WorldWideScience

Sample records for strong negative inclination

  1. An Experimental Investigation on Inclined Negatively Buoyant Jets

    Directory of Open Access Journals (Sweden)

    Raed Bashitialshaaer

    2012-09-01

    Full Text Available An experimental study was performed to investigate the behavior of inclined negatively buoyant jets. Such jets arise when brine is discharged from desalination plants. A turbulent jet with a specific salinity was discharged through a circular nozzle at an angle to the horizontal into a tank with fresh water and the spatial evolution of the jet was recorded. Four different initial jet parameters were changed, namely the nozzle diameter, the initial jet inclination, the jet density and the flow rate. Five geometric quantities describing the jet trajectory that are useful in the design of brine discharge systems were determined. Dimensional analysis demonstrated that the geometric jet quantities studied, if normalized with the jet exit diameter, could be related to the densimetric Froude number. Analysis of the collected data showed that this was the case for a Froude number less than 100, whereas for larger values of the Froude number the scatter in the data increased significantly. As has been observed in some previous investigations, the slope of the best-fit straight line through the data points was a function of the initial jet angle (θ, where the slope increased with θ for the maximum levels (Ym studied, but had a more complex behavior for horizontal distances.

  2. Revealing strong bias in common measures of galaxy properties using new inclination-independent structures

    Science.gov (United States)

    Devour, Brian M.; Bell, Eric F.

    2017-06-01

    Accurate measurement of galaxy structures is a prerequisite for quantitative investigation of galaxy properties or evolution. Yet, the impact of galaxy inclination and dust on commonly used metrics of galaxy structure is poorly quantified. We use infrared data sets to select inclination-independent samples of disc and flattened elliptical galaxies. These samples show strong variation in Sérsic index, concentration and half-light radii with inclination. We develop novel inclination-independent galaxy structures by collapsing the light distribution in the near-infrared on to the major axis, yielding inclination-independent 'linear' measures of size and concentration. With these new metrics we select a sample of Milky Way analogue galaxies with similar stellar masses, star formation rates, sizes and concentrations. Optical luminosities, light distributions and spectral properties are all found to vary strongly with inclination: When inclining to edge-on, r-band luminosities dim by >1 magnitude, sizes decrease by a factor of 2, 'dust-corrected' estimates of star formation rate drop threefold, metallicities decrease by 0.1 dex and edge-on galaxies are half as likely to be classified as star forming. These systematic effects should be accounted for in analyses of galaxy properties.

  3. Laboratory experiments on the interaction between inclined negatively buoyant jets and regular waves

    Directory of Open Access Journals (Sweden)

    Ferrari Simone

    2015-01-01

    Full Text Available In this paper we present the results from a series of laboratory experiments on inclined negatively buoyant jets released in a receiving environment with waves. This simulates the case, typical of many practical applications, of the sea discharge of fluids denser than the receiving environment, as in the case of the brine from a desalination plant. The experiments were performed employing a Light Induced Fluorescence (LIF technique, in order to measure the concentration fields. Both the jet and the wave motion features were varied, in order to simulate a typical discharge into the Mediterranean Sea. Reference discharges in a stagnant environment were performed as well. The jet behaviour was analyzed from a statistical point of view, both considering the global phenomenon and its single phases. The influence of the wave motion on the inclined negatively buoyant jet geometry and dilution turns out to be a combined action of a split into two branches of the jet and a rotation. Their combined action decreases the jet maximum height and the impact distance, and is the main cause for the higher dilution reached in a wavy environment.

  4. Strong negative terahertz photoconductivity in photoexcited graphene

    Science.gov (United States)

    Fu, Maixia; Wang, Xinke; Ye, Jiasheng; Feng, Shengfei; Sun, Wenfeng; Han, Peng; Zhang, Yan

    2018-01-01

    Terahertz (THz) response of a chemical vapor deposited graphene on a quartz substrate has been investigated by using an ultrafast optical-pump THz-probe spectroscopy. Without photoexcitation, the frequency-dependence optical conductivity shows a strong carrier response owing to the intrinsically doped graphene. Upon photoexcitation, an enhancement in THz transmission is observed and the transmission increases nonlinearly with the increase of pump power, which is rooted in a reduction of intrinsic conductivity arising from the strong enhancement of carrier scattering rather than THz emission occurrence. The modulation depth of 18.8% was experimentally achieved, which is more than four times greater than that of the previous reported. The photoinduced response here highlights the variety of response possible in graphene depending on the sample quality, carrier mobility and doping level. The graphene provides promising applications in high-performance THz modulators and THz photoelectric devices.

  5. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    Science.gov (United States)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 Fusion 4, 91 (1978).

  6. Negative mobility of a Brownian particle: Strong damping regime

    Science.gov (United States)

    Słapik, A.; Łuczka, J.; Spiechowicz, J.

    2018-02-01

    We study impact of inertia on directed transport of a Brownian particle under non-equilibrium conditions: the particle moves in a one-dimensional periodic and symmetric potential, is driven by both an unbiased time-periodic force and a constant force, and is coupled to a thermostat of temperature T. Within selected parameter regimes this system exhibits negative mobility, which means that the particle moves in the direction opposite to the direction of the constant force. It is known that in such a setup the inertial term is essential for the emergence of negative mobility and it cannot be detected in the limiting case of overdamped dynamics. We analyse inertial effects and show that negative mobility can be observed even in the strong damping regime. We determine the optimal dimensionless mass for the presence of negative mobility and reveal three mechanisms standing behind this anomaly: deterministic chaotic, thermal noise induced and deterministic non-chaotic. The last origin has never been reported. It may provide guidance to the possibility of observation of negative mobility for strongly damped dynamics which is of fundamental importance from the point of view of biological systems, all of which in situ operate in fluctuating environments.

  7. Debunking vaccination myths: strong risk negations can increase perceived vaccination risks.

    Science.gov (United States)

    Betsch, Cornelia; Sachse, Katharina

    2013-02-01

    Information about risks is often contradictory, especially in the health domain. A vast amount of bizarre information on vaccine-adverse events (VAE) can be found on the Internet; most are posted by antivaccination activists. Several actors in the health sector struggle against these statements by negating claimed risks with scientific explanations. The goal of the present work is to find optimal ways of negating risk to decrease risk perceptions. In two online experiments, we varied the extremity of risk negations and their source. Perception of the probability of VAE, their expected severity (both variables serve as indicators of perceived risk), and vaccination intentions. Paradoxically, messages strongly indicating that there is "no risk" led to a higher perceived vaccination risk than weak negations. This finding extends previous work on the negativity bias, which has shown that information stating the presence of risk decreases risk perceptions, while information negating the existence of risk increases such perceptions. Several moderators were also tested; however, the effect occurred independently of the number of negations, recipient involvement, and attitude. Solely the credibility of the information source interacted with the extremity of risk negation: For credible sources (governmental institutions), strong and weak risk negations lead to similar perceived risk, while for less credible sources (pharmaceutical industries) weak negations lead to less perceived risk than strong negations. Optimal risk negation may profit from moderate rather than extreme formulations as a source's trustworthiness can vary.

  8. Inclined planes

    CERN Document Server

    Rivera, Andrea

    2016-01-01

    From moving ramps to playground slides, inclined planes are at work all over in our world today. Learn all about them in five easy-to-read chapters. Vibrant, full-color photos, bolded glossary words, and a key stats section let readers zoom in even deeper. Aligned to Common Core Standards and correlated to state standards. Abdo Zoom is a division of ABDO.

  9. Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Directory of Open Access Journals (Sweden)

    Jenkins Dafyd J

    2008-01-01

    Full Text Available Abstract Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusion Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic

  10. Achieving a strongly negative scattering asymmetry factor in random media composed of dual-dipolar particles

    Science.gov (United States)

    Wang, B. X.; Zhao, C. Y.

    2018-02-01

    Understanding radiative transfer in random media like micro- or nanoporous and particulate materials, allows people to manipulate the scattering and absorption of radiation, as well as opens new possibilities in applications such as imaging through turbid media, photovoltaics, and radiative cooling. A strong-backscattering phase function, i.e., a negative scattering asymmetry parameter g , is of great interest, which can possibly lead to unusual radiative transport phenomena, for instance, Anderson localization of light. Here we demonstrate that by utilizing the structural correlations and second Kerker condition for a disordered medium composed of randomly distributed silicon nanoparticles, a strongly negative scattering asymmetry factor (g ˜-0.5 ) for multiple light scattering can be realized in the near infrared. Based on the multipole expansion of Foldy-Lax equations and quasicrystalline approximation (QCA), we have rigorously derived analytical expressions for the effective propagation constant and scattering phase function for a random system containing spherical particles, by taking the effect of structural correlations into account. We show that as the concentration of scattering particles rises, the backscattering is also enhanced. Moreover, in this circumstance, the transport mean free path is largely reduced and even becomes smaller than that predicted by independent scattering approximation. We further explore the dependent scattering effects, including the modification of electric and magnetic dipole excitations and far-field interference effect, both induced and influenced by the structural correlations, for volume fraction of particles up to fv˜0.25 . Our results have profound implications in harnessing micro- or nanoscale radiative transfer through random media.

  11. Stability of matrices with sufficiently strong negative-dominant-diagonal submatrices

    NARCIS (Netherlands)

    Nieuwenhuis, H.J.; Schoonbeek, L.

    A well-known sufficient condition for stability of a system of linear first-order differential equations is that the matrix of the homogeneous dynamics has a negative dominant diagonal. However, this condition cannot be applied to systems of second-order differential equations. In this paper we

  12. Negative tunneling magneto-resistance in quantum wires with strong spin-orbit coupling.

    Science.gov (United States)

    Han, Seungju; Serra, Llorenç; Choi, Mahn-Soo

    2015-07-01

    We consider a two-dimensional magnetic tunnel junction of the FM/I/QW(FM+SO)/I/N structure, where FM, I and QW(FM+SO) stand for a ferromagnet, an insulator and a quantum wire with both magnetic ordering and Rashba spin-orbit (SOC), respectively. The tunneling magneto-resistance (TMR) exhibits strong anisotropy and switches sign as the polarization direction varies relative to the quantum-wire axis, due to interplay among the one-dimensionality, the magnetic ordering, and the strong SOC of the quantum wire.

  13. Strong commitment to traditional Protestant religious beliefs is negatively related to beliefs in paranormal phenomena.

    Science.gov (United States)

    Hillstrom, E L; Strachan, M

    2000-02-01

    Numerous studies have yielded small, negative correlations between measures of paranormal and "traditional religious beliefs". This may partly reflect opinions of Christians in the samples who take biblical sanctions against many "paranormal" activities seriously. To test this, 391 college students (270 women and 121 men) rated their beliefs in various paranormal phenomena and were classified as Believers, Nominal Believers, and Nonbelievers on the strength of their self-rated commitment to key biblical (particularly Protestant) doctrines. As predicted, Believers were significantly less likely than Nominal Believers or Nonbelievers to endorse reincarnation, contact with the dead, UFOs, telepathy, prophecy, psychokinesis, or healing, while the beliefs of Nominal Believers were similar to those of Nonbelievers. Substantial percentages of Nominal and Nonbelievers (30-50%) indicated at least moderate acceptance of the paranormal phenomena surveyed.

  14. Vehicle with inclinable caterpillars

    International Nuclear Information System (INIS)

    Carra, O.; Delevallee, A.

    1991-01-01

    Vehicle has a body with propulsion assemblies that drive caterpillar tracks. When a propulsion unit inclines about its articulation axis it is aided by an advance movement of the caterpillar track in the opposite direction of rotation [fr

  15. Application of the nuclear liquid drop model to a negative hydrogen ion in the strong electric field of a laser

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Kornyushin, Y. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)]. E-mail: yurik@vms.huji.ac.il

    2000-09-01

    The nuclear liquid drop model is applied to describe some basic properties of a negative hydrogen ion in the strong electric field of a laser. The equilibrium ionic size, energy and polarizability of the ion are calculated. Collective modes of the dipole oscillations are considered. A barrier which arises in a strong electric field is studied. The barrier vanishes at some large value of the electric field, which is defined as a critical value. The dependence of the critical field on frequency is studied. At frequencies {omega}{>=}({omega}{sub d}/2{sup 1/2}) ({omega}{sub d} is the frequency of the dipole oscillations of the electronic cloud relative to the nucleus) the barrier remains for any field. At high frequencies a 'stripping' mechanism for instability arises. At the resonant frequency a rather low amplitude of the electric field causes the 'stripping' instability. (author)

  16. Can we bet on negative emissions to achieve the 2°C target even under strong carbon cycle feedbacks?

    Science.gov (United States)

    Tanaka, K.; Yamagata, Y.; Yokohata, T.; Emori, S.; Hanaoka, T.

    2015-12-01

    Negative emission technologies such as Bioenergy with Carbon dioxide Capture and Storage (BioCCS) play an ever more crucial role in meeting the 2°C stabilization target. However, such technologies are currently at their infancy and their future penetrations may fall short of the scale required to stabilize the warming. Furthermore, the overshoot in the mid-century prior to a full realization of negative emissions would give rise to a risk because such a temporal but excessive warming above 2°C might amplify itself by strengthening climate-carbon cycle feedbacks. It has not been extensively assessed yet how carbon cycle feedbacks might play out during the overshoot in the context of negative emissions. This study explores how 2°C stabilization pathways, in particular those which undergo overshoot, can be influenced by carbon cycle feedbacks and asks their climatic and economic consequences. We compute 2°C stabilization emissions scenarios under a cost-effectiveness principle, in which the total abatement costs are minimized such that the global warming is capped at 2°C. We employ a reduced-complexity model, the Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate model (ACC2), which comprises a box model of the global carbon cycle, simple parameterizations of the atmospheric chemistry, and a land-ocean energy balance model. The total abatement costs are estimated from the marginal abatement cost functions for CO2, CH4, N2O, and BC.Our preliminary results show that, if carbon cycle feedbacks turn out to be stronger than what is known today, it would incur substantial abatement costs to keep up with the 2°C stabilization goal. Our results also suggest that it would be less expensive in the long run to plan for a 2°C stabilization pathway by considering strong carbon cycle feedbacks because it would cost more if we correct the emission pathway in the mid-century to adjust for unexpectedly large carbon cycle feedbacks during overshoot. Furthermore, our

  17. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis

    DEFF Research Database (Denmark)

    Andersen, H.W.; Pedersen, M.B.; Hammer, Karin

    2001-01-01

    a homolactic pattern of fermentation. Only after lactate dehydrogenase activity was reduced ninefold compared to the wild-type was the growth rate significantly affected, and the ldh mutants started to produce mixed-acid products (formate, acetate, and ethanol in addition to lactate). Flux control coefficients...... enhanced in the strain deleted for lactate dehydrogenase. What is more surprising is that the enzyme had a strong negative control (C- LDH(F1)J=-1.3) on the flux to formate at the wild-type level of lactate dehydrogenase. Furthermore, we showed that L. lactis has limited excess of capacity of lactate...... dehydrogenase, only 70% more than needed to catalyze the lactate flux in the wild- type cells....

  18. Tendon progenitor cells in injured tendons have strong chondrogenic potential: the CD105-negative subpopulation induces chondrogenic degeneration.

    Science.gov (United States)

    Asai, Shuji; Otsuru, Satoru; Candela, Maria Elena; Cantley, Leslie; Uchibe, Kenta; Hofmann, Ted J; Zhang, Kairui; Wapner, Keith L; Soslowsky, Louis J; Horwitz, Edwin M; Enomoto-Iwamoto, Motomi

    2014-12-01

    To study the cellular mechanism of the tendon repair process, we used a mouse Achilles tendon injury model to focus on the cells recruited to the injured site. The cells isolated from injured tendon 1 week after the surgery and uninjured tendons contained the connective tissue progenitor populations as determined by colony-forming capacity, cell surface markers, and multipotency. When the injured tendon-derived progenitor cells (inTPCs) were transplanted into injured Achilles tendons, they were not only integrated in the regenerating area expressing tenogenic phenotype but also trans-differentiated into chondrogenic cells in the degenerative lesion that underwent ectopic endochondral ossification. Surprisingly, the micromass culture of the inTPCs rapidly underwent chondrogenic differentiation even in the absence of exogenous bone morphogenetic proteins or TGFβs. The cells isolated from human ruptured tendon tissues also showed connective tissue progenitor properties and exhibited stronger chondrogenic ability than bone marrow stromal cells. The mouse inTPCs contained two subpopulations one positive and one negative for CD105, a coreceptor of the TGFβ superfamily. The CD105-negative cells showed superior chondrogenic potential in vitro and induced larger chondroid degenerative lesions in mice as compared to the CD105-positive cells. These findings indicate that tendon progenitor cells are recruited to the injured site of tendons and have a strong chondrogenic potential and that the CD105-negative population of these cells would be the cause for chondroid degeneration in injured tendons. The newly identified cells recruited to the injured tendon may provide novel targets to develop therapeutic strategies to facilitate tendon repair. © 2014 AlphaMed Press.

  19. Shallow bias in Mediterranean paleomagnetic directions caused by inclination error

    NARCIS (Netherlands)

    Krijgsman, W.; Tauxe, Lisa

    2004-01-01

    A variety of paleomagnetic data from the Mediterranean region show a strong bias toward shallow inclinations. This pattern of shallow inclinations has been interpreted to be the result of (1) major northward terrane displacement, (2) large nondipole components in the Earth’s magnetic field, and

  20. Evaporation of inclined water droplets

    Science.gov (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  1. Bidispersive-inclined convection

    Science.gov (United States)

    Mulone, Giuseppe; Straughan, Brian

    2016-01-01

    A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068–3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only. PMID:27616934

  2. Stress field of a dislocating inclined fault

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Wang, T.

    1980-02-01

    Analytical expressions are derived for the stress field caused by a rectangular dislocating fault of an arbitrary dip in a semi-infinite elastic medium for the case of unequal Lame constants. The results of computations for the stress fields on the ground surface of an inclined strike-slip and an inclined dip-slip fault are represented by contour maps. The effects of Poisson Ratio of the medium, the dip angle, upper and lower boundaries of the faults on the stress field at surface have been discussed. As an application, the contour maps for shear stress and hydrostatic stress of near fields of the Tonghai (1970), Haicheng (1975) and Tangshan (1976) earthquakes have been calculated and compared with the spatial distributions of strong aftershocks of these earthquakes. It is found that most of the strong aftershocks are distributed in the regions of tensional stress, where the hydrostatic stress is positive.

  3. Stress field of a dislocating inclined fault

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Wang, T.

    1980-02-01

    In this paper, analytical expressions of the stress field given rise by a rectangular dislocating fault of an arbitrary dip in a semi-infinite elastic medium for the case of unequal Lame constants are derived. The results of computations for the stress fields on the ground surface of an inclined strike-slip and an inclined dip-slip fault are represented by contour maps. The effects of the Poisson Ratio of the medium, the dip angle, upper and lower boundaries of the faults on the stress field at the surface have been discussed. As an application, the contour maps for shear stress and hydrostatic stress of near fields of the Tonghai (1970), Haicheng, (1975) and Tangshan (1976) earthquakes have been calculated and compared with the spatial distributions of strong aftershocks of these earthquakes. It is found that most of the strong aftershocks are distributed in the regions of tensional stress where the hydrostatic stress is positive.

  4. The role of mental imagery in depression: Negative mental imagery induces strong implicit and explicit affect in depression

    Directory of Open Access Journals (Sweden)

    Stefanie Maria Görgen

    2015-07-01

    Full Text Available Mental imagery, seeing with the mind’s eyes, can induce stronger positive as well as negative affect compared to verbal processing. Given this emotion-amplifying effect, it appears likely that mental images play an important role in affective disorders. According to the subcomponents model of depression, depressed mood is maintained by both negative imagery (which amplifies negative mood and less efficient positive imagery processes. Empirical research on the link between mental imagery and affect in clinical depression, however, is still sparse. This study aimed at testing the role of mental imagery in depression, using a modified version of the Affect Misattribution Procedure (AMP and the Self-Assessment Manikin (SAM to assess implicit (AMP and explicit (SAM affect elicited by mental images, pictures, and verbal processing in clinically depressed participants (n = 32 compared to healthy controls (n = 32. In individuals with a depressive disorder, compared to healthy controls, negative mental images induced stronger negative affect in the explicit as well as implicit measure. Negative mental imagery did not, however, elicit greater increases in explicitly and implicitly assessed negative affect compared to other processing modalities (verbal processing, pictures in the depressed group. Additionally, a positive imagery deficit in depression was observed in the explicit measure. Interestingly, the two groups did not differ in implicitly assessed affect after positive imagery, indicating that depressed individuals might benefit from positive imagery on an implicit or automatic level. Overall, our findings suggest that mental imagery also plays an important role in depression and confirm the potential of novel treatment approaches for depression such as the promotion of positive imagery.

  5. The Relationship between Mg ii Broad Emission and Quasar Inclination Angle

    Energy Technology Data Exchange (ETDEWEB)

    Wildy, Conor; Czerny, Bozena, E-mail: wildy@cft.edu.pl [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland)

    2017-11-14

    Several observed spectral properties of quasars are believed to be influenced by quasar orientation. In this investigation we examine the effect of orientation on the Mg ii line located at 2,798 Å in a sample of 36 radio-loud quasars, with orientation angles having been obtained in a previous study using radio observations. We find no significant relationship between orientation angle and either Mg ii line full-width at half-maximum or equivalent width. The lack of correlation with inclination angle contradicts previous studies which also use radio data as a proxy for inclination angle and suggests the Mg ii emission region does not occupy a disk-like geometry. The lack of correlation with Mg ii equivalent width, however, is reported in at least one previous study. Although the significance is not very strong (86%), there is a possible negative relationship between inclination angle and Fe ii strength which, if true, could explain the Fe ii anti-correlation with [O iii] strength associated with Eigenvector 1. Interestingly, there are objects having almost edge-on inclinations while still exhibiting broad lines. This could be explained by a torus which is either clumpy (allowing sight lines to the central engine) or mis-aligned with the accretion disk.

  6. The Relationship between Mg ii Broad Emission and Quasar Inclination Angle

    Directory of Open Access Journals (Sweden)

    Conor Wildy

    2017-11-01

    Full Text Available Several observed spectral properties of quasars are believed to be influenced by quasar orientation. In this investigation we examine the effect of orientation on the Mg ii line located at 2,798 Å in a sample of 36 radio-loud quasars, with orientation angles having been obtained in a previous study using radio observations. We find no significant relationship between orientation angle and either Mg ii line full-width at half-maximum or equivalent width. The lack of correlation with inclination angle contradicts previous studies which also use radio data as a proxy for inclination angle and suggests the Mg ii emission region does not occupy a disk-like geometry. The lack of correlation with Mg ii equivalent width, however, is reported in at least one previous study. Although the significance is not very strong (86%, there is a possible negative relationship between inclination angle and Fe ii strength which, if true, could explain the Fe ii anti-correlation with [O iii] strength associated with Eigenvector 1. Interestingly, there are objects having almost edge-on inclinations while still exhibiting broad lines. This could be explained by a torus which is either clumpy (allowing sight lines to the central engine or mis-aligned with the accretion disk.

  7. Gibberellin mediates the development of gelatinous fibres in the tension wood of inclined Acacia mangium seedlings.

    Science.gov (United States)

    Nugroho, Widyanto Dwi; Nakaba, Satoshi; Yamagishi, Yusuke; Begum, Shahanara; Marsoem, Sri Nugroho; Ko, Jae-Heung; Jin, Hyun-O; Funada, Ryo

    2013-11-01

    Gibberellin stimulates negative gravitropism and the formation of tension wood in tilted Acacia mangium seedlings, while inhibitors of gibberellin synthesis strongly inhibit the return to vertical growth and suppress the formation of tension wood. To characterize the role of gibberellin in tension wood formation and gravitropism, this study investigated the role of gibberellin in the development of gelatinous fibres and in the changes in anatomical characteristics of woody elements in Acacia mangium seedlings exposed to a gravitational stimulus. Gibberellin, paclobutrazol and uniconazole-P were applied to the soil in which seedlings were growing, using distilled water as the control. Three days after the start of treatment, seedlings were inclined at 45 ° to the vertical and samples were harvested 2 months later. The effects of the treatments on wood fibres, vessel elements and ray parenchyma cells were analysed in tension wood in the upper part of inclined stems and in the opposite wood on the lower side of inclined stems. Application of paclobutrazol or uniconazole-P inhibited the increase in the thickness of gelatinous layers and prevented the elongation of gelatinous fibres in the tension wood of inclined stems. By contrast, gibberellin stimulated the elongation of these fibres. Application of gibberellin and inhibitors of gibberellin biosynthesis had only minor effects on the anatomical characteristics of vessel and ray parenchyma cells. The results suggest that gibberellin is important for the development of gelatinous fibres in the tension wood of A. mangium seedlings and therefore in gravitropism.

