WorldWideScience

Sample records for strong network flux

  1. Weak point disorder in strongly fluctuating flux-line liquids

    Indian Academy of Sciences (India)

    We consider the effect of weak uncorrelated quenched disorder (point defects) on a strongly fluctuating flux-line liquid. We use a hydrodynamic model which is based on mapping the flux-line system onto a quantum liquid of relativistic charged bosons in 2 + 1 dimensions [P Benetatos and M C Marchetti, Phys. Rev. B64 ...

  2. Weak point disorder in strongly fluctuating flux-line liquids

    Indian Academy of Sciences (India)

    Abstract. We consider the effect of weak uncorrelated quenched disorder (point defects) on a strongly fluctuating flux-line liquid. We use a hydrodynamic model which is based on mapping the flux-line system onto a quantum liquid of relativistic charged bosons in 2 + 1 dimensions [P Benetatos and M C Marchetti, Phys. Rev.

  3. Stochastic flux analysis of chemical reaction networks.

    Science.gov (United States)

    Kahramanoğulları, Ozan; Lynch, James F

    2013-12-07

    Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches. The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques, including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in some cases, lack a quantitative treatment of network fluxes. We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms, our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and consumption during the simulation. We use these structures to quantify the causal interdependence and relative importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time series. We demonstrate our approach on an extended example based on a published ODE model of the same network, that is, Rho GTP-binding proteins, and on other models from biology and ecology. We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions. Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior of this network.

  4. KoFlux: Korean Regional Flux Network in AsiaFlux

    Science.gov (United States)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and

  5. Using Strong Solar Coronal Emission Lines as Coronal Flux Proxies

    Science.gov (United States)

    Falconer, David A.; Jordan, Studart D.; Davila, Joseph M.; Thomas, Roger J.; Andretta, Vincenzo; Brosius, Jeffrey W.; Hara, Hirosha

    1997-01-01

    A comparison of Skylab results with observations of the strong EUV lines of Fe XVI at 335 A and 361 A from the Goddard Solar EUV Rocket Telescope and Spectrograph (SERTS) flight of 1989 suggests that these lines, and perhaps others observed with SERTS, might offer good proxies for estimating the total coronal flux over important wavelength ranges. In this paper, we compare SERTS observations from a later, 1993 flight with simultaneous cospatial Yohkoh soft X-ray observations to test this suggestion over the energy range of the Soft X-ray Telescope (SXT) on Yohkoh. Both polynomial and power-law fits are obtained, and errors are estimated, for the SERTS lines of Fe XVI 335 A and 361 A, Fe XV 284 A and 417 A, and Mg IX 368 A. It is found that the power-law fits best cover the full range of solar conditions from quiet Sun through active region, though not surprisingly the 'cooler' Mg IX 368 A line proves to be a poor proxy. The quadratic polynomial fits yield fair agreement over a large range for all but the Mg IX line, but the linear fits fail conspicuously when extrapolated into the quiet Sun regime. The implications of this work for the He 11 304 A line formation problem are briefly considered. The paper concludes with a discussion of the value of these iron lines observed with SERTS for estimating stellar coronal fluxes, as observed for example with the EUVE satellite.

  6. Towards Integrated Marmara Strong Motion Network

    Science.gov (United States)

    Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A.

    2009-04-01

    Istanbul has a 65% chance of having a magnitude 7 or above earthquake within the next 30 years. As part of the preparations for the future earthquake, strong motion networks have been installed in and around Istanbul. The Marmara Strong Motion Network, operated by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, encompasses permanent systems outlined below. It is envisaged that the networks will be run by a single entity responsible for technical management and maintanence, as well as for data management, archiving and dissemination through dedicated web-based interfaces. • Istanbul Earthquake Rapid Response and Early Warning System - IERREWS (one hundred 18-bit accelerometers for rapid response; ten 24-bit accelerometers for early warning) • IGDAŞ Gas Shutoff Network (100 accelerometers to be installed in 2010 and integrated with IERREWS) • Structural Monitoring Arrays - Fatih Sultan Mehmet Suspension Bridge (1200m-long suspension bridge across the Bosphorus, five 3-component accelerometers + GPS sensors) - Hagia Sophia Array (1500-year-old historical edifice, 9 accelerometers) - Süleymaniye Mosque Array (450-year-old historical edifice,9 accelerometers) - Fatih Mosque Array (237-year-old historical edifice, 9 accelerometers) - Kanyon Building Array (high-rise office building, 5 accelerometers) - Isbank Tower Array (high-rise office building, 5 accelerometers) - ENRON Array (power generation facility, 4 acelerometers) - Mihrimah Sultan Mosque Array (450-year-old historical edifice,9 accelerometers + tiltmeters, to be installed in 2009) - Sultanahmet Mosque Array, (390-year-old historical edifice, 9 accelerometers + tiltmeters, to be installed in 2009) • Special Arrays - Atakoy Vertical Array (four 3-component accelerometers at 25, 50, 75, and 150 m depths) - Marmara Tube Tunnel (1400 m long submerged tunnel, 128 ch. accelerometric data, 24 ch. strain data, to be installed in 2010) - Air-Force Academy

  7. Strong flux of low-energy neutrons produced by thunderstorms.

    Science.gov (United States)

    Gurevich, A V; Antonova, V P; Chubenko, A P; Karashtin, A N; Mitko, G G; Ptitsyn, M O; Ryabov, V A; Shepetov, A L; Shlyugaev, Yu V; Vildanova, L I; Zybin, K P

    2012-03-23

    We report here for the first time about the registration of an extraordinary high flux of low-energy neutrons generated during thunderstorms. The measured neutron count rate enhancements are directly connected with thunderstorm discharges. The low-energy neutron flux value obtained in our work is a challenge for the photonuclear channel of neutron generation in thunderstorm: the estimated value of the needed high-energy γ-ray flux is about 3 orders of magnitude higher than that one observed.

  8. Optimal flux patterns in cellular metabolic networks

    Energy Technology Data Exchange (ETDEWEB)

    Almaas, E

    2007-01-20

    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  9. Bodrum Strong Motion Network, Mugla, Turkey

    Science.gov (United States)

    Alcik, H. A.; Tanircan, G.; Korkmaz, A.

    2015-12-01

    The Gulf of Gökova is located in southwestern Turkey near the Aegean Sea and surrounded by Datça Peninsula to the south, the island of Kos to the west and Bodrum Peninsula to the north. The Bodrum peninsula with a population of one million in summer season is one of the most populated touristic centers of Turkey. This region is also surrounded by numerous active seismic entities such as Ula-Ören Fault Zone, Gökova Graben etc.. and demonstrates high seismic hazard. In the past, many destructive earthquakes have occurred in southwestern Turkey. One of the destructive historical earthquakes is 1493 Kos event (Mw=6.9) caused heavy damage in Bodrum. In the instrumental period seismic activity in the Gökova region includes the Ms>6.0 earthquakes of 23 April 1933 (Ms=6.4), 23 May 1941 (Ms=6.0), 13 December 1941 (Ms=6.5) events. Intense earthquake activity (Mw5+) occurred in Gulf of Gökova in August 2004 and January 2005. Considering the high seismicity and population of this region, a strong ground motion monitoring system stationed in dense settlements in the Bodrum Peninsula: Bodrum, Turgutreis, Yalıkavak, Çiftlik and Ortakent was deployed on June 2015. The network consists of 5 strong motion recorders, has been set up with the aim of monitoring of regional earthquakes, collecting accurate and reliable data for engineering and scientific research purposes, in particular to provide input for future earthquake rapid reporting and early warning implementation projects on urban environments in the Bodrum peninsula and the surrounding areas. In this poster presentation, we briefly introduce the Bodrum Network and discuss our future plans for further developments.

  10. Sound power flux measurements in strongly exited ducts with flow

    Science.gov (United States)

    Holland, Keith R.; Davies, Peter O. A. L.; van der Walt, Danie C.

    2002-12-01

    This contribution describes new robust procedures for the measurement of sound power flux at appropriate axial positions along a duct with flow, using pairs of flush wall mounted microphones, or pressure transducers. The technology includes the application of selective averaging, order tracking, and optimized sampling rate methods to identify the small fraction of the total fluctuating wave energy that is being propagated along the flow path in a reverberent, or highly reactive duct system. Such measurements can also be used to quantify the local acoustic characteristics that govern the generation, transfer, and propagation of wave energy in the system. Illustrative examples include the determination of the acoustic characteristics of individual silencing elements installed in IC engine intakes and exhausts both on the flow bench and during controlled acceleration or run down on a test bed, where the wave component spectral levels approached 170 dB.

  11. Strong Coupling of a Quantum Oscillator to a Flux Qubit at Its Symmetry Point

    NARCIS (Netherlands)

    Fedorov, A.; Feofanov, A.K.; Macha, P.; Forn-Díaz, P.; Harmans, C.J.P.M.; Mooij, J.E.

    2010-01-01

    A flux qubit biased at its symmetry point shows a minimum in the energy splitting (the gap), providing protection against flux noise. We have fabricated a qubit of which the gap can be tuned fast and have coupled this qubit strongly to an LC oscillator. We show full spectroscopy of the

  12. AmeriFlux Measurement Network: Science Team Research

    Energy Technology Data Exchange (ETDEWEB)

    Law, B E

    2012-12-12

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  13. AmeriFlux and EuroFlux: History of a Strong Collaboration that Provided Unique Resources to the Scientific Community

    Science.gov (United States)

    Papale, D.; Agarwal, D.; Biraud, S.; Canfora, E.; Pastorello, G.; Torn, M. S.; Trotta, C.

    2017-12-01

    In 1995 scientific communities in Europe and North America using the eddy covariance technique to measure carbon, water, and energy exchanges between the terrestrial biosphere and the atmosphere started to organize their respective regional networks. Although there was a general interest and agreement to collaborate and exchange information and data between the two communities, these mainly occurred at the single site or individual levels through direct communications rather than systematically across networks. Between 2000 and 2008 common strategies to facilitate data sharing, promote data use across the two networks, and outreach to the scientific community, started to be more deeply discussed. Early on, harmonization across networks was deemed necessary to the success of both networks. This actually required major effort including lengthy discussions, compromises, and interactions between the networks for concrete implementation of common platforms and tools. Topics such as measurement units, variable definitions and labeling, data processing methods, data sharing policy, data distribution systems and formats, were key elements that had to be addressed and agreed upon carefully to build integrated and inter-operable research infrastructures (RIs). Today, AmeriFlux and EuroFlux are the basis, not only of the continental research infrastructures (ICOS in Europe), but they are also the driving force behind FLUXNET, where other regional networks are joining this coalition and contributing to the definition of a common system to make complex measurements accessible and comparable across continents. The latest dataset produced from this collaboration includes data contributed by over 200 sites around the world, with records spanning over two decades of data, and has been downloaded by over 900 users in the first 1.5 years of its publication. The core strategy of this collaboration, critical aspects and implemented solutions, as well as the current state of this effort

  14. Percolation properties of complex networks with weak and strong clustering

    Science.gov (United States)

    Serrano, M. Angeles

    2007-03-01

    A diversity of systems in the real world can be analyzed as complex networks. This makes any theoretical development in the field potentially applicable to many different areas. As a germane example, percolation has helped us to understand, for instance, the high resilience of scale-free networks in front of the random removal of a fraction of their constituents, with important implications for communication or biological systems among others. In addition to its high theoretical interest, it serves as a conceptual approach to treat more factual problems on networks, such as the dynamics of epidemic spreading. On the other hand, when large systems of interactions are mapped into comprehensible graphs, just vertices and edges are usually recognized as the primary building blocks. However, transitive relations, represented by triangles and referred to as clustering, should also be taken into account as a basic structure whose presence and self-organization can drastically impact network structure and properties. In this framework, the introduction of clustering in the percolation analysis of complex networks represents a theoretical challenge. Previous approaches were based on the idea of branching process, which works well when the network is locally treelike and thus the clustering coefficient is very small. Real networks, however, are shown to have a significant level of clustering. They can be classified in networks with weak transitivity, in which triangles are disjoint, and networks with strong transitivity, where edges are forced to share many triangles. The class a network belongs to changes its percolation properties. For networks with weak clustering, we find analytically the critical point for the onset of the giant component and its size. By means of numerical simulations, we also prove that, when comparing with the unclustered counterpart, weak clustering hinders the onset of the giant connected component whereas it is favored by strong clustering. This

  15. Determination of the neutron flux in the reactor zones with the strong neutron absorption and leakage

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milosevic, M.

    2004-01-01

    The procedures for the numerical and experimental determination of the neutron flux in the zones with the strong neutron absorption and leakage are described in this paper. Numerical procedure is based on the SCALE-4.4a code system application with the use of Dancoff factor determined by the VEGA2DAN code. Experimental methodology consists of the irradiated foils activity measurement, and foil averaged neutron absorption cross-section determination via mentioned SCALE- 4.4a calculation procedure. The proposed procedures have been applied for the determination of the neutron flux in the internal neutron converter used with the RB reactor core configuration number 114. (author) [sr

  16. French network and acquired experience on record strong ground motion

    International Nuclear Information System (INIS)

    Ferrieux, H.; Mohammadioun, G.

    1988-03-01

    The network intended to record strong ground motion in continental France is composed for the most part of instrument packages incorporated into nuclear installations, which are supplemented by a certain number of accelerometers placed in the most highly seismic areas. In a country where the level of seismicity is relatively modest, such a network is not conductive to the acquisition of new data, which, instead, is obtained through spot studies of limited duration using more sensitive instruments or through the recording of strong ground motion in neighbouring countries [fr

  17. Standardized Automated CO2/H2O Flux Systems for Individual Research Groups and Flux Networks

    Science.gov (United States)

    Burba, George; Begashaw, Israel; Fratini, Gerardo; Griessbaum, Frank; Kathilankal, James; Xu, Liukang; Franz, Daniela; Joseph, Everette; Larmanou, Eric; Miller, Scott; Papale, Dario; Sabbatini, Simone; Sachs, Torsten; Sakai, Ricardo; McDermitt, Dayle

    2017-04-01

    In recent years, spatial and temporal flux data coverage improved significantly, and on multiple scales, from a single station to continental networks, due to standardization, automation, and management of data collection, and better handling of the extensive amounts of generated data. With more stations and networks, larger data flows from each station, and smaller operating budgets, modern tools are required to effectively and efficiently handle the entire process. Such tools are needed to maximize time dedicated to authoring publications and answering research questions, and to minimize time and expenses spent on data acquisition, processing, and quality control. Thus, these tools should produce standardized verifiable datasets and provide a way to cross-share the standardized data with external collaborators to leverage available funding, promote data analyses and publications. LI-COR gas analyzers are widely used in past and present flux networks such as AmeriFlux, ICOS, AsiaFlux, OzFlux, NEON, CarboEurope, and FluxNet-Canada, etc. These analyzers have gone through several major improvements over the past 30 years. However, in 2016, a three-prong development was completed to create an automated flux system which can accept multiple sonic anemometer and datalogger models, compute final and complete fluxes on-site, merge final fluxes with supporting weather soil and radiation data, monitor station outputs and send automated alerts to researchers, and allow secure sharing and cross-sharing of the station and data access. Two types of these research systems were developed: open-path (LI-7500RS) and enclosed-path (LI-7200RS). Key developments included: • Improvement of gas analyzer performance • Standardization and automation of final flux calculations onsite, and in real-time • Seamless integration with latest site management and data sharing tools In terms of the gas analyzer performance, the RS analyzers are based on established LI-7500/A and LI-7200

  18. Integration of strong motion networks and accelerometric data in Europe

    Science.gov (United States)

    Luzi, L.; Clinton, J. F.; Akkar, S.; Sleeman, R.; Van Eck, T.

    2014-12-01

    Efforts for an organized collection of strong motion data in Europe started during the Fourth Framework Program granted by the European Union, with the first release of the European Strong Motion database. Subsequently other attempts were made, but the initiatives were carried out within a project by a single or few institutions, often isolated from data providers. During the Seventh Framework Program, in the context of the project NERA, parallel to the establishment of infrastructures, major efforts were devoted on the improvement of networking among strong-motion data providers in the broader European countries. Two major infrastructures for storing and disseminating accelerometric data and metadata were built: a. The Rapid-Raw Strong Motion (RRSM) database that automatically delivers strong motion products in near-real time. The system collects and uses all relevant, unrestricted waveform data from the European Integrated waveform Data Archive (EIDA) within minutes after an earthquake (M>=3.5) in the European- Mediterranean region. The RRSM web interface is available at http://orfeusdev.knmi.nl:8080/opencms/rrsm b. A prototype of strong-motion database (Engineering Strong Motion database, ESM) that contains an initial core formed by the accelerograms recorded by Italian and Turkish strong-motion data providers. ESM is structured to contain not only the data available in EIDA but also off-line data; earthquake and strong-motion metadata contain more detailed information than the corresponding metadata in RRSM. A Working Group (WG5 - acceleration and strong motion data), operating under ORFEUS, has been created to build the basis for the sustainable integrated pan-European accelerometric data distribution. The responsibilities and duties of the WG5 are envisaged as follows: 1. Setting rules for data dissemination; 2. Establishing MoU's with data providers; 3. Collaborating with the European project EPOS for the preparation of projects; 4. Contacting similar

  19. Ising models of strongly coupled biological networks with multivariate interactions

    Science.gov (United States)

    Merchan, Lina; Nemenman, Ilya

    2013-03-01

    Biological networks consist of a large number of variables that can be coupled by complex multivariate interactions. However, several neuroscience and cell biology experiments have reported that observed statistics of network states can be approximated surprisingly well by maximum entropy models that constrain correlations only within pairs of variables. We would like to verify if this reduction in complexity results from intricacies of biological organization, or if it is a more general attribute of these networks. We generate random networks with p-spin (p > 2) interactions, with N spins and M interaction terms. The probability distribution of the network states is then calculated and approximated with a maximum entropy model based on constraining pairwise spin correlations. Depending on the M/N ratio and the strength of the interaction terms, we observe a transition where the pairwise approximation is very good to a region where it fails. This resembles the sat-unsat transition in constraint satisfaction problems. We argue that the pairwise model works when the number of highly probable states is small. We argue that many biological systems must operate in a strongly constrained regime, and hence we expect the pairwise approximation to be accurate for a wide class of problems. This research has been partially supported by the James S McDonnell Foundation grant No.220020321.

  20. Deep convolutional neural networks as strong gravitational lens detectors

    Science.gov (United States)

    Schaefer, C.; Geiger, M.; Kuntzer, T.; Kneib, J.-P.

    2018-03-01

    Context. Future large-scale surveys with high-resolution imaging will provide us with approximately 105 new strong galaxy-scale lenses. These strong-lensing systems will be contained in large data amounts, however, which are beyond the capacity of human experts to visually classify in an unbiased way. Aim. We present a new strong gravitational lens finder based on convolutional neural networks (CNNs). The method was applied to the strong-lensing challenge organized by the Bologna Lens Factory. It achieved first and third place, respectively, on the space-based data set and the ground-based data set. The goal was to find a fully automated lens finder for ground-based and space-based surveys that minimizes human inspection. Methods: We compared the results of our CNN architecture and three new variations ("invariant" "views" and "residual") on the simulated data of the challenge. Each method was trained separately five times on 17 000 simulated images, cross-validated using 3000 images, and then applied to a test set with 100 000 images. We used two different metrics for evaluation, the area under the receiver operating characteristic curve (AUC) score, and the recall with no false positive (Recall0FP). Results: For ground-based data, our best method achieved an AUC score of 0.977 and a Recall0FP of 0.50. For space-based data, our best method achieved an AUC score of 0.940 and a Recall0FP of 0.32. Adding dihedral invariance to the CNN architecture diminished the overall score on space-based data, but achieved a higher no-contamination recall. We found that using committees of five CNNs produced the best recall at zero contamination and consistently scored better AUC than a single CNN. Conclusions: We found that for every variation of our CNN lensfinder, we achieved AUC scores close to 1 within 6%. A deeper network did not outperform simpler CNN models either. This indicates that more complex networks are not needed to model the simulated lenses. To verify this, more

  1. Energy fluxes in a high Arctic tundra heath subjected to strong climate warming

    Science.gov (United States)

    Lund, M.; Hansen, B. U.; Pedersen, S. H.; Stiegler, C.; Tamstorf, M. P.

    2012-12-01

    During recent decades the observed warming in the Arctic has been almost twice as large as the global average. The implications of such strong warming on surface energy balance, regulating permafrost thaw, hydrology, soil stability and carbon mineralization, need to be assessed. In Zackenberg, northeast Greenland, measurements of energy balance components in various environments have been performed since late 90's, coordinated by Zackenberg Ecological Research Operations. During 1996-2009, mean annual temperature in the area has increased by ca. 0.15 °C yr-1; while maximum thaw depth has increased by 1.4-1.8 cm yr-1. Eddy covariance measurements of energy fluxes have been performed in a Cassiope heath plant community, a commonly occurring tundra ecosystem type in circumpolar middle and high Arctic areas, in Zackenberg allowing for detailed investigations of relationships between energy fluxes and meteorological and soil physical characteristics. As the available data set spans more than a decade, possible trends in energy flux components resulting from warming related changes such as earlier snow melt, increased active layer depth and higher temperatures can be investigated. This presentation will focus on the mid-summer period from which eddy covariance measurements are available. The summer-time energy partitioning at the Zackenberg tundra heath site will be characterized using ratios of sensible, latent and ground heat flux to net radiation and Bowen ratio, whereas the surface characteristics will be described using surface resistance, McNaughton and Jarvis Ω value and Priestley-Taylor α coefficient. Furthermore, we aim to estimate the full year, all energy balance components for the tundra heath site using Snow Model (Liston and Elder 2006) for the dark winter period during which no eddy covariance measurements are available. The snow cover duration in the area is a major regulator of the energy partitioning. Early results point towards high summer

  2. Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing

    Science.gov (United States)

    Perreault Levasseur, Laurence; Hezaveh, Yashar D.; Wechsler, Risa H.

    2017-11-01

    In Hezaveh et al. we showed that deep learning can be used for model parameter estimation and trained convolutional neural networks to determine the parameters of strong gravitational-lensing systems. Here we demonstrate a method for obtaining the uncertainties of these parameters. We review the framework of variational inference to obtain approximate posteriors of Bayesian neural networks and apply it to a network trained to estimate the parameters of the Singular Isothermal Ellipsoid plus external shear and total flux magnification. We show that the method can capture the uncertainties due to different levels of noise in the input data, as well as training and architecture-related errors made by the network. To evaluate the accuracy of the resulting uncertainties, we calculate the coverage probabilities of marginalized distributions for each lensing parameter. By tuning a single variational parameter, the dropout rate, we obtain coverage probabilities approximately equal to the confidence levels for which they were calculated, resulting in accurate and precise uncertainty estimates. Our results suggest that the application of approximate Bayesian neural networks to astrophysical modeling problems can be a fast alternative to Monte Carlo Markov Chains, allowing orders of magnitude improvement in speed.

  3. OzFlux data: network integration from collection to curation

    Science.gov (United States)

    Isaac, Peter; Cleverly, James; McHugh, Ian; van Gorsel, Eva; Ewenz, Cacilia; Beringer, Jason

    2017-06-01

    Measurement of the exchange of energy and mass between the surface and the atmospheric boundary-layer by the eddy covariance technique has undergone great change in the last 2 decades. Early studies of these exchanges were confined to brief field campaigns in carefully controlled conditions followed by months of data analysis. Current practice is to run tower-based eddy covariance systems continuously over several years due to the need for continuous monitoring as part of a global effort to develop local-, regional-, continental- and global-scale budgets of carbon, water and energy. Efficient methods of processing the increased quantities of data are needed to maximise the time available for analysis and interpretation. Standardised methods are needed to remove differences in data processing as possible contributors to observed spatial variability. Furthermore, public availability of these data sets assists with undertaking global research efforts. The OzFlux data path has been developed (i) to provide a standard set of quality control and post-processing tools across the network, thereby facilitating inter-site integration and spatial comparisons; (ii) to increase the time available to researchers for analysis and interpretation by reducing the time spent collecting and processing data; (iii) to propagate both data and metadata to the final product; and (iv) to facilitate the use of the OzFlux data by adopting a standard file format and making the data available from web-based portals. Discovery of the OzFlux data set is facilitated through incorporation in FLUXNET data syntheses and the publication of collection metadata via the RIF-CS format. This paper serves two purposes. The first is to describe the data sets, along with their quality control and post-processing, for the other papers of this Special Issue. The second is to provide an example of one solution to the data collection and curation challenges that are encountered by similar flux tower networks

  4. High-latitude electromagnetic and particle energy flux during an event with sustained strongly northward IMF

    Directory of Open Access Journals (Sweden)

    H. Korth

    2005-06-01

    Full Text Available We present a case study of a prolonged interval of strongly northward orientation of the interplanetary magnetic field on 16 July 2000, 16:00-19:00 UT to characterize the energy exchange between the magnetosphere and ionosphere for conditions associated with minimum solar wind-magnetosphere coupling. With reconnection occurring tailward of the cusp under northward IMF conditions, the reconnection dynamo should be separated from the viscous dynamo, presumably driven by the Kelvin-Helmholtz (KH instability. Thus, these conditions are also ideal for evaluating the contribution of a viscous interaction to the coupling process. We derive the two-dimensional distribution of the Poynting vector radial component in the northern sunlit polar ionosphere from magnetic field observations by the constellation of Iridium satellites together with drift meter and magnetometer observations from the Defense Meteorological Satellite Program (DMSP F13 and F15 satellites. The electromagnetic energy flux is then compared with the particle energy flux obtained from auroral images taken by the far-ultraviolet (FUV instrument on the Imager for Magnetopause to Aurora Global Exploration (IMAGE spacecraft. The electromagnetic energy input to the ionosphere of 51 GW calculated from the Iridium/DMSP observations is eight times larger than the 6 GW due to particle precipitation all poleward of 78° MLAT. This result indicates that the energy transport is significant, particularly as it is concentrated in a small region near the magnetic pole, even under conditions traditionally considered to be quiet and is dominated by the electromagnetic flux. We estimate the contributions of the high and mid-latitude dynamos to both the Birkeland currents and electric potentials finding that high-latitude reconnection accounts for 0.8 MA and 45kV while we attribute <0.2MA and ~5kV to an interaction at lower latitudes having the sense of a viscous interaction. Given that these

  5. The AmeriFlux Network of Long-Term CO{sub 2} Flux Measurement Stations: Methodology and Intercomparability

    Energy Technology Data Exchange (ETDEWEB)

    Hollinger, D. Y.; Evans, R. S.

    2003-05-20

    A portable flux measurement system has been used within the AmeriFlux network of CO{sub 2} flux measurement stations to enhance the comparability of data collected across the network. No systematic biases were observed in a comparison between portable system and site H, LE, or CO{sub 2} flux values although there were biases observed between the portable system and site measurement of air temperature and PPFD. Analysis suggests that if values from two stations differ by greater than 26% for H, 35% for LE, and 32% for CO{sub 2} flux they are likely to be significant. Methods for improving the intercomparability of the network are also discussed.

  6. Correlated Fluctuations in Strongly Coupled Binary Networks Beyond Equilibrium

    Directory of Open Access Journals (Sweden)

    David Dahmen

    2016-08-01

    Full Text Available Randomly coupled Ising spins constitute the classical model of collective phenomena in disordered systems, with applications covering glassy magnetism and frustration, combinatorial optimization, protein folding, stock market dynamics, and social dynamics. The phase diagram of these systems is obtained in the thermodynamic limit by averaging over the quenched randomness of the couplings. However, many applications require the statistics of activity for a single realization of the possibly asymmetric couplings in finite-sized networks. Examples include reconstruction of couplings from the observed dynamics, representation of probability distributions for sampling-based inference, and learning in the central nervous system based on the dynamic and correlation-dependent modification of synaptic connections. The systematic cumulant expansion for kinetic binary (Ising threshold units with strong, random, and asymmetric couplings presented here goes beyond mean-field theory and is applicable outside thermodynamic equilibrium; a system of approximate nonlinear equations predicts average activities and pairwise covariances in quantitative agreement with full simulations down to hundreds of units. The linearized theory yields an expansion of the correlation and response functions in collective eigenmodes, leads to an efficient algorithm solving the inverse problem, and shows that correlations are invariant under scaling of the interaction strengths.

  7. OzFlux data: network integration from collection to curation

    Directory of Open Access Journals (Sweden)

    P. Isaac

    2017-06-01

    Full Text Available Measurement of the exchange of energy and mass between the surface and the atmospheric boundary-layer by the eddy covariance technique has undergone great change in the last 2 decades. Early studies of these exchanges were confined to brief field campaigns in carefully controlled conditions followed by months of data analysis. Current practice is to run tower-based eddy covariance systems continuously over several years due to the need for continuous monitoring as part of a global effort to develop local-, regional-, continental- and global-scale budgets of carbon, water and energy. Efficient methods of processing the increased quantities of data are needed to maximise the time available for analysis and interpretation. Standardised methods are needed to remove differences in data processing as possible contributors to observed spatial variability. Furthermore, public availability of these data sets assists with undertaking global research efforts. The OzFlux data path has been developed (i to provide a standard set of quality control and post-processing tools across the network, thereby facilitating inter-site integration and spatial comparisons; (ii to increase the time available to researchers for analysis and interpretation by reducing the time spent collecting and processing data; (iii to propagate both data and metadata to the final product; and (iv to facilitate the use of the OzFlux data by adopting a standard file format and making the data available from web-based portals. Discovery of the OzFlux data set is facilitated through incorporation in FLUXNET data syntheses and the publication of collection metadata via the RIF-CS format. This paper serves two purposes. The first is to describe the data sets, along with their quality control and post-processing, for the other papers of this Special Issue. The second is to provide an example of one solution to the data collection and curation challenges that are encountered by similar flux

  8. Supply Networks and Value Creation in High Innovation and Strong Network Externalities Industry

    Directory of Open Access Journals (Sweden)

    Fernando Claro Tomaselli

    2013-12-01

    Full Text Available The rapid developing product and service markets and developments in information technologies have accelerated growth in outsourcing of peripheral activities and critical business as well, enhancing the importance of network supply chain management. This paper analyzes the dynamics of supply chain management and the creation of value in an industry with strong network effects and constantly introduction of disruptive technologies, the videogame industry. This industry evolves at a high velocity, with a lifecycle of five to six years for consoles, which features a new generation of consoles, where new companies and technologies appear and disappear at each generation.

  9. Exact tensor network ansatz for strongly interacting systems

    Science.gov (United States)

    Zaletel, Michael P.

    It appears that the tensor network ansatz, while not quite complete, is an efficient coordinate system for the tiny subset of a many-body Hilbert space which can be realized as a low energy state of a local Hamiltonian. However, we don't fully understand precisely which phases are captured by the tensor network ansatz, how to compute their physical observables (even numerically), or how to compute a tensor network representation for a ground state given a microscopic Hamiltonian. These questions are algorithmic in nature, but their resolution is intimately related to understanding the nature of quantum entanglement in many-body systems. For this reason it is useful to compute the tensor network representation of various `model' wavefunctions representative of different phases of matter; this allows us to understand how the entanglement properties of each phase are expressed in the tensor network ansatz, and can serve as test cases for algorithm development. Condensed matter physics has many illuminating model wavefunctions, such as Laughlin's celebrated wave function for the fractional quantum Hall effect, the Bardeen-Cooper-Schrieffer wave function for superconductivity, and Anderson's resonating valence bond ansatz for spin liquids. This thesis presents some results on exact tensor network representations of these model wavefunctions. In addition, a tensor network representation is given for the time evolution operator of a long-range one-dimensional Hamiltonian, which allows one to numerically simulate the time evolution of power-law interacting spin chains as well as two-dimensional strips and cylinders.

  10. The Connect Effect Building Strong Personal, Professional, and Virtual Networks

    CERN Document Server

    Dulworth, Michael

    2008-01-01

    Entrepreneur and executive development expert Mike Dulworth's THE CONNECT EFFECT provides readers with a simple framework and practical tools for developing that crucial competitive advantage: a high-quality personal, professional/organizational and virtual network.

  11. Strong localized variations of the low-altitude energetic electron fluxes in the evening sector near the plasmapause

    Directory of Open Access Journals (Sweden)

    E. E. Titova

    1998-01-01

    Full Text Available Specific type of energetic electron precipitation accompanied by a sharp increase in trapped energetic electron flux are found in the data obtained from low-altitude NOAA satellites. These strongly localized variations of the trapped and precipitated energetic electron flux have been observed in the evening sector near the plasmapause during recovery phase of magnetic storms. Statistical characteristics of these structures as well as the results of comparison with proton precipitation are described. We demonstrate the spatial coincidence of localized electron precipitation with cold plasma gradient and whistler wave intensification measured on board the DE-1 and Aureol-3 satellites. A simultaneous localized sharp increase in both trapped and precipitating electron flux could be a result of significant pitch-angle isotropization of drifting electrons due to their interaction via cyclotron instability with the region of sharp increase in background plasma density.Key words. Ionosphere (particle precipitation; wave-particle interaction Magnetospheric Physics (plasmasphere

  12. Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism.

    Science.gov (United States)

    Tabe-Bordbar, Shayan; Marashi, Sayed-Amir

    2013-12-01

    Elementary modes (EMs) are steady-state metabolic flux vectors with minimal set of active reactions. Each EM corresponds to a metabolic pathway. Therefore, studying EMs is helpful for analyzing the production of biotechnologically important metabolites. However, memory requirements for computing EMs may hamper their applicability as, in most genome-scale metabolic models, no EM can be computed due to running out of memory. In this study, we present a method for computing randomly sampled EMs. In this approach, a network reduction algorithm is used for EM computation, which is based on flux balance-based methods. We show that this approach can be used to recover the EMs in the medium- and genome-scale metabolic network models, while the EMs are sampled in an unbiased way. The applicability of such results is shown by computing “estimated” control-effective flux values in Escherichia coli metabolic network.

  13. Detection of strong attractors in social media networks.

    Science.gov (United States)

    Qasem, Ziyaad; Jansen, Marc; Hecking, Tobias; Hoppe, H Ulrich

    2016-01-01

    Detection of influential actors in social media such as Twitter or Facebook plays an important role for improving the quality and efficiency of work and services in many fields such as education and marketing. The work described here aims to introduce a new approach that characterizes the influence of actors by the strength of attracting new active members into a networked community. We present a model of influence of an actor that is based on the attractiveness of the actor in terms of the number of other new actors with which he or she has established relations over time. We have used this concept and measure of influence to determine optimal seeds in a simulation of influence maximization using two empirically collected social networks for the underlying graphs. Our empirical results on the datasets demonstrate that our measure stands out as a useful measure to define the attractors comparing to the other influence measures.

  14. Damage dosimetry in EL.3 reflector in view of irradiating steels under a strong thermal flux

    International Nuclear Information System (INIS)

    Alberman, A.; Morin, C.; Salon, L.; Meftah, A.

    1978-03-01

    Some A 537 steel samples were irradiated in view of obtaining the correlations between mechanical properties and the thermal dose. The locations that were chosen (DS.8 and DS.9 in EL 3 reflector) make it possible to have a ratio: thermal flux/nickel flux approximately equal to 1000) on bare impact-test specimens. The farthest stages were cadmium screened. A damage dosimetry was effected in both cases for usual fast neutron correlations. The graphite/nickel spectral index such obtained was constant at the medium level but was increasing linearly at the farthest levels. Spectrum calculations using a one-dimensional transport code appear unadapted to recover the spectrum index previously measured inside the reflector (-3%) and also to explain the axial spectrum effect that had been obtained [fr

  15. Net Fluorescein Flux Across Corneal Endothelium Strongly Suggests Fluid Transport is due to Electro-osmosis.

    Science.gov (United States)

    Sanchez, J M; Cacace, V; Kusnier, C F; Nelson, R; Rubashkin, A A; Iserovich, P; Fischbarg, J

    2016-08-01

    We have presented prior evidence suggesting that fluid transport results from electro-osmosis at the intercellular junctions of the corneal endothelium. Such phenomenon ought to drag other extracellular solutes. We have investigated this using fluorescein-Na2 as an extracellular marker. We measured unidirectional fluxes across layers of cultured human corneal endothelial (HCE) cells. SV-40-transformed HCE layers were grown to confluence on permeable membrane inserts. The medium was DMEM with high glucose and no phenol red. Fluorescein-labeled medium was placed either on the basolateral or the apical side of the inserts; the other side carried unlabeled medium. The inserts were held in a CO2 incubator for 1 h (at 37 °C), after which the entire volume of the unlabeled side was collected. After that, label was placed on the opposite side, and the corresponding paired sample was collected after another hour. Fluorescein counts were determined with a (Photon Technology) DeltaScan fluorometer (excitation 380 nm; emission 550 nm; 2 nm bwth). Samples were read for 60 s. The cells utilized are known to transport fluid from the basolateral to the apical side, just as they do in vivo in several species. We used 4 inserts for influx and efflux (total: 20 1-h periods). We found a net flux of fluorescein from the basolateral to the apical side. The flux ratio was 1.104 ± 0.056. That difference was statistically significant (p = 0.00006, t test, paired samples). The endothelium has a definite restriction at the junctions. Hence, an asymmetry in unidirectional fluxes cannot arise from osmosis, and can only point instead to paracellular solvent drag. We suggest, once more, that such drag is due to electro-osmotic coupling at the paracellular junctions.

  16. Using sonic anemometer temperature to measure sensible heat flux in strong winds

    Directory of Open Access Journals (Sweden)

    S. P. Burns

    2012-09-01

    Full Text Available Sonic anemometers simultaneously measure the turbulent fluctuations of vertical wind (w' and sonic temperature (Ts', and are commonly used to measure sensible heat flux (H. Our study examines 30-min heat fluxes measured with a Campbell Scientific CSAT3 sonic anemometer above a subalpine forest. We compared H calculated with Ts to H calculated with a co-located thermocouple and found that, for horizontal wind speed (U less than 8 m s−1, the agreement was around ±30 W m−2. However, for U ≈ 8 m s−1, the CSAT H had a generally positive deviation from H calculated with the thermocouple, reaching a maximum difference of ≈250 W m−2 at U ≈ 18 m s−1. With version 4 of the CSAT firmware, we found significant underestimation of the speed of sound and thus Ts in high winds (due to a delayed detection of the sonic pulse, which resulted in the large CSAT heat flux errors. Although this Ts error is qualitatively similar to the well-known fundamental correction for the crosswind component, it is quantitatively different and directly related to the firmware estimation of the pulse arrival time. For a CSAT running version 3 of the firmware, there does not appear to be a significant underestimation of Ts; however, a Ts error similar to that of version 4 may occur if the CSAT is sufficiently out of calibration. An empirical correction to the CSAT heat flux that is consistent with our conceptual understanding of the Ts error is presented. Within a broader context, the surface energy balance is used to evaluate the heat flux measurements, and the usefulness of side-by-side instrument comparisons is discussed.

  17. Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural network

    DEFF Research Database (Denmark)

    Papale, D.; Black, T Andrew; Carvalhais, Nuno

    2015-01-01

    -output relationships, while prediction for conditions outside the training domain is generally uncertain. In this work, artificial neural networks (ANNs) were used for the prediction of gross primary production (GPP) and latent heat flux (LE) on local and European scales with the aim to assess the portion...

  18. A reappraisal of the concept of the strong/weak force networks for granular materials

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.

    2015-01-01

    The concept of the strong/weak force networks for granular materials has been proposed by Radjai et al [2]. The weak (strong) contact network consists of the contacts where the normal force is smaller (larger) than the average normal force. Based on results of particle simulations, Radjai et al [2

  19. What Factors Predict Who Will Have a Strong Social Network Following a Stroke?

    Science.gov (United States)

    Northcott, Sarah; Marshall, Jane; Hilari, Katerina

    2016-01-01

    Purpose: Measures of social networks assess the number and nature of a person's social contacts, and strongly predict health outcomes. We explored how social networks change following a stroke and analyzed concurrent and baseline predictors of social networks 6 months poststroke. Method: We conducted a prospective longitudinal observational study.…

  20. Copper ion fluxes through the floating water bridge under strong electric potential.

    Science.gov (United States)

    Giuliani, Livio; D'Emilia, Enrico; Lisi, Antonella; Grimaldi, Settimio; Brizhik, Larissa; Del Giudice, Emilio

    2015-01-01

    We have performed a series of experiments applying high voltage between two electrodes, immersed in two beakers containing bidistilled water in a way similar to experiments conducted by Fuchs and collaborators, which showed that a water bridge can be formed between the two containers. We also observed the formation of water bridge. Moreover, choosing different pairs of electrodes depending on the material they are made up of, we observed that copper ions flow can pass along the bridge if the negative electrode is made up of copper. We show that the direction of the flux not only depends on the applied electrostatic field but on the relative electronegativity of the electrodes too. These results open new perspectives in understanding the properties of water. We suggest a possible explanation of the obtained results.

  1. Latest developments in advanced network management and cross-sharing of next-generation flux stations

    Science.gov (United States)

    Burba, George; Johnson, Dave; Velgersdyk, Michael; Begashaw, Israel; Allyn, Douglas

    2016-04-01

    In recent years, spatial and temporal flux data coverage improved significantly and on multiple scales, from a single station to continental networks, due to standardization, automation, and management of the data collection, and better handling of the extensive amounts of generated data. However, operating budgets for flux research items, such as labor, travel, and hardware, are becoming more difficult to acquire and sustain. With more stations and networks, larger data flows from each station, and smaller operating budgets, modern tools are required to effectively and efficiently handle the entire process, including sharing data among collaborative groups. On one hand, such tools can maximize time dedicated to publications answering research questions, and minimize time and expenses spent on data acquisition, processing, quality control and overall station management. On the other hand, cross-sharing the stations with external collaborators may help leverage available funding, and promote data analyses and publications. A new low-cost, advanced system, FluxSuite, utilizes a combination of hardware, software and web-services to address these specific demands. It automates key stages of flux workflow, minimizes day-to-day site management, and modernizes the handling of data flows: (i) The system can be easily incorporated into a new flux station, or as un upgrade to many presently operating flux stations, via weatherized remotely-accessible microcomputer, SmartFlux 2, with fully digital inputs (ii) Each next-generation station will measure all parameters needed for flux computations in a digital and PTP time-synchronized mode, accepting digital signals from a number of anemometers and data loggers (iii) The field microcomputer will calculate final fully-processed flux rates in real time, including computation-intensive Fourier transforms, spectra, co-spectra, multiple rotations, stationarity, footprint, etc. (iv) Final fluxes, radiation, weather and soil data will

  2. Co-regulation of metabolic genes is better explained by flux coupling than by network distance.

    Directory of Open Access Journals (Sweden)

    Richard A Notebaart

    2008-01-01

    Full Text Available To what extent can modes of gene regulation be explained by systems-level properties of metabolic networks? Prior studies on co-regulation of metabolic genes have mainly focused on graph-theoretical features of metabolic networks and demonstrated a decreasing level of co-expression with increasing network distance, a naïve, but widely used, topological index. Others have suggested that static graph representations can poorly capture dynamic functional associations, e.g., in the form of dependence of metabolic fluxes across genes in the network. Here, we systematically tested the relative importance of metabolic flux coupling and network position on gene co-regulation, using a genome-scale metabolic model of Escherichia coli. After validating the computational method with empirical data on flux correlations, we confirm that genes coupled by their enzymatic fluxes not only show similar expression patterns, but also share transcriptional regulators and frequently reside in the same operon. In contrast, we demonstrate that network distance per se has relatively minor influence on gene co-regulation. Moreover, the type of flux coupling can explain refined properties of the regulatory network that are ignored by simple graph-theoretical indices. Our results underline the importance of studying functional states of cellular networks to define physiologically relevant associations between genes and should stimulate future developments of novel functional genomic tools.

  3. Solar Coronal Heating and the Magnetic Flux Content of the Network

    Science.gov (United States)

    Moore, R. L.; Falconer, D. A.; Porter, J. G.; Hathaway, D. H.

    2003-01-01

    We investigate the heating of the quiet corona by measuring the increase of coronal luminosity with the amount of magnetic flux in the underlying network at solar minimum when there were no active regions on the face of the Sun. The coronal luminosity is measured from Fe IX/X-Fe XII pairs of coronal images from SOHO/EIT. The network magnetic flux content is measured from SOHO/MDI magnetograms. We find that the luminosity of the corona in our quiet regions increases roughly in proportion to the square root of the magnetic flux content of the network and roughly in proportion to the length of the perimeter of the network magnetic flux clumps. From (1) this result, (2) other observations of many fine-scale explosive events at the edges of network flux clumps, and (3) a demonstration that it is energetically feasible for the heating of the corona in quiet regions to be driven by explosions of granule-sized sheared-core magnetic bipoles embedded in the edges of network flux clumps, we infer that in quiet regions that are not influenced by active regions the corona is mainly heated by such magnetic activity in the edges of the network flux clumps. Our observational results together with our feasibility analysis allow us to predict that (1) at the edges of the network flux clumps there are many transient sheared-core bipoles of the size and lifetime of granules and having transverse field strengths greater than approximately - 100 G, (2) approximately 30 of these bipoles are present per supergranule, and (3) most spicules are produced by explosions of these bipoles.

  4. Delta-Flux: An Eddy Covariance Network for a Climate-Smart Lower Mississippi Basin

    Directory of Open Access Journals (Sweden)

    Benjamin R. K. Runkle

    2017-02-01

    Full Text Available Networks of remotely monitored research sites are increasingly the tool used to study regional agricultural impacts on carbon and water fluxes. However, key national networks such as the National Ecological Observatory Network and AmeriFlux lack contributions from the Lower Mississippi River Basin (LMRB, a highly productive agricultural area with opportunities for soil carbon sequestration through conservation practices. The authors describe the rationale to create the new Delta-Flux network, which will coordinate efforts to quantify carbon and water budgets at seventeen eddy covariance flux tower sites in the LMRB. The network structure will facilitate climate-smart management strategies based on production-scale and continuous measurements of carbon and water fluxes from the landscape to the atmosphere under different soil and water management conditions. The seventeen instrumented field sites are expected to monitor fluxes within the most characteristic landscapes of the target area: row-crop fields, pasture, grasslands, forests, and marshes. The network participants are committed to open collaboration and efficient regionalization of site-level findings to support sustainable agricultural and forestry management and conservation of natural resources.

  5. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    Science.gov (United States)

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  6. Flux

    DEFF Research Database (Denmark)

    Ravn, Ib

    . FLUX betegner en flyden eller strømmen, dvs. dynamik. Forstår man livet som proces og udvikling i stedet for som ting og mekanik, får man et andet billede af det gode liv end det, som den velkendte vestlige mekanicisme lægger op til. Dynamisk forstået indebærer det gode liv den bedst mulige...... kanalisering af den flux eller energi, der strømmer igennem os og giver sig til kende i vore daglige aktiviteter. Skal vores tanker, handlinger, arbejde, samvær og politiske liv organiseres efter stramme og faste regelsæt, uden slinger i valsen? Eller skal de tværtimod forløbe ganske uhindret af regler og bånd...

  7. The many facets of integrating data and metadata for research networks: experience from the AmeriFlux Network

    Science.gov (United States)

    Pastorello, G.; Poindexter, C.; van Ingen, C.; Papale, D.; Agarwal, D.

    2014-12-01

    Grassroots research networks, such as AmeriFlux, require data and metadata integration from multiple, independently managed field sites, scales, and science domains. The goal of these networks is production of consistent datasets enabling investigation of broad science questions at regional and global scales. These datasets combine data from a large number of data providers, who often utilize different data collection protocols and data processing approaches. In this scenario, data integration and curation quickly become large-scale efforts. This presentation reports on our experience with integration efforts for the AmeriFlux network. In AmeriFlux we are attempting to integrate flux, meteorological, biological, soil, chemistry, and disturbance data and metadata. Our data management activities range from acquisition/publication mechanisms, quality control, processing and product generation, data and software synchronized versioning and archiving, and interaction mechanisms and tools for data providers and data users. To enable consistent data processing and network-level data quality, combinations of automated and visual data quality assessment procedures were built, extending on checks already done at site levels. The implementation of community developed and trusted algorithms to operate in production mode proved to be a key aspect of data product generation, with extensive testing and validation being one of the main concerns. Clear definitions for data processing levels help with easily tracking different data products and data quality levels. For metadata and ancillary information, formatting standards are even more relevant, since variables collected are considerably more heterogeneous. Documentation and training on the standards were crucial in this case, with instruction sessions having proved to be an effective approach, given that documentation cannot cover all different scenarios at different sites. This work is being developed in close coordination with

  8. The structural role of weak and strong links in a financial market network

    Science.gov (United States)

    Garas, A.; Argyrakis, P.; Havlin, S.

    2008-05-01

    We investigate the properties of correlation based networks originating from economic complex systems, such as the network of stocks traded at the New York Stock Exchange (NYSE). The weaker links (low correlation) of the system are found to contribute to the overall connectivity of the network significantly more than the strong links (high correlation). We find that nodes connected through strong links form well defined communities. These communities are clustered together in more complex ways compared to the widely used classification according to the economic activity. We find that some companies, such as General Electric (GE), Coca Cola (KO), and others, can be involved in different communities. The communities are found to be quite stable over time. Similar results were obtained by investigating markets completely different in size and properties, such as the Athens Stock Exchange (ASE). The present method may be also useful for other networks generated through correlations.

  9. Flux flow, pinning, and resistive behavior in superconducting networks

    International Nuclear Information System (INIS)

    Teitel, S.

    1991-10-01

    We have studied the behavior of fluctuation effects in superconducting systems using numerical simulations of XY and Coulomb gas models. Flux flow resistance in two dimensional Josephson junction arrays has been calculated, and related to correlations in vortex structure. Randomness has been introduced, and its effects on the superconducting transition, and vortex mobility, have been studied. We find that randomness destroys phase coherence, yet the randomness induced pinning reduces flux flow resistance at low temperatures. Vortex line fluctuations in high temperature superconductors have been studied using a three dimensional XY model. We have considered the melting of the vortex line lattice, and the entanglement and cutting of vortex lines in the vortex line liquid phase. Vortex line entangling and cutting appear to occur on the same length scales in the liquid phase. The vortex structure function has been calculated and from it, elastic properties of the vortex line liquid have been inferred. The two dimensional classical Coulomb gas, where charges map onto vortices in the superconducting system, has been simulated. The melting transitions of ordered charge (vortex) lattices have been studied, and we find evidence that these transitions do not have the critical behavior expected from standard symmetry analysis

  10. The extent to which ATP demand controls the glycolytic flux depends strongly on the organism and conditions for growth

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Westerhoff, H.V.; Snoep, J.L.

    2002-01-01

    Using molecular genetics we have introduced uncoupled ATPase activity in two different bacterial species, Escherichia coli and Lactococcus lactis, and determined the elasticities of the growth rate and glycolytic flux towards the intracellular [ATP]/[ADP] ratio. During balanced growth in batch...... cultures of E. coli the ATP demand was found to have almost full control on the glycolytic flux (FCC=0.96) and the flux could be stimulated by 70%. In contrast to this, in L. lactis the control by ATP demand on the glycolytic flux was close to zero. However, when we used non-growing cells of L. lactis...... (which have a low glycolytic flux) the ATP demand had a high flux control and the flux could be stimulated more than two fold. We suggest that the extent to which ATP demand controls the glycolytic flux depends on how much excess capacity of glycolysis is present in the cells....

  11. Flux Flow, Pinning, and Resistive Behavior in Superconducting Networks

    International Nuclear Information System (INIS)

    Stephen Teitel

    2005-01-01

    Numerical simulators are used to study the behavior of interacting quantized vortices and vortex lines in superconducting networks, films, and three dimensional bulk samples. An emphasis is on the explanation of the phenomenological behavior of the ''high-Tc'' copper-oxide superconductors and related model systems

  12. Biophysical controls on organic carbon fluxes in fluvial networks

    Science.gov (United States)

    Battin, Tom J.; Kaplan, Louis A.; Findlay, Stuart; Hopkinson, Charles S.; Marti, Eugenia; Packman, Aaron I.; Newbold, J. Denis; Sabater, Francesc

    2008-02-01

    Metabolism of terrestrial organic carbon in freshwater ecosystems is responsible for a large amount of carbon dioxide outgassing to the atmosphere, in contradiction to the conventional wisdom that terrestrial organic carbon is recalcitrant and contributes little to the support of aquatic metabolism. Here, we combine recent findings from geophysics, microbial ecology and organic geochemistry to show geophysical opportunity and microbial capacity to enhance the net heterotrophy in streams, rivers and estuaries. We identify hydrological storage and retention zones that extend the residence time of organic carbon during downstream transport as geophysical opportunities for microorganisms to develop as attached biofilms or suspended aggregates, and to metabolize organic carbon for energy and growth. We consider fluvial networks as meta-ecosystems to include the acclimation of microbial communities in downstream ecosystems that enable them to exploit energy that escapes from upstream ecosystems, thereby increasing the overall energy utilization at the network level.

  13. Dichotomous Dynamics in E-I Networks with Strongly and Weakly Intra-connected Inhibitory Neurons

    Directory of Open Access Journals (Sweden)

    Scott Rich

    2017-12-01

    Full Text Available The interconnectivity between excitatory and inhibitory neural networks informs mechanisms by which rhythmic bursts of excitatory activity can be produced in the brain. One such mechanism, Pyramidal Interneuron Network Gamma (PING, relies primarily upon reciprocal connectivity between the excitatory and inhibitory networks, while also including intra-connectivity of inhibitory cells. The causal relationship between excitatory activity and the subsequent burst of inhibitory activity is of paramount importance to the mechanism and has been well studied. However, the role of the intra-connectivity of the inhibitory network, while important for PING, has not been studied in detail, as most analyses of PING simply assume that inhibitory intra-connectivity is strong enough to suppress subsequent firing following the initial inhibitory burst. In this paper we investigate the role that the strength of inhibitory intra-connectivity plays in determining the dynamics of PING-style networks. We show that networks with weak inhibitory intra-connectivity exhibit variations in burst dynamics of both the excitatory and inhibitory cells that are not obtained with strong inhibitory intra-connectivity. Networks with weak inhibitory intra-connectivity exhibit excitatory rhythmic bursts with weak excitatory-to-inhibitory synapses for which classical PING networks would show no rhythmic activity. Additionally, variations in dynamics of these networks as the excitatory-to-inhibitory synaptic weight increases illustrates the important role that consistent pattern formation in the inhibitory cells serves in maintaining organized and periodic excitatory bursts. Finally, motivated by these results and the known diversity of interneurons, we show that a PING-style network with two inhibitory subnetworks, one strongly intra-connected and one weakly intra-connected, exhibits organized and periodic excitatory activity over a larger parameter regime than networks with a

  14. New strong motion network in Georgia: basis for specifying seismic hazard

    Science.gov (United States)

    Kvavadze, N.; Tsereteli, N. S.

    2017-12-01

    Risk created by hazardous natural events is closely related to sustainable development of the society. Global observations have confirmed tendency of growing losses resulting from natural disasters, one of the most dangerous and destructive if which are earthquakes. Georgia is located in seismically active region. So, it is imperative to evaluate probabilistic seismic hazard and seismic risk with proper accuracy. National network of Georgia includes 35 station all of which are seismometers. There are significant gaps in strong motion recordings, which essential for seismic hazard assessment. To gather more accelerometer recordings, we have built a strong motion network distributed on the territory of Georgia. The network includes 6 stations for now, with Basalt 4x datalogger and strong motion sensor Episensor ES-T. For each site, Vs30 and soil resonance frequencies have been measured. Since all but one station (Tabakhmelam near Tbilisi), are located far from power and internet lines special system was created for instrument operation. Solar power is used to supply the system with electricity and GSM/LTE modems for internet access. VPN tunnel was set up using Raspberry pi, for two-way communication with stations. Tabakhmela station is located on grounds of Ionosphere Observatory, TSU and is used as a hub for the network. This location also includes a broadband seismometer and VLF electromagnetic waves observation antenna, for possible earthquake precursor studies. On server, located in Tabakhmela, the continues data is collected from all the stations, for later use. The recordings later will be used in different seismological and engineering problems, namely selecting and creating GMPE model for Caucasus, for probabilistic seismic hazard and seismic risk evaluation. These stations are a start and in the future expansion of strong motion network is planned. Along with this, electromagnetic wave observations will continue and additional antennas will be implemented

  15. Development of network communication function for digitalized neutron flux monitoring instrument

    International Nuclear Information System (INIS)

    Li Kai; Zhang Liangju; Chen Xiaojun; Li Baoxiang

    2002-01-01

    It is essential for a digitalized Neutron Flux Monitoring Instrument to communicate with other parts of Instrumentation and Control System in a network environment, and it is fairly different from the case of traditional analogue nuclear instrumentation. How to satisfy all the requirements of different network structure and communication protocol, which might be adopted in different target nuclear power plant, is a key issue in the design and development of a digitalized neutron flux monitoring instrument. The author describes the overall communication scheme, mainly discusses the design idea and the requirements of the communication interfaces and the implementation of the RS-485 interface as an example of the digitalized neutron flux monitoring instrument, which is under development in the institute

  16. Radiant heat transfer network in the simulated protective clothing ; System under high heat flux

    NARCIS (Netherlands)

    Fukazawa, T.; Hartog, E.A. den; Daanen, H.A.M.; Penders-van Elk, N.; Tochihara, Y.; Havenith, G.

    2005-01-01

    A radiant network model was developed for design of the protective clothing system against solar and infrared radiative heat flux. A one-dimensional model was employed in the present study, because the aim of this study was to obtain precise temperature distribution through the system with use of a

  17. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis.

    Science.gov (United States)

    Bates, Philip D

    2016-09-01

    Plant oil biosynthesis involves a complex metabolic network with multiple subcellular compartments, parallel pathways, cycles, and pathways that have a dual function to produce essential membrane lipids and triacylglycerol. Modern molecular biology techniques provide tools to alter plant oil compositions through bioengineering, however with few exceptions the final composition of triacylglycerol cannot be predicted. One reason for limited success in oilseed bioengineering is the inadequate understanding of how to control the flux of fatty acids through various fatty acid modification, and triacylglycerol assembly pathways of the lipid metabolic network. This review focuses on the mechanisms of acyl flux through the lipid metabolic network, and highlights where uncertainty resides in our understanding of seed oil biosynthesis. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems

    DEFF Research Database (Denmark)

    Ibrom, Andreas; Dellwik, Ebba; Flyvbjerg, Henrik K.

