with three additional viruses for greater genetic and antigenic coverage. The spectrum of HIV-1 serum neutralizing activity seen with the final 12-virus panel closely approximated the activity seen with subtype-matched viruses. Moreover, the final panel was highly sensitive for detection of many of the known broadly neutralizing antibodies. For broader assay applications, all 12 Env clones were converted to infectious molecular clones using a proviral backbone carrying a Renilla luciferase reporter gene (Env.IMC.LucR viruses). This global panel should facilitate highly standardized assessments of vaccine-elicited neutralizing antibodies across multiple HIV-1 vaccine platforms in different parts of the world. An effective HIV-1 vaccine will need to overcome the extraordinary genetic variability of the virus, where most variation occurs in the viral envelope glycoproteins that are the sole targets for neutralizing antibodies. Efforts to elicit

  18. Structural and functional analysis of orthopoxvirus epitopes with neutralizing monoclonal antibodies.

    Science.gov (United States)

    Czerny, C P; Mahnel, H

    1990-10-01

    Neutralizing monoclonal antibodies (MAbs) were produced in BALB/c mice immunized with live modified vaccinia virus Ankara or infected with sublethal doses of the neurovirulent vaccinia virus strain Munich 1. The immunization scheme proved to be important for obtaining MAbs of different specificity. The MAbs could be classified into three epitope groups (1 A, 1 B and 2). Immunogold electron microscopy demonstrated that the epitopes were localized on the virus surface. In immunoblotting, MAbs were reactive with polypeptides of 14K, 16K and 30K. Purified MAbs binding to the epitopes 1 A and 2 showed a 50% reduction of 100 p.f.u./0.05 ml vaccinia virus M1 with respectively 3.9 and 5.9 ng of immunoglobulin/0.05 ml. MAbs binding to the epitope 1 B neutralized the virus at a concentration of 250 ng/0.05 ml. In intraperitoneal challenge experiments, MAbs binding to the epitopes 1 A and 2 protected mice against 4 LD50 of vaccinia virus M1, but not against local lesions by subcutaneous application. MAbs against epitope 1 B had no protective effect in vivo. The three epitopes were present in 14 of 16 orthopoxviruses tested but with quantitative differences. Maximal binding (Vmax) and the antibody concentration at half-maximal binding (Km) which were calculated as for Michaelis-Menten kinetics from regression analysis of the ELISA data and the MAb concentration giving 50% plaque reduction were the basis for the evaluation. In monkey-pox virus Kopenhagen the epitopes 1 A and 1 B were absent. MAbs binding to epitope 2 reacted just as well as with vaccinia viruses. Ectromelia virus lacked all the epitopes.

  19. HIV-1 superinfection in women broadens and strengthens the neutralizing antibody response.

    Directory of Open Access Journals (Sweden)

    Valerie Cortez

    Full Text Available Identifying naturally-occurring neutralizing antibodies (NAb that are cross-reactive against all global subtypes of HIV-1 is an important step toward the development of a vaccine. Establishing the host and viral determinants for eliciting such broadly NAbs is also critical for immunogen design. NAb breadth has previously been shown to be positively associated with viral diversity. Therefore, we hypothesized that superinfected individuals develop a broad NAb response as a result of increased antigenic stimulation by two distinct viruses. To test this hypothesis, plasma samples from 12 superinfected women each assigned to three singly infected women were tested against a panel of eight viruses representing four different HIV-1 subtypes at matched time points post-superinfection (~5 years post-initial infection. Here we show superinfected individuals develop significantly broader NAb responses post-superinfection when compared to singly infected individuals (RR = 1.68, CI: 1.23-2.30, p = 0.001. This was true even after controlling for NAb breadth developed prior to superinfection, contemporaneous CD4+ T cell count and viral load. Similarly, both unadjusted and adjusted analyses showed significantly greater potency in superinfected cases compared to controls. Notably, two superinfected individuals were able to neutralize variants from four different subtypes at plasma dilutions >1∶300, suggesting that their NAbs exhibit elite activity. Cross-subtype breadth was detected within a year of superinfection in both of these individuals, which was within 1.5 years of their initial infection. These data suggest that sequential infections lead to augmentation of the NAb response, a process that may provide insight into potential mechanisms that contribute to the development of antibody breadth. Therefore, a successful vaccination strategy that mimics superinfection may lead to the development of broad NAbs in immunized individuals.

  20. Kinetic and HPV infection effects on cross-type neutralizing antibody and avidity responses induced by Cervarix®

    Science.gov (United States)

    Kemp, Troy J.; Safaeian, Mahboobeh; Hildesheim, Allan; Pan, Yuanji; Penrose, Kerri J.; Porras, Carolina; Schiller, John T.; Lowy, Douglas R.; Herrero, Rolando; Pinto, Ligia A.

    2012-01-01

    Background We previously demonstrated that Cervarix® elicits antibody responses against vaccine-related types for which clinical efficacy was demonstrated (HPV-31 and -45). Here, we evaluated the kinetics of neutralization titers and avidity of Cervarix®-induced antibodies up to 36 months of follow-up in unexposed and HPV infected women. Methods A subset of women who participated in the Cost Rica HPV-16/18 Vaccine Trial had pre- and post-vaccination sera tested for antibody responses to HPV-16, -18, -31, -45, and -58 using a pseudovirion-based neutralization assay, and HPV-16 antibody avidity using an HPV-16 L1 VLP (virus-like particle)-based ELISA developed in our laboratory. Results In uninfected women, neutralizing antibody titers did not reach significance until after the 3rd dose for HPV-31 (month 12, p=0.009) and HPV-45 (month 12, p=0.003), but then persisted up to month 36 (HPV-31, p=0.01; HPV-45, p=0.002). Individuals infected with HPV-16 or HPV-31 at enrollment developed a significantly higher median antibody response to the corresponding HPV type after one dose, but there was not a difference between median titers after three doses compared to the HPV negative group. Median HPV-16 antibody avidity and titer increased over time up to month 12; however, the HPV-16 avidity did not correlate well with HPV-16 neutralizing antibody titers at each time point examined, except for month 6. The median avidity levels were higher in HPV-16 infected women at month 1 (p=0.04) and lower in HPV-16 infected women at month 12 (p=0.006) compared to the HPV negative women. Conclusions The persistence of cross-neutralization titers at month 36 suggests cross-reactive antibody responses are likely to persist long-term and are not influenced by infection status at enrollment. However, the weak correlation between avidity and neutralization titers emphasizes the need for examining avidity in efficacy studies to determine if high avidity antibodies play a critical role in

  1. Neutralization and Binding Profile of Monoclonal Antibodies Generated Against Influenza A H1N1 Viruses.

    Science.gov (United States)

    Shembekar, Nachiket; Mallajosyula, Vamsee V Aditya; Malik, Ankita; Saini, Ashok; Varadarajan, Raghavan; Gupta, Satish Kumar

    2016-08-01

    Monoclonal antibodies (MAbs) provide scope for the development of better therapeutics and diagnostic tools. Herein, we describe the binding and neutralization profile(s) for a panel of murine MAbs generated against influenza A H1N1 viruses elicited by immunization with pandemic H1 recombinant hemagglutinin (rHA)/whole virus or seasonal H1 rHA. Neutralizing MAbs, MA-2070 and MA-M, were obtained after pandemic A/California/07/2009 (H1N1) virus/rHA immunization(s). Both MAbs reacted specifically with rHA from A/California/07/2009 and A/England/195/2009 in ELISA. MA-2070 bound rHA of A/California/07/2009 with high affinity (KD = 51.36 ± 9.20 nM) and exhibited potent in vitro neutralization (IC50 = 2.50 μg/mL). MA-2070 bound within the stem domain of HA. MA-M exhibited both hemagglutination inhibition (HI, 1.50 μg/mL) and in vitro neutralization (IC50 = 0.66 μg/mL) activity against the pandemic A/California/07/2009 virus and showed higher binding affinity (KD = 9.80 ± 0.67 nM) than MA-2070. MAb, MA-H generated against the seasonal A/Solomon Islands/03/2006 (H1N1) rHA binds within the head domain and bound the seasonal H1N1 (A/Solomon Islands/03/2006 and A/New Caledonia/20/1990) rHAs with high affinity (KD; 0.72-8.23 nM). MA-H showed high HI (2.50 μg/mL) and in vitro neutralization (IC50 = 2.61 μg/mL) activity against the A/Solomon Islands/03/2006 virus. All 3 MAbs failed to react in ELISA with rHA from various strains of H2N2, H3N2, H5N1, H7N9, and influenza virus B, suggesting their specificity for either pandemic or seasonal H1N1 influenza virus. The MAbs reported here may be useful in developing diagnostic assays.

  2. Neutralization of antibody-enhanced dengue infection by VIS513, a pan serotype reactive monoclonal antibody targeting domain III of the dengue E protein

    Science.gov (United States)

    Robinson, Luke N.; Ong, Li Ching; Rowley, Kirk J.; Winnett, Alexander; Tan, Hwee Cheng; Hobbie, Sven; Shriver, Zachary; Babcock, Gregory J.; Alonso, Sylvie; Ooi, Eng Eong

    2018-01-01

    Dengue virus (DENV) infection imposes enormous health and economic burden worldwide with no approved treatment. Several small molecules, including lovastatin, celgosivir, balapiravir and chloroquine have been tested for potential anti-dengue activity in clinical trials; none of these have demonstrated a protective effect. Recently, based on identification and characterization of cross-serotype neutralizing antibodies, there is increasing attention on the potential for dengue immunotherapy. Here, we tested the ability of VIS513, an engineered cross-neutralizing humanized antibody targeting the DENV E protein domain III, to overcome antibody-enhanced infection and high but brief viremia, which are commonly encountered in dengue patients, in various in vitro and in vivo models. We observed that VIS513 efficiently neutralizes DENV at clinically relevant viral loads or in the presence of enhancing levels of DENV immune sera. Single therapeutic administration of VIS513 in mouse models of primary infection or lethal secondary antibody-enhanced infection, reduces DENV titers and protects from lethal infection. Finally, VIS513 administration does not readily lead to resistance, either in cell culture systems or in animal models of dengue infection. The findings suggest that rapid viral reduction during acute DENV infection with a monoclonal antibody is feasible. PMID:29425203

  3. Mouse in Vivo Neutralization of Escherichia coli Shiga Toxin 2 with Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Larry H. Stanker

    2013-10-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC food contaminations pose serious health concerns, and have been the subject of massive food recalls. STEC has been identified as the major cause of the life-threatening complication of hemolytic uremic syndrome (HUS. Besides supportive care, there currently are no therapeutics available. The use of antibiotics for combating pathogenic E. coli is not recommended because they have been shown to stimulate toxin production. Clearing Stx2 from the circulation could potentially lessen disease severity. In this study, we tested the in vivo neutralization of Stx2 in mice using monoclonal antibodies (mAbs. We measured the biologic half-life of Stx2 in mice and determined the distribution phase or t1/2 α to be 3 min and the clearance phase or t1/2 β to be 40 min. Neutralizing mAbs were capable of clearing Stx2 completely from intoxicated mouse blood within minutes. We also examined the persistence of these mAbs over time and showed that complete protection could be passively conferred to mice 4 weeks before exposure to Stx2. The advent of better diagnositic methods and the availability of a greater arsenal of therapeutic mAbs against Stx2 would greatly enhance treatment outcomes of life threatening E. coli infections.

  4. Tandem bispecific neutralizing antibody eliminates HIV-1 infection in humanized mice.

    Science.gov (United States)

    Wu, Xilin; Guo, Jia; Niu, Mengyue; An, Minghui; Liu, Li; Wang, Hui; Jin, Xia; Zhang, Qi; Lam, Ka Shing; Wu, Tongjin; Wang, Hua; Wang, Qian; Du, Yanhua; Li, Jingjing; Cheng, Lin; Tang, Hang Ying; Shang, Hong; Zhang, Linqi; Zhou, Paul; Chen, Zhiwei

    2018-04-23

    The discovery of an HIV-1 cure remains a medical challenge because the virus rebounds quickly after the cessation of combination antiretroviral therapy (cART). Here, we investigate the potential of an engineered tandem bispecific broadly neutralizing antibody (bs-bnAb) as an innovative product for HIV-1 prophylactic and therapeutic interventions. We discovered that by preserving 2 single-chain variable fragment (scFv) binding domains of each parental bnAb, a single gene-encoded tandem bs-bnAb, BiIA-SG, displayed substantially improved breadth and potency. BiIA-SG neutralized all 124 HIV-1-pseudotyped viruses tested, including global subtypes/recombinant forms, transmitted/founder viruses, variants not susceptible to parental bnAbs and to many other bnAbs with an average IC50 value of 0.073 μg/ml (range HIV-1 stains. Moreover, whereas BiIA-SG delayed viral rebound in a short-term therapeutic setting when combined with cART, a single injection of adeno-associated virus-transferred (AAV-transferred) BiIA-SG gene resulted dose-dependently in prolonged in vivo expression of BiIA-SG, which was associated with complete viremia control and subsequent elimination of infected cells in humanized mice. These results warrant the clinical development of BiIA-SG as a promising bs-bnAb-based biomedical intervention for the prevention and treatment of HIV-1 infection.

  5. Sporozoite neutralizing antibodies elicited in mice and rhesus macaques immunized with a Plasmodium falciparum repeat peptide conjugated to meningococcal outer membrane protein complex

    Directory of Open Access Journals (Sweden)

    Craig ePrzysiecki

    2012-11-01

    Full Text Available Antibodies that neutralize infectivity of malaria sporozoites target the central repeat region of the circumsporozoite (CS protein, which in Plasmodium falciparum is comprised primarily of 30-40 tandem NANP tetramer repeats. We evaluated immunogenicity of an alum-adsorbed (NANP6 peptide conjugated to an outer membrane protein complex (OMPC derived from Neisseria meningitidis, a carrier protein used in a licensed H. influenzae pediatric vaccine. Mice immunized with alum-adsorbed (NANP6-OMPC, with or without Iscomatrix© as co-adjuvant, developed high levels of anti-repeat peptide antibody that inhibited in vitro invasion of human hepatoma cells by transgenic P. berghei sporozoites that express P. falciparum CS repeats (PfPb. Inhibition of sporozoite invasion in vitro correlated with in vivo resistance to challenge by the bites of PfPb infected mosquitoes. Challenged mice had > 90% reduction of hepatic stage parasites as measured by real-time PCR, and either sterile immunity, i.e. no detectable blood stage parasites, or delayed prepatent periods which indicate neutralization of a majority, but not all, sporozoites. Rhesus macaques immunized with two doses of (NANP6-OMPC/MAA formulated with Iscomatrix© developed anti-repeat antibodies that persisted for ~2 years. A third dose of (NANP6-OMPC/MAA+ Iscomatrix© at that time elicited strong anamnestic antibody responses. Rhesus macaque immune sera obtained post second and third dose of vaccine displayed high levels of sporozoite neutralizing activity in vitro that correlated with presence of high anti-repeat antibody titers. These preclinical studies in mice of different MHC haplotypes and a non-human primate support use of CS peptide-OMPC conjugates as a highly immunogenic platform to evaluate CS protective epitopes. Potential pre-erythrocytic vaccines can be combined with sexual blood stage vaccines as a multi-antigen malaria vaccine to block invasion and transmission of Plasmodium parasites

  6. Immunologic characteristics of HIV-infected individuals who make broadly neutralizing antibodies.

    Science.gov (United States)

    Borrow, Persephone; Moody, M Anthony

    2017-01-01

    Induction of broadly neutralizing antibodies (bnAbs) capable of inhibiting infection with diverse variants of human immunodeficiency virus type 1 (HIV-1) is a key, as-yet-unachieved goal of prophylactic HIV-1 vaccine strategies. However, some HIV-infected individuals develop bnAbs after approximately 2-4 years of infection, enabling analysis of features of these antibodies and the immunological environment that enables their induction. Distinct subsets of CD4 + T cells play opposing roles in the regulation of humoral responses: T follicular helper (Tfh) cells support germinal center formation and provide help for affinity maturation and the development of memory B cells and plasma cells, while regulatory CD4 + (Treg) cells including T follicular regulatory (Tfr) cells inhibit the germinal center reaction to limit autoantibody production. BnAbs exhibit high somatic mutation frequencies, long third heavy-chain complementarity determining regions, and/or autoreactivity, suggesting that bnAb generation is likely to be highly dependent on the activity of CD4 + Tfh cells, and may be constrained by host tolerance controls. This review discusses what is known about the immunological environment during HIV-1 infection, in particular alterations in CD4 + Tfh, Treg, and Tfr populations and autoantibody generation, and how this is related to bnAb development, and considers the implications for HIV-1 vaccine design. © 2017 The Authors. Immunological Reviews published by John Wiley & Sons Ltd.

  7. Broadly neutralizing antibodies for treatment and prevention of HIV-1 infection.

    Science.gov (United States)

    Cohen, Yehuda Z; Caskey, Marina

    2018-04-24

    Several anti-HIV-1 broadly neutralizing antibodies (bNAbs) with exceptional breadth and potency that target different HIV-1 envelope epitopes have been identified. bNAbs are an attractive new strategy for HIV-1 prevention and therapy, and potentially, for long-term remission or cure. Here, we discuss findings from early clinical studies that have evaluated these novel bNAbs. Phase 1 studies of bNAbs targeting two distinct HIV-1 envelope epitopes have demonstrated their favorable safety and pharmacokinetic profile. Single bNAb infusions led to significant, but transient, decline in viremia with selection of escape variants. A single bNAb also delayed viral rebound in ART-treated participants who discontinued ART. Importantly, in-vivo efficacy was related to antibody potency and to the level of preexisting resistance. Studies in animal models showed that bNAbs can clear HIV-infected cells and modulate host immune responses. These findings suggest that bNAbs may target the latent HIV reservoir in humans and could contribute to long-term remission of HIV-1 infection. bNAbs may offer advantages over traditional ART for both the prevention and treatment of HIV-1 infection. In addition, bNAbs may target the latent viral reservoir. bNAb combinations and bNAbs engineered for prolonged half-life and increased potency are currently undergoing clinical evaluation.

  8. Inducing cross-clade neutralizing antibodies against HIV-1 by immunofocusing.

    Directory of Open Access Journals (Sweden)

    Michael Humbert

    Full Text Available Although vaccines are important in preventing viral infections by inducing neutralizing antibodies (nAbs, HIV-1 has proven to be a difficult target and escapes humoral immunity through various mechanisms. We sought to test whether HIV-1 Env mimics may serve as immunogens.Using random peptide phage display libraries, we identified the epitopes recognized by polyclonal antibodies of a rhesus monkey that had developed high-titer, broadly reactive nAbs after infection with a simian-human immunodeficiency virus (SHIV encoding env of a recently transmitted HIV-1 clade C (HIV-C. Phage peptide inserts were analyzed for conformational and linear homology using computational analysis; some peptides mimicked various domains of the original HIV-C Env, such as conformational V3 loop epitopes and the conserved linear region of the gp120 C-terminus. Next, we devised a novel prime/boost strategy to test the immunogenicity of such phage-displayed peptides and primed mice only once with HIV-C gp160 DNA followed by boosting with mixtures of recombinant phages.This strategy, which was designed to focus the immune system on a few Env epitopes (immunofocusing, not only induced HIV-C gp160 binding antibodies and cross-clade nAbs, but also linked a conserved HIV Env region for the first time to the induction of nAbs: the C-terminus of gp120. The identification of conserved antigen mimics may lead to novel immunogens capable of inducing broadly reactive nAbs.

  9. Novel neutralizing hedgehog antibody MEDI-5304 exhibits antitumor activity by inhibiting paracrine hedgehog signaling.

    Science.gov (United States)

    Michaud, Neil R; Wang, Youzhen; McEachern, Kristen A; Jordan, Jerold J; Mazzola, Anne Marie; Hernandez, Axel; Jalla, Sanjoo; Chesebrough, Jon W; Hynes, Mark J; Belmonte, Matthew A; Wang, Lidong; Kang, Jaspal S; Jovanovic, Jelena; Laing, Naomi; Jenkins, David W; Hurt, Elaine; Liang, Meina; Frantz, Christopher; Hollingsworth, Robert E; Simeone, Diane M; Blakey, David C; Bedian, Vahe

    2014-02-01

    The hedgehog pathway has been implicated in the tumorigenesis, tumor progression, and metastasis of numerous human cancers. We generated the first fully human hedgehog antibody MEDI-5304 and characterized its antitumor activity and preclinical toxicology. MEDI-5304 bound sonic hedgehog (SHH) and Indian hedgehog (IHH) with low picomolar affinity and neutralized SHH and IHH activity in cellular mGLI1 reporter assays. The antibody inhibited transcription of hedgehog target genes and osteoblast differentiation of C3H10T1/2 cells. We evaluated the activity of MEDI-5304 in vivo in model systems that allowed us to evaluate two primary hypotheses of hedgehog function in human cancer, paracrine signaling between tumor and stromal cells and cancer stem cell (CSC) self-renewal. MEDI-5304 displayed robust pharmacodynamic effects in stromal cells that translated to antitumor efficacy as a single agent in an HT-29/MEF coimplantation model of paracrine hedgehog signaling. MEDI-5304 also improved responses to carboplatin in the HT-29/MEF model. The antibody, however, had no effect as a single agent or in combination with gemcitabine on the CSC frequency or growth of several primary pancreatic cancer explant models. These findings support the conclusion that hedgehog contributes to tumor biology via paracrine tumor-stromal signaling but not via CSC maintenance or propagation. Finally, the only safety study finding associated with MEDI-5304 was ondontodysplasia in rats. Thus, MEDI-5304 represents a potent dual hedgehog inhibitor suitable for continued development to evaluate efficacy and safety in human patients with tumors harboring elevated levels of SHH or IHH.

  10. Delivering HIV Gagp24 to DCIR Induces Strong Antibody Responses In Vivo.

    Directory of Open Access Journals (Sweden)

    Anne-Laure Flamar

    Full Text Available Targeting dendritic cell-specific endocytic receptors using monoclonal antibodies fused to desired antigens is an approach widely used in vaccine development to enhance the poor immunogenicity of protein-based vaccines and to induce immune responses. Here, we engineered an anti-human DCIR recombinant antibody, which cross-reacts with the homologous cynomolgous macaque receptor and was fused via the heavy chain C-terminus to HIV Gagp24 protein (αDCIR.Gagp24. In vitro, αDCIR.Gagp24 expanded multifunctional antigen-specific memory CD4+ T cells recognizing multiple Gagp24 peptides from HIV-infected patient peripheral blood mononuclear cells. In non human primates, priming with αDCIR.Gagp24 without adjuvant elicited a strong anti-Gagp24 antibody response after the second immunization, while in the non-targeted HIV Gagp24 protein control groups the titers were weak. The presence of the double-stranded RNA poly(I:C adjuvant significantly enhanced the anti-Gagp24 antibody response in all the groups and reduced the discrimination between the different vaccine groups. The avidity of the anti-Gagp24 antibody responses was similar with either αDCIR.Gagp24 or Gagp24 immunization, but increased from medium to high avidity in both groups when poly(I:C was co-administered. This data provides a comparative analysis of DC-targeted and non-targeted proteins for their capacity to induce antigen-specific antibody responses in vivo. This study supports the further development of DCIR-based DC-targeting vaccines for protective durable antibody induction, especially in the absence of adjuvant.

  11. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus

    International Nuclear Information System (INIS)

    Hashem, Anwar M.; Van Domselaar, Gary; Li, Changgui; Wang, Junzhi; She, Yi-Min; Cyr, Terry D.; Sui, Jianhua; He, Runtao; Marasco, Wayne A.; Li, Xuguang

    2010-01-01

    Research highlights: → The fusion peptide is the only universally conserved epitope in all influenza viral hemagglutinins. → Anti-fusion peptide antibodies are universal antibodies that cross-react with all influenza HA subtypes. → The universal antibodies cross-neutralize different influenza A subtypes. → The universal antibodies inhibit the fusion process between the viruses and the target cells. -- Abstract: The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it could be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.

  12. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, Anwar M. [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Department of Microbiology, Faculty of Medicine, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON (Canada); Van Domselaar, Gary [National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB (Canada); Li, Changgui; Wang, Junzhi [National Institute for the Control of Pharmaceutical and Biological Products, Beijing (China); She, Yi-Min; Cyr, Terry D. [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Sui, Jianhua [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); He, Runtao [National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB (Canada); Marasco, Wayne A. [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); Li, Xuguang, E-mail: Sean.Li@hc-sc.gc.ca [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON (Canada)

    2010-12-10

    Research highlights: {yields} The fusion peptide is the only universally conserved epitope in all influenza viral hemagglutinins. {yields} Anti-fusion peptide antibodies are universal antibodies that cross-react with all influenza HA subtypes. {yields} The universal antibodies cross-neutralize different influenza A subtypes. {yields} The universal antibodies inhibit the fusion process between the viruses and the target cells. -- Abstract: The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it could be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.

  13. Llama-derived single domain antibodies to build multivalent, superpotent and broadened neutralizing anti-viral molecules.

    Directory of Open Access Journals (Sweden)

    Anna Hultberg

    2011-04-01

    Full Text Available For efficient prevention of viral infections and cross protection, simultaneous targeting of multiple viral epitopes is a powerful strategy. Llama heavy chain antibody fragments (VHH against the trimeric envelope proteins of Respiratory Syncytial Virus (Fusion protein, Rabies virus (Glycoprotein and H5N1 Influenza (Hemagglutinin 5 were selected from llama derived immune libraries by phage display. Neutralizing VHH recognizing different epitopes in the receptor binding sites on the spikes with affinities in the low nanomolar range were identified for all the three viruses by viral neutralization assays. By fusion of VHH with variable linker lengths, multimeric constructs were made that improved neutralization potencies up to 4,000-fold for RSV, 1,500-fold for Rabies virus and 75-fold for Influenza H5N1. The potencies of the VHH constructs were similar or better than best performing monoclonal antibodies. The cross protection capacity against different viral strains was also improved for all three viruses, both by multivalent (two or three identical VHH and biparatopic (two different VHH constructs. By combining a VHH neutralizing RSV subtype A, but not subtype B with a poorly neutralizing VHH with high affinity for subtype B, a biparatopic construct was made with low nanomolar neutralizing potency against both subtypes. Trivalent anti-H5N1 VHH neutralized both Influenza H5N1 clade1 and 2 in a pseudotype assay and was very potent in neutralizing the NIBRG-14 Influenza H5N1 strain with IC(50 of 9 picomolar. Bivalent and biparatopic constructs against Rabies virus cross neutralized both 10 different Genotype 1 strains and Genotype 5.The results show that multimerization of VHH fragments targeting multiple epitopes on a viral trimeric spike protein is a powerful tool for anti-viral therapy to achieve "best-in-class" and broader neutralization capacity.

  14. Postattachment neutralization of a primary strain of HIV type 1 in peripheral blood mononuclear cells is mediated by CD4-specific antibodies but not by a glycoprotein 120-specific antibody that gives potent standard neutralization.

    Science.gov (United States)

    McInerney, T L; Dimmock, N J

    2001-11-20

    De novo infecting HIV-1 or virus released from an infected cell in vivo attaches relatively quickly to a target cell, but the rate of fusion-entry of such virus is slow, with 50% entry taking > or =2 hr. It is thus desirable that antibodies stimulated by any vaccine or given in immunotherapy are able to neutralize not only free virus, but also virus attached to the target cell. Here we investigated postattachment neutralization (PAN) of a primary HIV-1 strain (JRCSF) in peripheral blood mononuclear cells and of a T cell line-adapted strain (IIIB) in C8166 T lymphoblastoid cells, using the highly potent gp120-specific human monoclonal b12 monoclonal IgG, and monoclonal antibodies specific for the CD4 primary cell receptor. In addition, we improved the experimental protocols of related studies by using a pulse of antibody, thus avoiding the complication of neutralizing progeny virus. We found that b12 IgG PAN was inefficient, with PAN of IIIB needing a 1000-fold greater concentration of antibody than was required for standard neutralization, and PAN of JRCSF being detected erratically only at 4 degrees C and unphysiologically high concentrations (300 microg/ml). Nonetheless, under identical conditions a 10-microg/ml pulse of the CD4-specific MAb Q4120 gave up to 99% PAN of JRCSF, and more than 95% even when added 3 hr after infection at 37 degrees C. Possible mechanisms by which PAN by CD4- specific antibodies is mediated are discussed. We suggest that such anti-CD4 antibodies should be considered as a component of HIV-1 immunotherapy.

  15. Comparison of competitive ligand-binding assay and bioassay formats for the measurement of neutralizing antibodies to protein therapeutics.

    Science.gov (United States)

    Finco, Deborah; Baltrukonis, Daniel; Clements-Egan, Adrienne; Delaria, Kathy; Gunn, George R; Lowe, John; Maia, Mauricio; Wong, Teresa

    2011-01-25

    Administration of biological therapeutic proteins can lead to unwanted immunogenicity in recipients of these products. The assessment and characterization of such immune reactions can be helpful to better understand their clinical relevance and how they relate to patient safety and therefore, have become an integral part of a product development program for biological therapeutics. Testing for anti-drug antibodies (ADA) to biological/biotechnology-derived therapeutic proteins generally follows a tiered approach. Samples are initially screened for binding antibodies; presumptive positives are then confirmed in a confirmatory assay; subsequently, confirmed-positive samples may be further characterized by titration and with a neutralizing antibody (NAb) assay. Regulatory guidances on immunogenicity state that assessing the neutralizing capacity of antibodies should preferably be done using functional bioassays, while recognizing that competitive ligand-binding (CLB) assays may be substituted when neutralizing bioassays are inadequate or not feasible. This manuscript describes case studies from four companies in which CLB assays and functional bioassays were compared for their ability to detect neutralizing ADA against a variety of biotechnology-derived therapeutic proteins. Our findings indicate that CLB assays are comparable to bioassays for the detection of NAbs, in some cases offering better detection sensitivity, lower variability, and less matrix interference. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Direct Probing of Germinal Center Responses Reveals Immunological Features and Bottlenecks for Neutralizing Antibody Responses to HIV Env Trimer

    NARCIS (Netherlands)

    Havenar-Daughton, Colin; Carnathan, Diane G.; Torrents de la Peña, Alba; Pauthner, Matthias; Briney, Bryan; Reiss, Samantha M.; Wood, Jennifer S.; Kaushik, Kirti; van Gils, Marit J.; Rosales, Sandy L.; van der Woude, Patricia; Locci, Michela; Le, Khoa M.; de Taeye, Steven W.; Sok, Devin; Mohammed, Ata Ur Rasheed; Huang, Jessica; Gumber, Sanjeev; Garcia, AnaPatricia; Kasturi, Sudhir P.; Pulendran, Bali; Moore, John P.; Ahmed, Rafi; Seumois, Grégory; Burton, Dennis R.; Sanders, Rogier W.; Silvestri, Guido; Crotty, Shane

    2016-01-01

    Generating tier 2 HIV-neutralizing antibody (nAb) responses by immunization remains a challenging problem, and the immunological barriers to induction of such responses with Env immunogens remain unclear. Here, some rhesus monkeys developed autologous tier 2 nAbs upon HIV Env trimer immunization

  17. Antibody response to a synthetic peptide covering a LAV-1/HTLV-IIIB neutralization epitope and disease progression

    NARCIS (Netherlands)

    Boucher, C. A.; de Wolf, F.; Houweling, J. T.; Bakker, M.; Dekker, J.; Roos, M. T.; Coutinho, R. A.; van der Noordaa, J.; Goudsmit, J.

    1989-01-01

    Sequential sera of homosexual men participating in a prospective study on the incidence of HIV-1 infection and risk factors for AIDS were tested for the presence of antibodies to a synthetic 17-mer (Neu21; KSIRIQRGPGRAFVTIG) representing a neutralization epitope as present on the LAV-1/HTLV-IIIB

  18. In vivo neutralization of hepatitis B virus infection by an anti-preS1 humanized antibody in chimpanzees

    International Nuclear Information System (INIS)

    Hong, Hyo Jeong; Ryu, Chun Jeih; Hur, Hyangsuk; Kim, Seho; Oh, Han Kyu; Oh, Mee Sook; Park, Song Yong

    2004-01-01

    Previously, we generated a murine monoclonal antibody (mAb), KR127, that recognizes amino acids (aa) 37-45 of the preS1 of hepatitis B virus (HBV). In this study, we have constructed a humanized version of KR127 and evaluated its HBV-neutralizing activity in chimpanzees. A study chimpanzee was given a single intravenous dose of the humanized antibody, followed by intravenous challenge with adr subtype of wild type HBV, while a control chimpanzee was only challenged with the virus. The result showed that the study chimpanzee did not develop HBV infection during 1 year, while the control chimpanzee was infected, indicating that the humanized antibody exhibited in vivo virus-neutralizing activity and thus protected the chimpanzee from HBV infection. In addition, the humanized antibody bound to the preS1 of all subtypes of HBV. We first demonstrate that an anti-preS1 mAb can neutralize HBV infection in vivo. This humanized antibody will be useful for the immunoprophylaxis of HBV infection

  19. Protective levels of canine distemper virus antibody in an urban dog population using plaque reduction neutralization test

    Directory of Open Access Journals (Sweden)

    O.I. Oyedele

    2004-11-01

    Full Text Available Blood samples from 50 dogs were collected at three veterinary clinics in Ibadan and Abuja, Nigeria and the serum from each sample was evaluated serologically for neutralizing antibodies against canine distemper virus (CDV by the highly sensitive plaque reduction (PRN neutralization assay. Thirteen dogs had plaque reduction neutralization titres of 0-100, seven had titres of 100-1 000 while 30 had titres ranging from 1 000-6 000. The PRN titres of vaccinated dogs were found to be significantly higher than unvaccinated dogs. The widespread use of the highly reproducible PRN test for the evaluation of antibody response to CDV may be very important in the generation of international CDV positive serum standards that should help to improve pre-and post-vaccination testing of dogs worldwide.

  20. Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jinghe; Kang, Byong H.; Ishida, Elise; Zhou, Tongqing; Griesman, Trevor; Sheng, Zizhang; Wu, Fan; Doria-Rose, Nicole A.; Zhang, Baoshan; McKee, Krisha; O’Dell, Sijy; Chuang, Gwo-Yu; Druz, Aliaksandr; Georgiev, Ivelin S.; Schramm, Chaim A.; Zheng, Anqi; Joyce, M.  Gordon; Asokan, Mangaiarkarasi; Ransier, Amy; Darko, Sam; Migueles, Stephen A.; Bailer, Robert T.; Louder, Mark K.; Alam, S.  Munir; Parks, Robert; Kelsoe, Garnett; Von Holle, Tarra; Haynes, Barton F.; Douek, Daniel C.; Hirsch, Vanessa; Seaman, Michael S.; Shapiro, Lawrence; Mascola, John R.; Kwong, Peter D.; Connors, Mark

    2016-11-01

    Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain. In addition, structural analysis revealed that the orientation of N6 permitted it to avoid steric clashes with glycans, which is a common mechanism of resistance. Thus, an HIV-1-specific bNAb can achieve potent, near-pan neutralization of HIV-1, making it an attractive candidate for use in therapy and prophylaxis.

  1. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yang [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Sasaki, Tadahiro [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Kubota-Koketsu, Ritsuko [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Inoue, Yuji [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Yasugi, Mayo [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Yamashita, Akifumi; Ramadhany, Ririn; Arai, Yasuha [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Du, Anariwa [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Boonsathorn, Naphatsawan [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Ibrahim, Madiha S. [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Damanhour University, Damanhour (Egypt); and others

    2014-07-18

    Highlights: • Influenza infection can elicit heterosubtypic antibodies to group 1 influenza virus. • Three human monoclonal antibodies were generated from an H1N1-infected patient. • The antibodies predominantly recognized α-helical stem of viral hemagglutinin (HA). • The antibodies inhibited HA structural activation during the fusion process. • The antibodies are potential candidates for future antibody therapy to influenza. - Abstract: Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize a diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses.

  2. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses

    International Nuclear Information System (INIS)

    Pan, Yang; Sasaki, Tadahiro; Kubota-Koketsu, Ritsuko; Inoue, Yuji; Yasugi, Mayo; Yamashita, Akifumi; Ramadhany, Ririn; Arai, Yasuha; Du, Anariwa; Boonsathorn, Naphatsawan; Ibrahim, Madiha S.

    2014-01-01

    Highlights: • Influenza infection can elicit heterosubtypic antibodies to group 1 influenza virus. • Three human monoclonal antibodies were generated from an H1N1-infected patient. • The antibodies predominantly recognized α-helical stem of viral hemagglutinin (HA). • The antibodies inhibited HA structural activation during the fusion process. • The antibodies are potential candidates for future antibody therapy to influenza. - Abstract: Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize a diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses

  3. Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein.

    Directory of Open Access Journals (Sweden)

    Guowei Wei

    Full Text Available Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain antibody (VHH libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection against a number of variants and subtypes of influenza A viruses.