  8. Strong and Weak Readings in the Domain of Worlds: A Negative Polar Modal and Children's Scope Assignment.

    Science.gov (United States)

    Koring, Loes; Meroni, Luisa; Moscati, Vincenzo

    2018-03-22

    This study investigates children's interpretation of sentences with two logical operators: Dutch universal modal hoeven and negation (niet). In adult Dutch, hoeven is an NPI that necessarily scopes under negation, giving rise to a NOT > NECESSARY reading. The findings from a hidden-object task with 5- and 6-year-old children showed that children's performance is suggestive of an interpretation of sentences with hoeft niet in which the modal scopes over negation (NECESSARY > NOT). This is in line with the Semantic Subset Principle that dictates that children should opt for the strongest possible reading in case of potential scope ambiguities. The full pattern of results, however, seems to be determined, in addition, by a particular strategy children use when facing uncertainty called Premature Closure.

  9. Strong room-temperature negative transconductance in an axial Si/Ge hetero-nanowire tunneling field-effect transistor

    Science.gov (United States)

    Zhang, Peng; Le, Son T.; Hou, Xiaoxiao; Zaslavsky, A.; Perea, Daniel E.; Dayeh, Shadi A.; Picraux, S. T.

    2014-08-01

    We report on room-temperature negative transconductance (NTC) in axial Si/Ge hetero-nanowire tunneling field-effect transistors. The NTC produces a current peak-to-valley ratio >45, a high value for a Si-based device. We characterize the NTC over a range of gate VG and drain VD voltages, finding that NTC persists down to VD = -50 mV. The physical mechanism responsible for the NTC is the VG-induced depletion in the p-Ge section that eventually reduces the maximum electric field that triggers the tunneling ID, as confirmed via three-dimensional (3D) technology computer-aided design simulations.

  10. Starting off on the right foot: strong right-footers respond faster with the right foot to positive words and with the left foot to negative words.

    Science.gov (United States)

    de la Vega, Irmgard; Graebe, Julia; Härtner, Leonie; Dudschig, Carolin; Kaup, Barbara

    2015-01-01

    Recent studies have provided evidence for an association between valence and left/right modulated by handedness, which is predicted by the body-specificity hypothesis (Casasanto, 2009) and also reflected in response times. We investigated whether such a response facilitation can also be observed with foot responses. Right-footed participants classified positive and negative words according to their valence by pressing a key with their left or right foot. A significant interaction between valence and foot only emerged in the by-items analysis. However, when dividing participants into two groups depending on the strength of their footedness, an interaction between valence and left/right was observed for strong right-footers, who responded faster with the right foot to positive words, and with the left foot to negative words. No interaction emerged for weak right-footers. The results strongly support the assumption that fluency lies at the core of the association between valence and left/right.

  11. Entrepreneurial Inclination Among Business Students: A Malaysian Study

    Directory of Open Access Journals (Sweden)

    Yet-Mee Lim

    2012-10-01

    Full Text Available Entrepreneurship has been the fundamental topics of discussion among the politicians, economists, and academics. Business creation is especially critical in developing countries to stimulate economic growth. The present study attempts to examine entrepreneurial inclination among students who are a potential source of entrepreneurs. The fi ndings of the present research study indicate that majority of our business students are not entrepreneurial-inclined. They do not seem to possess strong entrepreneurial characteristics and entrepreneurial skills, and they are not keen in starting a new business. The roles of higher institutes of education and the government in promoting entrepreneurship are discussed.

  12. Bubble Formation within Filaments of Melt-Processed Bi2212 wires and its strongly negative effect on the Critical Current Density

    CERN Document Server

    Kametani, F; Jiang, J; Scheuerlein, C; Malagoli, A; Di Michiel, M; Huang, Y; Miao, H; Parrell, J A; Hellstrom, E E; Larbalestier, D C

    2011-01-01

    Most studies of Bi2Sr2CaCu2Ox (Bi2212) show that the critical current density Jc is limited by the connectivity of the filaments, but what determines the connectivity is still elusive. Here we report on the role played by filament porosity in limiting Jc. By a microstructural investigation of wires quenched from the melt state, we find that porosity in the unreacted wire agglomerates into bubbles that segment the Bi2212 melt within the filaments into discrete sections. These bubbles do not disappear during subsequent processing because they are only partially filled by Bi2212 grains as the Bi2212 forms on cooling. Correlating the microstructure of quenched wires to their final, fully processed Jc values shows an inverse relation between Jc and bubble density. Bubbles are variable between conductors and perhaps from sample to sample, but they occur frequently and almost completely fill the filament diameter, so they exert a strongly variable but always negative effect on Jc. Bubbles reduce the continuous Bi221...

  13. Investigating the heat transfer on the top side of inclined printed circuit boards during vapour phase soldering

    International Nuclear Information System (INIS)

    Illés, Balázs; Géczy, Attila

    2016-01-01

    Highlights: • Investigating the effect of inclination on heat transfer uniformity and intensity during VPS. • Even moderate inclination has high impact on the condensate layer and on the heat transfer. • Inclination under 1° has negative effect on temperature distribution of the soldered board. • Inclination from 1° to 10° improves heat transfer uniformity of vapour phase soldering. • Inclination can help to reduce soldering failures during vapour phase soldering. - Abstract: In this paper, heat transfer and condensate layer formation was investigated by numerical simulations on the top side of inclined printed circuit boards during vapour phase soldering. The phase change on the inclined surface and the transfer mechanisms in the condensate layer were embedded in a three-dimensional model. Steady-state and saturated vapour conditions were applied as boundary conditions in order to study the pure effect of the inclination. Due to the electronic component and circuit board structures during soldering only moderate inclination angles were studied between 0° and 10°. It was found that a moderate inclination of the printed circuit board has considerable effects on the formation of condensate layer and consequently on heat transfer. Compared to the default horizontal orientation of the board, the thickness differences of the condensate layer can be decreased with an optimised inclination of the printed circuit board. This effect homogenizes heat transfer during the process, enabling improved solder joint quality, with reduced overall soldering failure count.

  14. Generation of inclined protoplanetary discs and misaligned planets through mass accretion - I. Coplanar secondary discs

    Science.gov (United States)

    Xiang-Gruess, M.; Kroupa, P.

    2017-10-01

    We study the three-dimensional (3D) evolution of a viscous protoplanetary disc that accretes gas material from a second protoplanetary disc during a close encounter in an embedded star cluster. The aim is to investigate the capability of the mass accretion scenario to generate strongly inclined gaseous discs that could later form misaligned planets. We use smoothed particle hydrodynamics to study mass transfer and disc inclination for passing stars and circumstellar discs with different masses. We explore different orbital configurations to find the parameter space that allows significant disc inclination generation. Thies et al. suggested that significant disc inclination and disc or planetary system shrinkage can generally be produced by the accretion of external gas material with a different angular momentum. We found that this condition can be fulfilled for a large range of gas mass and angular momentum. For all encounters, mass accretion from the secondary disc increases with decreasing mass of the secondary proto-star. Thus, higher disc inclinations can be attained for lower secondary stellar masses. Variations of the secondary disc's orientation relative to the orbital plane can alter the disc evolution significantly. The results taken together show that mass accretion can change the 3D disc orientation significantly resulting in strongly inclined discs. In combination with the gravitational interaction between the two star-disc systems, this scenario is relevant for explaining the formation of highly inclined discs that could later form misaligned planets.

  15. Spectrum of 100-kyr glacial cycle: orbital inclination, not eccentricity.

    Science.gov (United States)

    Muller, R A; MacDonald, G J

    1997-08-05

    Spectral analysis of climate data shows a strong narrow peak with period approximately 100 kyr, attributed by the Milankovitch theory to changes in the eccentricity of the earth's orbit. The narrowness of the peak does suggest an astronomical origin; however the shape of the peak is incompatible with both linear and nonlinear models that attribute the cycle to eccentricity or (equivalently) to the envelope of the precession. In contrast, the orbital inclination parameter gives a good match to both the spectrum and bispectrum of the climate data. Extraterrestrial accretion from meteoroids or interplanetary dust is proposed as a mechanism that could link inclination to climate, and experimental tests are described that could prove or disprove this hypothesis.

  16. Entrepreneurial Inclination Among Business Students: A Malaysian Study

    Directory of Open Access Journals (Sweden)

    Yet-Mee Lim

    2012-11-01

    Full Text Available Normal 0 false false false IN X-NONE AR-SA MicrosoftInternetExplorer4 Entrepreneurship has been the fundamental topics of discussion among the politicians, economists, and academics. Business creation is especially critical in developing countries to stimulate economic growth. The present study attempts to examine entrepreneurial inclination among students who are a potential source of entrepreneurs. The fi ndings of the present research study indicate that majority of our business students are not entrepreneurial-inclined. They do not seem to possess strong entrepreneurial characteristics and entrepreneurial skills, and they are not keen in starting a new business. The roles of higher institutes of education and the government in promoting entrepreneurship are discussed.

  17. The influence of incline walking on joint mechanics.

    Science.gov (United States)

    Haggerty, Mason; Dickin, D Clark; Popp, Jennifer; Wang, Henry

    2014-04-01

    Walking is a popular form of exercise and is associated with many health benefits; however, frontal-plane knee joint loading brought about by a large internal knee-abduction moment and cyclic loading could lead to cartilage degeneration over time. Therefore, knee joint mechanics during an alternative walking exercise needs to be analyzed. The purpose of this study was to examine the lower-extremity joint mechanics in the frontal and sagittal planes during incline walking. Fifteen healthy males walked on a treadmill at five gradients (0%, 5%, 10%, 15%, and 20%) at 1.34m/s, and lower-extremity joint mechanics in the frontal and sagittal planes were quantified. The peak internal knee-abduction moment significantly decreased from the level walking condition at all gradients except 5%. Also, a negative relationship between the internal knee-abduction moment and the treadmill gradient was found to exist in 10% increments (0-10%, 5-15%, and 10-20%). The decrease in the internal knee-abduction moment during incline walking could have positive effects on knee joint health such as potentially reducing cartilage degeneration of the knee joint, reducing pain, and decreasing the rate of development of medial tibiofemoral osteoarthritis. This would be beneficial for a knee surgery patient, obese persons, and older adults who are using incline walking for rehabilitation and exercise protocols. Findings from the current study can provide guidance for the development of rehabilitation and exercise prescriptions incorporating incline walking. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Locomotor Behavior of Chickens Anticipating Incline Walking

    Directory of Open Access Journals (Sweden)

    Chantal LeBlanc

    2018-01-01

    Full Text Available Keel bone damage (KBD is prevalent in hens raised for egg production, and ramps between different tiers in aviaries have potential to reduce the frequency of falls resulting in KBD. Effective use of ramps requires modulation of locomotion in anticipation of the incline. Inadequate adaptive locomotion may be one explanation why domestic layer hens (Gallus gallus domesticus exhibit high rates of KBD. To improve understanding of the capacity of hens to modulate their locomotion in anticipation of climbing, we measured the effects of incline angle upon the mechanics of the preparatory step before ascending a ramp. Because the energetic challenge of climbing increases with slope, we predicted that as angle of incline increased, birds during foot contact with the ground before starting to climb would increase their peak force and duration of contact and reduce variation in center of pressure (COP under their foot. We tested 20 female domestic chickens on ramp inclines at slopes of +0°, +40°, and +70° when birds were 17, 21, 26, 31, and 36 weeks of age. There were significantly higher vertical peak ground reaction forces in preparation at the steepest slope, and ground contact time increased significantly with each increase in ramp angle. Effects upon variation in COP were not apparent; likewise, effects of limb length, age, body mass were not significant. Our results reveal that domestic chickens are capable of modulating their locomotion in response to incline angle.

  19. Inclined nanoimprinting lithography for 3D nanopatterning

    International Nuclear Information System (INIS)

    Liu Zhan; Bucknall, David G; Allen, Mark G

    2011-01-01

    We report a non-conventional shear-force-driven nanofabrication approach, inclined nanoimprint lithography (INIL), for producing 3D nanostructures of varying heights on planar substrates in a single imprinting step. Such 3D nanostructures are fabricated by exploiting polymer anisotropic dewetting where the degree of anisotropy can be controlled by the magnitude of the inclination angle. The feature size is reduced from micron scale of the template to a resultant nanoscale pattern. The underlying INIL mechanism is investigated both experimentally and theoretically. The results indicate that the shear force generated at a non-zero inclination angle induced by the INIL apparatus essentially leads to asymmetry in the polymer flow direction ultimately resulting in 3D nanopatterns with different heights. INIL removes the requirements in conventional nanolithography of either utilizing 3D templates or using multiple lithographic steps. This technique enables various 3D nanoscale devices including angle-resolved photonic and plasmonic crystals to be fabricated.

  20. Breakwaters with Vertical and Inclined Concrete Walls

    DEFF Research Database (Denmark)

    Burcharth, Hans Falk

    Following the PIANC PTC II working group on Analyses of Rubble Mound Breakwaters it was, in 1991, decided to form Working Group (WG) n° 28 on "Breakwaters with vertical and inclined concrete walls" The scope of the work was to achieve a better understanding of the overall safety aspects in the de......Following the PIANC PTC II working group on Analyses of Rubble Mound Breakwaters it was, in 1991, decided to form Working Group (WG) n° 28 on "Breakwaters with vertical and inclined concrete walls" The scope of the work was to achieve a better understanding of the overall safety aspects...

  1. Non-dispersive traveling waves in inclined shallow water channels

    International Nuclear Information System (INIS)

    Didenkulova, Ira; Pelinovsky, Efim

    2009-01-01

    Existence of traveling waves propagating without internal reflection in inclined water channels of arbitrary slope is demonstrated. It is shown that traveling non-monochromatic waves exist in both linear and nonlinear shallow water theories in the case of a uniformly inclined channel with a parabolic cross-section. The properties of these waves are studied. It is shown that linear traveling waves should have a sign-variable shape. The amplitude of linear traveling waves in a channel satisfies the same Green's law, which is usually derived from the energy flux conservation for smoothly inhomogeneous media. Amplitudes of nonlinear traveling waves deviate from the linear Green's law, and the behavior of positive and negative amplitudes are different. Negative amplitude grows faster than positive amplitude in shallow water. The phase of nonlinear waves (travel time) is described well by the linear WKB approach. It is shown that nonlinear traveling waves of any amplitude always break near the shoreline if the boundary condition of the full absorption is applied.

  2. Internally cooled V-shape inclined monochromator

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Áč, V.; Hrdý, Jaromír

    2008-01-01

    Roč. 15, - (2008), 8-11 ISSN 0909-0495 R&D Projects: GA AV ČR IAA100100716 Grant - others:VEGA(SK) 1/4134/07 Institutional research plan: CEZ:AV0Z10100522 Keywords : inclined monochromator * heat load * internal cooling Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.333, year: 2008

  3. A matter of chance, environment and inclination

    Indian Academy of Sciences (India)

    Lawrence

    Why did I opt for science subjects in school, and choose a career in science? Perhaps the best answer would be. 'Chance, Environment and Inclination'. Here I am, considered to be a professional woman scien- tist, working towards understanding the biology of the malaria parasite and the challenges put up by the same.

  4. Inclined test of nacelle wind lidar

    DEFF Research Database (Denmark)

    Courtney, Michael

    A nacelle wind lidar, placed at ground level, is tested by inclining the laser beams to bisect a measurement mast at a known distance and height. The horizontal wind speed reported by the lidar is compared to a reference cup anemometer mounted on the mast at the comparison height....

  5. Vehicle with inclinable caterpillar propulsion units

    International Nuclear Information System (INIS)

    Clar, G.

    1991-01-01

    This vehicle usable in hostile environment such nuclear industry has four propulsion units with a caterpillar track and two integrated motors: one for advancing the caterpillar track and the other for inclining the propulsion unit when overcoming obstacles. Each propulsion unit is easily replaceable because there are no mechanical parts in the body of the vehicle [fr

  6. Computational stability appraisal of rectangular natural circulation loop: Effect of loop inclination

    International Nuclear Information System (INIS)

    Krishnani, Mayur; Basu, Dipankar N.

    2017-01-01

    Highlights: • Computational model developed for single-phase rectangular natural circulation loop. • Role of loop inclination to vertical on thermalhydraulic stability is explored. • Inclination has strong stabilizing effect due to lower effective gravitation force. • Increase in tilt angle reduces settling time and highest amplitude of oscillation. • An angle of 15° is suggested for the selected loop geometry. - Abstract: Controlling stability behavior of single-phase natural circulation loops, without significantly affecting its steady-state characteristics, is a topic of wide research interest. Present study explores the role of loop inclination on a particular loop geometry. Accordingly a 3D computational model of a rectangular loop is developed and transient conservation equations are solved to obtain the temporal variation in flow parameters. Starting from the quiescent state, simulations are performed for selected sets of operating conditions and also with a few selected inclination angles. System experiences instability at higher heater powers and also with higher sink temperatures. Inclination is found to have a strong stabilizing influence owing to the reduction in the effective gravitational acceleration and subsequent decline in local buoyancy effects. The settling time and highest amplitude of oscillations substantially reduces for a stable system with a small inclination. Typically-unstable systems can also suppress the oscillations, when subjected to tilting, within a reasonable period of time. It is possible to stabilize the loop within shorter time span by increasing the tilt angle, but at the expense of reduction in steady-state flow rate. Overall a tilt angle of 15° is suggested for the selected geometry. Results from the 3D model is compared with the predictions from an indigenous 1D code. While similar qualitative influence of inclination is observed, the 1D model predicts early appearance of the stability threshold and hence hints

  7. Granular flow down a flexible inclined plane

    Directory of Open Access Journals (Sweden)

    Sonar Prasad

    2017-01-01

    Full Text Available Discrete and continuous systems are commonly studied individually, but seldom together. Indeed, granular flows are typically studied through flows over a rigid base. Here, we investigate the behaviour of granular flows over an inclined, flexible base. The flexible base is modeled as a rigid platform mounted on springs and has one degree of freedom. The base vibrations are introduced by the flow. We simulate such flows through a discrete element method and compare with experiments. We find that a flexible base increased the upper limit of the inclination up to which a steady flow is possible by at least 3 degrees. This stabilized zone may have important implications in applications such as conveyor belts and chutes.

  8. Granular flow down a flexible inclined plane

    Science.gov (United States)

    Sonar, Prasad; Sharma, Ishan; Singh, Jayant

    2017-06-01

    Discrete and continuous systems are commonly studied individually, but seldom together. Indeed, granular flows are typically studied through flows over a rigid base. Here, we investigate the behaviour of granular flows over an inclined, flexible base. The flexible base is modeled as a rigid platform mounted on springs and has one degree of freedom. The base vibrations are introduced by the flow. We simulate such flows through a discrete element method and compare with experiments. We find that a flexible base increased the upper limit of the inclination up to which a steady flow is possible by at least 3 degrees. This stabilized zone may have important implications in applications such as conveyor belts and chutes.

  9. Bubble streams rising beneath an inclined surface

    Science.gov (United States)

    Bird, James; Brasz, Frederik; Kim, Dayoung; Menesses, Mark; Belden, Jesse

    2017-11-01

    Bubbles released beneath a submerged inclined surface can tumble along the wall as they rise, dragging the surrounding fluid with them. This effect has recently regained attention as a method to mitigate biofouling in marine environment, such as a ship hull. It appears that the efficacy of this approach may be related to the velocity of the rising bubbles and the extent that they spread laterally as they rise. Yet, it is unclear how bubble stream rise velocity and lateral migration depend on bubble size, flow rate, and inclination angle. Here we perform systematic experiments to quantify these relationships for both individual bubble trajectories and ensemble average statistics. Research supported by the Office of Naval Research under Grant Number award N00014-16-1-3000.

  10. HIGH-INCLINATION ASTEROID FAMILIES V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the high-inclination asteroid families of Gil-Hutton (2006). A data set of 3652 high-inclination numbered asteroids was analyzed to search for...

  11. Incisor inclination and perceived tooth colour changes.

    Science.gov (United States)

    Ciucchi, Philip; Kiliaridis, Stavros

    2017-10-01

    Social attractiveness is influenced by a variety of different smile-related factors. We evaluated whether the degree of upper central incisor proclination can result in tooth colour change. Forty young adult subjects (20-25 years) in good health with a complete sound dentition were selected. The subjects were seated in standardized light conditions with an above-directed light source. Their natural head position was stated as 0 degrees. To mimic the range of possible anterior torque movements they were asked to tilt their heads upward +15 degrees (upward tilting) and downward -15 degrees (downward tilting). Frontal macro photographs, parallel to the Frankfort plane of the patient's natural head position were taken at the three head angulations (+15, 0, and -15 degrees ). Photographs were analysed for colour differences at the centre of the incisor clinical crowns with a CIE L*a*b* colour model based software. A paired t-test was used to test for significance between each value for each inclination. Differences were found between the CIE L*a*b* colour values for: upward tilting, downward tilting, and -15 to +15 degrees (total tilting) except for b* values for downward tilting. As the inclination of the subject's head changed downward, the upper incisors were retroclined and the CIE L*a*b* values indicated a darker and less green but redder colour component. As the inclination of the subject's head changed upwards the upper incisors were proclined and the L*a*b* values indicated a lighter and less green and yellow but redder and bluer colour component. Proclination of upper incisors caused lighter tooth colour parameters compared to retroclined incisors and colour changes. Orthodontic change of upper incisor inclination may induce alterations on how tooth colour is perceived.

  12. Tooth Wear Inclination in Great Ape Molars.

    Science.gov (United States)

    Knight-Sadler, Jordan; Fiorenza, Luca

    2017-01-01

    Primate dietary diversity is reflected in their dental morphology, with differences in size and shape of teeth. In particular, the tooth wear angle can provide insight into a species' ability to break down certain foods. To examine dietary and masticatory information, digitized polygon models of dental casts provide a basis for quantitative analysis of wear associated with tooth attrition. In this study, we analyze and compare the wear patterns of Pongo pygmaeus, Gorilla gorillagorilla and Pan troglodytes schweinfurthii lower molars, focusing on the degree of inclination of specific wear facets. The variation in wear angles appears to be indicative of jaw movements and the specific stresses imposed on food during mastication, reflecting thus the ecology of these species. Orangutans exhibit flatter wear angles, more typical of a diet consisting of hard and brittle foods, while gorillas show a wear pattern with a high degree of inclination, reflecting thus their more leafy diet. Chimpanzees, on the other hand, show intermediate inclinations, a pattern that could be related to their highly variable diet. This method is demonstrated to be a powerful tool for better understanding the relationship between food, mastication and tooth wear processes in living primates, and can be potentially used to reconstruct the diet of fossil species. © 2017 S. Karger AG, Basel.

  13. A jumping cylinder in an incline

    Science.gov (United States)

    Gomez, Raul W.; Hernandez, Jorge; Marquina, Vivianne

    2012-02-01

    The problem of a cylinder of mass m and radius r, with its center of mass out of the cylinder axis, rolling in an incline that makes an angle α respect to the horizontal is analyzed. The equation of motion is solved to obtain the site where the cylinder loses contact with the incline (jumps). Several simplifications are made: the analyzed system consists of an homogeneous disc with a one dimensional straight line of mass parallel to the disc axis at a distance d Styrofoam cylinder of radius r = 10.0 ± 0.05 cm, high h = 5.55 ± 0.05 cm and a mass m1 = 24.45 ± 0.05 g, to which a 9.50 ± 0.01 mm diameter and 5.10 ± 0.001 cm long brass road of mass m2 = 30.75 ± 0.05 g was imbibed parallel to the disc axis at a distance of 5.40 ± 0.05 cm from it. Then the disc rolls on a 3.20 m long wooden ramp inclined at 30 and 45 respect to the horizontal. To determine the jumping site, the movements were recorded with a high-speed video camera (Casio EX ZR100) at 400 frames per second. The experimental results agree well with the theoretical predictions.