    2007-01-01

    forest in Soro, Zealand, Denmark, amounted on average to 42% of the measured flux, while it was only 4% for the CO2 flux, which was measured with the same EC system. We recommend using the described method to correct water vapour fluxes measured in any closed-path EC system for unintended low......Turbulent water vapour fluxes measured with closed-path eddy correlation (EC) systems are unintentionally low-pass filtered by the system in a manner that varies with environmental conditions. Why and how is described here. So is the practical method that systematically corrects long-term flux...... datasets for this substantial measurement error. In contrast to earlier studies, a large number of spectra and raw data have been used in the analysis to define the low-pass filtering characteristic of the EC system. This revealed that the cut-off frequency of the closed-path EC system for water vapour...

  19. Accretion disc dynamo activity in local simulations spanning weak-to-strong net vertical magnetic flux regimes

    Science.gov (United States)

    Salvesen, Greg; Simon, Jacob B.; Armitage, Philip J.; Begelman, Mitchell C.

    2016-03-01

    Strongly magnetized accretion discs around black holes have attractive features that may explain enigmatic aspects of X-ray binary behaviour. The structure and evolution of these discs are governed by a dynamo-like mechanism, which channels part of the accretion power liberated by the magnetorotational instability (MRI) into an ordered toroidal magnetic field. To study dynamo activity, we performed three-dimensional, stratified, isothermal, ideal magnetohydrodynamic shearing box simulations. The strength of the self-sustained toroidal magnetic field depends on the net vertical magnetic flux, which we vary across almost the entire range over which the MRI is linearly unstable. We quantify disc structure and dynamo properties as a function of the initial ratio of mid-plane gas pressure to vertical magnetic field pressure, β _0^mid = p_gas / p_B. For 10^5 ≥ β _0^mid ≥ 10 the effective α-viscosity parameter scales as a power law. Dynamo activity persists up to and including β _0^mid = 10^2, at which point the entire vertical column of the disc is magnetic pressure dominated. Still stronger fields result in a highly inhomogeneous disc structure, with large density fluctuations. We show that the turbulent steady state βmid in our simulations is well matched by the analytic model of Begelman et al. describing the creation and buoyant escape of toroidal field, while the vertical structure of the disc can be broadly reproduced using this model. Finally, we discuss the implications of our results for observed properties of X-ray binaries.

  20. Evidence for carbon flux shortage and strong carbon/nitrogen interactions in pea nodules at early stages of water stress.

    Science.gov (United States)

    Gálvez, Loli; González, Esther M; Arrese-Igor, Cesar

    2005-09-01

    Symbiotic N2 fixation in legume nodules declines under a wide range of environmental stresses. A high correlation between N2 fixation decline and sucrose synthase (SS; EC 2.4.1.13) activity down-regulation has been reported, although it has still to be elucidated whether a causal relationship between SS activity down-regulation and N2 fixation decline can be established. In order to study the likely C/N interactions within nodules and the effects on N2 fixation, pea plants (Pisum sativum L. cv. Sugar snap) were subjected to progressive water stress by withholding irrigation. Under these conditions, nodule SS activity declined concomitantly with apparent nitrogenase activity. The levels of UDP-glucose, glucose-1-phosphate, glucose-6-phosphate, and fructose-6-phosphate decreased in water-stressed nodules compared with unstressed nodules. Drought also had a marked effect on nodule concentrations of malate, succinate, and alpha-ketoglutarate. Moreover, a general decline in nodule adenylate content was detected. NADP+-dependent isocitrate dehydrogenase (ICDH; EC 1.1.1.42) was the only enzyme whose activity increased as a result of water deficit, compensating for a possible C/N imbalance and/or supplying NADPH in circumstances that the pentose phosphate pathway was impaired, as suggested by the decline in glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) activity. The overall results show the occurrence of strong C/N interactions in nodules subjected to water stress and support a likely limitation of carbon flux that might be involved in the decline of N2 fixation under drought.

  1. Multiobjective flux balancing using the NISE method for metabolic network analysis.

    Science.gov (United States)

    Oh, Young-Gyun; Lee, Dong-Yup; Lee, Sang Yup; Park, Sunwon

    2009-01-01

    Flux balance analysis (FBA) is well acknowledged as an analysis tool of metabolic networks in the framework of metabolic engineering. However, FBA has a limitation for solving a multiobjective optimization problem which considers multiple conflicting objectives. In this study, we propose a novel multiobjective flux balance analysis method, which adapts the noninferior set estimation (NISE) method (Solanki et al., 1993) for multiobjective linear programming (MOLP) problems. NISE method can generate an approximation of the Pareto curve for conflicting objectives without redundant iterations of single objective optimization. Furthermore, the flux distributions at each Pareto optimal solution can be obtained for understanding the internal flux changes in the metabolic network. The functionality of this approach is shown by applying it to a genome-scale in silico model of E. coli. Multiple objectives for the poly(3-hydroxybutyrate) [P(3HB)] production are considered simultaneously, and relationships among them are identified. The Pareto curve for maximizing succinic acid production vs. maximizing biomass production is used for the in silico analysis of various combinatorial knockout strains. This proposed method accelerates the strain improvement in the metabolic engineering by reducing computation time of obtaining the Pareto curve and analysis time of flux distribution at each Pareto optimal solution. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  2. Weak and strong publics: drawing on Nancy Fraser to explore parental participation in neonatal networks

    Science.gov (United States)

    Gibson, Andrew J.; Lewando‐Hundt, Gillian; Blaxter, Loraine

    2014-01-01

    Abstract Aims  We draw on the work of Nancy Fraser, and in particular her concepts of weak and strong publics, to analyze the process of parental involvement in managed neonatal network boards. Background  Public involvement has moved beyond the individual level to include greater involvement of both patients and the public in governance. However, there is relatively little literature that explores the nature and outcomes of long‐term patient involvement initiatives or has attempted to theorize, particularly at the level of corporate decision making, the process of patient and public involvement. Methods  A repeated survey of all neonatal network managers in England was carried out in 2006–07 to capture developments and changes in parental representation over this time period. This elicited information about the current status of parent representation on neonatal network boards. Four networks were also selected as case studies. This involved interviews with key members of each network board, interviews with parent representatives, observation of meetings and access to board minutes. Results  Data collected show that a wide range of approaches to involving parents has been adopted. These range from decisions not to involve parents at this level to relatively well‐developed systems designed to link parent representatives on network boards to parents in neonatal units. Conclusion  Despite these variations, we suggest that parental participation within neonatal services remains an example of a weak public because the parent representatives had limited participation with little influence on decision making. PMID:22040481

  3. The Quake-Catcher Network: Improving Earthquake Strong Motion Observations Through Community Engagement

    Science.gov (United States)

    Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Chung, A. I.; Neighbors, C.; Saltzman, J.

    2010-12-01

    The Quake-Catcher Network (QCN) involves the community in strong motion data collection by utilizing volunteer computing techniques and low-cost MEMS accelerometers. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers can be attached to a desktop computer via USB and are internal to many laptops. Preliminary shake table tests show the MEMS accelerometers can record high-quality seismic data with instrument response similar to research-grade strong-motion sensors. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1500 stations worldwide. We also recently tested whether sensors could be quickly deployed as part of a Rapid Aftershock Mobilization Program (RAMP) following the 2010 M8.8 Maule, Chile earthquake. Volunteers are recruited through media reports, web-based sensor request forms, as well as social networking sites. Using data collected to date, we examine whether a distributed sensing network can provide valuable seismic data for earthquake detection and characterization while promoting community participation in earthquake science. We utilize client-side triggering algorithms to determine when significant ground shaking occurs and this metadata is sent to the main QCN server. On average, trigger metadata are received within 1-10 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. When triggers are detected, we determine if the triggers correlate to others in the network using spatial and temporal clustering of incoming trigger information. If a minimum number of triggers are detected then a QCN-event is declared and an initial earthquake location and magnitude is estimated. Initial analysis suggests that the estimated locations and magnitudes are

  4. Experimental investigation of effect of surface gravity waves and spray on heat and momentum flux at strong wind conditions

    Science.gov (United States)

    Troitskaya, Yuliya; Sergeev, Daniil; Vdovin, Maxim; Kandaurov, Alexander; Ermakova, Olga; Kazakov, Vassily

    2015-04-01

    The most important characteristics that determine the interaction between atmosphere and ocean are fluxes of momentum, heat and moisture. For their parameterization the dimensionless exchange coefficients (the surface drag coefficient CD and the heat transfer coefficient or the Stanton number CT) are used. Numerous field and laboratory experiments show that CD increases with increasing wind speed at moderate and strong wind, and as it was shows recently CD decreases at hurricane wind speed. Waves are known to increase the sea surface resistance due to enhanced form drag, the sea spray is considered as a possible mechanism of the 'drag reduction' at hurricane conditions. The dependence of heat transfer coefficient CD on the wind speed is not so certain and the role of the mechanism associated with the wave disturbances in the mass transfer is not completely understood. Observations and laboratory data show that this dependence is weaker than for the CD, and there are differences in the character of the dependence in different data sets. The purpose of this paper is investigation of the effect of surface waves on the turbulent exchange of momentum and heat within the laboratory experiment, when wind and wave parameters are maintained and controlled. The effect of spray on turbulent exchange at strong winds is also estimated. A series of experiments to study the processes of turbulent exchange of momentum and heat in a stably stratified temperature turbulent boundary layer air flow over waved water surface were carried out at the Wind - wave stratified flume of IAP RAS, the peculiarity of this experiment was the option to change the surface wave parameters regardless of the speed of the wind flow in the channel. For this purpose a polyethylene net with the variable depth (0.25 mm thick and a cell of 1.6 mm × 1.6mm) has been stretched along the channel. The waves were absent when the net was located at the level of the undisturbed water surface, and had maximum

  5. Quantification of motor network dynamics in Parkinson's disease by means of landscape and flux theory.

    Directory of Open Access Journals (Sweden)

    Han Yan

    Full Text Available The basal ganglia neural circuit plays an important role in motor control. Despite the significant efforts, the understanding of the principles and underlying mechanisms of this modulatory circuit and the emergence of abnormal synchronized oscillations in movement disorders is still challenging. Dopamine loss has been proved to be responsible for Parkinson's disease. We quantitatively described the dynamics of the basal ganglia-thalamo-cortical circuit in Parkinson's disease in terms of the emergence of both abnormal firing rates and firing patterns in the circuit. We developed a potential landscape and flux framework for exploring the modulatory circuit. The driving force of the circuit can be decomposed into a gradient of the potential, which is associated with the steady-state probability distributions, and the curl probability flux term. We uncovered the underlying potential landscape as a Mexican hat-shape closed ring valley where abnormal oscillations emerge due to dopamine depletion. We quantified the global stability of the network through the topography of the landscape in terms of the barrier height, which is defined as the potential difference between the maximum potential inside the ring and the minimum potential along the ring. Both a higher barrier and a larger flux originated from detailed balance breaking result in more stable oscillations. Meanwhile, more energy is consumed to support the increasing flux. Global sensitivity analysis on the landscape topography and flux indicates how changes in underlying neural network regulatory wirings and external inputs influence the dynamics of the system. We validated two of the main hypotheses(direct inhibition hypothesis and output activation hypothesis on the therapeutic mechanism of deep brain stimulation (DBS. We found GPe appears to be another effective stimulated target for DBS besides GPi and STN. Our approach provides a general way to quantitatively explore neural networks and may

  6. Inventory of gas flux measurements from volcanoes of the global Network for Observation of Volcanic and Atmospheric Change (NOVAC)

    Science.gov (United States)

    Galle, B.; Arellano, S.; Norman, P.; Conde, V.

    2012-04-01

    NOVAC, the Network for Observation of Volcanic and Atmospheric Change, was initiated in 2005 as a 5-year-long project financed by the European Union. Its main purpose is to create a global network for the monitoring and research of volcanic atmospheric plumes and related geophysical phenomena by using state-of-the-art spectroscopic remote sensing technology. Up to 2012, 64 instruments have been installed at 24 volcanoes in 13 countries of Latin America, Italy, Democratic Republic of Congo, Reunion, Iceland, and Philippines, and efforts are being done to expand the network to other active volcanic zones. NOVAC has been a pioneer initiative in the community of volcanologists and embraces the objectives of the Word Organization of Volcano Observatories (WOVO) and the Global Earth Observation System of Systems (GEOSS). In this contribution, we present the results of the measurements of SO2 gas fluxes carried out within NOVAC, which for some volcanoes represent a record of more than 7 years of continuous monitoring. The network comprises some of the most strongly degassing volcanoes in the world, covering a broad range of tectonic settings, levels of unrest, and potential risk. We show a global perspective of the output of volcanic gas from the covered regions, specific trends of degassing for a few selected volcanoes, and the significance of the database for further studies in volcanology and other geosciences.

  7. Flux resistance of the various optical components of neodymium laser networks

    International Nuclear Information System (INIS)

    Novaro, M.; Lauriou, J.; Chesnot, J.

    1978-01-01

    Flux resistance of optical components used in Nd +++ doped glass power laser networks is the main point. We tried to explain here the degradation processes of these different components: bare glass, metallic mirrors, multidielectric mirrors and polarizers, apodisors. Measurement data on a lot of samples are presented. Comparison between different proceedings allowing reflection and polarization of a laser beam shows the advantage of multidielectric coatings [fr

  8. Current flow in random resistor networks: the role of percolation in weak and strong disorder.

    Science.gov (United States)

    Wu, Zhenhua; López, Eduardo; Buldyrev, Sergey V; Braunstein, Lidia A; Havlin, Shlomo; Stanley, H Eugene

    2005-04-01

    We study the current flow paths between two edges in a random resistor network on a L X L square lattice. Each resistor has resistance e(ax) , where x is a uniformly distributed random variable and a controls the broadness of the distribution. We find that: (a) The scaled variable u identical with u congruent to L/a(nu) , where nu is the percolation connectedness exponent, fully determines the distribution of the current path length l for all values of u . For u > 1, the behavior corresponds to the weak disorder limit and l scales as l approximately L, while for u < 1 , the behavior corresponds to the strong disorder limit with l approximately L(d(opt) ), where d(opt) =1.22+/-0.01 is the optimal path exponent. (b) In the weak disorder regime, there is a length scale xi approximately a(nu), below which strong disorder and critical percolation characterize the current path.

  9. Strong authentication of remote users over insecure networks by using fingerprint-biometric and smart cards

    Science.gov (United States)

    Khan, Muhammad K.; Zhang, Jiashu

    2006-04-01

    Recently, Lee et al. and Lin-Lai proposed fingerprint-based remote user authentication schemes using smart cards. We demonstrate that their schemes are vulnerable and susceptible to the attack and have practical pitfalls. Their schemes perform only unilateral authentication (only client authentication) and there is no mutual authentication between user and remote system, so their schemes suscept from the server spoofing attack. To overcome the flaw, we present a strong remote user authentication scheme by using fingerprint-biometric and smart cards. The proposed scheme is an extended and generalized form of ElGamal's signature scheme whose security is based on discrete logarithm problem, which is not yet forged. Proposed scheme not only overcome drawbacks and problems of previous schemes, but also provide a strong authentication of remote users over insecure network. In addition, computational costs and efficiency of the proposed scheme are better than other related schemes.

  10. Flux balance analysis of ammonia assimilation network in E. coli predicts preferred regulation point.

    Directory of Open Access Journals (Sweden)

    Lu Wang

    Full Text Available Nitrogen assimilation is a critical biological process for the synthesis of biomolecules in Escherichia coli. The central ammonium assimilation network in E. coli converts carbon skeleton α-ketoglutarate and ammonium into glutamate and glutamine, which further serve as nitrogen donors for nitrogen metabolism in the cell. This reaction network involves three enzymes: glutamate dehydrogenase (GDH, glutamine synthetase (GS and glutamate synthase (GOGAT. In minimal media, E. coli tries to maintain an optimal growth rate by regulating the activity of the enzymes to match the availability of the external ammonia. The molecular mechanism and the strategy of the regulation in this network have been the research topics for many investigators. In this paper, we develop a flux balance model for the nitrogen metabolism, taking into account of the cellular composition and biosynthetic requirements for nitrogen. The model agrees well with known experimental results. Specifically, it reproduces all the (15N isotope labeling experiments in the wild type and the two mutant (ΔGDH and ΔGOGAT strains of E. coli. Furthermore, the predicted catalytic activities of GDH, GS and GOGAT in different ammonium concentrations and growth rates for the wild type, ΔGDH and ΔGOGAT strains agree well with the enzyme concentrations obtained from western blots. Based on this flux balance model, we show that GS is the preferred regulation point among the three enzymes in the nitrogen assimilation network. Our analysis reveals the pattern of regulation in this central and highly regulated network, thus providing insights into the regulation strategy adopted by the bacteria. Our model and methods may also be useful in future investigations in this and other networks.

  11. Prediction of Greenhouse Gas (GHG) Fluxes from Coastal Salt Marshes using Artificial Neural Network

    Science.gov (United States)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2017-12-01

    Coastal salt marshes are among the most productive ecosystems on earth. Given the complex interactions between ambient environment and ecosystem biological exchanges, it is difficult to predict the salt marsh greenhouse gas (GHG) fluxes (CO2 and CH4) from their environmental drivers. In this study, we developed an artificial neural network (ANN) model to robustly predict the salt marsh GHG fluxes using a limited number of input variables (photosynthetically active radiation, soil temperature and porewater salinity). The ANN parameterization involved an optimized 3-layer feed forward Levenberg-Marquardt training algorithm. Four tidal salt marshes of Waquoit Bay, MA — incorporating a gradient in land-use, salinity and hydrology — were considered as the case study sites. The wetlands were dominated by native Spartina Alterniflora, and characterized by high salinity and frequent flooding. The developed ANN model showed a good performance (training R2 = 0.87 - 0.96; testing R2 = 0.84 - 0.88) in predicting the fluxes across the case study sites. The model can be used to estimate wetland GHG fluxes and potential carbon balance under different IPCC climate change and sea level rise scenarios. The model can also aid the development of GHG offset protocols to set monitoring guidelines for restoration of coastal salt marshes.

  12. The Engineering Strong Ground Motion Network of the National Autonomous University of Mexico

    Science.gov (United States)

    Velasco Miranda, J. M.; Ramirez-Guzman, L.; Aguilar Calderon, L. A.; Almora Mata, D.; Ayala Hernandez, M.; Castro Parra, G.; Molina Avila, I.; Mora, A.; Torres Noguez, M.; Vazquez Larquet, R.

    2014-12-01

    The coverage, design, operation and monitoring capabilities of the strong ground motion program at the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM) is presented. Started in 1952, the seismic instrumentation intended initially to bolster earthquake engineering projects in Mexico City has evolved into the largest strong ground motion monitoring system in the region. Today, it provides information not only to engineering projects, but also to the near real-time risk mitigation systems of the country, and enhances the general understanding of the effects and causes of earthquakes in Mexico. The IE network includes more than 100 free-field stations and several buildings, covering the largest urban centers and zones of significant seismicity in Central Mexico. Of those stations, approximately one-fourth send the observed acceleration to a processing center in Mexico City continuously, and the rest require either periodic visits for the manual recovery of the data or remote interrogation, for later processing and cataloging. In this research, we document the procedures and telecommunications systems used systematically to recover information. Additionally, we analyze the spatial distribution of the free-field accelerographs, the quality of the instrumentation, and the recorded ground motions. The evaluation criteria are based on the: 1) uncertainty in the generation of ground motion parameter maps due to the spatial distribution of the stations, 2) potential of the array to provide localization and magnitude estimates for earthquakes with magnitudes greater than Mw 5, and 3) adequacy of the network for the development of Ground Motion Prediction Equations due to intra-plate and intra-slab earthquakes. We conclude that the monitoring system requires a new redistribution, additional stations, and a substantial improvement in the instrumentation and telecommunications. Finally, we present an integral plan to improve the current network

  13. MAVEN Observations of Magnetic Flux Ropes with a Strong Field Amplitude in the Martian Magnetosheath During the ICME Passage on 8 March 2015

    Science.gov (United States)

    Hara, Takuya; Luhmann, Janet G.; Halekas, Jasper S.; Espley, Jared R.; Seki, Kanako; Brain, David A.; Hasegawa, Hiroshi; McFadden, James P.; Mitchell, David L.; Mazelle, Christian; hide

    2016-01-01

    We present initial results of strong field amplitude flux ropes observed by Mars Atmosphere and Volatile EvolutioN (MAVEN) mission around Mars during the interplanetary coronal mass ejection (ICME) passage on 8 March 2015. The observed durations were shorter than 5 s and the magnetic field magnitudes peaked above 80 nT, which is a few times stronger than those usually seen in the magnetosheath barrier. These are the first unique observations that MAVEN detected such flux ropes with a strong field at high altitudes (greater than 5000 km). Across these structures, MAVEN coincidentally measured planetary heavy ions with energies higher than a few keV. The spatial properties inferred from the Grad-Shafranov equation suggest that the speed of the structure can be estimated at least an order of magnitude faster than those previously reported quiet-time counterparts. Hence, the space weather event like the ICME passage can be responsible for generating the observed strong field, fast-traveling flux ropes.

  14. Site classification of Indian strong motion network using response spectra ratios

    Science.gov (United States)

    Chopra, Sumer; Kumar, Vikas; Choudhury, Pallabee; Yadav, R. B. S.

    2018-03-01

    In the present study, we tried to classify the Indian strong motion sites spread all over Himalaya and adjoining region, located on varied geological formations, based on response spectral ratio. A total of 90 sites were classified based on 395 strong motion records from 94 earthquakes recorded at these sites. The magnitude of these earthquakes are between 2.3 and 7.7 and the hypocentral distance for most of the cases is less than 50 km. The predominant period obtained from response spectral ratios is used to classify these sites. It was found that the shape and predominant peaks of the spectra at these sites match with those in Japan, Italy, Iran, and at some of the sites in Europe and the same classification scheme can be applied to Indian strong motion network. We found that the earlier schemes based on description of near-surface geology, geomorphology, and topography were not able to capture the effect of sediment thickness. The sites are classified into seven classes (CL-I to CL-VII) with varying predominant periods and ranges as proposed by Alessandro et al. (Bull Seismol Soc Am 102:680-695 2012). The effect of magnitudes and hypocentral distances on the shape and predominant peaks were also studied and found to be very small. The classification scheme is robust and cost-effective and can be used in region-specific attenuation relationships for accounting local site effect.

  15. Mechanically strong dual responsive nanocomposite double network hydrogel for controlled drug release of asprin.

    Science.gov (United States)

    Chen, Yang; Song, Guocheng; Yu, Junrong; Wang, Yan; Zhu, Jing; Hu, Zuming

    2018-03-08

    Mechanically strong dual/multi-stimuli-responsive smart hydrogels have attracted extensive attention in recent years. A novel tough, mechanical strong and biocompatible dual pH- and temperature- responsive poly (N-isopropylacrylamide) /clay (laponite XLG)/carboxymethyl chitosan (CMCTs) /genipin nanocomposite double network hydrogel was synthesized through a facile, one-pot free radical polymerization initiated by the ultraviolet light, using clay and the natural molecular-genipin as the cross-linkers instead of toxic organic molecules. Crucial factors, the content of CMCTs, clay and genipin, for synthesizing the mechanical strong hydrogels were investigated. When the content of CMCTs, clay and genipin were 5 wt%, 33.3 wt% and 0.175 wt%, respectively (to the weight of N-isopropylacrylamide), these prepared hydrogels exhibited a high tensile strength of 137.9 kPa at the failure strain of 446.1%. Furthermore, the relationship between swelling and deswelling rate of the synthesized hydrogels and the above crucial factors were also studied. Besides, the synthesized hydrogels displayed a considerable controlled release property of asprin by tuning their inner crosslink density. Owing to this property, they may have great potential in the drug delivery systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Role of Strong versus Weak Networks in Small Business Growth in an Emerging Economy

    Directory of Open Access Journals (Sweden)

    M. Kamil Kozan

    2014-02-01

    Full Text Available The study tests whether strong rather than weak ties account for small business growth in Turkey. Data were collected by means of a questionnaire filled out by the owners of small firms operating in four cities. Growth is comprised of two main areas, production expansion and knowledge acquisition. Results show that strong ties are positively related to both types of growth. In contrast, loose ties have no effect on small business growth in either area. This finding is attributed to the influence of the collectivistic nature of the mainstream Turkish culture, where owners of small businesses are likely to rely on in-groups rather than out-groups for advice and for financial support. Implications of relative absence of weak ties for small business growth and innovation in emerging economies are discussed. The findings suggest that culture should be included as a contingency variable in future studies of network strength and growth relationship. The paper also discusses the possible moderating role of affective and cognition-based trust in the relation of strong and weak ties to small business growth.

  17. Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803

    DEFF Research Database (Denmark)

    Montagud, Arnau; Zelezniak, Aleksej; Navarro, Emilio

    2011-01-01

    Synechocystis sp. PCC6803 is a model cyanobacterium capable of producing biofuels with CO2 as carbon source and with its metabolism fueled by light, for which it stands as a potential production platform of socio-economic importance. Compilation and characterization of Synechocystis genome...... networks, surrounded by a stable core of pathways leading to biomass building blocks. This analysis identified potential bottlenecks for hydrogen and ethanol production. Integration of transcriptomic data with the Synechocystis flux coupling networks lead to identification of reporter flux coupling pairs...... and reporter flux coupling groups - regulatory hot spots during metabolic shifts triggered by the availability of light. Overall, flux coupling analysis provided insight into the structural organization of Synechocystis sp. PCC6803 metabolic network toward designing of a photosynthesis-based production...

  18. Coupling Flux Towers and Networks with Proximal and Remote Sensing Data: New Tools to Collect and Share Time-Synchronized Hourly Fluxes

    Science.gov (United States)

    Burba, George; Avenson, Tom; Burkart, Andreas; Gamon, John; Guan, Kaiyu; Julitta, Tommaso; Pastorello, Gilberto; Sakowska, Karolina

    2017-04-01

    Multiple hundreds of flux towers are presently operational as standalone projects and as parts of larger networks. However, the vast majority of these towers do not allow straight-forward coupling with satellite data, and even fewer have optical sensors for validation of satellite products and upscaling from field to regional levels. In 2016, new tools to collect, process, and share time-synchronized flux data from multiple towers were developed and deployed globally. Originally designed to automate site and data management, these new tools can also be effective in coupling tower data with satellite data due to the following present capabilities: Fully automated FluxSuite system combines hardware, software and web-services, and does not require an expert to run it It can be incorporated into a new flux station or added to a present station, using weatherized remotely-accessible microcomputer, SmartFlux2 It utilizes EddyPro software to calculate fully-processed fluxes and footprints in near-realtime, alongside radiation, optical, weather and soil data All site data are merged into a single quality-controlled file timed using PTP time protocol Data from optical sensors can be integrated into this complete dataset via compatible dataloggers Multiple stations can be linked into time-synchronized network with automated reports and email alerts visible to PIs in real-time Remote sensing researchers without stations can form "virtual networks" of stations by collaborating with tower PIs from different physical networks The present system can then be utilized to couple ground data with satellite data via the following proposed concept: GPS-driven PTP protocol will synchronize instrumentation within the station, different stations with each other, and all of these to satellite data to precisely align optical and flux data in time Footprint size and coordinates computed and stored with flux data will help correctly align footprints and satellite motion to precisely align

  19. Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux

    DEFF Research Database (Denmark)

    Andersen, Heidi Winterberg; Solem, Christian; Hammer, Karin

    2001-01-01

    reduced. Surprisingly, the mutants still showed homolactic fermentation, which indicated that the limitation was different from standard glucose-limited conditions, One explanation could be that the reduced activity of phosphofructokinase resulted in the accumulation of sugar-phosphates. Indeed, when one...... kinase and lactate dehydrogenase remained closer to the wild-type level. In defined medium supplemented with glucose, the growth rate of the mutants was reduced to 57 to 70% of wild-type levels and the glycolytic flux was reduced to 62 to 76% of wild-type levels. In complex medium growth was even further...... of the mutants was starved for glucose in glucose-limited chemostat, the growth rate could gradually be increased to 195% of the growth fate observed in glucose-saturated batch culture, suggesting that phosphofructokinase does affect the concentration of upstream metabolites. The pools of glucose-6- phosphate...

  20. E-SAP: Efficient-Strong Authentication Protocol for Healthcare Applications Using Wireless Medical Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hoon-Jae Lee

    2012-02-01

    Full Text Available A wireless medical sensor network (WMSN can sense humans’ physiological signs without sacrificing patient comfort and transmit patient vital signs to health professionals’ hand-held devices. The patient physiological data are highly sensitive and WMSNs are extremely vulnerable to many attacks. Therefore, it must be ensured that patients’ medical signs are not exposed to unauthorized users. Consequently, strong user authentication is the main concern for the success and large scale deployment of WMSNs. In this regard, this paper presents an efficient, strong authentication protocol, named E-SAP, for healthcare application using WMSNs. The proposed E-SAP includes: (1 a two-factor (i.e., password and smartcard professional authentication; (2 mutual authentication between the professional and the medical sensor; (3 symmetric encryption/decryption for providing message confidentiality; (4 establishment of a secure session key at the end of authentication; and (5 professionals can change their password. Further, the proposed protocol requires three message exchanges between the professional, medical sensor node and gateway node, and achieves efficiency (i.e., low computation and communication cost. Through the formal analysis, security analysis and performance analysis, we demonstrate that E-SAP is more secure against many practical attacks, and allows a tradeoff between the security and the performance cost for healthcare application using WMSNs.

  1. The Quake-Catcher Network: A Community-Led, Strong-Motion Network with Implications for Earthquake Advanced Alert

    Science.gov (United States)

    Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Jakka, R. S.; Chung, A. I.

    2009-12-01

    The goal of the Quake-Catcher Network (QCN) is to dramatically increase the number of strong-motion observations by exploiting recent advances in sensing technologies and cyberinfrastructure. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers are very low cost (50-100), interface to any desktop computer via USB cable, and provide high-quality acceleration data. Preliminary shake table tests show the MEMS accelerometers can record high-fidelity seismic data and provide linear phase and amplitude response over a wide frequency range. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Volunteer computing also allows for rapid transfer of metadata, such as that used to rapidly determine the magnitude and location of an earthquake, from participating stations. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1000 stations. Initial analysis shows metadata are received within 1-14 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. Currently, we are testing a series of triggering algorithms to maximize the number of earthquakes captured while minimizing false triggers. We are also testing algorithms to automatically detect P- and S-wave arrivals in real time. Trigger times, wave amplitude, and station information are currently uploaded to the server for each trigger. Future work will identify additional metadata useful for quickly determining earthquake location and magnitude. The increased strong-motion observations made possible by QCN will greatly augment the capability of seismic networks to quickly estimate the location and magnitude of an earthquake for advanced alert to the public. In addition, the dense waveform observations will provide improved source imaging of a rupture in near-real-time. These

  2. Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks

    Science.gov (United States)

    Petrillo, C. E.; Tortora, C.; Chatterjee, S.; Vernardos, G.; Koopmans, L. V. E.; Verdoes Kleijn, G.; Napolitano, N. R.; Covone, G.; Schneider, P.; Grado, A.; McFarland, J.

    2017-11-01

    The volume of data that will be produced by new-generation surveys requires automatic classification methods to select and analyse sources. Indeed, this is the case for the search for strong gravitational lenses, where the population of the detectable lensed sources is only a very small fraction of the full source population. We apply for the first time a morphological classification method based on a Convolutional Neural Network (CNN) for recognizing strong gravitational lenses in 255 deg2 of the Kilo Degree Survey (KiDS), one of the current-generation optical wide surveys. The CNN is currently optimized to recognize lenses with Einstein radii ≳1.4 arcsec, about twice the r-band seeing in KiDS. In a sample of 21 789 colour-magnitude selected luminous red galaxies (LRGs), of which three are known lenses, the CNN retrieves 761 strong-lens candidates and correctly classifies two out of three of the known lenses. The misclassified lens has an Einstein radius below the range on which the algorithm is trained. We down-select the most reliable 56 candidates by a joint visual inspection. This final sample is presented and discussed. A conservative estimate based on our results shows that with our proposed method it should be possible to find ∼100 massive LRG-galaxy lenses at z ≲ 0.4 in KiDS when completed. In the most optimistic scenario, this number can grow considerably (to maximally ∼2400 lenses), when widening the colour-magnitude selection and training the CNN to recognize smaller image-separation lens systems.

  3. Flux-quantization effects in disordered normal metal rings and superconducting networks

    International Nuclear Information System (INIS)

    Li, Qiming.

    1989-01-01

    The effects of the magnetic flux on the properties of disordered normal metal rings and bond or site diluted two-dimensional superconducting networks are investigated theoretically, with an emphasis on the quantum coherence of the electrons and the localization nature in the disordered systems. The conductance of disordered metal rings in magnetic field is obtained via the Landauer's formula through calculations of the localization length L c . The important role of the ensemble averaging and the self-averaging to obtain the half-flux-quantum h/2e conductance oscillation is demonstrated unambiguously in both rings of a strictly one-dimensional geometry and rings with a finite width. The amplitude of the localization length oscillation is found to follow a universal relation for all the numerical data: Δ(L c /L) = α(L c /L) 2 . L is the radius of the ring. The expected universal conductance fluctuations are observed for L c /L ∼ 1. For L c > L, much larger oscillation amplitudes are obtained. In the case of two-dimensional site or bond percolation superconducting networks, the nature of the eigenstates and the effects on the superconducting-to-normal phase boundary is examined by finite-size transfer matrix calculations within the mean-field Ginzburg-Landau theory of second order phase transitions

  4. Determination of Reactivity and Neutron Flux Using Modified Neural Network for HTGR

    Directory of Open Access Journals (Sweden)

    M. Subekti

    2017-08-01

    Full Text Available Nuclear kinetic calculations based on point kinetic model have been generally applied as the standard method for neutronics codes. As the central control rod (C-CR withdrawal test has demonstrated in a prismatic core type high-temperature gas-cooled reactor (HTGR named High Temperature Engineering Test Reactor (HTTR, the transient calculation of kinetic parameter, reactivity, and neutron fluxes, requires a new method to shorten calculation-process time. Development of neural network method was applied to point kinetic model as the necessity of real-time calculation that could work in parallel with the digital reactivity meter. The combination of Time Delayed Neural Network (TDNN and Jordan Recurrent Neural Network (Jordan RNN named TD-Jordan RNN was the result of the modeling approach. The application of TD-Jordan RNN with adequate learning, tested offline, determined results accurately even when signal inputs were noisy. Furthermore, the preprocessing for neural network input utilized noise reduction as one of the equations to transform two of twelve time-delayed inputs into power corrected inputs.

  5. Random sampling of elementary flux modes in large-scale metabolic networks.

    Science.gov (United States)

    Machado, Daniel; Soons, Zita; Patil, Kiran Raosaheb; Ferreira, Eugénio C; Rocha, Isabel

    2012-09-15

    The description of a metabolic network in terms of elementary (flux) modes (EMs) provides an important framework for metabolic pathway analysis. However, their application to large networks has been hampered by the combinatorial explosion in the number of modes. In this work, we develop a method for generating random samples of EMs without computing the whole set. Our algorithm is an adaptation of the canonical basis approach, where we add an additional filtering step which, at each iteration, selects a random subset of the new combinations of modes. In order to obtain an unbiased sample, all candidates are assigned the same probability of getting selected. This approach avoids the exponential growth of the number of modes during computation, thus generating a random sample of the complete set of EMs within reasonable time. We generated samples of different sizes for a metabolic network of Escherichia coli, and observed that they preserve several properties of the full EM set. It is also shown that EM sampling can be used for rational strain design. A well distributed sample, that is representative of the complete set of EMs, should be suitable to most EM-based methods for analysis and optimization of metabolic networks. Source code for a cross-platform implementation in Python is freely available at http://code.google.com/p/emsampler. dmachado@deb.uminho.pt Supplementary data are available at Bioinformatics online.

  6. Dramatic reduction of dimensionality in large biochemical networks owing to strong pair correlations

    Science.gov (United States)

    Dworkin, Michael; Mukherjee, Sayak; Jayaprakash, Ciriyam; Das, Jayajit

    2012-01-01

    Large multi-dimensionality of high-throughput datasets pertaining to cell signalling and gene regulation renders it difficult to extract mechanisms underlying the complex kinetics involving various biochemical compounds (e.g. proteins and lipids). Data-driven models often circumvent this difficulty by using pair correlations of the protein expression levels to produce a small number (fewer than 10) of principal components, each a linear combination of the concentrations, to successfully model how cells respond to different stimuli. However, it is not understood if this reduction is specific to a particular biological system or to nature of the stimuli used in these experiments. We study temporal changes in pair correlations, described by the covariance matrix, between concentrations of different molecular species that evolve following deterministic mass-action kinetics in large biologically relevant reaction networks and show that this dramatic reduction of dimensions (from hundreds to less than five) arises from the strong correlations between different species at any time and is insensitive to the form of the nonlinear interactions, network architecture, and to a wide range of values of rate constants and concentrations. We relate temporal changes in the eigenvalue spectrum of the covariance matrix to low-dimensional, local changes in directions of the system trajectory embedded in much larger dimensions using elementary differential geometry. We illustrate how to extract biologically relevant insights such as identifying significant timescales and groups of correlated chemical species from our analysis. Our work provides for the first time, to our knowledge, a theoretical underpinning for the successful experimental analysis and points to a way to extract mechanisms from large-scale high-throughput datasets. PMID:22378749

  7. Dramatic reduction of dimensionality in large biochemical networks owing to strong pair correlations.

    Science.gov (United States)

    Dworkin, Michael; Mukherjee, Sayak; Jayaprakash, Ciriyam; Das, Jayajit

    2012-08-07

    Large multi-dimensionality of high-throughput datasets pertaining to cell signalling and gene regulation renders it difficult to extract mechanisms underlying the complex kinetics involving various biochemical compounds (e.g. proteins and lipids). Data-driven models often circumvent this difficulty by using pair correlations of the protein expression levels to produce a small number (fewer than 10) of principal components, each a linear combination of the concentrations, to successfully model how cells respond to different stimuli. However, it is not understood if this reduction is specific to a particular biological system or to nature of the stimuli used in these experiments. We study temporal changes in pair correlations, described by the covariance matrix, between concentrations of different molecular species that evolve following deterministic mass-action kinetics in large biologically relevant reaction networks and show that this dramatic reduction of dimensions (from hundreds to less than five) arises from the strong correlations between different species at any time and is insensitive to the form of the nonlinear interactions, network architecture, and to a wide range of values of rate constants and concentrations. We relate temporal changes in the eigenvalue spectrum of the covariance matrix to low-dimensional, local changes in directions of the system trajectory embedded in much larger dimensions using elementary differential geometry. We illustrate how to extract biologically relevant insights such as identifying significant timescales and groups of correlated chemical species from our analysis. Our work provides for the first time, to our knowledge, a theoretical underpinning for the successful experimental analysis and points to a way to extract mechanisms from large-scale high-throughput datasets.

  8. Interpreting canopy development and physiology using a European phenology camera network at flux sites

    DEFF Research Database (Denmark)

    Wingate, L.; Ogeé, J.; Cremonese, E.

    2015-01-01

    Plant phenological development is orchestrated through subtle changes in photoperiod, temperature, soil moisture and nutrient availability. Presently, the exact timing of plant development stages and their response to climate and management practices are crudely represented in land surface models...... cameras installed on towers across Europe above deciduous and evergreen forests, grasslands and croplands, where vegetation and atmosphere CO2 fluxes are measured continuously. Using colour indices from digital images and using piecewise regression analysis of time series, we explored whether key changes...... in canopy phenology could be detected automatically across different land use types in the network. The piecewise regression approach could capture the start and end of the growing season, in addition to identifying striking changes in colour signals caused by flowering and management practices...

  9. Amino Acid Flux from Metabolic Network Benefits Protein Translation: the Role of Resource Availability.

    Science.gov (United States)

    Hu, Xiao-Pan; Yang, Yi; Ma, Bin-Guang

    2015-06-09

    Protein translation is a central step in gene expression and affected by many factors such as codon usage bias, mRNA folding energy and tRNA abundance. Despite intensive previous studies, how metabolic amino acid supply correlates with protein translation efficiency remains unknown. In this work, we estimated the amino acid flux from metabolic network for each protein in Escherichia coli and Saccharomyces cerevisiae by using Flux Balance Analysis. Integrated with the mRNA expression level, protein abundance and ribosome profiling data, we provided a detailed description of the role of amino acid supply in protein translation. Our results showed that amino acid supply positively correlates with translation efficiency and ribosome density. Moreover, with the rank-based regression model, we found that metabolic amino acid supply facilitates ribosome utilization. Based on the fact that the ribosome density change of well-amino-acid-supplied genes is smaller than poorly-amino-acid-supply genes under amino acid starvation, we reached the conclusion that amino acid supply may buffer ribosome density change against amino acid starvation and benefit maintaining a relatively stable translation environment. Our work provided new insights into the connection between metabolic amino acid supply and protein translation process by revealing a new regulation strategy that is dependent on resource availability.

  10. A kinetic model describes metabolic response to perturbations and distribution of flux control in the benzenoid network of Petunia hybrida.

    Science.gov (United States)

    Colón, Amy Marshall; Sengupta, Neelanjan; Rhodes, David; Dudareva, Natalia; Morgan, John

    2010-04-01

    In recent years there has been much interest in the genetic enhancement of plant metabolism; however, attempts at genetic modification are often unsuccessful due to an incomplete understanding of network dynamics and their regulatory properties. Kinetic modeling of plant metabolic networks can provide predictive information on network control and response to genetic perturbations, which allow estimation of flux at any concentration of intermediate or enzyme in the system. In this research, a kinetic model of the benzenoid network was developed to simulate whole network responses to different concentrations of supplied phenylalanine (Phe) in petunia flowers and capture flux redistributions caused by genetic manipulations. Kinetic parameters were obtained by network decomposition and non-linear least squares optimization of data from petunia flowers supplied with either 75 or 150 mm(2)H(5)-Phe. A single set of kinetic parameters simultaneously accommodated labeling and pool size data obtained for all endogenous and emitted volatiles at the two concentrations of supplied (2)H(5)-Phe. The generated kinetic model was validated using flowers from transgenic petunia plants in which benzyl CoA:benzyl alcohol/phenylethanol benzoyltransferase (BPBT) was down-regulated via RNAi. The determined in vivo kinetic parameters were used for metabolic control analysis, in which flux control coefficients were calculated for fluxes around the key branch point at Phe and revealed that phenylacetaldehyde synthase activity is the primary controlling factor for the phenylacetaldehyde branch of the benzenoid network. In contrast, control of flux through the beta-oxidative and non-beta-oxidative pathways is highly distributed.

  11. Interpreting canopy development and physiology using a European phenology camera network at flux sites

    Science.gov (United States)

    Wingate, L.; Ogée, J.; Cremonese, E.; Filippa, G.; Mizunuma, T.; Migliavacca, M.; Moisy, C.; Wilkinson, M.; Moureaux, C.; Wohlfahrt, G.; Hammerle, A.; Hörtnagl, L.; Gimeno, C.; Porcar-Castell, A.; Galvagno, M.; Nakaji, T.; Morison, J.; Kolle, O.; Knohl, A.; Kutsch, W.; Kolari, P.; Nikinmaa, E.; Ibrom, A.; Gielen, B.; Eugster, W.; Balzarolo, M.; Papale, D.; Klumpp, K.; Köstner, B.; Grünwald, T.; Joffre, R.; Ourcival, J.-M.; Hellstrom, M.; Lindroth, A.; George, C.; Longdoz, B.; Genty, B.; Levula, J.; Heinesch, B.; Sprintsin, M.; Yakir, D.; Manise, T.; Guyon, D.; Ahrends, H.; Plaza-Aguilar, A.; Guan, J. H.; Grace, J.

    2015-10-01

    Plant phenological development is orchestrated through subtle changes in photoperiod, temperature, soil moisture and nutrient availability. Presently, the exact timing of plant development stages and their response to climate and management practices are crudely represented in land surface models. As visual observations of phenology are laborious, there is a need to supplement long-term observations with automated techniques such as those provided by digital repeat photography at high temporal and spatial resolution. We present the first synthesis from a growing observational network of digital cameras installed on towers across Europe above deciduous and evergreen forests, grasslands and croplands, where vegetation and atmosphere CO2 fluxes are measured continuously. Using colour indices from digital images and using piecewise regression analysis of time series, we explored whether key changes in canopy phenology could be detected automatically across different land use types in the network. The piecewise regression approach could capture the start and end of the growing season, in addition to identifying striking changes in colour signals caused by flowering and management practices such as mowing. Exploring the dates of green-up and senescence of deciduous forests extracted by the piecewise regression approach against dates estimated from visual observations, we found that these phenological events could be detected adequately (RMSE pigment concentrations. Using the model we were able to explain why this spring maximum in green signal is often observed out of phase with the maximum period of canopy photosynthesis in ecosystems across Europe. Coupling such quasi-continuous digital records of canopy colours with co-located CO2 flux measurements will improve our understanding of how changes in growing season length are likely to shape the capacity of European ecosystems to sequester CO2 in the future.

  12. Networked Identities: Understanding Different Types of Social Organisation and Movements Between Strong and Weak Ties in Networked Environments

    OpenAIRE

    Ryberg, Thomas; Larsen, Malene Charlotte

    2006-01-01

    In this article we take up a critique of the concept of Communities of Practice voiced by several authors, who suggest that network may provide a better metaphor to understand social forms of organisation and learning. This critique we situate within a broader theoretical movement in socio-cultural learning theories. From this we identify some theoretical and analytical challenges to the network metaphor, which we explore and elaborate through an analysis of a Danish social networking site.

  13. Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans

    Science.gov (United States)

    Watson, Emma; Olin-Sandoval, Viridiana; Hoy, Michael J; Li, Chi-Hua; Louisse, Timo; Yao, Victoria; Mori, Akihiro; Holdorf, Amy D; Troyanskaya, Olga G; Ralser, Markus; Walhout, Albertha JM

    2016-01-01

    Metabolic network rewiring is the rerouting of metabolism through the use of alternate enzymes to adjust pathway flux and accomplish specific anabolic or catabolic objectives. Here, we report the first characterization of two parallel pathways for the breakdown of the short chain fatty acid propionate in Caenorhabditis elegans. Using genetic interaction mapping, gene co-expression analysis, pathway intermediate quantification and carbon tracing, we uncover a vitamin B12-independent propionate breakdown shunt that is transcriptionally activated on vitamin B12 deficient diets, or under genetic conditions mimicking the human diseases propionic- and methylmalonic acidemia, in which the canonical B12-dependent propionate breakdown pathway is blocked. Our study presents the first example of transcriptional vitamin-directed metabolic network rewiring to promote survival under vitamin deficiency. The ability to reroute propionate breakdown according to B12 availability may provide C. elegans with metabolic plasticity and thus a selective advantage on different diets in the wild. DOI: http://dx.doi.org/10.7554/eLife.17670.001 PMID:27383050

  14. Direct calculation of elementary flux modes satisfying several biological constraints in genome-scale metabolic networks.

    Science.gov (United States)

    Pey, Jon; Planes, Francisco J

    2014-08-01

    The concept of Elementary Flux Mode (EFM) has been widely used for the past 20 years. However, its application to genome-scale metabolic networks (GSMNs) is still under development because of methodological limitations. Therefore, novel approaches are demanded to extend the application of EFMs. A novel family of methods based on optimization is emerging that provides us with a subset of EFMs. Because the calculation of the whole set of EFMs goes beyond our capacity, performing a selective search is a proper strategy. Here, we present a novel mathematical approach calculating EFMs fulfilling additional linear constraints. We validated our approach based on two metabolic networks in which all the EFMs can be obtained. Finally, we analyzed the performance of our methodology in the GSMN of the yeast Saccharomyces cerevisiae by calculating EFMs producing ethanol with a given minimum carbon yield. Overall, this new approach opens new avenues for the calculation of EFMs in GSMNs. Matlab code is provided in the supplementary online materials fplanes@ceit.es. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Non-equilibrium physics of neural networks for leaning, memory and decision making: landscape and flux perspectives

    Science.gov (United States)

    Wang, Jin

    Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, can be described by attractor dynamics. We developed a theoretical framework for global dynamics by quantifying the landscape associated with the steady state probability distributions and steady state curl flux, measuring the degree of non-equilibrium through detailed balance breaking. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. Both landscape and flux determine the kinetic paths and speed of decision making. The kinetics and global stability of decision making are explored by quantifying the landscape topography through the barrier heights and the mean first passage time. The theoretical predictions are in agreement with experimental observations: more errors occur under time pressure. We quantitatively explored two mechanisms of the speed-accuracy tradeoff with speed emphasis and further uncovered the tradeoffs among speed, accuracy, and energy cost. Our results show an optimal balance among speed, accuracy, and the energy cost in decision making. We uncovered possible mechanisms of changes of mind and how mind changes improve performance in decision processes. Our landscape approach can help facilitate an understanding of the underlying physical mechanisms of cognitive processes and identify the key elements in neural networks.

  16. Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks

    Czech Academy of Sciences Publication Activity Database

    Papale, Dario; Black, T. A.; Carvalhais, N.; Cascatti, A.; Chen, J.; Jung, M.; Kiely, G.; Lasslop, G.; Mahecha, M.G.; Margolis, H.; Merbold, L.; Montagnani, L.; Moors, E.; Olesen, J. E.; Reichstein, M.; Tramontana, G.; Van Gorsel, E.; Wohlfahrt, G.; Ráduly, B.

    2015-01-01

    Roč. 120, č. 10 (2015), s. 1941-1957 ISSN 2169-8953 Institutional support: RVO:67179843 Keywords : upscaling * representativeness * gross primary production * latent heat * uncertainty * artificial neural networks Subject RIV: EH - Ecology, Behaviour Impact factor: 3.440, year: 2013

  17. Mechanically Strong Double Network Photocrosslinked Hydrogels from N, N-Dimethylacrylamide and Glycidyl Methacrylated Hyaluronan

    Science.gov (United States)

    Weng, Lihui; Gouldstone, Andrew; Wu, Yuhong; Chen, Weiliam

    2008-01-01

    Hyaluronan (HA) is a natural polysaccharide abundant in biological tissues and it can be modified to prepare biomaterials. In this work, HA modified with glycidyl methacrylate was photocrosslinked to form the first network (PHA), and then a series of highly porous PHA/N, N-dimethylacrylamide (DAAm) hydrogels (PHA/DAAm) with high mechanical strength were obtained by incorporating a second network of photocrosslinked DAAm into PHA network. Due to synergistic effect produced by double network (DN) structure, despite containing 90% of water, the resulting PHA/DAAm hydrogel showed a compressive modulus and a fracture stress over 0.5 MPa and 5.2 MPa, respectively. Compared to the photocrosslinked hyaluronan single network hydrogel, which is generally very brittle and fractures easily, the PHA/DAAm hydrogels are ductile. Mouse dermal fibroblast was used as a model cell line to validate in vitro non-cytotoxicity of the PHA/DAAm hydrogels. Cells deposited extracellular matrix on the surface of these hydrogels and this was confirmed by positive staining of Type I collagen by Sirius Red. The PHA/DAAm hydrogels were also resistant to biodegradation and largely retained their excellent mechanical properties even after two months of co-culturing with fibroblasts. PMID:18272215

  18. Effect of inter-fibre bonding on the fracture of fibrous networks with strong interactions

    DEFF Research Database (Denmark)

    Goutianos, Stergios; Mao, Rui; Peijs, Ton

    2017-01-01

    Abstract The mechanical response of cellulose nanopaper composites is investigated using a three-dimensional (3D) finite element fibrous network model with focus on the effect of inter-fibre bonds. It is found that the Young’s modulus and strength, for fixed fibre properties, are mainly controlle...

  19. Providing strong Security and high privacy in low-cost RFID networks

    DEFF Research Database (Denmark)

    David, Mathieu; Prasad, Neeli R.

    2009-01-01

    Since the dissemination of Radio Frequency IDentification (RFID) tags is getting larger and larger, the requirement for strong security and privacy is also increasing. Low-cost and ultra-low-cost tags are being implemented on everyday products, and their limited resources constraints the security...... algorithms to be designed especially for those tags. In this paper, a complete solution providing strong security and high privacy during the whole product lifetime is presented. Combining bit-wise operations and secret keys, the algorithm proposed addresses and solves all the common security attacks....

  20. Effects of strong network modifiers on Fe3+/Fe2+ in silicate melts: an experimental study

    Science.gov (United States)

    Borisov, Alexander; Behrens, Harald; Holtz, Francois

    2017-05-01

    The effect of CaO, Na2O, and K2O on ferric/ferrous ratio in model multicomponent silicate melts was investigated in the temperature range 1450-1550 °C at 1-atm total pressure in air. It is demonstrated that the addition of these network modifier cations results in an increase of Fe3+/Fe2+ ratio. The influence of network modifier cations on the ferric/ferrous ratio increases in the order Ca SiO2-TiO2-Al2O3-FeO-Fe2O3-MgO-CaO-Na2O-K2O-P2O5 melts at air conditions.

  1. Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Danna [Los Alamos National Laboratory; Peterson, Charles G [Los Alamos National Laboratory; Dallmann, Nicholas [Los Alamos National Laboratory; Hughes, Richard J [Los Alamos National Laboratory; Mccabe, Kevin P [Los Alamos National Laboratory; Nordholt, Jane E [Los Alamos National Laboratory; Tyagi, Hush T [Los Alamos National Laboratory; Peters, Nicholas A [TELCORDIA TECHNOLOGIES; Toliver, Paul [TELCORDIA TECHNOLOGIES; Chapman, Thomas E [TELCORDIA TECHNOLOGIES; Runser, Robert J [TELCORDIA TECHNOLOGIES; Mcnown, Scott R [TELCORDIA TECHNOLOGIES

    2008-01-01

    To move beyond dedicated links and networks, quantum communications signals must be integrated into networks carrying classical optical channels at power levels many orders of magnitude higher than the quantum signals themselves. We demonstrate transmission of a 1550-nm quantum channel with up to two simultaneous 200-GHz spaced classical telecom channels, using ROADM (reconfigurable optical <1dd drop multiplexer) technology for multiplexing and routing quantum and classical signals. The quantum channel is used to perform quantum key distribution (QKD) in the presence of noise generated as a by-product of the co-propagation of classical channels. We demonstrate that the dominant noise mechanism can arise from either four-wave mixing or spontaneous Raman scattering, depending on the optical path characteristics as well <1S the classical channel parameters. We quantity these impairments and discuss mitigation strategies.

  2. Strong geomagnetic activity forecast by neural networks under dominant southern orientation of the interplanetary magnetic field

    Czech Academy of Sciences Publication Activity Database

    Valach, F.; Bochníček, Josef; Hejda, Pavel; Revallo, M.

    2014-01-01

    Roč. 53, č. 4 (2014), s. 589-598 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA300120608; GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : geomagnetic activity * interplanetary magnetic field * artificial neural network * ejection of coronal mass * X-ray flares Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.358, year: 2014

  3. Network analysis reveals strongly localized impacts of El Niño

    Science.gov (United States)

    Fan, Jingfang; Meng, Jun; Ashkenazy, Yosef; Havlin, Shlomo; Schellnhuber, Hans Joachim

    2017-07-01

    Climatic conditions influence the culture and economy of societies and the performance of economies. Specifically, El Niño as an extreme climate event is known to have notable effects on health, agriculture, industry, and conflict. Here, we construct directed and weighted climate networks based on near-surface air temperature to investigate the global impacts of El Niño and La Niña. We find that regions that are characterized by higher positive/negative network “in”-weighted links are exhibiting stronger correlations with the El Niño basin and are warmer/cooler during El Niño/La Niña periods. In contrast to non-El Niño periods, these stronger in-weighted activities are found to be concentrated in very localized areas, whereas a large fraction of the globe is not influenced by the events. The regions of localized activity vary from one El Niño (La Niña) event to another; still, some El Niño (La Niña) events are more similar to each other. We quantify this similarity using network community structure. The results and methodology reported here may be used to improve the understanding and prediction of El Niño/La Niña events and also may be applied in the investigation of other climate variables.

  4. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux.

    Science.gov (United States)

    Joseph, Noah; Reicher, Barak; Barda-Saad, Mira

    2014-02-01

    During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters

  5. Using Carbon flux network data to investigate the impact of new European greening rules on carbon budgets - a case study.

    Science.gov (United States)

    Schmidt, Marius; Graf, Alexander; Carsten, Montzka; Vereecken, Harry

    2017-04-01

    In 2015 the European Commission introduced new greening payments as part of their common agricultural practices to address environmental and sustainability issues. The payment is worth about 30% of the total subsidies for European farmers. Sowing nitrogen fixing catch/cover crops in the off season (generally in fall and winter) is one way to achieve the prerequisite for the greening payments. Therefore it is expected that the proportion of catch/cover crops will increase from 2015 onwards at the expense of bare soil fields. In particular, with regard to more frequently occurring mild weather conditions during fall and winter, we assume that the extensive shift to catch/cover crops will have a significant impact on the carbon cycle of agricultural areas. In this study we aim to evaluate this change in agricultural practice on local and regional CO2 fluxes and carbon budgets of the intensively used northern Rur catchment in Germany. In a preliminary study, we observed the daily courses of net CO2 flux and soil respiration of three different catch/cover crops: greening mix, oil radish, and white mustard (Sinapis alba), by means of a net flux chamber and a soil respiration chamber and compared them against Eddy covariance flux data from fields cultivated with (i) winter barley (Hordeum vulgare), and (ii) without vegetation. In the main study, we compare multi-year measurements of carbon fluxes from a regional network of Eddy Covariance sites, partly included in larger networks like Fluxnet, European Fluxes Database Cluster or ICOS. We especially used site data where comparisons of catch crop seasons and conventional seasons between different sites or years were possible. To allow an assessment of the change in carbon fluxes and budgets on regional scale, a land use comparison based on satellite images for the years 2014 to 2016 was applied. With these results, a first regional evaluation of the impact of the new greening policies on carbon fluxes and budgets for the

  6. Long-term increase in forest water-use efficiency observed across ecosystem carbon flux networks

    Science.gov (United States)

    Keenan, Trevor; Bohrer, Gil; Dragoni, Danilo; Hollinger, David; Munger, James W.; Schmid, Hans Peter; Richardson, Andrew

    2014-05-01

    Terrestrial plants remove CO2 from the atmosphere through photo- synthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange. We find a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades. We systematically assess various competing hypotheses to explain this trend, and find that the observed increase is most consistent with a strong CO2 fertilization effect. The results suggest a partial closure of stomata - small pores on the leaf surface that regulate gas exchange - to maintain a near- constant concentration of CO2 inside the leaf even under continually increasing atmospheric CO2 levels. The observed increase in forest water-use efficiency is larger than that predicted by existing theory and 13 terrestrial biosphere models. The increase is associated with trends of increasing ecosystem-level photosynthesis and net carbon uptake, and decreasing evapotranspiration. Our findings demonstrate the utility of maintaining long-term eddy-covariance flux measurement sites. The results suggest a shift in the carbon- and water-based economics of terrestrial vegetation, which may require a reassessment of the role of stomatal control in regulating interactions between forests and climate change, and a re-evaluation of coupled vegetation-climate models.