  4. Influenza virus neutralizing antibodies and IgG isotype profiles after immunization of mice with influenza A subunit vaccine using various adjuvants

    NARCIS (Netherlands)

    Benne, CA; Harmsen, M; vanderGraaff, W; Verheul, AFM; Snippe, H; Kraaijeveld, CA

    The influence of various adjuvants on the development of influenza virus neutralizing antibodies and distribution of anti-influenza virus IgG isotypes after immunization of mice with influenza A (H3N2) subunit vaccine was investigated. Serum titres of influenza virus neutralizing antibodies and

  5. Cooperativity in virus neutralization by human monoclonal antibodies to two adjacent regions located at the amino terminus of hepatitis C virus E2 glycoprotein

    DEFF Research Database (Denmark)

    Keck, Zhenyong; Wang, Wenyan; Wang, Yong

    2013-01-01

    A challenge for hepatitis C virus (HCV) vaccine development is defining conserved epitopes that induce protective antibodies against this highly diverse virus. An envelope glycoprotein (E2) segment located at amino acids (aa) 412 to 423 contains highly conserved neutralizing epitopes. While...... polyclonal antibodies to aa 412 to 423 from HCV-infected individuals confirmed broad neutralization, conflicting findings have been reported on polyclonal antibodies to an adjacent region, aa 434 to 446, that may or may not interfere with neutralization by antibodies to aa 412 to 423. To define the interplay...

  6. Structural basis for diverse N-glycan recognition by HIV-1-neutralizing V1-V2-directed antibody PG16

    Energy Technology Data Exchange (ETDEWEB)

    Pancera, Marie; Shahzad-ul-Hussan, Syed; Doria-Rose, Nicole A.; McLellan, Jason S.; Bailer, Robert T.; Dai, Kaifan; Loesgen, Sandra; Louder, Mark K.; Staupe, Ryan P.; Yang, Yongping; Zhang, Baoshan; Parks, Robert; Eudailey, Joshua; Lloyd, Krissey E.; Blinn, Julie; Alam, S. Munir; Haynes, Barton F.; Amin, Mohammed N.; Wang, Lai-Xi; Burton, Dennis R.; Koff, Wayne C.; Nabel, Gary J.; Mascola, John R.; Bewley, Carole A; Kwong, Peter D. [NIH; (Scripps); (Duke); (Maryland-MED); (IAVI)

    2013-08-05

    HIV-1 uses a diverse N-linked-glycan shield to evade recognition by antibody. Select human antibodies, such as the clonally related PG9 and PG16, recognize glycopeptide epitopes in the HIV-1 V1–V2 region and penetrate this shield, but their ability to accommodate diverse glycans is unclear. Here we report the structure of antibody PG16 bound to a scaffolded V1–V2, showing an epitope comprising both high mannose–type and complex-type N-linked glycans. We combined structure, NMR and mutagenesis analyses to characterize glycan recognition by PG9 and PG16. Three PG16-specific residues, arginine, serine and histidine (RSH), were critical for binding sialic acid on complex-type glycans, and introduction of these residues into PG9 produced a chimeric antibody with enhanced HIV-1 neutralization. Although HIV-1–glycan diversity facilitates evasion, antibody somatic diversity can overcome this and can provide clues to guide the design of modified antibodies with enhanced neutralization.

  7. A spike-specific whole-porcine antibody isolated from a porcine B cell that neutralizes both genogroup 1 and 2 PEDV strains.

    Science.gov (United States)

    Fu, Fang; Li, Lin; Shan, Lingling; Yang, Beibei; Shi, Hongyan; Zhang, Jiaoer; Wang, Hongfeng; Feng, Li; Liu, Pinghuang

    2017-06-01

    Porcine epidemic diarrhea (PED), caused by an alpha coronavirus, is a highly contagious disease and causes high morbidity and mortality in suckling piglets. Isolating PEDV neutralizing antibodies from porcine B cells is critical to elucidate the development of PEDV neutralizing antibodies and the protective mechanism of PEDV infection. Here, we described the isolation of a PEDV-neutralizing antibody from the B cell of a vaccinated pig. The antibody, named PC10, was demonstrated to target the conformational epitope of PEDV spike protein, specifically bind to the infected cells of PEDV genogroup 1 and 2 strains, and potently neutralize PEDV infection. PC10 neutralized PEDV infection through interfering with the viral life stages after cellular attachment instead of blocking the attachment of PEDV to cells. These results suggest that PC10 could be a promising candidate for passive protection and inform PEDV vaccine design because of its specificity and substantial neutralization potency. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Structure-Based Design of Hepatitis C Virus Vaccines That Elicit Neutralizing Antibody Responses to a Conserved Epitope

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Brian G.; Boucher, Elisabeth N.; Piepenbrink, Kurt H.; Ejemel, Monir; Rapp, Chelsea A.; Thomas, William D.; Sundberg, Eric J.; Weng, Zhiping; Wang, Yang; Diamond, Michael S.

    2017-08-09

    Despite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody in complex with a conserved linear epitope from the HCV E2 envelope glycoprotein (residues 412 to 423; epitope I), we performed structure-based design of immunogens to induce antibody responses to this epitope. This resulted in epitope-based immunogens based on a cyclic defensin protein, as well as a bivalent immunogen with two copies of the epitope on the E2 surface. We solved the X-ray structure of a cyclic immunogen in complex with the HCV1 antibody and confirmed preservation of the epitope conformation and the HCV1 interface. Mice vaccinated with our designed immunogens produced robust antibody responses to epitope I, and their serum could neutralize HCV. Notably, the cyclic designs induced greater epitope-specific responses and neutralization than the native peptide epitope. Beyond successfully designing several novel HCV immunogens, this study demonstrates the principle that neutralizing anti-HCV antibodies can be induced by epitope-based, engineered vaccines and provides the basis for further efforts in structure-based design of HCV vaccines.

    IMPORTANCEHepatitis C virus is a leading cause of liver disease and liver cancer, with approximately 3% of the world's population infected. To combat this virus, an effective vaccine would have distinct advantages over current therapeutic options, yet experimental vaccines have not been successful to date, due in part to the virus's high sequence variability leading to immune escape. In this study, we rationally designed several vaccine immunogens based on the structure of a conserved epitope that

  9. Antibodies against a Synthetic Peptide of SagA Neutralize the Cytolytic Activity of Streptolysin S from Group A Streptococci†

    Science.gov (United States)

    Dale, James B.; Chiang, Edna Y.; Hasty, David L.; Courtney, Harry S.

    2002-01-01

    Virtually all group A streptococci (GAS) produce streptolysin S (SLS), a cytolytic toxin that is responsible for the beta-hemolysis surrounding colonies of the organisms grown on blood agar. SLS is an important virulence determinant of GAS, and recent studies have identified a nine-gene locus that is responsible for synthesis and transport of the toxin. SLS is not immunogenic; thus, no neutralizing antibodies are evoked during the course of natural infection. In the present study, we show that a synthetic peptide containing amino acid residues 10 to 30 of the putative SLS (SagA) propeptide [SLS(10-30)] coupled to keyhole limpet hemocyanin evoked antibodies in rabbits that completely neutralized the hemolytic activity of the toxin in vitro. Inhibition of hemolysis was reversed by preincubation of the immune serum with soluble, unconjugated peptide, indicating the specificity of the antibodies. In addition, antibodies that were affinity purified over an SLS(10-30) peptide column completely inhibited SLS-mediated hemolysis. The SLS(10-30) antisera did not opsonize group A streptococci; however, when combined with type-specific M protein antisera, the SLS antibodies significantly enhanced phagocytosis mediated by M protein antibodies. Thus, we have shown for the first time that it is possible to raise neutralizing antibodies against one of the most potent bacterial cytolytic toxins known. Our data also provide convincing evidence that the sagA gene actually encodes the SLS peptide of GAS. The synthetic peptide may prove to be an important component of vaccines designed to prevent GAS infections. PMID:11895983

  10. Optimization and Validation of a Plaque Reduction Neutralization Test for the Detection of Neutralizing Antibodies to Four Serotypes of Dengue Virus Used in Support of Dengue Vaccine Development

    Science.gov (United States)

    Timiryasova, Tatyana M.; Bonaparte, Matthew I.; Luo, Ping; Zedar, Rebecca; Hu, Branda T.; Hildreth, Stephen W.

    2013-01-01

    A dengue plaque reduction neutralization test (PRNT) to measure dengue serotype–specific neutralizing antibodies for all four virus serotypes was developed, optimized, and validated in accordance with guidelines for validation of bioanalytical test methods using human serum samples from dengue-infected persons and persons receiving a dengue vaccine candidate. Production and characterization of dengue challenge viruses used in the assay was standardized. Once virus stocks were characterized, the dengue PRNT50 for each of the four serotypes was optimized according to a factorial design of experiments approach for critical test parameters, including days of cell seeding before testing, percentage of overlay carboxymethylcellulose medium, and days of incubation post-infection to generate a robust assay. The PRNT50 was then validated and demonstrated to be suitable to detect and measure dengue serotype-specific neutralizing antibodies in human serum samples with acceptable intra-assay and inter-assay precision, accuracy/dilutability, specificity, and with a lower limit of quantitation of 10. PMID:23458954

  11. Relationship between the loss of neutralizing antibody binding and fusion activity of the F protein of human respiratory syncytial virus

    Directory of Open Access Journals (Sweden)

    Sarisky Robert T

    2007-07-01

    Full Text Available Abstract To elucidate the relationship between resistance to HRSV neutralizing antibodies directed against the F protein and the fusion activity of the F protein, a recombinant approach was used to generate a panel of mutations in the major antigenic sites of the F protein. These mutant proteins were assayed for neutralizing mAb binding (ch101F, palivizumab, and MAb19, level of expression, post-translational processing, cell surface expression, and fusion activity. Functional analysis of the fusion activity of the panel of mutations revealed that the fusion activity of the F protein is tolerant to multiple changes in the site II and IV/V/VI region in contrast with the somewhat limited spectrum of changes in the F protein identified from the isolation of HRSV neutralizing antibody virus escape mutants. This finding suggests that aspects other than fusion activity may limit the spectrum of changes tolerated within the F protein that are selected for by neutralizing antibodies.

  12. Structural basis for immunization with postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing antibody titers

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Kurt A.; Settembre, Ethan C.; Shaw, Christine A.; Dey, Antu K.; Rappuoli, Rino; Mandl, Christian W.; Dormitzer, Philip R.; Carfi, Andrea (Novartis)

    2012-02-07

    Respiratory syncytial virus (RSV), the main cause of infant bronchiolitis, remains a major unmet vaccine need despite more than 40 years of vaccine research. Vaccine candidates based on a chief RSV neutralization antigen, the fusion (F) glycoprotein, have foundered due to problems with stability, purity, reproducibility, and potency. Crystal structures of related parainfluenza F glycoproteins have revealed a large conformational change between the prefusion and postfusion states, suggesting that postfusion F antigens might not efficiently elicit neutralizing antibodies. We have generated a homogeneous, stable, and reproducible postfusion RSV F immunogen that elicits high titers of neutralizing antibodies in immunized animals. The 3.2-{angstrom} X-ray crystal structure of this substantially complete RSV F reveals important differences from homology-based structural models. Specifically, the RSV F crystal structure demonstrates the exposure of key neutralizing antibody binding sites on the surface of the postfusion RSV F trimer. This unanticipated structural feature explains the engineered RSV F antigen's efficiency as an immunogen. This work illustrates how structural-based antigen design can guide the rational optimization of candidate vaccine antigens.

  13. Structural basis of differential neutralization of DENV-1 genotypes by an antibody that recognizes a cryptic epitope.

    Directory of Open Access Journals (Sweden)

    S Kyle Austin

    Full Text Available We previously developed a panel of neutralizing monoclonal antibodies against Dengue virus (DENV-1, of which few exhibited inhibitory activity against all DENV-1 genotypes. This finding is consistent with reports observing variable neutralization of different DENV strains and genotypes using serum from individuals that experienced natural infection or immunization. Herein, we describe the crystal structures of DENV1-E111 bound to a novel CC' loop epitope on domain III (DIII of the E protein from two different DENV-1 genotypes. Docking of our structure onto the available cryo-electron microscopy models of DENV virions revealed that the DENV1-E111 epitope was inaccessible, suggesting that this antibody recognizes an uncharacterized virus conformation. While the affinity of binding between DENV1-E111 and DIII varied by genotype, we observed limited correlation with inhibitory activity. Instead, our results support the conclusion that potent neutralization depends on genotype-dependent exposure of the CC' loop epitope. These findings establish new structural complexity of the DENV virion, which may be relevant for the choice of DENV strain for induction or analysis of neutralizing antibodies in the context of vaccine development.

  14. Optimization and validation of a neutralizing antibody assay for HIV-1 in A3R5 cells.

    Science.gov (United States)

    Sarzotti-Kelsoe, Marcella; Daniell, Xiaoju; Todd, Christopher A; Bilska, Miroslawa; Martelli, Amanda; LaBranche, Celia; Perez, Lautaro G; Ochsenbauer, Christina; Kappes, John C; Rountree, Wes; Denny, Thomas N; Montefiori, David C

    2014-07-01

    A3R5 is a human CD4(+) lymphoblastoid cell line that was engineered to express CCR5 and is useful for the detection of weak neutralizing antibody responses against tier 2 strains of HIV-1. Here we describe the optimization and validation of the HIV-1 neutralizing antibody assay that utilizes A3R5 cells, performed in compliance with Good Clinical Laboratory Practice (GCLP) guidelines. The assay utilizes Renilla luciferase-expressing replication competent infectious molecular clones (IMC) encoding heterologous env genes from different HIV-1 clades. Key assay validation parameters tested included specificity, accuracy, precision, limit of detection and quantitation, specificity, linearity and range, and robustness. Plasma samples demonstrated higher non-specific activity than serum samples in the A3R5 assay. This assay can tolerate a wide range of virus input but is more sensitive to cell concentration. The higher sensitivity of the A3R5 assay in neutralization responses to tier 2 strains of HIV-1 makes it complementary to, but not a substitute for the TZM-bl assay. The validated A3R5 assay is employed as an endpoint immunogenicity test for vaccine-elicited neutralizing antibodies against tier 2 strains of HIV-1, and to identify correlates of protection in HIV-1 vaccine trials conducted globally. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Comparison of agglutinating and neutralizing antibodies to serovar hardjo in sows immunized with two commercial whole culture polivalent anti-leptospira bacterins.

    Science.gov (United States)

    Soto, Francisco Rafael Martins; Pinheiro, Sônia Regina; Morais, Zenaide Maria; Gonçales, Amane Paldês; de Azevedo, Sérgio Santos; Bernardi, Fernanda; Camargo, Sebastião Rodrigues; Vasconcellos, Silvio Arruda

    2008-07-01

    It was performed the comparison of the intensity and duration of agglutinating and neutralizing antibodies to serovar Hardjo in swines vaccinated with two commercial anti-leptospira bacterins. Sows no reactive to 24 Leptospira sp serovars in the microscopic agglutination test (MAT) were divided in three groups: Group A (n=08): received two vaccine A doses with 30 days interval, Group B (n=08) two vaccine B doses with 30 days interval and Group C (n=08): control no vaccinated against leptospirosis.Blood samples were collected each 30 days during six months following the first vaccination. The sera were tested by MAT and growth inhibition test (GIT) to serovar Hardjo in order to evaluate respectively agglutinating and neutralizing antibodies. It was found that neutralizing antibodies persisted for a longer time than the agglutinating ones and that the absence of agglutinating antibodies does not means in the absence of the neutralizing. The peaks of agglutinating antibodies was obtained at least 30 days earlier than that produced by neutralizing. The duration of both kinds of antibodies measured differed between the two bacterines tested. The period for inducing neutralizing antibodies against serovar Hardjo indicated that gilts must be immunized with two doses of whole culture anti-leptospira bacterines applied 30 days each other at least 90 days before the first mating. For the maintenance of hight levels of neutralizing antibodies the revaccinations must be performed every six months after the first vaccination.

  16. Pichia pastoris-Expressed Bivalent Virus-Like Particulate Vaccine Induces Domain III-Focused Bivalent Neutralizing Antibodies without Antibody-Dependent Enhancement in Vivo

    Directory of Open Access Journals (Sweden)

    Rahul Shukla

    2018-01-01

    Full Text Available Dengue, a significant public health problem in several countries around the world, is caused by four different serotypes of mosquito-borne dengue viruses (DENV-1, -2, -3, and -4. Antibodies to any one DENV serotype which can protect against homotypic re-infection, do not offer heterotypic cross-protection. In fact, cross-reactive antibodies may augment heterotypic DENV infection through antibody-dependent enhancement (ADE. A recently launched live attenuated vaccine (LAV for dengue, which consists of a mixture of four chimeric yellow-fever/dengue vaccine viruses, may be linked to the induction of disease-enhancing antibodies. This is likely related to viral interference among the replicating viral strains, resulting in an unbalanced immune response, as well as to the fact that the LAV encodes prM, a DENV protein documented to elicit ADE-mediating antibodies. This makes it imperative to explore the feasibility of alternate ADE risk-free vaccine candidates. Our quest for a non-replicating vaccine centered on the DENV envelope (E protein which mediates virus entry into the host cell and serves as an important target of the immune response. Serotype-specific neutralizing epitopes and the host receptor recognition function map to E domain III (EDIII. Recently, we found that Pichia pastoris-expressed DENV E protein, of all four serotypes, self-assembled into virus-like particles (VLPs in the absence of prM. Significantly, these VLPs displayed EDIII and elicited EDIII-focused DENV-neutralizing antibodies in mice. We now report the creation and characterization of a novel non-replicating recombinant particulate vaccine candidate, produced by co-expressing the E proteins of DENV-1 and DENV-2 in P. pastoris. The two E proteins co-assembled into bivalent mosaic VLPs (mVLPs designated as mE1E2bv VLPs. The mVLP, which preserved the serotype-specific antigenic integrity of its two component proteins, elicited predominantly EDIII-focused homotypic virus-neutralizing

  17. The effects of acylation stimulating protein supplementation VS antibody neutralization on energy expenditure in wildtype mice

    Directory of Open Access Journals (Sweden)

    Gao Ying

    2010-04-01

    Full Text Available Abstract Background Acylation stimulating protein (ASP is an adipogenic hormone that stimulates triglyceride (TG synthesis and glucose transport in adipocytes. Previous studies have shown that ASP-deficient C3 knockout mice are hyperphagic yet lean, as they display increased oxygen consumption and fatty acid oxidation compared to wildtype mice. In the present study, antibodies against ASP (Anti-ASP and human recombinant ASP (rASP were tested in vitro and in vivo. Continuous administration for 4 weeks via osmotic mini-pump of Anti-ASP or rASP was evaluated in wildtype mice on a high-fat diet (HFD to examine their effects on body weight, food intake and energy expenditure. Results In mature murine adipocytes, rASP significantly stimulated fatty acid uptake (+243% vs PBS, P Conclusion In vitro, Anti-ASP effectively neutralized ASP stimulated fatty acid uptake. In vivo, Anti-ASP treatment increased whole body energy utilization while rASP increased energy storage. Therefore, ASP is a potent anabolic hormone that may also be a mediator of energy expenditure.

  18. Postdose 3 G1 serum neutralizing antibody as correlate of protection for pentavalent rotavirus vaccine.

    Science.gov (United States)

    Liu, G Frank; Hille, Darcy; Kaplan, Susan S; Goveia, Michelle G

    2017-10-03

    Although clinical trials of the pentavalent rotavirus vaccine (RotaTeq®, RV5) have demonstrated efficacy against RV gastroenteritis (RGE) in low and high-income settings, a clear correlate of protection or a measure of immune response that could predict efficacy has yet to be identified. This is the first time that immunogenicity data with both serum neutralized antibody (SNA) titers and anti-RV IgA titers from several clinical efficacy trials were pooled to provide a unique context for evaluating the correlation between immunogenicity and RGE risk or efficacy of RV5. The correlation between immunogenicity and RGE risk is evaluated with data at the individual subject level. The analyses show that higher Postdose 3 (PD3) G1 SNA titers are associated with lower odds of contracting any RGE. The correlation between immunogenicity and efficacy is assessed using aggregated population level data, which shows higher efficacy associated with higher PD3 G1 SNA geometric mean titer (GMT) ratio (between RV5 and placebo) and PD3 serum anti-RV IgA GMT ratio. Among high-income countries, efficacy plateaus over the range of PD3 G1 SNA GMT ratios and PD3 serum anti-RV IgA GMT ratios. From both individual- and population-level analyses, PD3 G1 SNA titers correlated most closely with the RGE risk or efficacy for RV5.

  19. Neutralizing Antibodies to Enterovirus 71 in Belém, Brazil

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes C Gomes

    2002-01-01

    Full Text Available Non-polio enteroviruses (Coxsackievirus A, Coxsackievirus B, Echovirus and EV 68-72 which belong to the enterovirus (EV genus, Picornaviridae family, may be responsible for acute flaccid paralysis, aseptic meningitis, myocarditis, hepatitis, pleurodinia, neonatal sepsis, hand, foot and mouth disease (HFMD even though 50-80% of infections are asymptomatic. EV 71 has been responsible for outbreaks and epidemics of HFMD and acute neurologic disease justifying its study in our country. The aim of this study was to detect neutralizing antibodies (NtAb to EV 71 in individuals up to 15 years of age living in Belém, State of Pará, northern Brazil. Serum samples from 238 patients attending the Virology Sector of Evandro Chagas Institute in Belém, Brazil, were analyzed using microneutralization tests that included RD cells and BrCr strain. Overall 40.8% (97/238 of tested samples had NtAb to EV 71. Regarding the distribution per age group, 85.2% (92/108 of patients aged 0-3 years had no NtAb to this virus and 69.2% of those 12 to15 years of age were seropositive. These results confirm that EV 71 infection occurs in the city of Belém; and that a high rate of individuals in this study were infected aged 3 years and over and, when aged 15 years nearly 70% had EV 71 NtAb.

  20. High Concentrations of Measles Neutralizing Antibodies and High-Avidity Measles IgG Accurately Identify Measles Reinfection Cases

    Science.gov (United States)

    Rota, Jennifer S.; Hickman, Carole J.; Mercader, Sara; Redd, Susan; McNall, Rebecca J.; Williams, Nobia; McGrew, Marcia; Walls, M. Laura; Rota, Paul A.; Bellini, William J.

    2016-01-01

    In the United States, approximately 9% of the measles cases reported from 2012 to 2014 occurred in vaccinated individuals. Laboratory confirmation of measles in vaccinated individuals is challenging since IgM assays can give inconclusive results. Although a positive reverse transcription (RT)-PCR assay result from an appropriately timed specimen can provide confirmation, negative results may not rule out a highly suspicious case. Detection of high-avidity measles IgG in serum samples provides laboratory evidence of a past immunologic response to measles from natural infection or immunization. High concentrations of measles neutralizing antibody have been observed by plaque reduction neutralization (PRN) assays among confirmed measles cases with high-avidity IgG, referred to here as reinfection cases (RICs). In this study, we evaluated the utility of measuring levels of measles neutralizing antibody to distinguish RICs from noncases by receiver operating characteristic curve analysis. Single and paired serum samples with high-avidity measles IgG from suspected measles cases submitted to the CDC for routine surveillance were used for the analysis. The RICs were confirmed by a 4-fold rise in PRN titer or by RT-quantitative PCR (RT-qPCR) assay, while the noncases were negative by both assays. Discrimination accuracy was high with serum samples collected ≥3 days after rash onset (area under the curve, 0.953; 95% confidence interval [CI], 0.854 to 0.993). Measles neutralizing antibody concentrations of ≥40,000 mIU/ml identified RICs with 90% sensitivity (95% CI, 74 to 98%) and 100% specificity (95% CI, 82 to 100%). Therefore, when serological or RT-qPCR results are unavailable or inconclusive, suspected measles cases with high-avidity measles IgG can be confirmed as RICs by measles neutralizing antibody concentrations of ≥40,000 mIU/ml. PMID:27335386

  1. Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody.

    Directory of Open Access Journals (Sweden)

    Katherine V Houser

    2017-08-01

    Full Text Available The Middle East respiratory syndrome coronavirus (MERS-CoV is a zoonotic betacoronavirus that was first detected in humans in 2012 as a cause of severe acute respiratory disease. As of July 28, 2017, there have been 2,040 confirmed cases with 712 reported deaths. While many infections have been fatal, there have also been a large number of mild or asymptomatic cases discovered through monitoring and contact tracing. New Zealand white rabbits are a possible model for asymptomatic infection with MERS-CoV. In order to discover more about non-lethal infections and to learn whether a single infection with MERS-CoV would protect against reinfection, we inoculated rabbits with MERS-CoV and monitored the antibody and inflammatory response. Following intranasal infection, rabbits developed a transient dose-dependent pulmonary infection with moderately high levels of viral RNA, viral antigen, and perivascular inflammation in multiple lung lobes that was not associated with clinical signs. The rabbits developed antibodies against viral proteins that lacked neutralizing activity and the animals were not protected from reinfection. In fact, reinfection resulted in enhanced pulmonary inflammation, without an associated increase in viral RNA titers. Interestingly, passive transfer of serum from previously infected rabbits to naïve rabbits was associated with enhanced inflammation upon infection. We further found this inflammation was accompanied by increased recruitment of complement proteins compared to primary infection. However, reinfection elicited neutralizing antibodies that protected rabbits from subsequent viral challenge. Our data from the rabbit model suggests that people exposed to MERS-CoV who fail to develop a neutralizing antibody response, or persons whose neutralizing antibody titers have waned, may be at risk for severe lung disease on re-exposure to MERS-CoV.

  2. Broadening of neutralization activity to directly block a dominant antibody-driven SARS-coronavirus evolution pathway.

    Directory of Open Access Journals (Sweden)

    Jianhua Sui

    2008-11-01

    Full Text Available Phylogenetic analyses have provided strong evidence that amino acid changes in spike (S protein of animal and human SARS coronaviruses (SARS-CoVs during and between two zoonotic transfers (2002/03 and 2003/04 are the result of positive selection. While several studies support that some amino acid changes between animal and human viruses are the result of inter-species adaptation, the role of neutralizing antibodies (nAbs in driving SARS-CoV evolution, particularly during intra-species transmission, is unknown. A detailed examination of SARS-CoV infected animal and human convalescent sera could provide evidence of nAb pressure which, if found, may lead to strategies to effectively block virus evolution pathways by broadening the activity of nAbs. Here we show, by focusing on a dominant neutralization epitope, that contemporaneous- and cross-strain nAb responses against SARS-CoV spike protein exist during natural infection. In vitro immune pressure on this epitope using 2002/03 strain-specific nAb 80R recapitulated a dominant escape mutation that was present in all 2003/04 animal and human viruses. Strategies to block this nAb escape/naturally occurring evolution pathway by generating broad nAbs (BnAbs with activity against 80R escape mutants and both 2002/03 and 2003/04 strains were explored. Structure-based amino acid changes in an activation-induced cytidine deaminase (AID "hot spot" in a light chain CDR (complementarity determining region alone, introduced through shuffling of naturally occurring non-immune human VL chain repertoire or by targeted mutagenesis, were successful in generating these BnAbs. These results demonstrate that nAb-mediated immune pressure is likely a driving force for positive selection during intra-species transmission of SARS-CoV. Somatic hypermutation (SHM of a single VL CDR can markedly broaden the activity of a strain-specific nAb. The strategies investigated in this study, in particular the use of structural

  3. A Comparative Study of the RAPINA and the Virus-Neutralizing Test (RFFIT) for the Estimation of Antirabies-Neutralizing Antibody Levels in Dog Samples.

    Science.gov (United States)

    Manalo, D L; Yamada, K; Watanabe, I; Miranda, M E G; Lapiz, S M D; Tapdasan, E; Petspophonsakul, W; Inoue, S; Khawplod, P; Nishizono, A

    2017-08-01

    The mass vaccination of dogs against rabies is a highly rational strategy for interrupting the natural transmission of urban rabies. According to the World Organization for Animal Health (OIE) and the World Health Organization (WHO), the immunization of at least 70% of the total dog population minimizes the risk of endemic rabies. Knowledge of the virus-neutralizing antibody (VNA) level against the rabies virus (RABV) is required to evaluate protective immunity and vaccine coverage of dogs in the field. The rapid focus fluorescent inhibition test (RFFIT) and the fluorescent antibody virus neutralization (FAVN) test are recommended by OIE and WHO to determine the VNA levels in serum. However, these tests are cell culture based and require the use of live viruses and specialized equipment. The rapid neutralizing antibody test (RAPINA) is a novel, immunochromatographic test that uses inactivated virus to estimate the VNA level qualitatively. It is a simple, rapid and inexpensive, although indirect, assay for the detection of VNA levels. The RAPINA has shown good positive and negative predictive values and a high concordance with the RFFIT results. In this study, we compared the performance of the two tests for evaluating the vaccination status of dogs in the Philippines, Thailand and Japan. A total of 1135 dog sera were analysed by the RAPINA and compared to the VNA levels determined by the RFFIT. The overall positive and negative predictive values of the RAPINA were 96.2-99.3% and 84.5-94.8%, respectively, with a concordance (kappa) of 0.946-0.97 among the three countries. The RAPINA results were highly homologous and reproducible among different laboratories. These results suggest that this test is appropriate to survey vaccination coverage in countries with limited resources. © 2016 The Authors. Zoonoses and Public Health published by Blackwell Verlag GmbH.

  4. Formation of excited neutral D* fragments from D2 by a strong laser field

    Science.gov (United States)

    Berry, Ben; Zohrabi, M.; Jochim, Bethany; Severt, T.; Ablikim, U.; Hayes, D.; Rajput, Jyoti; Kanaka Raju, P.; Feizollah, Peyman; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2015-05-01

    Excited neutral D* fragments from D2 are produced by intense, ultra-short laser pulses (5-85 fs). The kinetic energy release (KER) upon fragmentation is found to be very sensitive to laser parameters such as chirp, peak intensity, and pulse duration. Furthermore, using field ionization of highly excited D* fragments, we are able to determine the n population in a range of excited states (17 process in order to link the measured population to that created by the laser. On the technical side, we also present a scheme for determining the detection efficiency of an MCP detector for excited neutral atoms. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. BJ is also supported by DOE-SCGF (DE-AC05-06OR23100).

  5. Particle and momentum confinement in tokamak plasmas with unbalanced neutral beam injection and strong rotation

    International Nuclear Information System (INIS)

    Malik, M.A.

    1988-01-01

    There is a self-consistent theory of the effects of neutral beam injection on impurity transport in tokamak plasmas. The theory predicts that co-injection drives impurities outward and that counter-injection enhances the normally inward flow of impurities. The theory was applied to carry out a detailed analysis of the large experimental database from the PLT and the ISX-B tokamaks. The theory was found to generally model the experimental data quite well. It is, therefore, concluded that neutral beam co-injection can drive impurities outward to achieve clean central plasmas and a cool radiating edge. Theoretical predictions for future thermonuclear reactors such as INTOR, TIBER II, and ITER indicated that neutral beam driven flow reversal might be an effective impurity control method if the rate of beam momentum deposited per plasma ion is adequate. The external momentum drag, which is a pivotal concept in impurity flow reversal theory, is correctly predicted by the gyroviscous theory of momentum confinement. The theory was applied to analyze experimental data from the PLT and the PDX tokamaks with exact experimental conditions. The theory was found to be in excellent agreement with experiment over a wide range of parameters. It is, therefore, possible to formulate the impurity transport theory from first principles, without resort to empiricism

  6. Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design.

    Science.gov (United States)

    Gorman, Jason; Soto, Cinque; Yang, Max M; Davenport, Thaddeus M; Guttman, Miklos; Bailer, Robert T; Chambers, Michael; Chuang, Gwo-Yu; DeKosky, Brandon J; Doria-Rose, Nicole A; Druz, Aliaksandr; Ernandes, Michael J; Georgiev, Ivelin S; Jarosinski, Marissa C; Joyce, M Gordon; Lemmin, Thomas M; Leung, Sherman; Louder, Mark K; McDaniel, Jonathan R; Narpala, Sandeep; Pancera, Marie; Stuckey, Jonathan; Wu, Xueling; Yang, Yongping; Zhang, Baoshan; Zhou, Tongqing; Mullikin, James C; Baxa, Ulrich; Georgiou, George; McDermott, Adrian B; Bonsignori, Mattia; Haynes, Barton F; Moore, Penny L; Morris, Lynn; Lee, Kelly K; Shapiro, Lawrence; Mascola, John R; Kwong, Peter D

    2016-01-01

    Broadly neutralizing antibodies (bNAbs) against HIV-1 Env V1V2 arise in multiple donors. However, atomic-level interactions had previously been determined only with antibodies from a single donor, thus making commonalities in recognition uncertain. Here we report the cocrystal structure of V1V2 with antibody CH03 from a second donor and model Env interactions of antibody CAP256-VRC26 from a third donor. These V1V2-directed bNAbs used strand-strand interactions between a protruding antibody loop and a V1V2 strand but differed in their N-glycan recognition. Ontogeny analysis indicated that protruding loops develop early, and glycan interactions mature over time. Altogether, the multidonor information suggested that V1V2-directed bNAbs form an 'extended class', for which we engineered ontogeny-specific antigens: Env trimers with chimeric V1V2s that interacted with inferred ancestor and intermediate antibodies. The ontogeny-based design of vaccine antigens described here may provide a general means for eliciting antibodies of a desired class.

  7. Class switch recombination and somatic hypermutation of virus-neutralizing antibodies are not essential for control of friend retrovirus infection.

    Science.gov (United States)

    Kato, Maiko; Tsuji-Kawahara, Sachiyo; Kawasaki, Yuri; Kinoshita, Saori; Chikaishi, Tomomi; Takamura, Shiki; Fujisawa, Makoto; Kawada, Akira; Miyazawa, Masaaki

    2015-01-15

    Toll-like receptor 7 and Myd88 are required for antiretroviral antibody and germinal center responses, but whether somatic hypermutation and class-switch recombination are required for antiretroviral immunity has not been examined. Mice deficient in activation-induced cytidine deaminase (AID) resisted Friend virus infection, produced virus-neutralizing antibodies, and controlled viremia. Passive transfer demonstrated that immune IgM from AID-deficient mice contributes to Friend virus control in the presence of virus-specific CD4+ T cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Adsorption Behavior of Charge Isoforms of Monoclonal Antibodies on Strong Cation Exchangers.

    Science.gov (United States)

    Steinebach, Fabian; Wälchli, Ruben; Pfister, David; Morbidelli, Massimo

    2017-12-01

    In this work, the adsorption behavior of the different charge isoforms of the same monoclonal antibody (mAb) on strong cation-exchange resins is analyzed. While charge isoforms of the same antibody mainly differ in their effective charge, the similar structure and size allows developing a simplified model, which describes the adsorption behavior of mAb charge isoforms independently of the number of isoforms with only four parameters. In contrast to classical model-based descriptions of the adsorption isotherm, the proposed work enables retrieving some physical meaning in the definition of the model parameters. These model parameters are determined for several resin-antibody combinations. Thereby it is found that for mAbs on commercial cation exchangers an effective resin charge density of 0.22 ± 0.08 mmol mL -1 of solid phase is used for protein binding, which was found to be independent of the absolute resin charge density measured by titration. The presented results help to understand the adsorption behavior of mAbs on cation-exchangers, which is applicable both for the isolation of the main charge isoform or for preserving a certain charge isoform pattern during the polishing processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Recent advances in the characterization of HIV-1 neutralization assays for standardized evaluation of the antibody response to infection and vaccination.

    Science.gov (United States)

    Polonis, Victoria R; Brown, Bruce K; Rosa Borges, Andrew; Zolla-Pazner, Susan; Dimitrov, Dimiter S; Zhang, Mei-Yun; Barnett, Susan W; Ruprecht, Ruth M; Scarlatti, Gabriella; Fenyö, Eva-Maria; Montefiori, David C; McCutchan, Francine E; Michael, Nelson L

    2008-06-05

    In AIDS vaccine development the pendulum has swung towards a renewed emphasis on the potential role for neutralizing antibodies in a successful global vaccine. It is recognized that vaccine-induced antibody performance, as assessed in the available neutralization assays, may well serve as a "gatekeeper" for HIV-1 subunit vaccine prioritization and advancement. As a result, development of a standardized platform for reproducible measurement of neutralizing antibodies has received considerable attention. Here we review current advancements in our knowledge of the performance of different types of antibodies in a traditional primary cell neutralization assay and the newer, more standardized TZM-bl reporter cell line assay. In light of recently revealed differences (see accompanying article) in the results obtained in these two neutralization formats, parallel evaluation with both platforms should be contemplated as an interim solution until a better understanding of immune correlates of protection is achieved.

  10. Neutralizing Antibody Response and Antibody-Dependent Cellular Cytotoxicity in HIV-1-Infected Individuals from Guinea-Bissau and Denmark

    DEFF Research Database (Denmark)

    Borggren, Marie; Jensen, Sanne Skov; Heyndrickx, Leo

    2016-01-01

    cytotoxicity (ADCC) against local and nonlocal circulating HIV-1 strains. The neutralizing activity did not demonstrate higher potential against local circulating strains according to geography and subtype determination, but the plasma from Danish individuals demonstrated significantly higher inhibitory...