  14. Precession of a Spinning Ball Rolling down an Inclined Plane

    Science.gov (United States)

    Cross, Rod

    2015-01-01

    A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

  15. Pool Boiling CHF in Inclined Narrow Annuli

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2010-01-01

    Pool boiling heat transfer has been studied extensively since it is frequently encountered in various heat transfer equipment. Recently, it has been widely investigated in nuclear power plants for application to the advanced light water reactors designs. Through the review on the published results it can be concluded that knowledge on the combined effects of the surface orientation and a confined space on pool boiling heat transfer is of great practical importance and also of great academic interest. Fujita et al. investigated pool boiling heat transfer, from boiling inception to the critical heat flux (CHF, q' CHF ), in a confined narrow space between heated and unheated parallel rectangular plates. They identified that both the confined space and the surface orientation changed heat transfer much. Kim and Suh changed the surface orientation angles of a downward heating rectangular channel having a narrow gap from the downward-facing position (180 .deg.) to the vertical position (90 .deg.). They observed that the CHF generally decreased as the inclination angle (θ ) increased. Yao and Chang studied pool boiling heat transfer in a confined heat transfer for vertical narrow annuli with closed bottoms. They observed that when the gap size ( s ) of the annulus was decreased the effect of space confinement to boiling heat transfer increased. The CHF was occurred at much lower value for the confined space comparing to the unconfined pool boiling. Pool boiling heat transfer in narrow horizontal annular crevices was studied by Hung and Yao. They concluded that the CHF decreased with decreasing gap size of the annuli and described the importance of the thin film evaporation to explain the lower CHF of narrow crevices. The effect of the inclination angle on the CHF on countercurrent boiling in an inclined uniformly heated tube with closed bottoms was also studied by Liu et al. They concluded that the CHF reduced with the inclination angle decrease. A study was carried out

  16. Measurement of capacity coefficient of inclined liquid phase catalytic exchange column for tritiated water processing

    International Nuclear Information System (INIS)

    Yamai, Hideki; Konishi, Satoshi; Yamanishi, Toshihiko; Okuno, Kenji

    1994-01-01

    Liquid phase catalytic exchange (LPCE) is effective method for enrichment and removal of tritium from tritiated water. Capacity coefficients of operating LPCE column that are essential to evaluate column performance were measured. Experiments were performed with short catalyst packed columns and effect of inclination was studied. Method for evaluation of capacity coefficients was established from measurement of isotope concentration of liquid, vapor, gas phases at the two ends of the column. The capacity coefficients were measured under various superficial gas velocities. Feasibility study of helical columns with roughened inner surface was performed with short inclined columns. The column performance was not strongly affected by the inclination. The result indicates technological feasibility of helical LPCE column, that is expected to have operation stability and reduced height

  17. Impact of slope inclination on salt accumulation

    Science.gov (United States)

    Nachshon, Uri

    2017-04-01

    Field measurements indicated on high variability in salt accumulation along natural and cultivated slopes, even for relatively homogeneous soil conditions. It was hypothesised that slope inclination has an impact on the location of salt accumulation along the slope. A set of laboratory experiments and numerical models were used to explore the impact of slope inclination on salt accumulation. It was shown, experimentally, that for conditions of saline water source at the lower boundary of the slope - salt accumulates in low concentrations and homogeneously along the entire slope, for moderate slopes. However, as inclination increases high salt concentrations were observed at the upper parts of the slope, leaving the lower parts of the slope relatively free of salt. The traditional flow and transport models did not predict the experimental observations as they indicated also for the moderate slopes on salt accumulation in the elevated parts of the slope, away of the saline water source. Consequently - a conceptual model was raised to explain the laboratory observations. It was suggested that the interactions between slope angle, evaporation rates, hydraulic conductivity of the medium and distribution of wetness along the slope affect the saline water flow path through the medium. This lead to preferential flow path close to the soil-atmosphere interface for the steep slopes, which leads to constant wash of the salts from the evaporation front upward towards the slope upper parts, whereas for the moderate slopes, flow path is below the soil-atmosphere interface, therefore salt that accumulates at the evaporation front is not being transported upward. Understanding of salt dynamics along slopes is important for agricultural and natural environments, as well as for civil engineering purposes. Better understanding of the salt transport processes along slopes will improve our ability to minimize and to cope with soil salinization processes. The laboratory experiments and

  18. Inclined solar chimney for power production

    Energy Technology Data Exchange (ETDEWEB)

    Panse, S.V., E-mail: sudhirpanse@yahoo.com [Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Jadhav, A.S.; Gudekar, A.S. [Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Joshi, J.B. [Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Homi Bhabha National Institute, Trombay, Mumbai 400 094 (India)

    2011-09-15

    Highlights: {yields} Solar energy harnessing using inclined face of high mountains as solar chimney. {yields} Solar chimneys with structural stability, ease of construction and lower cost. {yields} Mathematical model developed, using complete (mechanical and thermal) energy balance. {yields} Can harness wind power also, as wind velocities at mountain top add to power output. {yields} Air temperature and velocity increase, as air rises in inclined chimney. - Abstract: The present concept of solar chimney is a tall vertical chimney constructed at the center of a large area, which is the collector. This creates questions about stability and economic viability of the chimney and also demands elaborate engineering techniques for constructing a tall chimney. We suggest geometry of 'Inclined Solar Chimney' (ISC), which is constructed along the face of a high rising mountain, on which maximum solar insolation is incident throughout the year. The chimney and the collector get merged here. This makes the structure stable, cost effective and easy for construction. A mathematical model has been developed considering the total energy balance. It predicts the temperature and velocity and kinetic power of the emerging air draft for some chosen values of other parameters. The model also shows the proportion in which absorbed solar energy is divided into different forms, and hence predicts the dependence of kinetic of emerging air draft upon dimensions of the chimney and properties of materials used. Further, it is shown that external winds enhance the kinetic power of the emerging air. Thus ISC can also harness the wind energy, available at the top of the mountain.

  19. Dense, layered, inclined flows of spheres

    Science.gov (United States)

    Jenkins, James T.; Larcher, Michele

    2017-12-01

    We consider dense, inclined flows of spheres in which the particles translate in layers, whose existence may be promoted by the presence of a rigid base and/or sidewalls. We imagine that in such flows a sphere of a layer is forced up the back of a sphere of the layer below, lifting a column of spheres above it, and then falls down the front of the lower sphere, until it bumps against the preceding sphere of the lower layer. We calculate the forces and rate of momentum transfer associated with this process of rub, lift, fall, and bump and determine a relation between the ratio of shear stress to normal stress and the rate of strain that may be integrated to obtain the velocity profile. The fall of a sphere and that of the column above it results in a linear increase in the magnitude of the velocity fluctuations with distance from the base of the flow. We compare the predictions of the model with measured profiles of velocity and granular temperature in several different dense, inclined flows.

  20. On liquid films on an inclined plate

    KAUST Repository

    BENILOV, E. S.

    2010-08-18

    This paper examines two related problems from liquid-film theory. Firstly, a steady-state flow of a liquid film down a pre-wetted plate is considered, in which there is a precursor film in front of the main film. Assuming the former to be thin, a full asymptotic description of the problem is developed and simple analytical estimates for the extent and depth of the precursor film\\'s influence on the main film are provided. Secondly, the so-called drag-out problem is considered, where an inclined plate is withdrawn from a pool of liquid. Using a combination of numerical and asymptotic means, the parameter range where the classical Landau-Levich-Wilson solution is not unique is determined. © 2010 Cambridge University Press.

  1. Granular flow over inclined channels with constrictions

    Science.gov (United States)

    Tunuguntla, Deepak; Weinhart, Thomas; Thornton, Anthony; Bokhove, Onno

    2013-04-01

    Study of granular flows down inclined channels is essential in understanding the dynamics of natural grain flows like landslides and snow avalanches. As a stepping stone, dry granular flow over an inclined channel with a localised constriction is investigated using both continuum methods and particle simulations. Initially, depth-averaged equations of motion (Savage & Hutter 1989) containing an unknown friction law are considered. The shallow-layer model for granular flows is closed with a friction law obtained from particle simulations of steady flows (Weinhart et al. 2012) undertaken in the open source package Mercury DPM (Mercury 2010). The closed two-dimensional (2D) shallow-layer model is then width-averaged to obtain a novel one-dimensional (1D) model which is an extension of the one for water flows through contraction (Akers & Bokhove 2008). Different flow states are predicted by this novel one-dimensional theory. Flow regimes with distinct flow states are determined as a function of upstream channel Froude number, F, and channel width ratio, Bc. The latter being the ratio of the channel exit width and upstream channel width. Existence of multiple steady states is predicted in a certain regime of F - Bc parameter plane which is in agreement with experiments previously undertaken by (Akers & Bokhove 2008) and for granular flows (Vreman et al. 2007). Furthermore, the 1D model is verified by solving the 2D shallow granular equations using an open source discontinuous Galerkin finite element package hpGEM (Pesch et al. 2007). For supercritical flows i.e. F > 1 the 1D asymptotics holds although the two-dimensional oblique granular jumps largely vary across the converging channel. This computationally efficient closed 1D model is validated by comparing it to the computationally more expensiveaa three-dimensional particle simulations. Finally, we aim to present a quasi-steady particle simulation of inclined flow through two rectangular blocks separated by a gap

  2. Inclined Buildings – Some Reasons and Solutions

    Science.gov (United States)

    Kijanka, Małgorzata; Kowalska, Magdalena

    2017-10-01

    To straighten a leaning building is never easy. There are no standard solutions. On the other hand, there are several, usually historical, leaning structures which have not been rectified, mostly because in the current shape they are a touristic attraction - the best example being the famous Leaning Tower of Pisa. This does not mean however that inclination of load bearing walls can be ignored. Even though in some cases the problem can be treated in terms of serviceability limit states (the deformation is only decreasing the comfort of ‘normal use’ of the building), in the other – it may be a signal of the forthcoming structural failure. The situation must always be treated individually – if the problem concerns a residential building, then cracks on the walls, not-opening doors or tilted ceilings, which often coincide with the leaning of the external walls, are always the reason of worry and such a building needs to be straightened. The reasons of the problem lie usually in uneven settlement of the ground, which in turn, may be caused by various problems, such as the presence of too soft, too weak, unconsolidated or expansive soils under the building, varying groundwater table, mining activity etc. Solving of the problem by just straightening the building is often not enough. To prevent further deformations a detailed analysis of the possible causes is necessary. Sometimes it may be helpful to review similar cases. The paper contains a general overview of selected inclined buildings: starting with the well-known historical examples and ending with individual houses from the Region of Silesia. Since the problem of instability mostly affects structures with critical height to width ratio, tall and narrow structures (towers) are dominating in the work. The aim of the study was to describe the reasons of the problems and present solutions that have been successfully applied and can be also useful to engineers and designers to prevent similar situations.

  3. Impinging Water Droplets on Inclined Glass Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  4. Psychosocial Determinants of Romantic Inclination Among Indian Youth

    Directory of Open Access Journals (Sweden)

    D. Barani Ganth

    2017-10-01

    Full Text Available The present study was conducted with the aim of understanding the psychosocial determinants of romantic inclination among youth in India. We involved 779 student participants from a large central university in south India in the age range of 18-24 years. The participants filled measures on romantic inclination, personality, attachment style, interpersonal attraction, and social influence on romantic relationship in addition to a questionnaire on demographic information and relationship history. Analysis of the data revealed that males showed higher level of romantic inclination than females. Those who had current/past involvement in a romantic relationship (Lovers showed higher levels of romantic inclination than those who had never involved in a romantic relationship (Non-lovers. Parents’ type of marriage (Love/arranged, close fiends’ involvement in romantic relationship too had a discriminatory role in romantic inclination. Romantic inclination was significantly related to personality factors, attachment style, media and peer influences on romantic relationships and interpersonal attraction. Extraversion, openness to experience, agreeableness, media influence, peer influence, secure attachment and physical attraction emerged as significant predictors of romantic inclination in a regression model. Structural Equations Modeling (SEM indicated that personality, attachment style and interpersonal attraction had a significant influence on romantic inclination mediated by both media and peer influences. Romantic inclination in turn significantly predicted romantic relationship status.

  5. Impact of flow inclination on downwind turbine loads and power

    Science.gov (United States)

    Kress, C.; Chokani, N.; Abhari, R. S.; Hashimoto, T.; Watanabe, M.; Sano, T.; Saeki, M.

    2016-09-01

    Wind turbines frequently operate under situations of pronounced flow inclinations, such as in complex terrain. In the present work the performance and rotor thrust of downwind and upwind turbines in upward and downward flow inclinations are experimentally investigated. In an upward flow inclination of +13°, downwind turbines are shown to have a 29% larger power output than a corresponding upwind turbine, whereas the relative increase in rotor thrust is only 9%. Furthermore, it is also shown that the performance of downwind turbines is less sensitive to changes in the flow inclination, as the upstream nacelle on downwind turbines beneficially redirects and accelerates the flow around the nacelle into the rotor plane.

  6. The Gothic arch (needle point) tracing and condylar inclination.

    Science.gov (United States)

    el-Gheriani, A S; Winstanley, R B

    1987-11-01

    The records of 11 patients referred for treatment of TMJ disorders were used to compare condylar inclination found by drawing a tangent and by using a mathematic technique. Needle point tracing angles were also measured for the same patients and were compared with the condylar inclination. It can be concluded that (1) the mathematic technique outlined records a more accurate condylar angulation, and (2) there is a great variation in condylar inclination values between patients and between left and right sides of the same patient, and (3) there is no direct relationship between condylar inclination and the needle point tracing angle.

  7. Simulation of Canopy Leaf Inclination Angle in Rice

    Directory of Open Access Journals (Sweden)

    Xiao-cui ZHANG

    2013-11-01

    Full Text Available A leaf inclination angle distribution model, which is applicable to simulate leaf inclination angle distribution in six heights of layered canopy at different growth stages, was established by component factors affecting plant type in rice. The accuracy of the simulation results was validated by measured values from a field experiment. The coefficient of determination (R2 and the root mean square error (RMSE between the simulated and measured values were 0.9472 and 3.93%, respectively. The simulation results showed that the distribution of leaf inclination angles differed among the three plant types. The leaf inclination angles were larger in the compact variety Liangyoupeijiu with erect leaves than in the loose variety Shanyou 63 with droopy leaves and the intermediate variety Liangyou Y06. The leaf inclination angles were distributed in the lower range in Shanyou 63, which matched up with field measurements. The distribution of leaf inclination angles in the same variety changed throughout the seven growth stages. The leaf inclination angles enlarged gradually from transplanting to booting. During the post-booting period, the leaf inclination angle increased in Shanyou 63 and Liangyou Y06, but changed little in Liangyoupeijiu. At every growth stage of each variety, canopy leaf inclination angle distribution on the six heights of canopy layers was variable. As canopy height increased, the layered leaf area index (LAI decreased in all the three plant types. However, while the leaf inclination angles showed little change in Liangyoupeijiu, they became larger in Shanyou 63 but smaller in Liangyou Y06. The simulation results used in the constructed model were very similar to the actual measurement values. The model provides a method for estimating canopy leaf inclination angle distribution in rice production.

  8. Gas-liquid flow splitting in T-junction with inclined lateral arm

    Science.gov (United States)

    Yang, Le-le; Liu, Shuo; Li, Hua; Zhang, Jian; Wu, Ying-xiang; Xu, Jing-yu

    2018-02-01

    This paper studies the gas-liquid flow splitting in T-junction with inclined lateral arm. The separation mechanism of the T-junction is related to the pressure distribution in the T-junction. It is shown that the separation efficiency strongly depends on the inclination angle, when the angle ranges from 0° to 30°, while not so strongly for angles in the range from 30° to 90° Increasing the number of connecting tubes is helpful for the gas-liquid separation, and under the present test conditions, with four connecting tubes, a good separation performance can be achieved. Accordingly, a multi-tube Y-junction separator with four connecting tubes is designed for the experimental investigation. A good agreement between the simulated and measured data shows that there is an optimal split ratio to achieve the best performance for the multi-tube Y-junction separator.

  9. Entrepreneurial inclinations of women from rural areas

    Directory of Open Access Journals (Sweden)

    Marković-Savić Olivera S.

    2014-01-01

    Full Text Available Entrepreneurial inclinations of women from rural areas are shaped by the lack of business ideas and economic capital, which, in addition to financial resources, includes cultural capital in the form of knowledge and skills. The paper presents a part of a broader study on the social position of women from the rural areas of northern Kosovo and Metohija, conducted in 2013. The research was predominantly focused on entrepreneurial inclinations of rural women, and the findings suggest that private enterprise in the studied population is undeveloped as a result of two dominant reasons. The first reason is the situation which is unfavorable in terms of politics and security, and therefore, not conducive to investment security, together with the specificity in the form of complex administrative business conditions requiring compliance to parallel and mutually incompatible standards (of the Republic of Serbia and of the UNMIK administration. The second important reason for the lack of entrepreneurial initiatives is the lack of ownership of property and the means of production, since banks do not give loans without guarantees in the form of ownership of the mortgage, while other forms of financial incentives are unavailable. The respondents attended programs for acquiring new knowledge and skills only in a small number of cases, while showing the greatest susceptibility to education in traditional skills, such as training in agriculture and handicrafts, which are not the skills in line with the needs of the labor market. As the most important reasons that -prevent them from having their own business, the respondents -mentioned: the lack of ideas and the lack of financial resources. In this regard, they would find incentives in the form of grants most helpful to start their own business. The absence of funds and gender inequality form the basis for the lack of ownership of property and means of production. In addition to the shortage of financial

  10. Self-filtering extremely inclined x-ray crystal monochromator

    Czech Academy of Sciences Publication Activity Database

    Hrdá, Jaromíra; Hrdý, Jaromír

    2011-01-01

    Roč. 44, č. 6 (2011), 1169-1172 ISSN 0021-8898 R&D Projects: GA MPO FR-TI1/412 Institutional research plan: CEZ:AV0Z10100522 Keywords : synchrotron radiation monochromator * x-ray crystal monochromator * inclined monochromator * inclined diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.152, year: 2011

  11. Analysis of deformation due to inclined load in generalized ...

    African Journals Online (AJOL)

    The present investigation deals with study of deformation in homogeneous, isotropic thermodiffusion elastic half-space as a result of inclined load. The inclined load is assumed to be a linear combination of normal load and tangential load. The integral transform technique is used to solve the problem. As an application of ...

  12. 46 CFR 58.01-40 - Machinery, angles of inclination.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery, angles of inclination. 58.01-40 Section 58.01-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-40 Machinery, angles of inclination. (a) Propulsion machinery and all auxiliary...

  13. A jig for measuring incisor inclination.

    Science.gov (United States)

    Shah, N; Spary, D J; Rock, W P

    2005-06-01

    The aim of this study was to design and construct a jig for measuring the inclination of the upper incisors to the maxillary plane and of the lower incisors to the mandibular plane. After several prototypes had been tested, the required properties for a successful jig were identified and a simple inexpensive device was produced. Measurements obtained when using the jig on 51 subjects were compared with cephalometric values by means of regression analysis. This revealed that measurements obtained using the jig against the upper and then the lower incisor crowns could be converted to cephalometric incisor angulations with 96 per cent accuracy to 10 degrees, by adding 23 and 3 degrees, respectively. The jig was accurate to 5 degrees on 69 per cent of occasions for the upper teeth. The 5 degrees accuracy with the lower incisors was only 27 per cent, although over a 6 degree range it improved to 78 per cent. For upper and lower tooth measurements combined, the jig was accurate to within 6 degrees on 75 per cent of occasions.

  14. Inclined asymmetric librations in exterior resonances

    Science.gov (United States)

    Voyatzis, G.; Tsiganis, K.; Antoniadou, K. I.

    2018-04-01

    Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π , the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273-281, https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.

  15. Development of locomotion over inclined surfaces in laying hens.

    Science.gov (United States)

    LeBlanc, C; Tobalske, B; Bowley, S; Harlander-Matauschek, A

    2018-03-01

    The purpose of the present study was to evaluate locomotor strategies during development in domestic chickens (Gallus gallus domesticus); we were motivated, in part, by current efforts to improve the design of housing systems for laying hens which aim to reduce injury and over-exertion. Using four strains of laying hens (Lohmann Brown, Lohmann LSL lite, Dekalb White and Hyline Brown) throughout this longitudinal study, we investigated their locomotor style and climbing capacity in relation to the degree (0 to 70°) of incline, age (2 to 36 weeks) and the surface substrate (sandpaper or wire grid). Chicks and adult fowl performed only walking behavior to climb inclines ⩽40° and performed a combination of wing-assisted incline running (WAIR) or aerial ascent on steeper inclines. Fewer birds used their wings to aid their hind limbs when climbing 50° inclines on wire grid surface compared with sandpaper. The steepness of angle achieved during WAIR and the tendency to fly instead of using WAIR increased with increasing age and experience. White-feathered strains performed more wing-associated locomotor behavior compared with brown-feathered strains. A subset of birds was never able to climb incline angles >40° even when using WAIR. Therefore, we suggest that inclines of up to 40° should be provided for hens in three-dimensional housing systems, which are easily negotiated (without wing use) by chicks and adult fowl.

  16. Natural Circulation Characteristics of a Symmetric Loop under Inclined Conditions

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2014-01-01

    Full Text Available Natural circulation is an important process for primary loops of some marine integrated reactors. The reactor works under inclined conditions when severe accidents happen to the ship. In this paper, to investigate the characteristics of natural circulation, experiments were conducted in a symmetric loop under the inclined angle of 0~45°. A CFD model was also set up to predict the behaviors of the loop beyond the experimental scope. Total circulation flow rate decreases with the increase of inclined angle. Meanwhile one circulation is depressed while the other is enhanced, and accordingly the disparity between the branch circulations arises and increases with the increase of inclined angle. Circulation only takes place in one branch circuit at large inclined angle. Also based on the CFD model, the influences of flow resistance distribution and loop configuration on natural circulation are predicted. The numerical results show that to design the loop with the configuration of big altitude difference and small width, it is favorable to reduce the influence of inclination; however too small loop width will cause severe reduction of circulation ability at large angle inclination.

  17. Impact of inclined magnetic field on micropolar Casson fluid using Keller box algorithm

    Science.gov (United States)

    Iqbal, Z.; Mehmood, R.; Azhar, Ehtsham; Mehmood, Zaffar

    2017-04-01

    The present study examines the influence of an inclined magnetic field on a micropolar Casson fluid flow over a stretching sheet. Viscous dissipation effects are also taken into consideration. The governing physical problem is presented using the traditional Navier-Stokes theory. By means of the scaling group of transformation, a consequential system of equations is transformed into a set of nonlinear ordinary differential equations which are then solved using the implicit finite-difference approximation (Keller box method). The working fluid is examined for several sundry parameters graphically and in tabular form. It is observed that with an increase in inclination angle, the velocity profile decreases while temperature enhances. The Eckert number enhances flow velocity and temperature, whereas it decreases shear stress at the wall and heat transfer rate. The rheological fluid parameter contributes to the decline of velocity and temperature for weak as well as strong concentrations of micro elements.

  18. Spectrum of 100-kyr glacial cycle: Orbital inclination, not eccentricity

    Science.gov (United States)

    Muller, Richard A.; MacDonald, Gordon J.

    1997-01-01

    Spectral analysis of climate data shows a strong narrow peak with period ≈100 kyr, attributed by the Milankovitch theory to changes in the eccentricity of the earth’s orbit. The narrowness of the peak does suggest an astronomical origin; however the shape of the peak is incompatible with both linear and nonlinear models that attribute the cycle to eccentricity or (equivalently) to the envelope of the precession. In contrast, the orbital inclination parameter gives a good match to both the spectrum and bispectrum of the climate data. Extraterrestrial accretion from meteoroids or interplanetary dust is proposed as a mechanism that could link inclination to climate, and experimental tests are described that could prove or disprove this hypothesis. PMID:11607741

  19. Aqua/Aura Spring 2017 Inclination Adjust Maneuver Series

    Science.gov (United States)

    Noyes, Thomas; Stezelberger, Shane

    2017-01-01

    This will be presented at the International Earth Science Constellation Mission Operations Working Group meeting June 13-15, 2017 to discuss the AquaAura Spring 2017 Inclination Adjust Maneuver series.