  7. Integrating artificial neural networks and empirical correlations for the prediction of water-subcooled critical heat flux

    International Nuclear Information System (INIS)

    Mazzola, A.

    1997-01-01

    The critical heat flux (CHF) is an important parameter for the design of nuclear reactors, heat exchangers and other boiling heat transfer units. Recently, the CHF in water-subcooled flow boiling at high mass flux and subcooling has been thoroughly studied in relation to the cooling of high-heat-flux components in thermonuclear fusion reactors. Due to the specific thermal-hydraulic situation, very few of the existing correlations, originally developed for operating conditions typical of pressurized water reactors, are able to provide consistent predictions of water-subcooled-flow-boiling CHF at high heat fluxes. Therefore, alternative predicting techniques are being investigated. Among these, artificial neural networks (ANN) have the advantage of not requiring a formal model structure to fit the experimental data; however, their main drawbacks are the loss of model transparency ('black-box' character) and the lack of any indicator for evaluating accuracy and reliability of the ANN answer when 'never-seen' patterns are presented. In the present work, the prediction of CHF is approached by a hybrid system which couples a heuristic correlation with a neural network. The ANN role is to predict a datum-dependent parameter required by the analytical correlation; ; this parameter was instead set to a constant value obtained by usual best-fitting techniques when a pure analytical approach was adopted. Upper and lower boundaries can be possibly assigned to the parameter value, thus avoiding the case of unexpected and unpredictable answer failure. The present approach maintains the advantage of the analytical model analysis, and it partially overcomes the 'black-box' character typical of the straight application of ANNs because the neural network role is limited to the correlation tuning. The proposed methodology allows us to achieve accurate results and it is likely to be suitable for thermal-hydraulic and heat transfer data processing. (author)

  8. Interfacial Stabilization of Fiber-Laden Foams with Carboxymethylated Lignin toward Strong Nonwoven Networks.

    Science.gov (United States)

    Li, Shuai; Xiang, Wenchao; Järvinen, Marjo; Lappalainen, Timo; Salminen, Kristian; Rojas, Orlando J

    2016-08-03

    Wet foams were produced via agitation and compressed air bubbling of aqueous solutions of carboxymethylated lignin (CML). Bubble size and distribution were assessed in situ via optical microscopy. Foamability, bubble collapse rate, and foam stability (half-life time) were analyzed as a function of CML concentration, temperature, pH, and air content. Dynamic changes of the CML liquid foam were monitored by light transmission and backscattering. Cellulosic fibers of different aspect ratios (long pine fibers and short birch fibers) were suspended under agitation by the liquid foams (0.6% CML in the aqueous phase) with an air (bubble) content as high as 75% in volume. Remarkably, the half-life time of fiber-laden CML foams was 10-fold higher than that of the corresponding fiber-free liquid foam. Such lignin-based foams were demonstrated, after dewatering, as a precursor for the synthesis of nonwoven, layered structures. The resulting fiber networks (paper), obtained here for the first time with lignin-based foams, were characterized for pore size distribution, lignin retention, morphology, and physical-mechanical properties (network formation quality, density, air permeability, surface roughness, and tensile and internal bond strengths). The results were compared against structures obtained from foams stabilized with an anionic surfactant (SDS) as well as those from foam-free, water-based web-laying. Remarkably, compared to SDS, the foam-formed materials produced with CML displayed better bonding and tensile strengths. Overall, CML-based foams were found to be suitable carriers of cellulosic fibers and have opened the possibility for integrating fully biobased systems in foam-forming. This is an emerging option to increase the effective solids content in the system without compromising the quality of formed nonwoven materials while achieving reductions in water and energy consumption.

  9. Biodiversity and Greenhouse Gases in Grasslands: A Flux Network along Climate and Management Gradients in the Pyrenees

    Science.gov (United States)

    Sebastia, M. T.; Debouk, H.; Ibañez, M.; Llurba, R.; Ribas, A.; Altimir, N.

    2016-12-01

    Grassland in the Pyrenees is critically threatened by climate and land use changes. Ecologically, these ecosystems contain a rich biodiversity and contribute many ecosystem services, including feed production, soil carbon storage and water regulation. Socioeconomically, grasslands fuel the rural economy in the Pyrenees, including organic stockbreeding, outdoor activities and recreation. Three eddy covariance stations were established in the Eastern Pyrenees between 2009 and 2011 along altitudinal and climatic gradients by the FLUXPYR project (EU INTERREG IV-A-POCTEFA). The network of flux towers on climatically diverse grasslands is included in the European Fluxes Database Cluster. The three locations are representative of the typical managements in the region: Pla de Riart (ES-PRt, 1000 m a.s.l.), intensively managed sown grassland grazed in the fall; La Bertolina (ES-LBr, 1300 m a.s.l.), montane grassland grazed from spring to fall; and Castellar de n'Hug (ES-Cst, 2000 m a.s.l.), subalpine grassland grazed in summer. The flux studies are completed by chamber measurements of CO2, CH4, and N2O fluxes by photoacoustic. The focus of study is the relationship biodiversity-ecosystem function in response to climate, management and other environmental changes. Results show how sown and spontaneous plant diversity regulates grassland functioning including greenhouse gas fluxes. Polycultures in particular have a tendency to increase NEE and Reco compared to monocultures, enhancing CO2 uptake. Grasses are less efficient photosynthetically per biomass unit than other plant functional types, but this is not reflected at the ecosystem scale, where they are dominant. N2O is a greenhouse gas particularly dependent on plant functional diversity and climatic conditions. Soil function responds to changes in plant functional type distribution within the grassland. In conclusion, biodiversity regulates greenhouse gas fluxes in many ways in grasslands in the Pyrenees, through multiple

  10. LBA-ECO CD-32 Flux Tower Network Data Compilation, Brazilian Amazon: 1999-2006

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set is a compilation of carbon and energy eddy covariance flux, meteorology, radiation, canopy temperature, humidity, and CO2 profiles and soil...

  11. LBA-ECO CD-32 Flux Tower Network Data Compilation, Brazilian Amazon: 1999-2006

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a compilation of carbon and energy eddy covariance flux, meteorology, radiation, canopy temperature, humidity, and CO2 profiles and soil moisture...

  12. SO 2 flux from Stromboli during the 2007 eruption: Results from the FLAME network and traverse measurements

    Science.gov (United States)

    Burton, M. R.; Caltabiano, T.; Murè, F.; Salerno, G.; Randazzo, D.

    2009-05-01

    SO 2 fluxes emitted by Stromboli during the 27th February-2nd April 2007 effusive eruption were regularly measured both by an automatic network of scanning ultraviolet spectrometers and by traverse measurements conducted by boat and helicopter. The results from both methodologies agree reasonably well, providing a validation for the automatic flux calculations produced by the network. Approximately 22,000 t of SO 2 were degassed during the course of the 35 day eruption at an average rate of 620 t per day. Such a degassing rate is much higher than that normally observed (150-200 t/d), because the cross-sectional area occupied by ascending degassed magma is much greater than normal during the effusion, as descending, degassed magma that would normally occupy a large volume of the conduit is absent. We propose that the hydrostatically controlled magma level within Stromboli's conduit is the main control on eruptive activity, and that a high effusion rate led to the depressurisation of an intermediate magma reservoir, creating a decrease in the magma level until it dropped beneath the eruptive fissure, causing the rapid end of the eruption. A significant decrease in SO 2 flux was observed prior to a paroxysm on 15th March 2007, suggesting that choking of the gas flowing in the conduit may have induced a coalescence event, and consequent rapid ascent of gas and magma that produced the explosion.

  13. Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8.

    Science.gov (United States)

    Swarup, Aditi; Lu, Jing; DeWoody, Kathleen C; Antoniewicz, Maciek R

    2014-07-01

    Thermus thermophilus is an extremely thermophilic bacterium with significant biotechnological potential. In this work, we have characterized aerobic growth characteristics of T. thermophilus HB8 at temperatures between 50 and 85°C, constructed a metabolic network model of its central carbon metabolism and validated the model using (13)C-metabolic flux analysis ((13)C-MFA). First, cells were grown in batch cultures in custom constructed mini-bioreactors at different temperatures to determine optimal growth conditions. The optimal temperature for T. thermophilus grown on defined medium with glucose was 81°C. The maximum growth rate was 0.25h(-1). Between 50 and 81°C the growth rate increased by 7-fold and the temperature dependence was described well by an Arrhenius model with an activation energy of 47kJ/mol. Next, we performed a (13)C-labeling experiment with [1,2-(13)C] glucose as the tracer and calculated intracellular metabolic fluxes using (13)C-MFA. The results provided support for the constructed network model and highlighted several interesting characteristics of T. thermophilus metabolism. We found that T. thermophilus largely uses glycolysis and TCA cycle to produce biosynthetic precursors, ATP and reducing equivalents needed for cells growth. Consistent with its proposed metabolic network model, we did not detect any oxidative pentose phosphate pathway flux or Entner-Doudoroff pathway activity. The biomass precursors erythrose-4-phosphate and ribose-5-phosphate were produced via the non-oxidative pentose phosphate pathway, and largely via transketolase, with little contribution from transaldolase. The high biomass yield on glucose that was measured experimentally was also confirmed independently by (13)C-MFA. The results presented here provide a solid foundation for future studies of T. thermophilus and its metabolic engineering applications. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering.

    Science.gov (United States)

    Xie, Meihua; Wang, Ling; Ge, Juan; Guo, Baolin; Ma, Peter X

    2015-04-01

    Preparation of functional shape memory polymer (SMP) for tissue engineering remains a challenge. Here the synthesis of strong electroactive shape memory polymer (ESMP) networks based on star-shaped polylactide (PLA) and aniline trimer (AT) is reported. Six-armed PLAs with various chain lengths were chemically cross-linked to synthesize SMP. After addition of an electroactive AT segment into the SMP, ESMP was obtained. The polymers were characterized by (1)H NMR, GPC, FT-IR, CV, DSC, DMA, tensile test, and degradation test. The SMP and ESMP exhibited strong mechanical properties (modulus higher than GPa) and excellent shape memory performance: short recovery time (several seconds), high recovery ratio (over 94%), and high fixity ratio (almost 100%). Moreover, cyclic voltammetry test confirmed the electroactivity of the ESMP. The ESMP significantly enhanced the proliferation of C2C12 cells compared to SMP and linear PLA (control). In addition, the ESMP greatly improved the osteogenic differentiation of C2C12 myoblast cells compared to PH10 and PLA in terms of ALP enzyme activity, immunofluorescence staining, and relative gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). These intelligent SMPs and electroactive SMP with strong mechanical properties, tunable degradability, good electroactivity, biocompatibility, and enhanced osteogenic differentiation of C2C12 cells show great potential for bone regeneration.

  15. The Control of Fluxes of Electric Power in Networks by Means of Phase-switching Booster Transformers

    Directory of Open Access Journals (Sweden)

    Govorov F.P.

    2016-12-01

    Full Text Available roblems of increasing the efficiency of the operation of electrical networks based on the utilization of booster transformers (BT with electronic control, applied on the base of active elements in smart electric grids of power systems and giving the function of automatic correction of the parameters of the network, assuring the conditions of optimal common operation are studied in the paper. The mathematic model of the processes in the electric networks with booster transformer has been developed; the opportunity of control by means of the phase-switching BT for power fluxes in the networks has been established. It has been shown that for the groups of switching the windings 1-5 of BT occurs additional consumption of power from the supply network, but for the groups 7-11 its recuperation to the load network. Respectively, switching the windings of BT to the group 1-5 assures the shift of load current to the direction of lag, but in the case of switching to the group 7-11 – towards the outrunning. Wherein, for the groups of switching 10-11 and 1-2 one can observe the increasing of the voltage at the output of BT, but for the groups 7-8 and 4-5 it is decreasing. Based on the analysis of the results of research the diagram and constructive models of the transformer have been proposed. The quasi-stationary and transient regimes were investigated and the conditions of reliable operation at these the regimes have been determined. The ways for increasing the efficient common operation for the transformer and network in the case of switching the thyristors into the circuit of the primary winding of the transformer have been proposed.

  16. OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis

    Directory of Open Access Journals (Sweden)

    Nielsen Lars K

    2009-05-01

    Full Text Available Abstract Background The quantitative analysis of metabolic fluxes, i.e., in vivo activities of intracellular enzymes and pathways, provides key information on biological systems in systems biology and metabolic engineering. It is based on a comprehensive approach combining (i tracer cultivation on 13C substrates, (ii 13C labelling analysis by mass spectrometry and (iii mathematical modelling for experimental design, data processing, flux calculation and statistics. Whereas the cultivation and the analytical part is fairly advanced, a lack of appropriate modelling software solutions for all modelling aspects in flux studies is limiting the application of metabolic flux analysis. Results We have developed OpenFLUX as a user friendly, yet flexible software application for small and large scale 13C metabolic flux analysis. The application is based on the new Elementary Metabolite Unit (EMU framework, significantly enhancing computation speed for flux calculation. From simple notation of metabolic reaction networks defined in a spreadsheet, the OpenFLUX parser automatically generates MATLAB-readable metabolite and isotopomer balances, thus strongly facilitating model creation. The model can be used to perform experimental design, parameter estimation and sensitivity analysis either using the built-in gradient-based search or Monte Carlo algorithms or in user-defined algorithms. Exemplified for a microbial flux study with 71 reactions, 8 free flux parameters and mass isotopomer distribution of 10 metabolites, OpenFLUX allowed to automatically compile the EMU-based model from an Excel file containing metabolic reactions and carbon transfer mechanisms, showing it's user-friendliness. It reliably reproduced the published data and optimum flux distributions for the network under study were found quickly ( Conclusion We have developed a fast, accurate application to perform steady-state 13C metabolic flux analysis. OpenFLUX will strongly facilitate and

  17. Critical heat flux prediction by using radial basis function and multilayer perceptron neural networks: A comparison study

    International Nuclear Information System (INIS)

    Vaziri, Nima; Hojabri, Alireza; Erfani, Ali; Monsefi, Mehrdad; Nilforooshan, Behnam

    2007-01-01

    Critical heat flux (CHF) is an important parameter for the design of nuclear reactors. Although many experimental and theoretical researches have been performed, there is not a single correlation to predict CHF because it is influenced by many parameters. These parameters are based on fixed inlet, local and fixed outlet conditions. Artificial neural networks (ANNs) have been applied to a wide variety of different areas such as prediction, approximation, modeling and classification. In this study, two types of neural networks, radial basis function (RBF) and multilayer perceptron (MLP), are trained with the experimental CHF data and their performances are compared. RBF predicts CHF with root mean square (RMS) errors of 0.24%, 7.9%, 0.16% and MLP predicts CHF with RMS errors of 1.29%, 8.31% and 2.71%, in fixed inlet conditions, local conditions and fixed outlet conditions, respectively. The results show that neural networks with RBF structure have superior performance in CHF data prediction over MLP neural networks. The parametric trends of CHF obtained by the trained ANNs are also evaluated and results reported

  18. Ecosystem carbon and radiative fluxes: a global synthesis based on the FLUXNET network.

    Science.gov (United States)

    Cescatti, A.

    2009-04-01

    Solar radiation is the most important environmental factor driving the temporal and spatial variability of the gross primary productivity (GPP) in terrestrial ecosystems. At the ecosystem scale, the light use efficiency (LUE) depends not only on radiation quantity but also on radiation "quality" both in terms of spectral composition and angular distribution. The day-to-day variations in LUE are largely determined by changes in the ratio of diffuse to total radiation. The relative importance of the concurrent variation in total incoming radiation and in LUE is essential to estimate the sign and the magnitude of the GPP sensitivity to radiation. Despite the scientific relevance of this issue, a global assessment on the sensitivity of GPP to the variations of Phar is still missing. Such an analysis is needed to improve our understanding of the current and future impacts of aerosols and cloud cover on the spatio-temporal variability of GPP. The current availability of ecosystem carbon fluxes, together with separate measurements of incoming direct and diffuse Phar at a large number of flux sites, offers the unique opportunity to extend the previous investigation, both in terms of ecosystem, spatial and climate coverage, and to address questions about the internal (e.g. leaf area index, canopy structure) and external (e.g. cloudiness, covarying meteorology) factors affecting the ecosystem sensitivity to radiation geometry. For this purpose half-hourly measurements of carbon fluxes and radiation have been analyzed at about 220 flux sites for a total of about 660 site-years. This analysis demonstrates that the sensitivity of GPP to incoming radiation varies across the different plant functional types and is correlated with the leaf area index and the local climatology. In particular, the sensitivity of GPP to changes in incoming diffuse light maximizes for the broadleaved forests of the Northern Hemisphere.

  19. Simulating the dynamics of the neutron flux in a nuclear reactor by locally recurrent neural networks

    International Nuclear Information System (INIS)

    Cadini, F.; Zio, E.; Pedroni, N.

    2007-01-01

    In this paper, a locally recurrent neural network (LRNN) is employed for approximating the temporal evolution of a nonlinear dynamic system model of a simplified nuclear reactor. To this aim, an infinite impulse response multi-layer perceptron (IIR-MLP) is trained according to a recursive back-propagation (RBP) algorithm. The network nodes contain internal feedback paths and their connections are realized by means of IIR synaptic filters, which provide the LRNN with the necessary system state memory

  20. Defending strong tobacco packaging and labelling regulations in Uruguay: transnational tobacco control network versus Philip Morris International.

    Science.gov (United States)

    Crosbie, Eric; Sosa, Particia; Glantz, Stanton A

    2018-03-01

    Describe the process of enacting and defending strong tobacco packaging and labelling regulations in Uruguay amid Philip Morris International's (PMI) legal threats and challenges. Triangulated government legislation, news sources and interviews with policy-makers and health advocates in Uruguay. In 2008 and 2009, the Uruguayan government enacted at the time the world's largest pictorial health warning labels (80% of front and back of package) and prohibited different packaging or presentations for cigarettes sold under a given brand. PMI threatened to sue Uruguay in international courts if these policies were implemented. The Vazquez administration maintained the regulations, but a week prior to President Vazquez's successor, President Mujica, took office on 1 March 2010 PMI announced its intention to file an investment arbitration dispute against Uruguay in the International Centre for the Settlement of Investment Disputes. Initially, the Mujica administration announced it would weaken the regulations to avoid litigation. In response, local public health groups in Uruguay enlisted former President Vazquez and international health groups and served as brokers to develop a collaboration with the Mujica administration to defend the regulations. This united front between the Uruguayan government and the transnational tobacco control network paid off when Uruguay defeated PMI's investment dispute in July 2016. To replicate Uruguay's success, other countries need to recognise that strong political support, an actively engaged local civil society and financial and technical support are important factors in overcoming tobacco industry's legal threats to defend strong public health regulations. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Large-scale management of electric grids - Power flux control in an electric network; Gestion des reseaux electriques a grande echelle. Controle des flux de puissance d'un reseau electrique

    Energy Technology Data Exchange (ETDEWEB)

    Lalou, M. J. [EIA-FR, Fribourg (Switzerland); Affolter, J.-F. [HEIG-VD, Yverdon-les-Bains (Switzerland)

    2010-07-01

    Security of supply in electricity networks is a major industrial challenge for the future. It involves power generation, transmission and distribution altogether. Networks gradually approach saturation. This article presents an optimal real-time management method of power flux in an electricity network equipped with FACTS and phase measuring devices. FACTS have to be gradually introduced, however not earlier than in 10 years time, as the reliability of data transmission for their control is currently not high enough, considering the order of magnitude of the involved electric power.

  2. Strong Evidence of Variable Micro-meteor Flux from Apollo 17 Samples Obtained at Shorty Crater and on the Light Mantle Avalanche at Taurus-Littrow

    Science.gov (United States)

    Schmitt, H. H.; Petro, N. E.

    2017-12-01

    Light-gray regolith overlying the orange and black pyroclastic ash (Schmitt, 2017) at Shorty Crater protected the ash from incorporation into surrounding basaltic regolith for 3.5 billion years (Tera and Wasserburg, 1976; Saito and Alexander, 1979). Inspection of LROC images indicate this regolith probably came from a 350 m diameter, degraded impact crater (Fitzgibbon Crater), about 1 km NNE of Shorty. This regolith was derived largely from basalt and spread over the ash deposit about 24 Myr (Eugster, et al., 1979, corrected for post-Shorty exposure) after the last ash eruption. Maturity indexes for light gray regolith samples 74441 and 74461 are about 8 (Morris, 1978) and agglutinate concentrations are 8% and 7.7% (Heiken and McKay, 1974), respectively. These values are inconsistent with the exposure and cycling of the light-gray regolith during 3.5 billion years in the lunar surface impact environment (i.e., the time between ash deposition and the light mantle avalanche). If agglutinate content and Is/FeO indexes largely reflect the cumulative effect of micro-meteor impacts, as generally concluded, the light-gray regolith formed in an environment with significantly less micro-meteor flux than that which has prevailed more recently. 14-18% of fragile, ropy glass in the light-gray regolith, as compared with meteor flux during development. The high recent micro-meteor flux appears to have existed for at least for the last 75 million years (Schmitt, et al., 2017), the estimated time using LROC-based crater frequency analysis (van der Bogert, et al., 2012) since the light mantle avalanche of South Massif regolith covered the light-gray regolith. New regolith on the light mantle appears to be developing a higher concentration of agglutinates and a higher maturity index relative to regolith in deeper portions of the unit. Light mantle avalanche samples 73141 (subsurface) and 73121 (near surface), have agglutinates at 32% and 42% and Is/FeO indexes of 48 and 78

  3. Geothermal Heat Flux and Upper Mantle Viscosity across West Antarctica: Insights from the UKANET and POLENET Seismic Networks

    Science.gov (United States)

    O'Donnell, J. P.; Dunham, C.; Stuart, G. W.; Brisbourne, A.; Nield, G. A.; Whitehouse, P. L.; Hooper, A. J.; Nyblade, A.; Wiens, D.; Aster, R. C.; Anandakrishnan, S.; Huerta, A. D.; Wilson, T. J.; Winberry, J. P.

    2017-12-01

    Quantifying the geothermal heat flux at the base of ice sheets is necessary to understand their dynamics and evolution. The heat flux is a composite function of concentration of upper crustal radiogenic elements and flow of heat from the mantle into the crust. Radiogenic element concentration varies with tectonothermal age, while heat flow across the crust-mantle boundary depends on crustal and lithospheric thicknesses. Meanwhile, accurately monitoring current ice mass loss via satellite gravimetry or altimetry hinges on knowing the upper mantle viscosity structure needed to account for the superimposed glacial isostatic adjustment (GIA) signal in the satellite data. In early 2016 the UK Antarctic Network (UKANET) of 10 broadband seismometers was deployed for two years across the southern Antarctic Peninsula and Ellsworth Land. Using UKANET data in conjunction with seismic records from our partner US Polar Earth Observing Network (POLENET) and the Antarctic Seismographic Argentinian Italian Network (ASAIN), we have developed a 3D shear wave velocity model of the West Antarctic crust and uppermost mantle based on Rayleigh and Love wave phase velocity dispersion curves extracted from ambient noise cross-correlograms. We combine seismic receiver functions with the shear wave model to help constrain the depth to the crust-mantle boundary across West Antarctica and delineate tectonic domains. The shear wave model is subsequently converted to temperature using a database of densities and elastic properties of minerals common in crustal and mantle rocks, while the various tectonic domains are assigned upper crustal radiogenic element concentrations based on their inferred tectonothermal ages. We combine this information to map the basal geothermal heat flux variation across West Antarctica. Mantle viscosity depends on factors including temperature, grain size, the hydrogen content of olivine and the presence of melt. Using published mantle xenolith and magnetotelluric

  4. Aeronet Solar Flux

    Data.gov (United States)

    National Aeronautics and Space Administration — SolRad-Net (Solar Radiation Network) is an established network of ground-based sensors providing high-frequency solar flux measurements in quasi-realtime to the...

  5. Microbes, fluvial networks and carbon fluxes from land to the ocean

    Science.gov (United States)

    Battin, T. J.; Kaplan, L. A.; Findlay, S.; Hopkinson, C. S.; Packman, A.; Newbold, D.

    2007-12-01

    Metabolism in freshwater ecosystems of terrestrial organic carbon provides a major source of CO2 outgassing to the atmosphere. This contradicts the conventional wisdom that terrestrial organic carbon is recalcitrant and contributes little to the support of aquatic metabolism. We combine recent progress from geophysics, microbial ecology and organic geochemistry to show how the juxtaposition of geophysical opportunity and microbial capacity enhances the net heterotrophy in streams, rivers and estuaries. We identify hydrologic storage and retention zones that extend the residence time of organic carbon during downstream transport and thus provide opportunities for microorganisms to develop as attached biofilms or suspended aggregates, and to metabolize organic carbon for energy and growth. We consider fluvial networks within a meta-ecosystem context to include the acclimation of microbial communities in downstream ecosystems to exploit energy that "escapes" from upstream ecosystems and thereby increases overall energy utilization at the network level. Our interdisciplinary approach emphasises the coupled physical, chemical and microbial processes across various scales that may serve to enhance the predictability of carbon cycling in fluvial ecosystems.

  6. Strong Links Between Teleconnections and Ecosystem Exchange Found at a Pacific Northwest Old-Growth Forest from Flux Tower and MODIS EVI Data

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S; Chasmer, L; Falk, M; Paw U, K T

    2009-03-12

    Variability in three Pacific teleconnection patterns are examined to see if net carbon exchange at a low-elevation, old-growth forest is affected by climatic changes associated with these periodicities. Examined are the Pacific Decadal Oscillation (PDO), Pacific/North American Oscillation (PNA) and El Nino-Southern Oscillation (ENSO). We use nine years of eddy covariance CO{sub 2}, H{sub 2}O and energy fluxes measured at the Wind River AmeriFlux site, Washington, USA and eight years of tower-pixel remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to address this question. We compute a new Composite Climate Index (CCI) based on the three Pacific Oscillations to divide the measurement period into positive- (2003 and 2005), negative- (1999 and 2000) and neutral-phase climate years (2001, 2002, 2004, 2006 and 2007). The forest transitioned from an annual net carbon sink (NEP = + 217 g C m{sup -2} year{sup -1}, 1999) to a source (NEP = - 100 g C m{sup -2} year{sup -1}, 2003) during two dominant teleconnection patterns. Net ecosystem productivity (NEP), water use efficiency (WUE) and light use efficiency (LUE) were significantly different (P < 0.01) during positive (NEP = -0.27 g C m{sup -2} day{sup -1}, WUE = 4.1 mg C/g H{sub 2}O, LUE = 0.94 g C MJ{sup -1}) and negative (NEP = +0.37 g C m{sup -2} day{sup -1}, WUE = 3.4 mg C/g H{sub 2}O, LUE = 0.83 g C MJ{sup -1}) climate phases. The CCI was linked to variability in the MODIS Enhanced Vegetation Index (EVI) but not to MODIS Fraction of absorbed Photosynthetically Active Radiation (FPAR). EVI was highest during negative climate phases (1999 and 2000) and was positively correlated with NEP and showed potential for using MODIS to estimate teleconnection-driven anomalies in ecosystem CO{sub 2} exchange in old-growth forests. This work suggests that any increase in the strength or frequency of ENSO coinciding with in-phase, low frequency Pacific oscillations (PDO and PNA) will likely increase

  7. Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing corynebacteria.

    Science.gov (United States)

    Wittmann, Christoph; Heinzle, Elmar

    2002-12-01

    A comprehensive approach of metabolite balancing, (13)C tracer studies, gas chromatography-mass spectrometry, matrix-assisted laser desorption ionization-time of flight mass spectrometry, and isotopomer modeling was applied for comparative metabolic network analysis of a genealogy of five successive generations of lysine-producing Corynebacterium glutamicum. The five strains examined (C. glutamicum ATCC 13032, 13287, 21253, 21526, and 21543) were previously obtained by random mutagenesis and selection. Throughout the genealogy, the lysine yield in batch cultures increased markedly from 1.2 to 24.9% relative to the glucose uptake flux. Strain optimization was accompanied by significant changes in intracellular flux distributions. The relative pentose phosphate pathway (PPP) flux successively increased, clearly corresponding to the product yield. Moreover, the anaplerotic net flux increased almost twofold as a consequence of concerted regulation of C(3) carboxylation and C(4) decarboxylation fluxes to cover the increased demand for lysine formation; thus, the overall increase was a consequence of concerted regulation of C(3) carboxylation and C(4) decarboxylation fluxes. The relative flux through isocitrate dehydrogenase dropped from 82.7% in the wild type to 59.9% in the lysine-producing mutants. In contrast to the NADPH demand, which increased from 109 to 172% due to the increasing lysine yield, the overall NADPH supply remained constant between 185 and 196%, resulting in a decrease in the apparent NADPH excess through strain optimization. Extrapolated to industrial lysine producers, the NADPH supply might become a limiting factor. The relative contributions of PPP and the tricarboxylic acid cycle to NADPH generation changed markedly, indicating that C. glutamicum is able to maintain a constant supply of NADPH under completely different flux conditions. Statistical analysis by a Monte Carlo approach revealed high precision for the estimated fluxes, underlining the

  8. Automatic Web-Based, Radio-Network System To Monitor And Control Equipment For Investigating Gas Flux At Water - Air Interfaces

    Science.gov (United States)

    Duc, N. T.; Silverstein, S.; Wik, M.; Beckman, P.; Crill, P. M.; Bastviken, D.; Varner, R. K.

    2015-12-01

    Aquatic ecosystems are major sources of greenhouse gases (GHG). Robust measurements of natural GHG emissions are vital for evaluating regional to global carbon budgets and for assessing climate feedbacks on natural emissions to improve climate models. Diffusive and ebullitive (bubble) transport are two major pathways of gas release from surface waters. To capture the high temporal variability of these fluxes in a well-defined footprint, we designed and built an inexpensive automatic device that includes an easily mobile diffusive flux chamber and a bubble counter, all in one. Besides a function of automatically collecting gas samples for subsequent various analyses in the laboratory, this device utilizes low cost CO2 sensor (SenseAir, Sweden) and CH4 sensor (Figaro, Japan) to measure GHG fluxes. To measure the spatial variability of emissions, each of the devices is equipped with an XBee module to enable a local radio communication DigiMesh network for time synchronization and data readout at a server-controller station on the lakeshore. Software of this server-controller is operated on a low cost Raspberry Pi computer which has a 3G connection for remote monitoring - controlling functions from anywhere in the world. From field studies in Abisko, Sweden in summer 2014 and 2015, the system has resulted in measurements of GHG fluxes comparable to manual methods. In addition, the deployments have shown the advantage of a low cost automatic network system to study GHG fluxes on lakes in remote locations.

  9. Development of the heated length to diameter correction factor on critical heat flux using the artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ho; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    With using artificial neural networks (ANNs), an analytical study related to the heated length effect on critical heat flux (CHF) has been carried out to make an improvement of the CHF prediction accuracy based on local condition correlations or table. It has been carried out to suggest a feasible criterion of the threshold length-to-diameter (L/D) value in which heated length could affect CHF. And within the criterion, a L/D correction factor has been developed through conventional regression. In order to validate the developed L/D correction factor, CHF experiments for various heated lengths have been carried out under low and intermediate pressure conditions. The developed threshold L/D correlation provides a new feasible criterion of L/D threshold value. The developed correction factor gives a reasonable accuracy for the original database, showing the error of -2.18% for average and 27.75% for RMS, and promising results for new experimental data. 7 refs., 12 figs., 1 tab. (Author)

  10. SO2 flux monitoring at Stromboli with the new permanent INGV SO2 camera system: A comparison with the FLAME network and seismological data

    Science.gov (United States)

    Burton, M. R.; Salerno, G. G.; D'Auria, L.; Caltabiano, T.; Murè, F.; Maugeri, R.

    2015-07-01

    We installed a permanent SO2 camera system on Stromboli, Italy, in May 2013, in order to improve our capacity to monitor the SO2 emissions from this volcano. The camera collects images of SO2 concentrations with a period of 10 s, allowing quantification of short-term processes, such as the gas released during the frequent explosions which are synonymous with Stromboli. It also allows quantification of the quiescent gas flux, and therefore comparison with the FLAME network of scanning ultraviolet spectrometers previously installed on the island. Analysis of results from the SO2 camera demonstrated a good agreement with the FLAME network when the plume was blown fully into the field of view of the camera. Permanent volcano monitoring with SO2 cameras is still very much in its infancy, and therefore this finding is a significant step in the use of such cameras for monitoring, whilst also highlighting the requirement of a favourable wind direction and strength. We found that the explosion gas emissions are correlated with seismic events which have a very long period component. There is a variable time lag between event onset time and the increase in gas flux observed by the camera as the explosion gas advects into the field of view of the camera. This variable lag is related to the plume direction, as shown by comparison with the plume location detected with the FLAME network. The correlation between explosion gas emissions and seismic signal amplitude show is consistent with a gas slug-driven mechanism for seismic event production. Comparison of the SO2 camera measurements of the quiescent gas flux shows a fair quantitative agreement with the SO2 flux measured with the FLAME network. Overall, the SO2 camera complements the FLAME network well, as it allows frequent quantification of the explosion gas flux produced by Stromboli, whose signal is in general too brief to be measured with the FLAME network. Further work is required, however, to fully automate the

  11. The role of strong-tie social networks in mediating food security of fish resources by a traditional riverine community in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Frédéric Mertens

    2015-09-01

    Full Text Available Social networks are a significant way through which rural communities that manage resources under common property regimes obtain food resources. Previous research on food security and social network analysis has mostly focused on egocentric network data or proxy variables for social networks to explain how social relations contribute to the different dimensions of food security. Whole-network approaches have the potential to contribute to former studies by revealing how individual social ties aggregate into complex structures that create opportunities or constraints to the sharing and distribution of food resources. We used a whole-network approach to investigate the role of network structure in contributing to the four dimensions of food security: food availability, access, utilization, and stability. For a case study of a riparian community from the Brazilian Amazon that is dependent on fish as a key element of food security, we mapped the community strong-tie network among 97% of the village population over 14 years old (n = 336 by integrating reciprocated friendship and occupational ties, as well as close kinship relationships. We explored how different structural properties of the community network contribute to the understanding of (1 the availability of fish as a community resource, (2 community access to fish as a dietary resource, (3 the utilization of fish for consumption in a way that allows the villagers to maximize nutrition while at the same time minimizing toxic risks associated with mercury exposure, and (4 the stability of the fish resources in local ecosystems as a result of cooperative behaviors and community-based management. The contribution of whole-network approaches to the study of the links between community-based natural resource management and food security were discussed in the context of recent social-ecological changes in the Amazonian region.

  12. Students’ delinquency and correlates with strong and weaker ties : A study of students’ networks in Dutch high schools

    NARCIS (Netherlands)

    Baerveldt, Chris; Rossem, Ronan van; Vermande, Marjolein; Weerman, Frank

    2004-01-01

    The goal of the present study was to investigate three issues in the current debate on youth delinquency: (1) Whether the level of delinquency of adolescents is negatively correlated with the quality of her/his personal networks (as stated by the social inability model) or not (as stated by the

  13. Application of a Weighted Regression Model for Reporting Nutrient and Sediment Concentrations, Fluxes, and Trends in Concentration and Flux for the Chesapeake Bay Nontidal Water-Quality Monitoring Network, Results Through Water Year 2012

    Science.gov (United States)

    Chanat, Jeffrey G.; Moyer, Douglas L.; Blomquist, Joel D.; Hyer, Kenneth E.; Langland, Michael J.

    2016-01-13

    In the Chesapeake Bay watershed, estimated fluxes of nutrients and sediment from the bay’s nontidal tributaries into the estuary are the foundation of decision making to meet reductions prescribed by the Chesapeake Bay Total Maximum Daily Load (TMDL) and are often the basis for refining scientific understanding of the watershed-scale processes that influence the delivery of these constituents to the bay. Two regression-based flux and trend estimation models, ESTIMATOR and Weighted Regressions on Time, Discharge, and Season (WRTDS), were compared using data from 80 watersheds in the Chesapeake Bay Nontidal Water-Quality Monitoring Network (CBNTN). The watersheds range in size from 62 to 70,189 square kilometers and record lengths range from 6 to 28 years. ESTIMATOR is a constant-parameter model that estimates trends only in concentration; WRTDS uses variable parameters estimated with weighted regression, and estimates trends in both concentration and flux. WRTDS had greater explanatory power than ESTIMATOR, with the greatest degree of improvement evident for records longer than 25 years (30 stations; improvement in median model R2= 0.06 for total nitrogen, 0.08 for total phosphorus, and 0.05 for sediment) and the least degree of improvement for records of less than 10 years, for which the two models performed nearly equally. Flux bias statistics were comparable or lower (more favorable) for WRTDS for any record length; for 30 stations with records longer than 25 years, the greatest degree of improvement was evident for sediment (decrease of 0.17 in median statistic) and total phosphorus (decrease of 0.05). The overall between-station pattern in concentration trend direction and magnitude for all constituents was roughly similar for both models. A detailed case study revealed that trends in concentration estimated by WRTDS can operationally be viewed as a less-constrained equivalent to trends in concentration estimated by ESTIMATOR. Estimates of annual mean flow

  14. The potential and flux landscape, Lyapunov function and non-equilibrium thermodynamics for dynamic systems and networks with an application to signal-induced Ca2+ oscillation

    International Nuclear Information System (INIS)

    Xu, Li; Zhang, Feng; Wang, Erkang; Wang, Jin

    2013-01-01

    In this review, we summarize our recent efforts in exploring the non-equilibrium potential and flux landscape for dynamical systems and networks. The driving force of non-equilibrium dynamics can be decomposed into the gradient of the non-equilibrium potential and the divergent free probability flux divided by the steady-state probability distribution. The potential landscape is linked to the probability distribution of the steady state. We found that the intrinsic potential landscape in the zero noise limit is a Lyapunov function. We have defined and quantified the entropy, energy and free energy of the non-equilibrium systems. These can be used for formulating the first law of non-equilibrium thermodynamics. The free energy of the non-equilibrium system is also a Lyapunov function. Therefore, we can use both the intrinsic potential landscape and the free energy to quantify the robustness and global stability of the system. The Lyapunov property provides the formulation for the second law of non-equilibrium thermodynamics. The non-zero probability flux breaks the detailed balance. The two driving forces from the gradient of intrinsic potential landscape and the probability flux are perpendicular to each other under the zero noise limit. We investigate the dynamics of a new biological example of signal-induced Ca 2+ oscillation. We explored the underlying potential landscape which shows a Mexican hat shape attracting the system down to the oscillation ring and the flux which provides the driving force on the ring for coherent and stable oscillation. We explored how the landscape and flux topography change with respect to the system parameters and the relationship to the period of oscillations and how the non-equilibrium free energy changes with respect to different dynamic phases and phase transitions when the system parameters vary. These explain how the system becomes robust and stable under different conditions and can help guide the experiment. (invited article)

  15. Molecular energy dissipation in nanoscale networks of Dentin Matrix Protein 1 is strongly dependent on ion valence

    Science.gov (United States)

    Adams, J; Fantner, G E; Fisher, L W; Hansma, P K

    2008-01-01

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use Atomic Force Microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of Dentin Matrix Protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface, and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence. PMID:18843380

  16. Molecular energy dissipation in nanoscale networks of dentin matrix protein 1 is strongly dependent on ion valence

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J; Fantner, G E; Hansma, P K [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States); Fisher, L W [Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD 20892 (United States)], E-mail: adams@physics.ucsb.edu, E-mail: fantner@physics.ucsb.edu, E-mail: lfisher@dir.nidcr.nih.gov, E-mail: prasant@physics.ucsb.edu

    2008-09-24

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use atomic force microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of dentin matrix protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence.

  17. Strong lateral variation of ground temperature revealed by a large network of boreholes in the Slave Geological Province of Canada

    Science.gov (United States)

    Gruber, Stephan; Riddick, Julia; Brown, Nick; Karunaratne, Kumari; Kokelj, Steve V.

    2017-04-01

    The Slave Geological Province is a key region in the Canadian North. Its tundra areas form a large and resource-rich landscape in which comparably few systematic permafrost observations exist. Because the region contains layers of ice-rich till, the ground is susceptible to subsidence during thaw. Consequently, possible impacts of permafrost thawing on infrastructure and the natural environment motivate baseline investigations and simulation studies. In this context, the spatial variation of ground temperatures is relevant: How well can we extrapolate from one or few locations of observation? How well can we describe permafrost characteristics with coarse-grid (e.g., 50 km) models assuming relatively homogenous conditions? In July 2015, an observation network of more than 40 plots was installed to monitor ground thermal regime and to detect surface subsidence. Plots are within few tens of meters to few tens of kilometers from each other and were chosen to represent a distinct combination of surficial geology, vegetation, drainage conditions, and snow accumulation. In each plot (15 m x 15 m), temperatures are recorded in a borehole as well as about 10 cm deep at four locations. Data on surface and subsurface properties has been recorded as well. In September 2016, data was downloaded from the loggers and the conditions of the instruments were described. This contribution presents the first year of temperature data. In the annual averages, it reveals more than 7°C lateral variation between plots as well as within-plot variations of more than 2.5°C. This underscores the need for carefully designing measurement campaigns and methods when aiming to test coarse-scale permafrost simulations, even in gentle topography. The data resulting from this observational network will be made available publicly in the near future.

  18. Mapping one strong 'Ohana: using network analysis and GIS to enhance the effectiveness of a statewide coalition to prevent child abuse and neglect.

    Science.gov (United States)

    Cardazone, Gina; U Sy, Angela; Chik, Ivan; Corlew, Laura Kate

    2014-06-01

    Network analysis and GIS enable the presentation of meaningful data about organizational relationships and community characteristics, respectively. Together, these tools can provide a concrete representation of the ecological context in which coalitions operate, and may help coalitions identify opportunities for growth and enhanced effectiveness. This study uses network analysis and GIS mapping as part of an evaluation of the One Strong 'Ohana (OSO) campaign. The OSO campaign was launched in 2012 via a partnership between the Hawai'i Children's Trust Fund (HCTF) and the Joyful Heart Foundation. The OSO campaign uses a collaborative approach aimed at increasing public awareness of child maltreatment and protective factors that can prevent maltreatment, as well as enhancing the effectiveness of the HCTF Coalition. This study focuses on three elements of the OSO campaign evaluation: (1) Network analysis exploring the relationships between 24 active Coalition member organizations, (2) GIS mapping of responses to a randomized statewide phone survey (n = 1,450) assessing awareness of factors contributing to child maltreatment, and (3) Combined GIS maps and network data, illustrating opportunities for geographically-targeted coalition building and public awareness activities.

  19. Performance analysis of relay-assisted all-optical FSO networks over strong atmospheric turbulence channels with pointing errors

    KAUST Repository

    Yang, Liang

    2014-12-01

    In this study, we consider a relay-assisted free-space optical communication scheme over strong atmospheric turbulence channels with misalignment-induced pointing errors. The links from the source to the destination are assumed to be all-optical links. Assuming a variable gain relay with amplify-and-forward protocol, the electrical signal at the source is forwarded to the destination with the help of this relay through all-optical links. More specifically, we first present a cumulative density function (CDF) analysis for the end-to-end signal-to-noise ratio. Based on this CDF, the outage probability, bit-error rate, and average capacity of our proposed system are derived. Results show that the system diversity order is related to the minimum value of the channel parameters.

  20. Top-of-the-Atmosphere Shortwave Flux Estimation from Satellite Observations: An Empirical Neural Network Approach Applied with Data from the A-Train Constellation

    Science.gov (United States)

    Gupta, Pawan; Joiner, Joanna; Vasilkov, Alexander; Bhartia, Pawan K.

    2016-01-01

    Estimates of top-of-the-atmosphere (TOA) radiative flux are essential for the understanding of Earth's energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important atmospheric agents impacting the Earth's shortwave (SW) radiation budget. There are several sensors in orbit that provide independent information related to these parameters. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze data from several of these sensors. In this paper, retrievals of cloud/aerosol parameters and total column ozone (TCO) from the Aura Ozone Monitoring Instrument (OMI) have been collocated with the Aqua Clouds and Earth's Radiant Energy System (CERES) estimates of total reflected TOA outgoing SW flux (SWF). We use these data to develop a variety of neural networks that estimate TOA SWF globally over ocean and land using only OMI data and other ancillary information as inputs and CERES TOA SWF as the output for training purposes. OMI-estimated TOA SWF from the trained neural networks reproduces independent CERES data with high fidelity. The global mean daily TOA SWF calculated from OMI is consistently within 1% of CERES throughout the year 2007. Application of our neural network method to other sensors that provide similar retrieved parameters, both past and future, can produce similar estimates TOA SWF. For example, the well-calibrated Total Ozone Mapping Spectrometer (TOMS) series could provide estimates of TOA SWF dating back to late 1978.

  1. GPP/RE Partitioning of Long-term Network Flux Data as a Tool for Estimating Ecosystem-scale Ecophysiological Parameters of Grasslands and Croplands

    Science.gov (United States)

    Gilmanov, T. G.; Wylie, B. K.; Gu, Y.; Howard, D. M.; Zhang, L.

    2013-12-01

    The physiologically based model of canopy CO2 exchange by Thornly and Johnson (2000) modified to incorporate vapor pressure deficit (VPD) limitation of photosynthesis is a robust tool for partitioning tower network net CO2 exchange data into gross photosynthesis (GPP) and ecosystem respiration (RE) (Gilmanov et al. 2013a, b). In addition to 30-min and daily photosynthesis and respiration values, the procedure generates daily estimates and uncertainties of essential ecosystem-scale parameters such as apparent quantum yield ALPHA, photosynthetic capacity AMAX, convexity of light response THETA, gross ecological light-use efficiency LUE, daytime ecosystem respiration rate RDAY, and nighttime ecosystem respiration rate RNIGHT. These ecosystem-scale parameters are highly demanded by the modeling community and open opportunities for comparison with the rich data of leaf-level estimates of corresponding parameters available from physiological studies of previous decades. Based on the data for 70+ site-years of flux tower measurements at the non-forest sites of the Ameriflux network and the non-affiliated sites, we present results of the comparative analysis and multi-site synthesis of the magnitudes, uncertainties, patterns of seasonal and yearly dynamics, and spatiotemporal distribution of these parameters for grasslands and croplands of the conterminous United States (CONUS). Combining this site-level parameter data set with the rich spatiotemporal data sets of a remotely sensed vegetation index, weather and climate conditions, and site biophysical and geophysical features (phenology, photosynthetically active radiation, and soil water holding capacity) using methods of multivariate analysis (e.g., Cubist regression tree) offers new opportunities for predictive modeling and scaling-up of ecosystem-scale parameters of carbon cycling in grassland and agricultural ecosystems of CONUS (Zhang et al. 2011; Gu et al. 2012). REFERENCES Gilmanov TG, Baker JM, Bernacchi CJ

  2. Strong propensity for HIV transmission among men who have sex with men in Vietnam: behavioural data and sexual network modelling

    Science.gov (United States)

    Bengtsson, Linus; Lu, Xin; Liljeros, Fredrik; Thanh, Hoang Huy; Thorson, Anna

    2014-01-01

    Objectives Survey data from men who have sex with men (MSM) in Asian cities indicate ongoing and drastic increases in HIV prevalence. It is unknown which behavioural factors are most important in driving these epidemics. We aimed to analyse detailed sexual behaviour data among MSM in Vietnam and to model HIV transmission using improved assumptions on sexual network structure. Setting Vietnam. Participants Internet-using men who had ever had sex (any type) with a man, aged ≥18 years and living in Vietnam. The study was cross-sectional, population-based and performed in 2012, using online respondent-driven sampling. The Internet-based survey instrument was completed by 982 participants, of which 857 were eligible. Questions included sociodemography and retrospective sexual behaviour, including number of unprotected anal sex (UAS) acts per partner. Primary and secondary outcome measures Estimated basic reproductive number over 3 months as a function of transmission risk per UAS act; frequency distributions of number of UAS partners and UAS acts during last 3 months. Results 36% (CI 32% to 42%) reported UAS at least once during the last 3 months. 36% (CI 32% to 41%) had ever taken an HIV test and received the result. UAS partner numbers and number of UAS acts were both highly skewed and positively correlated. Using a weighted configuration model, taking into account partner numbers, frequency of UAS and their correlations, we estimated the basic reproductive number (R0) over 3 months. The results indicated rapid transmission over a wide range of values of per-act transmissibility. Conclusions Men with multiple partners had unexpectedly high UAS frequency per partner, paired with low HIV testing rates. The study highlights the importance of collecting data on frequency of UAS acts and indicates the need to rapidly scale-up HIV prevention services and testing opportunities for MSM in Vietnam. PMID:24435887

  3. Neural network analysis on the effect of heat fluxes on greenhouse gas emissions from anaerobic swine waste treatment lagoon

    Science.gov (United States)

    In this study, we examined the various meteorological factors (i.e., air temperatures, solar radiation, and heat fluxes) that potentially affect greenhouse gas (GHG) emissions from swine waste lagoon. GHG concentrations (methane, carbon dioxide, and nitrous oxide) were monitored using a photoacous...

  4. AmeriFlux Data Processing: Integrating automated and manual data management across software technologies and an international network to generate timely data products

    Science.gov (United States)

    Christianson, D. S.; Beekwilder, N.; Chan, S.; Cheah, Y. W.; Chu, H.; Dengel, S.; O'Brien, F.; Pastorello, G.; Sandesh, M.; Torn, M. S.; Agarwal, D.

    2017-12-01

    AmeriFlux is a network of scientists who independently collect eddy covariance and related environmental observations at over 250 locations across the Americas. As part of the AmeriFlux Management Project, the AmeriFlux Data Team manages standardization, collection, quality assurance / quality control (QA/QC), and distribution of data submitted by network members. To generate data products that are timely, QA/QC'd, and repeatable, and have traceable provenance, we developed a semi-automated data processing pipeline. The new pipeline consists of semi-automated format and data QA/QC checks. Results are communicated via on-line reports as well as an issue-tracking system. Data processing time has been reduced from 2-3 days to a few hours of manual review time, resulting in faster data availability from the time of data submission. The pipeline is scalable to the network level and has the following key features. (1) On-line results of the format QA/QC checks are available immediately for data provider review. This enables data providers to correct and resubmit data quickly. (2) The format QA/QC assessment includes an automated attempt to fix minor format errors. Data submissions that are formatted in the new AmeriFlux FP-In standard can be queued for the data QA/QC assessment, often with minimal delay. (3) Automated data QA/QC checks identify and communicate potentially erroneous data via online, graphical quick views that highlight observations with unexpected values, incorrect units, time drifts, invalid multivariate correlations, and/or radiation shadows. (4) Progress through the pipeline is integrated with an issue-tracking system that facilitates communications between data providers and the data processing team in an organized and searchable fashion. Through development of these and other features of the pipeline, we present solutions to challenges that include optimizing automated with manual processing, bridging legacy data management infrastructure with

  5. Annealing-free and strongly adhesive silver nanowire networks with long-term reliability by introduction of a nonconductive and biocompatible polymer binder

    Science.gov (United States)

    Jin, Yunxia; Deng, Dunying; Cheng, Yuanrong; Kong, Lingqiang; Xiao, Fei

    2014-04-01

    As a promising candidate to replace the brittle and expensive transparent indium tin oxide (ITO) conductor, the use of silver nanowire (AgNW) networks still involves issues such as high-temperature post-treatments and poor substrate adhesion for industrial application. Here a room-temperature soldering and one-step solution method is developed to achieve high-performance Ag nanowire transparent conductive films (TCFs). A nonconductive binder is prepared from poly(dopamine) and alginic acid which contains abundant catechol and carboxylic acid functional groups. The drying of the binder on the Ag nanowire percolation networks induces tighter contact among the nanowires and strong adhesion to the substrate, simultaneously enhancing the electrical and mechanical properties without a high-temperature annealing process. As a result, a highly conductive and bendable AgNW film is demonstrated on a low-cost polyethylene glycol terephthalate (PET) substrate, showing an 89% optical transmittance at λ = 550 nm and a sheet resistance of 16.3 Ohm sq-1. Its optical and electrical performances are superior to those obtained from the reported indium tin oxide (ITO) films. Moreover, the AgNW film exhibits strong adhesion to the substrate, maintaining its conductivity after 100 tape tests, and it still resists the tape test even after exposure to solvent for several hours. Most importantly, the film shows good reliability during long-term 85 °C/85% RH (relative humidity) aging, which has been rarely investigated although it is a critical requirement for industrial application. The advanced and wide-ranging features of the prepared AgNW film greatly contribute to its use as a transparent electrode in multifunctional flexible electronic devices.

  6. The DYNAFLUX / DYNACOLD (Dynamics, Fluxes, Stability, Succession and Landscape Formation in Cold Environments) Network (2004-2017)

    Science.gov (United States)

    Beylich, Achim A.

    2017-04-01

    There is a wide range of high-latitude and high-altitude cold climate landscapes within Europe, covering a significant proportion of the total land surface area. This spectrum of defined cold-climate landscapes represents a variety of stages of deglaciation history and landscape formation. We can find landscapes at different levels of postglacial stabilization which is providing the unique opportunity to study the interactions between geo-, bio-, social and socio-economic systems at the land surface. The DYNAFLUX / DYNACOLD Network (2004-2017) bridges across the geo-, bio-, social and socio-economic sciences in order to analyze the complex dynamics of adjustment, stabilization, succession and landscape formation during and after ice retreat and under ongoing anthropogenic influences. The network provides a multidisciplinary forum where researchers come together and discuss. In addition, this network is linking a number of other scientific networks, working groups and programs and creates an umbrella network and a forum for sharing knowledge and experience. The scientific focus of DYNAFLUX / DYNACOLD is also relevant for a number of end users, including risk and vulnerability assessment, sustainable land use, land management and conservation. In addition, present key questions related to environmental change like, e.g., hazards, permafrost degradation and loss of biodiversity are addressed and discussed. Further information is found under http://www.ngu.no/sediflux.

  7. Solar energetic particle flux enhancement as a predictor of geomagnetic activity in a neural network-based model

    Czech Academy of Sciences Publication Activity Database

    Valach, F.; Revallo, M.; Bochníček, Josef; Hejda, Pavel

    2009-01-01

    Roč. 7, April (2009), S04004/1-S04004/7 ISSN 1542-7390 R&D Projects: GA AV ČR(CZ) IAA300120608; GA AV ČR 1QS300120506 Institutional research plan: CEZ:AV0Z30120515 Keywords : neural networks * coronal mass ejections * energetic particles * flares * radio emissions * magnetic storms Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.845, year: 2009

  8. Stretchable and strong cellulose nanopaper structures based on polymer-coated nanofiber networks: an alternative to nonwoven porous membranes from electrospinning.

    Science.gov (United States)

    Sehaqui, Houssine; Morimune, Seira; Nishino, Takashi; Berglund, Lars A

    2012-11-12

    Nonwoven membranes based on electrospun fibers are of great interest in applications such as biomedical, filtering, and protective clothing. The poor mechanical performance is a limitation, as is some of the electrospinning solvents. To address these problems, porous nonwoven membranes based on nanofibrillated cellulose (NFC) modified by a hydroxyethyl cellulose (HEC) polymer coating are prepared. NFC/HEC aqueous suspensions are subjected to simple vacuum filtration in a paper-making fashion, followed by supercritical CO(2) drying. These nonwoven nanocomposite membranes are truly nanostructured and exhibit a nanoporous network structure with high specific surface area, as analyzed by nitrogen adsorption and FE-SEM. Mechanical properties evaluated by tensile tests show high strength combined with remarkably high strain to failure of up to 55%. XRD analysis revealed significant fibril realignment during tensile stretching. After postdrawing of the random mats, the modulus and strength are strongly increased. The present preparation route uses components from renewable resources, is environmentally friendly, and results in permeable membranes of exceptional mechanical performance.

  9. A 3D Dynamic Lumped Parameter Thermal Network of Air-Cooled YASA Axial Flux Permanent Magnet Synchronous Machine

    Directory of Open Access Journals (Sweden)

    Abdalla Hussein Mohamed

    2018-03-01

    Full Text Available To find the temperature rise for high power density yokeless and segmented armature (YASA axial flux permanent magnet synchronous (AFPMSM machines quickly and accurately, a 3D lumped parameter thermal model is developed and validated experimentally and by finite element (FE simulations on a 4 kW YASA machine. Additionally, to get insight in the thermal transient response of the machine, the model accounts for the thermal capacitance of different machine components. The model considers the stator, bearing, and windage losses, as well as eddy current losses in the magnets on the rotors. The new contribution of this work is that the thermal model takes cooling via air channels between the magnets on the rotor discs into account. The model is parametrized with respect to the permanent magnet (PM angle ratio, the PM thickness ratio, the air gap length, and the rotor speed. The effect of the channels is incorporated via convection equations based on many computational fluid dynamics (CFD computations. The model accuracy is validated at different values of parameters by FE simulations in both transient and steady state. The model takes less than 1 s to solve for the temperature distribution.