  11. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus

    Science.gov (United States)

    Zhang, Xiaokang; Dai, Xinghong; Rouvinski, Alexander; Jumnainsong, Amonrat; Edwards, Carolyn; Quyen, Nguyen Than Ha; Duangchinda, Thaneeya; Grimes, Jonathan M; Tsai, Wen-Yang; Lai, Chih-Yun; Wang, Wei-Kung; Malasit, Prida; Farrar, Jeremy; Simmons, Cameron P; Zhou, Z Hong; Rey, Felix A; Mongkolsapaya, Juthathip; Screaton, Gavin R

    2015-01-01

    Dengue is a rapidly emerging, mosquito-borne viral infection, with an estimated 400 million infections occurring annually. To gain insight into dengue immunity, we characterized 145 human monoclonal antibodies (mAbs) and identified a previously unknown epitope, the envelope dimer epitope (EDE), that bridges two envelope protein subunits that make up the 90 repeating dimers on the mature virion. The mAbs to EDE were broadly reactive across the dengue serocomplex and fully neutralized virus produced in either insect cells or primary human cells, with 50% neutralization in the low picomolar range. Our results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized. PMID:25501631

  12. Comparison of infection-neutralizing and -enhancing antibody balance induced by two distinct genotype strains of dengue virus type 1 or 3 DNA vaccines in mice.

    Science.gov (United States)

    Sjatha, Fithriyah; Takizawa, Yamato; Kotaki, Tomohiro; Yamanaka, Atsushi; Konishi, Eiji

    2013-11-01

    Dengue viruses have spread throughout tropical and subtropical countries, and vaccine development is urgently needed. However, one concern is that induction of insufficient levels of neutralizing antibodies in vaccines may increase disease severity because of a hypothetical mechanism termed antibody-dependent enhancement of infection. This study used two distinct genotype strains of dengue virus types 1 and 3 (DENV1 and DENV3, respectively) to compare antibody responses in a mouse-DNA vaccine model. As expected, a conventional neutralization test using Vero cells showed higher antibody titers in homologous rather than heterologous combinations of genotype strains used for mouse immunization and the neutralization test, for each of DENV1 and DENV3. However, our assay system using K562 cells to measure the balance of neutralizing and enhancing antibodies indicated that Vero cell-neutralizing antibody titers did not always correlate with enhancing activities observed at subneutralizing doses. Rather, induction of enhancing activities depended on the genotype strain used for mouse immunization. The genotype/strain difference also affected IgG subclass profiles and potentially the composition of antibody species induced in mice. This study suggests that enhancing activities of dengue virus-induced neutralizing antibodies may vary according to the genotype and has implications for vaccine antigen development. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Differential neutralizing activities of a single domain camelid antibody (VHH specific for ricin toxin's binding subunit (RTB.

    Directory of Open Access Journals (Sweden)

    Cristina Herrera

    Full Text Available Ricin, a member of the A-B family of ribosome-inactivating proteins, is classified as a Select Toxin by the Centers for Disease Control and Prevention because of its potential use as a biothreat agent. In an effort to engineer therapeutics for ricin, we recently produced a collection of alpaca-derived, heavy-chain only antibody VH domains (VHH or "nanobody" specific for ricin's enzymatic (RTA and binding (RTB subunits. We reported that one particular RTB-specific VHH, RTB-B7, when covalently linked via a peptide spacer to different RTA-specific VHHs, resulted in heterodimers like VHH D10/B7 that were capable of passively protecting mice against a lethal dose challenge with ricin. However, RTB-B7 itself, when mixed with ricin at a 1 ∶ 10 toxin:antibody ratio did not afford any protection in vivo, even though it had demonstrable toxin-neutralizing activity in vitro. To better define the specific attributes of antibodies associated with ricin neutralization in vitro and in vivo, we undertook a more thorough characterization of RTB-B7. We report that RTB-B7, even at 100-fold molar excess (toxin:antibody was unable to alter the toxicity of ricin in a mouse model. On the other hand, in two well-established cytotoxicity assays, RTB-B7 neutralized ricin with a 50% inhibitory concentration (IC50 that was equivalent to that of 24B11, a well-characterized and potent RTB-specific murine monoclonal antibody. In fact, RTB-B7 and 24B11 were virtually identical when compared across a series of in vitro assays, including adherence to and neutralization of ricin after the toxin was pre-bound to cell surface receptors. RTB-B7 differed from both 24B11 and VHH D10/B7 in that it was relatively less effective at blocking ricin attachment to receptors on host cells and was not able to form high molecular weight toxin:antibody complexes in solution. Whether either of these activities is important in ricin toxin neutralizing activity in vivo remains to be determined.

  14. Plasmodium falciparum synthetic LbL microparticle vaccine elicits protective neutralizing antibody and parasite-specific cellular immune responses

    OpenAIRE

    Powell, Thomas J.; Tang, Jie; DeRome, Mary E.; Mitchell, Robert A.; Jacobs, Andrea; Deng, Yanhong; Palath, Naveen; Cardenas, Edwin; Boyd, James G.; Nardin, Elizabeth

    2013-01-01

    Epitopes of the circumsporozoite (CS) protein of Plasmodium falciparum, the most pathogenic species of the malaria parasite, have been shown to elicit protective immunity in experimental animals and human volunteers. The mechanisms of immunity include parasite-neutralizing antibodies that can inhibit parasite motility in the skin at the site of infection and in the bloodstream during transit to the hepatocyte host cell and also block interaction with host cell receptors on hepatocytes. In add...

  15. LabKey Server NAb: A tool for analyzing, visualizing and sharing results from neutralizing antibody assays

    Directory of Open Access Journals (Sweden)

    Gao Hongmei

    2011-05-01

    Full Text Available Abstract Background Multiple types of assays allow sensitive detection of virus-specific neutralizing antibodies. For example, the extent of antibody neutralization of HIV-1, SIV and SHIV can be measured in the TZM-bl cell line through the degree of luciferase reporter gene expression after infection. In the past, neutralization curves and titers for this standard assay have been calculated using an Excel macro. Updating all instances of such a macro with new techniques can be unwieldy and introduce non-uniformity across multi-lab teams. Using Excel also poses challenges in centrally storing, sharing and associating raw data files and results. Results We present LabKey Server's NAb tool for organizing, analyzing and securely sharing data, files and results for neutralizing antibody (NAb assays, including the luciferase-based TZM-bl NAb assay. The customizable tool supports high-throughput experiments and includes a graphical plate template designer, allowing researchers to quickly adapt calculations to new plate layouts. The tool calculates the percent neutralization for each serum dilution based on luminescence measurements, fits a range of neutralization curves to titration results and uses these curves to estimate the neutralizing antibody titers for benchmark dilutions. Results, curve visualizations and raw data files are stored in a database and shared through a secure, web-based interface. NAb results can be integrated with other data sources based on sample identifiers. It is simple to make results public after publication by updating folder security settings. Conclusions Standardized tools for analyzing, archiving and sharing assay results can improve the reproducibility, comparability and reliability of results obtained across many labs. LabKey Server and its NAb tool are freely available as open source software at http://www.labkey.com under the Apache 2.0 license. Many members of the HIV research community can also access the Lab

  16. LabKey Server NAb: A tool for analyzing, visualizing and sharing results from neutralizing antibody assays

    Science.gov (United States)

    2011-01-01

    Background Multiple types of assays allow sensitive detection of virus-specific neutralizing antibodies. For example, the extent of antibody neutralization of HIV-1, SIV and SHIV can be measured in the TZM-bl cell line through the degree of luciferase reporter gene expression after infection. In the past, neutralization curves and titers for this standard assay have been calculated using an Excel macro. Updating all instances of such a macro with new techniques can be unwieldy and introduce non-uniformity across multi-lab teams. Using Excel also poses challenges in centrally storing, sharing and associating raw data files and results. Results We present LabKey Server's NAb tool for organizing, analyzing and securely sharing data, files and results for neutralizing antibody (NAb) assays, including the luciferase-based TZM-bl NAb assay. The customizable tool supports high-throughput experiments and includes a graphical plate template designer, allowing researchers to quickly adapt calculations to new plate layouts. The tool calculates the percent neutralization for each serum dilution based on luminescence measurements, fits a range of neutralization curves to titration results and uses these curves to estimate the neutralizing antibody titers for benchmark dilutions. Results, curve visualizations and raw data files are stored in a database and shared through a secure, web-based interface. NAb results can be integrated with other data sources based on sample identifiers. It is simple to make results public after publication by updating folder security settings. Conclusions Standardized tools for analyzing, archiving and sharing assay results can improve the reproducibility, comparability and reliability of results obtained across many labs. LabKey Server and its NAb tool are freely available as open source software at http://www.labkey.com under the Apache 2.0 license. Many members of the HIV research community can also access the LabKey Server NAb tool without

  17. LabKey Server NAb: a tool for analyzing, visualizing and sharing results from neutralizing antibody assays.

    Science.gov (United States)

    Piehler, Britt; Nelson, Elizabeth K; Eckels, Josh; Ramsay, Sarah; Lum, Karl; Wood, Blake; Greene, Kelli M; Gao, Hongmei; Seaman, Michael S; Montefiori, David C; Igra, Mark

    2011-05-27

    Multiple types of assays allow sensitive detection of virus-specific neutralizing antibodies. For example, the extent of antibody neutralization of HIV-1, SIV and SHIV can be measured in the TZM-bl cell line through the degree of luciferase reporter gene expression after infection. In the past, neutralization curves and titers for this standard assay have been calculated using an Excel macro. Updating all instances of such a macro with new techniques can be unwieldy and introduce non-uniformity across multi-lab teams. Using Excel also poses challenges in centrally storing, sharing and associating raw data files and results. We present LabKey Server's NAb tool for organizing, analyzing and securely sharing data, files and results for neutralizing antibody (NAb) assays, including the luciferase-based TZM-bl NAb assay. The customizable tool supports high-throughput experiments and includes a graphical plate template designer, allowing researchers to quickly adapt calculations to new plate layouts. The tool calculates the percent neutralization for each serum dilution based on luminescence measurements, fits a range of neutralization curves to titration results and uses these curves to estimate the neutralizing antibody titers for benchmark dilutions. Results, curve visualizations and raw data files are stored in a database and shared through a secure, web-based interface. NAb results can be integrated with other data sources based on sample identifiers. It is simple to make results public after publication by updating folder security settings. Standardized tools for analyzing, archiving and sharing assay results can improve the reproducibility, comparability and reliability of results obtained across many labs. LabKey Server and its NAb tool are freely available as open source software at http://www.labkey.com under the Apache 2.0 license. Many members of the HIV research community can also access the LabKey Server NAb tool without installing the software by using the

  18. Dual IGF-I/II-neutralizing antibody MEDI-573 potently inhibits IGF signaling and tumor growth.

    Science.gov (United States)

    Gao, Jin; Chesebrough, Jon W; Cartlidge, Susan A; Ricketts, Sally-Ann; Incognito, Leonard; Veldman-Jones, Margaret; Blakey, David C; Tabrizi, Mohammad; Jallal, Bahija; Trail, Pamela A; Coats, Steven; Bosslet, Klaus; Chang, Yong S

    2011-02-01

    Insulin-like growth factors (IGF), IGF-I and IGF-II, are small polypeptides involved in regulating cell proliferation, survival, differentiation, and transformation. IGF activities are mediated through binding and activation of IGF-1R or insulin receptor isoform A (IR-A). The role of the IGF-1R pathway in promoting tumor growth and survival is well documented. Overexpression of IGF-II and IR-A is reported in multiple types of cancer and is proposed as a potential mechanism for cancer cells to develop resistance to IGF-1R-targeting therapy. MEDI-573 is a fully human antibody that neutralizes both IGF-I and IGF-II and inhibits IGF signaling through both the IGF-1R and IR-A pathways. Here, we show that MEDI-573 blocks the binding of IGF-I and IGF-II to IGF-1R or IR-A, leading to the inhibition of IGF-induced signaling pathways and cell proliferation. MEDI-573 significantly inhibited the in vivo growth of IGF-I- or IGF-II-driven tumors. Pharmacodynamic analysis demonstrated inhibition of IGF-1R phosphorylation in tumors in mice dosed with MEDI-573, indicating that the antitumor activity is mediated via inhibition of IGF-1R signaling pathways. Finally, MEDI-573 significantly decreased (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in IGF-driven tumor models, highlighting the potential utility of (18)F-FDG-PET as a noninvasive pharmacodynamic readout for evaluating the use of MEDI-573 in the clinic. Taken together, these results demonstrate that the inhibition of IGF-I and IGF-II ligands by MEDI-573 results in potent antitumor activity and offers an effective approach to selectively target both the IGF-1R and IR-A signaling pathways.

  19. A neutralizing human monoclonal antibody protects African Green monkeys from Hendra virus challenge

    Science.gov (United States)

    Bossart, Katharine N.; Geisbert, Thomas W.; Feldmann, Heinz; Zhu, Zhongyu; Feldmann, Friederike; Geisbert, Joan B.; Yan, Lianying; Feng, Yan-Ru; Brining, Doug; Scott, Dana; Wang, Yanping; Dimitrov, Antony S.; Callison, Julie; Chan, Yee-Peng; Hickey, Andrew C.; Dimitrov, Dimiter S.; Broder, Christopher C.; Rockx, Barry

    2012-01-01

    Hendra virus (HeV) is a recently emerged zoonotic paramyxovirus that can cause a severe and often fatal disease in horses and humans. HeV is categorized as a biosafety level 4 agent, which has made the development of animal models and testing of potential therapeutics and vaccines challenging. Infection of African Green monkeys (AGMs) with HeV was recently demonstrated and disease mirrored fatal HeV infection in humans, manifesting as a multisystemic vasculitis with widespread virus replication in vascular tissues and severe pathologic manifestations in the lung, spleen and brain. Here, we demonstrate that m102.4, a potent HeV neutralizing human monoclonal antibody (hmAb), can protect AGMs from disease post infection (p.i.) with HeV. Fourteen AGMs were challenged intratracheally with a lethal dose of HeV and twelve subjects were infused twice with a 100 mg dose of m102.4 beginning at either 10 hr, 24 hr or 72 hr p.i. and again approximately 48 hrs later. The presence of viral RNA, infectious virus and HeV-specific immune responses demonstrated that all subjects were infected following challenge. All twelve AGMs that received m102.4 survived infection; whereas the untreated control subjects succumbed to disease on day 8 p.i.. Animals in the 72 hr treatment group exhibited neurological signs of disease but all animals started to recover by day 16 p.i.. These results represent successful post-exposure in vivo efficacy by an investigational drug against HeV and highlight the potential impact a hmAb can have on human disease. PMID:22013123

  20. Humanized Immunoglobulin Mice: Models for HIV Vaccine Testing and Studying the Broadly Neutralizing Antibody Problem.

    Science.gov (United States)

    Verkoczy, Laurent

    2017-01-01

    A vaccine that can effectively prevent HIV-1 transmission remains paramount to ending the HIV pandemic, but to do so, will likely need to induce broadly neutralizing antibody (bnAb) responses. A major technical hurdle toward achieving this goal has been a shortage of animal models with the ability to systematically pinpoint roadblocks to bnAb induction and to rank vaccine strategies based on their ability to stimulate bnAb development. Over the past 6 years, immunoglobulin (Ig) knock-in (KI) technology has been leveraged to express bnAbs in mice, an approach that has enabled elucidation of various B-cell tolerance mechanisms limiting bnAb production and evaluation of strategies to circumvent such processes. From these studies, in conjunction with the wealth of information recently obtained regarding the evolutionary pathways and paratopes/epitopes of multiple bnAbs, it has become clear that the very features of bnAbs desired for their function will be problematic to elicit by traditional vaccine paradigms, necessitating more iterative testing of new vaccine concepts. To meet this need, novel bnAb KI models have now been engineered to express either inferred prerearranged V(D)J exons (or unrearranged germline V, D, or J segments that can be assembled into functional rearranged V(D)J exons) encoding predecessors of mature bnAbs. One encouraging approach that has materialized from studies using such newer models is sequential administration of immunogens designed to bind progressively more mature bnAb predecessors. In this review, insights into the regulation and induction of bnAbs based on the use of KI models will be discussed, as will new Ig KI approaches for higher-throughput production and/or altering expression of bnAbs in vivo, so as to further enable vaccine-guided bnAb induction studies. © 2017 Elsevier Inc. All rights reserved.

  1. Precisely Molded Nanoparticle Displaying DENV-E Proteins Induces Robust Serotype-Specific Neutralizing Antibody Responses.

    Directory of Open Access Journals (Sweden)

    Stefan W Metz

    2016-10-01

    Full Text Available Dengue virus (DENV is the causative agent of dengue fever and dengue hemorrhagic fever. The virus is endemic in over 120 countries, causing over 350 million infections per year. Dengue vaccine development is challenging because of the need to induce simultaneous protection against four antigenically distinct DENV serotypes and evidence that, under some conditions, vaccination can enhance disease due to specific immunity to the virus. While several live-attenuated tetravalent dengue virus vaccines display partial efficacy, it has been challenging to induce balanced protective immunity to all 4 serotypes. Instead of using whole-virus formulations, we are exploring the potentials for a particulate subunit vaccine, based on DENV E-protein displayed on nanoparticles that have been precisely molded using Particle Replication in Non-wetting Template (PRINT technology. Here we describe immunization studies with a DENV2-nanoparticle vaccine candidate. The ectodomain of DENV2-E protein was expressed as a secreted recombinant protein (sRecE, purified and adsorbed to poly (lactic-co-glycolic acid (PLGA nanoparticles of different sizes and shape. We show that PRINT nanoparticle adsorbed sRecE without any adjuvant induces higher IgG titers and a more potent DENV2-specific neutralizing antibody response compared to the soluble sRecE protein alone. Antigen trafficking indicate that PRINT nanoparticle display of sRecE prolongs the bio-availability of the antigen in the draining lymph nodes by creating an antigen depot. Our results demonstrate that PRINT nanoparticles are a promising platform for delivering subunit vaccines against flaviviruses such as dengue and Zika.

  2. Noninfectious retrovirus particles drive the APOBEC3/Rfv3 dependent neutralizing antibody response.

    Directory of Open Access Journals (Sweden)

    Diana S Smith

    2011-10-01

    Full Text Available Members of the APOBEC3 family of deoxycytidine deaminases counteract a broad range of retroviruses in vitro through an indirect mechanism that requires virion incorporation and inhibition of reverse transcription and/or hypermutation of minus strand transcripts in the next target cell. The selective advantage to the host of this indirect restriction mechanism remains unclear, but valuable insights may be gained by studying APOBEC3 function in vivo. Apobec3 was previously shown to encode Rfv3, a classical resistance gene that controls the recovery of mice from pathogenic Friend retrovirus (FV infection by promoting a more potent neutralizing antibody (NAb response. The underlying mechanism does not involve a direct effect of Apobec3 on B cell function. Here we show that while Apobec3 decreased titers of infectious virus during acute FV infection, plasma viral RNA loads were maintained, indicating substantial release of noninfectious particles in vivo. The lack of plasma virion infectivity was associated with a significant post-entry block during early reverse transcription rather than G-to-A hypermutation. The Apobec3-dependent NAb response correlated with IgG binding titers against native, but not detergent-lysed virions. These findings indicate that innate Apobec3 restriction promotes NAb responses by maintaining high concentrations of virions with native B cell epitopes, but in the context of low virion infectivity. Finally, Apobec3 restriction was found to be saturable in vivo, since increasing FV inoculum doses resulted in decreased Apobec3 inhibition. By analogy, maximizing the release of noninfectious particles by modulating APOBEC3 expression may improve humoral immunity against pathogenic human retroviral infections.

  3. Neutralizing antibody against granulocyte/macrophage colony-stimulating factor inhibits inflammatory response in experimental otitis media.

    Science.gov (United States)

    Kariya, Shin; Okano, Mitsuhiro; Higaki, Takaya; Makihara, Seiichiro; Haruna, Takenori; Eguchi, Motoharu; Nishizaki, Kazunori

    2013-06-01

    Granulocyte/macrophage colony-stimulating factor is important in the pathogenesis of acute and chronic inflammatory disease. We hypothesized that granulocyte/macrophage colony-stimulating factor plays a pivotal role in middle ear inflammation and that neutralization of granulocyte/macrophage colony-stimulating factor would inhibit neutrophil migration into the middle ear and production of inflammatory mediators. Animal experiment. We used transtympanic administration of lipopolysaccharide, a major component of gram-negative bacteria, into mice to induce an experimental otitis media. Control mice received injection of phosphate-buffered saline into the middle ear cavity. Mice were systemically treated with granulocyte/macrophage colony-stimulating factor neutralizing antibody or control immunoglobulin G via intraperitoneal injection 2 hours before transtympanic injection of lipopolysaccharide or phosphate-buffered saline. Middle ear effusions were collected. Concentrations of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, keratinocyte chemoattractant, and macrophage inflammatory protein-2 in middle ear effusions were measured by enzyme-linked immunosorbent assay. Histologic examination of the middle ear was also performed. Transtympanic injection of lipopolysaccharide upregulated levels of granulocyte/macrophage colony-stimulating factor, IL-1β, TNF-α, keratinocyte chemoattractant, and macrophage inflammatory protein-2 in the middle ear. Concentrations of cytokines and chemokines were significantly decreased in mice injected with granulocyte/macrophage colony-stimulating factor neutralizing antibody. Infiltration of inflammatory cells into the middle ear cavity induced by lipopolysaccharide was also significantly reduced by neutralization of granulocyte/macrophage colony-stimulating factor. Systemic injection of granulocyte/macrophage colony-stimulating factor neutralizing antibody inhibits the middle ear inflammation induced by lipopolysaccharide in mice

  4. Antibodies against outer-capsid proteins of grass carp reovirus expressed in E. coli are capable of neutralizing viral infectivity

    Directory of Open Access Journals (Sweden)

    Sun Xiaoyun

    2011-07-01

    Full Text Available Abstract Background Grass carp reovirus (GCRV, which causes severe infectious outbreaks of hemorrhagic disease in aquatic animals, is a highly pathogenic agent in the Aquareovirus genus of family Reoviridae. The outer capsid shell of GCRV, composed of the VP5-VP7 protein complex, is believed to be involved in cell entry. The objective of this study was to produce a major neutralization antibody for mitigating GCRV infection. Results Recombinant plasmids of GCRV outer capsid proteins VP5 and VP7 were constructed and expressed in prokaryotic cells in our previous work. In this study, we prepared GCRV Antibody (Ab, VP5Ab and VP7Ab generated from purified native GCRV, recombinant VP5 and VP7 respectively. Immunoblotting analysis showed that the prepared antibodies were specific to its antigens. In addition, combined plaque and cytopathic effect (CPE-based TCID50 (50% tissue culture infective dose assays showed that both VP5Ab and VP7Ab were capable of neutralizing viral infectivity. Particularly, the neutralizing activity of VP7Ab was 3 times higher than that of VP5Ab, suggesting that VP7 might be a dominating epitope. Moreover, the combination of VP5Ab and VP7Ab appeared to enhance GCRV neutralizing capacity. Conclusions The results presented in this study indicated that VP7 protein was the major epitope of GCRV. Furthermore, VP5Ab and VP7Ab in combination presented an enhanced capacity to neutralize the GCRV particle, suggesting that the VP5 and VP7 proteins may cooperate with each other during virus cell entry. The data can be used not only to further define the surface epitope domain of GCRV but may also be applicable in the designing of vaccines.

  5. Monoclonal Antibody Combinations that Present Synergistic Neutralizing Activity: A Platform for Next-Generation Anti-Toxin Drugs.

    Science.gov (United States)

    Diamant, Eran; Torgeman, Amram; Ozeri, Eyal; Zichel, Ran

    2015-05-29

    Monoclonal antibodies (MAbs) are among the fastest-growing therapeutics and are being developed for a broad range of indications, including the neutralization of toxins, bacteria and viruses. Nevertheless, MAbs potency is still relatively low when compared to conventional polyclonal Ab preparations. Moreover, the efficacy of an individual neutralizing MAb may significantly be hampered by the potential absence or modification of its target epitope in a mutant or subtype of the infectious agent. These limitations of individual neutralizing MAbs can be overcome by using oligoclonal combinations of several MAbs with different specificities to the target antigen. Studies conducted in our lab and by others show that such combined MAb preparation may present substantial synergy in its potency over the calculated additive potency of its individual MAb components. Moreover, oligoclonal preparation is expected to be better suited to compensating for reduced efficacy due to epitope variation. In this review, the synergistic neutralization properties of combined oligoclonal Ab preparations are described. The effect of Ab affinity, autologous Fc fraction, and targeting a critical number of epitopes, as well as the unexpected contribution of non-neutralizing clones to the synergistic neutralizing effect are presented and discussed.

  6. Monoclonal Antibody Combinations that Present Synergistic Neutralizing Activity: A Platform for Next-Generation Anti-Toxin Drugs

    Directory of Open Access Journals (Sweden)

    Eran Diamant

    2015-05-01

    Full Text Available Monoclonal antibodies (MAbs are among the fastest-growing therapeutics and are being developed for a broad range of indications, including the neutralization of toxins, bacteria and viruses. Nevertheless, MAbs potency is still relatively low when compared to conventional polyclonal Ab preparations. Moreover, the efficacy of an individual neutralizing MAb may significantly be hampered by the potential absence or modification of its target epitope in a mutant or subtype of the infectious agent. These limitations of individual neutralizing MAbs can be overcome by using oligoclonal combinations of several MAbs with different specificities to the target antigen. Studies conducted in our lab and by others show that such combined MAb preparation may present substantial synergy in its potency over the calculated additive potency of its individual MAb components. Moreover, oligoclonal preparation is expected to be better suited to compensating for reduced efficacy due to epitope variation. In this review, the synergistic neutralization properties of combined oligoclonal Ab preparations are described. The effect of Ab affinity, autologous Fc fraction, and targeting a critical number of epitopes, as well as the unexpected contribution of non-neutralizing clones to the synergistic neutralizing effect are presented and discussed.

  7. Hepatitis C Virus E1 and E2 Proteins Used as Separate Immunogens Induce Neutralizing Antibodies with Additive Properties.

    Directory of Open Access Journals (Sweden)

    Elodie Beaumont

    Full Text Available Various strategies involving the use of hepatitis C virus (HCV E1 and E2 envelope glycoproteins as immunogens have been developed for prophylactic vaccination against HCV. However, the ideal mode of processing and presenting these immunogens for effective vaccination has yet to be determined. We used our recently described vaccine candidate based on full-length HCV E1 or E2 glycoproteins fused to the heterologous hepatitis B virus S envelope protein to compare the use of the E1 and E2 proteins as separate immunogens with their use as the E1E2 heterodimer, in terms of immunogenetic potential and the capacity to induce neutralizing antibodies. The specific anti-E1 and anti-E2 antibody responses induced in animals immunized with vaccine particles harboring the heterodimer were profoundly impaired with respect to those in animals immunized with particles harboring E1 and E2 separately. Moreover, the anti-E1 and anti-E2 antibodies had additive neutralizing properties that increase the cross-neutralization of heterologous strains of various HCV genotypes, highlighting the importance of including both E1 and E2 in the vaccine for an effective vaccination strategy. Our study has important implications for the optimization of HCV vaccination strategies based on HCV envelope proteins, regardless of the platform used to present these proteins to the immune system.

  8. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jinghe; Kang, Byong H.; Pancera, Marie; Lee, Jeong Hyun; Tong, Tommy; Feng, Yu; Imamichi, Hiromi; Georgiev, Ivelin S.; Chuang, Gwo-Yu; Druz, Aliaksandr; Doria-Rose, Nicole A.; Laub, Leo; Sliepen, Kwinten; van Gils, Marit J.; de la Peña, Alba Torrents; Derking, Ronald; Klasse, Per-Johan; Migueles, Stephen A.; Bailer, Robert T.; Alam, Munir; Pugach, Pavel; Haynes, Barton F.; Wyatt, Richard T.; Sanders, Rogier W.; Binley, James M.; Ward, Andrew B.; Mascola, John R.; Kwong, Peter D.; Connors, Mark [NIH

    2015-10-15

    The isolation of human monoclonal antibodies is providing important insights into the specificities that underlie broad neutralization of HIV-1 (reviewed in ref. 1). Here we report a broad and extremely potent HIV-specific monoclonal antibody, termed 35O22, which binds a novel HIV-1 envelope glycoprotein (Env) epitope. 35O22 neutralized 62% of 181 pseudoviruses with a half-maximum inhibitory concentration (IC50) <50 μg ml-1. The median IC50 of neutralized viruses was 0.033 μg ml-1, among the most potent thus far described. 35O22 did not bind monomeric forms of Env tested, but did bind the trimeric BG505 SOSIP.664. Mutagenesis and a reconstruction by negative-stain electron microscopy of the Fab in complex with trimer revealed that it bound to a conserved epitope, which stretched across gp120 and gp41. The specificity of 35O22 represents a novel site of vulnerability on HIV Env, which serum analysis indicates to be commonly elicited by natural infection. Binding to this new site of vulnerability may thus be an important complement to current monoclonal-antibody-based approaches to immunotherapies, prophylaxis and vaccine design.

  9. Cross-reactive neutralizing antibody responses to enterovirus 71 infections in young children: implications for vaccine development.

    Directory of Open Access Journals (Sweden)

    Mei-Liang Huang

    Full Text Available BACKGROUND: Recently, enterovirus 71 (EV71 has caused life-threatening outbreaks involving neurological and cardiopulmonary complications in Asian children with unknown mechanism. EV71 has one single serotype but can be phylogenetically classified into 3 main genogroups (A, B and C and 11 genotypes (A, B1∼B5 and C1∼C5. In Taiwan, nationwide EV71 epidemics with different predominant genotypes occurred in 1998 (C2, 2000-2001 (B4, 2004-2005 (C4, and 2008 (B5. In this study, sera were collected to measure cross-reactive neutralizing antibody titers against different genotypes. METHODS: We collected historical sera from children who developed an EV71 infection in 1998, 2000, 2005, 2008, or 2010 and measured cross-reactive neutralizing antibody titers against all 11 EV71 genotypes. In addition, we aligned and compared the amino acid sequences of P1 proteins of the tested viruses. RESULTS: Serology data showed that children infected with genogroups B and C consistently have lower neutralizing antibody titers against genogroup A (>4-fold difference. The sequence comparisons revealed that five amino acid signatures (N143D in VP2; K18R, H116Y, D167E, and S275A in VP1 are specific for genogroup A and may be related to the observed antigenic variations. CONCLUSIONS: This study documented antigenic variations among different EV71 genogroups and identified potential immunodominant amino acid positions. Enterovirus surveillance and vaccine development should monitor these positions.

  10. Expression of HIV-1 broadly neutralizing antibodies mediated by recombinant adeno-associated virus 8 in vitro and in vivo.

    Science.gov (United States)

    Yu, Yongjiao; Fu, Lu; Jiang, Xiaoyu; Guan, Shanshan; Kuai, Ziyu; Kong, Wei; Shi, Yuhua; Shan, Yaming

    2016-12-01

    Despite unremitting efforts since the discovery of human immunodeficiency virus type 1 (HIV-1), an effective vaccine has not been generated. Viral vector-mediated transfer for expression of HIV-1 broadly neutralizing antibodies (BnAbs) is an attractive strategy. In this study, a recombinant adeno-associated virus 8 (rAAV8) vector was used to encode full-length antibodies against HIV-1 in 293T cells and Balb/c mice after gene transfer. The 10E8 or NIH45-46 BnAb was expressed from a single open reading frame by linking the heavy and light chains with a furin cleavage and a 2A self-processing peptide (F2A). The results showed that the BnAbs could be expressed in the 293T cell culture medium. A single intramuscular injection of rAAV8 led to long-term expression of BnAbs in Balb/c mice. The expressed antibodies in the supernatant of 293T cells and in Balb/c mice showed neutralization effects against HIV-1 pseudoviruses. Combined immunization of rAAV8 expressing 10E8 and rAAV8 expressing NIH45-46 in Balb/c mice could increase these neutralization effects on strains of HIV-1 sensitive to 10E8 or NIH45-46 antibody compared with a single injection of rAAV8 expressing either antibody alone. Therefore, the combined immunization may be a potential vaccine approach against HIV-1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Structural basis for the binding of the neutralizing antibody, 7D11, to the poxvirus L1 protein

    International Nuclear Information System (INIS)

    Su, Hua-Poo; Golden, Joseph W.; Gittis, Apostolos G.; Hooper, Jay W.; Garboczi, David N.

    2007-01-01

    Medical countermeasures to prevent or treat smallpox are needed due to the potential use of poxviruses as biological weapons. Safety concerns with the currently available smallpox vaccine indicate a need for research on alternative poxvirus vaccine strategies. Molecular vaccines involving the use of proteins and/or genes and recombinant antibodies are among the strategies under current investigation. The poxvirus L1 protein, encoded by the L1R open reading frame, is the target of neutralizing antibodies and has been successfully used as a component of both protein subunit and DNA vaccines. L1-specific monoclonal antibodies (e.g., mouse monoclonal antibody mAb-7D11, mAb-10F5) with potent neutralizing activity bind L1 in a conformation-specific manner. This suggests that proper folding of the L1 protein used in molecular vaccines will affect the production of neutralizing antibodies and protection. Here, we co-crystallized the Fab fragment of mAb-7D11 with the L1 protein. The crystal structure of the complex between Fab-7D11 and L1 reveals the basis for the conformation-specific binding as recognition of a discontinuous epitope containing two loops that are held together by a disulfide bond. The structure of this important conformational epitope of L1 will contribute to the development of molecular poxvirus vaccines and also provides a novel target for anti-poxvirus drugs. In addition, the sequence and structure of Fab-7D11 will contribute to the development of L1-targeted immunotherapeutics

  12. In vitro neutralization of HCV by goat antibodies against peptides encompassing regions downstream of HVR-1 of E2 glycoprotein.

    Science.gov (United States)

    Tabll, Ashraf A; Atef, Khaled; Bader El Din, Noha G; El Abd, Yasmine S; Salem, Ahmed; Sayed, Ahmed A; Dawood, Reham M; Omran, Moataza H; El-Awady, Mostafa K

    2014-01-01

    This article aims at testing several in vitro systems with various viral sources and cell lines for propagation of HCV to evaluate goat antibodies raised against three E2 epitopes in viral neutralization experiments. Four human cell lines (Huh-7, Huh-7.5, HepG2, and CaCo2) were tested using two different HCV viral sources; Genotype 4 infected sera and J6/JFH HCV cc particles. Neutralization capacity of goat Abs against conserved E2 epitopes; p412 (a.a 412-419), p517 (a.a 517-531), and p430 (a.a 430-447) were examined in the above mentioned in vitro systems. Although infection with patients' sera seems to mimic the in vitro situation, it has limited replication rates as compared with HCV cc particularly in Huh7.5 cells. Non-HCV adapted Huh-7 cells were also found susceptible for transfection with J6/JFH virus but at much slower kinetics. The results of the neutralization assay showed that anti p412 and anti p517 were highly neutralizing to HCVcc. Our data demonstrate that antibodies directed against the viral surface glycoprotein E2 reduced the infectivity of the J6/JFH virus and are promising agents for immunotherapy and HCV vaccine development.

  13. Neutralizing antibodies in patients with chronic hepatitis C, genotype 1, against a panel of genotype 1 culture viruses

    DEFF Research Database (Denmark)

    Pedersen, Jannie; Jensen, Tanja B; Carlsen, Thomas H R

    2013-01-01

    , infection treated with pegylated interferon-α and ribavirin. Thirty-nine patients with chronic hepatitis C, genotype 1a or 1b, with either sustained virologic response (n = 23) or non-sustained virologic response (n = 16) were enrolled. Samples taken prior to treatment were tested for their ability...... to neutralize 6 different HCV genotype 1 cell culture recombinants (1a: H77/JFH1, TN/JFH1, DH6/JFH1; 1b: J4/JFH1, DH1/JFH1, DH5/JFH1). The results were expressed as the highest dilution yielding 50% neutralization (NAb50-titer). We observed no genotype or subtype specific differences in NAb50-titers between......The correlation of neutralizing antibodies to treatment outcome in patients with chronic hepatitis C virus (HCV) infection has not been established. The aim of this study was to determine whether neutralizing antibodies could be used as an outcome predictor in patients with chronic HCV, genotype 1...

  14. Enterovirus 71 Neutralizing Antibodies Seroepidemiological Research among Children in Guangzhou, China between 2014 and 2015: A Cross-Sectional Study.

    Science.gov (United States)

    Zhang, Dingmei; Chen, Yan; Chen, Xiashi; He, Zhenjian; Zhu, Xun; Hao, Yuantao

    2017-03-20

    A hand-foot-mouth disease outbreak occurred in 2014 around Guangdong. The purpose of this study was investigating the status and susceptibility of infectious neutralizing antibodies to enterovirus 71 among children so as to provide scientific evidence for the population immunity level of hand-foot-mouth disease and prepare for enterovirus 71 vaccination implementation. Serum specimens were collected from children in communities from January 2014 to March 2015 in Guangzhou. A total of 197 serum samples from children 1-5 years old were collected for this cross-sectional study via non-probabilistic sampling from the database of Chinese National Science and Technique Major Project. Neutralization activity was measured via micro neutralization test in vitro. The positive rate of enterovirus 71 neutralizing antibodies was 59.4%, whereas the geometric mean titre was 1:12.7. A statistically significant difference in true positive rates was found between different age groups but not between different genders. Being the most susceptible population of hand-foot-mouth disease, children under 3 years of age are more likely to be infected with enterovirus 71, and the immunity of children increases with increasing age. Further cohort studies should be conducted, and measures for prevention and vaccination should be taken.