  20. Brilliance and flux reduction in imperfect inclined crystals

    International Nuclear Information System (INIS)

    Lee, W.K.; Blasdell, R.C.; Fernandez, P.B.; Macrander, A.T.; Mills, D.M.

    1996-01-01

    The inclined crystal geometry has been suggested as a method of reducing the surface absorbed power density of high-heat-load monochromators for third-generation synchrotron radiation sources. Computer simulations have shown that if the crystals are perfectly aligned and have no strains then the diffraction properties of a pair of inclined crystals are very similar to a pair of conventional flat crystals with only subtle effects differentiating the two configurations. However, if the crystals are strained, these subtle differences in the behavior of inclined crystals can result in large beam divergences causing brilliance and flux losses. This manuscript elaborates on these issues and estimates potential brilliance and flux losses from strained inclined crystals at the APS

  1. Systems of pillarless working of adjacent, sloped and inclined seams

    Energy Technology Data Exchange (ETDEWEB)

    Batmanov, Yu.K.; Bakhtin, A.F.; Bulavka, E.I.

    1979-01-01

    An analysis is made (advantages and disadvantages) of existing and recommended (pillarless) systems of working adjacent, sloped, and inclined seams. The economic benefits, area and extent of those systems are indicated. 8 references, 4 figures.

  2. Psychosocial Determinants of Romantic Inclination Among Indian Youth

    OpenAIRE

    D. Barani Ganth; S. Kadhiravan

    2017-01-01

    The present study was conducted with the aim of understanding the psychosocial determinants of romantic inclination among youth in India. We involved 779 student participants from a large central university in south India in the age range of 18-24 years. The participants filled measures on romantic inclination, personality, attachment style, interpersonal attraction, and social influence on romantic relationship in addition to a questionnaire on demographic information and relationship histor...

  3. The role of incline, performance level, and gender on the gross mechanical efficiency of roller ski skating.

    Science.gov (United States)

    Sandbakk, Oyvind; Hegge, Ann Magdalen; Ettema, Gertjan

    2013-01-01

    The ability to efficiently utilize metabolic energy to produce work is a key factor for endurance performance. The present study investigated the effects of incline, performance level, and gender on the gross mechanical efficiency during roller ski skating. Thirty-one male and nineteen female elite cross-country skiers performed a 5-min submaximal session at approximately 75% of VO2peak on a 5% inclined treadmill using the G3 skating technique. Thereafter, a 5-min session on a 12% incline using the G2 skating technique was performed at a similar work rate. Gross efficiency was calculated as the external work rate against rolling friction and gravity divided by the metabolic rate using gas exchange. Performance level was determined by the amount of skating FIS points [the Federation of International Skiing (FIS) approved scoring system for ski racing] where fewer points indicate a higher performance level. Strong significant correlations between work rate and metabolic rate within both inclines and gender were revealed (r = -0.89 to 0.98 and P higher at the steeper incline, both for men (17.1 ± 0.4 vs. 15.8 ± 0.5%, P better ranked elite male and female skiers skied more efficiently.

  4. Uplift Capacity of Inclined Underreamed Piles Subjected to Vertical Load

    Science.gov (United States)

    Rahman, Md. Akilur; Sengupta, Siddhartha

    2017-12-01

    Many offshore structures are subjected to overturning moments due to wind load, wave pressure, and ship impacts. Inclined (batter) piles are used to support such structures, and to carry the horizontal and vertical loads resulted from the overturning moments. Though studies have been done with inclined piles having no underream bulb, little information is available in the literature about estimating the uplift capacity of inclined underreamed piles. In the present study laboratory experiments have been done with vertically loaded model piles having no underream as well as with one and two underreams. The piles were positioned at angle of inclination of θ = 0°, 10°, 20°, 30° (with vertical); and placed in locally available sand under vertical uplift load. Three different pile stem diameters (D = 20, 25, and 35 mm) were used. The corresponding pile length to stem diameter (l/D) ratio were 18, 14, and 10 respectively. Experiments had been conducted with two relative different densities (45 and 70%) of sand. The failure uplift loads were obtained in each case. It had been found that for inclined piles increase in number of underream bulbs from 0 to 2 was quite effective in resisting uplift loads corresponding to piles having l/D equals to 10. The percentage decreases in uplift capacity corresponding to increase in inclination angle were more pronounced for piles with double underreams.

  5. Trunk muscle activity with different sitting postures and pelvic inclination.

    Science.gov (United States)

    Watanabe, Masahiro; Kaneoka, Koji; Wada, Yusuke; Matsui, Yasushi; Miyakawa, Shumpei

    2014-01-01

    Sitting posture may often place large burden on trunk muscles, while trunk muscle activities in the sitting posture have not been well clarified. In this study, a difference in trunk muscle activity between two kinds of sitting postures was evaluated, focusing on low back pain induced by posture holding. An experiment was conducted on the subjects sitting on a stable-seat and on an unstable-seat, with the pelvis inclined forward, backward, rightward, and leftward. With the pelvis inclined forward, rightward and leftward, muscle activities were significantly increased in a stable-seat sitting posture. In contrast, no significant increase in muscle activity was observed with the pelvis inclined in every direction in an unstable-seat sitting posture. With the pelvis inclined in the stable-seat sitting posture, muscle activities were imbalanced, while with the pelvis inclined in the unstable-seat sitting posture, muscle activities were not imbalanced. Thus, it is suggested that with the pelvis inclined to the maximum extent in the stable-seat sitting posture, low back pain may be induced by imbalanced muscle activities.

  6. Inclination evolution of protoplanetary discs around eccentric binaries

    Science.gov (United States)

    Zanazzi, J. J.; Lai, Dong

    2018-01-01

    It is usually thought that viscous torque works to align a circumbinary disc with the binary's orbital plane. However, recent numerical simulations suggest that the disc may evolve to a configuration perpendicular to the binary orbit ('polar alignment) if the binary is eccentric and the initial disc-binary inclination is sufficiently large. We carry out a theoretical study on the long-term evolution of inclined discs around eccentric binaries, calculating the disc warp profile and dissipative torque acting on the disc. For discs with aspect ratio H/r larger than the viscosity parameter α, bending wave propagation effectively makes the disc precess as a quasi-rigid body, while viscosity acts on the disc warp and twist to drive secular evolution of the disc-binary inclination. We derive a simple analytic criterion (in terms of the binary eccentricity and initial disc orientation) for the disc to evolve towards polar alignment with the eccentric binary. When the disc has a non-negligible angular momentum compared to the binary, the final 'polar alignment' inclination angle is reduced from 90°. For typical protoplanetary disc parameters, the time-scale of the inclination evolution is shorter than the disc lifetime, suggesting that highly inclined discs and planets may exist orbiting eccentric binaries.

  7. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2015-01-01

    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  8. TRANSIT TIMING VARIATIONS FOR INCLINED AND RETROGRADE EXOPLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Payne, Matthew J.; Ford, Eric B.; Veras, Dimitri

    2010-01-01

    We perform numerical calculations of the expected transit timing variations (TTVs) induced on a hot-Jupiter by an Earth-mass perturber. Motivated by the recent discoveries of retrograde transiting planets, we concentrate on an investigation of the effect of varying relative planetary inclinations, up to and including completely retrograde systems. We find that planets in low-order (e.g., 2:1) mean-motion resonances (MMRs) retain approximately constant TTV amplitudes for 0 deg. 170 deg. Systems in higher order MMRs (e.g., 5:1) increase in TTV amplitude as inclinations increase toward 45 deg., becoming approximately constant for 45 deg. 135 deg. Planets away from resonance slowly decrease in TTV amplitude as inclinations increase from 0 deg. to 180 deg., whereas planets adjacent to resonances can exhibit a huge range of variability in TTV amplitude as a function of both eccentricity and inclination. For highly retrograde systems (135 deg. < i ≤ 180 deg.), TTV signals will be undetectable across almost the entirety of parameter space, with the exceptions occurring when the perturber has high eccentricity or is very close to an MMR. This high inclination decrease in TTV amplitude (on and away from resonance) is important for the analysis of the known retrograde and multi-planet transiting systems, as inclination effects need to be considered if TTVs are to be used to exclude the presence of any putative planetary companions: absence of evidence is not evidence of absence.

  9. Evaluation of performance of veterinary in-clinic hematology analyzers.

    Science.gov (United States)

    Rishniw, Mark; Pion, Paul D

    2016-12-01

    A previous study provided information regarding the quality of in-clinic veterinary biochemistry testing. However, no similar studies for in-clinic veterinary hematology testing have been conducted. The objective of this study was to assess the quality of hematology testing in veterinary in-clinic laboratories using results obtained from testing 3 levels of canine EDTA blood samples. Clinicians prepared blood samples to achieve measurand concentrations within, below, and above their RIs and evaluated the samples in triplicate using their in-clinic analyzers. Quality was assessed by comparison of calculated total error with quality requirements, determination of sigma metrics, use of a quality goal index, and agreement between in-clinic and reference laboratory instruments. Suitability for statistical quality control was determined using adaptations from the computerized program, EZRules3. Evaluation of 10 veterinary in-clinic hematology analyzers showed that these instruments often fail to meet quality requirements. At least 60% of analyzers reasonably determined RBC, WBC, HCT, and HGB, when assessed by most quality goal criteria; platelets were less reliably measured, with 80% deemed suitable for low platelet counts, but only 30% for high platelet counts, and automated differential leukocyte counts were generally considered unsuitable for clinical use with fewer than 40% of analyzers meeting the least stringent quality goal requirements. Fewer than 50% of analyzers were able to meet requirements for statistical quality control for any measurand. These findings reflect the current status of in-clinic hematology analyzer performance and provide a basis for future evaluations of the quality of veterinary laboratory testing. © 2016 American Society for Veterinary Clinical Pathology.

  10. Structural equation modeling for alteration of occlusal plane inclination.

    Science.gov (United States)

    Shigeta, Yuko; Ogawa, Takumi; Nakamura, Yoshiharu; Ando, Eriko; Hirabayashi, Rio; Ikawa, Tomoko

    2015-07-01

    Occlusal plane inclination is important to maintain a normal opening closing/biting function. However, there can be several causes that lead to alterations of the occlusal plane. The purpose of this study was to observe variations of occlusal plane inclination in adult patients, and to uncover the factors affecting changes in occlusal plane inclination with aging. Subjects were 143 patients. A cephalometric image was taken of these patients. In this study, our inquiry points were age, 3 variables on intra-oral findings, and 7 variables on cephalometric analysis. To evaluate the possible causes that affect occlusal plane inclination, factor analysis was carried out, and each component was treated as factors, which were then statistically applied to a structural equation model. Statistical analysis was carried out through the SPSS 20.0 (SPSS Inc., Chicago, USA). In all patients, Camper-occlusal plane angle (COA) ranged from -25.7 to -4.9° (Mean±SD: -6.4±5.36). In the 60 patients who had no missing teeth, COA ranged from -11.6 to -4.9° (Mean±SD: -3.3±3.31). From the results of the structural analysis, it was suggested that the occlusal plane changes to counter-clockwise (on the right lateral cephalograms) with aging. In this study, variations of occlusal plane inclination in adult patients were observed, and the factors affecting changes in occlusal plane inclination with aging were investigated via factor analysis. From our results, it was suggested that the mandibular morphology change and loss of teeth with aging influence occlusal plane inclination. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  11. Negating the Verum

    DEFF Research Database (Denmark)

    Ørsnes, Bjarne

    2012-01-01

    an (aboutness-)topic. The negation of a verum predicate explains why preposed negation—like other constructions with verum-focus—fails to license strong negative polarity items and fails to rule out positive ones. The lack of a topic explains why preposed negation is preferred with non-referential subjects...

  12. Instability timescale for the inclination instability in the solar system

    Science.gov (United States)

    Zderic, Alexander; Madigan, Ann-Marie; Fleisig, Jacob

    2018-04-01

    The gravitational influence of small bodies is often neglected in the study of solar system dynamics. However, this is not always an appropriate assumption. For example, mutual secular torques between low mass particles on eccentric orbits can result in a self-gravity instability (`inclination instability'; Madigan & McCourt 2016). During the instability, inclinations increase exponentially, eccentricities decrease (detachment), and orbits cluster in argument of perihelion. In the solar system, the orbits of the most distant objects show all three of these characteristics (high inclination: Volk & Malhotra (2017), detachment: Delsanti & Jewitt (2006), and argument of perihelion clustering: Trujillo & Sheppard (2014)). The inclination instability is a natural explanation for these phenomena.Unfortunately, full N-body simulations of the solar system are unfeasible (N ≈ O(1012)), and the behavior of the instability depends on N, prohibiting the direct application of lower N simulations. Here we present the instability timescale's functional dependence on N, allowing us to extrapolate our simulation results to that appropriate for the solar system. We show that ~5 MEarth of small icy bodies in the Sedna region is sufficient for the inclination instability to occur in the outer solar system.

  13. Influence of occlusal plane inclination and mandibular deviation on esthetics.

    Science.gov (United States)

    Corte, Cristiane Cherobini Dalla; Silveira, Bruno Lopes da; Marquezan, Mariana

    2015-10-01

    The aim of this study was to assess the degree of perception of occlusal plane inclination and mandibular deviation in facial esthetics, assessed by laypeople, dentists and orthodontists. A woman with 5.88° of inclination and 5.54 mm of mandibular deviation was selected and, based on her original photograph, four new images were created correcting the deviations and creating more symmetric faces and smiles. Examiners assessed the images by means of a questionnaire. Their opinions were compared by qualitative and quantitative analyses. A total of 45 laypeople, 27 dentists and 31 orthodontists filled out the questionnaires. All groups were able to perceive the asymmetry; however, orthodontists were more sensitive, identifying asymmetries as from 4.32° of occlusal plane inclination and 4.155 mm of mandibular deviation (pocclusal plane inclination and 5.54 mm of mandibular deviation (pOcclusal plane inclination and mandibular deviation were perceived by all groups, but orthodontists presented higher perception of deviations.

  14. Effect of a marginal inclination on pattern formation in a binary liquid mixture under thermal stress.

    Science.gov (United States)

    Croccolo, Fabrizio; Scheffold, Frank; Vailati, Alberto

    2013-07-05

    Convective motions in a fluid layer are affected by its orientation with respect to the gravitational field. We investigate the long-term stability of a thermally stressed layer of a binary liquid mixture and show that pattern formation is strongly affected by marginal inclinations as small as a few milliradians. At small Rayleigh numbers, the mass transfer is dominated by the induced large scale shear flow, while at larger Rayleigh numbers, it is dominated by solutal convection. At the transition, the balance between the solutal and shear flows gives rise to drifting columnar flows moving in opposite directions along parallel lanes in a superhighway configuration.

  15. Droplet Depinning on Inclined Surfaces at High Reynolds Numbers

    Science.gov (United States)

    White, Edward; Singh, Natasha; Lee, Sungyon

    2017-11-01

    Contact angle hysteresis enables a sessile liquid drop to adhere to a solid surface when the surface is inclined, the drop is exposed to gas-phase flow, or the drop is exposed to both forcing modalities. Previous work by Schmucker and White (2012.DFD.M4.6) identified critical depinning Weber numbers for water drops subject to gravity- and wind-dominated forcing. This work extends the Schmucker and White data and finds the critical depinning Weber number obeys a two-slope linear model. Under pure wind forcing at Reynolds numbers above 1500 and with zero surface inclination, Wecrit = 8.0 . For non-zero inclinations, α, Wecrit decreases proportionally to A Bo sinα where A is the drop aspect ratio and Bo is its Bond number. The same relationship holds for α behavior. Supported by the National Science Foundation through Grant CBET-1605947.

  16. Natural Frequencies and Mode Shapes of Statically Deformed Inclined Risers

    KAUST Repository

    Alfosail, Feras

    2016-10-15

    We investigate numerically the linear vibrations of inclined risers using the Galerkin approach. The riser is modeled as an Euler-Bernoulli beam accounting for the nonlinear mid-plane stretching and self-weight. After solving for the initial deflection of the riser due to self-weight, we use a Galerkin expansion employing 15 axially loaded beam mode shapes to solve the eigenvalue problem of the riser around the static equilibrium configuration. This yields the riser natural frequencies and corresponding exact mode shapes for various values of inclination angles and tension. The obtained results are validated against a boundary-layer analytical solution and are found to be in good agreement. This constitutes a basis to study the nonlinear forced vibrations of inclined risers.

  17. Psychopathic Inclination Among Incarcerated Youth of Hazara Division Pakistan

    Directory of Open Access Journals (Sweden)

    Sher Dil

    2016-09-01

    Full Text Available Present study aimed at evaluating the psychopathic inclination among youth and finding the gender differences in psychopathy. An indigenously developed Psychopathy scale (Urdu has been used in this study. Alpha reliability of the scale was .90. The study was conducted on 100 males (50 criminals and 50 non-criminals and 100 females (26 criminals and 74 non-criminals using a convenient sampling technique from three districts of Hazara division: Haripur, Abbottabad, and Mansehra. Results confirmed that there is significant difference in psychopathic inclination of males and females; criminals differed significantly from the non-criminals. The study also paves way for further investigation in the field in Pakistan.

  18. Fluorescence intensity dependence on the propagation plane inclination

    International Nuclear Information System (INIS)

    Fernandez, J.E.; Rubio, Marcelo; Sanchez, H.J.

    1987-01-01

    A Monte Carlo simulation of the primary and secondary X-ray fluorescent emission from an homogeneous and infinite thickness sample, irradiated under different inclination of the propagation plane, is carried out. An agreement with the predictions based on Sherman equations depending on the inclination angle α was found. The invariance of the primary fluorescence with respect to α and the decrease until evanescence of the secondary fluorescence for a α → π/2 are confirmed. A discussion about the physical basis of this dependence is carried out. Similar results are expected for tertiary fluorescence. (Author) [es

  19. Lactic Acid Bacteria Inducing a Weak Interleukin-12 and Tumor Necrosis Alpha Response in Human Dendritic Cells Inhibit Strongly Stimulating Lactic Acid Bacteria but Act Synergistically with Gram-Negative Bacteria

    DEFF Research Database (Denmark)

    Zeuthen, Louise Hjerrild; Christensen, Hanne Risager; Frøkiær, Hanne

    2006-01-01

    The development and maintenance of immune homeostasis indispensably depend on signals from the gut flora. Lactic acid bacteria (LAB), which are gram-positive (G+) organisms, are plausible significant players and have received much attention. Gram-negative (G-) commensals, such as members...

  20. The lone gamer: Social exclusion predicts violent video game preferences and fuels aggressive inclinations in adolescent players.

    Science.gov (United States)

    Gabbiadini, Alessandro; Riva, Paolo

    2018-03-01

    Violent video game playing has been linked to a wide range of negative outcomes, especially in adolescents. In the present research, we focused on a potential determinant of adolescents' willingness to play violent video games: social exclusion. We also tested whether exclusion can predict increased aggressiveness following violent video game playing. In two experiments, we predicted that exclusion could increase adolescents' preferences for violent video games and interact with violent game playing fostering adolescents' aggressive inclinations. In Study 1, 121 adolescents (aged 10-18 years) were randomly assigned to a manipulation of social exclusion. Then, they evaluated the violent content of nine different video games (violent, nonviolent, or prosocial) and reported their willingness to play each presented video game. The results showed that excluded participants expressed a greater willingness to play violent games than nonviolent or prosocial games. No such effect was found for included participants. In Study 2, both inclusionary status and video game contents were manipulated. After a manipulation of inclusionary status, 113 adolescents (aged 11-16 years) were randomly assigned to play either a violent or a nonviolent video game. Then, they were given an opportunity to express their aggressive inclinations toward the excluders. Results showed that excluded participants who played a violent game displayed the highest level of aggressive inclinations than participants who were assigned to the other experimental conditions. Overall, these findings suggest that exclusion increases preferences for violent games and that the combination of exclusion and violent game playing fuels aggressive inclinations. © 2017 Wiley Periodicals, Inc.

  1. Aqua/Aura Inclination Adjust Maneuver Series Spring 2018 Planning

    Science.gov (United States)

    Trenholme, Elena; Boone, Spencer

    2017-01-01

    This will be presented at the International Earth Science Constellation Mission Operations Working Group meeting on December 6-8, 2017 to discuss the Aqua/Aura Spring 2018 Inclination Adjust Maneuver series planning. Presentation has been reviewed and approved by Eric Moyer, ESMO (Earth Science Mission Operations) Deputy Project Manager.

  2. MEASUREMENTS OF DUST EXTINCTION IN HIGHLY INCLINED SPIRAL GALAXIES

    NARCIS (Netherlands)

    JANSEN, RA; KNAPEN, JH; BECKMAN, JE; PELETIER, RF; HES, R

    1994-01-01

    We study the extinction properties of dust in the well-defined dust lanes of four highly inclined galaxies, using U-, B-, V-, R- and I-band CCD and J- and K'-band near-infrared array images. For three of these galaxies, we could use the symmetry of the underlying light profile to obtain absolute

  3. Motion on an Inclined Plane and the Nature of Science

    Science.gov (United States)

    Pendrill, Ann-Marie; Ekström, Peter; Hansson, Lena; Mars, Patrik; Ouattara, Lassana; Ryan, Ulrika

    2014-01-01

    Friction is an important phenomenon in everyday life. All children are familiar with playground slides, which may thus be a good starting point for investigating friction. Motion on an inclined plane is a standard physics example. This paper presents an investigation of friction by a group of 11-year olds. How did they plan their investigations?…

  4. Evidences of inclined transpression at the contact between ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 5. Evidences of inclined ... a right lateral strike-slip component. As a whole, it is suggested that Udayagiri group is thrusted over Vinjamuru group along a westerly dipping thrust plane with a right lateral strike-slip motion and simultaneous E–W contraction.

  5. Inclined Planes and Motion Detectors: A Study of Acceleration.

    Science.gov (United States)

    Tracy, Dyanne M.

    2001-01-01

    Presents an activity in which students work in cooperative groups and roll balls down inclined planes, collect data with the help of an electronic motion detector, and represent data with a graphing calculator to explore concepts such as mass, gravity, velocity, and acceleration. (Contains 12 references.) (Author/ASK)

  6. The effect of circular bridge piers with different inclination angles ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. The effect of circular bridge piers with different inclination angles toward downstream on scour. MOHAMMAD VAGHEFI1,∗, MASOUD GHODSIAN2 and. SAEID SALIMI3. 1Department of Civil Engineering, Persian Gulf University, Shahid Mahini Street, P.O. Box: 75169-13817,. Bushehr, Iran.

  7. The inter-relationships between angle of inclination, height and ...

    African Journals Online (AJOL)

    Experiments were conducted to investigate the dependence of number of sprouted teak (Tectona grandis Linn. F) stumps on the height above root collar and angle of inclination of planted teak stumps. The studies were aim-ed at developing suitable methods of converting teak seedlings into stumps and planting practices to ...

  8. Reconstruction of Galileo Galilei's Experiment: The Inclined Plane

    Science.gov (United States)

    Straulino, S.

    2008-01-01

    In the "Third Day" of the "Discourses and Mathematical Demonstrations Concerning Two New Sciences" Galileo Galilei describes the famous experiment of the inclined plane and uses it to bring an experimental confirmation to the laws of uniformly accelerated motion. We describe a reconstruction of the experiment and how the results can be used for…

  9. Optimization of PV array inclination in India using ANN estimator ...

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana; Volume 40; Issue 5. Optimization of PV array inclination in India using ANN estimator: Method comparison study ... Although different non-linear, empirical models have been proposed by different researchers in India, they have too many constraints and needs complex and rigorous computational ...