  10. Plasmid Flux in Escherichia coli ST131 Sublineages, Analyzed by Plasmid Constellation Network (PLACNET), a New Method for Plasmid Reconstruction from Whole Genome Sequences

    Science.gov (United States)

    Garcillán-Barcia, M. Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M.; de la Cruz, Fernando

    2014-01-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ–proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages. PMID:25522143

  11. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET, a new method for plasmid reconstruction from whole genome sequences.

    Directory of Open Access Journals (Sweden)

    Val F Lanza

    2014-12-01

    Full Text Available Bacterial whole genome sequence (WGS methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage, comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC, comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ-proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages.

  12. Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers

    Science.gov (United States)

    Williams, Christopher A.; Reichstein, Markus; Buchmann, Nina; Baldocchi, Dennis; Beer, Christian; Schwalm, Christopher; Wohlfahrt, Georg; Hasler, Natalia; Bernhofer, Christian; Foken, Thomas; Papale, Dario; Schymanski, Stan; Schaefer, Kevin

    2012-06-01

    The Budyko framework elegantly reduces the complex spatial patterns of actual evapotranspiration and runoff to a general function of two variables: mean annual precipitation (MAP) and net radiation. While the methodology has first-order skill, departures from a globally averaged curve can be significant and may be usefully attributed to additional controls such as vegetation type. This paper explores the magnitude of such departures as detected from flux tower measurements of ecosystem-scale evapotranspiration, and investigates their attribution to site characteristics (biome, seasonal rainfall distribution, and frozen precipitation). The global synthesis (based on 167 sites with 764 tower-years) shows smooth transition from water-limited to energy-limited control, broadly consistent with catchment-scale relations and explaining 62% of the across site variation in evaporative index (the fraction of MAP consumed by evapotranspiration). Climate and vegetation types act as additional controls, combining to explain an additional 13% of the variation in evaporative index. Warm temperate winter wet sites (Mediterranean) exhibit a reduced evaporative index, 9% lower than the average value expected based on dryness index, implying elevated runoff. Seasonal hydrologic surplus explains a small but significant fraction of variance in departures of evaporative index from that expected for a given dryness index. Surprisingly, grasslands on average have a higher evaporative index than forested landscapes, with 9% more annual precipitation consumed by annual evapotranspiration compared to forests. In sum, the simple framework of supply- or demand-limited evapotranspiration is supported by global FLUXNET observations but climate type and vegetation type are seen to exert sizeable additional controls.

  13. Video Meteor Fluxes

    Science.gov (United States)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    estimate the flux (Love & Brownlee, 1993); here the physical area of the detector is well known, but the masses depend strongly on the unknown velocity distribution. In the same size range, Thomas & Netherway (1989) used the narrow-beam radar at Jindalee to calculate the flux of sporadics. In between these very large and very small sizes, a number of video and photographic observations were reduced by Ceplecha (2001). These fluxes were calculated (details are given in Ceplecha, 1988) taking the Halliday et al. (1984) MORP fireball fluxes, slightly corrected in mass, as a calibration, and adjusting the flux of small cameras to overlap with the number/mass relation from that work.

  14. Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation.

    Science.gov (United States)

    Kim, Ju-Won; Park, Seunghee

    2018-01-02

    In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.

  15. Estimation of net surface radiation from eddy flux tower measurements using artificial neural network for cloudy skies

    Directory of Open Access Journals (Sweden)

    Dangeti Venkata Mahalakshmi

    2016-01-01

    Full Text Available Accurate knowledge of net surface radiation (NSR is required to understand the soil-vegetation-atmosphere feedbacks. However, NSR is seldom measured due to the technical and economical limitations associated with direct measurements. An artificial neural network (ANN technique with Levenberg–Marquardt learning algorithm was used to estimate NSR for a tropical mangrove forest of Indian Sundarban with routinely measured meteorological variables. The root mean square error (RMSE, mean absolute error (MAE, modelling efficiency (ME, coefficient of residual mass (CRM and coefficient of determination (R2 between ANN estimated and measured NSR were 37 W m−2, 26 W m−2, 0.95, 0.017 and 0.97 respectively under all-weather conditions. Thus, the ANN estimated NSR values presented in this study are comparable to those reported in literature. Further, a detailed study on the estimated NSR for cloudy skies was also analysed. ANN estimated NSR values were compared with in situ measurements for cloudy days and non-cloudy days. The RMSE, MAE and CRM of the model decrease to half when considering the non-cloudy days. Thus, the results demonstrate that major source error in estimating NSR comes from the cloudy skies. Sensitivity of input variables to NSR was further analysed.

  16. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints

    Science.gov (United States)

    Klamt, Steffen; Gerstl, Matthias P.; Jungreuthmayer, Christian; Mahadevan, Radhakrishnan; Müller, Stefan

    2017-01-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks. PMID:28406903

  17. Bridging the Scales from Field to Region with Practical Tools to Couple Time- and Space-Synchronized Data from Flux Towers and Networks with Proximal and Remote Sensing Data

    Science.gov (United States)

    Burba, G. G.; Avenson, T.; Burkart, A.; Gamon, J. A.; Guan, K.; Julitta, T.; Pastorello, G.; Sakowska, K.

    2017-12-01

    Many hundreds of flux towers are presently operational as standalone projects and as parts of regional networks. However, the vast majority of these towers do not allow straightforward coupling with remote sensing (drone, aircraft, satellite, etc.) data, and even fewer have optical sensors for validation of remote sensing products, and upscaling from field to regional levels. In 2016-2017, new tools to collect, process, and share time-synchronized flux data from multiple towers were developed and deployed globally. Originally designed to automate site and data management, and to streamline flux data analysis, these tools allow relatively easy matching of tower data with remote sensing data: GPS-driven PTP time protocol synchronizes instrumentation within the station, different stations with each other, and all of these to remote sensing data to precisely align remote sensing and flux data in time Footprint size and coordinates computed and stored with flux data help correctly align tower flux footprints and drone, aircraft or satellite motion to precisely align optical and flux data in space Full snapshot of the remote sensing pixel can then be constructed, including leaf-level, ground optical sensor, and flux tower measurements from the same footprint area, closely coupled with the remote sensing measurements to help interpret remote sensing data, validate models, and improve upscaling Additionally, current flux towers can be augmented with advanced ground optical sensors and can use standard routines to deliver continuous products (e.g. SIF, PRI, NDVI, etc.) based on automated field spectrometers (e.g., FloX and RoX, etc.) and other optical systems. Several dozens of new towers already operational globally can be readily used for the proposed workflow. Over 500 active traditional flux towers can be updated to synchronize their data with remote sensing measurements. This presentation will show how the new tools are used by major networks, and describe how this

  18. Evaluating Ecohydrological Impacts of Vegetation Activities on Climatological Perspectives Using MODIS Gross Primary Productivity and Evapotranspiration Products at Korean Regional Flux Network Site

    Directory of Open Access Journals (Sweden)

    Minha Choi

    2013-05-01

    Full Text Available Accurate assessments of spatio-temporal variations in gross primary productivity (GPP, evapotranspiration (ET, and water use efficiency (WUE play a crucial role in the evaluation of carbon and water balance as well as have considerable effects on climate change. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS products were used to quantify the mean annual GPP and ET at Korean regional flux network site. We found that the seasonal mean values of WUE were 2.86 to 2.92 g∙C∙g∙H2O−1 in the dormant season and 1.81 to 1.88 g∙C∙g∙H2O−1 in the growing season during 2007 and 2008. The WUE was relatively stable during the growing season and tended to vary in the dormant season. Remote sensing data obtained by the MODIS satellite were appeared to be effective to improve our understanding of the spatio-temporal variation of ecohydrological parameters which have not yet been investigated in a number of previous articles. Based on the results of this study, we summarize the interactions between carbon and water circulation in terrestrial ecosystems and how their ecological procedures generated by the photosynthesis of vegetation influence in climatological perspectives.

  19. Time-Integral Correlations of Multiple Variables With the Relativistic-Electron Flux at Geosynchronous Orbit: The Strong Roles of Substorm-Injected Electrons and the Ion Plasma Sheet

    Science.gov (United States)

    Borovsky, Joseph E.

    2017-12-01

    Time-integral correlations are examined between the geosynchronous relativistic electron flux index Fe1.2 and 31 variables of the solar wind and magnetosphere. An "evolutionary algorithm" is used to maximize correlations. Time integrations (into the past) of the variables are found to be superior to time-lagged variables for maximizing correlations with the radiation belt. Physical arguments are given as to why. Dominant correlations are found for the substorm-injected electron flux at geosynchronous orbit and for the pressure of the ion plasma sheet. Different sets of variables are constructed and correlated with Fe1.2: some sets maximize the correlations, and some sets are based on purely solar wind variables. Examining known physical mechanisms that act on the radiation belt, sets of correlations are constructed (1) using magnetospheric variables that control those physical mechanisms and (2) using the solar wind variables that control those magnetospheric variables. Fe1.2-increasing intervals are correlated separately from Fe1.2-decreasing intervals, and the introduction of autoregression into the time-integral correlations is explored. A great impediment to discerning physical cause and effect from the correlations is the fact that all solar wind variables are intercorrelated and carry much of the same information about the time sequence of the solar wind that drives the time sequence of the magnetosphere.

  20. Does the rise of the Internet bring erosion of strong ties? Analyses of social media use and changes in core discussion networks

    NARCIS (Netherlands)

    Vriens, Eva; van Ingen, Erik

    2017-01-01

    We derive hypotheses from popular accounts of how use of social media affects our strong ties. Several authors have suggested that social media use erodes our strong ties by increasing the volume of social interactions and decreasing their depth. Using two-wave panel data representative of the Dutch

  1. Nitrogen fluxes in the forests of the Congo Basin

    Science.gov (United States)

    Bauters, Marijn; Verbeeck, Hans; Cizungu, Landry; Makelele, Isaac; Boeckx, Pascal

    2017-04-01

    The tropical forest of the Congo basin remains very poorly investigated and understood; mainly because of logistic, political and research capacity constraints. Nevertheless, characterization and monitoring of fundamental processes in this biome is vital to understand future responses and to correctly parameterize Earth system models. Nutrient fluxes are key in these processes for the functioning of tropical forests, since CO2 uptake by terrestrial ecosystems strongly depends on site fertility, i.e. nutrient availability. Accurate projections of future net forest growth and terrestrial CO2 uptake thus necessitate an improved understanding on nutrient cycles and how these are coupled to the carbon (C) cycle in forests. Research in the Congo Basin region should combine assessments of both carbon fluxes and the underlying nutrient cycles which directly impact the forest productivity. We set up a monitoring network for nitrogen fluxes in four different forest types in the Congo Basin, resulting in a unique and integrate dataset. The questions to be answered: How do the N-budgets of four different forest types in the Congo Basin compare? How do these fluxes compare to fluxes in the Amazon forest? What is the influence from the strong slash-and-burn regimes on the N-cycle in the natural forests? We answer these questions with our empirical dataset of one hydrological year, combined with satellite and modeling data.

  2. Caprolactam-silica network, a strong potentiator of the antimicrobial activity of kanamycin against gram-positive and gram-negative bacterial strains.

    Science.gov (United States)

    Voicu, Georgeta; Grumezescu, Valentina; Andronescu, Ecaterina; Grumezescu, Alexandru Mihai; Ficai, Anton; Ficai, Denisa; Ghitulica, Cristina Daniela; Gheorghe, Irina; Chifiriuc, Mariana Carmen

    2013-03-25

    Here, we report the fabrication of a novel ε-caprolactam-silica (ε-SiO2) network and assessed its biocompatibility and ability to improve the antimicrobial activity of kanamycin. The results of the quantitative antimicrobial assay demonstrate that the obtained ε-SiO2 network has efficiently improved the kanamycin activity on Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922 strains, with a significant decrease of the minimum inhibitory concentration. The ε-SiO2 network could be feasibly obtained and represents an alternative for the design of new antibiotic drug carriers or delivery systems to control bacterial infections. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Constraining spatial patterns and secular trends of springtime phenology with contrasting models based on plant phenology gardens and carbon dioxide flux networks

    Science.gov (United States)

    White, M. A.; Baldocchi, D. D.; Schwartz, M. D.

    2007-12-01

    Shifts in the timing and distribution of spring phenological events are a central feature of global change research. Most evidence, especially for multi-decade records, indicates a shift towards earlier spring but with frequent differences in the magnitude and location of trends. Here, using two phenology models, one based on first bloom dates of clonal honeysuckle and lilac and one based on initiation of net carbon uptake at eddy covariance flux towers, we upscaled observations of spring arrival to the conterminous US at 1km resolution. The models shared similar and coherent spatial and temporal patterns at large regional scales but differed at smaller scales, likely attributable to: use of cloned versus extant species; chilling requirements; model complexity; and biome characteristics. Our results constrain climatically driven shifts in 1981 to 2003 spring arrival for the conterminous US to between -2.7 and 0.1 day/23 years. Estimated trend differences were minor in the biome of model development (deciduous broad leaf forest) but diverged strongly in woody evergreen and grassland areas. Based on comparisons with the normalized difference vegetation index (NDVI) and a limited independent ground dataset, predictions from both models were consistent with observations of satellite-based greenness and measured leaf expansion. First bloom trends, which were mostly statistically insignificant, were also consistent with NDVI trends while the net carbon uptake model predicted extensive trends towards earlier spring in the western US that were not observed in the NDVI data, showing the implication of model application outside the biome range of initial development.

  4. Feasibility study of a nation-wide Early Warning System: the application of the EEW software PRESTo on the Italian Strong Motion Network (RAN)

    Science.gov (United States)

    Zollo, Aldo; Picozzi, Matteo; Elia, Luca; Martino, Claudio; Brondi, Piero; Colombelli, Simona; Emolo, Antonio; Festa, Gaetano; Marcucci, Sandro

    2014-05-01

    The past two decades have witnessed a huge progress in the development, implementation and testing of Earthquakes Early Warning Systems (EEWS) worldwide, as the result of a joint effort of the seismological and earthquake engineering communities to set up robust and efficient methodologies for the real-time seismic risk mitigation. The leading experience of the operational early warning system implemented by the Japan Meteorological Agency showed the effectiveness of a combined onsite and network-based approach to rapidly broadcast the rapid warning after a potential damaging earthquake. At the nation-wide scale, the Japanese system makes use of real-time data streamed by the extremely dense accelerograph array (about 1000 seismic instruments) deployed across Japan. With more than 750 accelerometric stations installed over all the active seismic zones, target cities and strategic infrastructures, Italy has the potential for a nation-wide early warning system, although the communication network and data sharing must be expanded and improved. A significant number of these stations are nodes of the RAN (Italian Accelerometric Network) managed by the Italian national emergency management department (Dipartimento della Protezione Civile, DPC), whose data are used for emergency response services. In the framework of the REAKT-Strategies and tools for Real Time Earthquake RisK ReducTion FP7 European project, the AMRA-RISSCLab group is engaged in a feasibility study on the implementation of the EEW software PRESTo earthquake early warning platforms on the Italian accelerometric network (RAN) PRESTo (PRobabilistic and Evolutionary early warning SysTem) is a highly configurable and easily portable platform for Earthquake Early Warning. The system processes the live accelerometric streams from the stations of a seismic network to promptly provide probabilistic and evolutionary estimates of location and magnitude of detected earthquakes while they are occurring, as well as

  5. Principal Metabolic Flux Mode Analysis.

    Science.gov (United States)

    Bhadra, Sahely; Blomberg, Peter; Castillo, Sandra; Rousu, Juho; Wren, Jonathan

    2018-02-06

    In the analysis of metabolism, two distinct and complementary approaches are frequently used: Principal component analysis (PCA) and stoichiometric flux analysis. PCA is able to capture the main modes of variability in a set of experiments and does not make many prior assumptions about the data, but does not inherently take into account the flux mode structure of metabolism. Stoichiometric flux analysis methods, such as Flux Balance Analysis (FBA) and Elementary Mode Analysis, on the other hand, are able to capture the metabolic flux modes, however, they are primarily designed for the analysis of single samples at a time, and not best suited for exploratory analysis on a large sets of samples. We propose a new methodology for the analysis of metabolism, called Principal Metabolic Flux Mode Analysis (PMFA), which marries the PCA and stoichiometric flux analysis approaches in an elegant regularized optimization framework. In short, the method incorporates a variance maximization objective form PCA coupled with a stoichiometric regularizer, which penalizes projections that are far from any flux modes of the network. For interpretability, we also introduce a sparse variant of PMFA that favours flux modes that contain a small number of reactions. Our experiments demonstrate the versatility and capabilities of our methodology. The proposed method can be applied to genome-scale metabolic network in efficient way as PMFA does not enumerate elementary modes. In addition, the method is more robust on out-of-steady steady-state experimental data than competing flux mode analysis approaches. Matlab software for PMFA and SPMFA and data set used for experiments are available in https://github.com/aalto-ics-kepaco/PMFA. sahely@iitpkd.ac.in, juho.rousu@aalto.fi, Peter.Blomberg@vtt.fi, Sandra.Castillo@vtt.fi. Detailed results are in Supplementary files. Supplementary data are available at https://github.com/aalto-ics-kepaco/PMFA/blob/master/Results.zip.

  6. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  7. Comparison between elementary flux modes analysis and 13C-metabolic fluxes measured in bacterial and plant cells.

    Science.gov (United States)

    Beurton-Aimar, Marie; Beauvoit, Bertrand; Monier, Antoine; Vallée, François; Dieuaide-Noubhani, Martine; Colombié, Sophie

    2011-06-20

    (13)C metabolic flux analysis is one of the pertinent ways to compare two or more physiological states. From a more theoretical standpoint, the structural properties of metabolic networks can be analysed to explore feasible metabolic behaviours and to define the boundaries of steady state flux distributions. Elementary flux mode analysis is one of the most efficient methods for performing this analysis. In this context, recent approaches have tended to compare experimental flux measurements with topological network analysis. Metabolic networks describing the main pathways of central carbon metabolism were set up for a bacteria species (Corynebacterium glutamicum) and a plant species (Brassica napus) for which experimental flux maps were available. The structural properties of each network were then studied using the concept of elementary flux modes. To do this, coefficients of flux efficiency were calculated for each reaction within the networks by using selected sets of elementary flux modes. Then the relative differences - reflecting the change of substrate i.e. a sugar source for C. glutamicum and a nitrogen source for B. napus - of both flux efficiency and flux measured experimentally were compared. For both organisms, there is a clear relationship between these parameters, thus indicating that the network structure described by the elementary flux modes had captured a significant part of the metabolic activity in both biological systems. In B. napus, the extension of the elementary flux mode analysis to an enlarged metabolic network still resulted in a clear relationship between the change in the coefficients and that of the measured fluxes. Nevertheless, the limitations of the method to fit some particular fluxes are discussed. This consistency between EFM analysis and experimental flux measurements, validated on two metabolic systems allows us to conclude that elementary flux mode analysis could be a useful tool to complement (13)C metabolic flux analysis

  8. Population genomic analysis suggests strong influence of river network on spatial distribution of genetic variation in invasive saltcedar across the southwestern United States

    Science.gov (United States)

    Lee, Soo-Rang; Jo, Yeong-Seok; Park, Chan-Ho; Friedman, Jonathan M.; Olson, Matthew S.

    2018-01-01

    Understanding the complex influences of landscape and anthropogenic elements that shape the population genetic structure of invasive species provides insight into patterns of colonization and spread. The application of landscape genomics techniques to these questions may offer detailed, previously undocumented insights into factors influencing species invasions. We investigated the spatial pattern of genetic variation and the influences of landscape factors on population similarity in an invasive riparian shrub, saltcedar (Tamarix L.) by analysing 1,997 genomewide SNP markers for 259 individuals from 25 populations collected throughout the southwestern United States. Our results revealed a broad-scale spatial genetic differentiation of saltcedar populations between the Colorado and Rio Grande river basins and identified potential barriers to population similarity along both river systems. River pathways most strongly contributed to population similarity. In contrast, low temperature and dams likely served as barriers to population similarity. We hypothesize that large-scale geographic patterns in genetic diversity resulted from a combination of early introductions from distinct populations, the subsequent influence of natural selection, dispersal barriers and founder effects during range expansion.

  9. Networking

    OpenAIRE

    Rauno Lindholm, Daniel; Boisen Devantier, Lykke; Nyborg, Karoline Lykke; Høgsbro, Andreas; Fries, de; Skovlund, Louise

    2016-01-01

    The purpose of this project was to examine what influencing factor that has had an impact on the presumed increasement of the use of networking among academics on the labour market and how it is expressed. On the basis of the influence from globalization on the labour market it can be concluded that the globalization has transformed the labour market into a market based on the organization of networks. In this new organization there is a greater emphasis on employees having social qualificati...

  10. Weak point disorder in strongly fluctuating flux-line liquids

    Indian Academy of Sciences (India)

    Potential techno- logical applications of high-temperature superconductors rely on the pinning of the vortices in order to eliminate dissipative losses from their motion. In addition, ..... (11) where i, j = (x, y), PL ij(q⊥) = q⊥iq⊥j/q2. ⊥ and PT ij (q⊥) = δij − PL ij(q⊥) are longitu- dinal and transverse projection operators and.

  11. <strong> >Ideas & Control

    DEFF Research Database (Denmark)

    Brink, Tove

    the ‘tension' (Weick 1995) that arises between innovation and control of the actions in the network. Organizing contains a learning process and focuses the underlying preferences and connections in the network. The situations in the case are the election of new board members and the launch of a specific sense...

  12. Continuous SO2 flux measurements for Vulcano Island, Italy

    Directory of Open Access Journals (Sweden)

    Fabio Vita

    2012-06-01

    Full Text Available The La Fossa cone of Vulcano Island (Aeolian Archipelago, Italy is a closed conduit volcano. Today, Vulcano Island is characterized by sulfataric activity, with a large fumarolic field that is mainly located in the summit area. A scanning differential optical absorption spectroscopy instrument designed by the Optical Sensing Group of Chalmers University of Technology in Göteborg, Sweden, was installed in the framework of the European project "Network for Observation of Volcanic and Atmospheric Change", in March 2008. This study presents the first dataset of SO2 plume fluxes recorded for a closed volcanic system. Between 2008 and 2010, the SO2 fluxes recorded showed average values of 12 t.d–1 during the normal sulfataric activity of Vulcano Island, with one exceptional event of strong degassing that occurred between September and December, 2009, when the SO2 emissions reached up to 100 t.d–1.

  13. Aperture averaging in strong oceanic turbulence

    Science.gov (United States)

    Gökçe, Muhsin Caner; Baykal, Yahya

    2018-04-01

    Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.

  14. Using GEOS-5 Atmospheric Transport Simulations to Test the Consistency of Land- and Ocean- Carbon Fluxes with CO2 Observations

    Science.gov (United States)

    Ott, L. E.; Pawson, S.; Zhu, Z.; Brix, H.; Collatz, G. J.; Gregg, W. W.; Hill, C. N.; Menemenlis, D.; Potter, C. S.; Bowman, K. W.; Dutkiewicz, S.; Eldering, A.; Fisher, J. B.; Follows, M. J.; Gunson, M. R.; Jucks, K. W.; Kawa, S. R.; Liu, J.; Lee, M.

    2011-12-01

    Many components of the carbon cycle are constrained by a variety of remote sensing measurements. Observations of land surface parameters constrain estimates of carbon flux from terrestrial biosphere models while estimates of oceanic carbon fluxes are informed by satellite observations of ocean color and ocean properties. Atmospheric CO2 concentrations, which are governed by the balance of terrestrial, oceanic, and anthropogenic fluxes, are observed from space by an expanding suite of instruments (AIRS, TES, and GOSAT) in addition to being monitored by an extensive global network of surface stations. Additionally, atmospheric transport patterns simulated by NASA's GEOS-5 data analysis system are strongly influenced by observations of atmospheric state variables. NASA's Carbon Monitoring System Flux Pilot Project was created to quantify the constraints placed on carbon flux estimates by the current observing system and to assess what additional observational needs are required for future monitoring and attribution efforts. To this end, we have conducted an ensemble of GEOS-5 modeling studies using different combinations of two sets of land (NASA-CASA, CASA-GFED) and two sets of ocean (NOBM, ECCO2/Darwin) fluxes. Results from this ensemble of simulations are sampled at locations consistent with NOAA GMD and TCCON surface networks as well as locations of AIRS, TES, and GOSAT overpasses to quantify how surface flux uncertainty may be observed by different observing systems. Additionally, an ensemble of GEOS-5 simulations with alterations to subgrid-scale transport parameterizations is analyzed to compare model transport uncertainty with flux uncertainty. Our results indicate that uncertainty in both land and ocean flux estimates can introduce a large degree of variability into atmospheric CO2 distributions and that the magnitude of these differences is observable by existing satellite and in situ platforms. In contrast, transport uncertainty introduced by subgrid

  15. Toward an estimation of daily european CO{sub 2} fluxes at high spatial resolution by inversion of atmospheric transport; Vers une estimation des flux de CO{sub 2} journaliers europeens a haute resolution par inversion du transport atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Carouge, C

    2006-04-15

    Since the end of the 1980's, measurements of atmospheric carbon dioxide have been used to estimate global and regional fluxes of CO{sub 2}. This is possible because CO{sub 2} concentration variation is directly linked to flux variation by atmospheric transport. We can find the spatial and temporal distribution of fluxes from concentration measurements by 'inverting' the atmospheric transport. Until recently, most CO{sub 2} inversions have used monthly mean CO{sub 2} atmospheric concentration measurements to infer monthly fluxes. Considering the sparseness of the global CO{sub 2} measurement network, fluxes were a priori aggregated on sub-continental regions and distributed on a fixed spatial pattern within these regions. Only one flux coefficient per month for each region was optimized. With this strong constraint, estimated fluxes can be biased by non-perfect distribution of fluxes within each region (aggregation error). Therefore, flux estimation at model resolution is being developed where the hard constraint of a fixed distribution within a region is replaced by a soft constraint of covariances between flux uncertainties. The use of continuous observations from an increasing number of measurement sites offers a new challenge for inverse modelers. We investigate the use of daily averaged observations to infer daily CO{sub 2} fluxes at model resolution over Europe. We have developed a global synthesis Bayesian inversion to invert daily fluxes at model resolution (50 x 50 km over Europe) from daily averaged CO{sub 2} concentrations. We have obtained estimated fluxes for the year 2001 over Europe using the 10 European continuous sites from the AEROCARB network. The global atmospheric model LMDZt is used with a nested grid over Europe. It is necessary to add a priori spatial and temporal correlations between flux errors to constrain the Bayesian inversion. We present the impact on estimated fluxes of three different spatial correlations based on

  16. Fast flux module detection using matroid theory.

    Science.gov (United States)

    Reimers, Arne C; Bruggeman, Frank J; Olivier, Brett G; Stougie, Leen

    2015-05-01

    Flux balance analysis (FBA) is one of the most often applied methods on genome-scale metabolic networks. Although FBA uniquely determines the optimal yield, the pathway that achieves this is usually not unique. The analysis of the optimal-yield flux space has been an open challenge. Flux variability analysis is only capturing some properties of the flux space, while elementary mode analysis is intractable due to the enormous number of elementary modes. However, it has been found by Kelk et al. (2012) that the space of optimal-yield fluxes decomposes into flux modules. These decompositions allow a much easier but still comprehensive analysis of the optimal-yield flux space. Using the mathematical definition of module introduced by Müller and Bockmayr (2013b), we discovered useful connections to matroid theory, through which efficient algorithms enable us to compute the decomposition into modules in a few seconds for genome-scale networks. Using that every module can be represented by one reaction that represents its function, in this article, we also present a method that uses this decomposition to visualize the interplay of modules. We expect the new method to replace flux variability analysis in the pipelines for metabolic networks.

  17. DOC and FPOM Concentrations and Fluxes in Urban Streams

    Science.gov (United States)

    Belt, K.; Kaushal, S.; Swan, C.; Pouyat, R.

    2012-12-01

    The large anthropogenic drainage densities of urban catchments facilitate OM (organic matter) transport, creating a "gutter subsidy" to streams that likely dwarfs riparian input. Storm and Dry weather DOC (dissolved organic carbon), and FPOM (fine particulate OM) sample results from twelve streams of the BES LTER urban stream network revealed temporally dynamic systems greatly influenced by land cover, with high OM fluxes and concentrations. DOC dry weather fluxes decreased with catchment impervious cover (R2=0.57) while DOC fluxes increased exponentially (R2=0.94). Hydrograph storm sampling at an urban and forested stream revealed very different fluxes and patterns that suggest that the urban catchment had large stores of DOC. The proportion of OM in stream seston increased with urbanization. Baseflow FPOM concentrations were similar in forest and urban streams, but these increased greatly in elevated baseflows in the forest and suburban streams. These results suggest that urban catchments, with their altered drainage pathways and strong terrestrial-aquatic linkages, can transport appreciable quantities of dissolved and particulate organic matter. This has implications for aquatic food webs and productivity, and for pollutant fates. It also suggests that restoration might play a role in facilitating the retention of this OM to the advantage of the aquatic community.

  18. Toward an estimation of daily european CO2 fluxes at high spatial resolution by inversion of atmospheric transport

    International Nuclear Information System (INIS)

    Carouge, C.

    2006-04-01

    Since the end of the 1980's, measurements of atmospheric carbon dioxide have been used to estimate global and regional fluxes of CO 2 . This is possible because CO 2 concentration variation is directly linked to flux variation by atmospheric transport. We can find the spatial and temporal distribution of fluxes from concentration measurements by 'inverting' the atmospheric transport. Until recently, most CO 2 inversions have used monthly mean CO 2 atmospheric concentration measurements to infer monthly fluxes. Considering the sparseness of the global CO 2 measurement network, fluxes were a priori aggregated on sub-continental regions and distributed on a fixed spatial pattern within these regions. Only one flux coefficient per month for each region was optimized. With this strong constraint, estimated fluxes can be biased by non-perfect distribution of fluxes within each region (aggregation error). Therefore, flux estimation at model resolution is being developed where the hard constraint of a fixed distribution within a region is replaced by a soft constraint of covariances between flux uncertainties. The use of continuous observations from an increasing number of measurement sites offers a new challenge for inverse modelers. We investigate the use of daily averaged observations to infer daily CO 2 fluxes at model resolution over Europe. We have developed a global synthesis Bayesian inversion to invert daily fluxes at model resolution (50 x 50 km over Europe) from daily averaged CO 2 concentrations. We have obtained estimated fluxes for the year 2001 over Europe using the 10 European continuous sites from the AEROCARB network. The global atmospheric model LMDZt is used with a nested grid over Europe. It is necessary to add a priori spatial and temporal correlations between flux errors to constrain the Bayesian inversion. We present the impact on estimated fluxes of three different spatial correlations based on distance between pixels, climate and vegetation

  19. Testing the applicability of neural networks as a gap-filling method using CH4 flux data from high latitude wetlands

    DEFF Research Database (Denmark)

    Dengel, S.; Zona, D.; Sachs, T.

    2013-01-01

    no consensus on CH4 gap-filling methods, and methods applied are still study-dependent and often carried out on low resolution, daily data. In the current study, we applied artificial neural networks to six distinctively different CH4 time series from high latitudes, explain the method and test its...

  20. Thermodynamically Feasible Kinetic Models of Reaction Networks

    OpenAIRE

    Ederer, Michael; Gilles, Ernst Dieter

    2007-01-01

    The dynamics of biological reaction networks are strongly constrained by thermodynamics. An holistic understanding of their behavior and regulation requires mathematical models that observe these constraints. However, kinetic models may easily violate the constraints imposed by the principle of detailed balance, if no special care is taken. Detailed balance demands that in thermodynamic equilibrium all fluxes vanish. We introduce a thermodynamic-kinetic modeling (TKM) formalism that adapts th...

  1. <strong>Neuroeconomics and behavioral health economicsstrong>/>

    DEFF Research Database (Denmark)

    Larsen, Torben

    2009-01-01

    - a key center in our emotional arousal (limbic system) - as shaped in the elder stone-age with many acute threats. II. In general, the Hawthorne-effect of human-relations management is explained as the result of supportive job-relations relaxing Amygdala for better emotional integration...... some are rooted in the religious tradition while other aim to be post-religious. Medical meditation across settings combines savings on health care costs with de-stressing benefits as reduced anxiety, less use of stimulants and a reduction of blood pressure which in all increase life...... is met by a meso-strategy aiming the formation of an international, multidisciplinary network which might organize regional workshops for representatives for all involved parties in order to prepare local implementation projects.   Regarding de-stressing by medical meditation a relatively fast...

  2. Radon flux measurement methodologies

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1984-01-01

    Five methods for measuring radon fluxes are evaluated: the accumulator can, a small charcoal sampler, a large-area charcoal sampler, the ''Big Louie'' charcoal sampler, and the charcoal tent sampler. An experimental comparison of the five flux measurement techniques was also conducted. Excellent agreement was obtained between the measured radon fluxes and fluxes predicted from radium and emanation measurements

  3. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  4. Heat flux viscosity in collisional magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C., E-mail: cliu@pppl.gov [Princeton University, Princeton, New Jersey 08544 (United States); Fox, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Bhattacharjee, A. [Princeton University, Princeton, New Jersey 08544 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  5. Updates from the AmeriFlux Management Project Tech Team

    Science.gov (United States)

    Biraud, S.; Chan, S.; Dengel, S.; Polonik, P.; Hanson, C. V.; Billesbach, D. P.; Torn, M. S.

    2017-12-01

    The goal of AmeriFlux is to develop a network of long-term flux sites for quantifying and understanding the role of the terrestrial biosphere in global climate and environmental change. The AmeriFlux Management Program (AMP) Tech Team at LBNL strengthens the AmeriFlux Network by (1) standardizing operational practices, (2) developing calibration and maintenance routines, and (3) setting clear data quality goals. In this poster we will present results and recent progress in three areas: IRGA intercomparison experiment in cooperation with UC Davis, and main manufacturers of sensors used in the AmeriFlux network (LI-COR, Picarro, and Campbell Scientific). Gill sonic anemometers characterization in collaboration with John Frank and Bill Massman (US Forest Service) following the discovery of a significant firmware problem in commonly used Gill Sonic anemometer, Unmanned aerial systems (UAS), and sensors systematically used at AmeriFlux sites to improve site characterization.

  6. Network cosmology.

    Science.gov (United States)

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

  7. Modeling the Differences in Biochemical Capabilities of Pseudomonas Species by Flux Balance Analysis: How Good Are Genome-Scale Metabolic Networks at Predicting the Differences?

    Directory of Open Access Journals (Sweden)

    Parizad Babaei

    2014-01-01

    Full Text Available To date, several genome-scale metabolic networks have been reconstructed. These models cover a wide range of organisms, from bacteria to human. Such models have provided us with a framework for systematic analysis of metabolism. However, little effort has been put towards comparing biochemical capabilities of closely related species using their metabolic models. The accuracy of a model is highly dependent on the reconstruction process, as some errors may be included in the model during reconstruction. In this study, we investigated the ability of three Pseudomonas metabolic models to predict the biochemical differences, namely, iMO1086, iJP962, and iSB1139, which are related to P. aeruginosa PAO1, P. putida KT2440, and P. fluorescens SBW25, respectively. We did a comprehensive literature search for previous works containing biochemically distinguishable traits over these species. Amongst more than 1700 articles, we chose a subset of them which included experimental results suitable for in silico simulation. By simulating the conditions provided in the actual biological experiment, we performed case-dependent tests to compare the in silico results to the biological ones. We found out that iMO1086 and iJP962 were able to predict the experimental data and were much more accurate than iSB1139.

  8. Modeling the differences in biochemical capabilities of pseudomonas species by flux balance analysis: how good are genome-scale metabolic networks at predicting the differences?

    Science.gov (United States)

    Babaei, Parizad; Ghasemi-Kahrizsangi, Tahereh; Marashi, Sayed-Amir

    2014-01-01

    To date, several genome-scale metabolic networks have been reconstructed. These models cover a wide range of organisms, from bacteria to human. Such models have provided us with a framework for systematic analysis of metabolism. However, little effort has been put towards comparing biochemical capabilities of closely related species using their metabolic models. The accuracy of a model is highly dependent on the reconstruction process, as some errors may be included in the model during reconstruction. In this study, we investigated the ability of three Pseudomonas metabolic models to predict the biochemical differences, namely, iMO1086, iJP962, and iSB1139, which are related to P. aeruginosa PAO1, P. putida KT2440, and P. fluorescens SBW25, respectively. We did a comprehensive literature search for previous works containing biochemically distinguishable traits over these species. Amongst more than 1700 articles, we chose a subset of them which included experimental results suitable for in silico simulation. By simulating the conditions provided in the actual biological experiment, we performed case-dependent tests to compare the in silico results to the biological ones. We found out that iMO1086 and iJP962 were able to predict the experimental data and were much more accurate than iSB1139.

  9. Clustering of Emerging Flux

    Science.gov (United States)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  10. Strongly Correlated Topological Insulators

    Science.gov (United States)

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  11. Strong Cosmic Censorship

    Science.gov (United States)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  12. SLC positron source flux concentrator modulator

    International Nuclear Information System (INIS)

    de Lamare, J.; Kulikov, A.; Cassel, R.; Nesterov, V.

    1991-06-01

    The modulator for the SLC e+ source flux concentrator provides 16 kA in a 5 μs sinusoidal half wave current for a pure inductive load, at 120 Hz. The modulator incorporates 10 EEV CX1622 thyratrons in a switching network. It provides reliable operation with acceptable thyratron lifetime. 3 refs., 3 figs., 1 tab

  13. Strong Arcwise Connectedness

    OpenAIRE

    Espinoza, Benjamin; Gartside, Paul; Kovan-Bakan, Merve; Mamatelashvili, Ana

    2012-01-01

    A space is `n-strong arc connected' (n-sac) if for any n points in the space there is an arc in the space visiting them in order. A space is omega-strong arc connected (omega-sac) if it is n-sac for all n. We study these properties in finite graphs, regular continua, and rational continua. There are no 4-sac graphs, but there are 3-sac graphs and graphs which are 2-sac but not 3-sac. For every n there is an n-sac regular continuum, but no regular continuum is omega-sac. There is an omega-sac ...

  14. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally......'s scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims....

  15. Spectroscopy and coherent manipulation of single and coupled flux qubits

    International Nuclear Information System (INIS)

    Wu Yu-Lin; Deng Hui; Huang Ke-Qiang; Tian Ye; Yu Hai-Feng; Xue Guang-Ming; Jin Yi-Rong; Li Jie; Zhao Shi-Ping; Zheng Dong-Ning

    2013-01-01

    Measurements of three-junction flux qubits, both single flux qubits and coupled flux qubits, using a coupled direct current superconducting quantum interference device (dc-SQUID) for readout are reported. The measurement procedure is described in detail. We performed spectroscopy measurements and coherent manipulations of the qubit states on a single flux qubit, demonstrating quantum energy levels and Rabi oscillations, with Rabi oscillation decay time T Rabi = 78 ns and energy relaxation time T 1 = 315 ns. We found that the value of T Rabi depends strongly on the mutual inductance between the qubit and the magnetic coil. We also performed spectroscopy measurements on inductively coupled flux qubits. (general)

  16. Compact neutron flux monitor

    International Nuclear Information System (INIS)

    Madhavi, V.; Phatak, P.R.; Bahadur, C.; Bayala, A.K.; Jakati, R.K.; Sathian, V.

    2003-01-01

    Full text: A compact size neutron flux monitor has been developed incorporating standard boards developed for smart radiation monitors. The sensitivity of the monitors is 0.4cps/nV. It has been tested up to 2075 nV flux with standard neutron sources. It shows convincing results even in high flux areas like 6m away from the accelerator in RMC (Parel) for 106/107 nV. These monitors have a focal and remote display, alarm function with potential free contacts for centralized control and additional provision of connectivity via RS485/Ethernet. This paper describes the construction, working and results of the above flux monitor

  17. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.

    1992-01-01

    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  18. Gap filling strategies for long term energy flux data sets

    NARCIS (Netherlands)

    Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; Granier, A.; Gross, P.; Grünwald, T.; Hollinger, D.; Jensen, N.O.; Katul, G.; Keronen, P.; Kowalski, A.; Lai, C.T.; Law, B.E.; Meyers, T.; Moncrieff, J.; Moors, E.J.; Munger, J.W.; Pilegaard, K.; Rebmann, C.; Suyker, A.; Tenhunen, J.; Tu, K.

    2001-01-01

    At present a network of over 100 field sites are measuring carbon dioxide, water vapor and sensible heat fluxes between the biosphere and atmosphere, on a nearly continuous basis. Gaps in the long term measurements of evaporation and sensible heat flux must be filled before these data can be used

  19. Dynamical Processes in Flux Tubes and their Role in ...

    Indian Academy of Sciences (India)

    We model the dynamical interaction between magnetic flux tubes and granules in the solar photosphere which leads to the excitation of transverse (kink) and longitudinal (sausage) tube waves. The investigation is motivated by the interpretation of network oscillations in terms of flux tube waves. The calculations show that ...

  20. Meridional Flow Observations: Implications for the current Flux Transport Models

    International Nuclear Information System (INIS)

    Gonzalez Hernandez, Irene; Komm, Rudolf; Kholikov, Shukur; Howe, Rachel; Hill, Frank

    2011-01-01

    Meridional circulation has become a key element in the solar dynamo flux transport models. Available helioseismic observations from several instruments, Taiwan Oscillation Network (TON), Global Oscillation Network Group (GONG) and Michelson Doppler Imager (MDI), have made possible a continuous monitoring of the solar meridional flow in the subphotospheric layers for the last solar cycle, including the recent extended minimum. Here we review some of the meridional circulation observations using local helioseismology techniques and relate them to magnetic flux transport models.

  1. Synergy between 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaption to anaerobiosis in e. coli

    Science.gov (United States)

    Genome-based Flux Balance Analysis (FBA, constraints based flux analysis) and steady state isotopic-labeling-based Metabolic Flux Analysis (MFA) are complimentary approaches to predicting and measuring the operation and regulation of metabolic networks. Here a genome-derived model of E. coli metabol...

  2. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  3. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  4. Solar Magnetic Flux Ropes

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The most probable initial magnetic configuration of a CME is a flux rope consisting of twisted field lines which fill the whole volume of a dark coronal cavity. The flux ropes can be in stable equilibrium in the coronal magnetic field for weeks and even months, but suddenly they lose their stability and erupt with ...

  5. Hadron fluxes in inner parts of LHC detectors

    International Nuclear Information System (INIS)

    Aarnio, P.A.; Huhtinen, M.

    1993-01-01

    We have simulated neutron and charged hadron fluxes inside the tracking cavity and around the electromagnetic calorimeter in a typical LHC detector geometry using the Fluka92 code. We find a strong dependence of the fluxes on electromagnetic calorimeter materials. We observe high neutron fluxes in calorimeter endcaps, while charged hadrons are found to be the major cause of displacement damage at an inner silicon tracker. (orig.)

  6. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  7. Strong interaction and QFD

    International Nuclear Information System (INIS)

    Ebata, T.

    1981-01-01

    With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)

  8. Streptomyces clavuligerus shows a strong association between TCA cycle intermediate accumulation and clavulanic acid biosynthesis.

    Science.gov (United States)

    Ramirez-Malule, Howard; Junne, Stefan; Nicolás Cruz-Bournazou, Mariano; Neubauer, Peter; Ríos-Estepa, Rigoberto

    2018-05-01

    Clavulanic acid (CA) is produced by Streptomyces clavuligerus (S. clavuligerus) as a secondary metabolite. Knowledge about the carbon flux distribution along the various routes that supply CA precursors would certainly provide insights about metabolic performance. In order to evaluate metabolic patterns and the possible accumulation of tricarboxylic acid (TCA) cycle intermediates during CA biosynthesis, batch and subsequent continuous cultures with steadily declining feed rates were performed with glycerol as the main substrate. The data were used to in silico explore the metabolic capabilities and the accumulation of metabolic intermediates in S. clavuligerus. While clavulanic acid accumulated at glycerol excess, it steadily decreased at declining dilution rates; CA synthesis stopped when glycerol became the limiting substrate. A strong association of succinate, oxaloacetate, malate, and acetate accumulation with CA production in S. clavuligerus was observed, and flux balance analysis (FBA) was used to describe the carbon flux distribution in the network. This combined experimental and numerical approach also identified bottlenecks during the synthesis of CA in a batch and subsequent continuous cultivation and demonstrated the importance of this type of methodologies for a more advanced understanding of metabolism; this potentially derives valuable insights for future successful metabolic engineering studies in S. clavuligerus.

  9. <strong>Anonysense>: privacy-aware people-centric sensingstrong>

    DEFF Research Database (Denmark)

    Triandopoulos, Nikolaos; Cornelius, Cory; Kapadia, Apu

    2008-01-01

    by personal mobile devices. AnonySense allows applications to submit sensing tasks that will be distributed across anonymous participating mobile devices, later receiving verified, yet anonymized, sensor data reports back from the field, thus providing the first secure implementation of this participatory......Personal mobile devices are increasingly equipped with the capability to sense the physical world (through cameras, microphones, and accelerometers, for example) and the, network world (with Wi-Fi and Bluetooth interfaces). Such devices offer many new opportunities for cooperative sensing...... applications. For example, users' mobile phones may contribute data to community-oriented information services, from city-wide pollution monitoring to enterprise-wide detection of unauthorized Wi-Fi access points. This people-centric mobile-sensing model introduces a new security challenge in the design...

  10. Measuring Convective Mass Fluxes Over Tropical Oceans

    Science.gov (United States)

    Raymond, David

    2017-04-01

    Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and

  11. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  12. Sol-Rad Net Flux (L 1.0, 1.5, 2.0)

    Data.gov (United States)

    National Aeronautics and Space Administration — SolRad-Net (Solar Radiation Network) is an established network of ground-based sensors providing high-frequency solar flux measurements in quasi-realtime to the...

  13. Directed flux motor

    Science.gov (United States)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  14. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  15. Evaluation of Deep Learning Models for Predicting CO2 Flux

    Science.gov (United States)

    Halem, M.; Nguyen, P.; Frankel, D.

    2017-12-01

    Artificial neural networks have been employed to calculate surface flux measurements from station data because they are able to fit highly nonlinear relations between input and output variables without knowing the detail relationships between the variables. However, the accuracy in performing neural net estimates of CO2 flux from observations of CO2 and other atmospheric variables is influenced by the architecture of the neural model, the availability, and complexity of interactions between physical variables such as wind, temperature, and indirect variables like latent heat, and sensible heat, etc. We evaluate two deep learning models, feed forward and recurrent neural network models to learn how they each respond to the physical measurements, time dependency of the measurements of CO2 concentration, humidity, pressure, temperature, wind speed etc. for predicting the CO2 flux. In this paper, we focus on a) building neural network models for estimating CO2 flux based on DOE data from tower Atmospheric Radiation Measurement data; b) evaluating the impact of choosing the surface variables and model hyper-parameters on the accuracy and predictions of surface flux; c) assessing the applicability of the neural network models on estimate CO2 flux by using OCO-2 satellite data; d) studying the efficiency of using GPU-acceleration for neural network performance using IBM Power AI deep learning software and packages on IBM Minsky system.

  16. Wormhole effect in a strong topological insulator

    Science.gov (United States)

    Rosenberg, G.; Guo, H.-M.; Franz, M.

    2010-07-01

    An infinitely thin solenoid carrying magnetic flux Φ (a “Dirac string”) inserted into an ordinary band insulator has no significant effect on the spectrum of electrons. In a strong topological insulator, remarkably, such a solenoid carries protected gapless one-dimensional fermionic modes when Φ=hc/2e . These modes are spin-filtered and represent a distinct bulk manifestation of the topologically nontrivial insulator. We establish this “wormhole” effect by both general qualitative considerations and by numerical calculations within a minimal lattice model. We also discuss the possibility of experimental observation of a closely related effect in artificially engineered nanostructures.

  17. Development of a strong electromagnet wiggler

    International Nuclear Information System (INIS)

    Burns, M.J.; Deis, G.A.; Holmes, R.H.; Van Maren, R.D.; Halbach, K.

    1987-01-01

    The Strong Electromagnet (SEM) wiggler is a permanent magnet-assisted electromagnet under development at the Lawrence Livermore National Laboratory (LLNL) as part of the Induction Linac Free-Electron-Laser (IFEL) program. This concept uses permanent magnets within the wiggler to provide a reverse bias flux in the iron and thus delay the onset of magnetic saturation. The electromagnet coils determine the wiggler field and operate at low current densities by virtue of their placement away from the midplane. We describe here the design approach used and test data from a 7-period wiggler prototype that includes curved pole tips to provide wiggle-plane focusing. 7 refs

  18. Flux in Tallinn

    Index Scriptorium Estoniae

    2004-01-01

    Rahvusvahelise elektroonilise kunsti sümpoosioni ISEA2004 klubiõhtu "Flux in Tallinn" klubis Bon Bon. Eestit esindasid Ropotator, Ars Intel Inc., Urmas Puhkan, Joel Tammik, Taavi Tulev (pseud. Wochtzchee). Klubiõhtu koordinaator Andres Lõo

  19. Determining Reactor Neutrino Flux

    OpenAIRE

    Cao, Jun

    2011-01-01

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understa...

  20. Theoretical magnetic flux emergence

    OpenAIRE

    MacTaggart, David

    2011-01-01

    Magnetic flux emergence is the subject of how magnetic fields from the solar interior can rise and expand into the atmosphere to produce active regions. It is the link that joins dynamics in the convection zone with dynamics in the atmosphere. In this thesis, we study many aspects of magnetic flux emergence through mathematical modelling and computer simulations. Our primary aim is to understand the key physical processes that lie behind emergence. The first chapter intro...

  1. Flux Emergence (Theory)

    Science.gov (United States)

    Cheung, Mark C. M.; Isobe, Hiroaki

    2014-07-01

    Magnetic flux emergence from the solar convection zone into the overlying atmosphere is the driver of a diverse range of phenomena associated with solar activity. In this article, we introduce theoretical concepts central to the study of flux emergence and discuss how the inclusion of different physical effects (e.g., magnetic buoyancy, magnetoconvection, reconnection, magnetic twist, interaction with ambient field) in models impact the evolution of the emerging field and plasma.

  2. Carbon fluxes in a young, naturally regenerating jack pine ecosystem

    Science.gov (United States)

    Euskirchen, EugéNie S.; Pregitzer, Kurt S.; Chen, Jiquan

    2006-01-01

    Within the FLUXNET network of tower stations for performing long-term measurements of CO2 exchange between forest ecosystems and the atmosphere, most research has focused on mature forests that are strong carbon sinks. Nevertheless, it is just as valuable to quantify fluxes from recently disturbed forests so that we can recognize and predict the impact of disturbance on carbon fluxes. We measured carbon fluxes and microclimatic variables within a naturally regenerating, young (12-14 years of age) jack pine ecosystem in northern Michigan. During the months June to October of 2001-2003, this ecosystem exhibited a low net uptake of approximately 17.8-18.3 g C m-2 5 months-1. Soil respiration was independently measured and then modeled on the basis of soil temperature and soil moisture. Model estimates of soil respiration were 627, 583, and 681 g C m-2 5 months-1 from June to October in 2001, 2002, and 2003, respectively. Net ecosystem exchange (NEE) and soil respiration were inversely correlated in midsummer (r = -0.6, p = 0.001) during the period of lowest NEE (greatest uptake) and highest soil respiration rates. In the spring, NEE and soil respiration were positively correlated (r = 0.4, p = 0.01). During the fall, when soil temperatures remained fairly steady and air temperatures fluctuated, this coefficient between NEE and soil respiration declined to an average -0.25 (p = 0.2). Our results indicate that 12-14 years following disturbance this ecosystem displays a small net uptake during the June to October months but respiratory losses during the snow season (mid-October to April) could possibly counterbalance this carbon gain.

  3. Bidirectional solar wind electron heat flux events

    International Nuclear Information System (INIS)

    Gosling, J.T.; Baker, D.N.; Bame, S.J.; Feldman, W.C.; Zwickl, R.D.; Smith, E.J.

    1987-01-01

    Normally the approx. >80-eV electrons which carry the solar wind electron heat flux are collimated along the interplanetary magnetic field (IMF) in the direction pointing outward away from the sun. Occasionally, however, collimated fluxes of approx. >80-eV electrons are observed traveling both parallel and antiparallel to the IMF. Here we present the results of a survey of such bidirectional electron heat flux events as observed with the plasma and magnetic field experiments aboard ISEE 3 at times when the spacecraft was not magnetically connected to the earth's bow shock. The onset of a bidirectional electron heat flux at ISEE 3 usually signals spacecraft entry into a distinct solar wind plasma and field entity, most often characterized by anomalously low proton and electron temperatures, a strong, smoothly varying magnetic field, a low plasma beta, and a high total pressure. Significant field rotations often occur at the beginning and/or end of bidirectional heat flux events, and, at times, the large field rotations characteristic of ''magnetic clouds'' are present. Approximately half of all bidirectional heat flux events are associated with and follow interplanetary shocks, while the other events have no obvious shock associations

  4. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro.

    1995-01-01

    In a neutron flux monitoring device, there are disposed a neutron flux measuring means for outputting signals in accordance with the intensity of neutron fluxes, a calculation means for calculating a self power density spectrum at a frequency band suitable to an object to be measured based on the output of the neutron flux measuring means, an alarm set value generation means for outputting an alarm set value as a comparative reference, and an alarm judging means for comparing the alarm set value with the outputted value of the calculation means to judge requirement of generating an alarm and generate an alarm in accordance with the result of the judgement. Namely, the time-series of neutron flux signals is put to fourier transformation for a predetermined period of time by the calculation means, and from each of square sums for real number component and imaginary number component for each of the frequencies, a self power density spectrum in the frequency band suitable to the object to be measured is calculated. Then, when the set reference value is exceeded, an alarm is generated. This can reliably prevent generation of erroneous alarm due to neutron flux noises and can accurately generate an alarm at an appropriate time. (N.H.)

  5. Neutron flux monitor

    International Nuclear Information System (INIS)

    Oda, Naotaka.

    1993-01-01

    The device of the present invention greatly saves an analog processing section such as an analog filter and an analog processing circuit. That is, the device of the present invention comprises (1) a neutron flux detection means for detecting neutron fluxed in the reactor, (2) a digital filter means for dividing signals corresponding to the detected neutron fluxes into predetermined frequency band regions, (3) a calculation processing means for applying a calculation processing corresponding to the frequency band regions to the neutron flux detection signals divided by the digital filter means. With such a constitution, since the neutron detection signals are processed by the digital filter means, the accuracy is improved and the change for the property of the filter is facilitated. Further, when a neutron flux level is obtained, a calculation processing corresponding to the frequency band region can be conducted without the analog processing circuit. Accordingly, maintenance and accuracy are improved by greatly decreasing the number of parts. Further, since problems inherent to the analog circuit are solved, neutron fluxes are monitored at high reliability. (I.S.)

  6. Gap filling strategies for long term energy flux data sets

    DEFF Research Database (Denmark)

    Falge, E.; Baldocchi, D.; Olson, R.

    2001-01-01

    At present a network of over 100 field sites are measuring carbon dioxide, water vapor and sensible heat fluxes between the biosphere and atmosphere, on a nearly continuous basis. Gaps in the long term measurements of evaporation and sensible heat flux must be filled before these data can be used...... for hydrological and meteorological applications. We adapted methods of gap filling for NEE (net ecosystem exchange of carbon) to energy fluxes and applied them to data sets available from the EUROFLUX and AmeriFlux eddy covariance databases. The average data coverage for the sites selected was 69% and 75......% for latent heat (lambdaE) and sensible heat (H). The methods were based on mean diurnal variations (half-hourly binned means of fluxes based on previous and subsequent days, MDV) and look-up tables for fluxes during assorted meteorological conditions (LookUp), and the impact of different gap filling methods...

  7. John Strong (1941 - 2006)

    CERN Multimedia

    Wickens, F

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

  8. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  9. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.

    1989-01-01

    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  10. Flux pinning characteristics of YBCO coated conductor

    International Nuclear Information System (INIS)

    Matsushita, T.; Watanabe, T.; Fukumoto, Y.; Yamauchi, K.; Kiuchi, M.; Otabe, E.S.; Kiss, T.; Watanabe, T.; Miyata, S.; Ibi, A.; Muroga, T.; Yamada, Y.; Shiohara, Y.

    2005-01-01

    Flux pinning properties of PLD-processed YBCO coated conductors deposited on IBAD substrate are investigated. The thickness of YBCO layer is changed in the range of 0.27-1.0 μm. The thickness dependence of critical current density, n-value and irreversibility field are measured in a wide range of magnetic field. The results are compared with the theoretical flux creep-flow model. It is found that these pinning properties are strongly influenced by the thickness as well as the pinning strength. Optimum condition for high field application of this superconductor is discussed

  11. Integrative measurements focusing on carbon, energy and water fluxes at the forest site 'Hohes Holz' and the grassland 'Grosses Bruch'

    Science.gov (United States)

    Rebmann, Corinna; Claudia, Schütze; Sara, Marañón-Jiménez; Sebastian, Gimper; Matthias, Zink; Luis, Samaniego; Matthias, Cuntz

    2017-04-01

    The reduction of greenhouse gas (GHG) emissions and the optimization of Carbon sequestration by ecosystems have become priority objectives for current climate change policies. In this context, the long term research project TERENO and the research infrastructure ICOS have been established. The eddy covariance technique allows obtaining an integrative estimate of the ecosystem carbon, water and energy balances at the ecosystem level. The relative contributions of evaporation and transpiration as well as carbon sources and sinks need, however, to be determined separately for thorough process understanding. Two different ecosystem observatories have recently been established in the Magdeburger Börde: a deciduous forest (Hohes Holz) and a meadow (Grosses Bruch). A comprehensive system of instrumentation provides continuous data for the evaluation of energy, water and carbon fluxes at the 1500 ha large forest site, including a 50 m high eddy covariance (EC) tower for micrometeorological investigations in different heights above and below canopy, throughfall and stem flow sensors, a soil moisture and temperature sensor network, soil respiration chambers, sap flow sensors, and ancillary analysis of trees such a dendrometer and leaf area index measurements. Eddy covariance measurements allow the assessment of the carbon (Net Ecosystem Exchange, NEE) and water balance at the ecosystem scale. To better understand the contributing processes we partition water und carbon fluxes of the forest ecosystem by different methods. Tower-based data of NEE are therefore complemented and validated by continuous automatic and manual campaign measurements of soil effluxes and their drivers. Water fluxes into the ecosystem are partitioned by stem flow and throughfall measurements and a distributed soil moisture network. Gap fraction in the forest has a strong influence on the distribution on the water fluxes and is therefore determined on a regular basis. Since the establishment of the

  12. Effects of land use on the timing and magnitude of dissolved organic carbon and nitrate fluxes: a regional analysis of high-frequency sensor measurements from forested, agricultural, and urban watersheds

    Science.gov (United States)

    Seybold, E. C.; Gold, A.; Inamdar, S. P.; Pradhanang, S. M.; Bowden, W. B.; Vaughan, M.; Addy, K.; Shanley, J. B.; Andrew, V.; Sleeper, R.; Levia, D. F., Jr.; Adair, C.; Wemple, B. C.; Schroth, A. W.