  15. Enterovirus 71 Neutralizing Antibodies Seroepidemiological Research among Children in Guangzhou, China between 2014 and 2015: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Dingmei Zhang

    2017-03-01

    Full Text Available A hand-foot-mouth disease outbreak occurred in 2014 around Guangdong. The purpose of this study was investigating the status and susceptibility of infectious neutralizing antibodies to enterovirus 71 among children so as to provide scientific evidence for the population immunity level of hand-foot-mouth disease and prepare for enterovirus 71 vaccination implementation. Serum specimens were collected from children in communities from January 2014 to March 2015 in Guangzhou. A total of 197 serum samples from children 1–5 years old were collected for this cross-sectional study via non-probabilistic sampling from the database of Chinese National Science and Technique Major Project. Neutralization activity was measured via micro neutralization test in vitro. The positive rate of enterovirus 71 neutralizing antibodies was 59.4%, whereas the geometric mean titre was 1:12.7. A statistically significant difference in true positive rates was found between different age groups but not between different genders. Being the most susceptible population of hand–foot–mouth disease, children under 3 years of age are more likely to be infected with enterovirus 71, and the immunity of children increases with increasing age. Further cohort studies should be conducted, and measures for prevention and vaccination should be taken.

  16. Trypanosoma cruzi trans-sialidase in complex with a neutralizing antibody: structure/function studies towards the rational design of inhibitors.

    Directory of Open Access Journals (Sweden)

    Alejandro Buschiazzo

    2012-01-01

    Full Text Available Trans-sialidase (TS, a virulence factor from Trypanosoma cruzi, is an enzyme playing key roles in the biology of this protozoan parasite. Absent from the mammalian host, it constitutes a potential target for the development of novel chemotherapeutic drugs, an urgent need to combat Chagas' disease. TS is involved in host cell invasion and parasite survival in the bloodstream. However, TS is also actively shed by the parasite to the bloodstream, inducing systemic effects readily detected during the acute phase of the disease, in particular, hematological alterations and triggering of immune cells apoptosis, until specific neutralizing antibodies are elicited. These antibodies constitute the only known submicromolar inhibitor of TS's catalytic activity. We now report the identification and detailed characterization of a neutralizing mouse monoclonal antibody (mAb 13G9, recognizing T. cruzi TS with high specificity and subnanomolar affinity. This mAb displays undetectable association with the T. cruzi superfamily of TS-like proteins or yet with the TS-related enzymes from Trypanosoma brucei or Trypanosoma rangeli. In immunofluorescence assays, mAb 13G9 labeled 100% of the parasites from the infective trypomastigote stage. This mAb also reduces parasite invasion of cultured cells and strongly inhibits parasite surface sialylation. The crystal structure of the mAb 13G9 antigen-binding fragment in complex with the globular region of T. cruzi TS was determined, revealing detailed molecular insights of the inhibition mechanism. Not occluding the enzyme's catalytic site, the antibody performs a subtle action by inhibiting the movement of an assisting tyrosine (Y₁₁₉, whose mobility is known to play a key role in the trans-glycosidase mechanism. As an example of enzymatic inhibition involving non-catalytic residues that occupy sites distal from the substrate-binding pocket, this first near atomic characterization of a high affinity inhibitory molecule

  17. Therapeutic efficacy of antibodies lacking Fcγ receptor binding against lethal dengue virus infection is due to neutralizing potency and blocking of enhancing antibodies [corrected].

    Directory of Open Access Journals (Sweden)

    Katherine L Williams

    2013-02-01

    Full Text Available Dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS are life-threatening complications following infection with one of the four serotypes of dengue virus (DENV. At present, no vaccine or antiviral therapies are available against dengue. Here, we characterized a panel of eight human or mouse-human chimeric monoclonal antibodies (MAbs and their modified variants lacking effector function and dissected the mechanism by which some protect against antibody-enhanced lethal DENV infection. We found that neutralizing modified MAbs that recognize the fusion loop or the A strand epitopes on domains II and III of the envelope protein, respectively, act therapeutically by competing with and/or displacing enhancing antibodies. By analyzing these relationships, we developed a novel in vitro suppression-of-enhancement assay that predicts the ability of modified MAbs to act therapeutically against antibody-enhanced disease in vivo. These studies provide new insight into the biology of DENV pathogenesis and the requirements for antibodies to treat lethal DENV disease.

  18. Optical Studies of Strong Coupling and Recombination in Ultracold Neutral Plasmas

    International Nuclear Information System (INIS)

    Killian, Thomas C.

    2004-01-01

    The ultracold atoms and plasmas research group at Rice University uses a combination of atomic and plasma physics techniques to create neutral plasmas that are orders of magnitude colder than have ever been studied before. Through this work, we probe the basic plasma physics of this exotic regime. During the past year, the major components of a new experiment were completed. We demonstrated a powerful new diagnostic, optical imaging of the plasma, which led to a paper that was published in Physical Review Letters. (Figure A, Phys. Rev. Lett. 92, 143001 (2004)) This was the central feature of my DOE Junior Faculty Award proposal. DOE funding has been used to support one postdoctoral researcher, multiple graduate students, the principle investigator, apparatus construction, and normal laboratory expenses

  19. Neutralizing Monoclonal Antibodies Block Chikungunya Virus Entry and Release by Targeting an Epitope Critical to Viral Pathogenesis

    Directory of Open Access Journals (Sweden)

    Jing Jin

    2015-12-01

    Full Text Available We evaluated the mechanism by which neutralizing human monoclonal antibodies inhibit chikungunya virus (CHIKV infection. Potently neutralizing antibodies (NAbs blocked infection at multiple steps of the virus life cycle, including entry and release. Cryo-electron microscopy structures of Fab fragments of two human NAbs and chikungunya virus-like particles showed a binding footprint that spanned independent domains on neighboring E2 subunits within one viral spike, suggesting a mechanism for inhibiting low-pH-dependent membrane fusion. Detailed epitope mapping identified amino acid E2-W64 as a critical interaction residue. An escape mutation (E2-W64G at this residue rendered CHIKV attenuated in mice. Consistent with these data, CHIKV-E2-W64G failed to emerge in vivo under the selection pressure of one of the NAbs, IM-CKV063. As our study suggests that antibodies engaging the residue E2-W64 can potently inhibit CHIKV at multiple stages of infection, antibody-based therapies or immunogens that target this region might have protective value.

  20. Pre-existing neutralizing antibody mitigates B cell dysregulation and enhances the Env-specific antibody response in SHIV-infected rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Juan Pablo Jaworski

    Full Text Available Our central hypothesis is that protection against HIV infection will be powerfully influenced by the magnitude and quality of the B cell response. Although sterilizing immunity, mediated by pre-formed abundant and potent antibodies is the ultimate goal for B cell-targeted HIV vaccine strategies, scenarios that fall short of this may still confer beneficial defenses against viremia and disease progression. We evaluated the impact of sub-sterilizing pre-existing neutralizing antibody on the B cell response to SHIV infection. Adult male rhesus macaques received passive transfer of a sub-sterilizing amount of polyclonal neutralizing immunoglobulin (Ig purified from previously infected animals (SHIVIG or control Ig prior to intra-rectal challenge with SHIVSF162P4 and extensive longitudinal sampling was performed. SHIVIG treated animals exhibited significantly reduced viral load and increased de novo Env-specific plasma antibody. Dysregulation of the B cell profile was grossly apparent soon after infection in untreated animals; exemplified by a ≈50% decrease in total B cells in the blood evident 2-3 weeks post-infection which was not apparent in SHIVIG treated animals. IgD+CD5+CD21+ B cells phenotypically similar to marginal zone-like B cells were highly sensitive to SHIV infection, becoming significantly decreased as early as 3 days post-infection in control animals, while being maintained in SHIVIG treated animals, and were highly correlated with the induction of Env-specific plasma antibody. These results suggest that B cell dysregulation during the early stages of infection likely contributes to suboptimal Env-specific B cell and antibody responses, and strategies that limit this dysregulation may enhance the host's ability to eliminate HIV.

  1. A hantavirus pulmonary syndrome (HPS) DNA vaccine delivered using a spring-powered jet injector elicits a potent neutralizing antibody response in rabbits and nonhuman primates.

    Science.gov (United States)

    Kwilas, Steve; Kishimori, Jennifer M; Josleyn, Matthew; Jerke, Kurt; Ballantyne, John; Royals, Michael; Hooper, Jay W

    2014-01-01

    that both the anti-SNV and anti-ANDV neutralizing antibody titers were significantly higher (p-value 0.0115) in the DSJI-vaccinated groups than the needle/syringe group. For example, the anti-SNV and anti-ANDV PRNT50 geometric mean titers (GMTs) were 1,974 and 349 in the DSJI-vaccinated group versus 87 and 42 in the needle/syringe group. These data demonstrate, for the first time, that a spring-powered DSJI device is capable of effectively delivering a DNA vaccine to NHPs. Whether this HPS DNA vaccine, or any DNA vaccine, delivered by spring-powered DSJI will elicit a strong immune response in humans, requires clinical trials.

  2. Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds.

    Science.gov (United States)

    Madani, Navid; Princiotto, Amy M; Easterhoff, David; Bradley, Todd; Luo, Kan; Williams, Wilton B; Liao, Hua-Xin; Moody, M Anthony; Phad, Ganesh E; Vázquez Bernat, Néstor; Melillo, Bruno; Santra, Sampa; Smith, Amos B; Karlsson Hedestam, Gunilla B; Haynes, Barton; Sodroski, Joseph

    2016-05-15

    The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus

  3. Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds

    Science.gov (United States)

    Madani, Navid; Princiotto, Amy M.; Easterhoff, David; Bradley, Todd; Luo, Kan; Williams, Wilton B.; Liao, Hua-Xin; Moody, M. Anthony; Phad, Ganesh E.; Vázquez Bernat, Néstor; Melillo, Bruno; Santra, Sampa; Smith, Amos B.; Karlsson Hedestam, Gunilla B.; Haynes, Barton

    2016-01-01

    ABSTRACT The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. IMPORTANCE Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in

  4. A vaccine of L2 epitope repeats fused with a modified IgG1 Fc induced cross-neutralizing antibodies and protective immunity against divergent human papillomavirus types.

    Directory of Open Access Journals (Sweden)

    Xue Chen

    Full Text Available Current human papillomavirus (HPV major capsid protein L1 virus-like particles (VLPs-based vaccines in clinic induce strong HPV type-specific neutralizing antibody responses. To develop pan-HPV vaccines, here, we show that the fusion protein E3R4 consisting of three repeats of HPV16 L2 aa 17-36 epitope (E3 and a modified human IgG1 Fc scaffold (R4 induces cross-neutralizing antibodies and protective immunity against divergent HPV types. E3R4 was expressed as a secreted protein in baculovirus expression system and could be simply purified by one step Protein A affinity chromatography with the purity above 90%. Vaccination of E3R4 formulated with Freunds adjuvant not only induced cross-neutralizing antibodies against HPV pseudovirus types 16, 18, 45, 52, 58, 6, 11 and 5 in mice, but also protected mice against vaginal challenges with HPV pseudovirus types 16, 45, 52, 58, 11 and 5 for at least eleven months after the first immunization. Moreover, vaccination of E3R4 formulated with FDA approved adjuvant alum plus monophosphoryl lipid A also induced cross-neutralizing antibodies against HPV types 16, 18 and 6 in rabbits. Thus, our results demonstrate that delivery of L2 antigen as a modified Fc-fusion protein may facilitate pan-HPV vaccine development.

  5. The first detection of neutral hydrogen in emission in a strong spiral lens

    Science.gov (United States)

    Lipnicky, Andrew; Chakrabarti, Sukanya; Wright, Melvyn C. H.; Blitz, Leo; Heiles, Carl; Cotton, William; Frayer, David; Blandford, Roger; Shu, Yiping; Bolton, Adam S.

    2018-05-01

    We report H I observations of eight spiral galaxies that are strongly lensing background sources. Our targets were selected from the Sloan WFC (Wide Field Camera) Edge-on Late-type Lens Survey (SWELLS) using the Arecibo, Karl G. Jansky Very Large Array, and Green Bank telescopes. We securely detect J1703+2451 at z = 0.063 with a signal-to-noise ratio of 6.7 and W50 = 79 ± 13 km s-1, obtaining the first detection of H I emission in a strong spiral lens. We measure a mass of M_{H I} = (1.77± 0.06^{+0.35}_{-0.75})× 10^9 M_{⊙} for this source. We find that this lens is a normal spiral, with observable properties that are fairly typical of spiral galaxies. For three other sources, we did not secure a detection; however, we are able to place strong constraints on the H I masses of those galaxies. The observations for four of our sources were rendered unusable due to strong radio frequency interference.

  6. Interaction of a neutral composite particle with a strong Coulomb field

    International Nuclear Information System (INIS)

    Wong, Cheuk-Yin.

    1988-01-01

    The author discusses the interaction of the quasi-composite (e/sup /plus//e/sup /minus//) system with an external electromagnetic field. This problem addresses the question of the origin of strong positron lines in quasi-elastic heavy-ion reactions. 3 refs

  7. The First Detection of Neutral Hydrogen in Emission in a Strong Spiral Lens

    Science.gov (United States)

    Lipnicky, Andrew; Chakrabarti, Sukanya; Wright, Melvyn C. H.; Blitz, Leo; Heiles, Carl; Cotton, William; Frayer, David; Blandford, Roger; Shu, Yiping; Bolton, Adam S.

    2018-02-01

    We report H I observations of eight spiral galaxies that are strongly lensing background sources. Our targets were selected from the Sloan WFC (Wide Field Camera) Edge-on Late-type Lens Survey (SWELLS) using the Arecibo, Karl G. Jansky Very Large Array, and Green Bank telescopes. We securely detect J1703+2451 at z = 0.063 with a signal-to-noise of 6.7 and W50 = 79 ± 13 km s-1, obtaining the first detection of H I emission in a strong spiral lens. We measure a mass of M_{H I}= (1.77± 0.06^{+0.35}_{-0.75})× 10^9 {M}_{\\odot} for this source. We find that this lens is a normal spiral, with observable properties that are fairly typical of spiral galaxies. For three other sources we did not secure a detection; however, we are able to place strong constraints on the H I masses of those galaxies. The observations for four of our sources were rendered unusable due to strong radio frequency interference.

  8. Broader HIV-1 neutralizing antibody responses induced by envelope glycoprotein mutants based on the EIAV attenuated vaccine

    Directory of Open Access Journals (Sweden)

    Liu Lianxing

    2010-09-01

    Full Text Available Abstract Background In order to induce a potent and cross-reactive neutralizing antibody (nAb, an effective envelope immunogen is crucial for many viral vaccines, including the vaccine for the human immunodeficiency virus (HIV. The Chinese equine infectious anemia virus (EIAV attenuated vaccine has controlled the epidemic of this virus after its vaccination in over 70 million equine animals during the last 3 decades in China. Data from our past studies demonstrate that the Env protein of this vaccine plays a pivotal role in protecting horses from both homologous and heterogeneous EIAV challenges. Therefore, the amino acid sequence information from the Chinese EIAV attenuated vaccine, in comparison with the parental wild-type EIAV strains, was applied to modify the corresponding region of the envelope glycoprotein of HIV-1 CN54. The direction of the mutations was made towards the amino acids conserved in the two EIAV vaccine strains, distinguishing them from the two wild-type strains. The purpose of the modification was to enhance the immunogenicity of the HIV Env. Results The induced nAb by the modified HIV Env neutralized HIV-1 B and B'/C viruses at the highest titer of 1:270. Further studies showed that a single amino acid change in the C1 region accounts for the substantial enhancement in induction of anti-HIV-1 neutralizing antibodies. Conclusions This study shows that an HIV envelope modified by the information of another lentivirus vaccine induces effective broadly neutralizing antibodies. A single amino acid mutation was found to increase the immunogenicity of the HIV Env.

  9. Human monoclonal antibodies in single chain fragment variable format with potent neutralization activity against influenza virus H5N1.

    Science.gov (United States)

    Ascione, Alessandro; Capecchi, Barbara; Campitelli, Laura; Imperiale, Valentina; Flego, Michela; Zamboni, Silvia; Gellini, Mara; Alberini, Isabella; Pittiglio, Eliana; Donatelli, Isabella; Temperton, Nigel J; Cianfriglia, Maurizio

    2009-09-01

    Effective diagnostic and therapeutic strategies are needed to control and combat the highly pathogenic avian influenza virus (AIV) subtype H5N1. To this end, we developed human monoclonal antibodies (mAbs) in single chain fragment variable (scFv) format towards the H5N1 avian influenza virus to gain new insights for the development of immunotherapy against human cases of H5N1. Using a biopanning based approach a large array of scFvs against H5N1 virus were isolated from the human semi-synthetic ETH-2 phage antibody library. H5N1 ELISA-positive scFvs with unique variable heavy (VH) and light (VL) chain gene sequences showed different biochemical properties and neutralization activity across H5N1 viral strains. In particular, the scFv clones AV.D1 and AV.C4 exerted a significant inhibition of the H5N1 A/Vietnam/1194/2004 virus infection in a pseudotype-based neutralization assay. Interestingly, these two scFvs displayed a cross-clade neutralizing activity versus A/whooping swan/Mongolia/244/2005 and A/Indonesia/5/2005 strains. These studies provide proof of the concept that human mAbs in scFv format with well-defined H5N1 recognition patterns and in vitro neutralizing activity can be easily and rapidly isolated by biopanning selection of an entirely artificial antibody repertoire using inactivated H5N1 virus as a bait.

  10. Chikungunya virus neutralization antigens and direct cell-to-cell transmission are revealed by human antibody-escape mutants.

    Directory of Open Access Journals (Sweden)

    Chia Yin Lee

    2011-12-01

    Full Text Available Chikungunya virus (CHIKV is an alphavirus responsible for numerous epidemics throughout Africa and Asia, causing infectious arthritis and reportedly linked with fatal infections in newborns and elderly. Previous studies in animal models indicate that humoral immunity can protect against CHIKV infection, but despite the potential efficacy of B-cell-driven intervention strategies, there are no virus-specific vaccines or therapies currently available. In addition, CHIKV has been reported to elicit long-lasting virus-specific IgM in humans, and to establish long-term persistence in non-human primates, suggesting that the virus might evade immune defenses to establish chronic infections in man. However, the mechanisms of immune evasion potentially employed by CHIKV remain uncharacterized. We previously described two human monoclonal antibodies that potently neutralize CHIKV infection. In the current report, we have characterized CHIKV mutants that escape antibody-dependent neutralization to identify the CHIKV E2 domain B and fusion loop "groove" as the primary determinants of CHIKV interaction with these antibodies. Furthermore, for the first time, we have also demonstrated direct CHIKV cell-to-cell transmission, as a mechanism that involves the E2 domain A and that is associated with viral resistance to antibody-dependent neutralization. Identification of CHIKV sub-domains that are associated with human protective immunity, will pave the way for the development of CHIKV-specific sub-domain vaccination strategies. Moreover, the clear demonstration of CHIKV cell-to-cell transmission and its possible role in the establishment of CHIKV persistence, will also inform the development of future anti-viral interventions. These data shed new light on CHIKV-host interactions that will help to combat human CHIKV infection and inform future studies of CHIKV pathogenesis.

  11. Sensitive Detection of Individual Neutral Atoms in a Strong Coupling Cavity QED System

    International Nuclear Information System (INIS)

    Zhang Peng-Fei; Zhang Yu-Chi; Li Gang; Du Jin-Jin; Zhang Yan-Feng; Guo Yan-Qiang; Wang Jun-Min; Zhang Tian-Cai; Li Wei-Dong

    2011-01-01

    We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime. A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5 mm above the micro-cavity center. The atoms fall down freely in gravitation after shutting off the magneto-optical trap and pass through the cavity. The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually. We detect the single atom transits either in the resonance or various detunings. The single atom vacuum-Rabi splitting is directly measured to be Ω = 2π × 23.9 MHz. The average duration of atom-cavity coupling of about 110 μs is obtained according to the probability distribution of the atom transits. (fundamental areas of phenomenology(including applications))

  12. On the Frequency Distribution of Neutral Particles from Low-Energy Strong Interactions

    Directory of Open Access Journals (Sweden)

    Federico Colecchia

    2017-01-01

    Full Text Available The rejection of the contamination, or background, from low-energy strong interactions at hadron collider experiments is a topic that has received significant attention in the field of particle physics. This article builds on a particle-level view of collision events, in line with recently proposed subtraction methods. While conventional techniques in the field usually concentrate on probability distributions, our study is, to our knowledge, the first attempt at estimating the frequency distribution of background particles across the kinematic space inside individual collision events. In fact, while the probability distribution can generally be estimated given a model of low-energy strong interactions, the corresponding frequency distribution inside a single event typically deviates from the average and cannot be predicted a priori. We present preliminary results in this direction and establish a connection between our technique and the particle weighting methods that have been the subject of recent investigation at the Large Hadron Collider.

  13. Neutralizing antibody responses in macaques induced by human immunodeficiency virus type 1 monovalent or trivalent envelope glycoproteins.

    Directory of Open Access Journals (Sweden)

    Gerald V Quinnan

    Full Text Available A major goal of efforts to develop a vaccine to prevent HIV-1 infection is induction of broadly cross-reactive neutralizing antibodies (bcnAb. In previous studies we have demonstrated induction of neutralizing antibodies that did cross-react among multiple primary and laboratory strains of HIV-1, but neutralized with limited potency. In the present study we tested the hypothesis that immunization with multiple HIV-1 envelope glycoproteins (Envs would result in a more potent and cross-reactive neutralizing response. One Env, CM243(N610Q, was selected on the basis of studies of the effects of single and multiple mutations of the four gp41 glycosylation sites. The other two Envs included R2 (subtype B and 14/00/4 (subtype F, both of which were obtained from donors with bcnAb. Rhesus monkeys were immunized using a prime boost regimen as in previous studies. Individual groups of monkeys were immunized with either one of the three Envs or all three. The single N610Q and N615Q mutations of CM243 Env did not disrupt protein secretion, processing into, or reactivity with mAbs, unlike other single or multiple deglycosylation mutations. In rabbit studies the N610Q mutation alone or in combination was associated with an enhanced neutralizing response against homologous and heterologous subtype E viruses. In the subsequent monkey study the response induced by the R2 Env regimen was equivalent to the trivalent regimen and superior to the other monovalent regimens against the virus panel used for testing. The 14/00/4 Env induced responses superior to CM243(N610Q. The results indicate that elimination of the glycosylation site near the gp41 loop results in enhanced immunogenicity, but that immunization of monkeys with these three distinct Envs was not more immunogenic than with one.

  14. Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits.

    Science.gov (United States)

    Yasmeen, Anila; Ringe, Rajesh; Derking, Ronald; Cupo, Albert; Julien, Jean-Philippe; Burton, Dennis R; Ward, Andrew B; Wilson, Ian A; Sanders, Rogier W; Moore, John P; Klasse, Per Johan

    2014-05-29

    The trimeric envelope glycoproteins (Env) on the surface of HIV-1 virions are the targets for neutralizing antibodies (NAbs). No candidate HIV-1 immunogen has yet induced potent, broadly active NAbs (bNAbs). Part of the explanation may be that previously tested Env proteins inadequately mimic the functional, native Env complex. Trimerization and the proteolytic processing of Env precursors into gp120 and gp41 profoundly alter antigenicity, but soluble cleaved trimers are too unstable to serve as immunogens. By introducing stabilizing mutations (SOSIP), we constructed soluble, cleaved Env trimers derived from the HIV-1 subtype A isolate BG505 that resemble native Env spikes on virions both structurally and antigenically. We used surface plasmon resonance (SPR) to quantify antibody binding to different forms of BG505 Env: the proteolytically cleaved SOSIP.664 trimers, cleaved gp120-gp41ECTO protomers, and gp120 monomers. Non-NAbs to the CD4-binding site bound only marginally to the trimers but equally well to gp120-gp41ECTO protomers and gp120 monomers, whereas the bNAb VRC01, directed to the CD4bs, bound to all three forms. In contrast, bNAbs to V1V2 glycan-dependent epitopes bound preferentially (PG9 and PG16) or exclusively (PGT145) to trimers. We also explored the antigenic consequences of three different features of SOSIP.664 gp140 trimers: the engineered inter-subunit disulfide bond, the trimer-stabilizing I559P change in gp41ECTO, and proteolytic cleavage at the gp120-gp41ECTO junction. Each of these three features incrementally promoted native-like trimer antigenicity. We compared Fab and IgG versions of bNAbs and validated a bivalent model of IgG binding. The NAbs showed widely divergent binding kinetics and degrees of binding to native-like BG505 SOSIP.664. High off-rate constants and low stoichiometric estimates of NAb binding were associated with large amounts of residual infectivity after NAb neutralization of the corresponding BG505.T332N pseudovirus

  15. Neutralization of tier-2 viruses and epitope profiling of plasma antibodies from human immunodeficiency virus type 1 infected donors from India.

    Directory of Open Access Journals (Sweden)

    Raiees Andrabi

    Full Text Available Broadly cross neutralizing antibodies (NAbs are generated in a group of HIV-1 infected individuals during the natural infection, but little is known about their prevalence in patients infected with viral subtypes from different geographical regions. We tested here the neutralizing efficiency of plasma antibodies from 80 HIV-1 infected antiretroviral drug naive patients against a panel of subtype-B and C tier 2 viruses. We detected cross-neutralizing antibodies in approximately 19-27% of the plasma, however the subtype-C specific neutralization efficiency predominated (p = 0.004. The neutralizing activity was shown to be exclusively mediated by the immunoglobulin G (IgG fraction in the representative plasma samples. Epitope mapping of three, the most cross-neutralizing plasma (CNP AIIMS206, AIIMS239 and AIIMS249 with consensus-C overlapping envelope peptides revealed ten different binding specificities with only V3 and IDR being common. The V3 and IDR were highly antigenic regions but no correlation between their reciprocal Max50 binding titers and neutralization was observed. In addition, the neutralizing activity of CNP was not substantially reduced by V3 and gp41 peptides except a modest contribution of MPER peptide. The MPER was rarely recognized by plasma antibodies though antibody depletion and competition experiments demonstrated MPER dependent neutralization in two out of three CNP. Interestingly, the binding specificity of one of the CNP (AIIMS206 overlapped with broadly neutralizing mAb 2F5 epitope. Overall, the data suggest that, despite the low immunogenicity of HIV-1 MPER, the antibodies directed to this region may serve as crucial reagents for HIV-1 vaccine design.

  16. Applying antibody-sensitive hypervariable region 1-deleted hepatitis C virus to the study of escape pathways of neutralizing human monoclonal antibody AR5A

    DEFF Research Database (Denmark)

    Velazquez-Moctezuma, Rodrigo; Law, Mansun; Bukh, Jens

    2017-01-01

    isolates with high antibody resistance, or antibodies with moderate potency, it remains challenging to induce escape mutations in vitro. Here, as proof-of-concept, we used antibody-sensitive HVR1-deleted (ΔHVR1) viruses to generate escape mutants for a human monoclonal antibody, AR5A, targeting a rare...... effect but sensitized the virus to AR5A. Of note, H77/JFH1L665S was non-viable. The resistance mutations did not affect cell-to-cell spread or E1/E2 interactions. Finally, introducing L665W, identified in genotype 1, into genotypes 2–6 parental and HVR1-deleted variants (not available for genotype 4a) we...... observed diverse effects on viral fitness and a universally pronounced reduction in AR5A sensitivity. Thus, we were able to take advantage of the neutralization-sensitive HVR1-deleted viruses to rapidly generate escape viruses aiding our understanding of the divergent escape pathways used by HCV to evade...

  17. Antigenic Characterization of the HCMV gH/gL/gO and Pentamer Cell Entry Complexes Reveals Binding Sites for Potently Neutralizing Human Antibodies.

    Directory of Open Access Journals (Sweden)

    Claudio Ciferri

    2015-10-01

    Full Text Available Human Cytomegalovirus (HCMV is a major cause of morbidity and mortality in transplant patients and in fetuses following congenital infection. The glycoprotein complexes gH/gL/gO and gH/gL/UL128/UL130/UL131A (Pentamer are required for HCMV entry in fibroblasts and endothelial/epithelial cells, respectively, and are targeted by potently neutralizing antibodies in the infected host. Using purified soluble forms of gH/gL/gO and Pentamer as well as a panel of naturally elicited human monoclonal antibodies, we determined the location of key neutralizing epitopes on the gH/gL/gO and Pentamer surfaces. Mass Spectrometry (MS coupled to Chemical Crosslinking or to Hydrogen Deuterium Exchange was used to define residues that are either in proximity or part of neutralizing epitopes on the glycoprotein complexes. We also determined the molecular architecture of the gH/gL/gO- and Pentamer-antibody complexes by Electron Microscopy (EM and 3D reconstructions. The EM analysis revealed that the Pentamer specific neutralizing antibodies bind to two opposite surfaces of the complex, suggesting that they may neutralize infection by different mechanisms. Together, our data identify the location of neutralizing antibodies binding sites on the gH/gL/gO and Pentamer complexes and provide a framework for the development of antibodies and vaccines against HCMV.

  18. HIV-1 specific antibody titers and neutralization among chronically infected patients on long-term suppressive antiretroviral therapy (ART: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Johannes S Gach

    Full Text Available The majority of potent and broadly neutralizing antibodies against HIV-1 have been isolated from untreated patients with acute or chronic infection. To assess the extent of HIV-1 specific antibody response and neutralization after many years of virologic suppression from potent combination ART, we examined antibody binding titers and neutralization of 51 patients with chronic HIV-1 infection on suppressive ART for at least three years. In this cross-sectional analysis, we found high antibody titers against gp120, gp41, and the membrane proximal external region (MPER in 59%, 43%, and 27% of patients, respectively. We observed significantly higher endpoint binding titers for gp120 and gp41 for patients with >10 compared to ≤ 10 years of detectable HIV RNA. Additionally, we observed higher median gp120 and gp41 antibody titers in patients with HIV RNA 10 years of detectable HIV RNA (8/20 [40.0%] versus 3/31 [9.7%] for ≤ 10 years, p = 0.02 and a trend toward greater neutralization in patients with ≤ 5 years of HIV RNA 5 years, p = 0.08. All patients with neutralizing activity mediated successful phagocytosis of VLPs by THP-1 cells after antibody opsonization. Our findings of highly specific antibodies to several structural epitopes of HIV-1 with antibody effector functions and neutralizing activity after long-term suppressive ART, suggest continuous antigenic stimulation and evolution of HIV-specific antibody response occurs before and after suppression with ART. These patients, particularly those with slower HIV progression and more time with detectable viremia prior to initiation of suppressive ART, are a promising population to identify and further study functional antibodies against HIV-1.

  19. Specifically modified Env immunogens activate B-cell precursors of broadly neutralizing HIV-1 antibodies in transgenic mice

    Science.gov (United States)

    McGuire, Andrew T.; Gray, Matthew D.; Dosenovic, Pia; Gitlin, Alexander D.; Freund, Natalia T.; Petersen, John; Correnti, Colin; Johnsen, William; Kegel, Robert; Stuart, Andrew B.; Glenn, Jolene; Seaman, Michael S.; Schief, William R.; Strong, Roland K.; Nussenzweig, Michel C.; Stamatatos, Leonidas

    2016-01-01

    VRC01-class broadly neutralizing HIV-1 antibodies protect animals from experimental infection and could contribute to an effective vaccine response. Their predicted germline forms (gl) bind Env inefficiently, which may explain why they are not elicited by HIV-1 Env-immunization. Here we show that an optimized Env immunogen can engage multiple glVRC01-class antibodies. Furthermore, this immunogen activates naive B cells expressing the human germline heavy chain of 3BNC60, paired with endogenous mouse light chains in vivo. To address whether it activates B cells expressing the fully humanized gl3BNC60 B-cell receptor (BCR), we immunized mice carrying both the heavy and light chains of gl3BNC60. B cells expressing this BCR display an autoreactive phenotype and fail to respond efficiently to soluble forms of the optimized immunogen, unless it is highly multimerized. Thus, specifically designed Env immunogens can activate naive B cells expressing human BCRs corresponding to precursors of broadly neutralizing HIV-1 antibodies even when the B cells display an autoreactive phenotype. PMID:26907590

  20. Specifically modified Env immunogens activate B-cell precursors of broadly neutralizing HIV-1 antibodies in transgenic mice.

    Science.gov (United States)

    McGuire, Andrew T; Gray, Matthew D; Dosenovic, Pia; Gitlin, Alexander D; Freund, Natalia T; Petersen, John; Correnti, Colin; Johnsen, William; Kegel, Robert; Stuart, Andrew B; Glenn, Jolene; Seaman, Michael S; Schief, William R; Strong, Roland K; Nussenzweig, Michel C; Stamatatos, Leonidas

    2016-02-24

    VRC01-class broadly neutralizing HIV-1 antibodies protect animals from experimental infection and could contribute to an effective vaccine response. Their predicted germline forms (gl) bind Env inefficiently, which may explain why they are not elicited by HIV-1 Env-immunization. Here we show that an optimized Env immunogen can engage multiple glVRC01-class antibodies. Furthermore, this immunogen activates naive B cells expressing the human germline heavy chain of 3BNC60, paired with endogenous mouse light chains in vivo. To address whether it activates B cells expressing the fully humanized gl3BNC60 B-cell receptor (BCR), we immunized mice carrying both the heavy and light chains of gl3BNC60. B cells expressing this BCR display an autoreactive phenotype and fail to respond efficiently to soluble forms of the optimized immunogen, unless it is highly multimerized. Thus, specifically designed Env immunogens can activate naive B cells expressing human BCRs corresponding to precursors of broadly neutralizing HIV-1 antibodies even when the B cells display an autoreactive phenotype.

  1. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody.

    Science.gov (United States)

    Kwong, P D; Wyatt, R; Robinson, J; Sweet, R W; Sodroski, J; Hendrickson, W A

    1998-06-18

    The entry of human immunodeficiency virus (HIV) into cells requires the sequential interaction of the viral exterior envelope glycoprotein, gp120, with the CD4 glycoprotein and a chemokine receptor on the cell surface. These interactions initiate a fusion of the viral and cellular membranes. Although gp120 can elicit virus-neutralizing antibodies, HIV eludes the immune system. We have solved the X-ray crystal structure at 2.5 A resolution of an HIV-1 gp120 core complexed with a two-domain fragment of human CD4 and an antigen-binding fragment of a neutralizing antibody that blocks chemokine-receptor binding. The structure reveals a cavity-laden CD4-gp120 interface, a conserved binding site for the chemokine receptor, evidence for a conformational change upon CD4 binding, the nature of a CD4-induced antibody epitope, and specific mechanisms for immune evasion. Our results provide a framework for understanding the complex biology of HIV entry into cells and should guide efforts to intervene.

  2. Breadth of neutralization and synergy of clinically relevant human monoclonal antibodies against HCV genotypes 1a, 1b, 2a, 2b, 2c, and 3a

    DEFF Research Database (Denmark)

    Carlsen, Thomas H R; Pedersen, Jannie; Prentoe, Jannick C

    2014-01-01

    UNLABELLED: Human monoclonal antibodies (HMAbs) with neutralizing capabilities constitute potential immune-based treatments or prophylaxis against hepatitis C virus (HCV). However, lack of cell culture-derived HCV (HCVcc) harboring authentic envelope proteins (E1/E2) has hindered neutralization...... synergism obtained when pooling the most potent HMAbs could have significant implications for developing novel strategies to treat and control HCV....

  3. Immunoglobulin with High-Titer In Vitro Cross-Neutralizing Hepatitis C Virus Antibodies Passively Protects Chimpanzees from Homologous, but Not Heterologous, Challenge

    DEFF Research Database (Denmark)

    Bukh, Jens; Engle, Ronald E.; Faulk, Kristina

    2015-01-01

    The importance of neutralizing antibodies (NAbs) in protection against hepatitis C virus (HCV) remains controversial. We infused a chimpanzee with H06 immunoglobulin from a genotype 1a HCV-infected patient and challenged with genotype strains efficiently neutralized by H06 in vitro. Genotype 1a...

  4. Comparison of neutralizing and hemagglutination-inhibiting antibody responses to influenza A virus vaccination of human immunodeficiency virus-infected individuals

    NARCIS (Netherlands)

    Benne, CA; Harmsen, M; Tavares, L; Kraaijeveld, CA; De Jong, JC

    A neutralization enzyme immunoassay (N-EIA) was used to determine the neutralizing serum antibody titers to influenza A/Taiwan/1/86 (H1N1) and Beijing/353/89 (H3N2) viruses after vaccination of 51 human immunodeficiency virus (HIV) type 1-infected individuals and 10 healthy noninfected controls

  5. Emergence of viruses resistant to neutralization by V3-specific antibodies in experimental human immunodeficiency virus type 1 IIIB infection of chimpanzees

    NARCIS (Netherlands)

    Nara, P. L.; Smit, L.; Dunlop, N.; Hatch, W.; Merges, M.; Waters, D.; Kelliher, J.; Gallo, R. C.; Fischinger, P. J.; Goudsmit, J.