  10. A layered model for inclined pipe flow of settling slurry

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Václav; Krupička, Jan; Kesely, Mikoláš

    2018-01-01

    Roč. 333, June (2018), s. 317-326 ISSN 0032-5910 R&D Projects: GA ČR GA17-14271S Institutional support: RVO:67985874 Keywords : inclined pipe * settling slurry * pressure drop * flow stratification * laboratory loop Impact factor: 2.942, year: 2016

  11. Evidences of inclined transpression at the contact between ...

    Indian Academy of Sciences (India)

    zone may show different structures or dominance of certain type of structures, depending on whether that part is dominated by strike-slip, dip slip or compression. The present study finds evidences of inclined transpression at the contact between. Udayagiri and Vinjamuru group of NSB, which is the main focus of this paper.

  12. The role of incline, performance level and gender on the gross mechanical efficiency of roller ski skating

    Directory of Open Access Journals (Sweden)

    Øyvind eSandbakk

    2013-10-01

    Full Text Available The ability to efficiently utilize metabolic energy to produce work is a key factor for endurance performance. The present study investigated the effects of incline, performance level and gender on the gross mechanical efficiency during roller ski skating. Thirty-one male and nineteen female elite cross-country skiers performed a 5-min submaximal session at approximately 75% of VO2peak on a 5% inclined treadmill using the G3 skating technique. Thereafter, a 5-min session on a 12% incline using the G2 skating technique was performed at a similar work rate. Gross efficiency was calculated as the external work rate against rolling friction and gravity divided by the metabolic rate using gas exchange. Performance level was determined by the amount of skating FIS points (the Federation of International Skiing approved scoring system for ski racing where fewer points indicate a higher performance level. Strong significant correlations between work rate and metabolic rate within both inclines and gender were revealed (r=-0.89-0.98 and P

  13. Deontological and utilitarian inclinations in moral decision making: a process dissociation approach.

    Science.gov (United States)

    Conway, Paul; Gawronski, Bertram

    2013-02-01

    Dual-process theories of moral judgment suggest that responses to moral dilemmas are guided by two moral principles: the principle of deontology states that the morality of an action depends on the intrinsic nature of the action (e.g., harming others is wrong regardless of its consequences); the principle of utilitarianism implies that the morality of an action is determined by its consequences (e.g., harming others is acceptable if it increases the well-being of a greater number of people). Despite the proposed independence of the moral inclinations reflecting these principles, previous work has relied on operationalizations in which stronger inclinations of one kind imply weaker inclinations of the other kind. The current research applied Jacoby's (1991) process dissociation procedure to independently quantify the strength of deontological and utilitarian inclinations within individuals. Study 1 confirmed the usefulness of process dissociation for capturing individual differences in deontological and utilitarian inclinations, revealing positive correlations of both inclinations to moral identity. Moreover, deontological inclinations were uniquely related to empathic concern, perspective-taking, and religiosity, whereas utilitarian inclinations were uniquely related to need for cognition. Study 2 demonstrated that cognitive load selectively reduced utilitarian inclinations, with deontological inclinations being unaffected. In Study 3, a manipulation designed to enhance empathy increased deontological inclinations, with utilitarian inclinations being unaffected. These findings provide evidence for the independent contributions of deontological and utilitarian inclinations to moral judgments, resolving many theoretical ambiguities implied by previous research. (c) 2013 APA, all rights reserved.

  14. Over-focused? The relation between patients’ inclination for conscious control and single- and dual-task motor performance after stroke

    NARCIS (Netherlands)

    Denneman, R. P.M.; Kal, E. C.; Houdijk, H.; Kamp, J. van der

    Background: Many stroke patients are inclined to consciously control their movements. This is thought to negatively affect patients’ motor performance, as it disrupts movement automaticity. However, it has also been argued that conscious control may sometimes benefit motor performance, depending on

  15. Computational parametric study of a Richtmyer-Meshkov instability for an inclined interface.

    Science.gov (United States)

    McFarland, Jacob A; Greenough, Jeffrey A; Ranjan, Devesh

    2011-08-01

    A computational study of the Richtmyer-Meshkov instability for an inclined interface is presented. The study covers experiments to be performed in the Texas A&M University inclined shock tube facility. Incident shock wave Mach numbers from 1.2 to 2.5, inclination angles from 30° to 60°, and gas pair Atwood numbers of ∼0.67 and ∼0.95 are used in this parametric study containing 15 unique combinations of these parameters. Qualitative results are examined through a time series of density plots for multiple combinations of these parameters, and the qualitative effects of each of the parameters are discussed. Pressure, density, and vorticity fields are presented in animations available online to supplement the discussion of the qualitative results. These density plots show the evolution of two main regions in the flow field: a mixing region containing driver and test gas that is dominated by large vortical structures, and a more homogeneous region of unmixed fluid which can separate away from the mixing region in some cases. The interface mixing width is determined for various combinations of the parameters listed at the beginning of the Abstract. A scaling method for the mixing width is proposed using the interface geometry and wave velocities calculated using one-dimensional gas dynamic equations. This model uses the transmitted wave velocity for the characteristic velocity and an initial offset time based on the travel time of strong reflected waves. It is compared to an adapted Richtmyer impulsive model scaling and shown to scale the initial mixing width growth rate more effectively for fixed Atwood number.

  16. Quasi-Rayleigh waves in transversely isotropic half-space with inclined axis of symmetry

    International Nuclear Information System (INIS)

    Yanovskaya, T.B.; Savina, L.S.

    2003-09-01

    A method for determination of characteristics of quasi-Rayleigh (qR) wave in a transversely isotropic homogeneous half-space with inclined axis of symmetry is outlined. The solution is obtained as a superposition of qP, qSV and qSH waves, and surface wave velocity is determined from the boundary conditions at the free surface and at infinity, as in the case of Rayleigh wave in isotropic half-space. Though the theory is simple enough, a numerical procedure for the calculation of surface wave velocity presents some difficulties. The difficulty is conditioned by necessity to calculate complex roots of a non-linear equation, which in turn contains functions determined as roots of nonlinear equations with complex coefficients. Numerical analysis shows that roots of the equation corresponding to the boundary conditions do not exist in the whole domain of azimuths and inclinations of the symmetry axis. The domain of existence of qR wave depends on the ratio of the elastic parameters: for some strongly anisotropic models the wave cannot exist at all. For some angles of inclination qR wave velocities deviate from those calculated on the basis of the perturbation method valid for weak anisotropy, though they have the same tendency of variation with azimuth. The phase of qR wave varies with depth unlike Rayleigh wave in isotropic half-space. Unlike Rayleigh wave in isotropic half-space, qR wave has three components - vertical, radial and transverse. Particle motion in horizontal plane is elliptic. Direction of the major axis of the ellipsis coincide with the direction of propagation only in azimuths 0 deg. (180 deg.) and 90 deg. (270 deg.). (author)

  17. Aqua/Aura Updated Inclination Adjust Maneuver Performance Prediction Model

    Science.gov (United States)

    Boone, Spencer

    2017-01-01

    This presentation will discuss the updated Inclination Adjust Maneuver (IAM) performance prediction model that was developed for Aqua and Aura following the 2017 IAM series. This updated model uses statistical regression methods to identify potential long-term trends in maneuver parameters, yielding improved predictions when re-planning past maneuvers. The presentation has been reviewed and approved by Eric Moyer, ESMO Deputy Project Manager.

  18. Graphs and matroids weighted in a bounded incline algebra.

    Science.gov (United States)

    Lu, Ling-Xia; Zhang, Bei

    2014-01-01

    Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied.

  19. Drop impact and rebound dynamics on an inclined superhydrophobic surface.

    Science.gov (United States)

    Yeong, Yong Han; Burton, James; Loth, Eric; Bayer, Ilker S

    2014-10-14

    Due to its potential in water-repelling applications, the impact and rebound dynamics of a water drop impinging perpendicular to a horizontal superhydrophobic surface have undergone extensive study. However, drops tend to strike a surface at an angle in applications. In such cases, the physics governing the effects of oblique impact are not well studied or understood. Therefore, the objective of this study was to conduct an experiment to investigate the impact and rebound dynamics of a drop at various liquid viscosities, in an isothermal environment, and on a nanocomposite superhydrophobic surface at normal and oblique impact conditions (tilted at 15°, 30°, 45°, and 60°). This study considered drops falling from various heights to create normal impact Weber numbers ranging from 6 to 110. In addition, drop viscosity was varied by decreasing the temperature for water drops and by utilizing water-glycerol mixtures, which have similar surface tension to water but higher viscosities. Results revealed that oblique and normal drop impact behaved similarly (in terms of maximum drop spread as well as rebound dynamics) at low normal Weber numbers. However, at higher Weber numbers, normal and oblique impact results diverged in terms of maximum spread, which could be related to asymmetry and more complex outcomes. These asymmetry effects became more pronounced as the inclination angle increased, to the point where they dominated the drop impact and rebound characteristics when the surface was inclined at 60°. The drop rebound characteristics on inclined surfaces could be classified into eight different outcomes driven primarily by normal Weber number and drop Ohnesorge numbers. However, it was found that these outcomes were also a function of the receding contact angle, whereby reduced receding angles yielded tail-like structures. Nevertheless, the contact times of the drops with the coating were found to be generally independent of surface inclination.

  20. Two Mechanisms of Sensorimotor Set Adaptation to Inclined Stance

    Directory of Open Access Journals (Sweden)

    Kyoung-Hyun Lee

    2017-10-01

    Full Text Available Orientation of posture relative to the environment depends on the contributions from the somatosensory, vestibular, and visual systems mixed in varying proportions to produce a sensorimotor set. Here, we probed the sensorimotor set composition using a postural adaptation task in which healthy adults stood on an inclined surface for 3 min. Upon returning to a horizontal surface, participants displayed a range of postural orientations – from an aftereffect that consisted of a large forward postural lean to an upright stance with little or no aftereffect. It has been hypothesized that the post-incline postural change depends on each individual’s sensorimotor set: whether the set was dominated by the somatosensory or vestibular system: Somatosensory dominance would cause the lean aftereffect whereas vestibular dominance should steer stance posture toward upright orientation. We investigated the individuals who displayed somatosensory dominance by manipulating their attention to spatial orientation. We introduced a distraction condition in which subjects concurrently performed a difficult arithmetic subtraction task. This manipulation altered the time course of their post-incline aftereffect. When not distracted, participants returned to upright stance within the 3-min period. However, they continued leaning forward when distracted. These results suggest that the mechanism of sensorimotor set adaptation to inclined stance comprises at least two components. The first component reflects the dominant contribution from the somatosensory system. Since the postural lean was observed among these subjects even when they were not distracted, it suggests that the aftereffect is difficult to overcome. The second component includes a covert attentional component which manifests as the dissipation of the aftereffect and the return of posture to upright orientation.

  1. Determination of angle of inclination for optimum power production ...

    African Journals Online (AJOL)

    This study evaluates the performance of the photovoltaic modules at different tilt angle (angle of inclination) from 5º to 90º. The solar panel of 45 Watts capacity was placed on the manual tracker between the hours of 7:00am and 6:15pm on the geographical location of latitude of 40 55' 58” North and longitude of 60 59' 55” ...

  2. Sagittal x-ray beam deviation at asymmetric inclined diffractors

    Czech Academy of Sciences Publication Activity Database

    Korytár, D.; Hrdý, Jaromír; Artemiev, Nikolai; Ferrari, C.; Freund, A.

    2001-01-01

    Roč. 8, - (2001), s. 1136-1139 ISSN 0909-0495 R&D Projects: GA MŠk OK 305; GA MPO PZ-CH/22 Institutional research plan: CEZ:AV0Z1010914 Keywords : x-ray optics * Si(111) W/grooved crystals * inclined diffraction * out-of-diffraction-plane beams * sagittal focusing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.519, year: 2001

  3. Three-dimensional volumetric display by inclined-plane scanning

    Science.gov (United States)

    Miyazaki, Daisuke; Eto, Takuma; Nishimura, Yasuhiro; Matsushita, Kenji

    2003-05-01

    A volumetric display system based on three-dimensional (3-D) scanning that uses an inclined two-dimensional (2-D) image is described. In the volumetric display system a 2-D display unit is placed obliquely in an imaging system into which a rotating mirror is inserted. When the mirror is rotated, the inclined 2-D image is moved laterally. A locus of the moving image can be observed by persistence of vision as a result of the high-speed rotation of the mirror. Inclined cross-sectional images of an object are displayed on the display unit in accordance with the position of the image plane to observe a 3-D image of the object by persistence of vision. Three-dimensional images formed by this display system satisfy all the criteria for stereoscopic vision. We constructed the volumetric display systems using a galvanometer mirror and a vector-scan display unit. In addition, we constructed a real-time 3-D measurement system based on a light section method. Measured 3-D images can be reconstructed in the 3-D display system in real time.

  4. Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2016-09-01

    Full Text Available It is well known that fibers improve the performance of cementitious composites by acting as bridging ligaments in cracks. Such bridging behavior is often studied through fiber pullout tests. The relation between the pullout force vs. slip end displacement is characteristic of the fiber-matrix interface. However, such a relation varies significantly with the fiber inclination angle. In the current work, we establish a numerical model to simulate the entire pullout process by explicitly representing the fiber, matrix and the interface for arbitrary fiber orientations. Cohesive elements endorsed with mixed-mode fracture capacities are implemented to represent the bond-slip behavior at the interface. Contact elements with Coulomb’s friction are placed at the interface to simulate frictional contact. The bond-slip behavior is first calibrated through pull-out curves for fibers aligned with the loading direction, then validated against experimental results for steel fibers oriented at 30 ∘ and 60 ∘ . Parametric studies are then performed to explore the influences of both material properties (fiber yield strength, matrix tensile strength, interfacial bond and geometric factors (fiber diameter, embedment length and inclination angle on the overall pullout behavior, in particular on the maximum pullout load. The proposed methodology provides the necessary pull-out curves for a fiber oriented at a given angle for multi-scale models to study fracture in fiber-reinforced cementitious materials. The novelty lies in its capacity to capture the entire pullout process for a fiber with an arbitrary inclination angle.

  5. When negation is not negation

    OpenAIRE

    Milicevic, Nataša

    2008-01-01

    In this paper I will discuss the formation of different types of yes/no questions in Serbian (examples in (1)), focusing on the syntactically and semantically puzzling example (1d), which involves the negative auxiliary inversion. Although there is a negative marker on the fronted auxiliary, the construction does not involve sentential negation. This coincides with the fact that the negative quantifying NPIs cannot be licensed. The question formation and sentential negation have similar synta...

  6. Gas-liquid two-phase flow behavior in terrain-inclined pipelines for gathering transport system of wet natural gas

    DEFF Research Database (Denmark)

    Yang, Yan; Li, Jingbo; Wang, Shuli

    2018-01-01

    The Volume of Fluid method and Re-Normalisation Group (RNG) k-ε turbulence model were employed to predict the gas-liquid two-phase flow in a terrain-inclined pipeline with deposited liquids. The simulation was carried out in a 22.5 m terrain-inclined pipeline with a 150 mm internal diameter...... on the liquid level under the suction force which caused by the negative pressure around the elbow, and then it touched to the top of the pipe. When the liquid blocked the pipe, the pressure drop between the upstream and downstream of the elbow increased with the increase of the gas velocity. At larger gas...

  7. NUMERICAL SIMULATION OF EXCITATION AND PROPAGATION OF HELIOSEISMIC MHD WAVES: EFFECTS OF INCLINED MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Parchevsky, K. V.; Kosovichev, A. G.

    2009-01-01

    Investigation of propagation, conversion, and scattering of MHD waves in the Sun is very important for understanding the mechanisms of observed oscillations and waves in sunspots and active regions. We have developed a three-dimensional linear MHD numerical model to investigate the influence of the magnetic field on excitation and properties of the MHD waves. The results show that surface gravity waves (f-modes) are affected by the background magnetic field more than acoustic-type waves (p-modes). Comparison of our simulations with the time-distance helioseismology results from Solar and Heliospheric Observatory/MDI shows that the amplitude of travel time variations with azimuth around sunspots caused by the inclined magnetic field does not exceed 25% of the observed amplitude even for strong fields of 1400-1900 G. This can be an indication that other effects (e.g., background flows and nonuniform distribution of the magnetic field) can contribute to the observed azimuthal travel time variations. The azimuthal travel time variations caused by the wave interaction with the magnetic field are similar for simulated and observed travel times for strong fields of 1400-1900 G if Doppler velocities are taken at the height of 300 km above the photosphere where the plasma parameter β << 1. For the photospheric level the travel times are systematically smaller by approximately 0.12 minutes than for the height of 300 km above the photosphere for all studied ranges of the magnetic field strength and inclination angles. Numerical MHD wave modeling and new data from the HMI instrument of the Solar Dynamics Observatory will substantially advance our knowledge of the wave interaction with strong magnetic fields on the Sun and improve the local helioseismology diagnostics.

  8. Personally committed to emotional labor: Surface acting, emotional exhaustion and performance among service employees with a strong need to belong.

    Science.gov (United States)

    Yagil, Dana; Medler-Liraz, Hana

    2017-10-01

    Individual differences in emotional labor and subsequent vulnerability to burnout have been explored through the prism of Congruence Theory, which examines the congruence between personality traits and job requirements (Bono & Vey, 2007; Moskowitz & Coté, 1995). Drawing on theory and research dealing with the association between the need to belong and self-regulation (Baumeister, DeWall, Ciarocco & Twenge, 2005), this study examined the relationship between need to belong and service employees' surface acting and associated outcomes. In Study 1, participants (N = 54) were asked to write a response to an aggressive email from a hypothetical customer. The need to belong was positively related to display of positive emotions and negatively to display of negative emotions in the responses, but not related to felt anger, suggesting that it is associated with the inclination to engage in surface acting. In Study 2, a field study conducted with 170 service employee-customer dyads, surface acting mediated the positive relationship between fear of isolation and emotional exhaustion, and emotional exhaustion mediated the relationship between surface acting and customer satisfaction. These results suggested that service employees with a strong need to belong might have a heightened risk of burnout because of their inclination to engage in emotional labor. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Association of objectively measured arm inclination with shoulder pain: A 6-month follow-up prospective study of construction and health care workers

    Science.gov (United States)

    Koch, Markus; Lunde, Lars-Kristian; Veiersted, Kaj Bo; Knardahl, Stein

    2017-01-01

    Objectives The aim was to determine the association of occupational arm inclination with shoulder pain in construction and health care workers. Methods Arm inclination relative to the vertical was measured with an accelerometer placed on the dominant upper arm for up to four full days at baseline in 62 construction workers and 63 health care workers. The pain intensity in the shoulder and mechanical and psychosocial work factors were measured by self-reports at baseline and prospectively after 6 months. The associations between exposures and shoulder pain were analyzed with multilevel mixed-effects linear regressions. Results For the total study population working with the dominant arm at inclinations > 30° and >120° was associated with lower levels of shoulder pain both cross-sectionally and after 6 months. Associations were attenuated when adjusting for individual and social factors, psychological state, and exposure during leisure time, especially for the high inclination levels. Analyses, only including subjects with no pain at baseline revealed no significant associations. While stratified analysis showed negative associations in the construction worker group, there were no significant association in health care workers. Compared to the number of hypotheses tested, the number of significant findings was low. Adjustment by Bonferroni-correction made almost all findings insignificant. Conclusions All analyses reflected a negative association between arm inclination and shoulder pain, but few analyses showed these associations to be statistically significant. If there is a relationship between arm inclination and shoulder pain, these findings could indicate that pain-avoidance may modify how workers perform their tasks. PMID:29176761

  10. Solitary waves on inclined films: their characteristics and the effects on wall shear stress

    Energy Technology Data Exchange (ETDEWEB)

    Tihon, J. [Academy of Sciences of the Czech Republic, Institute of Chemical Process Fundamentals, Prague 6 (Czech Republic); Serifi, K.; Argyriadi, K.; Bontozoglou, V. [University of Thessaly, Department of Mechanical and Industrial Engineering, Volos (Greece)

    2006-07-15

    The properties of solitary waves, developing from inlet disturbances of controlled frequency along an inclined film flow, are systematically studied experimentally and computationally. Time-variations of film height and wall shear stress are measured, using respectively a capacitance probe and an electrodiffusion sensor. Computational data are provided from simulations performed by a Galerkin finite element scheme. The height and spacing of solitary humps, their phase velocity and the wavelength of the preceding capillary ripples are reported as functions of the Reynolds number (10negative minimum, with the effects intensifying at intermediate Re. All computer predictions are found to be in good quantitative agreement with the experimental data. (orig.)

  11. Sex Differences in Incline-Walking among Humans.

    Science.gov (United States)

    Wall-Scheffler, Cara M

    2015-12-01

    Previous research has shown that people tend to walk around the speed that minimizes energy consumption when traveling a given distance. It has further been shown that men and women have different speeds that minimize energy and that women will choose slower speeds when the activity itself is a high-rate activity (e.g. carrying a load). Here we investigate what men and women will do when given a high rate walking activity, namely walking on an inclined surface. Fourteen people (nine men and five women) walked at four speeds on a level treadmill and four speeds on an inclined treadmill while their metabolic rate, kinematics and core temperature were monitored. Following the data collection, participants were asked to identify their ‘preferred’ walking speed at each of the conditions. Cost of transport (CoT) curves were calculated for each individual, and the delta between the preferred and the ‘optimal’ speeds were calculated. People chose to walk at slightly slower speeds on the level; there was minimal change in the cost to walk at these slower speeds. Women walked at absolutely slower speeds on the incline than men (P=0.06) and had significantly larger speed deltas (P=0.02), thus choosing to walk at slower rate speeds. Women also showed a significant relationship between the rate of activity and core temperature, whereas men did not. This is consistent with other research showing that women choose behavioral strategies to minimize body temperature changes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  12. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.

    2017-07-21

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.

  13. Articulator-related registration and analysis of sagittal condylar inclination

    OpenAIRE

    Čimić, Samir; Kraljević Šimunković, Sonja; Simonić Kocijan, Sunčana; Matijević, Jurica; Dulčić, Nikša; Ćatić, Amir

    2015-01-01

    The purpose of this investigation was to study sagittal condylar inclination values within a uniform sample (Angle class I occlusion) using ‘articulator-related registration’ and Camper’s plane as a reference plane. The study was performed on a sample of 58 Angle class I subjects (mean age 25.1, SD 3.1). Measurements were performed with an ultrasonic jaw tracking device with six degrees of freedom. After a paraocclusal tray was fixed in the mouth, each subject had to make three protrusive ...

  14. Mining adjacent inclined coal seams of varying thickness

    Energy Technology Data Exchange (ETDEWEB)

    Batmanov, Yu.K.; Bakhtin, A.F.; Bulavka, E.I.

    1980-01-01

    In the Donbass coal basin a large number of thin coal seams located near other thicker coal seams are left. It is suggested that coal output from the Donbass could be increased by 100% and cost of mining could be lowered by 0.4-1.1 roubles per 1 ton of coal if thinner coal seams were also mined. Mining methods in the Donbass are analyzed from the point of view of reducing the cost of mining and increasing coal production. Recommendations on methods of mining thin inclined coal seams are given. (6 refs.) (In Russian)

  15. Negative ... concord?

    NARCIS (Netherlands)

    Giannakidou, A

    The main claim of this paper is that a general theory of negative concord (NC) should allow for the possibility of NC involving scoping of a universal quantifier above negation. I propose that Greek NC instantiates this option. Greek n-words will be analyzed as polarity sensitive universal

  16. Finite element analysis of inclined nozzle-plate junctions

    International Nuclear Information System (INIS)

    Dixit, K.B.; Seth, V.K.; Krishnan, A.; Ramamurthy, T.S.; Dattaguru, B.; Rao, A.K.

    1979-01-01

    Estimation of stress concentration at nozzle to plate or shell junctions is a significant problem in the stress analysis of nuclear reactors. The topic is a subject matter of extensive investigations and earlier considerable success has been reported on analysis for the cases when the nozzle is perpendicular to the plate or is radial to the shell. Analytical methods for the estimation of stress concentrations for the practical situations when the intersecting nozzle is inclined to the plate or is non-radial to the shell is rather scanty. Specific complications arise in dealing with the junction region when the nozzle with circular cross-section meets the non-circular cut-out on the plate or shell. In this paper a finite element analysis is developed for inclined nozzles and results are presented for nozzle-plate junctions. A method of analysis is developed with a view to achieving simultaneously accuracy of results and simplicity in the choice of elements and their connectivity. The circular nozzle is treated by axisymmetric conical shell elements. The nozzle portion in the region around the junction and the flat plate is dealt with by triangular flat shell elements. Special transition elements are developed for joining the flat shell elements with the axisymmetric elements under non-axisymmetric loading. A substructure method of analysis is adopted which achieves considerable economy in handling the structure and also conveniently combines the different types of elements in the structure. (orig.)