    2017-12-01

    Land use/land cover change has been shown to have significant impacts on nutrient loading to aquatic systems, and has been linked to coastal zone hypoxia and eutrophication of lake ecosystems. While it is clear that changes in land use/land cover are associated with changes in aquatic ecosystem function, a mechanistic understanding of how nutrient fluxes from distinct land cover classes respond to hydrologic events on event and seasonal scales remains unknown. Recent advances in the availability of high-frequency water quality sensors provide an opportunity to assess these relationships at a high temporal resolution. We deployed a network of in-situ spectrophotometers in watersheds with predominantly forested, agricultural, and urban land uses that spanned a latitudinal gradient in the northeastern US from Vermont to Delaware. Our study sought to assess how land cover affected the timing and magnitude of fluxes of carbon (C) and nitrogen (N) from watersheds with distinct land uses, and to determine whether these relationships varied regionally. We found systematic differences in the timing and magnitude of C and N fluxes and strong variation in the annual mass fluxes from these distinct land cover classes. In particular, we found that while the phenology of C and N fluxes varied across land uses, there were distinct regional similarities in the C and N flux regimes within a given land use class. We also found strong inter-annual variability in carbon and nitrogen fluxes in response to inter-annual variability in precipitation and discharge, suggesting a high degree of hydrologic control over nutrient loading. These findings also emphasize the potential for climate change, and in particular precipitation variability, to drive strong variation in the magnitude of downstream nutrient flux to receiving lakes and estuaries. Our study emphasizes the pervasive influence of land cover and its effects on water quality, and also highlights the strong signature of

  13. Cosmogenic photons strongly constrain UHECR source models

    Directory of Open Access Journals (Sweden)

    van Vliet Arjen

    2017-01-01

    Full Text Available With the newest version of our Monte Carlo code for ultra-high-energy cosmic ray (UHECR propagation, CRPropa 3, the flux of neutrinos and photons due to interactions of UHECRs with extragalactic background light can be predicted. Together with the recently updated data for the isotropic diffuse gamma-ray background (IGRB by Fermi LAT, it is now possible to severely constrain UHECR source models. The evolution of the UHECR sources especially plays an important role in the determination of the expected secondary photon spectrum. Pure proton UHECR models are already strongly constrained, primarily by the highest energy bins of Fermi LAT’s IGRB, as long as their number density is not strongly peaked at recent times.

  14. The Open Flux Problem

    International Nuclear Information System (INIS)

    Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R.; Henney, C. J.; Arge, C. N.; Liu, Y.; Derosa, M. L.; Yeates, A.; Owens, M. J.

    2017-01-01

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

  15. Spatiotemporal variability in carbon exchange fluxes across the Sahel

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Fensholt, Rasmus; Cappelaere, Bernard

    2016-01-01

    variability in these fluxes and to analyse to which degree spatiotemporal variation can be explained by hydrological, climatic, edaphic and vegetation variables. All ecosystems were C sinks (average ± total error -162 ± 48 g C m-2 y-1), but were smaller when strongly impacted by anthropogenic influences....... Spatial and inter-annual variability in the C flux processes indicated a strong resilience to dry conditions, and were correlated with phenological metrics. Gross primary productivity (GPP) was the most important flux process affecting the sink strength, and diurnal variability in GPP was regulated...

  16. Machine Learning Phases of Strongly Correlated Fermions

    Directory of Open Access Journals (Sweden)

    Kelvin Ch’ng

    2017-08-01

    Full Text Available Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling. We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.

  17. Achievements and opportunities from ESF Research Networking Programme: Natural molecular structures as drivers and tracers of terrestrial C fluxes, and COST Action 639: Greenhouse gas budget of soils under changing climate and land use

    Science.gov (United States)

    Boeckx, P.; Rasse, D.; Jandl, R.

    2009-04-01

    One of the activities of the European Science Foundation (ESF, www.esf.org) is developing European scale Research Networking Programmes (RNPs). RNPs lay the foundation for nationally funded research groups to address major scientific and research infrastructure issues, in order to advance the frontiers of existing science. MOLTER (www.esf.org/molter or www.molter.no) is such an RNP. MOLTER stands for "Natural molecular structures as drivers and tracers of terrestrial C fluxes" aims at stimulating the use of isotopic and organic chemistry to study carbon stabilization and biogeochemistry in terrestrial ecosystems and soils in particular. The understanding of the formation, stabilization and decomposition of complex organic compounds in the environment is currently being revolutionized by advanced techniques in identification, quantification, and origin tracing of functional groups and individual molecules. MOLTER focuses on five major research themes: - Molecular composition and turnover time of soil organic matter; - Plant molecular structures as drivers of C stabilisation in soils; - Fire transformations of plant and soil molecular structures - Molecular markers in soils; - Dissolved organic molecules in soils: origin, functionality and transport. These research themes are covered via the following activities: - Organisation of international conferences; - Organisation of specific topical workshops; - Organisation of summer schools for PhD students; - Short- and long-term exchange grants for scientists. MOLTER is supported by research funding or performing agencies from Austria, Belgium, France, Germany, the Netherlands, Norway, Romania, Spain, Sweden, Switzerland and the United Kingdom. The ESF is also the implementing agency of COST (European Cooperation in Science and Technology, www.cost.esf.org), one of the longest-running European instruments supporting cooperation among scientists and researchers across Europe. COST Action 639 "Greenhouse gas budget of

  18. Technical note: Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO)

    Science.gov (United States)

    Beringer, Jason; McHugh, Ian; Hutley, Lindsay B.; Isaac, Peter; Kljun, Natascha

    2017-03-01

    Standardised, quality-controlled and robust data from flux networks underpin the understanding of ecosystem processes and tools necessary to support the management of natural resources, including water, carbon and nutrients for environmental and production benefits. The Australian regional flux network (OzFlux) currently has 23 active sites and aims to provide a continental-scale national research facility to monitor and assess Australia's terrestrial biosphere and climate for improved predictions. Given the need for standardised and effective data processing of flux data, we have developed a software suite, called the Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO), that enables gap-filling and partitioning of the primary fluxes into ecosystem respiration (Fre) and gross primary productivity (GPP) and subsequently provides diagnostics and results. We outline the processing pathways and methodologies that are applied in DINGO (v13) to OzFlux data, including (1) gap-filling of meteorological and other drivers; (2) gap-filling of fluxes using artificial neural networks; (3) the u* threshold determination; (4) partitioning into ecosystem respiration and gross primary productivity; (5) random, model and u* uncertainties; and (6) diagnostic, footprint calculation, summary and results outputs. DINGO was developed for Australian data, but the framework is applicable to any flux data or regional network. Quality data from robust systems like DINGO ensure the utility and uptake of the flux data and facilitates synergies between flux, remote sensing and modelling.

  19. Effects of quartz on crystallization behavior of mold fluxes and microstructural characteristics of flux film.

    Science.gov (United States)

    Lei, Liu; Xiuli, Han; Mingduo, Li; Di, Zhang

    2018-01-01

    Mold fluxes are mainly prepared using cement clinker, quartz, wollastonite, borax, fluorite, soda ash and other mineral materials. Quartz, as one of the most common and essential materials, was chosen for this study to analyze itseffects on crystallization temperature, critical cooling rate, crystal incubation time, crystallization ratio and phases of flux film. We used the research methods of process mineralogy with the application of the single hot thermocouple technique, heat flux simulator, polarizing microscope, X-ray diffraction, etc. Results: By increasing the quartz content from 16 mass% to 24 mass%, the crystallization temperature, critical cooling rate and crystallization ratio of flux film decreased, and the crystal incubation time was extended. Meanwhile, the mineralogical structure of the flux film changed, with a large amount of wollastonite precipitation and a significant decrease in the cuspidine content until it reached zero. This showed a steady decline in the heat transfer control capacity of the flux film. The reason for the results above is that, by increasing the quartz content, the silicon-oxygen tetrahedron network structure promoted a rise in viscosity and restrained ion migration, inhibiting crystal nucleation and growth, leading to the weakening of the crystallization and a decline in the crystallization ratio.

  20. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  1. Radiation flux measuring device

    International Nuclear Information System (INIS)

    Corte, E.; Maitra, P.

    1977-01-01

    A radiation flux measuring device is described which employs a differential pair of transistors, the output of which is maintained constant, connected to a radiation detector. Means connected to the differential pair produce a signal representing the log of the a-c component of the radiation detector, thereby providing a signal representing the true root mean square logarithmic output. 3 claims, 2 figures

  2. Muon and neutrino fluxes

    Science.gov (United States)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  3. Flux scaling: Ultimate regime

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Flux scaling: Ultimate regime. With the Nusselt number and the mixing length scales, we get the Nusselt number and Reynolds number (w'd/ν) scalings: and or. and. scaling expected to occur at extremely high Ra Rayleigh-Benard convection. Get the ultimate regime ...

  4. Turbulent fluxes by "Conditional Eddy Sampling"

    Science.gov (United States)

    Siebicke, Lukas

    2015-04-01

    Turbulent flux measurements are key to understanding ecosystem scale energy and matter exchange, including atmospheric trace gases. While the eddy covariance approach has evolved as an invaluable tool to quantify fluxes of e.g. CO2 and H2O continuously, it is limited to very few atmospheric constituents for which sufficiently fast analyzers exist. High instrument cost, lack of field-readiness or high power consumption (e.g. many recent laser-based systems requiring strong vacuum) further impair application to other tracers. Alternative micrometeorological approaches such as conditional sampling might overcome major limitations. Although the idea of eddy accumulation has already been proposed by Desjardin in 1972 (Desjardin, 1977), at the time it could not be realized for trace gases. Major simplifications by Businger and Oncley (1990) lead to it's widespread application as 'Relaxed Eddy Accumulation' (REA). However, those simplifications (flux gradient similarity with constant flow rate sampling irrespective of vertical wind velocity and introduction of a deadband around zero vertical wind velocity) have degraded eddy accumulation to an indirect method, introducing issues of scalar similarity and often lack of suitable scalar flux proxies. Here we present a real implementation of a true eddy accumulation system according to the original concept. Key to our approach, which we call 'Conditional Eddy Sampling' (CES), is the mathematical formulation of conditional sampling in it's true form of a direct eddy flux measurement paired with a performant real implementation. Dedicated hardware controlled by near-real-time software allows full signal recovery at 10 or 20 Hz, very fast valve switching, instant vertical wind velocity proportional flow rate control, virtually no deadband and adaptive power management. Demonstrated system performance often exceeds requirements for flux measurements by orders of magnitude. The system's exceptionally low power consumption is ideal

  5. Validating modeled turbulent heat fluxes across large freshwater surfaces

    Science.gov (United States)

    Lofgren, B. M.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Fitzpatrick, L.; Blanken, P.; Spence, C.; Lenters, J. D.; Xiao, C.; Charusambot, U.

    2017-12-01

    Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the Great Lakes. Validation and improvement of bulk flux algorithms to simulate these turbulent heat fluxes are critical for accurate prediction of hydrodynamics, water levels, weather, and climate over the region. Here we consider five heat flux algorithms from several model systems; the Finite-Volume Community Ocean Model, the Weather Research and Forecasting model, and the Large Lake Thermodynamics Model, which are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system, but interface at the lake surface. The heat flux algorithms were isolated from each model and driven by meteorological data from over-lake stations in the Great Lakes Evaporation Network. The simulation results were compared with eddy covariance flux measurements at the same stations. All models show the capacity to the seasonal cycle of the turbulent heat fluxes. Overall, the Coupled Ocean Atmosphere Response Experiment algorithm in FVCOM has the best agreement with eddy covariance measurements. Simulations with the other four algorithms are overall improved by updating the parameterization of roughness length scales of temperature and humidity. Agreement between modelled and observed fluxes notably varied with geographical locations of the stations. For example, at the Long Point station in Lake Erie, observed fluxes are likely influenced by the upwind land surface while the simulations do not take account of the land surface influence, and therefore the agreement is worse in general.

  6. Characterization of the Usage of the Serine Metabolic Network in Human Cancer

    Directory of Open Access Journals (Sweden)

    Mahya Mehrmohamadi

    2014-11-01

    Full Text Available The serine, glycine, one-carbon (SGOC metabolic network is implicated in cancer pathogenesis, but its general functions are unknown. We carried out a computational reconstruction of the SGOC network and then characterized its expression across thousands of cancer tissues. Pathways including methylation and redox metabolism exhibited heterogeneous expression indicating a strong context dependency of their usage in tumors. From an analysis of coexpression, simultaneous up- or downregulation of nucleotide synthesis, NADPH, and glutathione synthesis was found to be a common occurrence in all cancers. Finally, we developed a method to trace the metabolic fate of serine using stable isotopes, high-resolution mass spectrometry, and a mathematical model. Although the expression of single genes didn’t appear indicative of flux, the collective expression of several genes in a given pathway allowed for successful flux prediction. Altogether, these findings identify expansive and heterogeneous functions for the SGOC metabolic network in human cancer.

  7. ULY JUP COSPIN HIGH FLUX TELESCOPE HIGH RES. ION FLUX

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains ion flux data recorded by the COSPIN High Flux Telescope (HFT) during the Ulysses Jupiter encounter 1992-Jan-25 to 1992-Feb-18.

  8. Determination of the atmospheric neutrino fluxes from atmospheric neutrino data

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, C.; Maltoni, M.; Rojo, J.

    2006-06-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation. (author)

  9. Atmospheric lepton fluxes

    Directory of Open Access Journals (Sweden)

    Gaisser Thomas K.

    2015-01-01

    Full Text Available This review of atmospheric muons and neutrinos emphasizes the high energy range relevant for backgrounds to high-energy neutrinos of astrophysical origin. After a brief historical introduction, the main distinguishing features of atmospheric νμ and νe are discussed, along with the implications of the muon charge ratio for the νµ / ν̅µ ratio. Methods to account for effects of the knee in the primary cosmic-ray spectrum and the energy-dependence of hadronic interactions on the neutrino fluxes are discussed and illustrated in the context of recent results from IceCube. A simple numerical/analytic method is proposed for systematic investigation of uncertainties in neutrino fluxes arising from uncertainties in the primary cosmic-ray spectrum/composition and hadronic interactions.

  10. Improvement of discontinuity factor for strong absorber region

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiong, E-mail: guojiong12@mail.tsinghua.edu.cn; Li, Fu, E-mail: lifu@mail.tsinghua.edu.cn; Zhang, Han; Zhou, Xiafeng; Fan, Kai; Wang, Lidong; Lu, Jianan

    2016-09-15

    At Institute of Nuclear and New Energy Technology (INET) the discontinuity factor corrected diffusion method with the homogenization technology was developed and applied in the control rod worth calculation of the pebble bed high temperature gas cooled reactor. But the result with the normal procedure is not accurate enough for a strong absorber. The numerical analysis shows that the strong absorber still has great influence on the flux distribution in the nearby graphite region, so that the flux distribution obtained by the normal diffusion method does not agree with the transport result. Thus, two improvements were proposed in this paper. First, instead of the neutron flux in the middle of the fine mesh, the surface flux of the absorber region was calculated through the net current in the boundary of the region; and then, while the discontinuity factor of the homogenized absorber region should be calculated, the discontinuity factor of the neighboring graphite region on the other side of the interface should also be calculated to eliminate the influence of the strong absorber. The numerical results demonstrate that, based on the improved method, the accuracy of heterogeneous transport calculation can be achieved by a diffusion calculation.

  11. NEUTRON FLUX INTENSITY DETECTION

    Science.gov (United States)

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  12. Sampling with poling-based flux balance analysis: optimal versus sub-optimal flux space analysis of Actinobacillus succinogenes.

    Science.gov (United States)

    Binns, Michael; de Atauri, Pedro; Vlysidis, Anestis; Cascante, Marta; Theodoropoulos, Constantinos

    2015-02-18

    Flux balance analysis is traditionally implemented to identify the maximum theoretical flux for some specified reaction and a single distribution of flux values for all the reactions present which achieve this maximum value. However it is well known that the uncertainty in reaction networks due to branches, cycles and experimental errors results in a large number of combinations of internal reaction fluxes which can achieve the same optimal flux value. In this work, we have modified the applied linear objective of flux balance analysis to include a poling penalty function, which pushes each new set of reaction fluxes away from previous solutions generated. Repeated poling-based flux balance analysis generates a sample of different solutions (a characteristic set), which represents all the possible functionality of the reaction network. Compared to existing sampling methods, for the purpose of generating a relatively "small" characteristic set, our new method is shown to obtain a higher coverage than competing methods under most conditions. The influence of the linear objective function on the sampling (the linear bias) constrains optimisation results to a subspace of optimal solutions all producing the same maximal fluxes. Visualisation of reaction fluxes plotted against each other in 2 dimensions with and without the linear bias indicates the existence of correlations between fluxes. This method of sampling is applied to the organism Actinobacillus succinogenes for the production of succinic acid from glycerol. A new method of sampling for the generation of different flux distributions (sets of individual fluxes satisfying constraints on the steady-state mass balances of intermediates) has been developed using a relatively simple modification of flux balance analysis to include a poling penalty function inside the resulting optimisation objective function. This new methodology can achieve a high coverage of the possible flux space and can be used with and without

  13. Aquatic Nitrate Retention at River Network Scales Across Flow Conditions Determined Using Nested In Situ Sensors

    Science.gov (United States)

    Wollheim, W. M.; Mulukutla, G. K.; Cook, C.; Carey, R. O.

    2017-11-01

    Nonpoint pollution sources are strongly influenced by hydrology and are therefore sensitive to climate variability. Some pollutants entering aquatic ecosystems, e.g., nitrate, can be mitigated by in-stream processes during transport through river networks. Whole river network nitrate retention is difficult to quantify with observations. High frequency, in situ nitrate sensors, deployed in nested locations within a single watershed, can improve estimates of both nonpoint inputs and aquatic retention at river network scales. We deployed a nested sensor network and associated sampling in the urbanizing Oyster River watershed in coastal New Hampshire, USA, to quantify storm event-scale loading and retention at network scales. An end member analysis used the relative behavior of reactive nitrate and conservative chloride to infer river network fate of nitrate. In the headwater catchments, nitrate and chloride concentrations are both increasingly diluted with increasing storm size. At the mouth of the watershed, chloride is also diluted, but nitrate tended to increase. The end member analysis suggests that this pattern is the result of high retention during small storms (51-78%) that declines to zero during large storms. Although high frequency nitrate sensors did not alter estimates of fluxes over seasonal time periods compared to less frequent grab sampling, they provide the ability to estimate nitrate flux versus storm size at event scales that is critical for such analyses. Nested sensor networks can improve understanding of the controls of both loading and network scale retention, and therefore also improve management of nonpoint source pollution.

  14. Physics of magnetic flux ropes

    Science.gov (United States)

    Russell, C. T.; Priest, E. R.; Lee, L. C.

    The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations.

  15. The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes

    International Nuclear Information System (INIS)

    Miller, John B.; Tans, Pieter P.; Conway, Thomas J.; White, James W.C.; Vaughn, Bruce W.

    2003-01-01

    The 13 C/ 12 C ratio in atmospheric carbon dioxide has been measured in samples taken in the NOAA/CMDL network since 1991. By examining the relationship between weekly anomalies in 13 C and CO 2 at continental sites in the network, we infer temporal and spatial values for the isotopic signature of terrestrial CO 2 fluxes. We can convert these isotopic signatures to values of discrimination if we assume the atmospheric starting point for photosynthesis. The average discrimination in the Northern Hemisphere between 30 and 50 deg N is calculated to be 16.6 ± 0.2 per mil. In contrast to some earlier modeling studies, we find no strong latitudinal gradient in discrimination. However, we do observe that discrimination in Eurasia is larger than in North America, which is consistent with two modeling studies. We also observe a possible trend in the North American average of discrimination toward less discrimination. There is no apparent trend in the Eurasian average or at any individual sites. However, there is interannual variability on the order of 2 per mil at several sites and regions. Finally, we calculate the northern temperate terrestrial CO 2 flux replacing our previous discrimination values of about 18 per mil with the average value of 16.6 calculated in this study. We find this enhances the terrestrial sink by about 0.4 GtC/yr

  16. Modeling of Drift Effects on Solar Tower Concentrated Flux Distributions

    Directory of Open Access Journals (Sweden)

    Luis O. Lara-Cerecedo

    2016-01-01

    Full Text Available A novel modeling tool for calculation of central receiver concentrated flux distributions is presented, which takes into account drift effects. This tool is based on a drift model that includes different geometrical error sources in a rigorous manner and on a simple analytic approximation for the individual flux distribution of a heliostat. The model is applied to a group of heliostats of a real field to obtain the resulting flux distribution and its variation along the day. The distributions differ strongly from those obtained assuming the ideal case without drift or a case with a Gaussian tracking error function. The time evolution of peak flux is also calculated to demonstrate the capabilities of the model. The evolution of this parameter also shows strong differences in comparison to the case without drift.

  17. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network.

    Science.gov (United States)

    Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2011-01-01

    Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  18. Seasonal variability in 7Be depositional fluxes at Granada, Spain

    International Nuclear Information System (INIS)

    Gonzalez-Gomez, C.; Azahra, M.; Lopez-Penalver, J.J.; Camacho-Garcia, A.; Bardouni, T.El.; Boukhal, H.

    2006-01-01

    Measurement of 7 Be depositional fluxes at Granada, Spain (37 o 10'50''N-3 o 35'44''W, altitude 670 m) in the period 1995 through 1998 indicates substantial variations between the four seasons and also between corresponding seasons in different years, ranging from 23.6 to 242 Bq m -2 per season. A strongly positive correlation with precipitation is shown, which explains about 70% of the variations in the 7 Be depositional fluxes over the 16 seasons studied. The depositional 7 Be flux is on the average highest in the fall and lowest in the summer. The study shows that precipitation primarily controls the 7 Be depositional flux and plays a dominant role in the removal of 7 Be from the troposphere. The average annual 7 Be depositional flux at Granada amounts to 469+145 Bq m -2

  19. Forecasting the relativistic electron flux at geosynchronous orbit

    Science.gov (United States)

    Gorney, David J.; Koons, Harry C.

    1992-04-01

    A neural network, developed to model the temporal variations of relativistic (greater than 3 MeV) electrons at geosynchronous orbit, has been used to make reasonably accurate day-ahead forecasts of the relativistic electron flux at geosynchronous orbit. This model can be used to forecast days when internal discharges might occur on geosynchronous satellites or satellites operating within the outer Van Allen radiation belt. The neural network (in essence, a nonlinear prediction filter) consists of three layers of neurons, containing 10 neurons in the input layer, 6 neurons in a hidden layer, and 1 output neuron. The network inputs consist of ten consecutive days of the daily sum of the planetary magnetic index, Sigma Kp. The output is a prediction of the daily averaged electron flux for the tenth day. The neural network model, together with projections of Sigma Kp based on its historical behavior, can be used to make the day-ahead forecasts of the relativistic electron flux at geosynchronous orbit. A significantly better forecast is obtained by modifying the network to include one additional input, the measured daily averaged electron flux for the day prior to the forecast day, and one more neuron in the hidden layer. Both models are described in this report.

  20. J/\\psi-dissociation by a color electric flux tube

    OpenAIRE

    Loh, S.; Greiner, C.; Mosel, U.

    1997-01-01

    We adress the question of how a $c-\\bar{c}$-state (a $J/\\psi $) can be dissociated by the strong color electric fields when moving through a color electric flux tube. The color electric flux tube and the dissociation of the heavy quarkonia state are both described within the Friedberg-Lee color dielectric model. We speculate on the importance of such an effect with respect to the observed $J/\\psi $-suppression in ultrarelativistic heavy ion collisions.

  1. Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources

    Science.gov (United States)

    Marubashi, K.; Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Cho, K.-S.; Park, Y.-D.

    2015-05-01

    We investigated the physical connection between interplanetary flux ropes (IFRs) near Earth and coronal mass ejections (CMEs) by comparing the magnetic field structures of IFRs and CME source regions. The analysis is based on the list of 54 pairs of ICMEs (interplanetary coronal mass ejections) and CMEs that are taken to be the most probable solar source events. We first attempted to identify the flux rope structure in each of the 54 ICMEs by fitting models with a cylinder and torus magnetic field geometry, both with a force-free field structure. This analysis determined the possible geometries of the identified flux ropes. Then we compared the flux rope geometries with the magnetic field structure of the solar source regions. We obtained the following results: (1) Flux rope structures are seen in 51 ICMEs out of the 54. The result implies that all ICMEs have an intrinsic flux rope structure, if the three exceptional cases are attributed to unfavorable observation conditions. (2) It is possible to find flux rope geometries with the main axis orientation close to the orientation of the magnetic polarity inversion line (PIL) in the solar source regions, the differences being less than 25°. (3) The helicity sign of an IFR is strongly controlled by the location of the solar source: flux ropes with positive (negative) helicity are associated with sources in the southern (northern) hemisphere (six exceptions were found). (4) Over two-thirds of the sources in the northern hemisphere are concentrated along PILs with orientations of 45° ± 30° (measured clockwise from the east), and over two-thirds in the southern hemisphere along PILs with orientations of 135° ± 30°, both corresponding to the Hale boundaries. These results strongly support the idea that a flux rope with the main axis parallel to the PIL erupts in a CME and that the erupted flux rope propagates through the interplanetary space with its orientation maintained and is observed as an IFR.

  2. Static flux bias of a flux qubit using persistent current trapping

    International Nuclear Information System (INIS)

    Castellano, Maria Gabriella; Chiarello, Fabio; Torrioli, Guido; Carelli, Pasquale

    2006-01-01

    Qubits based on the magnetic flux degree of freedom require a flux bias, the stability and precision of which strongly affect the qubit performance, up to a point of forbidding the qubit operation. Moreover, in multiqubit systems it must be possible to flux bias each qubit independently, hence avoiding the traditional use of externally generated magnetic fields in favour of on-chip techniques that minimize cross-couplings. The solution discussed in this paper exploits a persistent current trapped in a superconducting circuit integrated on chip that can be inductively coupled with an individual qubit. The circuit does not make use of resistive elements which can be detrimental for qubit coherence. The trapping procedure allows us to control and change stepwise the amount of stored current; after that the circuit can be completely disconnected from the external sources. We show in a practical case how this works and how to drive the bias circuit at the required value

  3. Electromotive force in strongly compressible magnetohydrodynamic turbulence

    Science.gov (United States)

    Yokoi, N.

    2017-12-01

    Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow

  4. The heliospheric magnetic flux, solar wind proton flux, and cosmic ray intensity during the coming solar minimum

    Science.gov (United States)

    Smith, Charles W.; McCracken, K. G.; Schwadron, Nathan A.; Goelzer, Molly L.

    2014-07-01

    Recent papers have linked the heliospheric magnetic flux to the sunspot cycle with good correlation observed between prediction and observation. Other papers have shown a strong correlation between magnetic flux and solar wind proton flux from coronal holes. We combine these efforts with an expectation that the sunspot activity of the approaching solar minimum will resemble the Dalton or Gleissberg Minimum and predict that the magnetic flux and solar wind proton flux over the coming decade will be lower than at any time during the space age. Using these predictions and established theory, we also predict record high galactic cosmic ray intensities over the same years. The analysis shown here is a prediction of global space climate change within which space weather operates. It predicts a new parameter regime for the transient space weather behavior that can be expected during the coming decade.

  5. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  6. Quasi-one-dimensional intermittent flux behavior in superconducting films

    DEFF Research Database (Denmark)

    Qviller, A. J.; Yurchenko, V. V.; Galperin, Y. M.

    2012-01-01

    Intermittent filamentary dynamics of the vortex matter in superconductors is found in films of YBa2Cu3O7-δ deposited on tilted substrates. Deposition of this material on such substrates creates parallel channels of easy flux penetration when a magnetic field is applied perpendicular to the film....... The intermittent behavior shows no threshold value in the applied field, in contrast to conventional flux jumping. The results strongly suggest that the quasi-one-dimensional flux jumps are of a different nature than the thermomagnetic dendritic (branching) avalanches that are commonly found in superconducting...

  7. Strong spin-photon coupling in silicon.

    Science.gov (United States)

    Samkharadze, N; Zheng, G; Kalhor, N; Brousse, D; Sammak, A; Mendes, U C; Blais, A; Scappucci, G; Vandersypen, L M K

    2018-03-09

    Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot-based spin qubit registers. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Reactor flux calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D. [Commissariat à l' Énergie Atomique et aux Énergies Alternatives, Centre de Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette (France)

    2013-02-15

    The status of the prediction of reactor anti-neutrino spectra is presented. The most accurate method is still the conversion of total β spectra of fissionning isotopes as measured at research reactors. Recent re-evaluations of the conversion process led to an increased predicted flux by few percent and were at the origin of the so-called reactor anomaly. The up to date predictions are presented with their main sources of error. Perspectives are given on the complementary ab-initio predictions and upcoming experimental cross-checks of the predicted spectrum shape.

  9. Australian methane fluxes

    International Nuclear Information System (INIS)

    Williams, D.J.

    1990-01-01

    Estimates are provided for the amount of methane emitted annually into the atmosphere in Australia for a variety of sources. The sources considered are coal mining, landfill, motor vehicles, natural gas suply system, rice paddies, bushfires, termites, wetland and animals. This assessment indicates that the major sources of methane are natural or agricultural in nature and therefore offer little scope for reduction. Nevertheless the remainder are not trival and reduction of these fluxes could play a significant part in any Australian action on the greenhouse problem. 19 refs., 7 tabs., 1 fig

  10. [The flux of historiography].

    Science.gov (United States)

    Mazzolini, R G

    2001-01-01

    The author places Grmek's editorial within the flux of the historiographical debate which, since the middle of the 1970s, has concentrated on two major crises due to the end of social science-oriented 'scientific history' and to the 'linguistic turn'. He also argues that Grmek's historiographical work of the 1980s and 1990s was to some extent an alternative to certain observed changes in historical fashion and has achieved greater intelligibility because of its commitment to a rational vision of science and historiography.

  11. Strong WW Interaction at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, Jose R

    1998-12-14

    We present a brief pedagogical introduction to the Effective Electroweak Chiral Lagrangians, which provide a model independent description of the WW interactions in the strong regime. When it is complemented with some unitarization or a dispersive approach, this formalism allows the study of the general strong scenario expected at the LHC, including resonances.

  12. 77 FR 35711 - Strong Cities, Strong Communities National Resource Network Pilot Program Advance Notice and...

    Science.gov (United States)

    2012-06-14

    ... an outside platform can leverage the federal government's investment with considerable private and... Regional Innovation Clusters, DOJ's Diagnostic Center, Federal Emergency Management Agency (FEMA... programs whenever possible, such as: Economic Development (economic visioning, job market analysis, cluster...

  13. Insects, infestations and nutrient fluxes

    Science.gov (United States)

    Michalzik, B.

    2012-04-01

    endemic situations (Larrson and Tenow 1980). However, at times of insect mass outbreaks with leaf area losses up to 100%, nutrient fluxes are strongly affected at the ecosystem level and consequently attract greater attention (Grace 1986). In this context, mass outbreaks of herbivore insects constitute a class of ecosystem disturbance (Pickett and White 1985). More specific, insect pests meet the criteria of biogeochemical "hot spots" and "hot moments" (McClain et al. 2003) as they induce temporal-spatial process heterogeneity or changes in biogeochemical reaction rates, but not necessarily changes in the structure of ecosystems or landscapes. This contribution presents a compilation of literature and own research data on insect herbivory effects on nutrient cycling and ecosystem functioning from the plot to the catchment scale. It focuses on temperate forest ecosystems and on short-term impacts as exerted by two focal functional groups of herbivore canopy insects (leaf and sap feeders). In detail, research results on effects operating on short temporal scales are presented including a) alterations in throughfall fluxes encompassing dissolved and particulate organic matter fractions, b) alterations in the amount, timing and quality of frass and honeydew deposition and c) soil microbial activity and decomposition processes.

  14. Strong-back safety latch

    International Nuclear Information System (INIS)

    DeSantis, G.N.

    1995-01-01

    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch

  15. Strong-back safety latch

    Energy Technology Data Exchange (ETDEWEB)

    DeSantis, G.N.

    1995-03-06

    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch.

  16. The NASA Carbon Airborne Flux Experiment (CARAFE: instrumentation and methodology

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2018-03-01

    Full Text Available The exchange of trace gases between the Earth's surface and atmosphere strongly influences atmospheric composition. Airborne eddy covariance can quantify surface fluxes at local to regional scales (1–1000 km, potentially helping to bridge gaps between top-down and bottom-up flux estimates and offering novel insights into biophysical and biogeochemical processes. The NASA Carbon Airborne Flux Experiment (CARAFE utilizes the NASA C-23 Sherpa aircraft with a suite of commercial and custom instrumentation to acquire fluxes of carbon dioxide, methane, sensible heat, and latent heat at high spatial resolution. Key components of the CARAFE payload are described, including the meteorological, greenhouse gas, water vapor, and surface imaging systems. Continuous wavelet transforms deliver spatially resolved fluxes along aircraft flight tracks. Flux analysis methodology is discussed in depth, with special emphasis on quantification of uncertainties. Typical uncertainties in derived surface fluxes are 40–90 % for a nominal resolution of 2 km or 16–35 % when averaged over a full leg (typically 30–40 km. CARAFE has successfully flown two missions in the eastern US in 2016 and 2017, quantifying fluxes over forest, cropland, wetlands, and water. Preliminary results from these campaigns are presented to highlight the performance of this system.

  17. Earth-like sand fluxes on Mars.

    Science.gov (United States)

    Bridges, N T; Ayoub, F; Avouac, J-P; Leprince, S; Lucas, A; Mattson, S

    2012-05-09

    Strong and sustained winds on Mars have been considered rare, on the basis of surface meteorology measurements and global circulation models, raising the question of whether the abundant dunes and evidence for wind erosion seen on the planet are a current process. Recent studies showed sand activity, but could not determine whether entire dunes were moving--implying large sand fluxes--or whether more localized and surficial changes had occurred. Here we present measurements of the migration rate of sand ripples and dune lee fronts at the Nili Patera dune field. We show that the dunes are near steady state, with their entire volumes composed of mobile sand. The dunes have unexpectedly high sand fluxes, similar, for example, to those in Victoria Valley, Antarctica, implying that rates of landscape modification on Mars and Earth are similar.

  18. The topology of metabolic isotope labeling networks

    Directory of Open Access Journals (Sweden)

    Wiechert Wolfgang

    2007-08-01

    Full Text Available Abstract Background Metabolic Flux Analysis (MFA based on isotope labeling experiments (ILEs is a widely established tool for determining fluxes in metabolic pathways. Isotope labeling networks (ILNs contain all essential information required to describe the flow of labeled material in an ILE. Whereas recent experimental progress paves the way for high-throughput MFA, large network investigations and exact statistical methods, these developments are still limited by the poor performance of computational routines used for the evaluation and design of ILEs. In this context, the global analysis of ILN topology turns out to be a clue for realizing large speedup factors in all required computational procedures. Results With a strong focus on the speedup of algorithms the topology of ILNs is investigated using graph theoretic concepts and algorithms. A rigorous determination of all cyclic and isomorphic subnetworks, accompanied by the global analysis of ILN connectivity is performed. Particularly, it is proven that ILNs always brake up into a large number of small strongly connected components (SCCs and, moreover, there are natural isomorphisms between many of these SCCs. All presented techniques are universal, i.e. they do not require special assumptions on the network structure, bidirectionality of fluxes, measurement configuration, or label input. The general results are exemplified with a practically relevant metabolic network which describes the central metabolism of E. coli comprising 10390 isotopomer pools. Conclusion Exploiting the topological features of ILNs leads to a significant speedup of all universal algorithms for ILE evaluation. It is proven in theory and exemplified with the E. coli example that a speedup factor of about 1000 compared to standard algorithms is achieved. This widely opens the door for new high performance algorithms suitable for high throughput applications and large ILNs. Moreover, for the first time the global

  19. Permanent magnet flux-biased magnetic actuator with flux feedback

    Science.gov (United States)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.

  20. Titanium: light, strong, and white

    Science.gov (United States)

    Woodruff, Laurel; Bedinger, George

    2013-01-01

    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  1. Precipitation as driver of carbon fluxes in 11 African ecosystems

    CSIR Research Space (South Africa)

    Merbold, L

    2009-01-01

    Full Text Available This study reports carbon and water fluxes between the land surface and atmosphere in eleven different ecosystems types in Sub-Saharan Africa, as measured using eddy covariance (EC) technology in the first two years of the CarboAfrica network...

  2. Reactor neutron flux measuring device

    International Nuclear Information System (INIS)

    Okutani, Yasushi; Hayakawa, Toshifumi.

    1994-01-01

    The present invention concerns a device for displaying an approximate neutron flux distribution to recognize the neutron flux distribution of the whole reactor in a short period of time. The device of the present invention displays, the results of measurement for neutron fluxes collected by a data collecting section on every results of the measurements at measuring points situating at horizontally identical positions of the reactor core. In addition, every results of the measurements at the measuring points situating at the identical height in the reactor core are accumulated, and the results of the integration are graphically displayed. With such procedures, the neutron flux distribution in the entire reactor is approximately displayed. Existent devices could not recognize the neutron flux distribution of the entire reactor at a glance and it took much time for the recognition. The device of the present invention can recognize the neutron flux distribution of the entire reactor in a short period of time. (I.S.)

  3. Flux compactifications and generalized geometries

    International Nuclear Information System (INIS)

    Grana, Mariana

    2006-01-01

    Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T 6 /(Z 3 x Z 3 ) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry

  4. California's Future Carbon Flux

    Science.gov (United States)

    Xu, L.; Pyles, R. D.; Paw U, K.; Gertz, M.

    2008-12-01

    The diversity of the climate and vegetation systems in the state of California provides a unique opportunity to study carton dioxide exchange between the terrestrial biosphere and the atmosphere. In order to accurately calculate the carbon flux, this study couples the sophisticated analytical surface layer model ACASA (Advance Canopy-Atmosphere-Soil Algorithm, developed in the University of California, Davis) with the newest version of mesoscale model WRF (the Weather Research & Forecasting Model, developed by NCAR and several other agencies). As a multilayer, steady state model, ACASA incorporates higher-order representations of vertical temperature variations, CO2 concentration, radiation, wind speed, turbulent statistics, and plant physiology. The WRF-ACASA coupling is designed to identify how multiple environmental factors, in particularly climate variability, population density, and vegetation distribution, impact on future carbon cycle prediction across a wide geographical range such as in California.

  5. What controls sediment flux in dryland channels?

    Science.gov (United States)

    Michaelides, K.; Singer, M. B.

    2010-12-01

    effects of coupling on coarse-sediment transport and supply. The results provide new insights that suggest that the flux behaviour of the channel is dominated by the grain size distribution, particularly the coarse fraction, which is in turn controlled by hillslope supply. Hillslope sediment supply is shown to be strongly controlled by hillslope-channel coupling which determines sediment delivery characteristics to the channel. Contrary to widely held belief, channel discharge plays a secondary a role in controlling sediment fluxes in semi-arid catchments.

  6. Neutron fluxes in test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  7. ACCENT-BIAFLUX workshop 2005, trace gas and aerosol flux measurement and techniques. Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Werner, A.; Soerensen, L.L. (eds.)

    2005-04-01

    The woorkshop trace gas and aerosol flux measurement techniques in the second meeting within the Biosphere Atmosphere Exchange of Pollutions (BIAFLUX) group in the EU-network project Atmospheric Composition Change (ACCENT). The goal of the workshop is to obtain an overview of techniques for measurements of gas and aerosol fluxes and to gather the knowledge of uncertainties in flux measurements and calculations. The workshop is funded by ACCENT. The abstract book presents abstracts of 21 oral presentations and 26 poster presentations. (LN)

  8. The role of rock moisture on regulating hydrologic and solute fluxes in the critical zone

    Science.gov (United States)

    Rempe, D. M.; Druhan, J. L.; Hahm, W. J.; Wang, J.; Murphy, C.; Cargill, S.; Dietrich, W. E.; Tune, A. K.

    2017-12-01

    In environments where the vadose zone extends below the soil layer into underlying weathered bedrock, the water held in the weathering -generated pores can be an important source of moisture to vegetation. The heterogeneous distribution of pore space in weathered bedrock, furthermore, controls the subsurface water flowpaths that dictate how water is partitioned in the critical zone (CZ) and evolves geochemically. Here, we present the results of direct monitoring of the fluxes of water and solutes through the deep CZ using a novel vadose zone monitoring system (VMS) as well as geophysical logging and sampling in a network of deep wells across a steep hillslope in Northern California. At our study site (Eel River CZO), multi-year monitoring reveals that a significant fraction of incoming rainfall (up to 30%) is seasonally stored in the fractures and matrix of the upper 12 m of weathered bedrock as rock moisture. Intensive geochemical and geophysical observations distributed from the surface to the depth of unweathered bedrock indicate that the seasonal addition and depletion of rock moisture has key implications for hydrologic and geochemical processes. First, rock moisture storage provides an annually consistent water storage reservoir for use by vegetation during the summer, which buffers transpiration fluxes against variability in seasonal precipitation. Second, because the timing and magnitude of groundwater recharge and streamflow are controlled by the annual filling and drainage of the rock moisture, rock moisture regulates the partitioning of hydrologic fluxes. Third, we find that rock moisture dynamics—which influence the myriad geochemical and microbial processes that weather bedrock—strongly correspond with the observed vertical weathering profile. As a result of the coupling between chemical weathering reactions and hydrologic fluxes, the geochemical composition of groundwater and streamflow is influenced by the temporal dynamics of rock moisture. Our

  9. Data Acquisition and Flux Calculations

    DEFF Research Database (Denmark)

    Rebmann, C.; Kolle, O; Heinesch, B

    2012-01-01

    In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation.......In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation....

  10. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  11. LBA-ECO CD-06 Flux of CO2 from Amazon Mainstem Rivers, Tributaries, and Floodplains

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides estimates of monthly carbon dioxide (CO2) flux from the Amazon mainstem rivers, tributary stream networks, and their associated varzeas...

  12. FLUXNET. Database of fluxes, site characteristics, and flux-community information

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holladay, S. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cook, R. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Falge, E. [Univ. Bayreuth, Bayreuth (Germany); Baldocchi, D. [Univ. of California, Berkeley, CA (United States); Gu, L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2004-02-28

    FLUXNET is a “network of regional networks” created by international scientists to coordinate regional and global analysis of observations from micrometeorological tower sites. The flux tower sites use eddy covariance methods to measure the exchanges of carbon dioxide (CO2), water vapor, and energy between terrestrial ecosystems and the atmosphere. FLUXNET’S goals are to aid in understanding the mechanisms controlling the exchanges of CO2, water vapor, and energy across a range of time (0.5 hours to annual periods) and space scales. FLUXNET provides an infrastructure for the synthesis and analysis of world-wide, long-term flux data compiled from various regional flux networks. Information compiled by the FLUXNET project is being used to validate remote sensing products associated with the National Aeronautics and Space Administration (NASA) Terra and Aqua satellites. FLUXNET provides access to ground information for validating estimates of net primary productivity, and energy absorption that are being generated by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. In addition, this information is also used to develop and validate ecosystem models.

  13. Analysis of carbon dioxide, water vapour and energy fluxes over an ...

    Indian Academy of Sciences (India)

    Su H B, Scott S L, Offerle B, Randolph J C and. Ehman J 2004 Heat storage and energy balance fluxes for a temperate deciduous forest; Agric. For. Meteor. 126. 185–201. Running S W, Baldocchi D D and Turner D 1999 A global terrestrial monitoring network, scaling tower fluxes with ecosystem modeling and EOS satellite ...

  14. Evaluating the JULES Land Surface Model Energy Fluxes Using FLUXNET Data

    NARCIS (Netherlands)

    Blyth, E.; Gash, J.H.C.; Lloyd, A.J.; Pryor, M.; Weedon, G.P.; Shuttleworth, J.

    2010-01-01

    Surface energy flux measurements from a sample of 10 flux network (FLUXNET) sites selected to represent a range of climate conditions and biome types were used to assess the performance of the Hadley Centre land surface model (Joint U. K. Land Environment Simulator; JULES). Because FLUXNET data are

  15. A note on vector flux models for radiation dose calculations

    International Nuclear Information System (INIS)

    Kern, J.W.

    1994-01-01

    This paper reviews and extends modelling of anisotropic fluxes for radiation belt protons to provide closed-form equations for vector proton fluxes and proton flux anisotropy in terms of standard omnidirectional flux models. These equations provide a flexible alternative to the date-based vector flux models currently available. At higher energies, anisotropy of trapped proton flux in the upper atmosphere depends strongly on the variation of atmospheric density with altitude. Calculations of proton flux anisotropies using present models require specification of the average atmospheric density along trapped particle trajectories and its variation with mirror point altitude. For an isothermal atmosphere, calculations show that in a dipole magnetic field, the scale height of this trajectory-averaged density closely approximates the scale height of the atmosphere at the mirror point of the trapped particle. However, for the earth's magnetic field, the altitudes of mirror points vary for protons drifting in longitude. This results in a small increase in longitude-averaged scale heights compared to the atmospheric scale heights at minimum mirror point altitudes. The trajectory-averaged scale heights are increased by about 10-20% over scale heights from standard atmosphere models for protons mirroring at altitudes less than 500 km in the South Atlantic Anomaly Atmospheric losses of protons in the geomagnetic field minimum in the South Atlantic Anomaly control proton flux anisotropies of interest for radiation studies in low earth orbit. Standard atmosphere models provide corrections for diurnal, seasonal and solar activity-driven variations. Thus, determination of an ''equilibrium'' model of trapped proton fluxes of a given energy requires using a scale height that is time-averaged over the lifetime of the protons. The trajectory-averaged atmospheric densities calculated here lead to estimates for trapped proton lifetimes. These lifetimes provide appropriate time

  16. <strong>Bente Boa, Torm, Denmarkstrong>

    DEFF Research Database (Denmark)

    Wagtmann, Maria Anne

    2009-01-01

    At the beginning of July 2009, Maria Anne Wagtmann (Associate Professor, PhD, University of Southern Denmark) had the opportunity to interview Ms Bente Boa, a senior marine HR manager in the Danish ship owning firm TORM A/S' (http://www.torm.com/). Bente Boa is also chairwoman of the "The Sea Ser...... Serpent" (in Danish: "Søslangen"), a Danish maritime HR network for professionals in maritime firms....

  17. Automated calculation of surface energy fluxes with high-frequency lake buoy data

    Science.gov (United States)

    Woolway, R. Iestyn; Jones, Ian D; Hamilton, David P.; Maberly, Stephen C; Muroaka, Kohji; Read, Jordan S.; Smyth, Robyn L; Winslow, Luke A.

    2015-01-01

    Lake Heat Flux Analyzer is a program used for calculating the surface energy fluxes in lakes according to established literature methodologies. The program was developed in MATLAB for the rapid analysis of high-frequency data from instrumented lake buoys in support of the emerging field of aquatic sensor network science. To calculate the surface energy fluxes, the program requires a number of input variables, such as air and water temperature, relative humidity, wind speed, and short-wave radiation. Available outputs for Lake Heat Flux Analyzer include the surface fluxes of momentum, sensible heat and latent heat and their corresponding transfer coefficients, incoming and outgoing long-wave radiation. Lake Heat Flux Analyzer is open source and can be used to process data from multiple lakes rapidly. It provides a means of calculating the surface fluxes using a consistent method, thereby facilitating global comparisons of high-frequency data from lake buoys.

  18. The SNAP Strong Lens Survey

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, P.

    2005-01-03

    Basic considerations of lens detection and identification indicate that a wide field survey of the types planned for weak lensing and Type Ia SNe with SNAP are close to optimal for the optical detection of strong lenses. Such a ''piggy-back'' survey might be expected even pessimistically to provide a catalogue of a few thousand new strong lenses, with the numbers dominated by systems of faint blue galaxies lensed by foreground ellipticals. After sketching out our strategy for detecting and measuring these galaxy lenses using the SNAP images, we discuss some of the scientific applications of such a large sample of gravitational lenses: in particular we comment on the partition of information between lens structure, the source population properties and cosmology. Understanding this partitioning is key to assessing strong lens cosmography's value as a cosmological probe.

  19. Strong coupling phase in QED

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi

    1988-01-01

    Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

  20. Inverse Flux versus Pressure of Muons from Cosmic Rays

    Science.gov (United States)

    Buitrago, D.; Armendariz, R.

    2017-12-01

    When an incoming cosmic ray proton or atom collides with particles in earth's atmosphere a shower of secondary muons is created. Cosmic ray muon flux was measured at the Queensborough Community College using a QuarkNet detector consisting of three stacked scintillator muon counters and a three-fold coincidence trigger. Data was recorded during a three-day period during a severe weather storm that occurred from March 13-17, 2017. A computer program was created in Python to read the muon flux rate and atmospheric pressure sensor readings from the detector's data acquisition board. The program converts the data from hexadecimal to decimal, re-bins the data in a more suitable format, creates and overlays plots of muon flux with atmospheric pressure. Results thus far show a strong correlation between muon flux and atmospheric pressure. More data analysis will be done to verify the above conclusion.

  1. The flux of radon and thoron from Australian soils

    International Nuclear Information System (INIS)

    Schery, S.D.; Whittlestone, S.; Hart, K.P.; Hill, S.E.

    1989-01-01

    The accumulator technique was used to measure radon and thoron flux density at a variety of locations throughout Australia. This is the first such systematic study of Australia and, in the case of thoron, one of few such studies of any large land mass. Seasonally adjusted arithmetic mean flux densities from Australian soils were estimated to be 22 mBq m -2 1.05 atom cm -2 s -1 s -1 for radon and 1.7 Bq m -2 s -1 (0.0135 atom cm -2 s -1 ) for thoron. Considerations of statistical sampling error, and systematic error with the accumulator method, leads to an error estimate of about ±20% for these numbers; projection of total flux to the atmosphere requires consideration of additional sources of error. Only modest correlations with variables easily measured in the field were observed. The strongest correlation was a positive one between flux density and gamma dose rate 1 m above ground. Weaker correlations were seen with soil temperature (positive) and soil mositure (negative at higher moistures). Radon and thoron flux density were strongly correlated, but only a weak correlation (negative) existed between them and vegetation. The amount of radon isotope released to the pore space seems particularly important for controlling the wide variation in observed flux densities, but it remains difficult to predict flux densities based on simple field measurements or information in conventional soil and geological maps. copyright American Geophysical Union 1989

  2. Controlling the flux dynamics in superconductors by nanostructured magnetic arrays

    Science.gov (United States)

    Kapra, Andrey

    In this thesis we investigate theoretically how the critical current jc of nano-engineered mesoscopic superconducting film can be improved and how one can control the dynamics of the magnetic flux, e.g., the transition from flux-pinned to flux-flow regime, using arrays of magnetic nanostructures. In particularly we investigate: (1) Vortex transport phenomena in superconductors with deposited ferromagnetic structures on top, and the influence of the sample geometry on the critical parameters and on the vortex configurations. Changing geometry of the magnetic bars and magnetization of the bars will affect the critical current jc of the superconducting film. Such nanostructured ferromagnets strongly alter the vortex structure in its neighborhood. The influence of geometry, position and magnetization of the ferromagnet (single bar or regular lattice of the bars) on the critical parameters of the superconductor is investigated. (2) Effect of flux confinement in narrow superconducting channels with zigzag-shaped banks: the flux motion is confined in the transverse (perpendicular) direction of a diamond-cell-shape channel. The matching effect for the magnetic flux is found in the system relevantless of boundary condition. We discuss the dynamics of vortices in the samples and vortex pattern formation in the channel. We show how the inclusion of higher-Tc superconductor into the sample can lead to enhanced properties of the system. By adding an external driving force, we study the vortex dynamics. The different dynamic regimes are discussed. They allowed an effective control of magnetic flux in superconductors.

  3. Flux canceling in three-dimensional radiative magnetohydrodynamic simulations

    Science.gov (United States)

    Thaler, Irina; Spruit, H. C.

    2017-05-01

    We aim to study the processes involved in the disappearance of magnetic flux between regions of opposite polarity on the solar surface using realistic three-dimensional (3D) magnetohydrodynamic (MHD) simulations. "Retraction" below the surface driven by magnetic forces is found to be a very effective mechanism of flux canceling of opposite polarities. The speed at which flux disappears increases strongly with initial mean flux density. In agreement with existing inferences from observations we suggest that this is a key process of flux disappearance within active complexes. Intrinsic kG strength concentrations connect the surface to deeper layers by magnetic forces, and therefore the influence of deeper layers on the flux canceling process is studied. We do this by comparing simulations extending to different depths. For average flux densities of 50 G, and on length scales on the order of 3 Mm in the horizontal and 10 Mm in depth, deeper layers appear to have only a mild influence on the effective rate of diffusion.

  4. Fundamental structures of dynamic social networks.

    Science.gov (United States)

    Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune

    2016-09-06

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision.

  5. Avatars in flux

    DEFF Research Database (Denmark)

    Jensen, Sisse Siggaard

    , question the consensus to suggest that we nuance and broaden our understanding of the relationships of avatars with their owners. The question that I will set out to answer is: In what ways do actors make sense of their choice and design of avatars? The empirical basis for addressing this question is found...... and emergent constructions as well as the stabilizing interpretations of the relationships between actor and avatar. Semiotics (Nöth 2009, Peirce 1994) and actor-network theory (Latour 1998, 2005, Law 2004, Star 1995) are some of the theoretical references that will assist and enable such analysis. Moreover...

  6. Squeezing Flux Out of Fat

    DEFF Research Database (Denmark)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2018-01-01

    Merging transcriptomics or metabolomics data remains insufficient for metabolic flux estimation. Ramirez et al. integrate a genome-scale metabolic model with extracellular flux data to predict and validate metabolic differences between white and brown adipose tissue. This method allows both metab...

  7. Estimating global air-sea fluxes from surface properties and from climatological flux data using an oceanic general circulation model

    Science.gov (United States)

    Tziperman, Eli; Bryan, Kirk

    1993-12-01

    A simple method is presented and demonstrated for estimating air-sea fluxes of heat and fresh water with the aid of a general circulation model (GCM), using both sea surface temperature and salinity data and climatological air-sea flux data. The approach is motivated by a least squares optimization problem in which the various data sets are combined to form an optimal solution for the air-sea fluxes. The method provides estimates of the surface properties and air-sea flux data that are as consistent as possible with the original data sets and with the model physics. The calculation of these estimates involves adding a simple equation for calculating the air-sea fluxes during the model run and then running the model to a steady state. The proposed method was applied to a coarse resolution global primitive equation model and annually averaged data sets. Both the spatial distribution of the global air-sea fluxes and the meridional fluxes carried by the ocean were estimated. The resulting air-sea fluxes seem smoother and significantly closer to the climatological flux estimates than do the air-sea fluxes obtained from the GCM by simply specifying the surface temperature and salinity. The better fit to the climatological fluxes was balanced by a larger deviation from the surface temperature and salinity. These surface fields were still close to the observations within the measurement error in most regions, except western boundary areas. The inconsistency of the model and data in western boundary areas is probably related to the inability of the coarse resolution GCM to appropriately simulate the large transports there. The meridional fluxes calculated by the proposed method differ very little from those obtained by simply specifying the surface temperature and salinity. We suggest therefore that these meridional fluxes are strongly influenced by the interior model dynamics; in particular, the too-weak model meridional circulation cell seems to be the reason for

  8. Strong Decomposition of Random Variables

    DEFF Research Database (Denmark)

    Hoffmann-Jørgensen, Jørgen; Kagan, Abram M.; Pitt, Loren D.

    2007-01-01

    A random variable X is stongly decomposable if X=Y+Z where Y=Φ(X) and Z=X-Φ(X) are independent non-degenerated random variables (called the components). It is shown that at least one of the components is singular, and we derive a necessary and sufficient condition for strong decomposability...

  9. Strong interaction at finite temperature

    Indian Academy of Sciences (India)

    Abstract. We review two methods discussed in the literature to determine the effective parameters of strongly interacting particles as they move through a heat bath. The first one is the general method of chiral perturbation theory, which may be readily applied to this problem. The other is the method of thermal QCD sum rules ...

  10. Strong-strong beam-beam simulation on parallel computer

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2004-08-02

    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders.

  11. Strong-strong beam-beam simulation on parallel computer

    International Nuclear Information System (INIS)

    Qiang, Ji

    2004-01-01

    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders

  12. Correlation between the Flux Density and Polarization for Flat ...

    Indian Academy of Sciences (India)

    blazars, which show high and variable polarization, rapid variable flux density over different time scales (Fan 2005). Blazars consist of flat spectrum radio quasars. (FSRQs) and BL Lacertae objects (BLs). FSRQs are quite similar to BLs except for their emission line feature with FSRQs showing strong emission lines while.

  13. Strong Motion Seismograph Based On MEMS Accelerometer

    Science.gov (United States)

    Teng, Y.; Hu, X.

    2013-12-01

    The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The

  14. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which

  15. Geotail observations of magnetic flux ropes in the plasma sheet

    Science.gov (United States)

    Slavin, J. A.; Lepping, R. P.; Gjerloev, J.; Fairfield, D. H.; Hesse, M.; Owen, C. J.; Moldwin, M. B.; Nagai, T.; Ieda, A.; Mukai, T.