    1990-01-01

    Emergence in two chimpanzees of human immunodeficiency virus type 1 (HIV-1) IIIB variants resistant to neutralization by the preexisting antibody is described. Viruses isolated from the HIV-1 IIIB gp120-vaccinated and -challenged animal were more resistant to neutralization by the chimpanzee's own

  6. Neutralizing monoclonal antibodies against hepatitis C virus E2 protein bind discontinuous epitopes and inhibit infection at a postattachment step

    DEFF Research Database (Denmark)

    Sabo, Michelle C; Luca, Vincent C; Prentoe, Jannick

    2011-01-01

    localized epitopes for the neutralizing MAbs on the E2 protein. Two of the strongly inhibitory MAbs, H77.16 and J6.36, showed markedly reduced binding when amino acids within hypervariable region 1 (HVR1) and at sites ~100 to 200 residues away were changed, suggesting binding to a discontinuous epitope...

  7. Altered antibody response to influenza H1N1 vaccine in healthy elderly people as determined by HI, ELISA, and neutralization assay

    NARCIS (Netherlands)

    Remarque, E.J.; Bruijn, de I.A.; Boersma, W.J.A.; Masurel, N.; Ligthart, G.J.

    1998-01-01

    To determine the influence of ageing per se as well as of priming histories on the antibody response to influenza vaccination, haemagglutination inhibition (HI), ELISA IgG, IgA, IgM and neutralizing antibody titres were studied in 43 healthy young subjects (mean age 23 years) and 55 healthy elderly

  8. HCMV Infection of Human Trophoblast Progenitor Cells of the Placenta Is Neutralized by a Human Monoclonal Antibody to Glycoprotein B and Not by Antibodies to the Pentamer Complex

    Directory of Open Access Journals (Sweden)

    Martin Zydek

    2014-03-01

    Full Text Available Human cytomegalovirus (HCMV is the major viral cause of congenital infection and birth defects. Primary maternal infection often results in virus transmission, and symptomatic babies can have permanent neurological deficiencies and deafness. Congenital infection can also lead to intrauterine growth restriction, a defect in placental transport. HCMV replicates in primary cytotrophoblasts (CTBs, the specialized cells of the placenta, and inhibits differentiation/invasion. Human trophoblast progenitor cells (TBPCs give rise to the mature cell types of the chorionic villi, CTBs and multi-nucleated syncytiotrophoblasts (STBs. Here we report that TBPCs are fully permissive for pathogenic and attenuated HCMV strains. Studies with a mutant virus lacking a functional pentamer complex (gH/gL/pUL128-131A showed that virion entry into TBPCs is independent of the pentamer. In addition, infection is blocked by a potent human neutralizing monoclonal antibody (mAb, TRL345, reactive with glycoprotein B (gB, but not mAbs to the pentamer proteins pUL130/pUL131A. Functional studies revealed that neutralization of infection preserved the capacity of TBPCs to differentiate and assemble into trophospheres composed of CTBs and STBs in vitro. Our results indicate that mAbs to gB protect trophoblast progenitors of the placenta and could be included in antibody treatments developed to suppress congenital infection and prevent disease.

  9. Neutralizing Antibody Response and Efficacy of Novel Recombinant Tetravalent Dengue DNA Vaccine Comprising Envelope Domain III in Mice

    Directory of Open Access Journals (Sweden)

    Ajit Kulkarni

    2017-03-01

    Full Text Available Background: Dengue is a global arboviral threat to humans; causing 390 million infections per year. The availability of safe and effective tetravalent dengue vaccine is a global requirement to prevent epidemics, morbidity, and mortality associated with it. Methods: Five experimental groups (6 mice per group each of 5-week-old BALB/c mice were immunized with vaccine and placebo (empty plasmid (100 µg, i.m. on days 0, 14 and 28. Among these, four groups (one group per serotype of each were subsequently challenged 3 weeks after the last boost with dengue virus (DENV serotypes 1-4 (100 LD50, 20 µl intracerebrally to determine vaccine efficacy. The fifth group of each was used as a control. The PBS immunized group was used as mock control. Serum samples were collected before and after subsequent immunizations. EDIII fusion protein expression was determined by Western blot. Total protein concentration was measured by Bradford assay. Neutralizing antibodies were assessed by TCID50-CPE inhibition assay. Statistical analysis was performed using Stata/IC 10.1 software for Windows. One-way repeated measures ANOVA and Mann-Whitney test were used for neutralizing antibody analysis and vaccine efficacy, respectively. Results: The recombinant EDIII fusion protein was expressed adequately in transfected 293T cells. Total protein concentration was almost 3 times more than the control. Vaccine candidate induced neutralizing antibodies against all four DENV serotypes with a notable increase after subsequent boosters. Vaccine efficacy was 83.3% (DENV-1, -3, -4 and 50% (DENV-2. Conclusion: Our results suggest that vaccine is immunogenic and protective; however, further studies are required to improve the immunogenicity particularly against DENV-2.

  10. Novel adenoviral vector induces T-cell responses despite anti-adenoviral neutralizing antibodies in colorectal cancer patients.

    Science.gov (United States)

    Morse, Michael A; Chaudhry, Arvind; Gabitzsch, Elizabeth S; Hobeika, Amy C; Osada, Takuya; Clay, Timothy M; Amalfitano, Andrea; Burnett, Bruce K; Devi, Gayathri R; Hsu, David S; Xu, Younong; Balcaitis, Stephanie; Dua, Rajesh; Nguyen, Susan; Balint, Joseph P; Jones, Frank R; Lyerly, H Kim

    2013-08-01

    First-generation, E1-deleted adenovirus subtype 5 (Ad5)-based vectors, although promising platforms for use as cancer vaccines, are impeded in activity by naturally occurring or induced Ad-specific neutralizing antibodies. Ad5-based vectors with deletions of the E1 and the E2b regions (Ad5 [E1-, E2b-]), the latter encoding the DNA polymerase and the pre-terminal protein, by virtue of diminished late phase viral protein expression, were hypothesized to avoid immunological clearance and induce more potent immune responses against the encoded tumor antigen transgene in Ad-immune hosts. Indeed, multiple homologous immunizations with Ad5 [E1-, E2b-]-CEA(6D), encoding the tumor antigen carcinoembryonic antigen (CEA), induced CEA-specific cell-mediated immune (CMI) responses with antitumor activity in mice despite the presence of preexisting or induced Ad5-neutralizing antibody. In the present phase I/II study, cohorts of patients with advanced colorectal cancer were immunized with escalating doses of Ad5 [E1-, E2b-]-CEA(6D). CEA-specific CMI responses were observed despite the presence of preexisting Ad5 immunity in a majority (61.3 %) of patients. Importantly, there was minimal toxicity, and overall patient survival (48 % at 12 months) was similar regardless of preexisting Ad5 neutralizing antibody titers. The results demonstrate that, in cancer patients, the novel Ad5 [E1-, E2b-] gene delivery platform generates significant CMI responses to the tumor antigen CEA in the setting of both naturally acquired and immunization-induced Ad5-specific immunity.

  11. Cross-Reactive and Cross-Neutralizing Activity of Human Mumps Antibodies Against a Novel Mumps Virus From Bats.

    Science.gov (United States)

    Beaty, Shannon M; Nachbagauer, Raffael; Hirsh, Ariana; Vigant, Frederic; Duehr, James; Azarm, Kristopher D; Stelfox, Alice J; Bowden, Thomas A; Duprex, W Paul; Krammer, Florian; Lee, Benhur

    2017-01-15

    To evaluate the antigenic relationship between bat mumps virus (BMV) and the JL5 vaccine strain of mumps virus (MuVJL5), we rescued a chimeric virus bearing the F and HN glycoproteins of BMV in the background of a recombinant JL5 genome (rMuVJL5). Cross-reactivity and cross-neutralization between this chimeric recombinant MuV bearing the F and HN glycoproteins of BMV (rMuVJL5-F/HNBMV) virus and rMuVJL5 were demonstrated using hyperimmune mouse serum samples and a curated panel of human serum. All mouse and human serum samples that were able to neutralize rMuVJL5 infection had cross-neutralizing activity against rMuVJL5-F/HNBMV. Our data suggest that persons who have neutralizing antibodies against MuV might be protected from infection by BMV. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  12. Neutralization of Bothrops asper venom by antibodies, natural products and synthetic drugs: contributions to understanding snakebite envenomings and their treatment.

    Science.gov (United States)

    Lomonte, Bruno; León, Guillermo; Angulo, Yamileth; Rucavado, Alexandra; Núñez, Vitelbina

    2009-12-01

    Interest in studies on the neutralization of snake venoms and toxins by diverse types of inhibitors is two-fold. From an applied perspective, results enclose the potential to be translated into useful therapeutic products or procedures, to benefit patients suffering from envenomings. From a basic point of view, on the other hand, neutralizing agents may be used as powerful dissecting tools to determine the relative role of toxins within the context of the overall pathology induced by a venom, or to increase our understanding on the molecular mechanisms by which toxins exert their harmful actions upon particular targets. The venom of the snake Bothrops asper has been the subject of a number of experimental studies addressing its neutralization by antibodies, as well as by non-immunologic inhibitors, including natural products derived from plants or animals, or synthetic drugs. As summarized in the present review, neutralization studies on this venom and some of its isolated toxins have contributed to a better understanding of envenomings by this species, and their treatment. In addition, such studies have provided valuable knowledge on the mechanisms of action and the relative functional importance of particular toxins of this venom, especially in the case of its myotoxic phospholipases A(2) and hemorrhagic metalloproteinases.

  13. Induction of neutralizing antibodies to Hendra and Nipah glycoproteins using a Venezuelan equine encephalitis virus in vivo expression system.

    Science.gov (United States)

    Defang, Gabriel N; Khetawat, Dimple; Broder, Christopher C; Quinnan, Gerald V

    2010-12-16

    The emergence of Hendra Virus (HeV) and Nipah Virus (NiV) which can cause fatal infections in both animals and humans has triggered a search for an effective vaccine. Here, we have explored the potential for generating an effective humoral immune response to these zoonotic pathogens using an alphavirus-based vaccine platform. Groups of mice were immunized with Venezuelan equine encephalitis virus replicon particles (VRPs) encoding the attachment or fusion glycoproteins of either HeV or NiV. We demonstrate the induction of highly potent cross-reactive neutralizing antibodies to both viruses using this approach. Preliminary study suggested early enhancement in the antibody response with use of a modified version of VRP. Overall, these data suggest that the use of an alphavirus-derived vaccine platform might serve as a viable approach for the development of an effective vaccine against the henipaviruses. Published by Elsevier Ltd.

  14. Neutralizing antibodies in patients with chronic hepatitis C and correlation to liver cirrhosis and estimated duration of infection

    DEFF Research Database (Denmark)

    Pedersen, Jannie; Lundbo, Lene Fogt; Krarup, Henrik

    2016-01-01

    Although chronic hepatitis C virus (HCV) infection accounts for 30% of individuals with cirrhotic livers worldwide, factors influencing disease progression are far from elucidated. The aim of this study was to determine whether the level of neutralizing antibodies (NAbs) correlated...... with the development of cirrhosis in patients with chronic HCV infection, genotype 1, when adjusting for estimated duration of infection. Thirty-nine patients with chronic hepatitis C, with either no/mild fibrosis (n = 23) or cirrhosis (n = 16), were enrolled from two university hospitals in Denmark. Duration of HCV...

  15. No development of neutralizing antibodies against recombinant interferon-alpha in Ph-negative myeloproliferative neoplasms-a prospective study

    DEFF Research Database (Denmark)

    Ocias, Lukas Frans; Lund Hansen, Dennis; Kielsgaard Kristensen, Thomas

    2015-01-01

    neutralizing antibodies (nAbs) against the drug leading to treatment failure. Most data on type 1 IFN immunogenicity are available from studies of patients with multiple sclerosis treated with rIFN-beta, and patients with hepatitis C treated with rIFN-alpha. A few reports have demonstrated nAbs in MPN patients......: ET: 67% CR, 29 % PR; PV: 64% CR, 31% PR (ELN 2009 criteria); PMF: 50% had at least a minor response (EUMNET). The median serum concentration of bioactive IFN-alpha at 12 months was 12,4 (range...

  16. Serological surveillance for Tahyna virus (California encephalitis orthobunyavirus, Peribunyaviridae) neutralizing antibodies in wild ungulates in Austria, Hungary and Romania.

    Science.gov (United States)

    Camp, J V; Haider, R; Porea, D; Oslobanu, L E; Forgách, P; Nowotny, N

    2018-03-08

    A serosurvey for Tahyna virus (TAHV), a mosquito-borne California encephalitis orthobunyavirus (Peribunyaviridae) endemic to Europe, was performed to estimate the activity of TAHV on a broad geographic scale. Sera from wild boar (Sus scrofa), roe deer (Capreolus capreolus) and red deer (Cervus elaphus) were collected from Austria, Hungary and Romania. Samples were tested for neutralizing antibodies against TAHV using a virus microneutralization assay. The results demonstrate that TAHV transmission to mammals is widespread in Europe, particularly in the wild boar population where the mean rate of seroconversion is 15.2%. © 2018 Blackwell Verlag GmbH.

  17. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody

    OpenAIRE

    Kwong, Peter D.; Wyatt, Richard; Robinson, James; Sweet, Raymond W.; Sodroski, Joseph; Hendrickson, Wayne A.

    1998-01-01

    The entry of human immunodeficiency virus (HIV) into cells requires the sequential interaction of the viral exterior envelope glycoprotein, gp120, with the CD4 glycoprotein and a chemokine receptor on the cell surface. These interactions initiate a fusion of the viral and cellular membranes. Although gpl20 can elicit virus-neutralizing antibodies, HIV eludes the immune system. We have solved the X-ray crystal structure at 2.5 Å resolution of an HIV-1 gp120 core complexed with a two-domain fra...

  18. Induction of neutralizing antibody response against four dengue viruses in mice by intramuscular electroporation of tetravalent DNA vaccines.

    Science.gov (United States)

    Prompetchara, Eakachai; Ketloy, Chutitorn; Keelapang, Poonsook; Sittisombut, Nopporn; Ruxrungtham, Kiat

    2014-01-01

    DNA vaccine against dengue is an interesting strategy for a prime/boost approach. This study evaluated neutralizing antibody (NAb) induction of a dengue tetravalent DNA (TDNA) vaccine candidate administered by intramuscular-electroporation (IM-EP) and the benefit of homologous TDNA boosting in mice. Consensus humanized pre-membrane (prM) and envelope (E) of each serotypes, based on isolates from year 1962-2003, were separately cloned into a pCMVkan expression vector. ICR mice, five-six per group were immunized for three times (2-week interval) with TDNA at 100 µg (group I; 25 µg/monovalent) or 10 µg (group II; 2.5 µg/monovalent). In group I, mice received an additional TDNA boosting 13 weeks later. Plaque reduction neutralization tests (PRNT) were performed at 4 weeks post-last immunization. Both 100 µg and 10 µg doses of TDNA induced high NAb levels against all DENV serotypes. The median PRNT50 titers were comparable among four serotypes of DENV after TDNA immunization. Median PRNT50 titers ranged 240-320 in 100 µg and 160-240 in 10 µg groups (p = ns). A time course study of the 100 µg dose of TDNA showed detectable NAb at 2 weeks after the second injection. The NAb peaked at 4 weeks after the third injection then declined over time but remained detectable up to 13 weeks. An additional homologous TDNA boosting significantly enhanced the level of NAb from the nadir for at least ten-fold (pdengue viral strain for both vaccine immunogen design and neutralization assays is critical to avoid a mismatching outcome. In summary, this TDNA vaccine candidate induced good neutralizing antibody responses in mice; and the DNA/DNA prime/boost strategy is promising and warranted further evaluation in non-human primates.

  19. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies

    International Nuclear Information System (INIS)

    Ye Ling; Lin Jianguo; Sun Yuliang; Bennouna, Soumaya; Lo, Michael; Wu Qingyang; Bu Zhigao; Pulendran, Bali; Compans, Richard W.; Yang Chinglai

    2006-01-01

    Recombinant baculoviruses (rBV) expressing Ebola virus VP40 (rBV-VP40) or GP (rBV-GP) proteins were generated. Infection of Sf9 insect cells by rBV-VP40 led to assembly and budding of filamentous particles from the cell surface as shown by electron microscopy. Ebola virus-like particles (VLPs) were produced by coinfection of Sf9 cells with rBV-VP40 and rBV-GP, and incorporation of Ebola GP into VLPs was demonstrated by SDS-PAGE and Western blot analysis. Recombinant baculovirus infection of insect cells yielded high levels of VLPs, which were shown to stimulate cytokine secretion from human dendritic cells similar to VLPs produced in mammalian cells. The immunogenicity of Ebola VLPs produced in insect cells was evaluated by immunization of mice. Analysis of antibody responses showed that most of the GP-specific antibodies were of the IgG2a subtype, while no significant level of IgG1 subtype antibodies specific for GP was induced, indicating the induction of a Th1-biased immune response. Furthermore, sera from Ebola VLP immunized mice were able to block infection by Ebola GP pseudotyped HIV virus in a single round infection assay, indicating that a neutralizing antibody against the Ebola GP protein was induced. These results show that production of Ebola VLPs in insect cells using recombinant baculoviruses represents a promising approach for vaccine development against Ebola virus infection

  20. Systematic Synthesis and Binding Study of HIV V3 Glycopeptides Reveal the Fine Epitopes of Several Broadly Neutralizing Antibodies.

    Science.gov (United States)

    Orwenyo, Jared; Cai, Hui; Giddens, John; Amin, Mohammed N; Toonstra, Christian; Wang, Lai-Xi

    2017-06-16

    A class of new glycan-reactive broadly neutralizing antibodies represented by PGT121, 10-1074, and PGT128 has recently been discovered that targets specific N-glycans and the peptide region around the V3 domain. However, the glycan specificity and fine epitopes of these bNAbs remain to be further defined. We report here a systematic chemoenzymatic synthesis of homogeneous V3 glycopeptides derived from the HIV-1 JR-FL strain carrying defined N-glycans at N332, N301, and N295 sites. Antibody binding studies revealed that both the nature and site of glycosylation in the context of the V3 domain were critical for high-affinity binding. It was found that antibody PGT128 exhibited specificity for high-mannose N-glycan with glycosylation site promiscuity, PGT121 showed binding specificity for glycopeptide carrying a sialylated N-glycan at N301 site, and 10-1074 was specific for glycopeptide carrying a high-mannose N-glycan at N332 site. The synthesis and binding studies permit a detailed assessment of the glycan specificity and the requirement of peptide in the context of antibody-antigen recognition. The identified glycopeptides can be used as potential templates for HIV vaccine design.

  1. High-throughput pseudovirion-based neutralization assay for analysis of natural and vaccine-induced antibodies against human papillomaviruses.

    Directory of Open Access Journals (Sweden)

    Peter Sehr

    Full Text Available A highly sensitive, automated, purely add-on, high-throughput pseudovirion-based neutralization assay (HT-PBNA with excellent repeatability and run-to-run reproducibility was developed for human papillomavirus types (HPV 16, 18, 31, 45, 52, 58 and bovine papillomavirus type 1. Preparation of 384 well assay plates with serially diluted sera and the actual cell-based assay are separated in time, therefore batches of up to one hundred assay plates can be processed sequentially. A mean coefficient of variation (CV of 13% was obtained for anti-HPV 16 and HPV 18 titers for a standard serum tested in a total of 58 repeats on individual plates in seven independent runs. Natural antibody response was analyzed in 35 sera from patients with HPV 16 DNA positive cervical intraepithelial neoplasia grade 2+ lesions. The new HT-PBNA is based on Gaussia luciferase with increased sensitivity compared to the previously described manual PBNA (manPBNA based on secreted alkaline phosphatase as reporter. Titers obtained with HT-PBNA were generally higher than titers obtained with the manPBNA. A good linear correlation (R(2 = 0.7 was found between HT-PBNA titers and anti-HPV 16 L1 antibody-levels determined by a Luminex bead-based GST-capture assay for these 35 sera and a Kappa-value of 0.72, with only 3 discordant sera in the low titer range. In addition to natural low titer antibody responses the high sensitivity of the HT-PBNA also allows detection of cross-neutralizing antibodies induced by commercial HPV L1-vaccines and experimental L2-vaccines. When analyzing the WHO international standards for HPV 16 and 18 we determined an analytical sensitivity of 0.864 and 1.105 mIU, respectively.

  2. Learning the Relationship between the Primary Structure of HIV Envelope Glycoproteins and Neutralization Activity of Particular Antibodies by Using Artificial Neural Networks

    Science.gov (United States)

    Buiu, Cătălin; Putz, Mihai V.; Avram, Speranta

    2016-01-01

    The dependency between the primary structure of HIV envelope glycoproteins (ENV) and the neutralization data for given antibodies is very complicated and depends on a large number of factors, such as the binding affinity of a given antibody for a given ENV protein, and the intrinsic infection kinetics of the viral strain. This paper presents a first approach to learning these dependencies using an artificial feedforward neural network which is trained to learn from experimental data. The results presented here demonstrate that the trained neural network is able to generalize on new viral strains and to predict reliable values of neutralizing activities of given antibodies against HIV-1. PMID:27727189

  3. Learning the Relationship between the Primary Structure of HIV Envelope Glycoproteins and Neutralization Activity of Particular Antibodies by Using Artificial Neural Networks.

    Science.gov (United States)

    Buiu, Cătălin; Putz, Mihai V; Avram, Speranta

    2016-10-11

    The dependency between the primary structure of HIV envelope glycoproteins (ENV) and the neutralization data for given antibodies is very complicated and depends on a large number of factors, such as the binding affinity of a given antibody for a given ENV protein, and the intrinsic infection kinetics of the viral strain. This paper presents a first approach to learning these dependencies using an artificial feedforward neural network which is trained to learn from experimental data. The results presented here demonstrate that the trained neural network is able to generalize on new viral strains and to predict reliable values of neutralizing activities of given antibodies against HIV-1.

  4. Eliciting neutralizing antibodies against the membrane proximal external region of HIV-1 Env by chimeric live attenuated influenza A virus vaccines.

    Science.gov (United States)

    Zang, Yang; Du, Dongchuan; Li, Na; Su, Weiheng; Liu, Xintao; Zhang, Yan; Nie, Jianhui; Wang, Youchun; Kong, Wei; Jiang, Chunlai

    2015-07-31

    Despite significant efforts directed toward research on HIV-1 vaccines, a truly effective immunogen has not been achieved. However, the broadly neutralizing antibodies (BnAbs) 2F5 and 4E10, targeting the highly conserved membrane proximal external region (MPER) of HIV-1, are two promising tools for vaccine development. Here we engrafted the MPER into the linker domain between the trimeric core structure and the transmembrane domain of influenza A virus HA2 to investigate the potential of such chimeric viruses to elicit HIV-1 neutralizing antibodies. In the context of proliferating attenuated influenza A viruses, these HIV-1 neutralizing antibody epitopes could be continuously expressed and mimicked their native conformation to induce humoral immune responses. While MPER-specific antibodies could be detected in serum of guinea pigs vaccinated with the chimeric viruses, they exhibited only weakly neutralizing activities. These antisera from vaccinated animals neutralized viruses of clades B and BC (tier 1), but not of clades AE (tier 1) and C (tier 2). These results suggest that influenza A virus can be used as a vehicle for displaying MPER and inducing BnAbs, but it provides limited protection against HIV-1 infection. In the future development of HIV-1 vaccines by rational design, a more effective live virus vector or multiple antigens should be chosen to facilitate the process of neutralizing antibody maturation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Comparison of neutralizing antibody responses elicited from highly diverse polyvalent heterotrimeric HIV-1 gp140 cocktail immunogens versus a monovalent counterpart in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Emma J Bowles

    Full Text Available Eliciting neutralizing antibodies capable of inactivating a broad spectrum of HIV-1 strains is a major goal of HIV-1 vaccine design. The challenge is that envelopes (Envs of circulating viruses are almost certainly different from any Env used in a vaccine. A novel immunogen composed of a highly diverse set of gp140 Envs including subtypes A, B, C, D and F was developed to stimulate a more cross-neutralizing antibody response. Env heterotrimers composed of up to 54 different gp140s were produced with the aim of focusing the response to the conserved regions of Env while reducing the dominance of any individual hypervariable region. Heterotrimeric gp140 Envs of inter- and intra-subtype combinations were shown to bind CD4 and a panel of neutralizing monoclonal antibodies with similar affinity to monovalent UG37 gp140. Macaques immunized with six groups of heterotrimer mixtures showed slightly more potent neutralizing antibody responses in TZM-BL tier 1 and A3R5 tier 2 pseudovirus assays than macaques immunized with monovalent Env gp140, and exhibited a marginally greater focus on the CD4-binding site. Carbopol enhanced neutralization when used as an adjuvant instead of RIBI in combination with UG37 gp140. These data indicate that cross-subtype heterotrimeric gp140 Envs may elicit some improvement of the neutralizing antibody response in macaques compared to monovalent gp140 Env.

  6. Sero-prevalence of virus neutralizing antibodies for rabies in different groups of dogs following vaccination.

    Science.gov (United States)

    Pimburage, R M S; Gunatilake, M; Wimalaratne, O; Balasuriya, A; Perera, K A D N

    2017-05-18

    Mass vaccination of dogs is considered fundamental for national rabies control programmes in Sri Lanka, as dog is the main reservoir and transmitter of the disease. Dogs were followed to determine the sero-prevalence of antibodies to the rabies virus. Altogether 510 previously vaccinated and unvaccinated dogs with owners (domestic dogs) and dogs without owners (stray dogs) of the local guard dog breed in different age groups recruited from Kalutara District, Sri Lanka. The dogs were vaccinated with a monovalent inactivated vaccine intramuscularly and serum antibody titres on days 0, 30, 180 and 360 were determined by the Rapid Fluorescent Focus Inhibition Test (RFFIT). The results indicated, a single dose of anti-rabies vaccination fails to generate a protective level of immunity (0.5 IU/ml) which lasts until 1 year in 40.42% of dogs without owners and 57.14% of previously unvaccinated juvenile (age: 3 months to 1 year) dogs with owners. More than one vaccination would help to maintain antibody titres above the protective level in the majority of dogs. The pattern of antibody titre development in annually vaccinated and irregularly vaccinated (not annual) adult dogs with owners is closely similar irrespective of regularity in vaccination. Previously vaccinated animals have higher (2 IU/ml) antibody titres to begin with and have a higher antibody titre on day 360 too. They show a very good antibody titre by day 180. Unvaccinated animals start with low antibody titre and return to low titres by day 360, but have a satisfactory antibody titre by day 180. A single dose of anti-rabies vaccination is not sufficient for the maintenance of antibody titres for a period of 1 year in puppies, juvenile dogs with owners and in dogs without owners. Maternal antibodies do not provide adequate protection to puppies of previously vaccinated dams and puppies of previously unvaccinated dams. Immunity development after vaccination seems to be closely similar in both the groups

  7. The HIV-1 V3 domain on field isolates: participation in generation of escape virus in vivo and accessibility to neutralizing antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Akerblom, L; Heegaard, P M

    1995-01-01

    The V3 domain is highly variable and induces HIV neutralizing antibodies (NA). Here we addressed the issues of 1) the participation of mutations in V3 in generation of neutralization resistant escape virus in vivo and 2) the applicability of synthetic V3 peptides corresponding to field isolates...... to induce neutralizing immune sera. Seven peptides corresponding to the V3 region of primary and escape virus from 3 HIV-1 infected patients were synthesized and used for antibody (Abs) studies and immunizations. The anti-V3 Abs titre in patient serum was generally low against peptides corresponding...... to autologous virus isolated later than the serum sample in contrast to the titre against peptides corresponding to virus isolated earlier than the serum sample. Furthermore, neutralizing anti-V3 monoclonal antibodies (MAbs) raised against V3 peptides from laboratory strains of HIV-1 showed distinct binding...

  8. Equine infectious anemia virus envelope evolution in vivo during persistent infection progressively increases resistance to in vitro serum antibody neutralization as a dominant phenotype.

    Science.gov (United States)

    Howe, Laryssa; Leroux, Caroline; Issel, Charles J; Montelaro, Ronald C

    2002-11-01

    Equine infectious anemia virus (EIAV) infection of horses is characterized by well-defined waves of viremia associated with the sequential evolution of distinct viral populations displaying extensive envelope gp90 variation; however, a correlation of in vivo envelope evolution with in vitro serum neutralization phenotype remains undefined. Therefore, the goal of the present study was to utilize a previously defined panel of natural variant EIAV envelope isolates from sequential febrile episodes to characterize the effects of envelope variation during persistent infection on viral neutralization phenotypes and to define the determinants of EIAV envelope neutralization specificity. To assess the neutralization phenotypes of the sequential EIAV envelope variants, we determined the sensitivity of five variant envelopes to neutralization by a longitudinal panel of immune serum from the source infected pony. The results indicated that the evolution of the EIAV envelope sequences observed during sequential febrile episodes produced an increasingly neutralization-resistant phenotype. To further define the envelope determinants of EIAV neutralization specificity, we examined the neutralization properties of a panel of chimeric envelope constructs derived from reciprocal envelope domain exchanges between selected neutralization-sensitive and neutralization-resistant envelope variants. These results indicated that the EIAV gp90 V3 and V4 domains individually conferred serum neutralization resistance while other envelope segments in addition to V3 and V4 were evidently required for conferring total serum neutralization sensitivity. These data clearly demonstrate for the first time the influence of sequential gp90 variation during persistent infection in increasing envelope neutralization resistance, identify the gp90 V3 and V4 domains as the principal determinants of antibody neutralization resistance, and indicate distinct complex cooperative envelope domain interactions in

  9. Measurement of neutralizing serum antibodies of patients vaccinated with human papillomavirus L1 or L2-based immunogens using furin-cleaved HPV Pseudovirions.

    Science.gov (United States)

    Wang, Joshua W; Jagu, Subhashini; Wang, Chenguang; Kitchener, Henry C; Daayana, Sai; Stern, Peter L; Pang, Susana; Day, Patricia M; Huh, Warner K; Roden, Richard B S

    2014-01-01

    Antibodies specific for neutralizing epitopes in either Human papillomavirus (HPV) capsid protein L1 or L2 can mediate protection from viral challenge and thus their accurate and sensitive measurement at high throughput is likely informative for monitoring response to prophylactic vaccination. Here we compare measurement of L1 and L2-specific neutralizing antibodies in human sera using the standard Pseudovirion-Based Neutralization Assay (L1-PBNA) with the newer Furin-Cleaved Pseudovirion-Based Neutralization Assay (FC-PBNA), a modification of the L1-PBNA intended to improve sensitivity towards L2-specific neutralizing antibodies without compromising assay of L1-specific responses. For detection of L1-specific neutralizing antibodies in human sera, the FC- PBNA and L1-PBNA assays showed similar sensitivity and a high level of correlation using WHO standard sera (n = 2), and sera from patients vaccinated with Gardasil (n = 30) or an experimental human papillomavirus type 16 (HPV16) L1 VLP vaccine (n = 70). The detection of L1-specific cross-neutralizing antibodies in these sera using pseudovirions of types phylogenetically-related to those targeted by the L1 virus-like particle (VLP) vaccines was also consistent between the two assays. However, for sera from patients (n = 17) vaccinated with an L2-based immunogen (TA-CIN), the FC-PBNA was more sensitive than the L1-PBNA in detecting L2-specific neutralizing antibodies. Further, the neutralizing antibody titers measured with the FC-PBNA correlated with those determined with the L2-PBNA, another modification of the L1-PBNA that spacio-temporally separates primary and secondary receptor engagement, as well as the protective titers measured using passive transfer studies in the murine genital-challenge model. In sum, the FC-PBNA provided sensitive measurement for both L1 VLP and L2-specific neutralizing antibody in human sera. Vaccination with TA-CIN elicits weak cross-protective antibody in a subset of

  10. A human papillomavirus (HPV) in vitro neutralization assay that recapitulates the in vitro process of infection provides a sensitive measure of HPV L2 infection-inhibiting antibodies.

    Science.gov (United States)

    Day, Patricia M; Pang, Yuk-Ying S; Kines, Rhonda C; Thompson, Cynthia D; Lowy, Douglas R; Schiller, John T

    2012-07-01

    Papillomavirus L2-based vaccines have generally induced low-level or undetectable neutralizing antibodies in standard in vitro assays yet typically protect well against in vivo experimental challenge in animal models. Herein we document that mice vaccinated with an L2 vaccine comprising a fusion protein of the L2 amino acids 11 to 88 of human papillomavirus type 16 (HPV16), HPV18, HPV1, HPV5, and HPV6 were uniformly protected from cervicovaginal challenge with HPV16 pseudovirus, but neutralizing antibodies against HPV16, -31, -33, -45, or -58 were rarely detected in their sera using a standard in vitro neutralization assay. To address this discrepancy, we developed a neutralization assay based on an in vitro infectivity mechanism that more closely mimics the in vivo infectious process, specifically by spaciotemporally separating primary and secondary receptor engagement and correspondingly by altering the timing of exposure of the dominant L2 cross-neutralizing epitopes to the antibodies. With the new assay, titers in the 100 to 10,000 range were measured for most sera, whereas undetectable neutralizing activities were observed with the standard assay. In vitro neutralizing titers measured in the serum of mice after passive transfer of rabbit L2 immune serum correlated with protection from cervicovaginal challenge of the mice. This "L2-based" in vitro neutralization assay should prove useful in critically evaluating the immunogenicity of L2 vaccine candidates in preclinical studies and future clinical trials.

  11. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody.

    Science.gov (United States)

    Xu, Kai; Rockx, Barry; Xie, Yihu; DeBuysscher, Blair L; Fusco, Deborah L; Zhu, Zhongyu; Chan, Yee-Peng; Xu, Yan; Luu, Truong; Cer, Regina Z; Feldmann, Heinz; Mokashi, Vishwesh; Dimitrov, Dimiter S; Bishop-Lilly, Kimberly A; Broder, Christopher C; Nikolov, Dimitar B

    2013-01-01

    The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.

  12. Mapping the complete glycoproteome of virion-derived HIV-1 gp120 provides insights into broadly neutralizing antibody binding.

    Science.gov (United States)

    Panico, Maria; Bouché, Laura; Binet, Daniel; O'Connor, Michael-John; Rahman, Dinah; Pang, Poh-Choo; Canis, Kevin; North, Simon J; Desrosiers, Ronald C; Chertova, Elena; Keele, Brandon F; Bess, Julian W; Lifson, Jeffrey D; Haslam, Stuart M; Dell, Anne; Morris, Howard R

    2016-09-08

    The surface envelope glycoprotein (SU) of Human immunodeficiency virus type 1 (HIV-1), gp120(SU) plays an essential role in virus binding to target CD4+ T-cells and is a major vaccine target. Gp120 has remarkably high levels of N-linked glycosylation and there is considerable evidence that this "glycan shield" can help protect the virus from antibody-mediated neutralization. In recent years, however, it has become clear that gp120 glycosylation can also be included in the targets of recognition by some of the most potent broadly neutralizing antibodies. Knowing the site-specific glycosylation of gp120 can facilitate the rational design of glycopeptide antigens for HIV vaccine development. While most prior studies have focused on glycan analysis of recombinant forms of gp120, here we report the first systematic glycosylation site analysis of gp120 derived from virions produced by infected T lymphoid cells and show that a single site is exclusively substituted with complex glycans. These results should help guide the design of vaccine immunogens.

  13. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    Full Text Available The henipaviruses, represented by Hendra (HeV and Nipah (NiV viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4 was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.

  14. Evaluation of the Potency, Neutralizing Antibody Response, and Stability of a Recombinant Fusion Protein Vaccine for Streptococcus pyogenes.

    Science.gov (United States)

    Burlet, E; HogenEsch, H; Dunham, A; Morefield, G

    2017-05-01

    Streptococcus pyogenes or group A streptococcus (GAS) is a Gram-positive bacterium that can cause a wide range of diseases, including pharyngitis, impetigo, scarlet fever, necrotizing fasciitis, rheumatic fever, and streptococcal toxic shock syndrome. Despite the increasing burden on global health caused by GAS, there is currently no licensed vaccine available. In this study, we evaluated immunogenicity, induction of neutralizing antibodies, and stability of a new recombinant fusion protein vaccine that targets infections from GAS. The recombinant fusion protein (SpeAB) combines inactive mutant forms of streptococcal pyrogenic exotoxin A (SpeA) and streptococcal pyrogenic exotoxin B (SpeB). The SpeAB vaccine evaluated in this study was adsorbed to an aluminum adjuvant and demonstrated robust immunogenicity, eliciting production of specific neutralizing antibodies against SpeA and SpeB, two major virulence factors of S. pyogenes. Stability studies suggest that the vaccine will retain immunogenicity for at least 2 years when stored at refrigerated temperatures. This novel vaccine shows great potential to provide protection against GAS infections and to reduce the burden of GAS disease globally.