  17. Simplification of rat intubation on inclined metal plate.

    Science.gov (United States)

    Kastl, Sigrid; Kotschenreuther, U; Hille, B; Schmidt, J; Gepp, H; Hohenberger, W

    2004-12-01

    Small-animal intubation is often necessary during inhalation anesthesia to allow steady-state conditions for large operations and in vivo experiments in all fields of experimental surgery. In rats, placing an orotracheal tube is technically difficult primarily because of the small size of the subject and the lack of equipment specifically designed for this task. We describe a simple rat intubation technique in which the animal is suspended in dorsal recumbency on an inclined metal plate. The animal, anesthetized with ether, is fixed to a 70 degrees-inclined metal plate in a dorsal position by means of a Mersilene ribbon hooked around the upper incisors. This method of positioning the animal is the most important step in the intubation process and further facilitates the technique already described by other authors. A human otoscope was used as a laryngoscope, intubation was performed using the Seldinger technique, and a 14-gauge intravenous catheter served as an endotracheal tube. This inexpensive technique is quickly learned and can be used in any laboratory. Safe and reliable airway management can thus be achieved, permitting in vivo examinations and operations.

  18. Geosynchronous inclined orbits for high-latitude communications

    Science.gov (United States)

    Fantino, E.; Flores, R. M.; Di Carlo, M.; Di Salvo, A.; Cabot, E.

    2017-11-01

    We present and discuss a solution to the growing demand for satellite telecommunication coverage in the high-latitude geographical regions (beyond 55°N), where the signal from geostationary satellites is limited or unavailable. We focus on the dynamical issues associated to the design, the coverage, the maintenance and the disposal of a set of orbits selected for the purpose. Specifically, we identify a group of highly inclined, moderately eccentric geosynchronous orbits derived from the Tundra orbit (geosynchronous, eccentric and critically inclined). Continuous coverage can be guaranteed by a constellation of three satellites in equally spaced planes and suitably phased. By means of a high-precision model of the terrestrial gravity field and the relevant environmental perturbations, we study the evolution of these orbits. The effects of the different perturbations on the ground track (which is more important for coverage than the orbital elements themselves) are isolated and analyzed. The physical model and the numerical setup are optimized with respect to computing time and accuracy. We show that, in order to maintain the ground track unchanged, the key parameters are the orbital period and the argument of perigee. Furthermore, corrections to the right ascension of the ascending node are needed in order to preserve the relative orientation of the orbital planes. A station-keeping strategy that minimizes propellant consumption is then devised, and comparisons are made between the cost of a solution based on impulsive maneuvers and one with continuous thrust. Finally, the issue of end-of-life disposal is discussed.

  19. Dissipative descent: rocking and rolling down an incline

    Science.gov (United States)

    Balmforth, N. J.; Bush, J. W. M.; Vener, D.; Young, W. R.

    We consider the dynamics of a hollow cylindrical shell that is filled with viscous fluid and another, nested solid cylinder, and allowed to roll down an inclined plane. A mathematical model is compared to simple experiments. Two types of behaviour are observed experimentally: on steeper slopes, the device accelerates; on shallower inclines, the cylinders rock and roll unsteadily downhill, with a speed that is constant on average. The theory also predicts runaway and unsteady rolling motions. For the rolling solutions, however, the inner cylinder cannot be suspended in the fluid by the motion of the outer cylinder, and instead falls inexorably toward the outer cylinder. Whilst only occurs after an infinite time, the system slows progressively as the gap between the cylinders narrows, owing to heightened viscous dissipation. Such a deceleration is not observed in the experiments, suggesting that some mechanism limits the approach to contact. Coating the surface of the inner cylinder with sandpaper of different grades changes the rolling speed, consistent with the notion that surface roughness is responsible for limiting the acceleration.

  20. Breakdown of air pockets in downwardly inclined sewerage pressure mains.

    Science.gov (United States)

    Lubbers, C L; Clemens, F H L R

    2006-01-01

    In the Netherlands, wastewater is collected in municipal areas and transported to centralised WWTPs by an extensive system of pressure mains. Over the last decades these pressure mains did not receive much attention in terms of monitoring of performance or maintenance. A recent inventory showed that half of the pressure mains show an increased pressure loss for no directly obvious reason. One of the many causes that account for the reduction of the flow capacity is the occurrence of free gas in the pipeline. During dry weather periods with low flow velocities, gas may accumulate at high points in the system. Once the velocity increases during storm weather flow, the air pockets may be broken down and transported to the end of the system. A research study is started focussing on the description of the gas-water phenomena in wastewater pressure mains with respect to transportation of gas. An experimental facility is constructed for the study of multi-phase flow. This paper describes the preliminary results of experiments on breakdown rates of gas pockets as a function of inclination angle and water flow rate. The results show an increasing breakdown rate with increasing inclination angle.

  1. Effects of High Inclined and Eccentric Disturbers on the Dynamics of the Equator of an Axy-Simmetric Body

    Science.gov (United States)

    Yokoyama, Tadashi; Frouard, J. H.; Deienno, R.

    2013-05-01

    Abstract (2,250 Maximum Characters): In this work we consider the rotational long term dynamics of an axy-simmetric body under the action of a high inclined and eccentric disturber. The problem is written in terms of Andoyer canonical variables (L,G,H, l,g,h), with respect to an independent inertial frame. Since A=B (moments of inertia ), the l angle is an ignorable variable, so that spin-orbit resonance is ruled out. Therefore the Hamiltonian can be averaged in the mean anomaly of the orbital motion of the disturber. An extra average is still possible in g as it is a fast Andoyer variable. In order to have a first and rough idea of the real dynamics, the disturber is assumed in a simplified precessing keplerian motion (Henrard & Schwanen, 2004) . Then the Hamiltonian is reduced to a problem of one degree of freedom and the level curves show a gross idea of the basic dynamics. In particular the curves show interesting equilibrium points, some of them are related to Cassini’s second law. Depending on the mass and eccentricity or inclination of the disturber, a strong resonance between h and longitude of the node of the disturber can appear. This resonance can cause interesting variations of the inclination of the plane normal to the angular momentum of the perturbed body. Finally, numerical integrations of the complete averaged problem are performed. In particular, we study the possible cumulative effects of temporary satellites when they orbit their host planet in high inclined and eccentric orbit. These satellites ( planetesimals) might have existed during the planetary migration but due to Lidov-Kozai resonance they should have ejected after some time.

  2. Very strong negative trends in laminae in ozone profiles

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan

    2002-01-01

    Roč. 27, - (2002), s. 477-483 ISSN 1474-7065 R&D Projects: GA AV ČR IAA3042101 Institutional research plan: CEZ:AV0Z3042911 Keywords : laminae profile of ozone * long-term trends Subject RIV: DG - Athmosphere Sciences, Meteorology

  3. Negative Ion Density Fronts

    International Nuclear Information System (INIS)

    Igor Kaganovich

    2000-01-01

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas

  4. Improvement in greenhouse solar drying using inclined north wall reflection

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab (India); Arora, Sadhna [Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab (India)

    2009-09-15

    A conventional greenhouse solar dryer of 6 m{sup 2} x 4 m{sup 2} floor area (east-west orientation) was improved for faster drying using inclined north wall reflection (INWR) under natural as well as forced convection mode. To increase the solar radiation availability onto the product (to be dried) during extreme summer months, a temporary inclined wall covered with aluminized reflector sheet (of 50 {mu}m thickness and reflectance 0.93) was raised inside the greenhouse just in front of the vertical transparent north wall. By doing so, product fully received the reflected beam radiation (which otherwise leaves through the north wall) in addition to the direct total solar radiation available on the horizontal surface during different hours of drying. The increment in total solar radiation input enhanced the drying rate of the product by increasing the inside air and crop temperature of the dryer. Inclination angle of the reflective north wall with vertical ({beta}) was optimized for various selective widths of the tray W (1.5, 2, 2.5 and 3 m) and for different realistic heights of existing vertical north wall (h) at 25 N, 30 N and 35 N latitudes (hot climatic zones). Experimental performance of the improved dryer was tested during the month of May 2008 at Ludhiana (30.56 N) climatic conditions, India by drying bitter gourd (Momordica charantia Linn) slices. Results showed that by using INWR under natural convection mode of drying, greenhouse air and crop temperature increased by 1-6.7 C and 1-4 C, respectively, during different drying hours as compared to, when INWR was not used and saved 13.13% of the total drying time. By using INWR under forced convection mode of drying, greenhouse air and crop temperature increased by 1-4.5 C and 1-3 C, respectively, during different drying hours as compared to, when INWR was not used and saved 16.67% of the total drying time. (author)

  5. Hydraulic shock waves in an inclined chute contraction

    Science.gov (United States)

    Jan, C.-D.; Chang, C.-J.

    2009-04-01

    A chute contraction is a common structure used in hydraulic engineering for typical reasons such as increase of bottom slope, transition from side channel intakes to tunnel spillways, reduction of chute width due to bridges, transition structures in flood diversion works, among others. One of the significant chute contractions in Taiwan is that used in the Yuanshantzu Flood Diversion Project of Keelung River. The diversion project is designed to divert flood water from upper Keelung River into East Sea with a capasity of 1,310 cubic meters per second for mitigating the flood damage of lower part of Keelung River basin in Northern Taiwan. An inclined chute contraction is used to connect Keelung River and a diversion turnel. The inlet and outlet works of the diversion project is located at Ruifang in the Taipei County of north Taiwan. The diameter of diversion tunnel is 12 meters and the total length of tunnel is 2,484 meters. The diversion project has been completed and successfully executed many times since 2004 to lower the water level of Keelung River in typhoon seasons for avioding flooding problems in the lower part of Keelung River basin. Flow in a chute contraction has complicated flow pattern due to the existence of shock waves in it. A simple and useful calculation procedure for the maximum height and its position of shock waves is essentially needed for the preliminary design stage of a chute contraction. Hydraulic shock waves in an inclined chute contraction were experimentally and numerically investigated in this study with the consideration of the effects of sidewall deflection angle, bottom inclination angle and Froude number of approaching flow. The flow pattern of hydraulic shock waves in a chute contraction was observed. The main issue of designing chute contraction is to estimate the height and position of maximum shock wave for the consideration of freeboards. Achieving this aim, the experimental data are adopted and analyzed for the shock angle

  6. Strength Calculation of Inclined Sections of Reinforced Concrete Elements under Transverse Bending

    Science.gov (United States)

    Filatov, V. B.

    2017-11-01

    The authors propose a design model to determine the strength of inclined sections of bent reinforced concrete elements without shear reinforcement for the action of transverse force taking into account the aggregate interlock forces in the inclined crack. The calculated dependences to find out the components of forces acting in an inclined section are presented. The calculated dependences are obtained from the consideration of equilibrium conditions of the block over the inclined crack. A comparative analysis of the experimental values of the failure loads of the inclined section and the theoretical values obtained for the proposed dependencies and normative calculation methods is performed. It is shown that the proposed design model makes it possible to take into account the effect the longitudinal reinforcement percentage has on the inclined section strength, the element cross section height without the introduction of empirical coefficients which contributes to an increase in the structural safety of design solutions including the safety of high-strength concrete elements.

  7. Unique operations for a highly inclined, elliptical, geosynchronous satellite

    Science.gov (United States)

    Anglin, Patrick T.; Briskman, Robert D.

    2004-08-01

    The first space segment devoted to a Digital Audio Radio Service (DARS) for the Continental United States (CONUS) was established when the last satellite of a three satellite constellation (Flight Models FM-1, FM-2 and FM-3) was launched in November 2000. Each satellite is in a highly inclined, elliptical, geosynchronous orbit that is separated by 120° in Right Angle of the Ascending Node (RAAN) from the other two satellites' orbits. This results in an 8 h phasing in ground track between each satellite. These distinct orbits provide superior look angles and signal availability to mobile receivers in the northern third of the United States when compared to geostationary satellites. However, this unique orbital constellation results in some particular performance and operational differences from geostationary orbit satellites. Some of these are: Earth Sensor noise, maneuver implementation and power management. Descriptions and performance improvements of these orbit specific operations are detailed herein.

  8. Friction and drag forces on spheres propagating down inclined planes

    Science.gov (United States)

    Tee, Yi Hui; Longmire, Ellen

    2017-11-01

    When a submerged sphere propagates along an inclined wall at terminal velocity, it experiences gravity, drag, lift, and friction forces. In the related equations of motion, the drag, lift and friction coefficients are unknown. Experiments are conducted to determine the friction and drag coefficients of the sphere over a range of Reynolds numbers. Through high speed imaging, translational and rotational velocities of spheres propagating along a glass plate are determined in liquids with several viscosities. The onset of sliding motion is identified by computing the dimensionless rotation rate of the sphere. Using drag and lift coefficients for Re friction coefficients are calculated for several materials. The friction coefficients are then employed to estimate the drag coefficient for 350 frictional force over this Re range. Supported by NSF (CBET-1510154).

  9. Simulation of Solar Radiation Incident on Horizontal and Inclined Surfaces

    Directory of Open Access Journals (Sweden)

    MA Basunia

    2012-12-01

    Full Text Available A computer model was developed to simulate the hourly, daily and monthly average of daily solar radiation on horizontal and inclined surfaces. The measured hourly and daily solar radiation was compared with simulated radiation, and favourable agreement was observed for the measured and predicted values on clear days. The measured and simulated monthly averages of total (diffuse and beam daily solar radiation were compared and a reasonable agreement was observed for a number of stations in Japan. The simulation showed that during the rice harvesting season, September to October, there is a daily average of 14.7 MJ/m2 of solar irradiation on a horizontal surface in Matsuyama, Japan. There is a similar amount of solar radiation on a horizontal surface during the major rice harvesting season, November to December, in Bangladesh. This radiation can be effectively utilized for drying rough rice and other farm crops.

  10. Inclined nanoimprinting lithography-based 3D nanofabrication

    Science.gov (United States)

    Liu, Zhan; Bucknall, David G.; Allen, Mark G.

    2011-06-01

    We report a 'top-down' 3D nanofabrication approach combining non-conventional inclined nanoimprint lithography (INIL) with reactive ion etching (RIE), contact molding and 3D metal nanotransfer printing (nTP). This integration of processes enables the production and conformal transfer of 3D polymer nanostructures of varying heights to a variety of other materials including a silicon-based substrate, a silicone stamp and a metal gold (Au) thin film. The process demonstrates the potential of reduced fabrication cost and complexity compared to existing methods. Various 3D nanostructures in technologically useful materials have been fabricated, including symmetric and asymmetric nanolines, nanocircles and nanosquares. Such 3D nanostructures have potential applications such as angle-resolved photonic crystals, plasmonic crystals and biomimicking anisotropic surfaces. This integrated INIL-based strategy shows great promise for 3D nanofabrication in the fields of photonics, plasmonics and surface tribology.

  11. Segregation in inclined flows of binary mixtures of spheres

    Directory of Open Access Journals (Sweden)

    Larcher Michele

    2017-01-01

    Full Text Available We outline the equations that govern the evolution of segregation of a binary mixture of spheres in flows down inclines. These equations result from the mass and momentum balances of a kinetic theory for dense flows of inelastic spheres that interact through collisions. The theory employed for segregation is appropriate for particles with relatively small differences in size and mass. The flow of the mixture is assumed to reach a fully developed state much more rapidly than does the concentrations of the two species. We illustrate the predictions of the theory for a mixture of spheres of the same diameter but different masses and for spheres of different diameters but nearly the same mass. We show the evolution of the profiles of the concentration fractions of the two types of spheres and the profiles in the final, steady state. The latter compare favourably with those obtained in discrete-element numerical simulations.

  12. Method and apparatus for logging inclined earth boreholes

    International Nuclear Information System (INIS)

    Youmans, A.H.

    1981-01-01

    An improved technique is provided for comparing the velocity of an elongated well logging instrument traversing an inclined earth borehole with the playout velocity of the well logging cable at the earth's surface to control both the cable hoist drum rotation and the rate of movement of the subsurface instrument and thus insure cable playout is in equilibrium with the logging instrument movement. Method and apparatus are described for detecting any reduction in movement of the logging instrument through the borehole and for reducing the velocity of the logging cable playout in response thereto by reducing drum rotation. Further, when the velocity of cable playout slows to a preselected value, a monitoring circuit generates control signals which actuate a means of power attached to or integral with the logging instrument which, upon initiation, apply a force to move the logging instrument upward or downward within the borehole

  13. Deformation Analysis of Fixed Bearing Inclined Plane Thrust Bearing

    Directory of Open Access Journals (Sweden)

    LI Yong--hai

    2017-02-01

    Full Text Available According to the theory of lubrication,Numerical simulation of the deformation of the thrust bearing of the fixed inclined plane was carried out,by finite element numerical analysis method and using the ANSYS software. The mathematical model of the oil film shape control equations about of the deformation and bearing is established. Analytical result showed that the force caused the tile surface generating concave deformation,and convex deformation increased with the height and the size of the load and bearing;Tile surface temperature generated convex deformation and increased with the height and the size of the temperature of bearing bush;The actual deformation of the tile surface is the superposition of the force and the thermal deformation. This conclusion can provide reference for the design and the application of thrust bearing,to reduce the tile surface,which is not conducive to the carrying capacity of the concave deformation.

  14. Transient flow and heat transfer phenomena in inclined wavy films

    Energy Technology Data Exchange (ETDEWEB)

    Serifi, Katerina; Bontozoglou, Vasilis [Department of Mechanical and Industrial Engineering, University of Thessaly, 38334, Volos (Greece); Malamataris, Nikolaos A. [Department of Mechanical Engineering, Technological Educational Institution of Western Macedonia, 50100, Kila Kozani (Greece)

    2004-08-01

    A finite-element numerical scheme is used to study rigorously the flow of an inclined liquid film and the heat transfer from the constant-temperature wall. Regular inlet disturbances are predicted to evolve into periodic or solitary waves depending on the frequency of the forcing. At very low disturbance frequencies parasitic crests appear and the regularity of the wave-train is lost. The effect of a solitary wave-train on heat transfer from the wall is studied, and it is predicted that a stationary temperature distribution develops with periodic flux variation that follows the waves. The thinning of the substrate between successive humps combines with the effect of convection at the crest and tail of the solitary humps to produce heat transfer enhancement significantly above the conduction limit. (authors)

  15. Inclined transpression in the Neka Valley, eastern Alborz, Iran

    Science.gov (United States)

    Nabavi, Seyed Tohid; Díaz-Azpiroz, Manuel; Talbot, Christopher J.

    2017-07-01

    Three major nappes in the Neka Valley in the eastern Alborz Mountains of Iran allow the Cimmerian to present convergence following the oblique collision between Iran and the southern margin of Eurasia. This work reports the identification of an inclined transpression zone recognized by field investigations and strain analyses of the geometries of formations and detailed mesoscopic structural analyses of multiple faults, folds and a cleavage. The main structures encountered include refolded recumbent asymmetric fold nappes, highly curved fold hinges, in a transpression zone that dips 37° to the NW between boundaries thrusts striking from N050° to N060°. The β angle (the angle between the zone boundary and direction of horizontal far-field shortening) is about 80°. The north-west and south-east boundaries of this zone coincide with the Haji-abad thrust and the Shah-Kuh thrust, respectively. Fold axes generally trend NE-SW and step to both right and left as a result of strike-slip components of fault displacements. Strain analyses using Fry's method on macroscopic ooids and fusulina deformed into oblate ellipsoids indicate that the natural strain varies between 2.1 and 3.14. The estimated angle between the maximum instantaneous strain axis (ISAmax) and the transpression zone boundary ( θ') is between 6° and 20°. The estimated oblique convergence angle ( α), therefore, ranges between 31° and 43°. The average kinematic vorticity number ( W k ) is 0.6, in a zone of sinistral pure shear-dominated inclined triclinic transpression. These results support the applicability of kinematic models of triclinic transpression to natural brittle-ductile shear zones.

  16. Soil-structure interaction on inclined soil layers

    International Nuclear Information System (INIS)

    Massa, G.; De Stefano, R.

    1983-01-01

    The case history presented deals with a Category I building having two-thirds of its base founded on a wedge of hard material. This wedge is underlain by an inclined layer of softer material, which also directly supports the remaining one-third of the foundation. The inclined layer is underlain by a third material, possessing large stiffness and extending to great depth. This case is analyzed with the methodology described below: - Determination of the static soil compliances by discretizing the foundation area into a number of strips and taking the soil profile as horizontally layered under each strip. Lumped parameter soil compliances for the whole foundation are obtained by weighting the contributions to stiffness in proportion to the area of each strip. - Definition of the degree of coupling between modes. The soil compliances defined in the previous step include coupling between the vertical and rocking modes and the horizontal and torsional modes through the positioning of the corresponding soil springs. The degree of coupling is checked through a static finite element analysis. - Frequency correction of the static soil compliances taking into account the inhomogeneity of the foundation conditions. The correction is based on obtaining dynamic stiffness coefficients for extreme configurations of the soil profile. - Assessment of the sliding potential of the structure under earthquake loading, considering eccentricities of the dynamic forces and non-uniform friction resistance over the foundation area, accounting for the frictional capacity of the different bearing materials. It is concluded that the simplified technique can provide accurate soil compliances, coupling and frequency corrections for soil-structure interaction on sloping layers, and an appropriate assessment of the sliding potential. (orig./HP)

  17. Sexual dimorphism and regional variation in human frontal bone inclination measured via digital 3D models.

    Science.gov (United States)

    Petaros, Anja; Garvin, Heather M; Sholts, Sabrina B; Schlager, Stefan; Wärmländer, Sebastian K T S

    2017-11-01

    The frontal bone is one of the most sexually dimorphic elements of the human skull, due to features such as the glabella, frontal eminences, and frontal inclination. While glabella is frequently evaluated in procedures to estimate sex in unknown human skeletal remains, frontal inclination has received less attention. In this study we present a straightforward, quick, and reproducible method for measuring frontal inclination angles from glabella and supraglabella. Using a sample of 413 human crania from four different populations (U.S. Whites, U.S. Blacks, Portuguese, and Chinese), we test the usefulness of the inclination angles for sex estimation and compare their performance to traditional methods of frontal inclination assessment. Accuracy rates in the range 75-81% were achieved for the U.S. White, U.S. Black, and Portuguese groups. For Chinese the overall accuracy was lower, i.e. 66%. Although some regional variation was observed, a cut-off value of 78.2° for glabellar inclination angles separates female and male crania from all studied populations with good accuracy. As inclination angles measured from glabella captures two sexually dimorphic features (i.e. glabellar prominence and frontal inclination) in a single measure, the observed clear male/female difference is not unexpected. Being continuous variables, inclination angles are suitable for use in statistical methods for sex estimations. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Coordinating bracket torque and incisor inclination : Part 3: Validity of bracket torque values in achieving norm inclinations.

    Science.gov (United States)

    Zimmer, Bernd; Sino, Hiba

    2018-03-19

    To analyze common values of bracket torque (Andrews, Roth, MBT, Ricketts) for their validity in achieving incisor inclinations that are considered normal by different cephalometric standards. Using the equations developed in part 1 (eU1 (BOP) = 90° - BT (U1) - TCA (U1) + α 1 - α 2 and eL1 (BOP) = 90° - BT (L1) - TCA (L1) + β 1 - β 2 ) (abbreviations see part 1) and the mean values (± SD) obtained as statistical measures in parts 1 and 2 of the study (α 1 and β 1 [1.7° ± 0.7°], α 2 [3.6° ± 0.3°], β 2 [3.2° ± 0.4°], TCA (U1) [24.6° ± 3.6°] and TCA (L1) [22.9° ± 4.3°]) expected (= theoretically anticipated) values were calculated for upper and lower incisors (U1 and L1) and compared to targeted (= cephalometric norm) values. For U1, there was no overlapping between the ranges of expected and targeted values, as the lowest targeted value of (58.3°; Ricketts) was higher than the highest expected value (56.5°; Andrews) relative to the bisected occlusal plane (BOP). Thus all of these torque systems will aim for flatter inclinations than prescribed by any of the norm values. Depending on target values, the various bracket systems fell short by 1.8-5.5° (Andrews), 6.8-10.5° (Roth), 11.8-15.5° (MBT), or 16.8-20.5° (Ricketts). For L1, there was good agreement of the MBT system with the Ricketts and Björk target values (Δ0.1° and Δ-0.8°, respectively), and both the Roth and Ricketts systems came close to the Bergen target value (both Δ2.3°). Depending on target values, the ranges of deviation for L1 were 6.3-13.2° for Andrews (Class II prescription), 2.3°-9.2° for Roth, -3.7 to -3.2° for MBT, and 2.3-9.2° for Ricketts. Common values of upper incisor bracket torque do not have acceptable validity in achieving normal incisor inclinations. A careful selection of lower bracket torque may provide satisfactory matching with some of the targeted norm values.