    2003-01-01

    Examination of Geotail measurements in the near-tail (X > -30 RE) has revealed the presence of small flux ropes in the plasma sheet. A total of 73 flux rope events were identified in the Geotail magnetic field measurements between November 1998 and April 1999. This corresponds to an estimated occurrence frequency of ˜1 flux rope per 5 hours of central plasma sheet observing time. All of the flux ropes were embedded within high-speed plasma sheet flows with 35 directed Earthward, = 431 km/s, and 38 moving tailward, = -451 km/s. We refer to these two populations as "BBF-type" and "plasmoid-type" flux ropes. The flux ropes were usually several tens of seconds in duration, and the two types were readily distinguished by the sense of their quasisinusoidal ΔBz perturbations, i.e., ∓ for the "BBF" events and ± for the "plasmoid" events. Most typically, a flux rope was observed to closely follow the onset of a high-speed flow within ˜1-2 min. Application of the Lepping-Burlaga constant-α flux rope model (i.e., J = αB) to these events showed that approximately 60% of each class could be acceptably described as cylindrical, force-free flux ropes. The modeling results yielded mean flux rope diameters and core field intensities of 1.4 RE and 20 nT and 4.4 RE and 14 nT for the BBF and plasmoid-type events, respectively. The inclinations of the flux ropes were small relative to the GSM X-Y plane, but a wide range of azimuthal orientations were determined within that plane. The frequent presence of these flux ropes in the plasma sheet is interpreted as strong evidence for multiple reconnection X-lines (MRX) in the near-tail. Hence, our results suggest that reconnection in the near-tail may closely resemble that at the dayside magnetopause where MRX reconnection has been hypothesized to be responsible for the generation of flux transfer events.

  16. Metabolic flux prediction in cancer cells with altered substrate uptake.

    Science.gov (United States)

    Schwartz, Jean-Marc; Barber, Michael; Soons, Zita

    2015-12-01

    Proliferating cells, such as cancer cells, are known to have an unusual metabolism, characterized by an increased rate of glycolysis and amino acid metabolism. Our understanding of this phenomenon is limited but could potentially be used in order to develop new therapies. Computational modelling techniques, such as flux balance analysis (FBA), have been used to predict fluxes in various cell types, but remain of limited use to explain the unusual metabolic shifts and altered substrate uptake in human cancer cells. We implemented a new flux prediction method based on elementary modes (EMs) and structural flux (StruF) analysis and tested them against experimentally measured flux data obtained from (13)C-labelling in a cancer cell line. We assessed the quality of predictions using different objective functions along with different techniques in normalizing a metabolic network with more than one substrate input. Results show a good correlation between predicted and experimental values and indicate that the choice of cellular objective critically affects the quality of predictions. In particular, lactate gives an excellent correlation and correctly predicts the high flux through glycolysis, matching the observed characteristics of cancer cells. In contrast with FBA, which requires a priori definition of all uptake rates, often hard to measure, atomic StruFs (aStruFs) are able to predict uptake rates of multiple substrates. © 2015 Authors; published by Portland Press Limited.

  17. Interpreting Flux from Broadband Photometry

    Science.gov (United States)

    Brown, Peter J.; Breeveld, Alice; Roming, Peter W. A.; Siegel, Michael

    2016-10-01

    We discuss the transformation of observed photometry into flux for the creation of spectral energy distributions (SED) and the computation of bolometric luminosities. We do this in the context of supernova studies, particularly as observed with the Swift spacecraft, but the concepts and techniques should be applicable to many other types of sources and wavelength regimes. Traditional methods of converting observed magnitudes to flux densities are not very accurate when applied to UV photometry. Common methods for extinction and the integration of pseudo-bolometric fluxes can also lead to inaccurate results. The sources of inaccuracy, though, also apply to other wavelengths. Because of the complicated nature of translating broadband photometry into monochromatic flux densities, comparison between observed photometry and a spectroscopic model is best done by forward modeling the spectrum into the count rates or magnitudes of the observations. We recommend that integrated flux measurements be made using a spectrum or SED which is consistent with the multi-band photometry rather than converting individual photometric measurements to flux densities, linearly interpolating between the points, and integrating. We also highlight some specific areas where the UV flux can be mischaracterized.

  18. Strongly correlated systems experimental techniques

    CERN Document Server

    Mancini, Ferdinando

    2015-01-01

    The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...

  19. Strongly Correlated Systems Theoretical Methods

    CERN Document Server

    Avella, Adolfo

    2012-01-01

    The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as po...

  20. Strongly correlated systems numerical methods

    CERN Document Server

    Mancini, Ferdinando

    2013-01-01

    This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...

  1. Strongly nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2014-01-01

    This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...

  2. Flavour Democracy in Strong Unification

    CERN Document Server

    Abel, S A; Abel, Steven; King, Steven

    1998-01-01

    We show that the fermion mass spectrum may naturally be understood in terms of flavour democratic fixed points in supersymmetric theories which have a large domain of attraction in the presence of "strong unification". Our approach provides an alternative to the approximate Yukawa texture zeroes of the Froggatt-Nielsen mechanism. We discuss a particular model based on a broken gauged $SU(3)_L\\times SU(3)_R$ family symmetry which illustrates our approach.

  3. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    Science.gov (United States)

    M. Mazur; C.P.J. Mitchell; C.S. Eckley; S.L. Eggert; R.K. Kolka; S.D. Sebestyen; E.B. Swain

    2014-01-01

    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil-air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown.We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg...

  4. The upper limit of the solar antineutrino flux according to the LSD array data

    International Nuclear Information System (INIS)

    Al'etta, M.; Antonioli, P.; Badino, D.

    1997-01-01

    The analysis of the experimental data obtained at the LSD liquid scintillation detector is carried out with the aim of searching the possible flux of electron antineutrinos from Sun. The most strong at present upper limit for the electron antineutrino flux of solar origin is determined: ≤ 1.0 x 10 5 cm -2 x s -1 (the reliability level of 90%)

  5. Consideration of critical heat flux margin prediction by subcooled or low quality critical heat flux correlations

    International Nuclear Information System (INIS)

    Hejzlar, P.; Todreas, N.E.

    1996-01-01

    The accurate prediction of the critical heat flux (CHF) margin which is a key design parameter in a variety of cooling and heating systems is of high importance. These margins are, for the low quality region, typically expressed in terms of critical heat flux ratios using the direct substitution method. Using a simple example of a heated tube, it is shown that CHF correlations of a certain type often used to predict CHF margins, expressed in this manner, may yield different results, strongly dependent on the correlation in use. It is argued that the application of the heat balance method to such correlations, which leads to expressing the CHF margins in terms of the critical power ratio, may be more appropriate. (orig.)

  6. The INGV Real Time Strong Motion Database

    Science.gov (United States)

    Massa, Marco; D'Alema, Ezio; Mascandola, Claudia; Lovati, Sara; Scafidi, Davide; Gomez, Antonio; Carannante, Simona; Franceschina, Gianlorenzo; Mirenna, Santi; Augliera, Paolo

    2017-04-01

    .185 waveforms) Italian earthquakes with ML≥3.0, recorded since the 1st January 2012, besides 204 accelerometric stations belonging to the INGV strong motion network and regional partner.

  7. On Pure and (approximate) Strong Equilibria of Facility Location Games

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Telelis, Orestis A.

    2008-01-01

    We study social cost losses in Facility Location games, where n selfish agents install facilities over a network and connect to them, so as to forward their local demand (expressed by a non-negative weight per agent). Agents using the same facility share fairly its installation cost, but every ag......-approximate (e = 2.718...) strong equilibria and an upper bound of O(ln W) on SPoA (W is the sum of agents’ weights), which becomes tight Θ(ln n) for unweighted agents. Center for Algorithmic Game Theory, funded by the Carlsberg Foundation, Denmark.......We study social cost losses in Facility Location games, where n selfish agents install facilities over a network and connect to them, so as to forward their local demand (expressed by a non-negative weight per agent). Agents using the same facility share fairly its installation cost, but every...... networks we prove upper and lower bounds on PoS, while an O(ln n) upper bound implied by previous work is tight for non-metric networks. We also prove a constant upper bound for the SPoA of metric networks when strong equilibria exist. For the weighted game on general networks we prove existence of e...

  8. Homogenization technique for strongly heterogeneous zones in research reactors

    International Nuclear Information System (INIS)

    Lee, J.T.; Lee, B.H.; Cho, N.Z.; Oh, S.K.

    1991-01-01

    This paper reports on an iterative homogenization method using transport theory in a one-dimensional cylindrical cell model developed to improve the homogenized cross sections fro strongly heterogeneous zones in research reactors. The flux-weighting homogenized cross sections are modified by a correction factor, the cell flux ratio under an albedo boundary condition. The albedo at the cell boundary is iteratively determined to reflect the geometry effects of the material properties of the adjacent cells. This method has been tested with a simplified core model of the Korea Multipurpose Research Reactor. The results demonstrate that the reaction rates of an off-center control shroud cell, the multiplication factor, and the power distribution of the reactor core are close to those of the fine-mesh heterogeneous transport model

  9. Carbon Fluxes in a Managed Landscape: Assessing the Drivers of Temporal and Spatial Variability in Flux Tower, MODIS and Forest Inventory Data of the Pacific Northwest

    Science.gov (United States)

    Wharton, S.; Bible, K.; Falk, M.; Paw U, K.

    2010-12-01

    This research focuses on the Wind Late Successional Reserve of Southern Washington where clear-cut logging over the past 100 years has created a fragmented landscape of coniferous forests that range in age from 0 to 500 years. In this study, we integrate several datasets to examine the environmental drivers of carbon exchange in this region across time and space. These sources include: (1) network of flux towers across a disturbance choronosequence, (2) MODIS Enhanced Vegetation Index, (3) aboveground net primary production (ANPP) from forest inventories, (4) and regional precipitation and air temperature measurements from the NOAA network of weather stations and PRISM reanalysis data. Net ecosystem exchange of carbon (NEE) has been measured at the Wind River Canopy Crane AmeriFlux site since 1998. The canopy crane is located in an old-growth forest composed of late seral Douglas-fir (Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla). Two flux towers were erected in early seral stands to study the effects of silviculture on net ecosystem exchange. CO2 uptake at the old-growth stand is highest in the spring before bud break when air and soil temperatures and vapor pressure deficit are relatively low, and soil moisture and light levels are favorable for photosynthesis, while maximum CO2 uptake is observed two to three months later at the early seral stands and coincide with peak leaf area index. This CO2 pattern is driven by different water conserving strategies. A reduction in carbon exchange is observed at the old-growth forest when moisture becomes limiting and canopy conductance rates drop sharply after mid-morning in the summer. In contrast, inhibition in canopy conductance rates and CO2 exchange is not observed at the early seral stands until soil moisture levels become critically low at the very end of the summer. The regional MODIS data (200 km X 200 km area) from 2000-2008 show that annual variability in the Enhanced Vegetation Index (EVI) also

  10. Specification of ROP flux shape

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Gray, A. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1997-06-01

    The CANDU 9 480/SEU core uses 0.9% SEU (Slightly Enriched Uranium) fuel. The use f SEU fuel enables the reactor to increase the radial power form factor from 0.865, which is typical in current natural uranium CANDU reactors, to 0.97 in the nominal CANDU 9 480/SEU core. The difference is a 12% increase in reactor power. An additional 5% increase can be achieved due to a reduced refuelling ripple. The channel power limits were also increased by 3% for a total reactor power increase of 20%. This report describes the calculation of neutron flux distributions in the CANDU 9 480/SEU core under conditions specified by the C and I engineers. The RFSP code was used to calculate of neutron flux shapes for ROP analysis. Detailed flux values at numerous potential detector sites were calculated for each flux shape. (author). 6 tabs., 70 figs., 4 refs.

  11. Notes on neutron flux measurement

    International Nuclear Information System (INIS)

    Alcala Ruiz, F.

    1984-01-01

    The main purpose of this work is to get an useful guide to carry out topical neutron flux measurements. Although the foil activation technique is used in the majority of the cases, other techniques, such as those based on fission chambers and self-powered neutron detectors, are also shown. Special interest is given to the description and application of corrections on the measurement of relative and absolute induced activities by several types of detectors (scintillators, G-M and gas proportional counters). The thermal arid epithermal neutron fluxes, as determined in this work, are conventional or effective (West cots fluxes), which are extensively used by the reactor experimentalists; however, we also give some expressions where they are related to the integrated neutron fluxes, which are used in neutron calculations. (Author) 16 refs

  12. Conical electromagnetic radiation flux concentrator

    Science.gov (United States)

    Miller, E. R.

    1972-01-01

    Concentrator provides method of concentrating a beam of electromagnetic radiation into a smaller beam, presenting a higher flux density. Smaller beam may be made larger by sending radiation through the device in the reverse direction.

  13. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  14. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.

    2002-01-01

    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  15. Strongly Interacting Light Dark Matter

    Directory of Open Access Journals (Sweden)

    Sebastian Bruggisser, Francesco Riva, Alfredo Urbano

    2017-09-01

    Full Text Available In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM can appear weakly coupled at small energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo Nambu-Goldstone Bosons and Goldstini are interesting targets for LHC missing-energy searches.

  16. Strongly interacting light dark matter

    International Nuclear Information System (INIS)

    Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo

    2016-07-01

    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  17. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.

    1985-01-01

    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  18. Scalar strong interaction hadron theory

    CERN Document Server

    Hoh, Fang Chao

    2015-01-01

    The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

  19. Strong Plate, Weak Slab Dichotomy

    Science.gov (United States)

    Petersen, R. I.; Stegman, D. R.; Tackley, P.

    2015-12-01

    Models of mantle convection on Earth produce styles of convection that are not observed on Earth.Moreover non-Earth-like modes, such as two-sided downwellings, are the de facto mode of convection in such models.To recreate Earth style subduction, i.e. one-sided asymmetric recycling of the lithosphere, proper treatment of the plates and plate interface are required. Previous work has identified several model features that promote subduction. A free surface or pseudo-free surface and a layer of material with a relatively low strength material (weak crust) allow downgoing plates to bend and slide past overriding without creating undue stress at the plate interface. (Crameri, et al. 2012, GRL)A low viscosity mantle wedge, possibly a result of slab dehydration, decouples the plates in the system. (Gerya et al. 2007, Geo)Plates must be composed of material which, in the case of the overriding plate, are is strong enough to resist bending stresses imposed by the subducting plate and yet, as in the case of the subducting plate, be weak enough to bend and subduct when pulled by the already subducted slab. (Petersen et al. 2015, PEPI) Though strong surface plates are required for subduction such plates may present a problem when they encounter the lower mantle.As the subducting slab approaches the higher viscosity, lower mantle stresses are imposed on the tip.Strong slabs transmit this stress to the surface.There the stress field at the plate interface is modified and potentially modifies the style of convection. In addition to modifying the stress at the plate interface, the strength of the slab affects the morphology of the slab at the base of the upper mantle. (Stegman, et al 2010, Tectonophysics)Slabs that maintain a sufficient portion of their strength after being bent require high stresses to unbend or otherwise change their shape.On the other hand slabs that are weakened though the bending process are more amenable to changes in morphology. We present the results of

  20. Analysis of the influence of rainfall variables on urban effluents concentrations and fluxes in wet weather

    Science.gov (United States)

    Gooré Bi, Eustache; Monette, Frédéric; Gasperi, Johnny

    2015-04-01

    Urban rainfall runoff has been a topic of increasing importance over the past years, a result of both the increase in impervious land area arising from constant urban growth and the effects of climate change on urban drainage. The main goal of the present study is to assess and analyze the correlations between rainfall variables and common indicators of urban water quality, namely event mean concentrations (EMCs) and event fluxes (EFs), in order to identify and explain the impacts of each of the main rainfall variables on the generation process of urban pollutants during wet periods. To perform this analysis, runoff from eight summer rainfall events that resulted in combined sewer overflow (CSO) was sampled simultaneously from two distinct catchment areas in order to quantify discharges at the respective outfalls. Pearson statistical analysis of total suspended solids (TSS), chemical oxygen demand (COD), carbonaceous biochemical oxygen demand at 5 days (CBOD5), total phosphorus (Ptot) and total kedjal nitrogen (N-TKN) showed significant correlations (ρ = 0.05) between dry antecedent time (DAT) and EMCs on one hand, and between total rainfall (TR) and the volume discharged (VD) during EFs, on the other. These results show that individual rainfall variables strongly affect either EMCs or EFs and are good predictors to consider when selecting variables for statistical modeling of urban runoff quality. The results also show that in a combined sewer network, there is a linear relationship between TSS event fluxes and COD, CBOD5, Ptot, and N-TKN event fluxes; this explains 97% of the variability of these pollutants which adsorb onto TSS during wet weather, which therefore act as tracers. Consequently, the technological solution selected for TSS removal will also lead to a reduction of these pollutants. Given the huge volumes involved, urban runoffs contribute substantially to pollutant levels in receiving water bodies, a situation which, in a climate change context, may

  1. Nitrogen limitation of nitrous oxide fluxes in the tropical Andes

    Science.gov (United States)

    Teh, Y.; Diem, T.; Morley, N.; Baggs, E.

    2013-12-01

    Montane Peruvian ecosystems are a regional atmospheric source of nitrous oxide (N2O) releasing at least 0.80 × 0.44 kg N ha-1 a-1. Field and laboratory experiments across a 3000 m elevation gradient in the Kosñipata Valley, Manu National Park, Peru indicate that nitrogen (N) availability, particularly nitrate (NO3-) content, are central to regulating N2O fluxes. Water-filled pore space (WFPS), soil moisture content, and carbon (C) availability play a secondary role in modulating fluxes. Field-based flux measurements indicate that N2O emissions and NO3- availability were inversely proportional with altitude, with lower elevation ecosystems (premontane forest, lower montane forest) emitting significantly more N2O and containing more NO3- than higher elevation ones (upper montane forest, montane grasslands). In lower elevation ecosystems, where NO3- was more abundant, N2O fluxes were influenced by WFPS, soil moisture, and to lesser extent by C mineralization rates. In contrast, in higher elevation ecosystems, WFPS and soil moisture content played little or no role in modulating fluxes, and N2O fluxes appeared to be more strongly driven by N availability.

  2. Flux tubes at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cea, Paolo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Dipartimento di Fisica dell’Università di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cosmai, Leonardo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cuteri, Francesca; Papa, Alessandro [Dipartimento di Fisica, Università della Calabria & INFN-Cosenza,Ponte Bucci, cubo 31C, I-87036 Rende (Cosenza) (Italy)

    2016-06-07

    The chromoelectric field generated by a static quark-antiquark pair, with its peculiar tube-like shape, can be nicely described, at zero temperature, within the dual superconductor scenario for the QCD confining vacuum. In this work we investigate, by lattice Monte Carlo simulations of the SU(3) pure gauge theory, the fate of chromoelectric flux tubes across the deconfinement transition. We find that, if the distance between the static sources is kept fixed at about 0.76 fm ≃1.6/√σ and the temperature is increased towards and above the deconfinement temperature T{sub c}, the amplitude of the field inside the flux tube gets smaller, while the shape of the flux tube does not vary appreciably across deconfinement. This scenario with flux-tube “evaporation” above T{sub c} has no correspondence in ordinary (type-II) superconductivity, where instead the transition to the phase with normal conductivity is characterized by a divergent fattening of flux tubes as the transition temperature is approached from below. We present also some evidence about the existence of flux-tube structures in the magnetic sector of the theory in the deconfined phase.

  3. Determinants of Network Outcomes

    DEFF Research Database (Denmark)

    Ysa, Tamyko; Sierra, Vicenta; Esteve, Marc

    2014-01-01

    outcomes and that they enhance the level of trust. We also found that facilitative leadership has a positive impact on network management as well as on trust in the network. Our findings also show that complexity has a negative impact on trust. A key finding of our research is that managers may wield more......The literature on network management is extensive. However, it generally explores network structures, neglecting the impact of management strategies. In this article we assess the effect of management strategies on network outcomes, providing empirical evidence from 119 urban revitalization...... networks. We go beyond current work by testing a path model for the determinants of network outcomes and considering the interactions between the constructs: management strategies, trust, complexity, and facilitative leadership. Our results suggest that management strategies have a strong effect on network...

  4. SQUIDs De-fluxing Using a Decaying AC Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Matlashov, Andrei Nikolaevich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Semenov, Vasili Kirilovich [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Anderson, Bill [Senior Scientific, LLC, Albuquerque, NM (United States)

    2016-06-08

    Flux trapping is the Achilles’ heel of all superconductor electronics. The most direct way to avoid flux trapping is a prevention of superconductor circuits from exposure to magnetic fields. Unfortunately this is not feasible if the circuits must be exposed to a strong DC magnetic field even for a short period of time. For example, such unavoidable exposures take place in superparamagnetic relaxation measurements (SPMR) and ultra-low field magnetic resonance imaging (ULF MRI) using unshielded thin-film SQUID-based gradiometers. Unshielded SQUIDs stop working after being exposed to DC magnetic fields of only a few Gauss in strength. In this paper we present experimental results with de-fluxing of planar thin-film LTS SQUID-based gradiometers using a strong decaying AC magnetic field. We used four commercial G136 gradiometers for SPMR measurements with up to a 10 mT magnetizing field. Strong 12.9 kHz decaying magnetic field pulses reliably return SQUIDs to normal operation 50 ms after zeroing the DC magnetizing field. This new AC de-fluxing method was also successfully tested with seven other different types of LTS SQUID sensors and has been shown to dissipate extremely low energy.

  5. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  6. Macroecology of pollination networks

    DEFF Research Database (Denmark)

    Nielsen, Kristian Trøjelsgaard; Olesen, Jens Mogens

    2013-01-01

    towards the tropics, and that network topology would be affected by current climate. Location Global. Methods Each network was organized as a presence/absence matrix, consisting of P plant species, A pollinator species and their links. From these matrices, network parameters were estimated. Additionally...... peaked at mid-latitude whereas modularity decreased linearly. Both patterns are suggestive of a more specialized interaction structure towards the tropics. In particular, mean annual precipitation appeared influential on network topology as both nestedness and modularity varied significantly. Importantly......Aim Interacting communities of species are organized into complex networks, and network analysis is reckoned to be a strong tool for describing their architecture. Many species assemblies show strong macroecological patterns, e.g. increasing species richness with decreasing latitude, but whether...

  7. Estimating chemical composition of atmospheric deposition fluxes from mineral insoluble particles deposition collected in the western Mediterranean region

    Directory of Open Access Journals (Sweden)

    Y. Fu

    2017-11-01

    Full Text Available In order to measure the mass flux of atmospheric insoluble deposition and to constrain regional models of dust simulation, a network of automatic deposition collectors (CARAGA has been installed throughout the western Mediterranean Basin. Weekly samples of the insoluble fraction of total atmospheric deposition were collected concurrently on filters at five sites including four on western Mediterranean islands (Frioul and Corsica, France; Mallorca, Spain; and Lampedusa, Italy and one in the southern French Alps (Le Casset, and a weighing and ignition protocol was applied in order to quantify their mineral fraction. Atmospheric deposition is both a strong source of nutrients and metals for marine ecosystems in this area. However, there are few data on trace-metal deposition in the literature, since their deposition measurement is difficult to perform. In order to obtain more information from CARAGA atmospheric deposition samples, this study aimed to test their relevance in estimating elemental fluxes in addition to total mass fluxes. The elemental chemical analysis of ashed CARAGA filter samples was based on an acid digestion and an elemental analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES and mass spectrometry (MS in a clean room. The sampling and analytical protocols were tested to determine the elemental composition for mineral dust tracers (Al, Ca, K, Mg and Ti, nutrients (P and Fe and trace metals (Cd, Co, Cr, Cu, Mn, Ni, V and Zn from simulated wet deposition of dust analogues and traffic soot. The relative mass loss by dissolution in wet deposition was lower than 1 % for Al and Fe, and reached 13 % for P due to its larger solubility in water. For trace metals, this loss represented less than 3 % of the total mass concentration, except for Zn, Cu and Mn for which it could reach 10 %, especially in traffic soot. The chemical contamination during analysis was negligible for all the elements except for Cd

  8. Physics of Strongly Coupled Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kraeft, Wolf-Dietrich [Universitat Rostock (Germany)

    2007-07-15

    Strongly coupled plasmas (or non-ideal plasmas) are multi-component charged many-particle systems, in which the mean value of the potential energy of the system is of the same order as or even higher than the mean value of the kinetic energy. The constituents are electrons, ions, atoms and molecules. Dusty (or complex) plasmas contain still mesoscopic (multiply charged) particles. In such systems, the effects of strong coupling (non-ideality) lead to considerable deviations of physical properties from the corresponding properties of ideal plasmas, i.e., of plasmas in which the mean kinetic energy is essentially larger than the mean potential energy. For instance, bound state energies become density dependent and vanish at higher densities (Mott effect) due to the interaction of the pair with the surrounding particles. Non-ideal plasmas are of interest both for general scientific reasons (including, for example, astrophysical questions), and for technical applications such as inertially confined fusion. In spite of great efforts both experimentally and theoretically, satisfactory information on the physical properties of strongly coupled plasmas is not at hand for any temperature and density. For example, the theoretical description of non-ideal plasmas is possible only at low densities/high temperatures and at extremely high densities (high degeneracy). For intermediate degeneracy, however, numerical experiments have to fill the gap. Experiments are difficult in the region of 'warm dense matter'. The monograph tries to present the state of the art concerning both theoretical and experimental attempts. It mainly includes results of the work performed in famous Russian laboratories in recent decades. After outlining basic concepts (chapter 1), the generation of plasmas is considered (chapter 2, chapter 3). Questions of partial (chapter 4) and full ionization (chapter 5) are discussed including Mott transition and Wigner crystallization. Electrical and

  9. Validation of the flux number as scaling parameter for top-spray fluidised bed systems

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn

    2008-01-01

    was tested in the preferred range of 3.5-4.5 as well as with a value of 4.7 in a total of 24 experiments. The agglomeration tendency was observed to decrease with increasing flux number on an overall basis, but coating conditions with flux number values below 4.5 resulted in a complete collapse of the bed....... Coating conditions with flux number values of 4.5 and 4.7 were however successful in terms of agglomeration tendency and match of particle size fractions, but indicated in addition a strong influence of nozzle pressure. The present paper suggests even narrower boundaries for the flux number compared...

  10. Radiation belt electron flux forecasts: Driving VERB using NARMAX GSO flux forecasts

    Science.gov (United States)

    Walker, S. N.; Balikhin, M. A.; Boynton, R.; Drozdov, A.; Pakhotin, I.; Shprits, Y. Y.

    2016-12-01

    Physics based models, such as VERB, are capable of achieving excellent past-cast and now-cast models of the dynamics of electron fluxes throughout the radiation belt region. Their ability to forecast, however, is strongly dependant upon the accurate forecast of their driving parameters. In contrast, data based models, generated using Systems Science methodologies such as NARMAX, have been shown to achieve highly accurate forecasts over limited spatial domains such as GSO. This paper outlines the use of NARMAX forecasts to drive VERB. Example past-casts are discussed and compared to observations from the Van Allen Probe MagEIS instrument.

  11. PREFACE: Introduction to Strongly Correlated Electrons in New Materials

    Science.gov (United States)

    Kusmartsev, Feo V.

    2003-09-01

    two-dimensional electron gas subjected to a transverse magnetic field, correlations associated with the Coulomb interaction transform normal electrons into composite fermions consisting of electrons with integer magnetic fluxes attached to them. The quasiparticle excitations, such as holes, arising in these systems may have fractional statistics (the so-called anyons). Thus, a strong Coulomb interaction in novel materials may change the face of electrons, transforming their statistical properties. Such a phenomenon has already been established in quasi-one-dimensional materials, where an arbitrarily weak interaction transforms the Fermi liquid state associated with fermions into a bosonic Luttinger liquid. Will this effect happen in other types of novel materials? Future studies will answer this question. Many-body correlations may change the nature of the Coulomb interaction between electrons, leading to screening and over-screening effects. In the latter case the Coulomb repulsion between electrons will be transformed into a mutual attraction at certain distances. At some critical electron density, when the average distance between electrons is within this attractive region, this over-screening effect will obviously lead to the formation of electronic clusters and eventually to the formation of a clustered liquid or stripes. A similar effect may also arise through lattice distortions or electron--phonon interaction. In many new materials there exists an insulating antiferromagnetic state, which is transformed under doping, eventually leading to a metallic state. The evolution of the antiferromagnetic state under doping has been a central issue in scientific discussions for decades. How the metal--insulator transition arises and the nature of the eventual metallic state are still not clear, although many interesting ideas are competing. The motion of a single doped hole leaves a trace behind, a piece of a single domain wall. Such pieces of domain walls arising from

  12. Strongly coupled dust coulomb clusters

    International Nuclear Information System (INIS)

    Juan Wentau; Lai Yingju; Chen Mingheng; I Lin

    1999-01-01

    The structures and motions of quasi-2-dimensional strongly coupled dust Coulomb clusters with particle number N from few to hundreds in a cylindrical rf plasma trap are studied and compared with the results from the molecular dynamic simulation using more ideal models. Shell structures with periodic packing in different shells and intershell rotational motion dominated excitations are observed at small N. As N increases, the boundary has less effect, the system recovers to the triangular lattice with isotropic vortex type cooperative excitations similar to an infinite N system except the outer shell region. The above generic behaviors are mainly determined by the system symmetry and agree with the simulation results. The detailed interaction form causes minor effect such as the fine structure of packing

  13. Probability densities in strong turbulence

    Science.gov (United States)

    Yakhot, Victor

    2006-03-01

    In this work we, using Mellin’s transform combined with the Gaussian large-scale boundary condition, calculate probability densities (PDFs) of velocity increments P(δu,r), velocity derivatives P(u,r) and the PDF of the fluctuating dissipation scales Q(η,Re), where Re is the large-scale Reynolds number. The resulting expressions strongly deviate from the Log-normal PDF P(δu,r) often quoted in the literature. It is shown that the probability density of the small-scale velocity fluctuations includes information about the large (integral) scale dynamics which is responsible for the deviation of P(δu,r) from P(δu,r). An expression for the function D(h) of the multifractal theory, free from spurious logarithms recently discussed in [U. Frisch, M. Martins Afonso, A. Mazzino, V. Yakhot, J. Fluid Mech. 542 (2005) 97] is also obtained.

  14. Cluster observations of flux rope structures in the near-tail

    Directory of Open Access Journals (Sweden)

    P. D. Henderson

    2006-03-01

    Full Text Available An investigation of the 2003 Cluster tail season has revealed small flux ropes in the near-tail plasma sheet of Earth. These flux ropes manifest themselves as a bipolar magnetic field signature (usually predominantly in the Z-component associated with a strong transient peak in one or more of the other components (usually the Y-component. These signatures are interpreted as the passage of a cylindrical magnetic structure with a strong axial magnetic field over the spacecraft position. On the 2 October 2003 all four Cluster spacecraft observed a flux rope in the plasma sheet at X (GSM ~-17 RE. The flux rope was travelling Earthward and duskward at ~160 kms-1, as determined from multi-spacecraft timing. This is consistent with the observed south-then-north bipolar BZ signature and corresponds to a size of ~0.3 RE (a lower estimate, measuring between the inflection points of the bipolar signature. The axis direction, determined from multi-spacecraft timing and the direction of the strong core field, was close to the intermediate variance direction of the magnetic field. The current inside the flux rope, determined from the curlometer technique, was predominantly parallel to the magnetic field. However, throughout the flux rope, but more significant in the outer sections, a non-zero component of current perpendicular to the magnetic field existed. This shows that the flux rope was not in a "constant α" force-free configuration, i.e. the magnetic force, J×B was also non-zero. In the variance frame of the magnetic field, the components of J×B suggest that the magnetic pressure force was acting to expand the flux rope, i.e. directed away from the centre of the flux rope, whereas the smaller magnetic tension force was acting to compress the flux rope. The plasma pressure is reduced inside the flux rope. A simple estimate of the total force acting on the flux rope from the magnetic forces and surrounding plasma suggests that the flux rope was

  15. Thermotronics. Towards nanocircuits to manage radiative heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Abdallah, Philippe [Univ. Paris-Sud 11, Palaiseau (France). Lab. Charles Fabry; Sherbrooke Univ., PQ (Canada). Dept. of Mechanical Engineering; Biehs, Svend-Age [Oldenburg Univ. (Germany). Inst. fuer Physik

    2017-05-01

    The control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20{sup th} century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.

  16. Thermotronics: Towards Nanocircuits to Manage Radiative Heat Flux

    Science.gov (United States)

    Ben-Abdallah, Philippe; Biehs, Svend-Age

    2017-02-01

    The control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20th century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.

  17. Boosted Fast Flux Loop Alternative Cooling Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Glen R. Longhurst; Donna Post Guillen; James R. Parry; Douglas L. Porter; Bruce W. Wallace

    2007-08-01

    The Gas Test Loop (GTL) Project was instituted to develop the means for conducting fast neutron irradiation tests in a domestic radiation facility. It made use of booster fuel to achieve the high neutron flux, a hafnium thermal neutron absorber to attain the high fast-to-thermal flux ratio, a mixed gas temperature control system for maintaining experiment temperatures, and a compressed gas cooling system to remove heat from the experiment capsules and the hafnium thermal neutron absorber. This GTL system was determined to provide a fast (E > 0.1 MeV) flux greater than 1.0E+15 n/cm2-s with a fast-to-thermal flux ratio in the vicinity of 40. However, the estimated system acquisition cost from earlier studies was deemed to be high. That cost was strongly influenced by the compressed gas cooling system for experiment heat removal. Designers were challenged to find a less expensive way to achieve the required cooling. This report documents the results of the investigation leading to an alternatively cooled configuration, referred to now as the Boosted Fast Flux Loop (BFFL). This configuration relies on a composite material comprised of hafnium aluminide (Al3Hf) in an aluminum matrix to transfer heat from the experiment to pressurized water cooling channels while at the same time providing absorption of thermal neutrons. Investigations into the performance this configuration might achieve showed that it should perform at least as well as its gas-cooled predecessor. Physics calculations indicated that the fast neutron flux averaged over the central 40 cm (16 inches) relative to ATR core mid-plane in irradiation spaces would be about 1.04E+15 n/cm2-s. The fast-to-thermal flux ratio would be in excess of 40. Further, the particular configuration of cooling channels was relatively unimportant compared with the total amount of water in the apparatus in determining performance. Thermal analyses conducted on a candidate configuration showed the design of the water coolant and

  18. Physics of magnetic flux tubes

    CERN Document Server

    Ryutova, Margarita

    2015-01-01

    This book is the first account of the physics of magnetic flux tubes from their fundamental properties to collective phenomena in an ensembles of flux tubes. The physics of magnetic flux tubes is absolutely vital for understanding fundamental physical processes in the solar atmosphere shaped and governed by magnetic fields. High-resolution and high cadence observations from recent space and  ground-based instruments taken simultaneously at different heights and temperatures not only show the ubiquity of filamentary structure formation but also allow to study how various events are interconnected by system of magnetic flux tubes. The book covers both theory and observations. Theoretical models presented in analytical and phenomenological forms are tailored for practical applications. These are welded with state-of-the-art observations from early decisive ones to the most recent data that open a new phase-space for exploring the Sun and sun-like stars. Concept of magnetic flux tubes is central to various magn...

  19. Regional representativeness assessment and improvement of eddy flux observations in China.

    Science.gov (United States)

    He, Honglin; Zhang, Liyun; Gao, Yangzi; Ren, Xiaoli; Zhang, Li; Yu, Guirui; Wang, Shaoqiang

    2015-01-01

    Both the amounts of data describing the site-scale carbon flux at a high temporal and spatial resolution collected in China and the number of eddy covariance flux towers have been increasing during the last decade. To correctly upscale these fluxes to the regional and global level, the representativeness of the current network of flux towers must be known. The present study quantifies the representativeness of the flux network for the regional carbon exchange. This analysis combined the total solar radiation, air temperature, vapor pressure and the enhanced vegetation index to indicate the environmental characteristics of each 1-km pixel cell and flux tower. Next, the Euclidean distance from each pixel to the tower was calculated to determine the representativeness of the existing flux towers. To improve the regional representativeness, additional tower locations were pinpointed by identifying and clustering the underrepresented areas. The existing network of flux towers performed well in representing the environmental conditions of the middle and the northeastern portions of China. The well-represented areas covered 60.9% of the total areas. The towers in croplands and grasslands represented the vegetation types well, but the wetlands and barelands were poorly represented. The representativeness of the flux network increased with the addition of nine towers located in forests, grasslands, wetlands and barelands. The representativeness of 27.5% of the land areas improved. In addition, the well-represented areas were enlarged by 15.2%. Substantial gains in representation were achieved by adding new towers on the Tibet Plateau. The representativeness of the northwest and southwest was improved less significantly, suggesting that more towers are required to capture certain ecosystem behaviors. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. EU Development of High Heat Flux Components

    International Nuclear Information System (INIS)

    Linke, J.; Lorenzetto, P.; Majerus, P.; Merola, M.; Pitzer, D.; Roedig, M.

    2005-01-01

    The development of plasma facing components for next step fusion devices in Europe is strongly focused to ITER. Here a wide spectrum of different design options for the divertor target and the first wall have been investigated with tungsten, CFC, and beryllium armor. Electron beam simulation experiments have been used to determine the performance of high heat flux components under ITER specific thermal loads. Beside thermal fatigue loads with power density levels up to 20 MWm -2 , off-normal events are a serious concern for the lifetime of plasma facing components. These phenomena are expected to occur on a time scale of a few milliseconds (plasma disruptions) or several hundred milliseconds (vertical displacement events) and have been identified as a major source for the production of neutron activated metallic or tritium enriched carbon dust which is of serious importance from a safety point of view.The irradiation induced material degradation is another critical concern for future D-T-burning fusion devices. In ITER the integrated neutron fluence to the first wall and the divertor armour will remain in the order of 1 dpa and 0.7 dpa, respectively. This value is low compared to future commercial fusion reactors; nevertheless, a nonnegligible degradation of the materials has been detected, both for mechanical and thermal properties, in particular for the thermal conductivity of carbon based materials. Beside the degradation of individual material properties, the high heat flux performance of actively cooled plasma facing components has been investigated under ITER specific thermal and neutron loads

  1. Strong Ideal Convergence in Probabilistic Metric Spaces

    Indian Academy of Sciences (India)

    In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...

  2. Strong ideal convergence in probabilistic metric spaces

    Indian Academy of Sciences (India)

    In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...

  3. Analysis of edge stability for models of heat flux width

    Directory of Open Access Journals (Sweden)

    M.A. Makowski

    2017-08-01

    Full Text Available Detailed measurements of the ne, Te, and Ti profiles in the vicinity of the separatrix of ELMing H-mode discharges have been used to examine plasma stability at the extreme edge of the plasma and assess stability dependent models of the heat flux width. The results are strongly contrary to the critical gradient model, which posits that a ballooning instability determines a gradient scale length related to the heat flux width. The results of this analysis are not sensitive to the choice of location to evaluate stability. Significantly, it is also found that the results are completely consistent with the heuristic drift model for the heat flux width. Here the edge pressure gradient scales with plasma density and is proportional to the pressure gradient inferred from the equilibrium in accordance with the predictions of that theory.

  4. Learning Networks, Networked Learning

    NARCIS (Netherlands)

    Sloep, Peter; Berlanga, Adriana

    2010-01-01

    Sloep, P. B., & Berlanga, A. J. (2011). Learning Networks, Networked Learning [Redes de Aprendizaje, Aprendizaje en Red]. Comunicar, XIX(37), 55-63. Retrieved from http://dx.doi.org/10.3916/C37-2011-02-05

  5. Remnants of strong tidal interactions

    International Nuclear Information System (INIS)

    Mcglynn, T.A.

    1990-01-01

    This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs

  6. John Strong - 1941-2006

    CERN Document Server

    2006-01-01

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on 31 July, a few days before his 65th birthday. John started his career and obtained his PhD in a group from Westfield College, initially working on experiments at Rutherford Appleton Laboratory (RAL). From the early 1970s onwards, however, his research was focused on experiments in CERN, with several particularly notable contributions. The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras (a type of television camera) to record the sparks in the spark chambers. This highly automated system allowed Omega to be used in a similar way to bubble chambers. He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems. In these experiments the Westfield group joined forces with Italian colleagues to measure the form factors of the pion and the kaon, and the lifetime of some of the newly discovered charm particles. Such h...

  7. Strong seismic ground motion propagation

    International Nuclear Information System (INIS)

    Seale, S.; Archuleta, R.; Pecker, A.; Bouchon, M.; Mohammadioun, G.; Murphy, A.; Mohammadioun, B.

    1988-10-01

    At the McGee Creek, California, site, 3-component strong-motion accelerometers are located at depths of 166 m, 35 m and 0 m. The surface material is glacial moraine, to a depth of 30.5 m, overlying homfels. Accelerations were recorded from two California earthquakes: Round Valley, M L 5.8, November 23, 1984, 18:08 UTC and Chalfant Valley, M L 6.4, July 21, 1986, 14:42 UTC. By separating out the SH components of acceleration, we were able to determine the orientations of the downhole instruments. By separating out the SV component of acceleration, we were able to determine the approximate angle of incidence of the signal at 166 m. A constant phase velocity Haskell-Thomson model was applied to generate synthetic SH seismograms at the surface using the accelerations recorded at 166 m. In the frequency band 0.0 - 10.0 Hz, we compared the filtered synthetic records to the filtered surface data. The onset of the SH pulse is clearly seen, as are the reflections from the interface at 30.5 m. The synthetic record closely matches the data in amplitude and phase. The fit between the synthetic accelerogram and the data shows that the seismic amplification at the surface is a result of the contrast of the impedances (shear stiffnesses) of the near surface materials

  8. Compressed magnetic flux amplifier with capacitive load

    International Nuclear Information System (INIS)

    Stuetzer, O.M.

    1980-03-01

    A first-order analysis is presented for a compressed magnetic flux (CMF) current amplifier working into a load with a capacitive component. Since the purpose of the investigation was to gain a general understanding of the arrangement, a number of approximations and limitations were accepted. The inductance of the transducer varies with time; the inductance/resistance/capacitance (LRC) circuit therefore is parametric and solutions are different for the stable regime (high C), the oscillation regime (low C), and the transition case. Solutions and performance depend strongly on circuit boundary conditions, i.e., energization of the circuit by either an injected current or by an applied capacitor charge. The behavior of current and energy amplification for the various cases are discussed in detail. A number of experiments with small CMF devices showed that the first-order theory presented predicts transducer performance well in the linear regime

  9. Diversity of flux distribution in central carbon metabolism of S. cerevisiae strains from diverse environments.

    Science.gov (United States)

    Nidelet, Thibault; Brial, Pascale; Camarasa, Carole; Dequin, Sylvie

    2016-04-05

    S. cerevisiae has attracted considerable interest in recent years as a model for ecology and evolutionary biology, revealing a substantial genetic and phenotypic diversity. However, there is a lack of knowledge on the diversity of metabolic networks within this species. To identify the metabolic and evolutionary constraints that shape metabolic fluxes in S. cerevisiae, we used a dedicated constraint-based model to predict the central carbon metabolism flux distribution of 43 strains from different ecological origins, grown in wine fermentation conditions. In analyzing these distributions, we observed a highly contrasted situation in flux variability, with quasi-constancy of the glycolysis and ethanol synthesis yield yet high flexibility of other fluxes, such as the pentose phosphate pathway and acetaldehyde production. Furthermore, these fluxes with large variability showed multimodal distributions that could be linked to strain origin, indicating a convergence between genetic origin and flux phenotype. Flux variability is pathway-dependent and, for some flux, a strain origin effect can be found. These data highlight the constraints shaping the yeast operative central carbon network and provide clues for the design of strategies for strain improvement.

  10. Flux driven turbulence in tokamaks

    International Nuclear Information System (INIS)

    Garbet, X.; Ghendrih, P.; Ottaviani, M.; Sarazin, Y.; Beyer, P.; Benkadda, S.; Waltz, R.E.

    1999-01-01

    This work deals with tokamak plasma turbulence in the case where fluxes are fixed and profiles are allowed to fluctuate. These systems are intermittent. In particular, radially propagating fronts, are usually observed over a broad range of time and spatial scales. The existence of these fronts provide a way to understand the fast transport events sometimes observed in tokamaks. It is also shown that the confinement scaling law can still be of the gyroBohm type in spite of these large scale transport events. Some departure from the gyroBohm prediction is observed at low flux, i.e. when the gradients are close to the instability threshold. Finally, it is found that the diffusivity is not the same for a turbulence calculated at fixed flux than at fixed temperature gradient, with the same time averaged profile. (author)

  11. Looking for high neutron fluxes

    International Nuclear Information System (INIS)

    Lengeler, Herbert

    1994-01-01

    The neutron is a powerful and versatile probe of both the structure and dynamics of condensed matter. However unlike other techniques such as X-ray, electron or light scattering, its interaction with matter is rather weak. Historically neutron scattering has always been intensity limited and scientists are always looking for more intense sources. These come in two kinds - fission reactors and spallation sources (in which neutrons are released from a target bombardment by beams). Unfortunately the power density of high flux reactors is approaching a technical limit and it will be difficult to achieve a large increase of neutron fluxes above typical present values as represented for example by the high flux reactor at ILL, Grenoble

  12. How to choose methods for lake greenhouse gas flux measurements?

    Science.gov (United States)

    Bastviken, David

    2017-04-01

    Lake greenhouse gas (GHG) fluxes are increasingly recognized as important for lake ecosystems as well as for large scale carbon and GHG budgets. However, many of our flux estimates are uncertain and it can be discussed if the presently available data is representative for the systems studied or not. Data are also very limited for some important flux pathways. Hence, many ongoing efforts try to better constrain fluxes and understand flux regulation. A fundamental challenge towards improved knowledge and when starting new studies is what methods to choose. A variety of approaches to measure aquatic GHG exchange is used and data from different methods and methodological approaches have often been treated as equally valid to create large datasets for extrapolations and syntheses. However, data from different approaches may cover different flux pathways or spatio-temporal domains and are thus not always comparable. Method inter-comparisons and critical method evaluations addressing these issues are rare. Emerging efforts to organize systematic multi-lake monitoring networks for GHG fluxes leads to method choices that may set the foundation for decades of data generation and therefore require fundamental evaluation of different approaches. The method choices do not only regard the equipment but also for example consideration of overall measurement design and field approaches, relevant spatial and temporal resolution for different flux components, and accessory variables to measure. In addition, consideration of how to design monitoring approaches being affordable, suitable for widespread (global) use, and comparable across regions is needed. Inspired by discussions with Prof. Dr. Cristian Blodau during the EGU General Assembly 2016, this presentation aims to (1) illustrate fundamental pros and cons for a number of common methods, (2) show how common methodological approaches originally adapted for other environments can be improved for lake flux measurements, (3) suggest

  13. DISCONNECTING OPEN SOLAR MAGNETIC FLUX

    International Nuclear Information System (INIS)

    DeForest, C. E.; Howard, T. A.; McComas, D. J.

    2012-01-01

    Disconnection of open magnetic flux by reconnection is required to balance the injection of open flux by coronal mass ejections and other eruptive events. Making use of recent advances in heliospheric background subtraction, we have imaged many abrupt disconnection events. These events produce dense plasma clouds whose distinctive shape can now be traced from the corona across the inner solar system via heliospheric imaging. The morphology of each initial event is characteristic of magnetic reconnection across a current sheet, and the newly disconnected flux takes the form of a 'U-'shaped loop that moves outward, accreting coronal and solar wind material. We analyzed one such event on 2008 December 18 as it formed and accelerated at 20 m s –2 to 320 km s –1 , thereafter expanding self-similarly until it exited our field of view 1.2 AU from the Sun. From acceleration and photometric mass estimates we derive the coronal magnetic field strength to be 8 μT, 6 R ☉ above the photosphere, and the entrained flux to be 1.6 × 10 11 Wb (1.6 × 10 19 Mx). We model the feature's propagation by balancing inferred magnetic tension force against accretion drag. This model is consistent with the feature's behavior and accepted solar wind parameters. By counting events over a 36 day window, we estimate a global event rate of 1 day –1 and a global solar minimum unsigned flux disconnection rate of 6 × 10 13 Wb yr –1 (6 × 10 21 Mx yr –1 ) by this mechanism. That rate corresponds to ∼ – 0.2 nT yr –1 change in the radial heliospheric field at 1 AU, indicating that the mechanism is important to the heliospheric flux balance.

  14. N2O eddy covariance fluxes: From field measurements to flux calculation

    Science.gov (United States)

    Lognoul, Margaux; Debacq, Alain; Heinesch, Bernard; Aubinet, Marc

    2017-04-01

    From March to October 2016, we performed eddy covariance measurements in a sugar beet crop at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site) in Belgium. N2O and H2O atmospheric concentrations were measured at 10 Hz using a quantum-cascade laser spectrometer (Aerodyne Research, Inc.) and combined to wind speed 3D components measured with a sonic anemometer (Gill HS-50). Flux computation was carried out using the EddyPro Software (LI-COR) with a focus on adaptations needed for tracers like N2O. Data filtering and quality control were performed according to Vickers and Mahrt (1997) and Mauder and Foken (2004). The flags were adapted to N2O time series. In this presentation, different computation steps will be presented. More specifically: 1) Considering that a large proportion of N2O fluxes are small (within ± 0.5 nmol m-2 s-1), the classical stationarity test might lead to excessive data filtering and in such case, some searchers have chosen to use the running mean (RM) as a detrend method over block averaging (BA) and to filter data otherwise. For our dataset, BA mean fluxes combined to the stationarity test did not significantly differ from RM fluxes when the averaging window was 300s or larger, but were significantly larger otherwise, suggesting that significant eddies occurred at the 5-min timescale and that they were not accounted for with a shorter averaging window. 2) The determination of time-lag in the case of N2O fluxes can become tricky for two reasons : (1) the signal amplitude can differ from one time period to the next, making it difficult to use the method of covariance maximization and (2) an additional clock drift can appear if the spectrometer is not logging on the same computer than the anemometer. In our case, the N2O signal was strong enough to solve both problems and to perform time-lag compensation according to the covariance maximization, with a default value equal to the mode of the lag distribution. The automatic time

  15. Analytical Modeling of a Double-Sided Flux Concentrating E-Core Transverse Flux Machine with Pole Windings

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hasan, Iftekhar [University of Akron; Husain, Tausif [University of Akron; Sozer, Yilmaz [University of Akron; Husain, Iqbal [North Carolina State University

    2017-08-08

    In this paper, a nonlinear analytical model based on the Magnetic Equivalent Circuit (MEC) method is developed for a double-sided E-Core Transverse Flux Machine (TFM). The proposed TFM has a cylindrical rotor, sandwiched between E-core stators on both sides. Ferrite magnets are used in the rotor with flux concentrating design to attain high airgap flux density, better magnet utilization, and higher torque density. The MEC model was developed using a series-parallel combination of flux tubes to estimate the reluctance network for different parts of the machine including air gaps, permanent magnets, and the stator and rotor ferromagnetic materials, in a two-dimensional (2-D) frame. An iterative Gauss-Siedel method is integrated with the MEC model to capture the effects of magnetic saturation. A single phase, 1 kW, 400 rpm E-Core TFM is analytically modeled and its results for flux linkage, no-load EMF, and generated torque, are verified with Finite Element Analysis (FEA). The analytical model significantly reduces the computation time while estimating results with less than 10 percent error.

  16. The gradiometer flux qubit without an external flux bias

    International Nuclear Information System (INIS)

    Wu, C E; Liu, Y; Chi, C C

    2006-01-01

    We analyse the potential of the gradiometer flux qubit (GFQ), which should be insensitive to flux noise because of the nature of the gradiometer structure. However, to enjoy the benefit of such a design, we must be careful in choosing the initial condition. In the fluxoid quantization condition the flux integer n, which is set to zero in the usual single-loop flux qubit analysis, plays an important role in the GFQ potential. We found that it is impossible to construct a double-well potential if we choose the wrong initial condition. For a qubit application, n must be a small odd integer and the best choice would be n = 1. We also provide a precise and efficient numerical method for calculating the energy spectrum of the arbitrary GFQ potential; this will become useful in designing the circuitry parameters. The state control and read-out schemes are also optimized to a situation where a minimum requirement for using electronics is possible, which reduces noise from instruments directly

  17. The flux database concerted action

    International Nuclear Information System (INIS)

    Mitchell, N.G.; Donnelly, C.E.

    1999-01-01

    This paper summarizes the background to the UIR action on the development of a flux database for radionuclide transfer in soil-plant systems. The action is discussed in terms of the objectives, the deliverables and the progress achieved so far by the flux database working group. The paper describes the background to the current initiative and outlines specific features of the database and supporting documentation. Particular emphasis is placed on the proforma used for data entry, on the database help file and on the approach adopted to indicate data quality. Refs. 3 (author)

  18. Controlling Radiative Heat Transfer Across the Mold Flux Layer by the Scattering Effect of the Borosilicate Mold Flux System with Metallic Iron

    Science.gov (United States)

    Yoon, Dae-Woo; Cho, Jung-Wook; Kim, Seon-Hyo

    2017-08-01

    The present study proposes a countermeasure for regulating total heat flux through the mold flux layer by designed mold flux with additive metallic iron particles. The heat flux through the B2O3-CaO-SiO2-Na2O-CaF2-Fe system was investigated using the infrared emitter technique to evaluate total flux density across the mold flux film. Both scanning electron microscope (SEM) and X-ray diffraction analysis were employed in order to identify the morphological and compositional changes of the crystalline phase, according to increasing iron contents in the mold flux. It was confirmed that the crystalline layer of studied mold fluxes does not have a meaningful effect on the total heat flux density due to the similar structure and fraction of the crystalline phase. The extinction coefficient was measured for glassy mold fluxes using an ultraviolet/visible and a Fourier transformation-infrared ray spectrometer in the range of 0.5 to 5 μm. For analyzing the scattering behavior of iron particles on the extinction coefficient, the number density and diameter of particles were observed by an automated SEM (auto-SEM). With these data, Mie scattering theory is adopted to define the scattering behavior of dispersed iron droplets in glassy matrix. It was found that the theoretical scattering coefficient demonstrated about 1623 to 3295 m-1, which is in accordance with the experimental results. In doing so, this study successfully achieves the strong scattering behavior that would contribute greatly to the optimization of overall heat flux through the mold flux film during the casting process.

  19. Strongly interacting photons and atoms

    International Nuclear Information System (INIS)

    Alge, W.

    1999-05-01

    This thesis contains the main results of the research topics I have pursued during the my PhD studies at the University of Innsbruck and partly in collaboration with the Institut d' Optique in Orsay, France. It is divided into three parts. The first and largest part discusses the possibility of using strong standing waves as a tool to cool and trap neutral atoms in optical cavities. This is very important in the field of nonlinear optics where several successful experiments with cold atoms in cavities have been performed recently. A discussion of the optical parametric oscillator in a regime where the nonlinearity dominates the evolution is the topic of the second part. We investigated mainly the statistical properties of the cavity output of the three interactive cavity modes. Very recently a system has been proposed which promises fantastic properties. It should exhibit a giant Kerr nonlinearity with negligible absorption thus leading to a photonic turnstile device based on cold atoms in cavity. We have shown that this model suffers from overly simplistic assumptions and developed several more comprehensive approaches to study the behavior of this system. Apart from the division into three parts of different contents the thesis is divided into publications, supplements and invisible stuff. The intention of the supplements is to reach researchers which work in related areas and provide them with more detailed information about the concepts and the numerical tools we used. It is written especially for diploma and PhD students to give them a chance to use the third part of our work which is actually the largest one. They consist of a large number of computer programs we wrote to investigate the behavior of the systems in parameter regions where no hope exists to solve the equations analytically. (author)

  20. Topics in strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Skoric, M.M.

    1981-01-01

    This thesis discusses certain aspects of the turbulence of a fully ionised non-isothermal plasma dominated by the Langmuir mode. Some of the basic properties of strongly turbulent plasmas are reviewed. In particular, interest is focused on the state of Langmuir turbulence, that is the turbulence of a simple externally unmagnetized plasma. The problem of the existence and dynamics of Langmuir collapse is discussed, often met as a non-linear stage of the modulational instability in the framework of the Zakharov equations (i.e. simple time-averaged dynamical equations). Possible macroscopic consequences of such dynamical turbulent models are investigated. In order to study highly non-linear collapse dynamics in its advanced stage, a set of generalized Zakharov equations are derived. Going beyond the original approximation, the author includes the effects of higher electron non-linearities and a breakdown of slow-timescale quasi-neutrality. He investigates how these corrections may influence the collapse stabilisation. Recently, it has been realised that the modulational instability in a Langmuir plasma will be accompanied by the collisionless-generation of a slow-timescale magnetic field. Accordingly, a novel physical situation has emerged which is investigated in detail. The stability of monochromatic Langmuir waves in a self-magnetized Langmuir plasma, is discussed, and the existence of a novel magneto-modulational instability shown. The wave collapse dynamics is investigated and a physical interpretation of the basic results is given. A problem of the transient analysis of an interaction of time-dependent electromagnetic pulses with linear cold plasma media is investigated. (Auth.)

  1. Promoting Strong Written Communication Skills

    Science.gov (United States)

    Narayanan, M.