  15. Kinetics of Antibody Aggregation at Neutral pH and Ambient Temperatures Triggered by Temporal Exposure to Acid.

    Science.gov (United States)

    Imamura, Hiroshi; Honda, Shinya

    2016-09-15

    The purification process of an antibody in manufacturing involves temporal exposure of the molecules to low pH followed by neutralization-pH-shift stress-which causes aggregation. It remains unclear how aggregation triggered by pH-shift stress grows at neutral pH and how it depends on the temperature in an ambient range. We used static and dynamic light scattering to monitor the time-dependent evolution of the aggregate size of the pH-shift stressed antibody between 4.0 and 40.0 °C. A power-law relationship between the effective molecular weight and the effective hydrodynamic radius was found, indicating that the aggregates were fractal with a dimension of 1.98. We found that the aggregation kinetics in the lower-temperature range, 4.0-25.0 °C, were well described by the Smoluchowski aggregation equation. The temperature dependence of the effective aggregation rate constant gave 13 ± 1 kcal/mol of endothermic activation energy. Temporal acid exposure creates an enriched population of unfolded protein molecules that are competent of aggregating. Therefore, the energetically unfavorable unfolding step is not required and the aggregation proceeds faster. These findings provide a basis for predicting the growth of aggregates during storage under practical, ambient conditions.

  16. Recombinant Protein Containing B-Cell Epitopes of Different Loxosceles Spider Toxins Generates Neutralizing Antibodies in Immunized Rabbits

    Directory of Open Access Journals (Sweden)

    Sabrina de Almeida Lima

    2018-04-01

    Full Text Available Loxoscelism is the most important form of araneism in South America. The treatment of these accidents uses heterologous antivenoms obtained from immunization of production animals with crude loxoscelic venom. Due to the scarcity of this immunogen, new alternatives for its substitution in antivenom production are of medical interest. In the present work, three linear epitopes for Loxosceles astacin-like protease 1 (LALP-1 (SLGRGCTDFGTILHE, ENNTRTIGPFDYDSIMLYGAY, and KLYKCPPVNPYPGGIRPYVNV and two for hyaluronidase (LiHYAL (NGGIPQLGDLKAHLEKSAVDI and ILDKSATGLRIIDWEAWR from Loxosceles intermedia spider venom were identified by SPOT-synthesis technique. One formerly characterized linear epitope (DFSGPYLPSLPTLDA of sphingomyelinase D (SMase D SMase-I from Loxosceles laeta was also chosen to constitute a new recombinant multiepitopic protein. These epitopes were combined with a previously produced chimeric multiepitopic protein (rCpLi composed by linear and conformational B-cell epitopes from SMase D from L. intermedia venom, generating a new recombinant multiepitopic protein derived from loxoscelic toxins (rMEPLox. We demonstrated that rMEPLox is non-toxic and antibodies elicited in rabbits against this antigen present reactivity in ELISA and immunoblot assays with Brazilian L. intermedia, L. laeta, L. gaucho, and L. similis spider venoms. In vivo and in vitro neutralization assays showed that anti-rMEPLox antibodies can efficiently neutralize the sphingomyelinase, hyaluronidase, and metalloproteinase activity of L. intermedia venom. This study suggests that this multiepitopic protein can be a suitable candidate for experimental vaccination approaches or for antivenom production against Loxosceles spp. venoms.

  17. Broadly Neutralizing Hemagglutinin Stalk-Specific Antibodies Induce Potent Phagocytosis of Immune Complexes by Neutrophils in an Fc-Dependent Manner.

    Science.gov (United States)

    Mullarkey, Caitlin E; Bailey, Mark J; Golubeva, Diana A; Tan, Gene S; Nachbagauer, Raffael; He, Wenqian; Novakowski, Kyle E; Bowdish, Dawn M; Miller, Matthew S; Palese, Peter

    2016-10-04

    Broadly neutralizing antibodies that recognize the conserved hemagglutinin (HA) stalk have emerged as exciting new biotherapeutic tools to combat seasonal and pandemic influenza viruses. Our general understanding of the mechanisms by which stalk-specific antibodies achieve protection is rapidly evolving. It has recently been demonstrated that broadly neutralizing HA stalk-specific IgG antibodies require Fc-Fcγ receptor (FcγR) interactions for optimal protection in vivo Here we examine the neutrophil effector functions induced by stalk-specific antibodies. As the most abundant subset of blood leukocytes, neutrophils represent a critical innate effector cell population and serve an instrumental role in orchestrating downstream adaptive responses to influenza virus infection. Yet, the interplay of HA stalk-specific IgG, Fc-FcγR engagement, and neutrophils has remained largely uncharacterized. Using an in vitro assay to detect the production of reactive oxygen species (ROS), we show that human and mouse monoclonal HA stalk-specific IgG antibodies are able to induce the production of ROS by neutrophils, while HA head-specific antibodies do not. Furthermore, our results indicate that the production of ROS is dependent on Fc receptor (FcR) engagement and phagocytosis. We went on to assess the ability of monoclonal HA stalk-specific IgA antibodies to induce ROS. Consistent with our findings for monoclonal IgGs, only HA stalk-specific IgA antibodies elicited ROS production by neutrophils. This induction is dependent on the engagement of FcαR1. Taken together, our findings describe a novel FcR-dependent effector function induced by HA stalk-specific IgG and IgA antibodies, and importantly, our studies shed light on the mechanisms by which HA stalk-specific antibodies achieve protection. The present study provides evidence that broadly neutralizing HA stalk-specific antibodies induce downstream Fc-mediated neutrophil effector functions. In addition to their ability to

  18. Measles Virus Neutralizing Antibodies in Intravenous Immunoglobulins: Is an Increase by Revaccination of Plasma Donors Possible?

    Science.gov (United States)

    Modrof, Jens; Tille, Björn; Farcet, Maria R; McVey, John; Schreiner, Jessica A; Borders, Charles M; Gudino, Maria; Fitzgerald, Peter; Simon, Toby L; Kreil, Thomas R

    2017-11-15

    We report a screen of plasma donors confirming that widespread use of childhood measles vaccination since 1963 resulted in a decrease in average measles virus antibody titers among plasma donors, which is reflected in intravenous immunoglobulins (IVIGs). The measles virus antibody titer, however, is a potency requirement for IVIGs, as defined in a Food and Drug Administration regulation. To mitigate the decline in measles virus antibody titers in IVIGs and to ensure consistent product release, revaccination of plasma donors was investigated as a means to boost titers. However, revaccination-induced titer increases were only about 2-fold and short-lived. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  19. Effective multiple oral administration of reverse genetics engineered infectious bursal disease virus in mice in the presence of neutralizing antibodies.

    Science.gov (United States)

    Hornyák, Ákos; Lipinski, Kai S; Bakonyi, Tamás; Forgách, Petra; Horváth, Ernő; Farsang, Attila; Hedley, Susan J; Palya, Vilmos; Bakács, Tibor; Kovesdi, Imre

    2015-01-01

    Despite spectacular successes in hepatitis B and C therapies, severe hepatic impairment is still a major treatment problem. The clinically tested infectious bursal disease virus (IBDV) superinfection therapy promises an innovative, interferon-free solution to this great unmet need, provided that a consistent manufacturing process preventing mutations or reversions to virulent strains is obtained. To address safety concerns, a tissue culture adapted IBDV vaccine strain V903/78 was cloned into cDNA plasmids ensuring reproducible production of a reverse engineered virus R903/78. The therapeutic drug candidate was characterized by immunocytochemistry assay, virus particle determination and immunoblot analysis. The biodistribution and potential immunogenicity of the IBDV agent was determined in mice, which is not a natural host of this virus, by quantitative detection of IBDV RNA by a quantitative reverse transcriptase-polymerase chain reaction and virus neutralization test, respectively. Several human cell lines supported IBDV propagation in the absence of visible cytopathic effect. The virus was stable from pH 8 to pH 6 and demonstrated significant resistance to low pH and also proved to be highly resistant to high temperatures. No pathological effects were observed in mice. Single and multiple oral administration of IBDV elicited antibodies with neutralizing activities in vitro. Repeat oral administration of R903/78 was successful despite the presence of neutralizing antibodies. Single oral and intravenous administration indicated that IBDV does not replicate in mammalian liver alleviating some safety related concerns. These data supports the development of an orally delivered anti-hepatitis B virus/ anti-hepatitis C virus viral agent for human use. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Targeted Delivery of Neutralizing Anti-C5 Antibody to Renal Endothelium Prevents Complement-Dependent Tissue Damage

    Directory of Open Access Journals (Sweden)

    Paolo Durigutto

    2017-09-01

    Full Text Available Complement activation is largely implicated in the pathogenesis of several clinical conditions and its therapeutic neutralization has proven effective in preventing tissue and organ damage. A problem that still needs to be solved in the therapeutic control of complement-mediated diseases is how to avoid side effects associated with chronic neutralization of the complement system, in particular, the increased risk of infections. We addressed this issue developing a strategy based on the preferential delivery of a C5 complement inhibitor to the organ involved in the pathologic process. To this end, we generated Ergidina, a neutralizing recombinant anti-C5 human antibody coupled with a cyclic-RGD peptide, with a distinctive homing property for ischemic endothelial cells and effective in controlling tissue damage in a rat model of renal ischemia/reperfusion injury (IRI. As a result of its preferential localization on renal endothelium, the molecule induced complete inhibition of complement activation at tissue level, and local protection from complement-mediated tissue damage without affecting circulating C5. The ex vivo binding of Ergidina to surgically removed kidney exposed to cold ischemia supports its therapeutic use to prevent posttransplant IRI leading to delay of graft function. Moreover, the finding that the ex vivo binding of Ergidina was not restricted to the kidney, but was also seen on ischemic heart, suggests that this RGD-targeted anti-C5 antibody may represent a useful tool to treat organs prior to transplantation. Based on this evidence, we propose preliminary data showing that Ergidina is a novel targeted drug to prevent complement activation on the endothelium of ischemic kidney.

  1. Comparison of two high-throughput assays for quantification of adenovirus type 5 neutralizing antibodies in a population of donors in China.

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    Full Text Available BACKGROUND: The presence of various levels of Adenovirus serotype 5 neutralizing antibodies (Ad5NAb is thought to contribute to the inconsistent clinical results obtained from vaccination and gene therapy studies. Currently, two platforms based on high-throughput technology are available for Ad5NAb quantification, chemiluminescence- and fluorescence-based assays. The aim of this study was to compare the results of two assays in the seroepidemiology of Ad5NAb in a local population of donors. METHODOLOGY/PRINCIPAL FINDINGS: The fluorescence-based neutralizing antibody detection test (FRNT using recombinant Ad5-EGFP virus and the chemiluminescence-based neutralizing antibody test (CLNT using Ad5-Fluc were developed and standardized for detecting the presence of Ad5NAb in serum samples from the population of donors in Beijing and Anhui provinces, China. First, the overall percentage of people positive for Ad5NAb performed by CLNT was higher than that obtained by FRNT (85.4 vs 69.9%, p<0.001. There was an 84.5% concordance between the two assays for the 206 samples tested (144 positive in both assays and 30 negative in both assays. All 32 discordant sera were CLNT-positive/FRNT-negative and were confirmed positive by western blot. Secondly, for all 144 sera positive by both assays, the two assays showed high correlation (r = 0.94, p<0.001 and close agreement (mean difference: 0.395 log(10, 95% CI: -0.054 log(10 to 0.845 log(10. Finally, it was found by both assays that there was no significant difference observed for titer or prevalence by gender (p = 0.503 vs 0.818, for two assays; however, age range (p = 0.049 vs 0.010 and geographic origin (p = 0.007 vs 0.011 were correlated with Ad5NAb prevalence in northern regions of China. CONCLUSION: The CLNT assay was relatively more simple and had higher sensitivity than the FRNT assay for determining Ad5NAb titers. It is strongly suggested that the CLNT assay be used for future

  2. Human Monoclonal Antibodies against West Nile Virus Induced by Natural Infection Neutralize at a Postattachment Step

    NARCIS (Netherlands)

    Vogt, Matthew R.; Moesker, Bastiaan; Goudsmit, Jaap; Jongeneelen, Mandy; Austin, S. Kyle; Oliphant, Theodore; Nelson, Steevenson; Pierson, Theodore C.; Wilschut, Jan; Throsby, Mark; Diamond, Michael S.

    West Nile virus (WNV) is a neurotropic flavivirus that is now a primary cause of epidemic encephalitis in North America. Studies of mice have demonstrated that the humoral immune response against WNV limits primary infection and protects against a secondary challenge. The most-potent neutralizing

  3. Human monoclonal antibodies against West Nile virus induced by natural infection neutralize at a postattachment step

    NARCIS (Netherlands)

    Vogt, Matthew R.; Moesker, Bastiaan; Goudsmit, Jaap; Jongeneelen, Mandy; Austin, S. Kyle; Oliphant, Theodore; Nelson, Steevenson; Pierson, Theodore C.; Wilschut, Jan; Throsby, Mark; Diamond, Michael S.

    2009-01-01

    West Nile virus (WNV) is a neurotropic flavivirus that is now a primary cause of epidemic encephalitis in North America. Studies of mice have demonstrated that the humoral immune response against WNV limits primary infection and protects against a secondary challenge. The most-potent neutralizing

  4. Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein

    NARCIS (Netherlands)

    Sumida, Shawn M.; Truitt, Diana M.; Lemckert, Angelique A. C.; Vogels, Ronald; Custers, Jerome H. H. V.; Addo, Marylyn M.; Lockman, Shahin; Peter, Trevor; Peyerl, Fred W.; Kishko, Michael G.; Jackson, Shawn S.; Gorgone, Darci A.; Lifton, Michelle A.; Essex, Myron; Walker, Bruce D.; Goudsmit, Jaap; Havenga, Menzo J. E.; Barouch, Dan H.

    2005-01-01

    The utility of recombinant adenovirus serotype 5 (rAd5) vector-based vaccines for HIV-1 and other pathogens will likely be limited by the high prevalence of pre-existing Ad5-specific neutralizing Abs (NAbs) in human populations. However, the immunodominant targets of Ad5-specific NAbs in humans

  5. Nasal Immunization Confers High Avidity Neutralizing Antibody Response and Immunity to Primary and Recurrent Genital Herpes in Guinea Pigs.

    Science.gov (United States)

    Persson, Josefine; Zhang, Yuan; Olafsdottir, Thorunn A; Thörn, Karolina; Cairns, Tina M; Wegmann, Frank; Sattentau, Quentin J; Eisenberg, Roselyn J; Cohen, Gary H; Harandi, Ali M

    2016-01-01

    Genital herpes is one of the most prevalent sexually transmitted infections in both the developing and developed world. Following infection, individuals experience life-long latency associated with sporadic ulcerative outbreaks. Despite many efforts, no vaccine has yet been licensed for human use. Herein, we demonstrated that nasal immunization with an adjuvanted HSV-2 gD envelope protein mounts significant protection to primary infection as well as the establishment of latency and recurrent genital herpes in guinea pigs. Nasal immunization was shown to elicit specific T cell proliferative and IFN-γ responses as well as systemic and vaginal gD-specific IgG antibody (Ab) responses. Furthermore, systemic IgG Abs displayed potent HSV-2 neutralizing properties and high avidity. By employing a competitive surface plasmon resonance (SPR) analysis combined with a battery of known gD-specific neutralizing monoclonal Abs (MAbs), we showed that nasal immunization generated IgG Abs directed to two major discontinuous neutralizing epitopes of gD. These results highlight the potential of nasal immunization with an adjuvanted HSV-2 envelope protein for induction of protective immunity to primary and recurrent genital herpes.

  6. Evolutionarily Successful Asian 1 Dengue Virus 2 Lineages Contain One Substitution in Envelope That Increases Sensitivity to Polyclonal Antibody Neutralization.

    Science.gov (United States)

    Wang, Chunling; Katzelnick, Leah C; Montoya, Magelda; Hue, Kien Duong Thi; Simmons, Cameron P; Harris, Eva

    2016-03-15

    The 4 dengue virus serotypes (DENV-1-4) cause the most prevalent mosquito-borne viral disease of humans worldwide. DENV-2 Asian 1 (A1) genotype viruses replaced the Asian-American (AA) genotype in Vietnam and Cambodia, after which A1 viruses containing Q or M at envelope (E) residue 160 became more prevalent than those with residue 160K in both countries (2008-2011). We investigated whether these substitutions conferred a fitness advantage by measuring neutralizing antibody titer against reporter virus particles (RVPs) representing AA, A1-160K, A1-160Q, and A1-160M, using patient sera from Vietnam and a well-characterized Nicaraguan cohort. Surprisingly, we found that A1-160Q and A1-160M RVPs were better neutralized by heterologous antisera than A1-160K. Despite this, Vietnamese patients infected with A1-160Q or A1-160M viruses had higher viremia levels than those infected with A1-160K. We thus found that independent lineages in Vietnam and Cambodia acquired a substitution in E that significantly increased polyclonal neutralization but nonetheless were successful in disseminating and infecting human hosts. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  7. Nasal Immunization Confers High Avidity Neutralizing Antibody Response and Immunity to Primary and Recurrent Genital Herpes in Guinea Pigs

    Science.gov (United States)

    Persson, Josefine; Zhang, Yuan; Olafsdottir, Thorunn A.; Thörn, Karolina; Cairns, Tina M.; Wegmann, Frank; Sattentau, Quentin J.; Eisenberg, Roselyn J.; Cohen, Gary H.; Harandi, Ali M.

    2016-01-01

    Genital herpes is one of the most prevalent sexually transmitted infections in both the developing and developed world. Following infection, individuals experience life-long latency associated with sporadic ulcerative outbreaks. Despite many efforts, no vaccine has yet been licensed for human use. Herein, we demonstrated that nasal immunization with an adjuvanted HSV-2 gD envelope protein mounts significant protection to primary infection as well as the establishment of latency and recurrent genital herpes in guinea pigs. Nasal immunization was shown to elicit specific T cell proliferative and IFN-γ responses as well as systemic and vaginal gD-specific IgG antibody (Ab) responses. Furthermore, systemic IgG Abs displayed potent HSV-2 neutralizing properties and high avidity. By employing a competitive surface plasmon resonance (SPR) analysis combined with a battery of known gD-specific neutralizing monoclonal Abs (MAbs), we showed that nasal immunization generated IgG Abs directed to two major discontinuous neutralizing epitopes of gD. These results highlight the potential of nasal immunization with an adjuvanted HSV-2 envelope protein for induction of protective immunity to primary and recurrent genital herpes. PMID:28082979

  8. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient.

    Science.gov (United States)

    Hu, Weibin; Chen, Aizhong; Miao, Yi; Xia, Shengli; Ling, Zhiyang; Xu, Ke; Wang, Tongyan; Xu, Ying; Cui, Jun; Wu, Hongqiang; Hu, Guiyu; Tian, Lin; Wang, Lingling; Shu, Yuelong; Ma, Xiaowei; Xu, Bianli; Zhang, Jin; Lin, Xiaojun; Bian, Chao; Sun, Bing

    2013-01-20

    Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarily targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. A heterologous prime-boost Ebola virus vaccine regimen induces durable neutralizing antibody response and prevents Ebola virus-like particle entry in mice.

    Science.gov (United States)

    Chen, Tan; Li, Dapeng; Song, Yufeng; Yang, Xi; Liu, Qingwei; Jin, Xia; Zhou, Dongming; Huang, Zhong

    2017-09-01

    Ebola virus (EBOV) is one of the most virulent pathogens known to humans. Neutralizing antibodies play a major role in the protection against EBOV infections. Thus, an EBOV vaccine capable of inducing a long-lasting neutralizing antibody response is highly desirable. We report here that a heterologous prime-boost vaccine regimen can elicit durable EBOV-neutralizing antibody response in mice. A chimpanzee serotype 7 adenovirus expressing EBOV GP (denoted AdC7-GP) was generated and used for priming. A truncated version of EBOV GP1 protein (denoted GP1t) was produced at high levels in Drosophila S2 cells and used for boosting. Mouse immunization studies showed that the AdC7-GP prime/GP1t boost vaccine regimen was more potent in eliciting neutralizing antibodies than either the AdC7-GP or GP1t alone. Neutralizing antibodies induced by the heterologous prime-boost regimen sustained at high titers for at least 18 weeks after immunization. Significantly, in vivo challenge studies revealed that the entry of reporter EBOV-like particles was efficiently blocked in mice receiving the heterologous prime-boost regimen even at 18 weeks after the final dose of immunization. These results suggest that this novel AdC7-GP prime/GP1t boost regimen represents an EBOV vaccine approach capable of establishing long-term protection, and therefore warrants further development. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient

    International Nuclear Information System (INIS)

    Hu, Weibin; Chen, Aizhong; Miao, Yi; Xia, Shengli; Ling, Zhiyang; Xu, Ke; Wang, Tongyan; Xu, Ying; Cui, Jun; Wu, Hongqiang; Hu, Guiyu; Tian, Lin; Wang, Lingling; Shu, Yuelong; Ma, Xiaowei; Xu, Bianli; Zhang, Jin; Lin, Xiaojun; Bian, Chao; Sun, Bing

    2013-01-01

    Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarily targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.

  11. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Weibin [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Chen, Aizhong [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Miao, Yi [Shanghai Xuhui Central Hospital, Shanghai 200031 (China); Xia, Shengli [Center for Disease Control and Prevention of Henan Province, Zhengzhou 450016 (China); Ling, Zhiyang; Xu, Ke; Wang, Tongyan [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Xu, Ying; Cui, Jun; Wu, Hongqiang; Hu, Guiyu; Tian, Lin; Wang, Lingling [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Shu, Yuelong [Chinese Center for Disease Control and Prevention, Beijing 102206 (China); Ma, Xiaowei [Hualan Biological Bacterin Company, Xinxiang 453003 (China); Xu, Bianli; Zhang, Jin [Center for Disease Control and Prevention of Henan Province, Zhengzhou 450016 (China); Lin, Xiaojun, E-mail: linxiaojun@hualan.com [Hualan Biological Bacterin Company, Xinxiang 453003 (China); Bian, Chao, E-mail: cbian@sibs.ac.cn [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Sun, Bing, E-mail: bsun@sibs.ac.cn [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2013-01-20

    Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarily targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.

  12. Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate

    DEFF Research Database (Denmark)

    Keck, Zhen-yong; Xia, Jinming; Wang, Yong

    2012-01-01

    regions that will be relevant for vaccine design, we employed yeast surface display of antibodies that bound to genotype 1a H77C E2 mutant proteins containing a substitution either at Y632A (to avoid selecting non-neutralizing antibodies) or D535A. A panel of nine human monoclonal antibodies (HMAbs......, when HCVcc were passaged in the presence of each of these antibodies, virus escape was not observed. Thus, the cluster of HC-84 epitopes, designated as antigenic domain D, is relevant for vaccine design for this highly diverse virus....

  13. Identification of Non-HIV Immunogens That Bind to Germline b12 Predecessors and Prime for Elicitation of Cross-clade Neutralizing HIV-1 Antibodies.

    Directory of Open Access Journals (Sweden)

    Zheng Yang

    Full Text Available A fundamental challenge for developing an effective and safe HIV-1 vaccine is to identify vaccine immunogens that can initiate and maintain immune responses leading to elicitation of broadly neutralizing HIV-1 antibodies (bnAbs through complex maturation pathways. We have previously found that HIV-1 envelope glycoproteins (Env lack measurable binding to putative germline predecessors of known bnAbs and proposed to search for non-HIV immunogens that could initiate their somatic maturation. Using bnAb b12 as a model bnAb and yeast display technology, we isolated five (polypeptides from plant leaves, insects, E. coli strains, and sea water microbes that bind to b12 putative germline and intermediate antibodies. Rabbit immunization with the (polypeptides alone induced high titers of cross-reactive antibodies that neutralized HIV-1 isolates SF162 and JRFL. Priming rabbits with the (polypeptides followed by boosts with trimeric gp140SF162 and then resurfaced Env (RSC3 induced antibodies that competed with mature b12 and neutralized tier 1 and 2 viruses from clade B, C and E, while control rabbits without (polypeptide priming induced antibodies that did not compete with mature b12 and neutralized fewer isolates. The degree of competition with mature b12 for binding to gp140SF162 correlated with the neutralizing activity of the rabbit IgG. Reversing the order of the two boosting immunogens significantly affected the binding profile and neutralization potency of the rabbit IgG. Our study is the first to provide evidence that appears to support the concept that non-HIV immunogens may initiate immune responses leading to elicitation of cross-clade neutralizing antibodies.

  14. Optimization of the Solubility of HIV-1-Neutralizing Antibody 10E8 through Somatic Variation and Structure-Based Design

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young D.; Georgiev, Ivelin S.; Ofek, Gilad; Zhang, Baoshan; Asokan, Mangaiarkarasi; Bailer, Robert T.; Bao, Amy; Caruso, William; Chen, Xuejun; Choe, Misook; Druz, Aliaksandr; Ko, Sung-Youl; Louder, Mark K.; McKee, Krisha; O' Dell, Sijy; Pegu, Amarendra; Rudicell, Rebecca S.; Shi, Wei; Wang, Keyun; Yang, Yongping; Alger, Mandy; Bender, Michael F.; Carlton, Kevin; Cooper, Jonathan W.; Blinn, Julie; Eudailey, Joshua; Lloyd, Krissey; Parks, Robert; Alam, S. Munir; Haynes, Barton F.; Padte, Neal N.; Yu, Jian; Ho, David D.; Huang, Jinghe; Connors, Mark; Schwartz, Richard M.; Mascola, John R.; Kwong, Peter D.; Sundquist, W. I.

    2016-04-06

    ABSTRACT

    Extraordinary antibodies capable of near pan-neutralization of HIV-1 have been identified. One of the broadest is antibody 10E8, which recognizes the membrane-proximal external region (MPER) of the HIV-1 envelope and neutralizes >95% of circulating HIV-1 strains. If delivered passively, 10E8 might serve to prevent or treat HIV-1 infection. Antibody 10E8, however, is markedly less soluble than other antibodies. Here, we describe the use of both structural biology and somatic variation to develop optimized versions of 10E8 with increased solubility. From the structure of 10E8, we identified a prominent hydrophobic patch; reversion of four hydrophobic residues in this patch to their hydrophilic germ line counterparts resulted in an ~10-fold decrease in turbidity. We also used somatic variants of 10E8, identified previously by next-generation sequencing, to optimize heavy and light chains; this process yielded several improved variants. Of these, variant 10E8v4 with 26 changes versus the parent 10E8 was the most soluble, with a paratope we showed crystallographically to be virtually identical to that of 10E8, a potency on a panel of 200 HIV-1 isolates also similar to that of 10E8, and a half-life in rhesus macaques of ~10 days. An anomaly in 10E8v4 size exclusion chromatography that appeared to be related to conformational isomerization was resolved by engineering an interchain disulfide. Thus, by combining a structure-based approach with natural variation in potency and solubility from the 10E8 lineage, we successfully created variants of 10E8 which retained the potency and extraordinary neutralization breadth of the parent 10E8 but with substantially increased solubility.

    IMPORTANCE Antibody 10E8 could be used to prevent HIV-1 infection, if manufactured and delivered economically. It suffers, however, from issues of solubility, which impede manufacturing. We hypothesized that the physical characteristic of 10E8 could be

  15. Optimization of the Solubility of HIV-1-Neutralizing Antibody 10E8 through Somatic Variation and Structure-Based Design.

    Science.gov (United States)

    Kwon, Young D; Georgiev, Ivelin S; Ofek, Gilad; Zhang, Baoshan; Asokan, Mangaiarkarasi; Bailer, Robert T; Bao, Amy; Caruso, William; Chen, Xuejun; Choe, Misook; Druz, Aliaksandr; Ko, Sung-Youl; Louder, Mark K; McKee, Krisha; O'Dell, Sijy; Pegu, Amarendra; Rudicell, Rebecca S; Shi, Wei; Wang, Keyun; Yang, Yongping; Alger, Mandy; Bender, Michael F; Carlton, Kevin; Cooper, Jonathan W; Blinn, Julie; Eudailey, Joshua; Lloyd, Krissey; Parks, Robert; Alam, S Munir; Haynes, Barton F; Padte, Neal N; Yu, Jian; Ho, David D; Huang, Jinghe; Connors, Mark; Schwartz, Richard M; Mascola, John R; Kwong, Peter D

    2016-07-01

    Extraordinary antibodies capable of near pan-neutralization of HIV-1 have been identified. One of the broadest is antibody 10E8, which recognizes the membrane-proximal external region (MPER) of the HIV-1 envelope and neutralizes >95% of circulating HIV-1 strains. If delivered passively, 10E8 might serve to prevent or treat HIV-1 infection. Antibody 10E8, however, is markedly less soluble than other antibodies. Here, we describe the use of both structural biology and somatic variation to develop optimized versions of 10E8 with increased solubility. From the structure of 10E8, we identified a prominent hydrophobic patch; reversion of four hydrophobic residues in this patch to their hydrophilic germ line counterparts resulted in an ∼10-fold decrease in turbidity. We also used somatic variants of 10E8, identified previously by next-generation sequencing, to optimize heavy and light chains; this process yielded several improved variants. Of these, variant 10E8v4 with 26 changes versus the parent 10E8 was the most soluble, with a paratope we showed crystallographically to be virtually identical to that of 10E8, a potency on a panel of 200 HIV-1 isolates also similar to that of 10E8, and a half-life in rhesus macaques of ∼10 days. An anomaly in 10E8v4 size exclusion chromatography that appeared to be related to conformational isomerization was resolved by engineering an interchain disulfide. Thus, by combining a structure-based approach with natural variation in potency and solubility from the 10E8 lineage, we successfully created variants of 10E8 which retained the potency and extraordinary neutralization breadth of the parent 10E8 but with substantially increased solubility. Antibody 10E8 could be used to prevent HIV-1 infection, if manufactured and delivered economically. It suffers, however, from issues of solubility, which impede manufacturing. We hypothesized that the physical characteristic of 10E8 could be improved through rational design, without compromising

  16. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection.

    Directory of Open Access Journals (Sweden)

    Katharine N Bossart

    2009-10-01

    Full Text Available Nipah virus is a broadly tropic and highly pathogenic zoonotic paramyxovirus in the genus Henipavirus whose natural reservoirs are several species of Pteropus fruit bats. Nipah virus has repeatedly caused outbreaks over the past decade associated with a severe and often fatal disease in humans and animals. Here, a new ferret model of Nipah virus pathogenesis is described where both respiratory and neurological disease are present in infected animals. Severe disease occurs with viral doses as low as 500 TCID(50 within 6 to 10 days following infection. The underlying pathology seen in the ferret closely resembles that seen in Nipah virus infected humans, characterized as a widespread multisystemic vasculitis, with virus replicating in highly vascular tissues including lung, spleen and brain, with recoverable virus from a variety of tissues. Using this ferret model a cross-reactive neutralizing human monoclonal antibody, m102.4, targeting the henipavirus G glycoprotein was evaluated in vivo as a potential therapeutic agent. All ferrets that received m102.4 ten hours following a high dose oral-nasal Nipah virus challenge were protected from disease while all controls died. This study is the first successful post-exposure passive antibody therapy for Nipah virus using a human monoclonal antibody.

  17. Direct Probing of Germinal Center Responses Reveals Immunological Features and Bottlenecks for Neutralizing Antibody Responses to HIV Env Trimer.

    Science.gov (United States)

    Havenar-Daughton, Colin; Carnathan, Diane G; Torrents de la Peña, Alba; Pauthner, Matthias; Briney, Bryan; Reiss, Samantha M; Wood, Jennifer S; Kaushik, Kirti; van Gils, Marit J; Rosales, Sandy L; van der Woude, Patricia; Locci, Michela; Le, Khoa M; de Taeye, Steven W; Sok, Devin; Mohammed, Ata Ur Rasheed; Huang, Jessica; Gumber, Sanjeev; Garcia, AnaPatricia; Kasturi, Sudhir P; Pulendran, Bali; Moore, John P; Ahmed, Rafi; Seumois, Grégory; Burton, Dennis R; Sanders, Rogier W; Silvestri, Guido; Crotty, Shane

    2016-11-22

    Generating tier 2 HIV-neutralizing antibody (nAb) responses by immunization remains a challenging problem, and the immunological barriers to induction of such responses with Env immunogens remain unclear. Here, some rhesus monkeys developed autologous tier 2 nAbs upon HIV Env trimer immunization (SOSIP.v5.2) whereas others did not. This was not because HIV Env trimers were immunologically silent because all monkeys made similar ELISA-binding antibody responses; the key difference was nAb versus non-nAb responses. We explored the immunological barriers to HIV nAb responses by combining a suite of techniques, including longitudinal lymph node fine needle aspirates. Unexpectedly, nAb development best correlated with booster immunization GC B cell magnitude and Tfh characteristics of the Env-specific CD4 T cells. Notably, these factors distinguished between successful and unsuccessful antibody responses because GC B cell frequencies and stoichiometry to GC Tfh cells correlated with nAb development, but did not correlate with total Env Ab binding titers. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Rapid Transient Production of a Monoclonal Antibody Neutralizing the Porcine Epidemic Diarrhea Virus (PEDV) in Nicotiana benthamiana and Lactuca sativa.

    Science.gov (United States)

    Rattanapisit, Kaewta; Srijangwad, Anchalee; Chuanasa, Taksina; Sukrong, Suchada; Tantituvanont, Angkana; Mason, Hugh S; Nilubol, Dachrit; Phoolcharoen, Waranyoo

    2017-12-01

    Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, weight loss, and high mortality rate in neonatal piglets. Porcine epidemic diarrhea (PED) has been reported in Europe, America, and Asia including Thailand. The disease causes substantial losses to the swine industry in many countries. Presently, there is no effective PEDV vaccine available. In this study, we developed a plant-produced monoclonal antibody (mAb) 2C10 as a prophylactic candidate to prevent the PEDV infection. Recently, plant expression systems have gained interest as an alternative for the production of antibodies because of many advantages, such as low production cost, lack of human and animal pathogen, large scalability, etc. The 2C10 mAb was transiently expressed in Nicotiana benthamiana and lettuce using geminiviral vector. After purification by protein A affinity chromatography, the antibody was tested for the binding and neutralizing activity against PEDV. Our result showed that the plant produced 2C10 mAb can bind to the virus and also inhibit PEDV infection in vitro . These results show excellent potential for a plant-expressed 2C10 as a PEDV prophylaxis and a diagnostic for PEDV infection. Georg Thieme Verlag KG Stuttgart · New York.

  19. Induction of neutralizing antibodies specific for the envelope proteins of the koala retrovirus by immunization with recombinant proteins or with DNA.

    Science.gov (United States)

    Fiebig, Uwe; Dieckhoff, Britta; Wurzbacher, Christian; Möller, Annekathrin; Kurth, Reinhard; Denner, Joachim

    2015-04-30

    The koala retrovirus (KoRV) is the result of a transspecies transmission of a gammaretrovirus with fatal consequences for the new host. Like many retroviruses, KoRV induces lymphoma, leukemia and an immunodeficiency that is associated with opportunistic infections in the virus-infected animals. We recently reported the induction of neutralizing antibodies by immunization with the recombinant ectodomain of the transmembrane envelope protein p15E of KoRV. Since the neutralization titers of the p15E-specific sera were only moderate, we investigated the use of the surface envelope protein gp70 to induce neutralizing antibodies. We immunized rats and goats with the recombinant gp70 protein of the KoRV, an unglycosylated protein of 52kD (rgp70/p52) or with the corresponding DNA. In parallel we immunized with recombinant rp15E or with a combination of rp15E and rgp70/p52. In all cases binding and neutralizing antibodies were induced. The gp70-specific sera had titers of neutralizing antibodies that were 15-fold higher than the p15E-specific sera. Combining rp15E and rgp70/p52 did not significantly increase neutralizing titers compared to rgp70/p52 alone. High titers of neutralizing antibodies specific for gp70 were also induced by immunization with DNA. Since KoRV and PERV are closely related, we investigated cross-neutralization of the antisera. The antisera against p15E and gp70 of PERV and KoRV inhibited infection by both viruses. The envelope proteins of the KoRV may therefore form the basis of an effective preventive vaccine to protect uninfected koalas from infection and possibly an immunotherapeutic treatment for those already infected.