  19. The Sisyphean myth, negative capability and societal relevance ...

    African Journals Online (AJOL)

    Different forms of literature over the years have expressed mankind's views, thoughts, notions, beliefs, and inclinations. The feelings of futility, negativity, absurdism, nihilism expressed in the myth of Sisyphus is just one of the numerous representations that literature can offer. But not all literary expressions are posers of ...

  20. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  1. New inclination changing eclipsing binaries in the Magellanic Clouds

    Science.gov (United States)

    Juryšek, J.; Zasche, P.; Wolf, M.; Vraštil, J.; Vokrouhlický, D.; Skarka, M.; Liška, J.; Janík, J.; Zejda, M.; Kurfürst, P.; Paunzen, E.

    2018-01-01

    Context. Multiple stellar systems are unique laboratories for astrophysics. Analysis of their orbital dynamics, if well characterized from their observations, may reveal invaluable information about the physical properties of the participating stars. Unfortunately, there are only a few known and well described multiple systems, this is even more so for systems located outside the Milky Way galaxy. A particularly interesting situation occurs when the inner binary in a compact triple system is eclipsing. This is because the stellar interaction, typically resulting in precession of orbital planes, may be observable as a variation of depth of the eclipses on a long timescale. Aims: We aim to present a novel method to determine compact triples using publicly available photometric data from large surveys. Here we apply it to eclipsing binaries (EBs) in Magellanic Clouds from OGLE III database. Our tool consists of identifying the cases where the orbital plane of EB evolves in accord with expectations from the interaction with a third star. Methods: We analyzed light curves (LCs) of 26121 LMC and 6138 SMC EBs with the goal to identify those for which the orbital inclination varies in time. Archival LCs of the selected systems, when complemented by our own observations with Danish 1.54-m telescope, were thoroughly analyzed using the PHOEBE program. This provided physical parameters of components of each system. Time dependence of the EB's inclination was described using the theory of orbital-plane precession. By observing the parameter-dependence of the precession rate, we were able to constrain the third companion mass and its orbital period around EB. Results: We identified 58 candidates of new compact triples in Magellanic Clouds. This is the largest published sample of such systems so far. Eight of them were analyzed thoroughly and physical parameters of inner binary were determined together with an estimation of basic characteristics of the third star. Prior to our

  2. Aerodynamics of wing-assisted incline running in birds.

    Science.gov (United States)

    Tobalske, Bret W; Dial, Kenneth P

    2007-05-01

    Wing-assisted incline running (WAIR) is a form of locomotion in which a bird flaps its wings to aid its hindlimbs in climbing a slope. WAIR is used for escape in ground birds, and the ontogeny of this behavior in precocial birds has been suggested to represent a model analogous to transitional adaptive states during the evolution of powered avian flight. To begin to reveal the aerodynamics of flap-running, we used digital particle image velocimetry (DPIV) and measured air velocity, vorticity, circulation and added mass in the wake of chukar partridge Alectoris chukar as they engaged in WAIR (incline 65-85 degrees; N=7 birds) and ascending flight (85 degrees, N=2). To estimate lift and impulse, we coupled our DPIV data with three-dimensional wing kinematics from a companion study. The ontogeny of lift production was evaluated using three age classes: baby birds incapable of flight [6-8 days post hatching (d.p.h.)] and volant juveniles (25-28 days) and adults (45+ days). All three age classes of birds, including baby birds with partially emerged, symmetrical wing feathers, generated circulation with their wings and exhibited a wake structure that consisted of discrete vortex rings shed once per downstroke. Impulse of the vortex rings during WAIR was directed 45+/-5 degrees relative to horizontal and 21+/-4 degrees relative to the substrate. Absolute values of circulation in vortex cores and induced velocity increased with increasing age. Normalized circulation was similar among all ages in WAIR but 67% greater in adults during flight compared with flap-running. Estimated lift during WAIR was 6.6% of body weight in babies and between 63 and 86% of body weight in juveniles and adults. During flight, average lift was 110% of body weight. Our results reveal for the first time that lift from the wings, rather than wing inertia or profile drag, is primarily responsible for accelerating the body toward the substrate during WAIR, and that partially developed wings, not yet

  3. Percentiles relative to maxillary permanent canine inclination by age: a radiologic study.

    Science.gov (United States)

    Alessandri Bonetti, Giulio; Zanarini, Matteo; Danesi, Margherita; Parenti, Serena Incerti; Gatto, Maria Rosaria

    2009-10-01

    Few studies have investigated developmental norms for maxillary permanent canine eruption. In this observational cross-sectional study, we aimed to provide an age-related description of the percentiles relative to canine inclination in a large sample of nonorthodontic patients. Associations between inclination and sector were also analyzed. Canine inclination and sector location were measured on 1020 panoramic radiographs obtained from subjects of white ancestry aged between 8 and 11 years not seeking orthodontic treatment. The total sample comprised 2037 canines. Canine inclination increases between 8 and 9 years and decreases between 9 and 11 years. The greatest value for each percentile is at 9 years. A linear model should be hypothesized for differences in canine inclination between 2 successive ages in correspondence to each percentile. The proportion of sector 2 canines decreases and that of sector 1 increases with age. In the same age group, the inclination generally decreases as the sector decreases. Percentiles by age show the average canine inclination in a certain population. Further studies are required to verify whether percentiles can be a diagnostic aid for determining normal canine inclination at a given age and for quantifying the risk of canine impaction or adjacent root resorption.

  4. How do the substrate reaction forces acting on a gecko's limbs respond to inclines?

    Science.gov (United States)

    Wang, Zhouyi; Dai, Zhendong; Li, Wei; Ji, Aihong; Wang, Wenbao

    2015-02-01

    Locomotion is an essential character of animals, and excellent moving ability results from the delicate sensing of the substrate reaction forces (SRF) acting on body and modulating the behavior to adapt the motion requirement. The inclined substrates present in habitats pose a number of functional challenges to locomotion. In order to effectively overcome these challenges, climbing geckos execute complex and accurate movements that involve both the front and hind limbs. Few studies have examined gecko's SRF on steeper inclines of greater than 90°. To reveal how the SRFs acting on the front and hind limbs respond to angle incline changes, we obtained detailed measurements of the three-dimensional SRFs acting on the individual limbs of the tokay gecko while it climbed on an inclined angle of 0-180°. The fore-aft forces acting on the front and hind limbs show opposite trends on inverted inclines of greater than 120°, indicating propulsion mechanism changes in response to inclines. When the incline angles change, the forces exerted in the normal and fore-aft directions by gecko's front and hind limbs are reassigned to take full advantage of limbs' different roles in overcoming resistance and in propelling locomotion. This also ensures that weight acts in the angle range between the forces generated by the front and hind limbs. The change in the distribution of SRF with a change in the incline angle is directly linked to the favorable trade-off between locomotive maneuverability and stability.

  5. Variation of the Friction Coefficient for a Cylinder Rolling down an Inclined Board

    Science.gov (United States)

    Yan, Zixiang; Xia, Heming; Lan, Yueheng; Xiao, Jinghua

    2018-01-01

    A cylinder rolling down an inclined board is a commonly seen and interesting object to study and it is also easy to experiment with and model. Following what has become a popular practice, we use smartphones to measure the angular acceleration of a cylinder rolling down a plane of different inclining angles. The friction force deviates from the…

  6. The effect of surfactants on upward air-water pipe flow at various inclinations

    NARCIS (Netherlands)

    van Nimwegen, A.T.; Portela, L.; Henkes, R.A.W.M.

    2016-01-01

    In this work, we extend our previous efforts on the effect of surfactants on air-water flow in a vertical pipe by also considering pipe inclinations between 20° (with respect to horizontal) and vertical. For air-water flow, independent of the inclination, there is a regular annular flow at large

  7. Comparison of normal permanent and primary dentition sagittal tooth-crown inclinations of Japanese females.

    Science.gov (United States)

    Inada, Emi; Saitoh, Issei; Hayasaki, Haruaki; Iwase, Yoko; Kubota, Naoko; Takemoto, Yoshihiko; Yamasaki, Youichi

    2012-01-01

    The purpose of this study was to clarify the characteristics of permanent and primary tooth-crown inclinations. Landmark points from cephalograms and dental casts of two groups; 23 women (mean 20.3 +/- 3.3 years) and 11 girls (mean 5.2 +/- 0.1 years) were digitized, and the coordinates were integrated and transformed to a standardized plane. The 3-dimensional crown inclinations were projected on the sagittal plane, and the angles between the tooth vectors and the FH plane were calculated. An independent-group t-test was used to test for group differences of each tooth inclination, and correlation coefficients were generated for the inclination angles among the permanent and primary teeth. Most maxillary tooth-crown inclinations showed significant age-related differences, while only the second premolar and primary second molar differed significantly in the mandible. The maxillary molars were parallel to the corresponding mandibular molars and correlated with each other, but the primary molars were not. Significant correlations were found between inclinations of most permanent teeth, but not the primary teeth. Maxillary tooth-crown inclinations change during growth, but tooth-crown inclinations of the mandibular teeth do not.

  8. Space Station Freedom assembly and operation at a 51.6 degree inclination orbit

    Science.gov (United States)

    Troutman, Patrick A.; Brewer, Laura M.; Heck, Michael L.; Kumar, Renjith R.

    1993-01-01

    This study examines the implications of assembling and operating Space Station Freedom at a 51.6 degree inclination orbit utilizing an enhanced lift Space Shuttle. Freedom assembly is currently baselined at a 220 nautical mile high, 28.5 degree inclination orbit. Some of the reasons for increasing the orbital inclination are (1) increased ground coverage for Earth observations, (2) greater accessibility from Russian and other international launch sites, and (3) increased number of Assured Crew Return Vehicle (ACRV) landing sites. Previous studies have looked at assembling Freedom at a higher inclination using both medium and heavy lift expendable launch vehicles (such as Shuttle-C and Energia). The study assumes that the shuttle is used exclusively for delivering the station to orbit and that it can gain additional payload capability from design changes such as a lighter external tank that somewhat offsets the performance decrease that occurs when the shuttle is launched to a 51.6 degree inclination orbit.

  9. Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications

    Science.gov (United States)

    Deng, Can; Tan, Xinyu; Jiang, Lihua; Tu, Yiteng; Ye, Mao; Yi, Yasha

    2018-01-01

    Structural design with high light absorption is the key challenge for thin film solar cells because of its poor absorption. In this paper, the light-trapping performance of silicon inclined nanohole arrays is systematically studied. The finite difference time domain method is used to calculate the optical absorption of different inclination angles in different periods and diameters. The results indicate that the inclined nanoholes with inclination angles between 5° and 45° demonstrate greater light-trapping ability than their counterparts of the vertical nanoholes, and they also show that by choosing the optimal parameters for the inclined nanoholes, a 31.2 mA/cm2 short circuit photocurrent density could be achieved, which is 10.25% higher than the best vertical nanohole system and 105.26% higher than bare silicon with a thickness of 2330 nm. The design principle proposed in this work gives a guideline for choosing reasonable parameters in the application of solar cells.

  10. Experimental Study of Natural Convection Cooling of Vertical Cylinders with Inclined Plate Fins

    Directory of Open Access Journals (Sweden)

    Jong Bum Lee

    2016-05-01

    Full Text Available In this paper, natural convection from vertical cylinders with inclined plate fins is investigated experimentally for use in cooling electronic equipment. Extensive experimental investigations are performed for various inclination angles, fin numbers, and base temperatures. From the experimental data, a correlation for estimating the Nusselt number is proposed. The correlation is applicable when the Rayleigh number, inclination angle, and fin number are in the ranges 100,000–600,000, 30°–90°, and 9–36, respectively. Using the correlation, a contour map depicting the thermal resistance as a function of the fin number and fin thickness is presented. Finally, the optimal thermal resistances of cylinders with inclined plate fins and conventional radial plate fins are compared. It is found that that the optimal thermal resistance of the cylinder with inclined fins is 30% lower than that of the cylinder with radial plate fins.

  11. Numerical Analysis of Aerodynamic Characteristics of the Finned Surfaces with Cross-inclined Fins

    Directory of Open Access Journals (Sweden)

    Lagutin A. E.

    2016-12-01

    Full Text Available This paper presents results of numerical research and analyses air-side hydraulic performance of tube bundles with cross inclined fins. The numerical simulation of the fin-tube heat exchanger was performed using the Comsol Femlab software. The results of modeling show the influence of fin inclination angle and tube pitch on hydraulic characteristics of finned surfaces. A series of numerical tests were carried out for tube bundles with different inclination angles (γ =900, 850, 650, 60, the fin pitch u=4 mm. The results indicate that tube bundles with cross inclined fins can significantly enhance the average integral value of the air flow rate in channel between fins in comparison with conventional straight fins. Aerodynamic processes on both sides of modificated channel between inclined fins were analyzed. The verification procedures for received results of numerical modeling with experimental data were performed.

  12. Stability of film boiling on inclined plates and spheres

    Science.gov (United States)

    Aursand, Eskil; Hammer, Morten; Munkejord, Svend Tollak; Müller, Bernhard; Ytrehus, Tor

    2017-11-01

    In film boiling, a continuous sub-millimeter vapor film forms between a liquid and a heated surface, insulating the two from each other. While quite accurate steady state solutions are readily obtained, the intermediate Reynolds numbers can make transient analysis challenging. The present work is a theoretical study of film boiling instabilities. We study the formation of travelling waves that are a combination of Kelvin-Helmholtz and the Rayleigh-Taylor instabilities. In particular, we study how the nature of this process depends on the Reynolds number, the Bond number, and the inclination of the submerged heated plate. In addition we extend the analysis to the case of a submerged heated sphere. Modelling of the transient dynamics of such films is important for answering practical questions such as how instabilities affect the overall heat transfer, and whether they can lead to complete film boiling collapse (Leidenfrost point). This work has been financed under the MAROFF program. We acknowledge the Research Council of Norway (244076/O80) and The Gas Technology Centre NTNU-SINTEF (GTS) for support.

  13. Articular Eminence Inclination in Medieval and Contemporary Croatian Population

    Science.gov (United States)

    Kranjčić, Josip; Šlaus, Mario; Vodanović, Marin; Peršić, Sanja; Vojvodić, Denis

    2016-12-01

    Articular eminence inclination (AEI) of the temporomandibular joint leads the mandible in its movements. Therefore, the aim of the present study was to determine AEI values in medieval (MP) and recent (RP) Croatian population. The study was carried out on two groups of specimens: first group with 30 MP human dry skulls, while the other, serving as control group consisted of 137 dry skulls. The AEI was measured on lateral digital skull images as the angle between the best fi t line drawn along the posterior wall of the articular eminence and the Frankfurt horizontal plane. No statistically significant (p>0.05) differences between the left and right side AEI were found between MP skulls and RP skulls. The mean value of MP AEI was 45.5˚, with a range of 20.9˚-64˚. The mean RP AEI value was steeper (61.99˚), with a range of 30˚-94˚. Difference between the mean MP and RP AEI values was statistically significant (pmedieval time, and consequently different masticatory loads and forces.

  14. Evaluation of primary stability of inclined orthodontic mini-implants.

    Science.gov (United States)

    Inaba, Mizuki

    2009-09-01

    The aim of this study was to investigate the initial stability of mini-implants when placed slanting or perpendicular to the bone surface, and to examine the effects of differences in tractional direction. Titanium mini-implants were inserted into rabbit nasal bones, slanting (60 degrees , 120 degrees ) or perpendicular (90 degrees ) to the bone surface. These implants were then loaded with a force of approximately 2 N, using a NiTi coil spring. The mobilities on the traction and non-traction sides were assessed using the Periotest device immediately after placement and after traction for two weeks. Then, the tissues with the mini-implants were resected, and the contact between the bone and the implant was examined by electron microscopy. There was a tendency for the mobilities of the mini-implants at 60 degrees and 120 degrees to be smaller than those at 90 degrees when measured before and after traction. The bone-implant contact lengths at 60 degrees were significantly longer than those at 90 degrees . There was no significant difference in the bone-implant contact ratio among the different angles. Correlations were evident between implant mobility and contact length or contact ratio. It is concluded that in clinical practice, implants inclined to the bone surface tend to have better primary stability.

  15. Fluorescence intensity dependence on the propagation plane inclination

    International Nuclear Information System (INIS)

    Fernandez, J.E.; Rubio, Marcelo; Sanchez, H. J.

    1987-01-01

    An experimental confirmation of the fluorescence intensity behaviour with the inclination of the propagation plane (α angle) was carried out. A special angular sample-holder was developed and set up on our X-ray spectrometer. This sample-holder allows different positions of irradiation of the sample modifying the α angle until the maximum angle (α Μ ) is reached in the limit situation. In this work, this maximum angle was 86 deg and the incidence and take off angles were both 45 deg. The sample-holder and the collimation system were carefully lined up. The fluorescent spectra of three National Bureau of Standards (NBS) standard samples were taken for sixteen different α angle positions. The theoretical scheme for both enhanced fluorescent lines and nonenhanced fluorescent lines was confirmed, i.e. the invariance of the primary intensity with the α angle and the decline of the enhanced fluorescence intensities under the same conditions. This experimental confirmation agrees with theoretical prediction: the vanishing of the secondary fluorescence in the extreme case α = π/2. (Author) [es

  16. Stability of a flow down an incline with respect to two-dimensional and three-dimensional disturbances for Newtonian and non-Newtonian fluids.

    Science.gov (United States)

    Allouche, M H; Millet, S; Botton, V; Henry, D; Ben Hadid, H; Rousset, F

    2015-12-01

    Squire's theorem, which states that the two-dimensional instabilities are more dangerous than the three-dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis and Squire relationships when available. For flows down inclined planes, one of these Squire relationships involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid, it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected. For the general stability problem, however, no Squire relationships can be derived and the numerical stability results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down an inclined plane with a given slope can be three dimensional.

  17. Lateral dynamic flight stability of a model hoverfly in normal and inclined stroke-plane hovering

    International Nuclear Information System (INIS)

    Xu, Na; Sun, Mao

    2014-01-01

    Many insects hover with their wings beating in a horizontal plane (‘normal hovering’), while some insects, e.g., hoverflies and dragonflies, hover with inclined stroke-planes. Here, we investigate the lateral dynamic flight stability of a hovering model hoverfly. The aerodynamic derivatives are computed using the method of computational fluid dynamics, and the equations of motion are solved by the techniques of eigenvalue and eigenvector analysis. The following is shown: The flight of the insect is unstable at normal hovering (stroke-plane angle equals 0) and the instability becomes weaker as the stroke-plane angle increases; the flight becomes stable at a relatively large stroke-plane angle (larger than about 24°). As previously shown, the instability at normal hovering is due to a positive roll-moment/side-velocity derivative produced by the ‘changing-LEV-axial-velocity’ effect. When the stroke-plane angle increases, the wings bend toward the back of the body, and the ‘changing-LEV-axial-velocity’ effect decreases; in addition, another effect, called the ‘changing-relative-velocity’ effect (the ‘lateral wind’, which is due to the side motion of the insect, changes the relative velocity of its wings), becomes increasingly stronger. This causes the roll-moment/side-velocity derivative to first decrease and then become negative, resulting in the above change in stability as a function of the stroke-plane angle. (paper)

  18. Influence of Cusp Inclination and Type of Retention on Fracture Load of Implant-Supported Crowns.

    Science.gov (United States)

    Rocha, Cibele Oliveira de Melo; Longhini, Diogo; Pereira, Rodrigo de Paula; Arioli, João Neudenir

    2017-01-01

    There are few informations about the influence of cusp inclination on the fracture strength of implant-supported crowns. The study aimed to evaluate the influence of cusp inclination and retention type on fracture load in implant-supported metal-ceramic single crowns. Sixty crowns were made, classified as cemented and screw-retained with screw access hole (SAH) sealed or not. Standard (33°) and reduced (20°) cusp inclinations were tested for each group (n=10). To support crowns of a mandibular second molar, analogs of external hexagon implants 5.0 were used. The fracture load was measured in a universal testing machine EMIC DL2000 (10 kN load cell; 0.5 mm/min). Two-way ANOVA (retention and cusp inclination) followed by post hoc Tukey's honest significant difference test was used for the statistical analyses (a=0.05). Crowns with reduced cusp inclination exhibited significantly higher fracture load (pcrowns with standard cusp inclination. Cemented crowns showed significantly higher fracture load (pcrowns. The interaction among these factors was not significant (p>0.05) for the fracture load. The sealing of SAH did not influence the fracture load of screw-retained crowns (p>0.05). In conclusion, fracture load of implant-supported metal-ceramic crowns was influenced by retention and cusp inclination, and there was no influence of the sealing of SAH.

  19. Influence of dental chair backrest inclination on the registration of the mandibular position.

    Science.gov (United States)

    Coelho, Mariana Freire; Cavalcanti, Bruno das Neves; Claro Neves, Ana Christina; Jóias, Renata Pilli; Rode, Sigmar de Mello

    2015-11-01

    Varying the inclination of the dental chair backrest might alter the distribution of occlusal contact points. The purpose of this study was to identify the influence of backrest inclination on the registration of the mandibular position. Ten participants aged between 18 and 30 years with a complete permanent dentition, uncompromised motor function, no tooth mobility, and no temporomandibular disorders were selected. To register interocclusal contacts, an autopolymerizing methylmethacrylate device was adapted to the maxillary anterior teeth and a composite resin increment was added to the mandibular central incisors. Contacts were registered with the following variations in the inclination of the dental chair backrest: 90 degrees, 120 degrees, and 180 degrees. A standardized digital photograph was made of each mark in each backrest position, and the images were superimposed to measure the distances in registration from 90 to 120 and from 90 to 180 degrees. Data were analyzed with the Student paired t test (α=.05). When the chair was inclined from the 90-degree to the 120-degree position, the mandible was repositioned posteriorly by a mean of 0.67 mm, but the difference was not statistically significant. When the chair was inclined from the 90-degree to the 180-degree position, however, the mandible was repositioned posteriorly by a statistically significant mean of 1.41 mm. Mandibular position is influenced by increasing inclination, and this influence was statistically significant at a 180-degree incline. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Treating domestic sewage by Integrated Inclined-Plate-Membrane bio-reactor

    Science.gov (United States)

    Song, Li Ming; Wang, Zi; Chen, Lei; Zhong, Min; Dong, Zhan Feng

    2017-12-01

    Membrane fouling shorten the service life of the membrane and increases aeration rate for membrane surface cleaning. Two membrane bio-reactors, one for working and another for comparing, were set up to evaluate the feasibility of alleviating membrane fouling and improving wastewater treatment efficiency by integrating inclined-plate precipitation and membrane separation. The result show that: (1) Inclined-plate in reactor had a good effect on pollutant removal of membrane bioreactor. The main role of inclined-plate is dividing reactor space and accelerating precipitation. (2) Working reactor have better performance in COD, TN and TP removal, which can attribute to that working reactor (integrated inclined-plate-Membrane bioreactor) takes both advantages of membrane separation and biological treatment. When influent COD, TP and TN concentration is 163-248 mg/L, 2.08-2.81 mg/L and 24.38-30.49 mg/L in working reactor, effluent concentration is 27-35 mg/L, 0.53-0.59 mg/L and 11.28-11.56 mg/L, respectively. (3) Membrane fouling was well alleviated in integrated inclined-plate-Membrane bioreactor, and membrane normal service time is significantly longer than that in comparing reactor, which can attribute to accelerating precipitation of inclined-plate. In summary, integrated inclined-plate-Membrane bioreactor is a promising technology to alleviating membrane fouling and improving wastewater treatment efficiency, having good performance and bright future in application.