    2015-12-01

    The reason that an improvement in the quality of technical writing is still needed in the classroom is due to the fact that universities are facing challenging problems not only on the technological front but also on the socio-economic front. The universities are actively responding to the changes that are taking place in the global consumer marketplace. Obviously, there are numerous benefits of promoting strong written communication skills. They can be summarized into the following six categories. First, and perhaps the most important: The University achieves learner satisfaction. The learner has documented verbally, that the necessary knowledge has been successfully acquired. This results in learner loyalty that in turn will attract more qualified learners.Second, quality communication lowers the cost per pupil, consequently resulting in increased productivity backed by a stronger economic structure and forecast. Third, quality communications help to improve the cash flow and cash reserves of the university. Fourth, having high quality communication enables the university to justify the need for high costs of tuition and fees. Fifth, better quality in written communication skills result in attracting top-quality learners. This will lead to happier and satisfied learners, not to mention greater prosperity for the university as a whole. Sixth, quality written communication skills result in reduced complaints, thus meaning fewer hours spent on answering or correcting the situation. The University faculty and staff are thus able to devote more time on scholarly activities, meaningful research and productive community service. References Boyer, Ernest L. (1990). Scholarship reconsidered: Priorities of the Professorate.Princeton, NJ: Carnegie Foundation for the Advancement of Teaching. Hawkins, P., & Winter, J. (1997). Mastering change: Learning the lessons of the enterprise.London: Department for Education and Employment. Buzzel, Robert D., and Bradley T. Gale. (1987

  2. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique

    DEFF Research Database (Denmark)

    Selsted, Merete Bang; Ambus, Per; Michelsen, Anders

    2011-01-01

    mol−1 to 510 μmol mol−1. All CO2 fluxes were measured by the static chamber methodology. Although the FACE technique enriches the atmosphere with CO2 to a fixed level, the above ground CO2 concentrations may nevertheless locally vary strongly (from about ambient to 1000 μmol mol−1). Deployment...... of static chambers to FACE experiments should therefore be performed with great care in order to ensure reproducible conditions with respect to chamber headspace CO2 concentration. We demonstrate that that the fluxes measured by closed chambers relate linearly to the initial headspace CO2 concentration...... concentration, and the flux also decreased in FACE plots, to 0.79 times that at low concentration. Similar SR in control plots was decreased 0.94 times in control plots and 0.88 times in FACE plots. We found that a useful method to achieve stable and reproducible chamber headspace and soil CO2 concentration...

  3. Estimating the size of the solution space of metabolic networks

    Directory of Open Access Journals (Sweden)

    Mulet Roberto

    2008-05-01

    Full Text Available Abstract Background Cellular metabolism is one of the most investigated system of biological interactions. While the topological nature of individual reactions and pathways in the network is quite well understood there is still a lack of comprehension regarding the global functional behavior of the system. In the last few years flux-balance analysis (FBA has been the most successful and widely used technique for studying metabolism at system level. This method strongly relies on the hypothesis that the organism maximizes an objective function. However only under very specific biological conditions (e.g. maximization of biomass for E. coli in reach nutrient medium the cell seems to obey such optimization law. A more refined analysis not assuming extremization remains an elusive task for large metabolic systems due to algorithmic limitations. Results In this work we propose a novel algorithmic strategy that provides an efficient characterization of the whole set of stable fluxes compatible with the metabolic constraints. Using a technique derived from the fields of statistical physics and information theory we designed a message-passing algorithm to estimate the size of the affine space containing all possible steady-state flux distributions of metabolic networks. The algorithm, based on the well known Bethe approximation, can be used to approximately compute the volume of a non full-dimensional convex polytope in high dimensions. We first compare the accuracy of the predictions with an exact algorithm on small random metabolic networks. We also verify that the predictions of the algorithm match closely those of Monte Carlo based methods in the case of the Red Blood Cell metabolic network. Then we test the effect of gene knock-outs on the size of the solution space in the case of E. coli central metabolism. Finally we analyze the statistical properties of the average fluxes of the reactions in the E. coli metabolic network. Conclusion We propose a

  4. Demand for Neste's City products grows strongly

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Finland's oil, chemicals, and gas company, Neste Corporation, is well on the road to better financial performance after a very difficult year in 1992. Among the factors contributing to this optimism are Neste's pioneering low environmental impact traffic fuels. Neste Corporation's net sales in 1993 rose 9.9 % on 1992 figures to USD 11,011 million. Investments totalled USD 681 million. Profitability also improved during 1993, and the operating margin rose by 57 %, despite the recession affecting the Finnish economy and the instability of the international market. The operational loss for the year before extraordinary items, reserves, and taxes was USD 265 million, one-third less than in 1992. Neste's strategy has been to achieve a strong position in the Baltic Rim region by becoming the quality and cost leader in oil refining, and by expanding Neste's position in its key markets. A total of 3.3 million tonnes of petroleum products were exported from Finland in 1993. Neste's most important export markets were Sweden, Germany, Poland, the Baltic countries, and the St. Petersburg region. Some 20 % of exports went to customers outside Europe. In addition to Finland, Neste has concertedly developed its service station network in Poland and the Baltic countries

  5. Ecosystem-scale VOC fluxes during an extreme drought in a ...

    Science.gov (United States)

    Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegetation and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately represented for accurately modeling the coupled biosphere-atmosphere-climate Earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. We describe the diurnal and seasonal variation in isoprene, monoterpene and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were dominated by isoprene, which attained high emission rates of up to 35.4 mg m-2 h-1 at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which highlights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Nevertheless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, confirming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7-17 h) assimilated carbo

  6. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides

    Science.gov (United States)

    Manohar, S. N.; Meijer, H. A. J.; Herber, M. A.

    2013-12-01

    Naturally occurring radioactive noble gas, radon (222Rn) is a valuable tracer to study atmospheric processes and to validate global chemical transport models. However, the use of radon as a proxy in atmospheric and climate research is limited by the uncertainties in the magnitude and distribution of the radon flux density over the Earth's surface. Terrestrial gamma radiation is a useful proxy for generating radon flux maps. A previously reported radon flux map of Europe used terrestrial gamma radiation extracted from automated radiation monitoring networks. This approach failed to account for the influence of local artificial radiation sources around the detector, leading to under/over estimation of the reported radon flux values at different locations. We present an alternative approach based on soil radionuclides which enables us to generate accurate radon flux maps with good confidence. Firstly, we present a detailed comparison between the terrestrial gamma radiation obtained from the National Radiation Monitoring network of the Netherlands and the terrestrial gamma radiation calculated from soil radionuclides. Extending further, we generated radon flux maps of the Netherlands and Europe using our proposed approach. The modelled flux values for the Netherlands agree reasonably well with the two observed direct radon flux measurements (within 2σ level). On the European scale, we find that the observed radon flux values are higher than our modelled values and we introduce a correction factor to account for this difference. Our approach discussed in this paper enables us to develop reliable and accurate radon flux maps in countries with little or no information on radon flux values.

  7. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil

    NARCIS (Netherlands)

    Rocha, da H.R.; Manzi, A.O.; Cabral, O.M.; Miller, S.D.; Goulden, M.L.; Saleska, S.R.; Coupe, N.R.; Wofsy, S.C.; Borma, L.S.; Artaxo, P.; Vourlitis, G.; Nogueira, J.S.; Cardoso, F.L.; Nobre, A.D.; Kruijt, B.; Freitas, H.C.; Randow, von C.; Aguiar, R.G.; Maia, J.F.

    2009-01-01

    We investigated the seasonal patterns of water vapor and sensible heat flux along a tropical biome gradient from forest to savanna. We analyzed data from a network of flux towers in Brazil that were operated within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). These tower sites

  8. Nitrogen Flux in Watersheds: The Role of Soil Distributions and Climate in Nitrogen Flux to the Coastal Ecosystems

    Science.gov (United States)

    Showers, W. J.; Reyes, M. M.; Genna, B. J.

    2009-12-01

    Quantifying the flux of nitrate from different landscape sources in watersheds is important to understand the increased flux of nitrogen to coastal ecosystems. Recent technological advances in chemical sensor networks has demonstrated that chemical variability in aquatic environments are chronically under-sampled, and that many nutrient monitoring programs with monthly or daily sampling rates are inadequate to characterize the dominate seasonal, daily or semi-diurnal fluxes in watersheds. The RiverNet program has measured the nitrate flux in the Neuse River Basin, NC on a 15 minute interval over the past eight years. Significant diurnal variation has been observed in nitrate concentrations during high and low flow periods associated with waste water treatment plants in urban watersheds that are not present in agricultural watersheds. Discharge and N flux in the basin also has significant inter-annual variations associated with El Nino oscillations modified by the North Atlantic oscillation. Positive JMA and NAO indexes are associated with increased groundwater levels, nutrient fluxes, and estuary fish kills. To understand how climate oscillation affect discharge and nutrient fluxes, we have monitored runoff/drainages and groundwater inputs adjacent to a large waste application field over the past 4 years, and used the nitrate inputs as a tracer. Surface water run off is well correlated to precipitation patterns and is the largest nutrient flux into the river. Groundwater inputs are variable spatially and temporally, and are controlled by geology and groundwater levels. Hydric soil spatial distributions are an excellent predictor of nutrient transport across landscapes, and is related to the distribution of biogeochemical “hotspots” The isotopic composition of oxygen and nitrogen in dissolved nitrate indicate that sources change with discharge state, and that atmospherically deposited nitrogen is only important to river fluxes in forested and urban watersheds

  9. MicrobesFlux: a web platform for drafting metabolic models from the KEGG database

    Directory of Open Access Journals (Sweden)

    Feng Xueyang

    2012-08-01

    Full Text Available Abstract Background Concurrent with the efforts currently underway in mapping microbial genomes using high-throughput sequencing methods, systems biologists are building metabolic models to characterize and predict cell metabolisms. One of the key steps in building a metabolic model is using multiple databases to collect and assemble essential information about genome-annotations and the architecture of the metabolic network for a specific organism. To speed up metabolic model development for a large number of microorganisms, we need a user-friendly platform to construct metabolic networks and to perform constraint-based flux balance analysis based on genome databases and experimental results. Results We have developed a semi-automatic, web-based platform (MicrobesFlux for generating and reconstructing metabolic models for annotated microorganisms. MicrobesFlux is able to automatically download the metabolic network (including enzymatic reactions and metabolites of ~1,200 species from the KEGG database (Kyoto Encyclopedia of Genes and Genomes and then convert it to a metabolic model draft. The platform also provides diverse customized tools, such as gene knockouts and the introduction of heterologous pathways, for users to reconstruct the model network. The reconstructed metabolic network can be formulated to a constraint-based flux model to predict and analyze the carbon fluxes in microbial metabolisms. The simulation results can be exported in the SBML format (The Systems Biology Markup Language. Furthermore, we also demonstrated the platform functionalities by developing an FBA model (including 229 reactions for a recent annotated bioethanol producer, Thermoanaerobacter sp. strain X514, to predict its biomass growth and ethanol production. Conclusion MicrobesFlux is an installation-free and open-source platform that enables biologists without prior programming knowledge to develop metabolic models for annotated microorganisms in the KEGG

  10. Robustness of metabolic networks

    Science.gov (United States)

    Jeong, Hawoong

    2009-03-01

    We investigated the robustness of cellular metabolism by simulating the system-level computational models, and also performed the corresponding experiments to validate our predictions. We address the cellular robustness from the ``metabolite''-framework by using the novel concept of ``flux-sum,'' which is the sum of all incoming or outgoing fluxes (they are the same under the pseudo-steady state assumption). By estimating the changes of the flux-sum under various genetic and environmental perturbations, we were able to clearly decipher the metabolic robustness; the flux-sum around an essential metabolite does not change much under various perturbations. We also identified the list of the metabolites essential to cell survival, and then ``acclimator'' metabolites that can control the cell growth were discovered. Furthermore, this concept of ``metabolite essentiality'' should be useful in developing new metabolic engineering strategies for improved production of various bioproducts and designing new drugs that can fight against multi-antibiotic resistant superbacteria by knocking-down the enzyme activities around an essential metabolite. Finally, we combined a regulatory network with the metabolic network to investigate its effect on dynamic properties of cellular metabolism.

  11. A network of networks.

    Science.gov (United States)

    Iedema, Rick; Verma, Raj; Wutzke, Sonia; Lyons, Nigel; McCaughan, Brian

    2017-04-10

    Purpose To further our insight into the role of networks in health system reform, the purpose of this paper is to investigate how one agency, the NSW Agency for Clinical Innovation (ACI), and the multiple networks and enabling resources that it encompasses, govern, manage and extend the potential of networks for healthcare practice improvement. Design/methodology/approach This is a case study investigation which took place over ten months through the first author's participation in network activities and discussions with the agency's staff about their main objectives, challenges and achievements, and with selected services around the state of New South Wales to understand the agency's implementation and large system transformation activities. Findings The paper demonstrates that ACI accommodates multiple networks whose oversight structures, self-organisation and systems change approaches combined in dynamic ways, effectively yield a diversity of network governances. Further, ACI bears out a paradox of "centralised decentralisation", co-locating agents of innovation with networks of implementation and evaluation expertise. This arrangement strengthens and legitimates the role of the strategic hybrid - the healthcare professional in pursuit of change and improvement, and enhances their influence and impact on the wider system. Research limitations/implications While focussing the case study on one agency only, this study is unique as it highlights inter-network connections. Contributing to the literature on network governance, this paper identifies ACI as a "network of networks" through which resources, expectations and stakeholder dynamics are dynamically and flexibly mediated and enhanced. Practical implications The co-location of and dynamic interaction among clinical networks may create synergies among networks, nurture "strategic hybrids", and enhance the impact of network activities on health system reform. Social implications Network governance requires more

  12. Controls on fluxes of trace gases from Brazilian cerrado soils

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I.C. [Coll. of William and Mary, Gloucester Point, VA (United States). Virginia Inst. of Marine Science; Poth, M.A. [Dept. of Agriculture, Riverside, CA (United States)

    1998-09-01

    Tropical ecosystems play an important role in production or consumption of atmospheric trace gases including nitric oxide (NO), nitrous oxide (N{sub 2}O), carbon dioxide (CO{sub 2}), and methane (CH{sub 4}). Here the authors describe field and laboratory experiments, performed during 1994, to determine the influence of fire on processes responsible for fluxes of gases from cerrado sites burned 17 and 45 d earlier, and a control site, last burned in 1974. Burning stimulated gross N mineralization but depressed nitrification rates; however, rates were sufficient to support NO fluxes observed in a 1992 study at the same site. Extractable nutrients and fluxes of NO and N{sub 2}O from wetted and dry soils were measured prior to and for a 3-d period following burning. Over this period NO{sub 2}{sup {minus}} declined to undetectable levels; NH{sub 4}{sup +} increased, and NO fluxes remained relatively constant, suggesting that nitrifiers replaced the NO{sub 2}{sup {minus}} reduced to NO. Soils at burned and unburned sites exhibited CH{sub 4} uptake, which was inhibited by CH{sub 3}F, thereby converting soils from a strong sink to a weak source of CH{sub 4}. Carbon dioxide fluxes did not increase, and there were no detectable fluxes of N{sub 2}O following burning. In lab studies NO and N{sub 2}O emissions were inhibited by autoclaving, suggesting that nitrification was key to their production. However, addition of NO{sub 2}{sup {minus}} to autoclaved soil resulted in large fluxes of NO but no detectable N{sub 2}O, suggesting that chemodenitrification may have been responsible for NO but not N{sub 2}O production. Further research is needed to determine whether NO is produced directly by nitrifier NO{sub 2}{sup {minus}} reduction or indirectly by chemodenitrification of NO{sub 2}{sup {minus}} produced by nitrifiers.

  13. The structure of flux transfer events recovered from Cluster data

    Directory of Open Access Journals (Sweden)

    H. Hasegawa

    2006-03-01

    Full Text Available The structure and formation mechanism of a total of five Flux Transfer Events (FTEs, encountered on the equatorward side of the northern cusp by the Cluster spacecraft, with separation of ~5000 km, are studied by applying the Grad-Shafranov (GS reconstruction technique to the events. The technique generates a magnetic field/plasma map of the FTE cross section, using combined magnetic field and plasma data from all four spacecraft, under the assumption that the structure is two-dimensional (2-D and time-independent. The reconstructed FTEs consist of one or more magnetic flux ropes embedded in the magnetopause, suggesting that multiple X-line reconnection was involved in generating the observed FTEs. The dimension of the flux ropes in the direction normal to the magnetopause ranges from about 2000 km to more than 1 RE. The orientation of the flux rope axis can be determined through optimization of the GS map, the result being consistent with those from various single-spacecraft methods. Thanks to this, the unambiguous presence of a strong core field is confirmed, providing evidence for component merging. The amount of magnetic flux contained within each flux rope is calculated from the map and, by dividing it by the time interval between the preceding FTE and the one reconstructed, a lower limit of the reconnection electric field during the creation of the flux rope can be estimated; the estimated value ranges from ~0.11 to ~0.26 mV m-1, with an average of 0.19 mV m-1. This can be translated to the reconnection rate of 0.038 to 0.074, with an average of 0.056. Based on the success of the 2-D model in recovering the observed FTEs, the length of the X-lines is estimated to be at least a few RE.

  14. Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea

    Science.gov (United States)

    Leifer, Ira; Chernykh, Denis; Shakhova, Natalia; Semiletov, Igor

    2017-06-01

    Sonar surveys provide an effective mechanism for mapping seabed methane flux emissions, with Arctic submerged permafrost seepage having great potential to significantly affect climate. We created in situ engineered bubble plumes from 40 m depth with fluxes spanning 0.019 to 1.1 L s-1 to derive the in situ calibration curve (Q(σ)). These nonlinear curves related flux (Q) to sonar return (σ) for a multibeam echosounder (MBES) and a single-beam echosounder (SBES) for a range of depths. The analysis demonstrated significant multiple bubble acoustic scattering - precluding the use of a theoretical approach to derive Q(σ) from the product of the bubble σ(r) and the bubble size distribution where r is bubble radius. The bubble plume σ occurrence probability distribution function (Ψ(σ)) with respect to Q found Ψ(σ) for weak σ well described by a power law that likely correlated with small-bubble dispersion and was strongly depth dependent. Ψ(σ) for strong σ was largely depth independent, consistent with bubble plume behavior where large bubbles in a plume remain in a focused core. Ψ(σ) was bimodal for all but the weakest plumes. Q(σ) was applied to sonar observations of natural arctic Laptev Sea seepage after accounting for volumetric change with numerical bubble plume simulations. Simulations addressed different depths and gases between calibration and seep plumes. Total mass fluxes (Qm) were 5.56, 42.73, and 4.88 mmol s-1 for MBES data with good to reasonable agreement (4-37 %) between the SBES and MBES systems. The seepage flux occurrence probability distribution function (Ψ(Q)) was bimodal, with weak Ψ(Q) in each seep area well described by a power law, suggesting primarily minor bubble plumes. The seepage-mapped spatial patterns suggested subsurface geologic control attributing methane fluxes to the current state of subsea permafrost.

  15. <strong>ORGANIC AGRICULTURE FOR IMPROVEDFOOD SECURITY IN AFRICAstrong>

    DEFF Research Database (Denmark)

    Vaarst, Mette; Ssekyewa, Charles; Halberg, Niels

    Organic farming offers a way to increase productivity, and improve food security and livelihood for African smallholder farmers, given that agro-ecological methods are properly and appropriately implemented, and that trade, consumption patterns and policies enable a fair development of food systems...... of this report were discussed and the experience among the approx. 150 participants from throughout Africa strongly supported the conclusions. The following points were highlighted: - Organic farming should be used as a strategy for community development and a sustainable food system for improved family food...... security. - Organic farming and management is very knowledge intensive, and education as well as access to knowledge is crucial. Many small-scale farmers are illiterate. Capacity building as a social process which support the local communities and create valuable networks. - Gender issues must be addressed...

  16. Joint statistics of strongly correlated neurons via dimensionality reduction

    Science.gov (United States)

    Deniz, Taşkın; Rotter, Stefan

    2017-06-01

    The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input.

  17. Black branes in flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Torroba, Gonzalo; Wang, Huajia

    2013-10-01

    We construct charged black branes in type IIA flux compactifications that are dual to (2 + 1)-dimensional field theories at finite density. The internal space is a general Calabi-Yau manifold with fluxes, with internal dimensions much smaller than the AdS radius. Gauge fields descend from the 3-form RR potential evaluated on harmonic forms of the Calabi-Yau, and Kaluza-Klein modes decouple. Black branes are described by a four-dimensional effective field theory that includes only a few light fields and is valid over a parametrically large range of scales. This effective theory determines the low energy dynamics, stability and thermodynamic properties. Tools from flux compactifications are also used to construct holographic CFTs with no relevant scalar operators, that can lead to symmetric phases of condensed matter systems stable to very low temperatures. The general formalism is illustrated with simple examples such as toroidal compactifications and manifolds with a single size modulus. We initiate the classification of holographic phases of matter described by flux compactifications, which include generalized Reissner-Nordstrom branes, nonsupersymmetric AdS2×R2 and hyperscaling violating solutions.

  18. High flux compact neutron generators

    International Nuclear Information System (INIS)

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-01-01

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of ∼10 11 n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation

  19. Quantifying advective and nonstationary effects on eddy fluxes in the AmeriFlux network

    Energy Technology Data Exchange (ETDEWEB)

    Fitzjarrald, David R

    2012-12-19

    Our goal was to study the flows within and above of a forested area and assess the degree to which horizontal subcanopy motions transport significant amounts of CO2. This process can explain why ecosystem respiration appears to be underestimated on calm nights. It is essential to understand the physical and biological mechanisms that determine relevant processes that occur on these suspect nights.

  20. Evidence of Vortex Jamming in Abrikosov Vortex Flux Flow Regime

    OpenAIRE

    Karapetrov, G.; Yefremenko, V.; Mihajlović, G.; Pearson, J. E.; Iavarone, M.; Novosad, V.; Bader, S. D.

    2012-01-01

    We report on dynamics of non-local Abrikosov vortex flow in mesoscopic superconducting Nb channels. Magnetic field dependence of the non-local voltage induced by the flux flow shows that vortices form ordered vortex chains. Voltage asymmetry (rectification) with respect to the direction of vortex flow is evidence that vortex jamming strongly moderates vortex dynamics in mesoscopic geometries. The findings can be applied to superconducting devices exploiting vortex dynamics and vortex manipula...

  1. Determination of epithermal flux correction factor (α) for irradiation ...

    African Journals Online (AJOL)

    Due to resonance that occur in the epithermal energy region of a reactor, the flux spectra in that region deviates strongly from the ideal I/E law to a I/E1+α with alpha as the correction factor. The factor has to be determined if zirconium as monitor pairs to determine the correction factor for inner irradiation channel 5 and outer ...

  2. Elucidating Carbon Exchange at the Regional Scale Via Airborne Eddy Covariance Flux Measurements

    Science.gov (United States)

    Hannun, R. A.; Wolfe, G. M.; Kawa, S. R.; Newman, P. A.; Hanisco, T. F.; Diskin, G. S.; DiGangi, J. P.; Nowak, J. B.; Barrick, J. D. W.; Thornhill, K. L., II; Noormets, A.; Vargas, R.; Clark, K. L.; Kustas, W. P.

    2017-12-01

    Direct flux observations from aircraft provide a unique tool for probing greenhouse gas (GHG) sources and sinks on a regional scale. Airborne eddy covariance, which relies on high-frequency, simultaneous measurements of fluctuations in concentration and vertical wind speed, is a robust method for quantifying surface-atmosphere exchange. We have assembled and flown an instrument payload onboard the NASA C-23 Sherpa aircraft capable of measuring CO2, CH4, H2O, and heat fluxes. Flights for the Carbon Airborne Flux Experiment (CARAFE) took place during September 2016 and May 2017 based out of Wallops Flight Facility, VA. Flight tracks covered a variety of ecosystems and land-use types in the Mid-Atlantic, including forests, croplands, and wetlands. Carbon fluxes are derived using eddy covariance and wavelet analysis. Our results show a strong drawdown of CO2 and near-zero CH4 emissions from crops and dry-land forest, but seasonally strong CH4 flux from wetland forest. CARAFE flux data will also be compared with observations from several flux towers along the flight path to complement the airborne measurements. We will further assess the effects of land surface type and seasonal variability in carbon exchange. Regional-scale flux observations from CARAFE supply a useful constraint for improving top-down and bottom up estimates of carbon sources and sinks.

  3. CARBO-CONTROLE. Quantification of the carbon flux and stocks at the european and national scale

    International Nuclear Information System (INIS)

    Ciais, P.

    2007-01-01

    The CARBO-CONTROLE project aims to evaluate the different methodologies to estimate the CO 2 flux at the european, national and regional scale. The strategy is to combine a crumbling, down scaling, of the flux at a big scale, by inverting the atmospheric CO 2 measures with a aggregation, up scaling, of the national stocks and flux from the climatic parameters of a model of ecosystems.They show that with the monthly data of the global network of CO 2 monitoring stations, it is possible to obtain an estimation of the european flux. Meanwhile the errors bond to the leak of continental stations are of the order of the flux average. (A.L.B.)

  4. Flux flow, pinning, and resistive behavior in superconducting networks

    International Nuclear Information System (INIS)

    Teitel, S.

    1993-10-01

    We have studied the behavior of fluctuation effects in superconducting systems using numerical simulations of XY and Coulomb gas models. The fluctuation of vortex lines in high temperature superconductors, in the presence of an external magnetic field, has been studied using a three dimensional XY model. We have continued earlier work and verified the existence of two distinct phase transitions in this model. As the vortex line lattice is heated, it melts first into a line liquid where superconductivity is destroyed for currents perpendicular to the applied magnetic field, but persists for currents parallel to the field. As heating continues, the thermal excitation of closed vortex line loops links all the lines together, leading to completely normal metal properties in all directions. Upon cooling of the vortex line liquid, we find that as the system width increases, one can get trapped into an entangled non-equilibrium state in which vortex line cuttings are frozen out on measurable nine scales. We have also continued simulations of the two dimensional Coulomb gas, as a model for vortex fluctuations in two dimensional arrays of Josephson junctions, and thin film superconductors. Our preliminary results support the accepted view of a Kosterlitz-Thouless melting of the vortex lattice, in the limit of a uniform continous film

  5. Hydrologic behavior of fracture networks

    International Nuclear Information System (INIS)

    Long, J.C.S.; Endo, H.K.; Karasaki, K.; Pyrak, L.; MacLean, P.; Witherspoon, P.A.

    1984-10-01

    This paper reviews recent research on the nature of flow and transport in discontinuous fracture networks. The hydrologic behavior of these networks has been examined using two- and three-dimensional numerical models. The numerical models represent random realizations of fracture networks based on statistical field measurements of fracture geometry and equivalent hydraulic aperture. We have compared the flux and mechanical transport behavior of these networks to the behavior of equivalent continua. In this way we are able to determine whether a given fracture network can be modeled as an equivalent porous media in both flux and advective transport studies. We have examined departures from porous media behavior both as a function of interconnectivity and heterogeneity. Parameter studies have revealed behavior patterns such as: given a fracture frequency that can be measured in the field, porous media like behavior and the magnitude of permeability are both enhanced if the fractures are longer and the standard deviation of fracture permeabilities is smaller. Transport studies have shown that the ratio between flux and velocity is not necessarily constant when the direction of flow is changed in systems which do behave like a porous media for flux. Thus the conditions under which porous media analysis can be used in transport studies are more restrictive than the condition for flux studies. We have examined systems which do not behave like porous media and have shown how the in situ behavior varies as a function of scale of observation. The behavior of well tests in fractured networks has been modeled and compared to a new analytical well test solution which accounts for the early time dominance of the fractures intersecting the well. Finally, a three-dimensional fracture flow model has been constructed which assumes fractures are randomly located discs. 13 references, 12 figures

  6. Solar cycle distribution of strong solar proton events and the related solar-terrestrial phenomena

    Science.gov (United States)

    Le, Guiming; Yang, Xingxing; Ding, Liuguang; Liu, Yonghua; Lu, Yangping; Chen, Minhao

    2014-08-01

    We investigated the solar cycle distribution of strong solar proton events (SPEs, peak flux ≥1000 pfu) and the solar-terrestrial phenomena associated with the strong SPEs during solar cycles 21-23. The results show that 37 strong SPEs were registered over this period of time, where 20 strong SPEs were originated from the super active regions (SARs) and 28 strong SPEs were accompanied by the X-class flares. Most strong SPEs were not associated with the ground level enhancement (GLE) event. Most strong SPEs occurred in the descending phases of the solar cycles. The weaker the solar cycle, the higher the proportion of strong SPES occurred in the descending phase of the cycle. The number of the strong SPEs that occurred within a solar cycle is poorly associated with the solar cycle size. The intensity of the SPEs is highly dependent of the location of their source regions, with the super SPEs (≥20000 pfu) distributed around solar disk center. A super SPE was always accompanied by a fast shock driven by the associated coronal mass ejection and a great geomagnetic storm. The source location of strongest GLE event is distributed in the well-connected region. The SPEs associated with super GLE events (peak increase rate ≥100%) which have their peak flux much lower than 10000 pfu were not accompanied by an intense geomagnetic storm.

  7. Seasonal changes and biochemical composition of the labile organic matter flux in the Cretan Sea

    Science.gov (United States)

    Danovaro, Roberto; Della Croce, Norberto; Dell'Anno, Antonio; Mauro Fabiano; Marrale, Daniela; Martorano, Daniela

    2000-08-01

    Downward fluxes of labile organic matter (lipids, proteins and carbohydrates) at 200 (trap A) and 1515 m depth (trap B), measured during a 12 months sediment trap experiment, are presented, together with estimates of the bacterial and cyanobacterial biomasses associated to the particles. The biochemical composition of the settling particles was determined in order to provide qualitative and quantitative information on the flux of readily available organic carbon supplying the deep-sea benthic communities of the Cretan Sea. Total mass flux and labile carbon fluxes were characterised by a clear seasonality. Higher labile organic fluxes were reported in trap B, indicating the presence of resuspended particles coming from lateral inputs. Particulate carbohydrates were the major component of the flux of labile compounds (on annual average about 66% of the total labile organic flux) followed by lipids (20%) and proteins (13%). The biopolymeric carbon flux was very low (on annual average 0.9 and 1.2 gC m -2 y -1, at trap A and B). Labile carbon accounted for most of the OC flux (on annual average 84% and 74% in trap A and B respectively). In trap A, highest carbohydrate and protein fluxes in April and September, corresponded to high faecal pellet fluxes. The qualitative composition of the organic fluxes indicated a strong protein depletion in trap B and a decrease of the bioavailability of the settling particles as a result of a higher degree of dilution with inorganic material. Quantity and quality of the food supply to the benthos displayed different temporal patterns. Bacterial biomass in the sediment traps (on average 122 and 229 μgC m -2 d -1 in trap A and B, respectively) was significantly correlated to the flux of labile organic carbon, and particularly to the protein and carbohydrate fluxes. Cyanobacterial flux (on average, 1.1 and 0.4 μgC m -2 d -1, in trap A and B, respectively) was significantly correlated with total mass and protein fluxes only in trap A

  8. Flavour mixings in flux compactifications

    International Nuclear Information System (INIS)

    Buchmuller, Wilfried; Schweizer, Julian

    2017-01-01

    A multiplicity of quark-lepton families can naturally arise as zero-modes in flux compactifications. The flavour structure of quark and lepton mass matrices is then determined by the wave function profiles of the zero-modes. We consider a supersymmetric SO(10) x U(1) model in six dimensions compactified on the orbifold T 2 =Z 2 with Abelian magnetic flux. A bulk 16-plet charged under the U(1) provides the quark-lepton generations whereas two uncharged 10-plets yield two Higgs doublets. Bulk anomaly cancellation requires the presence of additional 16- and 10-plets. The corresponding zero-modes form vectorlike split multiplets that are needed to obtain a successful flavour phenomenology. We analyze the pattern of flavour mixings for the two heaviest families of the Standard Model and discuss possible generalizations to three and more generations.

  9. Flux through a Markov chain

    International Nuclear Information System (INIS)

    Floriani, Elena; Lima, Ricardo; Ourrad, Ouerdia; Spinelli, Lionel

    2016-01-01

    Highlights: • The flux through a Markov chain of a conserved quantity (mass) is studied. • Mass is supplied by an external source and ends in the absorbing states of the chain. • Meaningful for modeling open systems whose dynamics has a Markov property. • The analytical expression of mass distribution is given for a constant source. • The expression of mass distribution is given for periodic or random sources. - Abstract: In this paper we study the flux through a finite Markov chain of a quantity, that we will call mass, which moves through the states of the chain according to the Markov transition probabilities. Mass is supplied by an external source and accumulates in the absorbing states of the chain. We believe that studying how this conserved quantity evolves through the transient (non-absorbing) states of the chain could be useful for the modelization of open systems whose dynamics has a Markov property.

  10. Superconducting flux flow digital circuits

    International Nuclear Information System (INIS)

    Martens, J.S.; Zipperian, T.E.; Hietala, V.M.; Ginley, D.S.; Tigges, C.P.; Phillips, J.M.; Siegal, M.P.

    1993-01-01

    The authors have developed a family of digital logic circuits based on superconducting flux flow transistors that show high speed, reasonable signal levels, large fan-out, and large noise margins. The circuits are made from high-temperature superconductors (HTS) and have been shown to operate at over 90 K. NOR gates have been demonstrated with fan-outs of more than 5 and fully loaded switching times less than a fixture-limited 50 ps. Ring-oscillator data suggest inverter delay times of about 40ps when using a 3-μm linewidths. Simple flip-flops have also been demonstrated showing large noise margins, response times of less than 30 ps, and static power dissipation on the order of 30 nW. Among other uses, this logic family is appropriate as an interface between logic families such as single flux quantum and conventional semiconductor logic

  11. Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

    Directory of Open Access Journals (Sweden)

    A. Fraser

    2013-06-01

    Full Text Available We use an ensemble Kalman filter (EnKF, together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4 fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4 from GOSAT (Greenhouse gases Observing SATellite and/or NOAA ESRL (Earth System Research Laboratory and CSIRO GASLAB (Global Atmospheric Sampling Laboratory CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr−1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr−1. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr−1 occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45% than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2 and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our

  12. Nonequilibrium landscape theory of neural networks

    Science.gov (United States)

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-01-01

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451

  13. Accounting for representativeness errors in the inversion of atmospheric constituent emissions: application to the retrieval of regional carbon monoxide fluxes

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Koohkan

    2012-07-01

    Full Text Available A four-dimensional variational data assimilation system (4D-Var is developed to retrieve carbon monoxide (CO fluxes at regional scale, using an air quality network. The air quality stations that monitor CO are proximity stations located close to industrial, urban or traffic sources. The mismatch between the coarsely discretised Eulerian transport model and the observations, inferred to be mainly due to representativeness errors in this context, lead to a bias (average simulated concentrations minus observed concentrations of the same order of magnitude as the concentrations. 4D-Var leads to a mild improvement in the bias because it does not adequately handle the representativeness issue. For this reason, a simple statistical subgrid model is introduced and is coupled to 4D-Var. In addition to CO fluxes, the optimisation seeks to jointly retrieve influence coefficients, which quantify each station's representativeness. The method leads to a much better representation of the CO concentration variability, with a significant improvement of statistical indicators. The resulting increase in the total inventory estimate is close to the one obtained from remote sensing data assimilation. This methodology and experiments suggest that information useful at coarse scales can be better extracted from atmospheric constituent observations strongly impacted by representativeness errors.

  14. Surface fluxes in heterogeneous landscape

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C.

    1997-01-01

    The surface fluxes in homogeneous landscapes are calculated by similarity scaling principles. The methodology is well establish. In heterogeneous landscapes with spatial changes in the micro scale range, i e from 100 m to 10 km, advective effects are significant. The present work focus on these effects in an agricultural countryside typical for the midlatitudes. Meteorological and satellite data from a highly heterogeneous landscape in the Rhine Valley, Germany was collected in the large-scale field experiment TRACT (Transport of pollutants over complex terrain) in 1992. Classified satellite images, Landsat TM and ERS SAR, are used as basis for roughness maps. The roughnesses were measured at meteorological masts in the various cover classes and assigned pixel by pixel to the images. The roughness maps are aggregated, i e spatially averaged, into so-called effective roughness lengths. This calculation is performed by a micro scale aggregation model. The model solves the linearized atmospheric flow equations by a numerical (Fast Fourier Transform) method. This model also calculate maps of friction velocity and momentum flux pixel wise in heterogeneous landscapes. It is indicated how the aggregation methodology can be used to calculate the heat fluxes based on the relevant satellite data i e temperature and soil moisture information. (au) 10 tabs., 49 ills., 223 refs.

  15. Neutron flux control systems validation

    International Nuclear Information System (INIS)

    Hascik, R.

    2003-01-01

    In nuclear installations main requirement is to obtain corresponding nuclear safety in all operation conditions. From the nuclear safety point of view is commissioning and start-up after reactor refuelling appropriate period for safety systems verification. In this paper, methodology, performance and results of neutron flux measurements systems validation is presented. Standard neutron flux measuring chains incorporated into the reactor protection and control system are used. Standard neutron flux measuring chain contains detector, preamplifier, wiring to data acquisition unit, data acquisition unit, wiring to display at control room and display at control room. During reactor outage only data acquisition unit and wiring and displaying at reactor control room is verified. It is impossible to verify detector, preamplifier and wiring to data acquisition recording unit during reactor refuelling according to low power. Adjustment and accurate functionality of these chains is confirmed by start-up rate (SUR) measurement during start-up tests after refuelling of the reactors. This measurement has direct impact to nuclear safety and increase operational nuclear safety level. Briefly description of each measuring system is given. Results are illustrated on measurements performed at Bohunice NPP during reactor start-up tests. Main failures and their elimination are described (Authors)

  16. Determination of Energy Fluxes Over Agricultural Surfaces

    Directory of Open Access Journals (Sweden)

    Josefina Argete

    1994-12-01

    Full Text Available An energy budget was conducted over two kinds if surfaces: grass and corn canopy. The net radiative flux and the soil heat flux were directly measured while the latent and sensible heat flux were calculated from the vertical profiles if wet and dry-bulb temperature and wind speed. The crop storage flux was also estimated. Using the gradient or aerodynamic equations, the calculated fluxes when compared to the measured fluxes in the context of an energy budget gave an SEE = 63 Wm-2 over grass and SEE = 81 Wm-2 over corn canopy. The calculated fluxes compared reasonably well with those obtained using the Penman equations.For an energy budget research with limited instrumentation, the aerodynamic method performed satisfactorily in estimating the daytime fluxes, when atmospheric conditions are fully convective, but failed when conditions were stably stratified as during nighttime.

  17. New challenges and opportunities in the eddy-covariance methodology for long-term monitoring networks

    Science.gov (United States)

    Papale, Dario; Fratini, Gerardo

    2013-04-01

    Eddy-covariance is the most direct and most commonly applied methodology for measuring exchange fluxes of mass and energy between ecosystems and the atmosphere. In recent years, the number of environmental monitoring stations deploying eddy-covariance systems increased dramatically at the global level, exceeding 500 sites worldwide and covering most climatic and ecological regions. Several long-term environmental research infrastructures such as ICOS, NEON and AmeriFlux selected the eddy-covariance as a method to monitor GHG fluxes and are currently collaboratively working towards defining common measurements standards, data processing approaches, QA/QC procedures and uncertainty estimation strategies, to the aim of increasing defensibility of resulting fluxes and intra and inter-comparability of flux databases. In the meanwhile, the eddy-covariance research community keeps identifying technical and methodological flaws that, in some cases, can introduce - and can have introduced to date - significant biases in measured fluxes or increase their uncertainty. Among those, we identify three issues of presumably greater concern, namely: (1) strong underestimation of water vapour fluxes in closed-path systems, and its dependency on relative humidity; (2) flux biases induced by erroneous measurement of absolute gas concentrations; (3) and systematic errors due to underestimation of vertical wind variance in non-orthogonal anemometers. If not properly addressed, these issues can reduce the quality and reliability of the method, especially as a standard methodology in long-term monitoring networks. In this work, we review the status of the art regarding such problems, and propose new evidences based on field experiments as well as numerical simulations. Our analyses confirm the potential relevance of these issues but also hint at possible coping approaches, to minimize problems during setup design, data collection and post-field flux correction. Corrections are under

  18. Sigmoidal equilibria and eruptive instabilities in laboratory magnetic flux ropes

    Science.gov (United States)

    Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.

    2013-12-01

    The Magnetic Reconnection Experiment (MRX) has recently been modified to study quasi-statically driven line-tied magnetic flux ropes in the context of storage-and-release eruptions in the corona. Detailed in situ magnetic measurements and supporting MHD simulations permit quantitative analysis of the plasma behavior. We find that the behavior of these flux ropes depends strongly on the properties of the applied potential magnetic field arcade. For example, when the arcade is aligned parallel to the flux rope footpoints, force free currents induced in the expanding rope modify the pressure and tension in the arcade, resulting in a confined, quiescent discharge with a saturated kink instability. When the arcade is obliquely aligned to the footpoints, on the other hand, a highly sigmoidal equilibrium forms that can dynamically erupt (see Fig. 1 and Fig. 2). To our knowledge, these storage-and-release eruptions are the first of their kind to be produced in the laboratory. A new 2D magnetic probe array is used to map out the internal structure of the flux ropes during both the storage and the release phases of the discharge. The kink instability and the torus instability are studied as candidate eruptive mechanisms--the latter by varying the vertical gradient of the potential field arcade. We also investigate magnetic reconnection events that accompany the eruptions. The long-term objective of this work is to use internal magnetic measurements of the flux rope structure to better understand the evolution and eruption of comparable structures in the corona. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the Center for Magnetic Self-Organization (CMSO). Qualitative sketches of flux ropes formed in (1) a parallel potential field arcade; and (2) an oblique potential field arcade. One-dimensional magnetic measurements from (1) a parallel arcade discharge that is confined; and (2) an oblique arcade discharge that erupts.

  19. Freshwater flux to Sermilik Fjord, SE Greenland

    Directory of Open Access Journals (Sweden)

    S. H. Mernild

    2010-10-01

    Full Text Available Terrestrial inputs of freshwater flux to Sermilik Fjord, SE Greenland, were estimated, indicating ice discharge to be the dominant source of freshwater. A freshwater flux of 40.4 ± 4.9×109 m3 y−1 was found (1999–2008, with an 85% contribution originated from ice discharge (65% alone from Helheim Glacier, 11% from terrestrial surface runoff (from melt water and rain, 3% from precipitation at the fjord surface area, and 1% from subglacial geothermal and frictional melting due to basal ice motion. The results demonstrate the dominance of ice discharge as a primary mechanism for delivering freshwater to Sermilik Fjord. Time series of ice discharge for Helheim Glacier, Midgård Glacier, and Fenris Glacier were calculated from satellite-derived average surface velocity, glacier width, and estimated ice thickness, and fluctuations in terrestrial surface freshwater runoff were simulated based on observed meteorological data. These simulations were compared and bias corrected against independent glacier catchment runoff observations. Modeled runoff to Sermilik Fjord was variable, ranging from 2.9 ± 0.4×109 m3 y−1 in 1999 to 5.9 ± 0.9×109 m3 y−1 in 2005. The sub-catchment runoff of the Helheim Glacier region accounted for 25% of the total runoff to Sermilik Fjord. The runoff distribution from the different sub-catchments suggested a strong influence from the spatial variation in glacier coverage, indicating high runoff volumes, where glacier cover was present at low elevations.

  20. Verification of Monte Carlo calculations of the neutron flux in typical irradiation channels of the TRIGA reactor, Ljubljana

    NARCIS (Netherlands)

    Jacimovic, R; Maucec, M; Trkov, A

    2003-01-01

    An experimental verification of Monte Carlo neutron flux calculations in typical irradiation channels in the TRIGA Mark II reactor at the Jozef Stefan Institute is presented. It was found that the flux, as well as its spectral characteristics, depends rather strongly on the position of the

  1. Numerical Simulations of a Flux Rope Ejection

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. One of the most successful models to explain CMEs is the flux rope ejection model, where a magnetic flux rope is expelled from the solar corona after a long phase along which the flux rope stays in equilibrium while ...

  2. Surface fluxes over natural landscapes using scintillometry

    NARCIS (Netherlands)

    Meijninger, W.M.L.

    2003-01-01

    Motivated by the demand for reliable area-averaged fluxes associated with natural landscapes this thesis investigates a relative new measurement technique known as the scintillation method. For homogeneous areas the surface fluxes can be derived with reasonable accuracy. However, fluxes

  3. Models of Flux Tubes from Constrained Relaxation

    Indian Academy of Sciences (India)

    tribpo

    Equilibria corresponding to the energy extrema while conserving these invariants for parallel flows yield three classes of ... parallel heat flux, due to the boundary condition Β · n = 0, that the total energy, is conserved. In all HR, K, S, and the total mass, ... Zero net current flux tubes are qualitatively similar to the flux tube with ...

  4. Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution

    Science.gov (United States)

    Owens, Mathew J.; Imber, Suzanne M.; James, Matthew K.; Bunce, Emma J.; Yeoman, Timothy K.

    2017-01-01

    Abstract Solar cycle 24 is notable for three features that can be found in previous cycles but which have been unusually prominent: (1) sunspot activity was considerably greater in the northern/southern hemisphere during the rising/declining phase; (2) accumulation of open solar flux (OSF) during the rising phase was modest, but rapid in the early declining phase; (3) the heliospheric current sheet (HCS) tilt showed large fluctuations. We show that these features had a major influence on the progression of the cycle. All flux emergence causes a rise then a fall in OSF, but only OSF with foot points in opposing hemispheres progresses the solar cycle via the evolution of the polar fields. Emergence in one hemisphere, or symmetric emergence without some form of foot point exchange across the heliographic equator, causes poleward migrating fields of both polarities in one or both (respectively) hemispheres which temporarily enhance OSF but do not advance the polar field cycle. The heliospheric field observed near Mercury and Earth reflects the asymmetries in emergence. Using magnetograms, we find evidence that the poleward magnetic flux transport (of both polarities) is modulated by the HCS tilt, revealing an effect on OSF loss rate. The declining phase rise in OSF was caused by strong emergence in the southern hemisphere with an anomalously low HCS tilt. This implies the recent fall in the southern polar field will be sustained and that the peak OSF has limited implications for the polar field at the next sunspot minimum and hence for the amplitude of cycle 25. PMID:28781930

  5. Atoms and clusters in strong laser fields

    NARCIS (Netherlands)

    Marchenko, T.

    2008-01-01

    This thesis describes experimental and theoretical studies on the interaction of strong infrared laser fields with atoms and atomic clusters. Part I provides an overview of the main strong-field phenomena in atoms, molecules and clusters and describes the state-of-the-art in strong-field science.

  6. Strong Bisimilarity of Simple Process Algebras

    DEFF Research Database (Denmark)

    Srba, Jirí

    2003-01-01

    We study bisimilarity and regularity problems of simple process algebras. In particular, we show PSPACE-hardness of the following problems: (i) strong bisimilarity of Basic Parallel Processes (BPP), (ii) strong bisimilarity of Basic Process Algebra (BPA), (iii) strong regularity of BPP, and (iv) ...

  7. 78 FR 15710 - Strong Sensitizer Guidance

    Science.gov (United States)

    2013-03-12

    ... definition of ``strong sensitizer'' found at 16 CFR 1500.3(c)(5). The Commission is proposing to revise the supplemental definition of ``strong sensitizer'' due to advancements in the science of sensitization that have... document is intended to clarify the ``strong sensitizer'' definition, assist manufacturers in understanding...

  8. WUFlux: an open-source platform for 13C metabolic flux analysis of bacterial metabolism.

    Science.gov (United States)

    He, Lian; Wu, Stephen G; Zhang, Muhan; Chen, Yixin; Tang, Yinjie J

    2016-11-04

    Flux analyses, including flux balance analysis (FBA) and 13 C-metabolic flux analysis ( 13 C-MFA), offer direct insights into cell metabolism, and have been widely used to characterize model and non-model microbial species. Nonetheless, constructing the 13 C-MFA model and performing flux calculation are demanding for new learners, because they require knowledge of metabolic networks, carbon transitions, and computer programming. To facilitate and standardize the 13 C-MFA modeling work, we set out to publish a user-friendly and programming-free platform (WUFlux) for flux calculations in MATLAB ® . We constructed an open-source platform for steady-state 13 C-MFA. Using GUIDE (graphical user interface design environment) in MATLAB, we built a user interface that allows users to modify models based on their own experimental conditions. WUFlux is capable of directly correcting mass spectrum data of TBDMS (N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide)-derivatized proteinogenic amino acids by removing background noise. To simplify 13 C-MFA of different prokaryotic species, the software provides several metabolic network templates, including those for chemoheterotrophic bacteria and mixotrophic cyanobacteria. Users can modify the network and constraints, and then analyze the microbial carbon and energy metabolisms of various carbon substrates (e.g., glucose, pyruvate/lactate, acetate, xylose, and glycerol). WUFlux also offers several ways of visualizing the flux results with respect to the constructed network. To validate our model's applicability, we have compared and discussed the flux results obtained from WUFlux and other MFA software. We have also illustrated how model constraints of cofactor and ATP balances influence fluxome results. Open-source software for 13 C-MFA, WUFlux, with a user-friendly interface and easy-to-modify templates, is now available at http://www.13cmfa.org /or ( http://tang.eece.wustl.edu/ToolDevelopment.htm ). We will continue

  9. Comparison of eddy covariance and modified Bowen ratio methods for measuring gas fluxes and implications for measuring fluxes of persistent organic pollutants

    Directory of Open Access Journals (Sweden)

    D. J. Bolinius

    2016-04-01

    Full Text Available Semi-volatile persistent organic pollutants (POPs cycle between the atmosphere and terrestrial surfaces; however measuring fluxes of POPs between the atmosphere and other media is challenging. Sampling times of hours to days are required to accurately measure trace concentrations of POPs in the atmosphere, which rules out the use of eddy covariance techniques that are used to measure gas fluxes of major air pollutants. An alternative, the modified Bowen ratio (MBR method, has been used instead. In this study we used data from FLUXNET for CO2 and water vapor (H2O to compare fluxes measured by eddy covariance to fluxes measured with the MBR method using vertical concentration gradients in air derived from averaged data that simulate the long sampling times typically required to measure POPs. When concentration gradients are strong and fluxes are unidirectional, the MBR method and the eddy covariance method agree within a factor of 3 for CO2, and within a factor of 10 for H2O. To remain within the range of applicability of the MBR method, field studies should be carried out under conditions such that the direction of net flux does not change during the sampling period. If that condition is met, then the performance of the MBR method is neither strongly affected by the length of sample duration nor the use of a fixed value for the transfer coefficient.

  10. Electron Heat Flux in Pressure Balance Structures at Ulysses

    Science.gov (United States)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. Rom previous studies, PBSs are believed to be remnants of coronal plumes and be related to network activity such as magnetic reconnection in the photosphere. We investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. At 2001 AGU Spring meeting, we reported that PBSs have structures like current sheets or plasmoids, and suggested that they are associated with network activity at the base of polar plumes. In this paper, we have analyzed high-energy electron data at Ulysses/SWOOPS to see whether bi-directional electron flow exists and confirm the conclusions more precisely. As a result, although most events show a typical flux directed away from the Sun, we have obtained evidence that some PBSs show bi-directional electron flux and others show an isotropic distribution of electron pitch angles. The evidence shows that plasmoids are flowing away from the Sun, changing their flow direction dynamically in a way not caused by Alfven waves. From this, we have concluded that PBSs are generated due to network activity at the base of polar plumes and their magnetic structures axe current sheets or plasmoids.

  11. Competitors' communities and taxonomy of products according to export fluxes

    Science.gov (United States)

    Cristelli, M.; Tacchella, A.; Gabrielli, A.; Pietronero, L.; Scala, A.; Caldarelli, G.

    2012-09-01

    In this paper we use Complex Network Theory to quantitatively characterize and synthetically describe the complexity of trade between nations. In particular, we focus our attention on export fluxes. Starting from the bipartite countries-products network defined by export fluxes, we define two complementary graphs projecting the original network on countries and products respectively. We define, in both cases, a distance matrix amongst countries and products. Specifically, two countries are similar if they export similar products. This relationship can be quantified by building the Minimum Spanning Tree and the Minimum Spanning Forest from the distance matrices for products and countries. Through this simple and scalable method we are also able to carry out a community analysis. It is not gone unnoticed that in this way we can produce an effective categorization for products providing several advantages with respect to traditional classifications of COMTRADE [1]. Finally, the forests of countries allows for the detection of competitors' community and for the analysis of the evolution of these communities.

  12. Inter-organizational networks

    DEFF Research Database (Denmark)

    Bergenholtz, Carsten

    2012-01-01

    Strong and trust-based ties are usually related to homogeneous and complex knowledge, while weak ties are associated with heterogeneous and simple knowledge. Interfirm communities have been shown to depend on trust-based ties, while also relying on getting access to heterogeneous knowledge. These...... goes beyond a mere structural approach to the organization of social networks and hence proposes a tighter integration between research on social networks and organizational design....

  13. Evaluation of radiative fluxes over the north Indian Ocean

    Science.gov (United States)

    Ramesh Kumar, M. R.; Pinker, Rachel T.; Mathew, Simi; Venkatesan, R.; Chen, W.

    2017-05-01

    Radiative fluxes are a key component of the surface heat budget of the oceans. Yet, observations over oceanic region are sparse due to the complexity of radiation measurements; moreover, certain oceanic regions are substantially under-sampled, such as the north Indian Ocean. The National Institute of Ocean Technology, Chennai, India, under its Ocean Observation Program has deployed an Ocean Moored Network for the Northern Indian Ocean (OMNI) both in the Arabian Sea and the Bay of Bengal. These buoys are equipped with sensors to measure radiation and rainfall, in addition to other basic meteorological parameters. They are also equipped with sensors to measure sub-surface currents, temperature, and conductivity from the surface up to a depth of 500 m. Observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the National Aeronautics and Space Administration (NASA) AQUA and TERRA satellites have been used to infer surface radiation over the north Indian Ocean. In this study, we focus only on the shortwave (SW↓) fluxes. The evaluations of the MODIS-based SW↓ fluxes against the RAMA observing network have shown a very good agreement between them, and therefore, we use the MODIS-derived fluxes as a reference for the evaluation of the OMNI observations. In an early deployment of the OMNI buoys, the radiation sensors were placed at 2 m above the sea surface; subsequently, the height of the sensors was raised to 3 m. In this study, we show that there was a substantial improvement in the agreement between the buoy observations and the satellite estimates, once the sensors were raised to higher levels. The correlation coefficient increased from 0.87 to 0.93, and both the bias and standard deviations decreased substantially.

  14. Modeling nutrient filtering capacities and export fluxes in macrotidal estuaries

    Science.gov (United States)

    Regnier, P.; Arndt, S.; Savenije, H.; Vanderborght, J.-P.

    2009-04-01

    A fully transient model of a macrotidal estuary (The Scheldt) has been used to quantify silica and nitrogen filtering capacities and export fluxes to the coastal zone over a period of one year. Results show that in macrotidal estuaries, the seasonally-resolved nutrient fluxes are not only affected by in-situ biogeochemical transformations, but also by nutrient flux imbalances, which result from the time-lagged response of the scalar fields to hydrological perturbations. The estuarine nutrient retention reveals also a strong temporal variability, which is driven by the complex interplay between reaction and transport. As a result, the estuarine filtering capacities cannot be constrained by the freshwater residence alone and, thus, by empirical relationships that have been established between these two parameters. Furthermore, at the seasonal scale, the nutrient export fluxes to the coastal zone cannot be quantified from the riverine loads and the estuarine filtering capacities. More sophisticated approaches to estimate the functioning and response of macrotidal estuaries are thus needed and an alternative methodology, established on the premise that physical forcing mechanisms are the dominant controls on estuarine biogeochemistry at a series of hierarchically related system levels, is briefly outlined.

  15. Fluting Modes in Transversely Nonuniform Solar Flux Tubes

    Science.gov (United States)

    Soler, Roberto

    2017-12-01

    Magnetohydrodynamic waves of different types are frequently observed in magnetic flux tubes of the solar atmosphere and are often modeled using simple models. In the standard flux tube model made of a straight uniform tube with an abrupt boundary, transverse wave modes are classified according to their azimuthal wavenumber, m. Sausage (m = 0) and kink (m = 1) modes produce pulsations of the cross section and transverse oscillations of tube axis, respectively. Both sausage and kink modes have been observed in the solar atmosphere. Fluting (m≥slant 2) modes produce perturbations that are essentially confined around the boundary of the tube, I.e., they have a strong surface-like character. Unlike sausage and kink modes, the detection of fluting modes remains elusive. Here we show that the inclusion of transverse inhomogeneity in the flux tube model dramatically affects the properties of fluting modes. Even in a thin tube, kink and fluting modes are no longer degenerate in frequency when the tube has a smooth boundary. In addition, fluting modes become heavily damped by resonant absorption in a timescale shorter than the oscillation period. The perturbations loose their global shape and their distinctive surface-like appearance. As a consequence of that, we argue that nonuniform flux tubes with smooth boundaries may not be able to support fluting-like perturbations as coherent, global modes.

  16. Aspect Ratio Effects in the Driven, Flux-Core Spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E B; Romero-Talam?s, C A; LoDestro, L L; Wood, R D; McLean, H S

    2009-03-02

    Resistive magneto-hydrodynamic simulations are used to evaluate the effects of the aspect ratio, A (length to radius ratio) in a spheromak driven by coaxial helicity injection. The simulations are benchmarked against the Sustained Spheromak Physics Experiment (SSPX) [R. D. Wood, et al., Nucl. Nucl. Fusion 45, 1582 (2005)]. Amplification of the bias ('gun') poloidal flux is fit well by a linear dependence (insensitive to A) on the ratio of gun current and bias flux above a threshold dependent on A. For low flux amplifications in the simulations the n = 1 mode is coherent and the mean-field geometry looks like a tilted spheromak. Because the mode has relatively large amplitude the field lines are open everywhere, allowing helicity penetration. Strongly-driven helicity injection at A {le} 1.4 in simulations generates reconnection events which open the magnetic field lines; this state is characteristic of SSPX. Near the spheromak tilt-mode limit, A {approx} 1.67 for a cylindrical flux conserver, the tilt approaches 90{sup o}; reconnection events are not generated up to the strongest drives simulated. The time-sequence of these events suggests that they are representative of a chaotic process. Implications for spheromak experiments are discussed.

  17. Modelling of cadmium fluxes on energy crop land

    International Nuclear Information System (INIS)

    Palm, V.