  20. Preclinical development of CAT-354, an IL-13 neutralizing antibody, for the treatment of severe uncontrolled asthma

    Science.gov (United States)

    May, RD; Monk, PD; Cohen, ES; Manuel, D; Dempsey, F; Davis, NHE; Dodd, AJ; Corkill, DJ; Woods, J; Joberty-Candotti, C; Conroy, LA; Koentgen, F; Martin, EC; Wilson, R; Brennan, N; Powell, J; Anderson, IK

    2012-01-01

    BACKGROUND AND PURPOSE IL-13 is a pleiotropic Th2 cytokine considered likely to play a pivotal role in asthma. Here we describe the preclinical in vitro and in vivo characterization of CAT-354, an IL-13-neutralizing IgG4 monoclonal antibody (mAb), currently in clinical development. EXPERIMENTAL APPROACH In vitro the potency, specificity and species selectivity of CAT-354 was assayed in TF-1 cells, human umbilical vein endothelial cells and HDLM-2 cells. The ability of CAT-354 to modulate disease-relevant mechanisms was tested in human cells measuring bronchial smooth muscle calcium flux induced by histamine, eotaxin generation by normal lung fibroblasts, CD23 upregulation in peripheral blood mononuclear cells and IgE production by B cells. In vivo CAT-354 was tested on human IL-13-induced air pouch inflammation in mice, ovalbumin-sensitization and challenge in IL-13 humanized mice and antigen challenge in cynomolgus monkeys. KEY RESULTS CAT-354 has a 165 pM affinity for human IL-13 and functionally neutralized human, human variant associated with asthma and atopy (R130Q) and cynomolgus monkey, but not mouse, IL-13. CAT-354 did not neutralize human IL-4. In vitro CAT-354 functionally inhibited IL-13-induced eotaxin production, an analogue of smooth muscle airways hyperresponsiveness, CD23 upregulation and IgE production. In vivo in humanized mouse and cynomolgus monkey antigen challenge models CAT-354 inhibited airways hyperresponsiveness and bronchoalveolar lavage eosinophilia. CONCLUSIONS AND IMPLICATIONS CAT-354 is a potent and selective IL-13-neutralizing IgG4 mAb. The preclinical data presented here support the trialling of this mAb in patients with moderate to severe uncontrolled asthma. PMID:21895629

  1. Characterization of an isotype-dependent monoclonal antibody against linear neutralizing epitope effective for prophylaxis of enterovirus 71 infection.

    Directory of Open Access Journals (Sweden)

    Xiao Fang Lim

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 is the main causative agent of Hand, Foot and Mouth disease (HFMD and is associated with severe neurologic complications and mortalities. At present, there is no vaccine or therapeutic available for treatment. METHODOLOGY/PRINCIPAL FINDING: In this study, we generated two mAbs, denoted as mAb 51 and 53, both targeting the same linear epitope on VP1 capsid protein, spanning amino acids 215-219. In comparison, mAb 51 belonging to isotype IgM possesses neutralizing activity in vitro, whereas, mAb 53 belonging to isotype IgG1 does not have any neutralizing ability, even towards its homologous strain. When mAb 51 at 10 µg/g of body weight was administered to the 2-week-old AG129 mice one day prior to lethal challenge, 100% in vivo passive protection was observed. In contrast, the isotype control group mice, injected with an irrelevant IgM antibody before the challenge, developed limb paralysis as early as day 6 post-infection. Histological examination demonstrated that mAb 51 was able to protect against pathologic changes such as neuropil vacuolation and neuronal loss in the spinal cord, which were typical in unprotected EV-71 infected mice. BLAST analyses of that epitope revealed that it was highly conserved among all EV71 strains, but not coxsachievirus 16 (CA16. CONCLUSION: We have defined a linear epitope within the VP1 protein and demonstrated its neutralizing ability to be isotype dependent. The neutralizing property and highly conserved sequence potentiated the application of mAb 51 and 53 for protection against EV71 infection and diagnosis respectively.

  2. Blocking Antibody Access to Neutralizing Domains on Glycoproteins Involved in Entry as a Novel Mechanism of Immune Evasion by Herpes Simplex Virus Type 1 Glycoproteins C and E▿

    Science.gov (United States)

    Hook, Lauren M.; Huang, Jialing; Jiang, Ming; Hodinka, Richard; Friedman, Harvey M.

    2008-01-01

    Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC) blocks complement activation, and glycoprotein E (gE) interferes with IgG Fc-mediated activities. While evaluating gC- and gE-mediated immune evasion in human immunodeficiency virus (HIV)-HSV-1-coinfected subjects, we noted that antibody alone was more effective at neutralizing a strain with mutations in gC and gE (gC/gE) than a wild-type (WT) virus. This result was unexpected since gC and gE are postulated to interfere with complement-mediated neutralization. We used pooled human immunoglobulin G (IgG) from HIV-negative donors to confirm the results and evaluated mechanisms of the enhanced antibody neutralization. We demonstrated that differences in antibody neutralization cannot be attributed to the concentrations of HSV-1 glycoproteins on the two viruses or to the absence of an IgG Fc receptor on the gC/gE mutant virus or to enhanced neutralization of the mutant virus by antibodies that target only gB, gD, or gH/gL, which are the glycoproteins involved in virus entry. Since sera from HIV-infected subjects and pooled human IgG contain antibodies against multiple glycoproteins, we determined whether differences in neutralization become apparent when antibodies to gB, gD, or gH/gL are used in combination. Neutralization of the gC/gE mutant was greatly increased compared that of WT virus when any two of the antibodies against gB, gD, or gH/gL were used in combination. These results suggest that gC and gE on WT virus provide a shield against neutralizing antibodies that interfere with gB-gD, gB-gH/gL, or gD-gH/gL interactions and that one function of virus neutralization is to prevent interactions between these glycoproteins. PMID:18480440

  3. An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of Tregs to induce immune responses in humans with advanced cancer.

    Science.gov (United States)

    Morse, Michael A; Hobeika, Amy C; Osada, Takuya; Berglund, Peter; Hubby, Bolyn; Negri, Sarah; Niedzwiecki, Donna; Devi, Gayathri R; Burnett, Bruce K; Clay, Timothy M; Smith, Jonathan; Lyerly, H Kim

    2010-09-01

    Therapeutic anticancer vaccines are designed to boost patients' immune responses to tumors. One approach is to use a viral vector to deliver antigen to in situ DCs, which then activate tumor-specific T cell and antibody responses. However, vector-specific neutralizing antibodies and suppressive cell populations such as Tregs remain great challenges to the efficacy of this approach. We report here that an alphavirus vector, packaged in virus-like replicon particles (VRP) and capable of efficiently infecting DCs, could be repeatedly administered to patients with metastatic cancer expressing the tumor antigen carcinoembryonic antigen (CEA) and that it overcame high titers of neutralizing antibodies and elevated Treg levels to induce clinically relevant CEA-specific T cell and antibody responses. The CEA-specific antibodies mediated antibody-dependent cellular cytotoxicity against tumor cells from human colorectal cancer metastases. In addition, patients with CEA-specific T cell responses exhibited longer overall survival. These data suggest that VRP-based vectors can overcome the presence of neutralizing antibodies to break tolerance to self antigen and may be clinically useful for immunotherapy in the setting of tumor-induced immunosuppression.

  4. Binding of HIV-1 gp41-directed neutralizing and non-neutralizing fragment antibody binding domain (Fab and single chain variable fragment (ScFv antibodies to the ectodomain of gp41 in the pre-hairpin and six-helix bundle conformations.

    Directory of Open Access Journals (Sweden)

    John M Louis

    Full Text Available We previously reported a series of antibodies, in fragment antigen binding domain (Fab formats, selected from a human non-immune phage library, directed against the internal trimeric coiled-coil of the N-heptad repeat (N-HR of HIV-1 gp41. Broadly neutralizing antibodies from that series bind to both the fully exposed N-HR trimer, representing the pre-hairpin intermediate state of gp41, and to partially-exposed N-HR helices within the context of the gp41 six-helix bundle. While the affinities of the Fabs for pre-hairpin intermediate mimetics vary by only 2 to 20-fold between neutralizing and non-neutralizing antibodies, differences in inhibition of viral entry exceed three orders of magnitude. Here we compare the binding of neutralizing (8066 and non-neutralizing (8062 antibodies, differing in only four positions within the CDR-H2 binding loop, in Fab and single chain variable fragment (ScFv formats, to several pre-hairpin intermediate and six-helix bundle constructs of gp41. Residues 56 and 58 of the mini-antibodies are shown to be crucial for neutralization activity. There is a large differential (≥ 150-fold in binding affinity between neutralizing and non-neutralizing antibodies to the six-helix bundle of gp41 and binding to the six-helix bundle does not involve displacement of the outer C-terminal helices of the bundle. The binding stoichiometry is one six-helix bundle to one Fab or three ScFvs. We postulate that neutralization by the 8066 antibody is achieved by binding to a continuum of states along the fusion pathway from the pre-hairpin intermediate all the way to the formation of the six-helix bundle, but prior to irreversible fusion between viral and cellular membranes.

  5. A novel variable antibody fragment dimerized by leucine zippers with enhanced neutralizing potency against rabies virus G protein compared to its corresponding single-chain variable antibody fragment.

    Science.gov (United States)

    Li, Zhuang; Cheng, Yue; Xi, Hualong; Gu, Tiejun; Yuan, Ruosen; Chen, Xiaoxu; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2015-12-01

    Fatal rabies can be prevented effectively by post-exposure prophylactic (PEP) with rabies immunoglobulin (RIG). Single-chain variable fragments (scFv), which are composed of a variable heavy chain (VH) and a variable light chain (VL) connected by a peptide linker, can potentially be used to replace RIG. However, in our previous study, a scFv (scFV57S) specific for the rabies virus (RV) G protein showed a lower neutralizing potency than that of its parent IgG due to lower stability and altered peptide assembly pattern. In monoclonal antibodies, the VH and VL interact non-covalently, while in scFvs the VH is connected covalently with the VL by the artificial linker. In this study, we constructed and expressed two peptides 57VL-JUN-HIS and 57VH-FOS-HA in Escherichia coli. The well-known Fos and Jun leucine zippers were utilized to dimerize VH and VL similarly to the IgG counterpart. The two peptides assembled to form zipFv57S in vitro. Due to the greater similarity in structure with IgG, the zipFv57S protein showed a higher binding ability and affinity resulting in notable improvement of in vitro neutralizing activity over its corresponding scFv. The zipFv57S protein was also found to be more stable and showed similar protective rate as RIG in mice challenged with a lethal dose of RV. Our results not only indicated zipFv57S as an ideal alternative for RIG in PEP but also offered a novel and efficient hetero-dimerization pattern of VH and VL leading to enhanced neutralizing potency. Copyright © 2015. Published by Elsevier Ltd.

  6. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine.

    Directory of Open Access Journals (Sweden)

    Babu Ramanathan

    Full Text Available Dengue virus (DENV is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine.

  7. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine.

    Science.gov (United States)

    Ramanathan, Babu; Poh, Chit Laa; Kirk, Kristin; McBride, William John Hannan; Aaskov, John; Grollo, Lara

    2016-01-01

    Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine.

  8. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine

    OpenAIRE

    Ramanathan, Babu; Poh, Chit Laa; Kirk, Kristin; McBride, William John Hannan; Aaskov, John; Grollo, Lara

    2016-01-01

    Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction app...

  9. Lipidated dengue-2 envelope protein domain III independently stimulates long-lasting neutralizing antibodies and reduces the risk of antibody-dependent enhancement.

    Directory of Open Access Journals (Sweden)

    Chen-Yi Chiang

    Full Text Available BACKGROUND: Dengue virus is a mosquito-transmitted virus that can cause self-limiting dengue fever, severe life-threatening dengue hemorrhagic fever and dengue shock syndrome. The existence of four serotypes of dengue virus has complicated the development of an effective and safe dengue vaccine. Recently, a clinical phase 2b trial of Sanofi Pasteur's CYD tetravalent dengue vaccine revealed that the vaccine did not confer full protection against dengue-2 virus. New approaches to dengue vaccine development are urgently needed. Our approach represents a promising method of dengue vaccine development and may even complement the deficiencies of the CYD tetravalent dengue vaccine. METHODOLOGY/PRINCIPAL FINDINGS: Two important components of a vaccine, the immunogen and immunopotentiator, were combined into a single construct to generate a new generation of vaccines. We selected dengue-2 envelope protein domain III (D2ED III as the immunogen and expressed this protein in lipidated form in Escherichia coli, yielding an immunogen with intrinsic immunopotentiation activity. The formulation containing lipidated D2ED III (LD2ED III in the absence of exogenous adjuvant elicited higher D2ED III-specific antibody responses than those obtained from its nonlipidated counterpart, D2ED III, and dengue-2 virus. In addition, the avidity and neutralizing capacity of the antibodies induced by LD2ED III were higher than those elicited by D2ED III and dengue-2 virus. Importantly, we showed that after lipidation, the subunit candidate LD2ED III exhibited increased immunogenicity while reducing the potential risk of antibody-dependent enhancement of infection in mice. CONCLUSIONS/SIGNIFICANCE: Our study suggests that the lipidated subunit vaccine approach could be applied to other serotypes of dengue virus and other pathogens.

  10. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.; Mkhize, Nonhlanhla N.; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D.; Labuschagne, Phillip; Louder, Mark K.; Bailer, Robert T.; Karim, Salim S. Abdool; Mascola, John R.; Williamson, Carolyn; Moore, Penny L.; Kwong, Peter D.; Morris, Lynn (NHLS-South Africa); (NIH); (Witwatersrand); (KwaZulu-Natal)

    2016-08-31

    ABSTRACT

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage.

    IMPORTANCEThe conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of

  11. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site.

    Science.gov (United States)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S; Mkhize, Nonhlanhla N; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D; Labuschagne, Phillip; Louder, Mark K; Bailer, Robert T; Abdool Karim, Salim S; Mascola, John R; Williamson, Carolyn; Moore, Penny L; Kwong, Peter D; Morris, Lynn

    2016-11-15

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive

  12. Nef decreases HIV-1 sensitivity to neutralizing antibodies that target the membrane-proximal external region of TMgp41.

    Directory of Open Access Journals (Sweden)

    Rachel P J Lai

    2011-12-01

    Full Text Available Primate lentivirus nef is required for sustained virus replication in vivo and accelerated progression to AIDS. While exploring the mechanism by which Nef increases the infectivity of cell-free virions, we investigated a functional link between Nef and Env. Since we failed to detect an effect of Nef on the quantity of virion-associated Env, we searched for qualitative changes by examining whether Nef alters HIV-1 sensitivity to agents that target distinct features of Env. Nef conferred as much as 50-fold resistance to 2F5 and 4E10, two potent neutralizing monoclonal antibodies (nAbs that target the membrane proximal external region (MPER of TMgp41. In contrast, Nef had no effect on HIV-1 neutralization by MPER-specific nAb Z13e1, by the peptide inhibitor T20, nor by a panel of nAbs and other reagents targeting gp120. Resistance to neutralization by 2F5 and 4E10 was observed with Nef from a diverse range of HIV-1 and SIV isolates, as well as with HIV-1 virions bearing Env from CCR5- and CXCR4-tropic viruses, clade B and C viruses, or primary isolates. Functional analysis of a panel of Nef mutants revealed that this activity requires Nef myristoylation but that it is genetically separable from other Nef functions such as the ability to enhance virus infectivity and to downregulate CD4. Glycosylated-Gag from MoMLV substituted for Nef in conferring resistance to 2F5 and 4E10, indicating that this activity is conserved in a retrovirus that does not encode Nef. Given the reported membrane-dependence of MPER-recognition by 2F5 and 4E10, in contrast to the membrane-independence of Z13e1, the data here is consistent with a model in which Nef alters MPER recognition in the context of the virion membrane. Indeed, Nef and Glycosylated-Gag decreased the efficiency of virion capture by 2F5 and 4E10, but not by other nAbs. These studies demonstrate that Nef protects lentiviruses from one of the most broadly-acting classes of neutralizing antibodies. This newly

  13. The HIV-1 V3 domain on field isolates: participation in generation of escape virus in vivo and accessibility to neutralizing antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Akerblom, L; Heegaard, P M

    1995-01-01

    to induce neutralizing immune sera. Seven peptides corresponding to the V3 region of primary and escape virus from 3 HIV-1 infected patients were synthesized and used for antibody (Abs) studies and immunizations. The anti-V3 Abs titre in patient serum was generally low against peptides corresponding...... to autologous virus isolated later than the serum sample in contrast to the titre against peptides corresponding to virus isolated earlier than the serum sample. Furthermore, neutralizing anti-V3 monoclonal antibodies (MAbs) raised against V3 peptides from laboratory strains of HIV-1 showed distinct binding...... peptides corresponding to field isolates were highly immunogenic but failed to induce neutralizing or gp120-precipitating Abs. On the contrary, V3 peptide corresponding to the laboratory strain HXB2 induced HIV neutralizing, gp120-precipitating immune serum. In conclusion, these data suggest...

  14. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1

    International Nuclear Information System (INIS)

    Bower, Joseph F.; Green, Thomas D.; Ross, Ted M.

    2004-01-01

    DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d 3 ) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d 3 . In addition, both sCD4-gp120 and sCD4-gp120-mC3d 3 bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d 3 or sCD4-gp120-mC3d 3 elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d 3 -DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d 3 had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d

  15. Human Papillomavirus neutralizing and cross-reactive antibodies induced in HIV-positive subjects after vaccination with quadrivalent and bivalent HPV vaccines

    DEFF Research Database (Denmark)

    Faust, Helena; Nielsen, Lars Toft; Sehr, Peter

    2016-01-01

    of neutralizing and binding antibodies had good agreement (average Kappa for HPV types 6, 11, 16, 18, 31, 33 and 45 was 0.65). At baseline, 88% of subjects had antibodies against at least one genital HPV. Following vaccination with Cervarix™, all subjects became seropositive for HPV16 and 18. After Gardasil......™ vaccination, 96% of subjects seroconverted for HPV16 and 73% for HPV18. Levels of HPV16-specific antibodies were vaccination but >10IU in 85% of study subjects after vaccination. Antibodies against non-vaccine HPV types appeared after Gardasil......™ vaccination for >50% of vaccinated females for HPV 31, 35 and 73 and for >50% of Cervarix™-vaccinated females for HPV 31, 33, 35, 45, 56 and 58. Cross-reactivity with non-genital HPV types was also detected. In conclusion, HIV-infected subjects responded to HPV vaccination with induction of neutralizing...

  16. Evaluation of neutralizing antibodies to type A, B, E, and F botulinum toxins in sera from human recipients of botulinum pentavalent (ABCDE) toxoid.

    Science.gov (United States)

    Siegel, L S

    1989-08-01

    Twenty-five serum specimens from personnel immunized with botulinum pentavalent toxoid (ABCDE) had titers of neutralizing antibodies to type A (5.7 to 51.6 IU/ml), type B (0.75 to 18 IU/ml), and type E (0.61 to 10 IU/ml) botulinum toxins. Titers for one type could not be used to predict titers for another type in individuals receiving the toxoid. Cross-neutralizing antibodies to type F botulinum toxin were not detected (less than 0.0125 IU/ml).

  17. Adenovirus Particles that Display the Plasmodium falciparum Circumsporozoite Protein NANP Repeat Induce Sporozoite-Neutralizing Antibodies in Mice

    Science.gov (United States)

    Palma, Christopher; Overstreet, Michael G.; Guedon, Jean-Marc; Hoiczyk, Egbert; Ward, Cameron; Karen, Kasey A.; Zavala, Fidel; Ketner, Gary

    2011-01-01

    Adenovirus particles can be engineered to display exogenous peptides on their surfaces by modification of viral capsid proteins, and particles that display pathogen-derived peptides can induce protective immunity. We constructed viable recombinant adenoviruses that display B-cell epitopes from the Plasmodium falciparum circumsporozoite protein (PfCSP) in the major adenovirus capsid protein, hexon. Recombinants induced high-titer antibodies against CSP when injected intraperitoneally into mice. Serum obtained from immunized mice recognized both recombinant PfCSP protein and P. falciparum sporozoites, and neutralized P. falciparum sporozoites in vitro. Replicating adenovirus vaccines have provided economical protection against adenovirus disease for over three decades. The recombinants described here may provide a path to an affordable malaria vaccine in the developing world. PMID:21199707

  18. Crystal Structures of the Pro-Inflammatory Cytokine Interleukin-23 and Its Complex with a High-Affinity Neutralizing Antibody

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Brian M.; Ingram, Richard; Ramanathan, Lata; Reichert, Paul; Le, Hung V.; Madison, Vincent; Orth, Peter (SPRI)

    2009-06-25

    Interleukin (IL)-23 is a pro-inflammatory cytokine playing a key role in the pathogenesis of several autoimmune and inflammatory diseases. We have determined the crystal structures of the heterodimeric p19-p40 IL-23 and its complex with the Fab (antigen-binding fragment) of a neutralizing antibody at 2.9 and 1.9 {angstrom}, respectively. The IL-23 structure closely resembles that of IL-12. They share the common p40 subunit, and IL-23 p19 overlaps well with IL-12 p35. Along the hydrophilic heterodimeric interface, fewer charged residues are involved for IL-23 compared with IL-12. The binding site of the Fab is located exclusively on the p19 subunit, and comparison with published cytokine-receptor structures suggests that it overlaps with the IL-23 receptor binding site.

  19. Myostatin inhibitors in sports drug testing: Detection of myostatin-neutralizing antibodies in plasma/serum by affinity purification and Western blotting.

    Science.gov (United States)

    Walpurgis, Katja; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2016-02-01

    Myostatin is a key regulator of skeletal muscle growth and inhibition of its signaling pathway results in an increased muscle mass and function. The aim of this study was to develop a qualitative detection assay for myostatin-neutralizing antibodies for doping control purposes by using immunological approaches. To detect different types of myostatin-neutralizing antibodies irrespective of their amino acid sequence, an immunological assay specific for antibodies directed against myostatin and having a human Fc domain was established. Affinity purification and Western blotting strategies were combined to allow extracting and identifying relevant analytes from 200 μL of plasma/serum in a non-targeted approach. The assay was characterized regarding specificity, linearity, precision, robustness, and recovery. The assay was found to be highly specific, robust, and linear from 0.1 to 1 μg/mL. The precision was successfully specified at three different concentrations and the recovery of the affinity purification was 58%. Within this study, an immunological detection assay for myostatin-neutralizing antibodies present in plasma/serum specimens was developed and successfully characterized. The presented approach can easily be modified to include other therapeutic antibodies and serves as proof-of-concept for the detection of antibody-based myostatin inhibitors in doping control samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Development of an in Vitro Potency Assay for Anti-anthrax Lethal Toxin Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Sjoerd Rijpkema

    2012-01-01

    Full Text Available Lethal toxin (LT of Bacillus anthracis reduces the production of a number of inflammatory mediators, including transcription factors, chemokines and cytokines in various human cell lines, leading to down-regulation of the host inflammatory response. Previously we showed that the reduction of interleukin-8 (IL-8 is a sensitive marker of LT-mediated intoxication in human neutrophil-like NB-4 cells and that IL-8 levels are restored to normality when therapeutic monoclonal antibodies (mAb with toxin-neutralising (TN activity are added. We used this information to develop cell-based assays that examine the effects of TN therapeutic mAbs designed to treat LT intoxication and here we extend these findings. We present an in vitro assay based on human endothelial cell line HUVEC jr2, which measures the TN activity of therapeutic anti-LT mAbs using IL-8 as a marker for intoxication. HUVEC jr2 cells have the advantage over NB-4 cells that they are adherent, do not require a differentiation step and can be used in a microtitre plate format and therefore can facilitate high throughput analysis. This human cell-based assay provides a valid alternative to the mouse macrophage assay as it is a more biologically relevant model of the effects of toxin-neutralising antibodies in human infection.

  1. Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models.

    Science.gov (United States)

    Mita, Yuichiro; Nakayama, Kaho; Inari, Shogo; Nishito, Yukina; Yoshioka, Yuya; Sakai, Naoko; Sotani, Kanade; Nagamura, Takahiro; Kuzuhara, Yuki; Inagaki, Kumi; Iwasaki, Miki; Misu, Hirofumi; Ikegawa, Masaya; Takamura, Toshinari; Noguchi, Noriko; Saito, Yoshiro

    2017-11-21

    Selenoprotein P (SeP) functions as a selenium (Se)-supply protein. SeP is identified as a hepatokine, promoting insulin resistance in type 2 diabetes. Thus, the suppression of Se-supply activity of SeP might improve glucose metabolism. Here, we develop an anti-human SeP monoclonal antibody AE2 as with neutralizing activity against SeP. Administration of AE2 to mice significantly improves glucose intolerance and insulin resistance that are induced by human SeP administration. Furthermore, excess SeP administration significantly decreases pancreas insulin levels and high glucose-induced insulin secretion, which are improved by AE2 administration. Epitope mapping reveals that AE2 recognizes a region of human SeP adjacent to the first histidine-rich region (FHR). A polyclonal antibody against the mouse SeP FHR improves glucose intolerance and insulin secretion in a mouse model of diabetes. This report describes a novel molecular strategy for the development of type 2 diabetes therapeutics targeting SeP.

  2. Structure of an HIV-1-neutralizing antibody target, the lipid-bound gp41 envelope membrane proximal region trimer.

    Science.gov (United States)

    Reardon, Patrick N; Sage, Harvey; Dennison, S Moses; Martin, Jeffrey W; Donald, Bruce R; Alam, S Munir; Haynes, Barton F; Spicer, Leonard D

    2014-01-28

    The membrane proximal external region (MPER) of HIV-1 glycoprotein (gp) 41 is involved in viral-host cell membrane fusion. It contains short amino acid sequences that are binding sites for the HIV-1 broadly neutralizing antibodies 2F5, 4E10, and 10E8, making these binding sites important targets for HIV-1 vaccine development. We report a high-resolution structure of a designed MPER trimer assembled on a detergent micelle. The NMR solution structure of this trimeric domain, designated gp41-M-MAT, shows that the three MPER peptides each adopt symmetric α-helical conformations exposing the amino acid side chains of the antibody binding sites. The helices are closely associated at their N termini, bend between the 2F5 and 4E10 epitopes, and gradually separate toward the C termini, where they associate with the membrane. The mAbs 2F5 and 4E10 bind gp41-M-MAT with nanomolar affinities, consistent with the substantial exposure of their respective epitopes in the trimer structure. The traditional structure determination of gp41-M-MAT using the Xplor-NIH protocol was validated by independently determining the structure using the DISCO sparse-data protocol, which exploits geometric arrangement algorithms that guarantee to compute all structures and assignments that satisfy the data.

  3. Short duration of neutralizing antibody titers after pre-exposure rabies vaccination with suckling mouse brain vaccine

    Directory of Open Access Journals (Sweden)

    Zanetti C.R.

    1998-01-01

    Full Text Available The human anti-rabies pre-exposure treatment currently used in Brazil, employing a 1-ml dose of suckling mouse brain vaccine (SMBV administered on days 0, 2, 4 and 28, was compared to an alternative treatment with two 1 ml-doses on day 0, and one 1 ml-dose injected on days 7 and 21. The latter induced higher virus-neutralizing antibody (VNA titers on day 21. Both Brazilian rabies vaccines produced with PV or CVS rabies virus strains were tested. Two additional volunteer vaccinee groups, receiving the pre-exposure and the abbreviated post-exposure schedules recommended by the WHO using cell-culture vaccine (CCV produced with PM rabies virus strain, were included as reference. The VNA were measured against both PV and CVS strains on days 21, 42 and 180 by the cell-culture neutralization microtest. The PV-SMBV elicited higher seroconversion rates and VNA by day 21 than the CVS-SMBV. Both, however, failed to induce a long-term immunity, since VNA titers were <0.5 IU/ml on day 180, regardless of the schedule used. Cell-culture vaccine always elicited very high VNA on all days of collection. When serum samples from people receiving mouse brain tissue were titrated against the PV and CVS strains, the VNA obtained were similar, regardless of the vaccinal strain and the virus used in the neutralization test. These results contrast with those obtained with sera from people receiving PM-CCV, whose VNA were significantly higher when tested against the CVS strain.

  4. Protection from La Crosse virus encephalitis with recombinant glycoproteins: role of neutralizing anti-G1 antibodies.

    Science.gov (United States)

    Pekosz, A; Griot, C; Stillmock, K; Nathanson, N; Gonzalez-Scarano, F

    1995-06-01

    La Crosse virus, a member of the California serogroup of bunyaviruses, is an important cause of pediatric encephalitis in the midwestern United States. Like all bunyaviruses, La Crosse virus contains two glycoproteins, G1 and G2, the larger of which, G1, is the target of neutralizing antibodies. To develop an understanding of the role of each of the glycoproteins in the generation of a protective immune response, we immunized 1-week-old mice with three different preparations: a vaccinia virus recombinant (VV.ORF) that expresses both G1 and G2, a vaccinia virus recombinant (VV.G1) that expresses G1 only, and a truncated soluble G1 (sG1) protein prepared in a baculovirus system. Whereas VV.ORF generated a protective response that was mostly directed against G1, VV.G1 was only partially effective at inducing a neutralizing response and at protecting mice from a potentially lethal challenge with La Crosse virus. Nevertheless, a single immunization with the sG1 preparation resulted in a robust immune response and protection against La Crosse virus. These results indicate that (i) the G1 protein by itself can induce an immune response sufficient for protection from a lethal challenge with La Crosse virus, (ii) a neutralizing humoral response correlates with protection, and (iii) the context in which G1 is presented affects its immunogenicity. The key step in the defense against central nervous system infection appeared to be interruption of a transient viremia that occurred just after La Crosse virus inoculation.

  5. Mapping of a region of dengue virus type-2 glycoprotein required for binding by a neutralizing monoclonal antibody.

    Science.gov (United States)

    Trirawatanapong, T; Chandran, B; Putnak, R; Padmanabhan, R

    1992-07-15

    Envelope glycoprotein E of flaviviruses is exposed at the surface of the virion, and is responsible for eliciting a neutralizing antibody (Ab) response, as well as protective immunity in the host. In this report, we describe a method for the fine mapping of a linear sequence of the E protein of dengue virus type-2 (DEN-2), recognized by a type-specific and neutralizing monoclonal Ab (mAb), 3H5. First, an Escherichia coli expression vector containing a heat-inducible lambda pL promoter was used to synthesize several truncated, and near-full length E polypeptides. Reactivities of these polypeptides with polyclonal mouse hyperimmune sera, as well as the 3H5 mAb revealed the location of the 3H5-binding site to be within a region of 166 amino acids (aa) between aa 255 and 422. For fine mapping, a series of targeted deletions were made inframe within this region using the polymerase chain reaction (PCR). The hydrophilicity pattern of this region was used as a guide to systematically delete the regions encoding the various groups of surface aa residues within the context of a near-full-length E polypeptide by using PCR. The 3H5-binding site was thus precisely mapped to a region encoding 12 aa (between aa 386 and 397). A synthetic peptide containing this sequence was able to bind to the 3H5 mAb specifically, as shown by enzyme-linked immunosorbent assay. In addition, we show that rabbit Abs raised against the synthetic peptide of 12 aa were able to bind to the authentic E protein, and to neutralize DEN-2 virus in a plaque reduction assay.

  6. Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1

    Energy Technology Data Exchange (ETDEWEB)

    Pejchal, Robert; Walker, Laura M.; Stanfield, Robyn L.; Phogat, Sanjay K.; Koff, Wayne C.; Poignard, Pascal; Burton, Dennis R.; Wilson, Ian A. (Scripps); (IAVI)

    2010-11-15

    Development of an effective vaccine against HIV-1 will likely require elicitation of broad and potent neutralizing antibodies against the trimeric surface envelope glycoprotein (Env). Monoclonal antibodies (mAbs) PG9 and PG16 neutralize {approx}80% of HIV-1 isolates across all clades with extraordinary potency and target novel epitopes preferentially expressed on Env trimers. As these neutralization properties are ideal for a vaccine-elicited antibody response to HIV-1, their structural basis was investigated. The crystal structure of the antigen-binding fragment (Fab) of PG16 at 2.5 {angstrom} resolution revealed its unusually long, 28-residue, complementarity determining region (CDR) H3 forms a unique, stable subdomain that towers above the antibody surface. A 7-residue 'specificity loop' on the 'hammerhead' subdomain was identified that, when transplanted from PG16 to PG9 and vice versa, accounted for differences in the fine specificity and neutralization of these two mAbs. The PG16 electron density maps also revealed that a CDR H3 tyrosine was sulfated, which was confirmed for both PG9 (doubly) and PG16 (singly) by mass spectral analysis. We further showed that tyrosine sulfation plays a role in binding and neutralization. An N-linked glycan modification is observed in the variable light chain, but not required for antigen recognition. Further, the crystal structure of the PG9 light chain at 3.0 {angstrom} facilitated homology modeling to support the presence of these unusual features in PG9. Thus, PG9 and PG16 use unique structural features to mediate potent neutralization of HIV-1 that may be of utility in antibody engineering and for high-affinity recognition of a variety of therapeutic targets.

  7. Incompatible Natures of the HIV-1 Envelope in Resistance to the CCR5 Antagonist Cenicriviroc and to Neutralizing Antibodies.

    Science.gov (United States)

    Kuwata, Takeo; Enomoto, Ikumi; Baba, Masanori; Matsushita, Shuzo

    2016-01-01

    Cenicriviroc is a CCR5 antagonist which prevents human immunodeficiency virus type 1 (HIV-1) from cellular entry. The CCR5-binding regions of the HIV-1 envelope glycoprotein are important targets for neutralizing antibodies (NAbs), and mutations conferring cenicriviroc resistance may therefore affect sensitivity to NAbs. Here, we used the in vitro induction of HIV-1 variants resistant to cenicriviroc or NAbs to examine the relationship between resistance to cenicriviroc and resistance to NAbs. The cenicriviroc-resistant variant KK652-67 (strain KK passaged 67 times in the presence of increasing concentrations of cenicriviroc) was sensitive to neutralization by NAbs against the V3 loop, the CD4-induced (CD4i) region, and the CD4-binding site (CD4bs), whereas the wild-type (WT) parental HIV-1 strain KKWT from which cenicriviroc-resistant strain KK652-67 was obtained was resistant to these NAbs. The V3 region of KK652-67 was important for cenicriviroc resistance and critical to the high sensitivity of the V3, CD4i, and CD4bs epitopes to NAbs. Moreover, induction of variants resistant to anti-V3 NAb 0.5γ and anti-CD4i NAb 4E9C from cenicriviroc-resistant strain KK652-67 resulted in reversion to the cenicriviroc-sensitive phenotype comparable to that of the parental strain, KKWT. Resistance to 0.5γ and 4E9C was caused by the novel substitutions R315K, G324R, and E381K in the V3 and C3 regions near the substitutions conferring cenicriviroc resistance. Importantly, these amino acid changes in the CCR5-binding region were also responsible for reversion to the cenicriviroc-sensitive phenotype. These results suggest the presence of key amino acid residues where resistance to cenicriviroc is incompatible with resistance to NAbs. This implies that cenicriviroc and neutralizing antibodies may restrict the emergence of variants resistant to each other. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Increased infectivity in human cells and resistance to antibody-mediated neutralization by truncation of the SIV gp41 cytoplasmic tail

    Directory of Open Access Journals (Sweden)

    Takeo eKuwata

    2013-05-01

    Full Text Available The role of antibodies in protecting the host from human immunodeficiency virus type 1 (HIV-1 infection is of considerable interest, particularly because the RV144 trial results suggest that antibodies contribute to protection. Although infection of nonhuman primates with simian immunodeficiency virus (SIV is commonly used as an animal model of HIV-1 infection, the viral epitopes that elicit potent and broad neutralizing antibodies to SIV have not been identified. We isolated a monoclonal antibody (MAb B404 that potently and broadly neutralizes various SIV strains. B404 targets a conformational epitope comprising the V3 and V4 loops of Env that intensely exposed when Env binds CD4. B404-resistant variants were obtained by passaging viruses in the presence of increasing concentration of B404 in PM1/CCR5 cells. Genetic analysis revealed that the Q733stop mutation, which truncates the cytoplasmic tail of gp41, was the first major substitution in Env during passage. The maximal inhibition by B404 and other MAbs were significantly decreased against a recombinant virus with a gp41 truncation compared with the parental SIVmac316. This indicates that the gp41 truncation was associated with resistance to antibody-mediated neutralization. The infectivities of the recombinant virus with the gp41 truncation were 7900-fold, 1000-fold, and 140-fold higher than those of SIVmac316 in PM1, PM1/CCR5, and TZM-bl cells, respectively. Immunoblotting analysis revealed that the gp41 truncation enhanced the incorporation of Env into virions. The effect of the gp41 truncation on infectivity was not obvious in the HSC-F macaque cell line, although the resistance of viruses harboring the gp41 truncation to neutralization was maintained. These results suggest that viruses with a truncated gp41 cytoplasmic tail were selected by increased infectivity in human cells and by acquiring resistance to neutralizing antibody.

  9. Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions

    DEFF Research Database (Denmark)

    Payne, Ruth O; Silk, Sarah E; Elias, Sean C

    2017-01-01

    The development of a highly effective vaccine remains a key strategic goal to aid the control and eventual eradication of Plasmodium falciparum malaria. In recent years, the reticulocyte-binding protein homolog 5 (RH5) has emerged as the most promising blood-stage P. falciparum candidate antigen......-deficient chimpanzee adenovirus serotype 63 (ChAd63), and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding RH5 from the 3D7 clone of P. falciparum. Vaccines were administered i.m. in a heterologous prime-boost regimen using an 8-week interval and were well tolerated. Vaccine-induced anti-RH5...... serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been...

  10. Differences in Allelic Frequency and CDRH3 Region Limit the Engagement of HIV Env Immunogens by Putative VRC01 Neutralizing Antibody Precursors

    Directory of Open Access Journals (Sweden)

    Christina Yacoob

    2016-11-01

    Full Text Available Elicitation of broadly neutralizing antibodies remains a long-standing goal of HIV vaccine research. Although such antibodies can arise during HIV-1 infection, gaps in our knowledge of their germline, pre-immune precursor forms, as well as on their interaction with viral Env, limit our ability to elicit them through vaccination. Studies of broadly neutralizing antibodies from the VRC01-class provide insight into progenitor B cell receptors (BCRs that could develop into this class of antibodies. Here, we employed high-throughput heavy chain variable region (VH/light chain variable region (VL deep sequencing, combined with biophysical, structural, and modeling antibody analyses, to interrogate circulating potential VRC01-progenitor BCRs in healthy individuals. Our study reveals that not all humans are equally predisposed to generate VRC01-class antibodies, not all predicted progenitor VRC01-expressing B cells can bind to Env, and the CDRH3 region of germline VRC01 antibodies influence their ability to recognize HIV-1. These findings will be critical to the design of optimized immunogens that should consider CDRH3 interactions.

  11. Measles Virus Hemagglutinin epitopes immunogenic in natural infection and vaccination are targeted by broad or genotype-specific neutralizing monoclonal antibodies.

    Science.gov (United States)

    Muñoz-Alía, Miguel Angel; Casasnovas, José M; Celma, María Luisa; Carabaña, Juan; Liton, Paloma B; Fernandez-Muñoz, Rafael

    2017-05-15

    Measles virus (MV) remains a leading cause of vaccine-preventable deaths in children. Protection against MV is associated with neutralizing antibodies that preferentially recognize the viral hemagglutinin (MV-H), and to a lesser extent, the fusion protein (MV-F). Although MV is serologically monotypic, 24 genotypes have been identified. Here we report three neutralization epitopes conserved in the more prevalent circulating MV genotypes, two located in the MV-H receptor binding site (RBS) (antigenic site III) and a third in MV-H/MV-F interphase (antigenic site Ia) which are essential for MV multiplication. In contrast, two MV-H neutralization epitopes, showed a genotype-specific neutralization escape due to a single amino acid change, that we mapped in the "noose" antigenic site, or an enhanced neutralization epitope (antigenic site IIa). The monoclonal antibody (mAb) neutralization potency correlated with its binding affinity and was mainly driven by kinetic dissociation rate (k off ). We developed an immunoassay for mAb binding to MV-H in its native hetero-oligomeric structure with MV-F on the surface of a MV productive steady-state persistently infected (p.i.) human cell lines, and a competitive-binding assay with serum from individuals with past infection by different MV genotypes. Binding assays revealed that a broad neutralization epitope, in RBS antigenic site, a genotype specific neutralization epitopes, in noose and IIa sites, were immunogenic in natural infection and vaccination and may elicit long-lasting humoral immunity that might contribute to explain MV immunogenic stability. These results support the design of improved measles vaccines, broad-spectrum prophylactic or therapeutic antibodies and MV-used in oncolytic therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Single 17D Yellow Fever Vaccination Provides Lifelong Immunity; Characterization of Yellow-Fever-Specific Neutralizing Antibody and T-Cell Responses after Vaccination

    NARCIS (Netherlands)

    Wieten, Rosanne W.; Jonker, Emile F. F.; van Leeuwen, Ester M. M.; Remmerswaal, Ester B. M.; ten Berge, Ineke J. M.; de Visser, Adriëtte W.; van Genderen, Perry J. J.; Goorhuis, Abraham; Visser, Leo G.; Grobusch, Martin P.; de Bree, Godelieve J.

    2016-01-01

    Prompted by recent amendments of Yellow Fever (YF) vaccination guidelines from boost to single vaccination strategy and the paucity of clinical data to support this adjustment, we used the profile of the YF-specific CD8+ T-cell subset profiles after primary vaccination and neutralizing antibodies as

  13. Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers

    NARCIS (Netherlands)

    Falkowska, Emilia; Le, Khoa M.; Ramos, Alejandra; Doores, Katie J.; Lee, Jeong Hyun; Blattner, Claudia; Ramirez, Alejandro; Derking, Ronald; van Gils, Marit J.; Liang, Chi-Hui; McBride, Ryan; von Bredow, Benjamin; Shivatare, Sachin S.; Wu, Chung-Yi; Chan-Hui, Po-Ying; Liu, Yan; Feizi, Ten; Zwick, Michael B.; Koff, Wayne C.; Seaman, Michael S.; Swiderek, Kristine; Moore, John P.; Evans, David; Paulson, James C.; Wong, Chi-Huey; Ward, Andrew B.; Wilson, Ian A.; Sanders, Rogier W.; Poignard, Pascal; Burton, Dennis R.

    2014-01-01

    Broadly neutralizing HIV antibodies are much sought after (a) to guide vaccine design, both as templates and as indicators of the authenticity of vaccine candidates, (b) to assist in structural studies, and (c) to serve as potential therapeutics. However, the number of targets on the viral envelope

  14. Maternal plasma viral load and neutralizing/enhancing antibodies in vertical transmission of HIV: A non-randomized prospective study

    Directory of Open Access Journals (Sweden)

    Weiss Heidi

    2005-02-01

    Full Text Available Abstract Background We examined the association and interaction between maternal viral load and antibodies in vertical transmission of HIV in a non-randomized prospective study of 43 HIV-1 infected pregnant women who attended the San Juan City Hospital, Puerto Rico, and their 45 newborn infants. The women and infants received antiretroviral therapy. Methods A nested PCR assay of the HIV-1 envelope V3 region and infant PBMC culture were performed to determine HIV status of the infants. Maternal and infant plasma were tested for HIV neutralization or enhancement in monocyte-derived macrophages. Results Twelve (26.7% infants were positive by the HIV V3 PCR assay and 3 of the 12 were also positive by culture. There was a trend of agreement between high maternal viral load and HIV transmission by multivariate analysis (OR = 2.5, CI = 0.92, p = 0.0681. Both maternal and infant plasma significantly (p = 0.001 for both reduced HIV replication at 10-1 dilution compared with HIV negative plasma. Infant plasma neutralized HIV (p = 0.001 at 10-2 dilution but maternal plasma lost neutralizing effect at this dilution. At 10-3 dilution both maternal and infant plasma increased virus replication above that obtained with HIV negative plasma but only the increase by maternal plasma was statistically significant (p = 0.005. There were good agreements in enhancing activity in plasma between mother-infant pairs, but there was no significant association between HIV enhancement by maternal plasma and vertical transmission. Conclusion Although not statistically significant, the trend of association between maternal viral load and maternal-infant transmission of HIV supports the finding that viral load is a predictor of maternal-infant transmission. Both maternal and infant plasma neutralized HIV at low dilution and enhanced virus replication at high dilution. The antiretroviral treatments that the women received and the small sample size may have contributed to the

  15. From Near-Neutral to Strongly Stratified: Adequately Modelling the Clear-Sky Nocturnal Boundary Layer at Cabauw

    Science.gov (United States)

    Baas, P.; van de Wiel, B. J. H.; van der Linden, S. J. A.; Bosveld, F. C.

    2018-02-01

    The performance of an atmospheric single-column model (SCM) is studied systematically for stably-stratified conditions. To this end, 11 years (2005-2015) of daily SCM simulations were compared to observations from the Cabauw observatory, The Netherlands. Each individual clear-sky night was classified in terms of the ambient geostrophic wind speed with a 1 m s^{-1} bin-width. Nights with overcast conditions were filtered out by selecting only those nights with an average net radiation of less than - 30 W m^{-2}. A similar procedure was applied to the observational dataset. A comparison of observed and modelled ensemble-averaged profiles of wind speed and potential temperature and time series of turbulent fluxes showed that the model represents the dynamics of the nocturnal boundary layer (NBL) at Cabauw very well for a broad range of mechanical forcing conditions. No obvious difference in model performance was found between near-neutral and strongly-stratified conditions. Furthermore, observed NBL regime transitions are represented in a natural way. The reference model version performs much better than a model version that applies excessive vertical mixing as is done in several (global) operational models. Model sensitivity runs showed that for weak-wind conditions the inversion strength depends much more on details of the land-atmosphere coupling than on the turbulent mixing. The presented results indicate that in principle the physical parametrizations of large-scale atmospheric models are sufficiently equipped for modelling stably-stratified conditions for a wide range of forcing conditions.

  16. Elicitation of HIV-1 neutralizing antibodies by presentation of 4E10 and 10E8 epitopes on Norovirus P particles.

    Science.gov (United States)

    Yu, Yongjiao; Fu, Lu; Shi, Yuhua; Guan, Shanshan; Yang, Lan; Gong, Xin; Yin, He; He, Xiaoqiu; Liu, Dongni; Kuai, Ziyu; Shan, Yaming; Wang, Song; Kong, Wei

    2015-12-01

    Eliciting efficient broadly neutralizing antibodies (BnAbs) is a major goal in vaccine development against human immunodeficiency virus type 1 (HIV-1). Conserved epitopes in the membrane-proximal external region (MPER) of HIV-1 are a significant target. In this study, Norovirus P particles (NoV PPs) were used as carriers to display conformational 4E10 and 10E8 epitopes in different patterns with an appropriate linker. Immune responses to the recombinant NoV PPs were characterized in guinea pigs and Balb/c mice and could induce high levels of MPER-binding antibodies. Modest neutralizing activities could be detected in sera of guinea pigs but not of Balb/c mice. The 4E10 or 10E8 epitopes dispersed on three loops on the outermost surface of NoV PPs (4E10-loop123 PP or 10E8-loop123 PP) elicited higher neutralizing activities than the equivalent number of epitopes presented on loop 2 only (4E10-3loop2 PP or 10E8-3loop2 PP). The epitopes on different loops of the PP were well-exposed and likely formed an appropriate conformation to induce neutralizing antibodies. Although sera of immunized guinea pigs could neutralize several HIV envelope-pseudoviruses, a vaccine candidate for efficiently inducing HIV-1 BnAbs remains to be developed. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  17. Broadly Neutralizing Hemagglutinin Stalk-Specific Antibodies Induce Potent Phagocytosis of Immune Complexes by Neutrophils in an Fc-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Caitlin E. Mullarkey

    2016-10-01

    Full Text Available Broadly neutralizing antibodies that recognize the conserved hemagglutinin (HA stalk have emerged as exciting new biotherapeutic tools to combat seasonal and pandemic influenza viruses. Our general understanding of the mechanisms by which stalk-specific antibodies achieve protection is rapidly evolving. It has recently been demonstrated that broadly neutralizing HA stalk-specific IgG antibodies require Fc-Fcγ receptor (FcγR interactions for optimal protection in vivo. Here we examine the neutrophil effector functions induced by stalk-specific antibodies. As the most abundant subset of blood leukocytes, neutrophils represent a critical innate effector cell population and serve an instrumental role in orchestrating downstream adaptive responses to influenza virus infection. Yet, the interplay of HA stalk-specific IgG, Fc-FcγR engagement, and neutrophils has remained largely uncharacterized. Using an in vitro assay to detect the production of reactive oxygen species (ROS, we show that human and mouse monoclonal HA stalk-specific IgG antibodies are able to induce the production of ROS by neutrophils, while HA head-specific antibodies do not. Furthermore, our results indicate that the production of ROS is dependent on Fc receptor (FcR engagement and phagocytosis. We went on to assess the ability of monoclonal HA stalk-specific IgA antibodies to induce ROS. Consistent with our findings for monoclonal IgGs, only HA stalk-specific IgA antibodies elicited ROS production by neutrophils. This induction is dependent on the engagement of FcαR1. Taken together, our findings describe a novel FcR-dependent effector function induced by HA stalk-specific IgG and IgA antibodies, and importantly, our studies shed light on the mechanisms by which HA stalk-specific antibodies achieve protection.

  18. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy.

    Science.gov (United States)

    Lach-Trifilieff, Estelle; Minetti, Giulia C; Sheppard, KellyAnn; Ibebunjo, Chikwendu; Feige, Jerome N; Hartmann, Steffen; Brachat, Sophie; Rivet, Helene; Koelbing, Claudia; Morvan, Frederic; Hatakeyama, Shinji; Glass, David J

    2014-02-01

    The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings.

  19. Mimotopes selected with neutralizing antibodies against multiple subtypes of influenza A

    Directory of Open Access Journals (Sweden)

    Zhong Yanwei

    2011-12-01

    Full Text Available Abstract Background The mimotopes of viruses are considered as the good targets for vaccine design. We prepared mimotopes against multiple subtypes of influenza A and evaluate their immune responses in flu virus challenged Balb/c mice. Methods The mimotopes of influenza A including pandemic H1N1, H3N2, H2N2 and H1N1 swine-origin influenza virus were screened by peptide phage display libraries, respectively. These mimotopes were engineered in one protein as multi- epitopes in Escherichia coli (E. coli and purified. Balb/c mice were immunized using the multi-mimotopes protein and specific antibody responses were analyzed using hemagglutination inhibition (HI assay and enzyme-linked immunosorbent assay (ELISA. The lung inflammation level was evaluated by hematoxylin and eosin (HE. Results Linear heptopeptide and dodecapeptide mimotopes were obtained for these influenza virus. The recombinant multi-mimotopes protein was a 73 kDa fusion protein. Comparing immunized infected groups with unimmunized infected subsets, significant differences were observed in the body weight loss and survival rate. The antiserum contained higher HI Ab titer against H1N1 virus and the lung inflammation level were significantly decreased in immunized infected groups. Conclusions Phage-displayed mimotopes against multiple subtypes of influenza A were accessible to the mouse immune system and triggered a humoral response to above virus.

  20. A rapid plaque method using vertical tube cultures for titration of viruses and neutralizing antibodies.

    Science.gov (United States)

    Wallis, C; Parks, W; Sakurada, N; Melnick, J L

    1965-01-01

    Standard methods for titrating and typing enteroviruses and other viruses, or for assaying antibodies against them, are based on observation of metabolic inhibition of infected cells or on direct microscopic reading of cytopathogenic effects. Incubation of cell cultures for at least a week, with two or three readings during this period, is usually required before assessment is completed. This report describes a vertical-tube method in which cell monolayers are confined to the bottom end of a serological tube; an agar overlay is used after virus or virus-serum inoculation. The reduced monolayer area allows seeding with only about 30% of the cells required for standard tube cultures, and 5% of those required for plaque assay in bottle cultures. The new method requires only a single macroscopic reading one to three days after the test is set up. This method has proved economical, simple and rapid in epidemiological studies on rapidly growing viruses of the entero-, reo-, herpes-, myxo- and poxvirus groups, and for tests of the genetic markers of live poliovirus vaccine.

  1. Large-scale analysis of B-cell epitopes on influenza virus hemagglutinin - implications for cross-reactivity of neutralizing antibodies

    DEFF Research Database (Denmark)

    Sun, Jing; Kudahl, Ulrich J.; Simon, Christian

    2014-01-01

    of tens of thousands of HA sequences. The detailed description of B-cell epitopes, measurement of epitope area similarity among different strains, and estimation of antibody neutralizing coverage provide insights into cross-reactivity status of existing nAbs against influenza virus. We have developed...... that share 100% identity with experimentally verified neutralized strains. By cataloging influenza strains and their B-cell epitopes for known bnAbs, our method provides guidance for selection of representative strains for further experimental design. The knowledge of sequences, their B-cell epitopes......Influenza viruses continue to cause substantial morbidity and mortality worldwide. Fast gene mutation on surface proteins of influenza virus result in increasing resistance to current vaccines and available antiviral drugs. Broadly neutralizing antibodies (bnAbs) represent targets for prophylactic...

  2. Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity

    International Nuclear Information System (INIS)

    Skiadopoulos, Mario H.; Biacchesi, Stephane; Buchholz, Ursula J.; Amaro-Carambot, Emerito; Surman, Sonja R.; Collins, Peter L.; Murphy, Brian R.

    2006-01-01

    We evaluated the individual contributions of the three surface glycoproteins of human metapneumovirus (HMPV), namely the fusion F, attachment G, and small hydrophobic SH proteins, to the induction of serum HMPV-binding antibodies, serum HMPV-neutralizing antibodies, and protective immunity. Using reverse genetics, each HMPV protein was expressed individually from an added gene in recombinant human parainfluenza virus type 1 (rHPIV1) and used to infect hamsters once or twice by the intranasal route. The F protein was highly immunogenic and protective, whereas G and SH were only weakly or negligibly immunogenic and protective, respectively. Thus, in contrast to other paramyxoviruses, the HMPV attachment G protein is not a major neutralization or protective antigen. Also, although the SH protein of HMPV is a virion protein that is much larger than its counterparts in previously studied paramyxoviruses, it does not appear to be a significant neutralization or protective antigen

  3. An oral Aujeszky's disease vaccine (YS-400) induces neutralizing antibody in pigs.

    Science.gov (United States)

    Yang, Dong-Kun; Kim, Ha-Hyun; Choi, Sung-Suk; Hyun, Bang-Hun; Song, Jae-Young

    2016-07-01

    Aujeszky's disease (AD) is an economically important disease affecting both wild and domestic pigs of the species Sus scrofa. A previous study yielded serological evidence of AD in Korean wild boars, which could spread AD to other animals. A new Aujeszky's disease virus (ADV) bait vaccine is required to prevent AD outbreaks in swine. In the present study, we investigated the safety and immunogenicity of a gE-deleted marker vaccine, strain YS-400, in young domestic pigs. The YS-400 strain was propagated in Vero cells, and the trial ADV bait vaccine (a vaccine blister in a matrix including an attractant) was prepared. Pigs were orally immunized with the vaccine (2 mL, 10(7.5) TCID50/mL) delivered using a syringe or in the bait vaccine. The animals were observed for 9 weeks after vaccination, and immunogenicity was assessed using a virus neutralization (VN) test and enzyme linked immunosorbent assay. The YS-400 strain was non-pathogenic to pigs when given orally and induced high VN titers (1:32-1:128) 6 weeks post-administration. Of the pigs given the ADV bait vaccine twice or three times, 40% were seropositive by 2 weeks, and 100% were seropositive by 7 weeks after the first dose. Pigs that consumed the AD bait vaccine three times developed VN titers that were slightly higher than those of pigs given the vaccine twice. Domestic pigs given the trial ADV bait vaccine exhibited no adverse effects and developed high VN titers against ADV, indicating that the YS-400 strain is safe and can prevent ADV infection in domestic pigs.

  4. A glycoconjugate antigen based on the recognition motif of a broadly neutralizing human immunodeficiency virus antibody, 2G12, is immunogenic but elicits antibodies unable to bind to the self glycans of gp120

    DEFF Research Database (Denmark)

    Astronomo, Rena D; Lee, Hing-Ken; Scanlan, Christopher N

    2008-01-01

    The glycan shield of human immunodeficiency virus type 1 (HIV-1) gp120 contributes to viral evasion from humoral immune responses. However, the shield is recognized by the HIV-1 broadly neutralizing antibody (Ab), 2G12, at a relatively conserved cluster of oligomannose glycans. The discovery of 2...

  5. Functional characterization of two scFv-Fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody.

    Science.gov (United States)

    Trott, Maria; Weiβ, Svenja; Antoni, Sascha; Koch, Joachim; von Briesen, Hagen; Hust, Michael; Dietrich, Ursula

    2014-01-01

    HIV neutralizing antibodies (nAbs) represent an important tool in view of prophylactic and therapeutic applications for HIV-1 infection. Patients chronically infected by HIV-1 represent a valuable source for nAbs. HIV controllers, including long-term non-progressors (LTNP) and elite controllers (EC), represent an interesting subgroup in this regard, as here nAbs can develop over time in a rather healthy immune system and in the absence of any therapeutic selection pressure. In this study, we characterized two particular antibodies that were selected as scFv antibody fragments from a phage immune library generated from an LTNP with HIV neutralizing antibodies in his plasma. The phage library was screened on recombinant soluble gp140 envelope (Env) proteins. Sequencing the selected peptide inserts revealed two major classes of antibody sequences. Binding analysis of the corresponding scFv-Fc derivatives to various trimeric and monomeric Env constructs as well as to peptide arrays showed that one class, represented by monoclonal antibody (mAb) A2, specifically recognizes an epitope localized in the pocket binding domain of the C heptad repeat (CHR) in the ectodomain of gp41, but only in the trimeric context. Thus, this antibody represents an interesting tool for trimer identification. MAb A7, representing the second class, binds to structural elements of the third variable loop V3 and neutralizes tier 1 and tier 2 HIV-1 isolates of different subtypes with matching critical amino acids in the linear epitope sequence. In conclusion, HIV controllers are a valuable source for the selection of functionally interesting antibodies that can be selected on soluble gp140 proteins with properties from the native envelope spike.

  6. Functional characterization of two scFv-Fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody.

    Directory of Open Access Journals (Sweden)

    Maria Trott

    Full Text Available HIV neutralizing antibodies (nAbs represent an important tool in view of prophylactic and therapeutic applications for HIV-1 infection. Patients chronically infected by HIV-1 represent a valuable source for nAbs. HIV controllers, including long-term non-progressors (LTNP and elite controllers (EC, represent an interesting subgroup in this regard, as here nAbs can develop over time in a rather healthy immune system and in the absence of any therapeutic selection pressure. In this study, we characterized two particular antibodies that were selected as scFv antibody fragments from a phage immune library generated from an LTNP with HIV neutralizing antibodies in his plasma. The phage library was screened on recombinant soluble gp140 envelope (Env proteins. Sequencing the selected peptide inserts revealed two major classes of antibody sequences. Binding analysis of the corresponding scFv-Fc derivatives to various trimeric and monomeric Env constructs as well as to peptide arrays showed that one class, represented by monoclonal antibody (mAb A2, specifically recognizes an epitope localized in the pocket binding domain of the C heptad repeat (CHR in the ectodomain of gp41, but only in the trimeric context. Thus, this antibody represents an interesting tool for trimer identification. MAb A7, representing the second class, binds to structural elements of the third variable loop V3 and neutralizes tier 1 and tier 2 HIV-1 isolates of different subtypes with matching critical amino acids in the linear epitope sequence. In conclusion, HIV controllers are a valuable source for the selection of functionally interesting antibodies that can be selected on soluble gp140 proteins with properties from the native envelope spike.

  7. Antibodies targeting dengue virus envelope domain III are not required for serotype-specific protection or prevention of enhancement in vivo

    OpenAIRE

    Williams, Katherine L.; Wahala, Wahala M.P.B.; Orozco, Susana; de Silva, Aravinda M.; Harris, Eva

    2012-01-01

    The envelope (E) protein of dengue virus (DENV) is composed of three domains (EDI, EDII, EDIII) and is the main target of neutralizing antibodies. Many monoclonal antibodies that bind EDIII strongly neutralize DENV. However in vitro studies indicate that anti-EDIII antibodies contribute little to the neutralizing potency of human DENV-immune serum. In this study, we assess the role of anti-EDIII antibodies in mouse and human DENV-immune serum in neutralizing or enhancing DENV infection in mic...

  8. A neutralizing recombinant single chain antibody, scFv, against BaP1, A P-I hemorrhagic metalloproteinase from Bothrops asper snake venom.

    Science.gov (United States)

    Castro, J M A; Oliveira, T S; Silveira, C R F; Caporrino, M C; Rodriguez, D; Moura-da-Silva, A M; Ramos, O H P; Rucavado, A; Gutiérrez, J M; Magalhães, G S; Faquim-Mauro, E L; Fernandes, I

    2014-09-01

    BaP1 is a P-I class snake venom metalloproteinase (SVMP) relevant in the local tissue damage associated with envenomings by Bothrops asper, a medically important snake species in Central America and parts of South and North America. The main treatment for these accidents is the passive immunotherapy using antibodies raised in horses. In order to obtain more specific and batch-to-batch consistent antivenons, recombinant antibodies are considered a good option compared to animal immunization. We constructed a recombinant single chain variable fragment (scFv) from a monoclonal antibody against BaP1 (MABaP1) formerly secreted by a hybridoma clone. This recombinant antibody was cloned into pMST3 vector in fusion with SUMO protein and contains VH and VL domains linked by a flexible (G4S)3 polypeptide (scFvBaP1). The aim of this work was to produce scFvBaP1 and to evaluate its potential concerning the neutralization of biologically important activities of BaP1. The cytoplasmic expression of this construct was successfully achieved in C43 (DE3) bacteria. Our results showed that scFvBaP1-SUMO fusion protein presented an electrophoretic band of around 43 kDa from which SUMO alone corresponded to 13.6 kDa, and only the scFv was able to recognize BaP1 as well as the whole venom by ELISA. In contrast, neither an irrelevant scFv anti-LDL nor its MoAb partner recognized it. BaP1-induced fibrinolysis was significantly neutralized by scFvBaP1, but not by SUMO, in a concentration-dependent manner. In addition, scFvBaP1, as well as MaBaP1, completely neutralized in vivo hemorrhage, muscle necrosis, and inflammation induced by the toxin. Docking analyses revealed possible modes of interaction of the recombinant antibody with BaP1. Our data showed that scFv recognized BaP1 and whole B. asper venom, and neutralized biological effects of this SVMP. This scFv antibody can be used for understanding the molecular mechanisms of neutralization of SVMPs, and for exploring the potential of

  9. Neutralizing antibodies in patients with chronic hepatitis C, genotype 1, against a panel of genotype 1 culture viruses: lack of correlation to treatment outcome.

    Directory of Open Access Journals (Sweden)

    Jannie Pedersen

    Full Text Available The correlation of neutralizing antibodies to treatment outcome in patients with chronic hepatitis C virus (HCV infection has not been established. The aim of this study was to determine whether neutralizing antibodies could be used as an outcome predictor in patients with chronic HCV, genotype 1, infection treated with pegylated interferon-α and ribavirin. Thirty-nine patients with chronic hepatitis C, genotype 1a or 1b, with either sustained virologic response (n = 23 or non-sustained virologic response (n = 16 were enrolled. Samples taken prior to treatment were tested for their ability to neutralize 6 different HCV genotype 1 cell culture recombinants (1a: H77/JFH1, TN/JFH1, DH6/JFH1; 1b: J4/JFH1, DH1/JFH1, DH5/JFH1. The results were expressed as the highest dilution yielding 50% neutralization (NAb50-titer. We observed no genotype or subtype specific differences in NAb50-titers between patients with chronic HCV infection with and without sustained virologic response when tested against any of the included culture viruses. However, NAb50-titers varied significantly with a mean reciprocal NAb50-titer of 800 (range: 100-6400 against DH6/JFH1 compared to a mean NAb50-titer of 50 (range: <50-400 against all other included isolates. Subsequent studies demonstrated that the efficient neutralization of DH6/JFH1 could be linked to engineered adaptive mutations in the envelope-2 protein. In analysis of envelope 1 and 2 sequences of HCV, recovered from a subset of patients, we observed no apparent link between relatedness of patient sequences with culture viruses used and the corresponding neutralization results. In conclusion, pre-treatment levels of neutralizing antibodies against HCV genotype 1 isolates could not predict treatment outcome in patients with chronic HCV infection. High neutralization susceptibility of DH6/JFH1 could be correlated with adaptive envelope mutations previously highlighted as important for neutralization. Our

  10. Dengue E Protein Domain III-Based DNA Immunisation Induces Strong Antibody Responses to All Four Viral Serotypes.

    Directory of Open Access Journals (Sweden)

    Monica Poggianella

    Full Text Available Dengue virus (DENV infection is a major emerging disease widely distributed throughout the tropical and subtropical regions of the world affecting several millions of people. Despite constants efforts, no specific treatment or effective vaccine is yet available. Here we show a novel design of a DNA immunisation strategy that resulted in the induction of strong antibody responses with high neutralisation titres in mice against all four viral serotypes. The immunogenic molecule is an engineered version of the domain III (DIII of the virus E protein fused to the dimerising CH3 domain of the IgG immunoglobulin H chain. The DIII sequences were also codon-optimised for expression in mammalian cells. While DIII alone is very poorly secreted, the codon-optimised fusion protein is rightly expressed, folded and secreted at high levels, thus inducing strong antibody responses. Mice were immunised using gene-gun technology, an efficient way of intradermal delivery of the plasmid DNA, and the vaccine was able to induce neutralising titres against all serotypes. Additionally, all sera showed reactivity to a recombinant DIII version and the recombinant E protein produced and secreted from mammalian cells in a mono-biotinylated form when tested in a conformational ELISA. Sera were also highly reactive to infective viral particles in a virus-capture ELISA and specific for each serotype as revealed by the low cross-reactive and cross-neutralising activities. The serotype specific sera did not induce antibody dependent enhancement of infection (ADE in non-homologous virus serotypes. A tetravalent immunisation protocol in mice showed induction of neutralising antibodies against all four dengue serotypes as well.

  11. Relationship between virus-neutralizing antibody levels and the number of rabies vaccinations: a prospective study of dogs in Japan.

    Science.gov (United States)

    Watanabe, Ippei; Yamada, Kentaro; Aso, Akira; Suda, Okio; Matsumoto, Takashi; Yahiro, Takaaki; Ahmed, Kamruddin; Nishizono, Akira

    2013-01-01

    A mass rabies vaccination of dogs has been conducted annually in Japan over the last 60 years. To assess both current levels of rabies virus-neutralizing antibody (VNA) in dogs and the rationale for current vaccination procedures, we used a rapid fluorescent focus inhibition test to determine VNA levels in 756 dogs that had visited animal hospitals in Japan. We found that 51.1% of the dogs that had received 1 rabies vaccination had protective VNA levels (≥0.5 IU/ml) with a geometric mean of 0.61 IU/ml. In contrast, 97.8% of the dogs that had been vaccinated at least twice had protective VNA levels with a geometric mean of 7.86 IU/ml. Furthermore, 97.9-100% of the dogs vaccinated at least twice retained protective VNA levels into the second year after the last vaccination. Although VNA levels in the dogs vaccinated at least twice tended to decline 2 years after the last vaccination, 78.9% retained protective VNA levels. Thus, the current rabies vaccination schedule provides adequate protection, but the registration system and vaccination schedule needs to be improved to ensure that increased numbers of dogs are vaccinated against rabies.

  12. Quantitative analyses reveal distinct sensitivities of the capture of HIV-1 primary viruses and pseudoviruses to broadly neutralizing antibodies.

    Science.gov (United States)

    Kim, Jiae; Jobe, Ousman; Peachman, Kristina K; Michael, Nelson L; Robb, Merlin L; Rao, Mangala; Rao, Venigalla B

    2017-08-01

    Development of vaccines capable of eliciting broadly neutralizing antibodies (bNAbs) is a key goal to controlling the global AIDS epidemic. To be effective, bNAbs must block the capture of HIV-1 to prevent viral acquisition and establishment of reservoirs. However, the role of bNAbs, particularly during initial exposure of primary viruses to host cells, has not been fully examined. Using a sensitive, quantitative, and high-throughput qRT-PCR assay, we found that primary viruses were captured by host cells and converted into a trypsin-resistant form in less than five minutes. We discovered, unexpectedly, that bNAbs did not block primary virus capture, although they inhibited the capture of pseudoviruses/IMCs and production of progeny viruses at 48h. Further, viruses escaped bNAb inhibition unless the bNAbs were present in the initial minutes of exposure of virus to host cells. These findings will have important implications for HIV-1 vaccine design and determination of vaccine efficacy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Multimeric scaffolds displaying the HIV-1 envelope MPER induce MPER-specific antibodies and cross-neutralizing antibodies when co-immunized with gp160 DNA.

    Science.gov (United States)

    Krebs, Shelly J; McBurney, Sean P; Kovarik, Dina N; Waddell, Chelsea D; Jaworski, J Pablo; Sutton, William F; Gomes, Michelle M; Trovato, Maria; Waagmeester, Garret; Barnett, Susan J; DeBerardinis, Piergiuseppe; Haigwood, Nancy L

    2014-01-01

    Developing a vaccine that overcomes the diversity of HIV-1 is likely to require a strategy that directs antibody (Ab) responses toward conserved regions of the viral Envelope (Env). However, the generation of neutralizing Abs (NAbs) targeting these regions through vaccination has proven to be difficult. One conserved region of particular interest is the membrane proximal external region (MPER) of Env located within the gp41 ectodomain. In order to direct the immune response to this region, the MPER and gp41 ectodomain were expressed separately as N-terminal fusions to the E2 protein of Geobacillus stearothermophilus. The E2 protein acts as a scaffold by self-assembling into 60-mer particles, displaying up to 60 copies of the fused target on the surface. Rabbits were immunized with E2 particles displaying MPER and/or the gp41 ectodomain in conjunction with DNA encoding full-length gp160. Only vaccines including E2 particles displaying MPER elicited MPER-specific Ab responses. NAbs were elicited after two immunizations that largely targeted the V3 loop. To overcome V3 immunodominance in the DNA component, E2 particles displaying MPER were used in conjunction with gp160 DNA lacking hypervariable regions V2, V3, or combined V1V2V3. All rabbits had HIV binding Ab responses and NAbs following the second vaccination. Using HIV-2/HIV-1 MPER chimeric viruses as targets, NAbs were detected in 12/16 rabbits after three immunizations. Low levels of NAbs specific for Tier 1 and 2 viruses were observed in all groups. This study provides evidence that co-immunizing E2 particles displaying MPER and gp160 DNA can focus Ab responses toward conserved regions of Env.

  14. Multimeric scaffolds displaying the HIV-1 envelope MPER induce MPER-specific antibodies and cross-neutralizing antibodies when co-immunized with gp160 DNA.

    Directory of Open Access Journals (Sweden)

    Shelly J Krebs

    Full Text Available Developing a vaccine that overcomes the diversity of HIV-1 is likely to require a strategy that directs antibody (Ab responses toward conserved regions of the viral Envelope (Env. However, the generation of neutralizing Abs (NAbs targeting these regions through vaccination has proven to be difficult. One conserved region of particular interest is the membrane proximal external region (MPER of Env located within the gp41 ectodomain. In order to direct the immune response to this region, the MPER and gp41 ectodomain were expressed separately as N-terminal fusions to the E2 protein of Geobacillus stearothermophilus. The E2 protein acts as a scaffold by self-assembling into 60-mer particles, displaying up to 60 copies of the fused target on the surface. Rabbits were immunized with E2 particles displaying MPER and/or the gp41 ectodomain in conjunction with DNA encoding full-length gp160. Only vaccines including E2 particles displaying MPER elicited MPER-specific Ab responses. NAbs were elicited after two immunizations that largely targeted the V3 loop. To overcome V3 immunodominance in the DNA component, E2 particles displaying MPER were used in conjunction with gp160 DNA lacking hypervariable regions V2, V3, or combined V1V2V3. All rabbits had HIV binding Ab responses and NAbs following the second vaccination. Using HIV-2/HIV-1 MPER chimeric viruses as targets, NAbs were detected in 12/16 rabbits after three immunizations. Low levels of NAbs specific for Tier 1 and 2 viruses were observed in all groups. This study provides evidence that co-immunizing E2 particles displaying MPER and gp160 DNA can focus Ab responses toward conserved regions of Env.

  15. Generation of neutralizing monoclonal antibodies against a conformational epitope of human adenovirus type 7 (HAdv-7 incorporated in capsid encoded in a HAdv-3-based vector.

    Directory of Open Access Journals (Sweden)

    Minglong Liu

    Full Text Available The generation of monoclonal antibodies (MAbs by epitope-based immunization is difficult because the immunogenicity of simple peptides is poor and T cells must be potently stimulated and immunological memory elicited. A strategy in which antigen is incorporated into the adenoviral capsid protein has been used previously to develop antibody responses against several vaccine targets and may offer a solution to this problem. In this study, we used a similar strategy to develop HAdv-7-neutralizing MAbs using rAdMHE3 virions into which hexon hypervariable region 5 (HVR5 of adenovirus type 7 (HAdv-7 was incorporated. The epitope mutant rAdMHE3 was generated by replacing HVR5 of Ad3EGFP, a recombinant HAdv-3-based vector expressing enhanced green fluorescence protein, with HVR5 of HAdv-7. We immunized BALB/c mice with rAdMHE3 virions and produced 22 different MAbs against them, four of which showed neutralizing activity against HAdv-7 in vitro. Using an indirect enzyme-linked immunosorbent assay (ELISA analysis and an antibody-binding-competition ELISA with Ad3EGFP, HAdv-7, and a series of chimeric adenoviral particles containing epitope mutants, we demonstrated that the four MAbs recognize the neutralization site within HVR5 of the HAdv-7 virion. Using an immunoblotting analysis and ELISA with HAdv-7, recombinant peptides, and a synthetic peptide, we also showed that the neutralizing epitope within HVR5 of the HAdv-7 virion is a conformational epitope. These findings suggest that it is feasible to use a strategy in which antigen is incorporated into the adenoviral capsid protein to generate neutralizing MAbs. This strategy may also be useful for developing therapeutic neutralizing MAbs and designing recombinant vector vaccines against HAdv-7, and in structural analysis of adenoviruses.