    1992-04-01

    The flux of cadmium on energy crop land is investigated. Three mechanisms are accounted for; Uptake by plant, transport with water, and sorption to soil. Sorption is described with Freundlich isotherms. The system is simulated mathematically in order to estimate the sensitivity and importance of different parameters on the cadmium flow and sorption. The water flux through the soil and the uptake by plants are simulated with a hydrological model, SOIL. The simulated time period is two years. The parameters describing root distribution and evaporation due to crop are taken from measurements on energy crop (Salix). The resulting water flux, water content in the soil profile and the water uptake into roots, for each day and soil compartment, are used in the cadmium sorption simulation. In the cadmium sorption simulation the flux and equilibrium chemistry of cadmium is calculated. It is shown that the amount of cadmium that accumulates in the plant, and the depth to which the applied cadmium reaches depends strongly on the constants in the sorption isotherm. With an application of 10 mg Cd/m 2 in the given range of Freundlich equations, the simulations gave a plant uptake of between 0 and 30 % of the applied cadmium in two years. At higher concentrations, where cadmium sorption can be described by nonlinear isotherms, more cadmium is present in soil water and is generally more bioavailable. 25 refs

  18. The elliptic model for communication fluxes

    International Nuclear Information System (INIS)

    Herrera-Yagüe, C; Schneider, C M; González, M C; Smoreda, Z; Couronné, T; Zufiria, P J

    2014-01-01

    In this paper, a model (called the elliptic model) is proposed to estimate the number of social ties between two locations using population data in a similar manner to how transportation research deals with trips. To overcome the asymmetry of transportation models, the new model considers that the number of relationships between two locations is inversely proportional to the population in the ellipse whose foci are in these two locations. The elliptic model is evaluated by considering the anonymous communications patterns of 25 million users from three different countries, where a location has been assigned to each user based on their most used phone tower or billing zip code. With this information, spatial social networks are built at three levels of resolution: tower, city and region for each of the three countries. The elliptic model achieves a similar performance when predicting communication fluxes as transportation models do when predicting trips. This shows that human relationships are influenced at least as much by geography as is human mobility. (paper)

  19. Interpreting the variations in atmospheric methane fluxes observed above a restored wetland

    DEFF Research Database (Denmark)

    Herbst, Mathias; Friborg, Thomas; Ringgaard, Rasmus

    2011-01-01

    cattle moving through the source area of the eddy flux mast increased the measured emission rates by one order of magnitude during short time periods. (2) Friction velocity exerted a strong control on the CH4 flux whenever there were water pools on the surface. (3) An exponential response of the daily CH...... wetlands are more complex than those reported for natural wetlands, since they include both management activities and slow adaptive processes related to changes in vegetation and hydrology. On the basis of eddy fluxes of carbon dioxide measured at the same site it is finally demonstrated...

  20. Electrical conductivity and electron cyclotron current drive efficiencies for non-circular flux surfaces in tokamaks

    International Nuclear Information System (INIS)

    O'Brien, M.R.

    1989-01-01

    As is well known, the presence of electron trapping can strongly reduce the electrical conductivity and rf current drive efficiencies of tokamak plasmas. For example, the conductivity (in the low collisionality limit) of a flux surface with inverse aspect ratio ε=0.1 is approximately one half of the Spitzer conductivity (σ sp )for uniform magnetic fields. Previous estimates of these effects have assumed that the variation of magnetic field strength around a flux surface is given by the standard form for circular flux surfaces. (author) 11 refs., 4 figs

  1. Size-resolved fluxes of sub-100-nm particles over forests

    DEFF Research Database (Denmark)

    Pryor, Sara; Barthelmie, Rebecca Jane; Spaulding, A.M.

    2009-01-01

    -resolved observations. We present size-resolved particle number fluxes for sub-100-nm particle diameters (Dp) over a deciduous forest derived using eddy covariance applied to data from a fast mobility particle sizer. The size-resolved particle number fluxes in 18 diameters between 8 and 100 nm were collected during...... are normalized by friction velocity, the key controlling role of particle diffusivity is strongly manifest. On the basis of analyses of these new measurements and recently published size-resolved particle number fluxes from a conifer forest, we present working parameterizations for size-resolved particle...

  2. Strongly-Heated Gas Flow in Parallel Tube Rotation

    Directory of Open Access Journals (Sweden)

    Shuichi Torii

    1998-01-01

    Full Text Available A numerical analysis is performed to study thermal transport phenomena in gas flow through a strongly heated tube whose axis is in parallel with the rotational axis. The velocity and temperature fields prevail when fluid flows in a rotating tube with uniform heat flux on the tube wall. The two-equation k-ω turbulence and t2¯-εt heat transfer models are employed to determine turbulent viscosity and eddy diffusivity for heat, respectively. The governing boundary-layer equations are discritized by means of a control volume finitedifference techniques. It is found that the Coriolis and centrifugal (or centripetal forces cause fluid flow and heat transfer performance in the parallel-rotation system to be drastically different from those in the stationary case. Consequently, even if a tube rotating around a parallel axis is heated with high heat flux whose level causes a laminarizing flow in the stationary tube case, both the turbulent kinetic energy and the temperature variance remain over the pipe cross section, resulting in the suppression of an attenuation in heat transfer performance. In other words, an increase in tube rotation suppresses laminarization of gas flow.

  3. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    Science.gov (United States)

    Li, Ting; Zhang, Jun; Ji, Haisheng

    2015-06-01

    We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.

  4. Flux of Cadmium through Euphausiids

    International Nuclear Information System (INIS)

    Benayoun, G.; Fowler, S.W.; Oregioni, B.

    1976-01-01

    Flux of the heavy metal cadmium through the euphausiid Meganyctiphanes norvegica was examined. Radiotracer experiments showed that cadmium can be accumulated either directly from water or through the food chain. When comparing equilibrium cadmium concentration factors based on stable element measurements with those obtained from radiotracer experiments, it is evident that exchange between cadmium in the water and that in euphausiid tissue is a relatively slow process, indicating that, in the long term, ingestion of cadmium will probably be the more important route for the accumulation of this metal. Approximately 10% of cadmium ingested by euphausiids was incorporated into internal tissues when the food source was radioactive Artemia. After 1 month cadmium, accumulated directly from water, was found to be most concentrated in the viscera with lesser amounts in eyes, exoskeleton and muscle, respectively. Use of a simple model, based on the assumption that cadmium taken in by the organism must equal cadmium released plus that accumulated in tissue, allowed assessment of the relative importance of various metabolic parameters in controlling the cadmium flux through euphausiids. Fecal pellets, due to their relatively high rate of production and high cadmium content, accounted for 84% of the total cadmium flux through M. norvegica. Comparisons of stable cadmium concentrations in natural euphausiid food and the organism's resultant fecal pellets indicate that the cadmium concentration in ingested material was increased nearly 5-fold during its passage through the euphausiid. From comparisons of all routes by which cadmium can be released from M. norvegica to the water column, it is concluded that fecal pellet deposition represents the principal mechanism effecting the downward vertical transport of cadmium by this species. (author)

  5. Effect of source integration on the geochemical fluxes from springs

    International Nuclear Information System (INIS)

    Frisbee, Marty D.; Phillips, Fred M.; White, Art F.; Campbell, Andrew R.; Liu, Fengjing

    2013-01-01

    % overall and no springs are consistently composed of 100% groundwater; providing support for the fractional springflow conceptual model. Groundwater contributions are not strongly correlated with elevation, spring contributing area, spring discharge, or seasonality. This variability has a profound effect on long-term geochemical fluxes. The geochemical fluxes for total springflow overestimate long-term solute release by 22–48% as compared to fractional springflow. These findings illustrate that springflow generation, like streamflow generation, integrates many different sources of water reflecting solute concentrations obtained along many different geochemical weathering pathways. These data suggest that springs are not always ideal proxies for groundwater. Springs may be integrating very distinct portions of the groundwater flow field and these groundwater contributions may become mixed at the spring emergence with much younger sources of water that have never resided in the groundwater system.

  6. Spatial resolution of subsurface anthropogenic heat fluxes in cities

    Science.gov (United States)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2015-04-01

    Urban heat islands in the subsurface contain large quantities of energy in the form of elevated groundwater temperatures caused by anthropogenic heat fluxes (AHFS) into the subsurface. Hence, the objective of this study is to exemplarily quantify these AHFS and the generated thermal powers in two German cities, Karlsruhe and Cologne. A two-dimensional (2D) statistical analytical model of the vertical subsurface anthropogenic heat fluxes across the unsaturated zone was developed. The model consists of a so-called Local Monte Carlo approach that introduces a spatial representation of the following sources of AHFS: (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that district heating networks induce the largest local AHFS with values larger than 60 W/m2 and one order of magnitude higher than the other evaluated heat sources. Only sewage pipes and basements reaching into the groundwater cause equally high heat fluxes, with maximal values of 40.37 W/m2 and 13.60 W/m2, respectively. While dominating locally, the district heating network is rather insignificant for the citywide energy budget in both urban subsurfaces. Heat from buildings (1.51 ± 1.36 PJ/a in Karlsruhe; 0.31 ± 0.14 PJ/a in Cologne) and elevated GST (0.34 ± 0.10 PJ/a in Karlsruhe; 0.42 ± 0.13 PJ/a in Cologne) are dominant contributors to the anthropogenic thermal power of the urban aquifer. In Karlsruhe, buildings are the source of 70% of the annual heat transported into the groundwater, which is mainly caused by basements reaching into the groundwater. A variance analysis confirms these findings: basement depth is the most influential factor to citywide thermal power in the studied cities with high groundwater levels. The spatial distribution of fluxes, however, is mostly influenced by the prevailing thermal gradient across the unsaturated zone. A relatively cold groundwater

  7. Application of strong phosphoric acid to radiochemistry

    International Nuclear Information System (INIS)

    Terada, Kikuo

    1977-01-01

    Not only inorganic and organic compounds but also natural substrances, such as accumulations in soil, are completely decomposed and distilled by heating with strong phosphoric acid for 30 to 50 minutes. As applications of strong phosphoric acid to radiochemistry, determination of uranium and boron by use of solubilization effect of this substance, titration of uranyl ion by use of sulfuric iron (II) contained in this substance, application to tracer experiment, and determination of radioactive ruthenium in environmental samples are reviewed. Strong phosphoric acid is also applied to activation analysis, for example, determination of N in pyrographite with iodate potassium-strong phosphoric acid method, separation of Os and Ru with sulfuric cerium (IV) - strong phosphoric acid method or potassium dechromate-strong phosphoric acid method, analysis of Se, As and Sb rocks and accumulations with ammonium bromide, sodium chloride and sodium bromide-strong phosphoric acid method. (Kanao, N.)

  8. Four-collector flux sensor

    International Nuclear Information System (INIS)

    Wiegand, W.J. Jr.; Bullis, R.H.; Mongeon, R.J.

    1980-01-01

    A flowmeter based on ion drift techniques was developed for measuring the rate of flow of a fluid through a given cross-section. Ion collectors are positioned on each side of an immediately adjacent to ion source. When air flows axially through the region in which ions are produced and appropriate electric fields are maintained between the collectors, an electric current flows to each collector due to the net motion of the ions. The electric currents and voltages and other parameters which define the flow are combined in an electric circuit so that the flux of the fluid can be determined. (DN)

  9. Regionally Strong Feedbacks between the Atmosphere and Terrestrial Biosphere

    Science.gov (United States)

    Green, J. K.; Konings, A. G.; Alemohammad, S. H.; Berry, J. A.; Kolassa, J.; Lee, J. E.; Gentine, P.

    2017-12-01

    Vegetation variability modulates water and energy fluxes to the atmosphere with the potential to impact climate and weather patterns that in turn regulate vegetation dynamics. In this study, we quantify variations in the strength of biosphere-atmosphere feedbacks (influencing the hydrologic cycle) across different biomes and timescales and evaluate the ability of Earth System Models to capture them. We use remote sensing data (using Solar Induced Fluorescence as a proxy for photosynthesis) combined with a statistical Multivariate Granger Causality technique to evaluate the feedback strength and the timescale in which they occur, which is then used as a benchmark for model assessment. Our conclusions have the potential to improve climate and weather predictions and provide insight of ecohydrological processes that have regional scale impact (Green, J.K. et al. 2017). Green, Julia K., et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nature Geoscience. 10, 410-414 (2017).

  10. Declarative Networking

    CERN Document Server

    Loo, Boon Thau

    2012-01-01

    Declarative Networking is a programming methodology that enables developers to concisely specify network protocols and services, which are directly compiled to a dataflow framework that executes the specifications. Declarative networking proposes the use of a declarative query language for specifying and implementing network protocols, and employs a dataflow framework at runtime for communication and maintenance of network state. The primary goal of declarative networking is to greatly simplify the process of specifying, implementing, deploying and evolving a network design. In addition, decla

  11. Peptide-microgel interactions in the strong coupling regime.

    Science.gov (United States)

    Hansson, Per; Bysell, Helena; Månsson, Ronja; Malmsten, Martin

    2012-09-06

    The interaction between lightly cross-linked poly(acrylic acid) microgels and oppositely charged peptides was investigated as a function of peptide length, charge density, pH, and salt concentration, with emphasis on the strong coupling regime at high charge contrast. By micromanipulator-assisted light microscopy, the equilibrium volume response of single microgel particles upon oligolysine and oligo(lysine/alanine) absorption could be monitored in a controlled fashion. Results show that microgel deswelling, caused by peptide binding and network neutralization, increases with peptide length (3 attraction between the network chains is described using an exponential force law, and the network elasticity by the inverse Langevin theory. The model was used to calculate the composition of microgels in contact with reservoir solutions of peptides and simple electrolytes. At high electrostatic coupling, the calculated swelling curves were found to display first-order phase transition behavior. The model was demonstrated to capture pH- and electrolyte-dependent microgel swelling, as well as effects of peptide length and charge density on microgel deswelling. The analysis demonstrated that the peptide charge (length), rather than the peptide charge density, determines microgel deswelling. Furthermore, a transition between continuous and discrete network collapse was identified, consistent with experimental results in the present investigations, as well as with results from the literature on microgel deswelling caused by multivalent cations.

  12. Comparison of annual dry and wet deposition fluxes of selected pesticides in Strasbourg, France

    International Nuclear Information System (INIS)

    Sauret, Nathalie; Wortham, Henri; Strekowski, Rafal; Herckes, Pierre; Nieto, Laura Ines

    2009-01-01

    This work summarizes the results of a study of atmospheric wet and dry deposition fluxes of Deisopropyl-atrazine (DEA), Desethyl-atrazine (DET), Atrazine, Terbuthylazine, Alachlor, Metolachlor, Diflufenican, Fenoxaprop-p-ethyl, Iprodione, Isoproturon and Cymoxanil pesticides conducted in Strasbourg, France, from August 2000 through August 2001. The primary objective of this work was to calculate the total atmospheric pesticide deposition fluxes induced by atmospheric particles. To do this, a modified one-dimensional cloud water deposition model was used. All precipitation and deposition samples were collected at an urban forested park environment setting away from any direct point pesticide sources. The obtained deposition fluxes induced by atmospheric particles over a forested area showed that the dry deposition flux strongly contributes to the total deposition flux. The dry particle deposition fluxes are shown to contribute from 4% (DET) to 60% (cymoxanil) to the total deposition flux (wet + dry). - A modified one-dimensional cloud water deposition model is used to estimate the deposition fluxes of pesticides in the particle phase and compare the relative importance of dry and wet depositions

  13. Comparison of annual dry and wet deposition fluxes of selected pesticides in Strasbourg, France

    Energy Technology Data Exchange (ETDEWEB)

    Sauret, Nathalie [Marseilles University, Laboratoire Chimie Provence - UMR 6264, Campus Saint Charles, Case 29, 3 Place Victor Hugo, 13331 Marseilles Cedex 03 (France); Wortham, Henri [Marseilles University, Laboratoire Chimie Provence - UMR 6264, Campus Saint Charles, Case 29, 3 Place Victor Hugo, 13331 Marseilles Cedex 03 (France)], E-mail: Henri.Wortham@univ-provence.fr; Strekowski, Rafal [Marseilles University, Laboratoire Chimie Provence - UMR 6264, Campus Saint Charles, Case 29, 3 Place Victor Hugo, 13331 Marseilles Cedex 03 (France); Herckes, Pierre [Arizona State University, Department of Chemistry and Biochemistry, Tempe, AZ 85287-1604 (United States); Nieto, Laura Ines [Marseilles University, Laboratoire Chimie Provence - UMR 6264, Campus Saint Charles, Case 29, 3 Place Victor Hugo, 13331 Marseilles Cedex 03 (France)

    2009-01-15

    This work summarizes the results of a study of atmospheric wet and dry deposition fluxes of Deisopropyl-atrazine (DEA), Desethyl-atrazine (DET), Atrazine, Terbuthylazine, Alachlor, Metolachlor, Diflufenican, Fenoxaprop-p-ethyl, Iprodione, Isoproturon and Cymoxanil pesticides conducted in Strasbourg, France, from August 2000 through August 2001. The primary objective of this work was to calculate the total atmospheric pesticide deposition fluxes induced by atmospheric particles. To do this, a modified one-dimensional cloud water deposition model was used. All precipitation and deposition samples were collected at an urban forested park environment setting away from any direct point pesticide sources. The obtained deposition fluxes induced by atmospheric particles over a forested area showed that the dry deposition flux strongly contributes to the total deposition flux. The dry particle deposition fluxes are shown to contribute from 4% (DET) to 60% (cymoxanil) to the total deposition flux (wet + dry). - A modified one-dimensional cloud water deposition model is used to estimate the deposition fluxes of pesticides in the particle phase and compare the relative importance of dry and wet depositions.

  14. On the parameterization of turbulent fluxes over the tropical Eastern Pacific

    Directory of Open Access Journals (Sweden)

    G. B. Raga

    2007-01-01

    Full Text Available We present estimates of turbulent fluxes of heat and momentum derived from low level (~30 m aircraft measurements over the tropical Eastern Pacific and provide empirical relationships that are valid under high wind speed conditions (up to 25 ms−1. The estimates of total momentum flux and turbulent kinetic energy can be represented very accurately (r2=0.99, when data are binned every 1 ms−1 by empirical fits with a linear and a cubic terms of the average horizontal wind speed. The latent heat flux shows a strong quadratic dependence on the horizontal wind speed and a linear relationship with the difference between the air specific humidity and the saturated specific humidity at the sea surface, explaining 96% of the variance. The estimated values were used to evaluate the performance of three currently used parameterizations of turbulence fluxes, varying in complexity and computational requirements. The comparisons with the two more complex parameterizations show good agreement between the observed and parameterized latent heat fluxes, with less agreement in the sensible heat fluxes, and one of them largely overestimating the momentum fluxes. A third, very simple parameterization shows a surprisingly good agreement of the sensible heat flux, while momentum fluxes are again overestimated and a poor agreement was observed for the latent heat flux (r2=0.62. The performance of all three parameterizations deteriorates significantly in the high wind speed regime (above 10–15 ms−1. The dataset obtained over the tropical Eastern Pacific allows us to derive empirical functions for the turbulent fluxes that are applicable from 1 to 25 ms−1, which can be introduced in meteorological models under high wind conditions.

  15. Tokamak disruption heat flux simulator

    International Nuclear Information System (INIS)

    Langhoff, M.; Hess, G.; Gahl, J.; Ingram, R.

    1990-01-01

    A coaxial plasma gun system, operating in the deflagration mode, has been built and fired at the University of New Mexico. This system, powered by a 100 kJ capacitor bank, was designed to give a variable pulse length of approximately 50-100 us. The gun is intended to deliver to a target an energy deposition density of 1 kJ per cm 2 via impact with a deuterium plasma possessing a highly directed energy. This system should simulate on the target, over an area of approximately 10 cm 2 , the heat flux of a tokamak plasma disruption on plasma facing components. Current diagnostics for the system are rather rudimentary but sufficient for determination of plasma pulse characteristics and energy transfer to target. Electrical measurements include bank voltage measured via resistive voltage dividers, and bank current measured via Rogowski coil. The shape of the plasma, its position relative to the target area, and the final impact area, is determined via open-shutter photography and the use of witness plates. Total energy deposited onto targets will be determined through simple calorimetry and careful target mass measurements. Preliminary results describing the ablation of carbon targets exposed to disruption like heat fluxes will be presented as well as a description of the experimental apparatus

  16. Neutron flux enhancement at LASREF

    International Nuclear Information System (INIS)

    Sommer, W.F.; Ferguson, P.D.; Wechsler, M.S.

    1991-01-01

    The accelerator at the Los Alamos Meson Physics Facility produces a 1-mA beam of protons at an energy of 800 MeV. Since 1985, the Los Alamos Spallation Radiation Effects Facility (LASREF) has made use of the neutron flux that is generated as the incident protons interact with the nuclei in targets and a copper beam stop. A variety of basic and applied experiments in radiation damage and radiation effects have been completed. Recent studies indicate that the flux at LASREF can be increased by at least a factor of ten from the present level of about 5 E+17 m -2 s -1 . This requires changing the beam-stop material from Cu to W and optimizing the geometry of the beam-target interaction region. These studies are motivated by the need for a large volume, high energy, and high intensity neutron source in the development of materials for advanced energy concepts such as fusion reactors. 18 refs., 7 figs., 2 tabs

  17. Communication: Electronic flux induced by crossing the transition state

    Science.gov (United States)

    Jia, Dongming; Manz, Jörn; Yang, Yonggang

    2018-01-01

    We present a new effect of chemical reactions, e.g., isomerizations, that occurs when the reactants pass along the transition state, on the way to products. It is based on the well-known fact that at the transition state, the electronic structure of one isomer changes to the other. We discover that this switch of electronic structure causes a strong electronic flux that is well distinguishable from the usual flux of electrons that travel with the nuclei. As a simple but clear example, the effect is demonstrated here for bond length isomerization of Na2 (21Σu+), with adiabatic crossing the barrier between the inner and outer wells of the double minimum potential that support different "Rydberg" and "ionic" type electronic structures, respectively.

  18. Flux-profile relationships over a fetch limited beech forest

    DEFF Research Database (Denmark)

    Dellwik, E.; Jensen, N.O.

    2005-01-01

    heat flux and momentum (phi(h) and phi(m)) and analysed as a function of atmospheric stability and fetch. For heat, the influences of the roughness sublayer and the internal boundary layer were in agreement with previous studies. For momentum, the strong vertical gradient of the flow just above...... surface. The different influence of the roughness sublayer on phi(h) and phi(m) is reflected in the aerodynamic resistance for the site. The aerodynamic resistance for sensible heat is considerably smaller than the corresponding value for momentum.......The influence of an internal boundary layer and a roughness sublayer on flux-profile relationships for momentum and sensible heat have been investigated for a closed beech forest canopy with limited fetch conditions. The influence was quantified by derivation of local scaling functions for sensible...

  19. Background concentrations and fluxes of atmospheric ammonia overa deciduous forest

    DEFF Research Database (Denmark)

    Hansen, Kristina; Pryor, Sara C.; Bøgh, Eva

    2015-01-01

    to quantify the phase-partitioning and diagnose possible causes of upward NH3 fluxes. Data from 2013 combined with previous NH3 studies at this site indicate a seasonal background NH3 concentration of spring: 0.92 ± 0.95, summer: 0.30 ± 0.39, autumn: 0.20 ± 0.26, and winter: 0.26 ± 0.1 μg NH3-N m−3. Air mass...... back trajectories from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model did not indicate any directional bias in the measured NH3 concentration confirming the absence of strong local sources of NH3. The NH3 fluxes were mainly upward (emission) and had a magnitude of up to 0...

  20. In situ magnetotail magnetic flux calculation

    Directory of Open Access Journals (Sweden)

    M. A. Shukhtina

    2015-06-01

    Full Text Available We explore two new modifications of the magnetotail magnetic flux (F calculation algorithm based on the Petrinec and Russell (1996 (PR96 approach of the tail radius determination. Unlike in the PR96 model, the tail radius value is calculated at each time step based on simultaneous magnetotail and solar wind observations. Our former algorithm, described in Shukhtina et al. (2009, required that the "tail approximation" requirement were fulfilled, i.e., it could be applied only tailward x ∼ −15 RE. The new modifications take into account the approximate uniformity of the magnetic field of external sources in the near and middle tail. Tests, based on magnetohydrodynamics (MHD simulations, show that this approach may be applied at smaller distances, up to x ∼ −3 RE. The tests also show that the algorithm fails during long periods of strong positive interplanetary magnetic field (IMF Bz. A new empirical formula has also been obtained for the tail radius at the terminator (at x = 0 which improves the calculations.

  1. In situ magnetotail magnetic flux calculation

    Science.gov (United States)

    Shukhtina, M. A.; Gordeev, E.

    2015-06-01

    We explore two new modifications of the magnetotail magnetic flux (F) calculation algorithm based on the Petrinec and Russell (1996) (PR96) approach of the tail radius determination. Unlike in the PR96 model, the tail radius value is calculated at each time step based on simultaneous magnetotail and solar wind observations. Our former algorithm, described in Shukhtina et al. (2009), required that the "tail approximation" requirement were fulfilled, i.e., it could be applied only tailward x ∼ -15 RE. The new modifications take into account the approximate uniformity of the magnetic field of external sources in the near and middle tail. Tests, based on magnetohydrodynamics (MHD) simulations, show that this approach may be applied at smaller distances, up to x ∼ -3 RE. The tests also show that the algorithm fails during long periods of strong positive interplanetary magnetic field (IMF) Bz. A new empirical formula has also been obtained for the tail radius at the terminator (at x = 0) which improves the calculations.

  2. Do plant species influence soil CO2 and N2O fluxes in a diverse tropical forest?

    Science.gov (United States)

    van Haren, Joost L. M.; de Oliveira, R. Cosme; Restrepo-Coupe, Natalia; Hutyra, Lucy; de Camargo, Plinio B.; Keller, Michael; Saleska, Scott R.

    2010-09-01

    To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO2 and N2O fluxes close to ˜300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay-rich forest sites in central Amazonia. We found that soil CO2 fluxes were 38% higher near large trees than at control sites >10 m away from any tree (P Caryocar villosum, Lecythis lurida, Schefflera morototoni, and Manilkara huberi were 84%-196% greater than Erisma uncinatum and Vochysia maxima, both Vochysiaceae. Tree species identity was the most important explanatory factor for N2O fluxes, accounting for more than twice the N2O flux variability as all other factors combined. Two observations suggest a mechanism for this finding: (1) sugar addition increased N2O fluxes near C. villosum twice as much (P < 0.05) as near Vochysiaceae and (2) species mean N2O fluxes were strongly negatively correlated with tree growth rate (P = 0.002). These observations imply that through enhanced belowground carbon allocation liana and tree species can stimulate soil CO2 and N2O fluxes (by enhancing denitrification when carbon limits microbial metabolism). Alternatively, low N2O fluxes potentially result from strong competition of tree species with microbes for nutrients. Species-specific patterns in CO2 and N2O fluxes demonstrate that plant species can influence soil biogeochemical processes in a diverse tropical forest.

  3. Strongly correlating liquids and their isomorphs

    OpenAIRE

    Pedersen, Ulf R.; Gnan, Nicoletta; Bailey, Nicholas P.; Schröder, Thomas B.; Dyre, Jeppe C.

    2010-01-01

    This paper summarizes the properties of strongly correlating liquids, i.e., liquids with strong correlations between virial and potential energy equilibrium fluctuations at constant volume. We proceed to focus on the experimental predictions for strongly correlating glass-forming liquids. These predictions include i) density scaling, ii) isochronal superposition, iii) that there is a single function from which all frequency-dependent viscoelastic response functions may be calculated, iv) that...

  4. Atom collisions in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Smirnov, V.S.; Chaplik, A.V.

    1976-01-01

    It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed

  5. Near bed suspended sediment flux by single turbulent events

    Science.gov (United States)

    Amirshahi, Seyed Mohammad; Kwoll, Eva; Winter, Christian

    2018-01-01

    The role of small scale single turbulent events in the vertical mixing of near bed suspended sediments was explored in a shallow shelf sea environment. High frequency velocity and suspended sediment concentration (SSC; calibrated from the backscatter intensity) were collected using an Acoustic Doppler Velocimeter (ADV). Using quadrant analysis, the despiked velocity time series was divided into turbulent events and small background fluctuations. Reynolds stress and Turbulent Kinetic Energy (TKE) calculated from all velocity samples, were compared to the same turbulent statistics calculated only from velocity samples classified as turbulent events (Reevents and TKEevents). The comparison showed that Reevents and TKEevents was increased 3 and 1.6 times, respectively, when small background fluctuations were removed and that the correlation with SSC for TKE could be improved through removal of the latter. The correlation between instantaneous vertical turbulent flux (w ‧) and SSC fluctuations (SSC ‧) exhibits a tidal pattern with the maximum correlation at peak ebb and flood currents, when strong turbulent events appear. Individual turbulent events were characterized by type, strength, duration and length. Cumulative vertical turbulent sediment fluxes and average SSC associated with individual turbulent events were calculated. Over the tidal cycle, ejections and sweeps were the most dominant events, transporting 50% and 36% of the cumulative vertical turbulent event sediment flux, respectively. Although the contribution of outward interactions to the vertical turbulent event sediment flux was low (11%), single outward interaction events were capable of inducing similar SSC ‧ as sweep events. The results suggest that on time scales of tens of minutes to hours, TKE may be appropriate to quantify turbulence in sediment transport studies, but that event characteristics, particular the upward turbulent flux need to be accounted for when considering sediment transport

  6. Grain Yield Observations Constrain Cropland CO2 Fluxes Over Europe

    Science.gov (United States)

    Combe, M.; de Wit, A. J. W.; Vilà-Guerau de Arellano, J.; van der Molen, M. K.; Magliulo, V.; Peters, W.

    2017-12-01

    Carbon exchange over croplands plays an important role in the European carbon cycle over daily to seasonal time scales. A better description of this exchange in terrestrial biosphere models—most of which currently treat crops as unmanaged grasslands—is needed to improve atmospheric CO2 simulations. In the framework we present here, we model gross European cropland CO2 fluxes with a crop growth model constrained by grain yield observations. Our approach follows a two-step procedure. In the first step, we calculate day-to-day crop carbon fluxes and pools with the WOrld FOod STudies (WOFOST) model. A scaling factor of crop growth is optimized regionally by minimizing the final grain carbon pool difference to crop yield observations from the Statistical Office of the European Union. In a second step, we re-run our WOFOST model for the full European 25 × 25 km gridded domain using the optimized scaling factors. We combine our optimized crop CO2 fluxes with a simple soil respiration model to obtain the net cropland CO2 exchange. We assess our model's ability to represent cropland CO2 exchange using 40 years of observations at seven European FluxNet sites and compare it with carbon fluxes produced by a typical terrestrial biosphere model. We conclude that our new model framework provides a more realistic and strongly observation-driven estimate of carbon exchange over European croplands. Its products will be made available to the scientific community through the ICOS Carbon Portal and serve as a new cropland component in the CarbonTracker Europe inverse model.

  7. High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Buxbaum, Robert

    2010-06-30

    We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

  8. 3-D density imaging with muon flux measurements from underground galleries

    Science.gov (United States)

    Lesparre, N.; Cabrera, J.; Marteau, J.

    2017-03-01

    Atmospheric muon flux measurements provide information on subsurface density distribution. In this study, muon flux was measured underground, in the Tournemire experimental platform (France). The objective was to image the medium between the galleries and the surface and evaluate the feasibility to detect the presence of discontinuities, for example, produced by secondary subvertical faults or by karstic networks. Measurements were performed from three different sites with a partial overlap of muon trajectories, offering the possibility to seek density variations at different depths. The conversion of the measured muon flux to average density values showed global variations further analysed through a 3-D nonlinear inversion procedure. Main results are the presence of a very low density region at the level of the upper aquifer, compatible with the presence of a karstic network hosting local cavities, and the absence of secondary faults. We discuss the validity of the present results and propose different strategies to improve the accuracy of such measurements and analysis.

  9. Isotopically nonstationary metabolic flux analysis (INST-MFA) of photosynthesis and photorespiration in plants

    Science.gov (United States)

    Photorespiration is a central component of photosynthesis; however to better understand its role it should be viewed in the context of an integrated metabolic network rather than a series of individual reactions that operate independently. Isotopically nonstationary 13C metabolic flux analysis (INST...

  10. Simplified magnetic circuit for the calculation of the stray magnetic flux through the shell gaps

    Energy Technology Data Exchange (ETDEWEB)

    Collarin, P.; Piovan, R. [Associazioni EURATOM-ENEA-CNR-Univ. di Padova (Italy). Gruppo di Padova per Ricerche sulla Fusione

    1995-12-31

    Significant toroidal magnetic field perturbations, stray flux at the shell gaps and current mismatching in the coils of the toroidal field winding are measured during the start-up and the flat-top phases of RFX. These phenomena are consistent with large and wall locked MHD modes: at first some m = 1 modes evolve separately one after the other, afterwards they concur to a wide and localized plasma perturbation that persists during the flat-top. These perturbations are heavily influenced by the stray magnetic flux through the shell gaps. Hence a magnetic circuit that mainly considers the magnetic reluctance of the conducting shell gaps has been developed in order to estimate this stray flux and, therefore, to evaluate the stabilizing capability of the shell. The observation of the MHD modes, the description of the equivalent magnetic network, the estimation of the stray flux and the comparison with the experimental measurements are reported in the paper.

  11. Simplified magnetic circuit for the calculation of the stray magnetic flux through the shell gaps

    International Nuclear Information System (INIS)

    Collarin, P.; Piovan, R.

    1995-01-01

    Significant toroidal magnetic field perturbations, stray flux at the shell gaps and current mismatching in the coils of the toroidal field winding are measured during the start-up and the flat-top phases of RFX. These phenomena are consistent with large and wall locked MHD modes: at first some m = 1 modes evolve separately one after the other, afterwards they concur to a wide and localized plasma perturbation that persists during the flat-top. These perturbations are heavily influenced by the stray magnetic flux through the shell gaps. Hence a magnetic circuit that mainly considers the magnetic reluctance of the conducting shell gaps has been developed in order to estimate this stray flux and, therefore, to evaluate the stabilizing capability of the shell. The observation of the MHD modes, the description of the equivalent magnetic network, the estimation of the stray flux and the comparison with the experimental measurements are reported in the paper

  12. Carbon dioxide, water vapour and energy fluxes over a semi ...

    Indian Academy of Sciences (India)

    42

    vapour fluxes in Mangrove ecosystems, Sundarbans (India). The above observations are. 57 .... with the help of PAR. 115 sensor. Soil heat flux plates were used for the measurement of soil heat flux. ..... where Rn is net radiation, G is the soil heat flux, H is sensible heat flux and LE is the latent. 233 heat flux. 234. We have ...

  13. <strong>A Language-Based Approach for Improving the Robustness of Network Application Protocol Implementationsstrong>

    DEFF Research Database (Denmark)

    Burgy, Laurent; Reveillere, Laurent; Lawall, Julia Laetitia

    2007-01-01

    -specific language, Zebu, for generating robust and efficient message processing layers. A Zebu specification, based on the notation used in RFCs, describes protocol message formats and related processing constraints. Zebu-based applications are efficient, since message fragments can be specified to be processed...

  14. Risk aversion and social networks

    NARCIS (Netherlands)

    Kovářík, J.; van der Leij, M.J.

    2014-01-01

    This paper first investigates empirically the relationship between risk aversion and social network structure in a large group of undergraduate students. We find that risk aversion is strongly correlated to local network clustering, that is, the probability that one has a social tie to friends of

  15. Pyrolytic graphite gauge for measuring heat flux

    Science.gov (United States)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  16. High energy heavy ion collisions from the view point of the 'strong field physics'

    International Nuclear Information System (INIS)

    Itakura, Kazunori

    2012-01-01

    In the high energy heavy ion collisions at the facilities like RHIC and LHC, two strongest fields in the present universe are generated. First of all, a very strong electromagnetic field is generated, though its duration is very short due to the very high speed collisions of nuclei and the large electric charges. On the other hand, the nuclei are described as the high density saturation gluon state just before the moment of the collision and the high density gluon is released by the collision. A very strong color electromagnetic field is generated. The color glass condensate (CGC) is a reasonable picture. In this text, dynamics of the GLASMA (Glass + plasma), the new physics brought about by those 'strong fields', are introduced and are explained how the yet unsolved problems of the heavy ion collisions are going to be investigated on the new view point. The mechanism of the apparitions of the strong electromagnetic field and the strong color electromagnetic field are explained at first. The heavy ion collisions can be described as the process CGC to develop into QGP. As the phenomena under the strong electromagnetic field and the heavy ion collisions, their synchrotron radiations, the photon birefringence, the photon decay, the splitting of photons and the chiral phase transitions under high field are picked up. Concerning the strong color electromagnetic field dynamics and the heavy ion collisions, the plasma flux tube dynamics, the color magnetic flux tube, the color electric flux tube and the coexisting case of the color electric field and magnetic field are presented. (S. Funahashi)

  17. Local rectification of heat flux

    Science.gov (United States)

    Pons, M.; Cui, Y. Y.; Ruschhaupt, A.; Simón, M. A.; Muga, J. G.

    2017-09-01

    We present a chain-of-atoms model where heat is rectified, with different fluxes from the hot to the cold baths located at the chain boundaries when the temperature bias is reversed. The chain is homogeneous except for boundary effects and a local modification of the interactions at one site, the “impurity”. The rectification mechanism is due here to the localized impurity, the only asymmetrical element of the structure, apart from the externally imposed temperature bias, and does not rely on putting in contact different materials or other known mechanisms such as grading or long-range interactions. The effect survives if all interaction forces are linear except the ones for the impurity.

  18. Nuclear transmutation by flux compression

    International Nuclear Information System (INIS)

    Seifritz, W.

    2001-01-01

    A new idea for the transmutation of minor actinides, long (and even short) lived fission products is presented. It is based an the property of neutron flux compression in nuclear (fast and/or thermal) reactors possessing spatially non-stationary critical masses. An advantage factor for the burn-up fluence of the elements to be transmuted in the order of magnitude of 100 and more is obtainable compared with the classical way of transmutation. Three typical examples of such transmuters (a subcritical ringreactor with a rotating reflector, a sub-critical ring reactor with a rotating spallation source, the socalled ''pulsed energy amplifier'', and a fast burn-wave reactor) are presented and analysed with regard to this purpose. (orig.) [de

  19. Network cohesion

    OpenAIRE

    Cavalcanti, Tiago Vanderlei; Giannitsarou, Chrysi; Johnson, CR

    2017-01-01

    We define a measure of network cohesion and show how it arises naturally in a broad class of dynamic models of endogenous perpetual growth with network externalities. Via a standard growth model, we show why network cohesion is crucial for conditional convergence and explain that as cohesion increases, convergence is faster. We prove properties of network cohesion and define a network aggregator that preserves network cohesion.

  20. A bottom-up perspective of the net land methanol flux: synthesis of global eddy covariance flux measurements

    Science.gov (United States)

    Wohlfahrt, Georg; Amelynck, Crist; Ammann, Christof; Arneth, Almut; Bamberger, Ines; Goldstein, Allen; Hansel, Armin; Heinesch, Bernhard; Holst, Thomas; Hörtnagl, Lukas; Karl, Thomas; Neftel, Albrecht; McKinney, Karena; Munger, William; Schade, Gunnar; Schoon, Niels

    2014-05-01

    Methanol (CH3OH) is, after methane, the second most abundant VOC in the troposphere and globally represents nearly 20% of the total biospheric VOC emissions. With typical concentrations of 1-10 ppb in the continental boundary layer, methanol plays a crucial role in atmospheric chemistry, which needs to be evaluated in the light of ongoing changes in land use and climate. Previous global methanol budgets have approached the net land flux by summing up the various emission terms (namely primary biogenic and anthropogenic emissions, plant decay and biomass burning) and by subtracting dry and wet deposition, resulting in a net land flux in the range of 75-245 Tg y-1. The data underlying these budget calculations largely stem from small-scale leaf gas exchange measurements and while recently column-integrated remotely sensed methanol concentrations have become available for constraining budget calculations, there have been few attempts to contrast model calculations with direct net ecosystem-scale methanol flux measurements. Here we use eddy covariance methanol flux measurements from 8 sites in Europe and North America to study the magnitude of and controls on the diurnal and seasonal variability in the net ecosystem methanol flux. In correspondence with leaf-level literature, our data show that methanol emission and its strong environmental and biotic control (by temperature and stomatal conductance) prevailed at the more productive (agricultural) sites and at a perturbed forest site. In contrast, at more natural, less productive sites substantial deposition of methanol occurred, in particular during periods of surface wetness. These deposition processes are poorly represented by currently available temperature/light and/or production-driven modelling algorithms. A new framework for modelling the bi-directional land-atmosphere methanol exchange is proposed which accounts for the production of methanol in leaves, the regulation of leaf methanol emission by stomatal

  1. The structure of flux transfer events recovered from Cluster data

    Directory of Open Access Journals (Sweden)

    H. Hasegawa

    2006-03-01

    Full Text Available The structure and formation mechanism of a total of five Flux Transfer Events (FTEs, encountered on the equatorward side of the northern cusp by the Cluster spacecraft, with separation of ~5000 km, are studied by applying the Grad-Shafranov (GS reconstruction technique to the events. The technique generates a magnetic field/plasma map of the FTE cross section, using combined magnetic field and plasma data from all four spacecraft, under the assumption that the structure is two-dimensional (2-D and time-independent. The reconstructed FTEs consist of one or more magnetic flux ropes embedded in the magnetopause, suggesting that multiple X-line reconnection was involved in generating the observed FTEs. The dimension of the flux ropes in the direction normal to the magnetopause ranges from about 2000 km to more than 1 RE. The orientation of the flux rope axis can be determined through optimization of the GS map, the result being consistent with those from various single-spacecraft methods. Thanks to this, the unambiguous presence of a strong core field is confirmed, providing evidence for component merging. The amount of magnetic flux contained within each flux rope is calculated from the map and, by dividing it by the time interval between the preceding FTE and the one reconstructed, a lower limit of the reconnection electric field during the creation of the flux rope can be estimated; the estimated value ranges from ~0.11 to ~0.26 mV m-1, with an average of 0.19 mV m-1. This can be translated to the reconnection rate of 0.038 to 0.074, with an average of 0.056. Based on the success of the 2-D model in recovering the observed FTEs, the length of the X-lines is estimated to be at least a few RE.

  2. Pollutant Flux Estimation in an Estuary Comparison between Model and Field Measurements

    Directory of Open Access Journals (Sweden)

    Yen-Chang Chen

    2014-08-01

    Full Text Available This study proposes a framework for estimating pollutant flux in an estuary. An efficient method is applied to estimate the flux of pollutants in an estuary. A gauging station network in the Danshui River estuary is established to measure the data of water quality and discharge based on the efficient method. A boat mounted with an acoustic Doppler profiler (ADP traverses the river along a preselected path that is normal to the streamflow to measure the velocities, water depths and water quality for calculating pollutant flux. To know the characteristics of the estuary and to provide the basis for the pollutant flux estimation model, data of complete tidal cycles is collected. The discharge estimation model applies the maximum velocity and water level to estimate mean velocity and cross-sectional area, respectively. Thus, the pollutant flux of the estuary can be easily computed as the product of the mean velocity, cross-sectional area and pollutant concentration. The good agreement between the observed and estimated pollutant flux of the Danshui River estuary shows that the pollutant measured by the conventional and the efficient methods are not fundamentally different. The proposed method is cost-effective and reliable. It can be used to estimate pollutant flux in an estuary accurately and efficiently.

  3. On the benefit of GOSAT observations to the estimation of regional CO2 fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, H [NIES, Japan; Saeki, T [NIES, Japan; Oda, T [National Institute for Environmental Studies, Japan; Saito, M [National Institute for Environmental Studies, Japan; Valsala, V [National Institute for Environmental Studies, Japan; Belikov, D [NIES, Japan; Saito, R [NIES, Japan; Yoshida, Y [National Institute for Environmental Studies, Japan; Morino, I [NIES, Japan; Uchino, O [NIES, Japan; Andres, Robert Joseph [ORNL; Yokota, T [National Institute for Environmental Studies, Japan; Maksyutov, S [National Institute for Environmental Studies, Japan

    2011-01-01

    We assessed the utility of global CO{sub 2} distributions brought by the Greenhouse gases Observing SATellite (GOSAT) in the estimation of regional CO{sub 2} fluxes. We did so by estimating monthly fluxes and their uncertainty over a one-year period between June 2009 and May 2010 from (1) observational data collected in existing networks of surface CO2 measurement sites (GLOBALVIEWCO2 2010; extrapolated to the year 2010) and (2) both the surface observations and column-averaged dry air mole fractions of CO{sub 2} (X{sub CO2}) retrieved from GOSAT soundings. Monthly means of the surface observations and GOSAT X{sub CO2} retrievals gridded to 5{sup o} x 5{sup o} cells were used here. The estimation was performed for 64 subcontinental-scale regions. We compared these two sets of results in terms of change in uncertainty associated with the flux estimates. The rate of reduction in the flux uncertainty, which represents the degree to which the GOSAT X{sub CO2} retrievals contribute to constraining the fluxes, was evaluated. We found that the GOSAT X{sub CO2} retrievals could lower the flux uncertainty by as much as 48% (annual mean). Pronounced uncertainty reduction was found in the fluxes estimated for regions in Africa, South America, and Asia, where the sparsity of the surface monitoring sites is most evident.

  4. Heat Flux Inhibition by Whistlers: Experimental Confirmation

    International Nuclear Information System (INIS)

    Eichler, D.

    2002-01-01

    Heat flux in weakly magnetized collisionless plasma is, according to theoretical predictions, limited by whistler turbulence that is generated by heat flux instabilities near threshold. Observations of solar wind electrons by Gary and coworkers appear to confirm the limit on heat flux as being roughly the product of the magnetic energy density and the electron thermal velocity, in agreement with prediction (Pistinner and Eichler 1998)

  5. Strong ideal convergence in probabilistic metric spaces

    Indian Academy of Sciences (India)

    sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and ... also important applications in nonlinear analysis [2]. The theory was brought to ..... for each t > 0 since each set on the right-hand side of the relation (3.1) belongs to I. Thus, by Definition 2.11 and the ...

  6. Large N baryons, strong coupling theory, quarks

    International Nuclear Information System (INIS)

    Sakita, B.

    1984-01-01

    It is shown that in QCD the large N limit is the same as the static strong coupling limit. By using the static strong coupling techniques some of the results of large N baryons are derived. The results are consistent with the large N SU(6) static quark model. (author)

  7. Optimization of strong and weak coordinates

    NARCIS (Netherlands)

    Swart, M.; Bickelhaupt, F.M.

    2006-01-01

    We present a new scheme for the geometry optimization of equilibrium and transition state structures that can be used for both strong and weak coordinates. We use a screening function that depends on atom-pair distances to differentiate strong coordinates from weak coordinates. This differentiation

  8. Strong decays of nucleon and delta resonances

    International Nuclear Information System (INIS)

    Bijker, R.; Leviatan, A.

    1996-01-01

    We study the strong couplings of the nucleon and delta resonances in a collective model. In the ensuing algebraic treatment we derive closed expressions for decay widths which are used to analyze the experimental data for strong decays into the pion and eta channels. (Author)

  9. Theoretical studies of strongly correlated fermions

    Energy Technology Data Exchange (ETDEWEB)

    Logan, D. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Strongly correlated fermions are investigated. An understanding of strongly correlated fermions underpins a diverse range of phenomena such as metal-insulator transitions, high-temperature superconductivity, magnetic impurity problems and the properties of heavy-fermion systems, in all of which local moments play an important role. (author).

  10. Designing optimal greenhouse gas monitoring networks for Australia

    Science.gov (United States)

    Ziehn, T.; Law, R. M.; Rayner, P. J.; Roff, G.

    2016-01-01

    Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG) flux estimates from concentration measurements. The optimal location of ground-based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM) in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (CO2) performed by Ziehn et al. (2014) to also minimise the uncertainty on the flux estimates for methane (CH4) and nitrous oxide (N2O), both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to five new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for CO2, CH4 and N2O and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that, while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.

  11. Modeling and Predicting Carbon and Water Fluxes Using Data-Driven Techniques in a Forest Ecosystem

    Directory of Open Access Journals (Sweden)

    Xianming Dou

    2017-12-01

    Full Text Available Accurate estimation of carbon and water fluxes of forest ecosystems is of particular importance for addressing the problems originating from global environmental change, and providing helpful information about carbon and water content for analyzing and diagnosing past and future climate change. The main focus of the current work was to investigate the feasibility of four comparatively new methods, including generalized regression neural network, group method of data handling (GMDH, extreme learning machine and adaptive neuro-fuzzy inference system (ANFIS, for elucidating the carbon and water fluxes in a forest ecosystem. A comparison was made between these models and two widely used data-driven models, artificial neural network (ANN and support vector machine (SVM. All the models were evaluated based on the following statistical indices: coefficient of determination, Nash-Sutcliffe efficiency, root mean square error and mean absolute error. Results indicated that the data-driven models are capable of accounting for most variance in each flux with the limited meteorological variables. The ANN model provided the best estimates for gross primary productivity (GPP and net ecosystem exchange (NEE, while the ANFIS model achieved the best for ecosystem respiration (R, indicating that no single model was consistently superior to others for the carbon flux prediction. In addition, the GMDH model consistently produced somewhat worse results for all the carbon flux and evapotranspiration (ET estimations. On the whole, among the carbon and water fluxes, all the models produced similar highly satisfactory accuracy for GPP, R and ET fluxes, and did a reasonable job of reproducing the eddy covariance NEE. Based on these findings, it was concluded that these advanced models are promising alternatives to ANN and SVM for estimating the terrestrial carbon and water fluxes.

  12. Regional-scale geostatistical inverse modeling of North American CO2 fluxes: a synthetic data study

    Directory of Open Access Journals (Sweden)

    A. M. Michalak

    2010-07-01

    Full Text Available A series of synthetic data experiments is performed to investigate the ability of a regional atmospheric inversion to estimate grid-scale CO2 fluxes during the growing season over North America. The inversions are performed within a geostatistical framework without the use of any prior flux estimates or auxiliary variables, in order to focus on the atmospheric constraint provided by the nine towers collecting continuous, calibrated CO2 measurements in 2004. Using synthetic measurements and their associated concentration footprints, flux and model-data mismatch covariance parameters are first optimized, and then fluxes and their uncertainties are estimated at three different temporal resolutions. These temporal resolutions, which include a four-day average, a four-day-average diurnal cycle with 3-hourly increments, and 3-hourly fluxes, are chosen to help assess the impact of temporal aggregation errors on the estimated fluxes and covariance parameters. Estimating fluxes at a temporal resolution that can adjust the diurnal variability is found to be critical both for recovering covariance parameters directly from the atmospheric data, and for inferring accurate ecoregion-scale fluxes. Accounting for both spatial and temporal a priori covariance in the flux distribution is also found to be necessary for recovering accurate a posteriori uncertainty bounds on the estimated fluxes. Overall, the results suggest that even a fairly sparse network of 9 towers collecting continuous CO2 measurements across the continent, used with no auxiliary information or prior estimates of the flux distribution in time or space, can be used to infer relatively accurate monthly ecoregion scale CO2 surface fluxes over North America within estimated uncertainty bounds. Simulated random transport error is shown to decrease the quality of flux estimates in under-constrained areas at the ecoregion scale, although the uncertainty bounds remain realistic. While these synthetic

  13. Seismic switch for strong motion measurement

    Science.gov (United States)

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  14. Dimensional reduction of a generalized flux problem

    International Nuclear Information System (INIS)

    Moroz, A.

    1992-01-01

    In this paper, a generalized flux problem with Abelian and non-Abelian fluxes is considered. In the Abelian case we shall show that the generalized flux problem for tight-binding models of noninteracting electrons on either 2n- or (2n + 1)-dimensional lattice can always be reduced to an n-dimensional hopping problem. A residual freedom in this reduction enables one to identify equivalence classes of hopping Hamiltonians which have the same spectrum. In the non-Abelian case, the reduction is not possible in general unless the flux tensor factorizes into an Abelian one times are element of the corresponding algebra

  15. From strong to ultrastrong coupling in circuit QED architectures

    International Nuclear Information System (INIS)

    Niemczyk, Thomas

    2011-01-01

    The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)

  16. Axions and the strong CP problem in M theory

    International Nuclear Information System (INIS)

    Choi, K.

    1997-01-01

    We examine the possibility that the strong CP problem is solved by string-theoretic axions in the strong-coupling limit of the E 8 xE 8 ' heterotic string theory (M theory). We first discuss some generic features of gauge kinetic functions in compactified M theory, and examine in detail the axion potential induced by the explicit breakings other than the QCD anomaly of the nonlinear U(1) PQ symmetries of string-theoretic axions. It is argued based on supersymmetry and discrete gauge symmetries that if the compactification radius is large enough, there can be a U(1) PQ symmetry whose breaking other than the QCD anomaly, whatever its microscopic origin is, is suppressed enough for the axion mechanism to work. Phenomenological viability of such a large radius crucially depends upon the quantized coefficients in gauge kinetic functions. We note that the large radius required for the axion mechanism is viable only in a limited class of models. For instance, for compactifications on a smooth Calabi-Yau manifold with a vanishing E 8 ' field strength, it is viable only when the quantized flux of the antisymmetric tensor field in M theory has a minimal nonzero value. It is also stressed that this large compactification radius allows the QCD axion in M theory to be cosmologically viable in the presence of a late time entropy production. copyright 1997 The American Physical Society

  17. Strong Localization in Disordered Media: Analysis of the Backscattering Cone

    KAUST Repository

    Delgado, Edgar

    2012-06-01

    A very interesting effect in light propagation through a disordered system is Anderson localization of light, this phenomenon emerges as the result of multiple scattering of waves by electric inhomogeneities like spatial variations of index of refraction; as the amount of scattering is increased, light propagation is converted from quasi-diffusive to exponentially localized, with photons confined in a limited spatial region characterized by a fundamental quantity known as localization length. Light localization is strongly related to another interference phenomenon emerged from the multiple scattering effect: the coherent backscattering effect. In multiple scattering of waves, in fact, coherence is preserved in the backscattering direction and produces a reinforcement of the field flux originating an observable peak in the backscattered intensity, known as backscattering cone. The study of this peak provide quantitative information about the transport properties of light in the material. In this thesis we report a complete FDTD ab-initio study of light localization and coherent backscattering. In particular, we consider a supercontinuum pulse impinging on a sample composed of randomly positioned scatterers. We study coherent backscattering by averaging over several realizations of the sample properties. We study then the coherent backscattering cone properties as the relative permittivity of the sample is changed, relating the latter with the light localization inside the sample. We demonstrate important relationships between the width of the backscattering cone and the localization length, which shows a linear proportionality in the strong localization regime.

  18. Differential RNA-seq, Multi-Network Analysis and Metabolic Regulation Analysis of Kluyveromyces marxianus Reveals a Compartmentalised Response to Xylose.

    Directory of Open Access Journals (Sweden)

    Du Toit W P Schabort

    Full Text Available We investigated the transcriptomic response of a new strain of the yeast Kluyveromyces marxianus, in glucose and xylose media using RNA-seq. The data were explored in a number of innovative ways using a variety of networks types, pathway maps, enrichment statistics, reporter metabolites and a flux simulation model, revealing different aspects of the genome-scale response in an integrative systems biology manner. The importance of the subcellular localisation in the transcriptomic response is emphasised here, revealing new insights. As was previously reported by others using a rich medium, we show that peroxisomal fatty acid catabolism was dramatically up-regulated in a defined xylose mineral medium without fatty acids, along with mechanisms to activate fatty acids and transfer products of β-oxidation to the mitochondria. Notably, we observed a strong up-regulation of the 2-methylcitrate pathway, supporting capacity for odd-chain fatty acid catabolism. Next we asked which pathways would respond to the additional requirement for NADPH for xylose utilisation, and rationalised the unexpected results using simulations with Flux Balance Analysis. On a fundamental level, we investigated the contribution of the hierarchical and metabolic regulation levels to the regulation of metabolic fluxes. Metabolic regulation analysis suggested that genetic level regulation plays a major role in regulating metabolic fluxes in adaptation to xylose, even for the high capacity reactions, which is unexpected. In addition, isozyme switching may play an important role in re-routing of metabolic fluxes in subcellular compartments in K. marxianus.

  19. Pursuing nuclear energy with no nuclear contamination - from neutron flux reactor to deuteron flux reactor

    International Nuclear Information System (INIS)

    Li, X. Z.; Wei, Q. M.; Liu, B.; Zhu, X. G.; Ren, S. L.

    2007-01-01

    Pursuing nuclear energy with no nuclear contamination has been a long endeavor since the first fission reactor in 1942. Four major concepts have been the key issues: i.e. resonance, negative feed back, self-sustaining, nuclear radiation. When nuclear energy was just discovered in laboratory, the key issue was to enlarge it from the micro-scale to the macro-scale. Slowing-down the neutrons was the key issue to enhance the fission cross-section in order to build-up the neutron flux through the chain-reactions using resonance between neutron and fissile materials. Once the chain-reaction was realized, the negative feed-back was the key issue to keep the neutron flux at the allowable level. The negative reaction coefficient was introduced by the thermal expansion, and the resonant absorption in cadmium or boron was used to have a self-sustaining fission reactor with neutron flux. Then the strong neutron flux became the origin of all nuclear contamination, and a heavy shielding limits the application of the nuclear energy. The fusion approach to nuclear energy was much longer; nevertheless, it evolved with the similar issues. The resonance between deuteron and triton was resorted to enlarge the fusion cross section in order to keep a self-sustaining hot plasma. However, the 14 MeV neutron emission became the origin of all nuclear contamination again. Deuteron plus helium-3 fusion reaction was proposed to avoid neutron emission although there are two more difficulties: the helium-3 is supposed to be carried back from the moon; and much more higher temperature plasma has to be confined while 50 years needed to realized the deuteron-triton plasma already. Even if deuteron plus helium-3 fusion plasma might be realized in a much higher temperature plasma, we still have the neutron emission from the deuteron-deuteron fusion reaction in the deuteron plus helium-3 fusion plasma. Polarized deuteron-deuteron fusion reaction was proposed early in 1980's to select the neutron

  20. Superconductivity in the background of disordered flux state of spins

    International Nuclear Information System (INIS)

    Feng Shiping; Guo Rui; Han Fei

    1992-01-01

    The phase diagram of the copper oxide materials with the antiferromagnetic and the superconducting properties as a function of doping δ is obtained in the framework of the t-J model by using the Schwinger boson-slave fermion theory. The results show that the spiral order of spins competes and coexists with superconductivity for small doping δ. For large doping δ, superconductivity appears, which may be caused by the occurrence of a disordered flux state of spins. The phase diagram suggests a strong relationship between antiferromagnetism and superconductivity. (orig.)