  1. The effect of an inclined landing surface on biomechanical variables during a jumping task.

    Science.gov (United States)

    Hagins, Marshall; Pappas, Evangelos; Kremenic, Ian; Orishimo, Karl F; Rundle, Andrew

    2007-11-01

    Professional dancers sustain a high number of injuries. Epidemiological studies have suggested that performing on inclined "raked" stages increases the likelihood of injury. However, no studies have examined if biomechanical differences exist between inclined and flat surfaces during functional tasks, such as landing from a jump. Such differences may provide a biomechanical rationale for differences in injury risk for raked stages. Eight professional dancers performed drop jumps from a 40cm platform on flat and inclined surfaces while forces, lower extremity kinematics, and electromyographic activity were collected in a controlled laboratory environment. Dancers landed on the laterally inclined surface with significantly higher knee valgus (4 degrees ), peak knee flexion (9 degrees ), and medial-lateral ground reaction force (GRF) (13.4% body weight) compared to the flat condition. The posterior GRF was higher in the anterior inclined condition compared to the flat condition. In the anterior inclined condition, subjects landed with 1.4 degrees higher knee valgus, 4 degrees more plantarflexion at initial contact, and 3 degrees less dorsiflexion at the end of landing. Biomechanical variables that have been suggested to contribute to injury in previous studies are increased in the inclined floor conditions. These findings provide a preliminary biomechanical rationale for differences in injury rates found in observational studies of raked stages.

  2. Evaluation of a new in-clinic test system to detect feline immunodeficiency virus and feline leukemia virus infection.

    Science.gov (United States)

    Sand, Christina; Englert, Theresa; Egberink, Herman; Lutz, Hans; Hartmann, Katrin

    2010-06-01

    Many in-house tests for the diagnosis of feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) infection are licensed for use in veterinary practice. A new test with unknown performance has recently appeared on the market. The aims of this study were to define the efficacy of a new in-clinic test system, the Anigen Rapid FIV Ab/FeLV Ag Test, and to compare it with the current leading in-clinic test, the SNAP Kombi Plus FeLV Antigen/FIB Antibody Test. Three-hundred serum samples from randomly selected healthy and diseased cats presented to the Clinic of Small Animal Medicine at Ludwig Maximilian University were tested using both the Anigen Rapid Test and the SNAP Kombi Plus Test. Diagnostic sensitivity, specificity, and positive and negative predictive values were calculated for both tests using Western blot as the gold standard for verification of FIV infection and PCR as the gold standard for FeLV infection. The presence of antibodies against FIV was confirmed by Western blot in 9/300 samples (prevalence 3%). FeLV DNA was detected by PCR in 15/300 samples (prevalence 5%). For FIV infection the Anigen Rapid Test had a sensitivity of 88.9%, specificity of 99.7%, positive predictive value of 88.9%, and negative predictive value of 99.7%. For FeLV infection, the Anigen Rapid Test had a sensitivity of 40.0%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 96.9%. Diagnostic accuracy was similar to that of the SNAP Kombi Plus Test. The new Anigen Rapid FIV Ab/FeLV Ag Test performed very well and can be recommended for use in veterinary practice.

  3. Effects of an inclined walking surface and balance abilities on spatiotemporal gait parameters of older adults.

    Science.gov (United States)

    Ferraro, Richard A; Pinto-Zipp, Genevieve; Simpkins, Susan; Clark, MaryAnn

    2013-01-01

    To date, few studies have investigated how walking patterns on inclines change in healthy older adults. The purpose of the study was to examine the effects of an inclined walking surface and balance abilities on various spatiotemporal gait parameters of healthy older adults. Seventy-eight self-reported independent community ambulators (mean age, 77.8 years; SD, 4.8) participated in this study. After completing the Berg Balance Scale and Dynamic Gait Index (DGI), all participants were asked to walk on the GaitRite on level and inclined surfaces (10° slope). Dependent t tests were used to determine statistical significance between level and inclined surfaces for cadence, step length, velocity, and gait stability ratio (GSR). GSR is a measure of the degree of adaptation an individual makes to increase stability during gait derived from a ratio of cadence/velocity. A 2 2 analysis of variance was performed to determine differences in means among the higher-risk participants (as determined by the Berg Balance Scale and Dynamic Gait Index) comparing their level and incline walking patterns. The level of significance was set at P 0.05. During incline walking a significant decrease occurred in mean step length, 63.1(8.8) cm, P 0.001, mean cadence, 111.6 (8.9) step/min, P 0.01 and mean normalized velocity, 1.4 (0.23), P 0.001. However, mean GSR increased on inclines, 1.62 (0.22) steps/m, P 0.004. Main effects were evident for both walking surface and fall risk for all gait parameters tested. Healthy older adults adopt a more stable gait pattern on inclines decreasing velocity and spending more time in the double support despite the increased physiological demands to perform this task. Clear changes were evident between level and incline surfaces regardless of fall risk as defined by 2 different objective balance measures [corrected].

  4. Comparison of the buccolingual inclination in alveolar bone and tooth using dental CBCT

    International Nuclear Information System (INIS)

    Kim, Sung Eun; Kim, Jin Soo; Kim, Jae Duk

    2008-01-01

    It is important to determine the bucco-lingual inclination of implants on radiographs before the implant surgery. The purpose of this study was to compare the buccolingual inclination in alveolar bone and the tooth with dental cone beam CT and to prepare the standard for the buccolingual inclination of implant. Axial, panoramic, and buccolingually sectioned images of 80 implant cases with stent including straight marker using CB Mercuray TM (Hitachi, Japan) were evaluated. The comparison of the buccolingual inclination of remained alveolar bone with the tooth and the marker on buccolingually sectioned views was performed statistically. The average buccolingual inclination of remained alveolar bone and tooth was 82.8 ± 4.6 .deg. C and 85.8 ± 4.7 .deg. C (p 0.05, r=0.12) at the 2nd premolar area in upper jaw. The average buccolingual inclination of remained alveolar bone and tooth was 81.3 ± 8.3 .deg. C and 87.5 ± 6.3 .deg. C (p>0.05, r=0.85) at the lower 2nd premolar area and 94.3 ± 6.6 .deg. C and 93.3 ± 7.2 .deg. C respectively (p>0.05, r=0.91) at the 1st molar area in lower jaw. The inclinations of markers were very different from those of remained bone at the most of areas except the upper 2nd premolar area (r=0.79). We recommend dental CBCT analysis for determining the buccolingual inclination of dental implant, because of significant difference, in average, between the buccolingual inclination of remained alveolar bone and tooth.

  5. Natural Convection in an Inclined Porous Cavity with Spatial Sidewall Temperature Variations

    Directory of Open Access Journals (Sweden)

    M. S. Selamat

    2012-01-01

    Full Text Available The natural convection in an inclined porous square cavity is investigated numerically. The left wall is assumed to have spatial sinusoidal temperature variations about a constant mean value, while the right wall is cooled. The horizontal walls are considered adiabatic. A finite difference method is used to solve numerically the nondimensional governing equations. The effects of the inclination angle of the cavity, the amplitude and wave numbers of the heated sidewall temperature variation on the natural convection in the cavity are studied. The maximum average Nusselt number occurs at different wave number. It also found that the inclination could influence the Nusselt number.

  6. Effect of wall inclination on natural convection in a porous trapezoidal cavity

    Science.gov (United States)

    Cheong, H. T.; Sivasankaran, S.; Siri, Z.

    2014-07-01

    The present study investigates numerically the effect of wall inclination of a trapezoidal cavity on natural convective flow and heat transfer. The cavity is filled with porous medium. Sinusoidal temperature is applied on the inclined wall and the opposite wall is maintained at a constant temperature. The top and bottom walls are adiabatic. The Darcy model is adopted for porous medium. The governing equations are solved using the finite difference method with various values of wall inclination and Rayleigh number. The heat transfer of the square cavity is found to be higher than that of trapezoidal and triangular cavities.

  7. The metabolic cost of walking on an incline in the Peacock (Pavo cristatus)

    OpenAIRE

    Wilkinson, Holly; Thavarajah, Nathan; Codd, Jonathan

    2015-01-01

    Altering speed and moving on a gradient can affect an animal’s posture and gait, which in turn can change the energetic requirements of terrestrial locomotion. Here, the energetic and kinematic effects of locomoting on an incline were investigated in the Indian peacock, Pavo cristatus. The mass-specific metabolic rate of the Indian peacock was elevated on an incline, but this change was not dependent on the angle ascended and the cost of lifting remained similar between the two inclines (+5 a...

  8. Strongly Correlated Topological Insulators

    Science.gov (United States)

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  9. Inclination shallowing in the Eocene Linzizong sediments from Tibet: correction, possible causes and implications for reconstructing the India-Asia collision

    NARCIS (Netherlands)

    Huang, W.; Dupont-Nivet, G.; Lippert, P.C.; Hinsbergen, D.J.J. van; Hallot, E.

    2013-01-01

    A systematic bias towards low palaeomagnetic inclination recorded in clastic sediments, that is, inclination shallowing, has been recognized and studied for decades. Identification, understanding and correction of this inclination shallowing are critical for palaeogeographic

  10. Strong Cosmic Censorship

    Science.gov (United States)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  11. Beam Shear Design According to Eurocode 2 - Limitations for the Concrete Strut Inclinations

    DEFF Research Database (Denmark)

    Hagsten, Lars German; Hestbech, Lars; Fisker, Jakob

    2011-01-01

    and are presented. These beams are all designed to fail in shear and the shear reinforcement is designed for different values of the concrete strut inclinations (cot θ varies from 1.5 to 3.4). These tests indicate a clear connection between the values of the concrete strut inclinations and crack width in the SLS......The beam shear design method adopted in Eurocode 2 is based on a lower bound plastic solution. This method is combined with limitations on the concrete strut inclination, θ. These limitations are introduced to ensure acceptable crack width in the SLS. 7 full scale beams have been tested....... In cases where larger crack widths (w > 0.4 mm) can be accepted, larger values of the concrete strut inclinations can be chosen. This will lead to less shear reinforcements. The results are also compared with analytical analysis based on energy methods. At the SLS the beams are expected to be cracked...

  12. Muscular activity of lower limb muscles associated with working on inclined surfaces.

    Science.gov (United States)

    Lu, Ming-Lun; Kincl, Laurel; Lowe, Brian; Succop, Paul; Bhattacharya, Amit

    2015-01-01

    This study investigated the effects of visual cues, muscular fatigue, task performance and experience of working on inclined surfaces on activity of postural muscles in the lower limbs associated with maintaining balance on three inclined surfaces - 0°, 14° and 26°. Normalised electromyographic (NEMG) data were collected in 44 professional roofers bilaterally from the rectus femoris, biceps femoris, tibialii anterior and gastrocnemii medial muscle groups. The 50th and 95th percentile NEMG amplitudes were used as EMG variables. Results showed that inclination angle and task performance caused a significant increase in the NEMG amplitudes of all postural muscles. Visual cues were significantly associated with a decrease in the 95th percentile EMG amplitude for the right gastrocnemius medial and tibialis anterior. Fatigue was related to a significant decrease in the NEMG amplitude for the rectus femoris. Experience of working on inclined surfaces did not have a significant effect on the NEMG amplitude.

  13. Incisor inclination determined by the light reflection zone on the tooth's surface.

    Science.gov (United States)

    Brezniak, Naphtali; Turgeman, Ronit; Redlich, Meir

    2010-01-01

    Maxillary incisors are the most prominent teeth, and their inclination plays an important role in esthetics. In orthodontics, the inclination of central incisors is usually determined by cephalometric analysis. This publication suggests an adjunctive clinical measure to determine this inclination. The objective of the study was to examine the correlation between the inclinations of maxillary incisors measured on a cephalometric lateral headfilm and the light reflection zone appearing on the buccal surface of the teeth on anterior intraoral photographs. Maxillary incisor inclination, divided into three levels-proclination, normal inclination, and retroclination-of 65 patients was determined by means of cephalometric analysis, using three angular measurements (maxillary incisor to sella-nasion, maxillary incisor to Frankfort horizontal, and maxillary incisor to nasion-point A). The anterior intraoral photographs of the 65 patients were divided into 3 groups according to the reflection zone on the maxillary central incisors as determined from the photographs: incisal, middle, and gingival. The correlation and agreement between the two parameters were evaluated by chi-square and kappa statistics. The light reflection zone on the tooth surface as it appears on intraoral photographs-incisal, middle, or gingival-correlated with statistical significance to the angular inclination of the teeth-proclination, normal inclination, and retroclination, respectively-as determined by means of cephalometric analysis (P light reflection zone viewed on the buccal surface of intraoral photographs. This method might be used as a new screening tool and further as an additional clinical tool for assessing treatment plans in orthodontics and other fields of dentistry.

  14. Natural Convection in an Inclined Porous Cavity with Spatial Sidewall Temperature Variations

    OpenAIRE

    Selamat, M. S.; Roslan, R.; Hashim, I.

    2012-01-01

    The natural convection in an inclined porous square cavity is investigated numerically. The left wall is assumed to have spatial sinusoidal temperature variations about a constant mean value, while the right wall is cooled. The horizontal walls are considered adiabatic. A finite difference method is used to solve numerically the nondimensional governing equations. The effects of the inclination angle of the cavity, the amplitude and wave numbers of the heated sidewall temperature variation o...

  15. The effect of speleothem surface slope on the remanent magnetic inclination

    Science.gov (United States)

    Ponte, J. M.; Font, E.; Veiga-Pires, C.; Hillaire-Marcel, C.; Ghaleb, B.

    2017-06-01

    Speleothems are of interest for high-resolution reconstruction of the Earth's magnetic field. However, little is known about the influence of speleothem morphologies on their natural remanent magnetization (NRM) record. Here we report on a high-resolution paleomagnetic study of a dome-shaped speleothem of middle Holocene age from southern Portugal, with special attention to the anisotropy of magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). To assess the potential influence of the slope of the speleothem surface on the recorded remanent magnetization, we compare magnetic directions and AMS and AARM fabrics from subhorizontal to gradually subvertical calcite growth layers collected in a transversal cross section of the speleothem. A linear correlation is observed between magnetic inclinations, calcite laminae slope, and AARM k1 inclination. The AMS fabric is mostly controlled by calcite crystals, with direction of the minimum axes (k3) perpendicular to laminae growth. Magnetic inclinations recorded in inclined and vertical calcite growth layers are underestimated when compared to a global paleosecular variation (PSV) model. After extrapolating magnetic inclinations to the horizontal, the corrected data better fit the PSV model but are still lower than the predicted magnetic inclinations, suggesting that inclination shallowing affects the entire speleothem. We suggest that speleothem morphology exerts a critical role on the magnetic inclination recording, which is controlled by the Earth's magnetic field but also influenced by particle rolling along the sloping surfaces. These observations open new avenues for reconstructing high-resolution paleomagnetic secular variation records from speleothems and provide new insights into their NRM acquisition mechanisms.

  16. Laser-Guided Autonomous Landing of a Quadrotor UAV on an Inclined Surface

    Science.gov (United States)

    Dougherty, John A.

    This thesis presents measurement, estimation, and control schemes to aid a quadrotor unmanned aerial vehicle (UAV) in landing on a flat, inclined surface without prior knowledge of the surface's inclination. The system uses a single CMOS camera and several inexpensive laser modules for onboard sensing to measure the distance to and orientation of a landing surface. A nonlinear least squares estimation scheme yields the altitude of the quadrotor and the normal vector defining the ground plane. This information is used to design a hybrid landing trajectory composed of a position tracking phase and an attitude tracking phase. A geometric nonlinear control system is used during each phase and ensures that the quadrotor's attitude is aligned to the inclination of the ground surface at touchdown. A quadrotor is developed from the ground up to test the in-flight measurement process and to execute landing trajectories on an inclined surface. Experimental results demonstrate the quadrotor's ability to accurately estimate altitude and ground plane orientation during flight, and numerical simulations of landing trajectories for various surface inclinations are validated by experimental results up to a maximum inclination of thirty degrees.

  17. Development of an Inclined Plate Extractor-Separator for Immiscible Liquids

    Directory of Open Access Journals (Sweden)

    Syed Zahoor ul Hassan Rizvi

    2009-10-01

    Full Text Available A new inclined plates extractor-separator is developed for operation with immiscible liquids in which extraction and separation is achieved in one unit contrary to mixer settlers. The inclined plates extractor-separator combines turbulent jets for contacting, and an inclined plate for separation of the two phases. The inclined plates extractor-separator does not have any moving part inside the vessel. This feature makes it free from the mechanical problems associated with conventional apparatus. The proposed inclined plates extractor-separator was operated in batch mode under various operating conditions to evaluate its performance on the basis of extraction efficiency. Water (light phase was used as solvent to extract ethyl acetate from a heavy phase pool of tetrachloroethylene and ethyl acetate. The ethyl acetate content was analysed using chromatography. A hydrodynamic study was carried out using high speed photography to understand the mechanisms occurring during mass transfer across the two phases. Furthermore, it was found that the proposed inclined plate extractor-separator reduces the overall operating time by 67% and consumes only 13% of the power in comparison to a mixer-settler. A hydraulic power consumption comparison with a mixer settler and a gullwing extractor-separator is also presented.

  18. An inclined plane system with microcontroller to determine limb motor function of laboratory animals.

    Science.gov (United States)

    Chang, Ming-Wen; Young, Ming-Shing; Lin, Mao-Tsun

    2008-02-15

    This study describes a high-accuracy inclined plane test system for quantitative measurement of the limb motor function of laboratory rats. The system is built around a microcontroller and uses a stepping motor to drive a ball screw, which changes the angle of the inclined plane. Any of the seven inclination speeds can be selected by the user. Two infrared (IR) LED/detector pairs function as interrupt sensors for objective determination of the moment that the rat loses its grip on the textured flooring of the starting area and slips down the plane. Inclination angle at the moment of IR interrupt (i.e. rat slip) is recorded. A liquid crystal display module shows the inclination speed and the inclination angle. The system can function as a stand alone device but a RS232 port allows connection to a personal computer (PC), so data can be sent directly to hard disk for storage and analysis. Experiments can be controlled by a local keypad or by the connected PC. Advantages of the presented system include easy operation, high accuracy, non-dependence on human observation for determination of slip angle, stand-alone capability, low cost and easy modification of the controlling software for different types of experiments. A fully functional prototype of the system is described. The prototype was used experimentally by a hospital group testing traumatic brain injury experiments, and some of their results are presented for system verification. It is found that the system is stable, accurate and easily used by investigators.

  19. Interfacial friction factors for air-water co-current stratified flow in inclined channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)

  20. A secular model for efficient exploration of mutually-inclined planetary systems

    Science.gov (United States)

    Deitrick, Russell; Barnes, Rory

    2015-01-01

    Dynamical studies of exoplanets largely assume coplanarity because of the lack of inclination information in many cases. However, the multiplanet system Upsilon Andromedae has orbital planes inclined by 30 degrees, models of planet-planet scattering predict large mutual inclinations, and astrometry missions such as Gaia have the power to reveal the 3 dimensional architecture of planetary systems. As the dynamics of systems with non-planar orbits will be key to understanding origins, and ultimately habitability where applicable, we present a computationally efficient model for the orbital evolution of planetary systems with modest inclinations and eccentricities which are not in a mean motion resonance. Specifically, our model is based on the disturbing function and extends to 4th order in eccentricity and inclination. We present comparisons to N-body models for known systems, such as the Solar System and Upsilon Andromedae, and hypothetical systems with a range of orbital configurations. We describe the eccentricity and inclination conditions under which the model is valid. We further calculate the rotational evolution of planets based on the orbital evolution and the stellar torque and find a wide range of obliquity evolution is possible. As obliquity is a key driver of planetary climate, Earth-like planets in non-planar systems may have climates dominated by their orbital evolution.

  1. Effect of clear aligner therapy on the buccolingual inclination of mandibular canines and the intercanine distance.

    Science.gov (United States)

    Grünheid, Thorsten; Gaalaas, Sara; Hamdan, Hani; Larson, Brent E

    2016-01-01

    To compare the changes in buccolinugal inclination of mandibular canines and intercanine distance in patients treated with clear aligners to those treated with preadjusted edgewise appliances. The buccolingual inclination of mandibular canines and the intercanine distance were measured on pre- and posttreatment cone-beam computed tomograms of 30 patients who had been treated with clear aligners and 30 patients who had been treated with fixed preadjusted edgewise appliances. Differences between the aligner and fixed appliance groups and between pre- and posttreatment measurements were tested for statistical significance. In both groups, most of the mandibular canines had positive buccolingual inclinations (ie, their crowns were positioned lateral to their roots) both before and after treatment. While there was no difference between the groups pretreatment, the posttreatment buccolingual inclination was significantly greater in the aligner group. In the fixed appliance group, the canines became more upright with treatment, while the buccolingual inclination did not change significantly in the clear aligner group. The intercanine distance did not differ between the groups either before or after treatment. However, it increased significantly over the course of treatment in the aligner group, whereas it did not change significantly in the fixed appliance group. Orthodontic treatment with clear aligners tends to increase the mandibular intercanine distance with little change in inclination in contrast to treatment with fixed appliances, which leaves the intercanine distance unchanged but leads to more upright mandibular canines.

  2. Effects of occlusal inclination and loading on mandibular bone remodeling: a finite element study.

    Science.gov (United States)

    Rungsiyakull, Chaiy; Rungsiyakull, Pimdeun; Li, Qing; Li, Wei; Swain, Michael

    2011-01-01

    To provide a preliminary understanding of the biomechanics with respect to the effect of cusp inclination and occlusal loading on the mandibular bone remodeling. Three different cusp inclinations (0, 10, and 30 degrees) of a ceramic crown and different occlusal loading locations (central fossa and 1- and 2-mm offsets horizontally) were taken into account to explore the stresses and strains transferred from the crown to the surrounding dental bone through the implant. A strain energy density obtained from two-dimensional plane-strain finite element analysis was used as the mechanical stimulus to drive cancellous and cortical bone remodeling in a buccolingual mandibular section. Different ceramic cusp inclinations had a significant effect on bone remodeling responses in terms of the change in the average peri-implant bone density and overall stability. The remodeling rate was relatively high in the first few months of loading and gradually decreased until reaching its equilibrium. A larger cusp inclination and horizontal offset (eg, 30 degrees and 2-mm offset) led to a higher bone remodeling rate and greater interfacial stress. The dental implant superstructure design (in terms of cusp inclination and loading location) determines the load transmission pattern and thus largely affects bone remodeling activities. Although the design with a lower cusp inclination recommended in previous studies may reduce damage and fracture failure, it could, to a certain extent, compromise bone engagement and long-term stability.

  3. The metabolic cost of walking on an incline in the Peacock (Pavo cristatus

    Directory of Open Access Journals (Sweden)

    Holly Wilkinson

    2015-06-01

    Full Text Available Altering speed and moving on a gradient can affect an animal’s posture and gait, which in turn can change the energetic requirements of terrestrial locomotion. Here, the energetic and kinematic effects of locomoting on an incline were investigated in the Indian peacock, Pavo cristatus. The mass-specific metabolic rate of the Indian peacock was elevated on an incline, but this change was not dependent on the angle ascended and the cost of lifting remained similar between the two inclines (+5 and +7°. Interestingly, the Indian peacock had the highest efficiency when compared to any other previously studied avian biped, despite the presence of a large train. Duty factors were higher for birds moving on an incline, but there was no difference between +5 and +7°. Our results highlight the importance of investigating kinematic responses during energetic studies, as these may enable explanation of what is driving the underlying metabolic differences when moving on inclines. Further investigations are required to elucidate the underlying mechanical processes occurring during incline movement.

  4. The metabolic cost of walking on an incline in the Peacock (Pavo cristatus).

    Science.gov (United States)

    Wilkinson, Holly; Thavarajah, Nathan; Codd, Jonathan

    2015-01-01

    Altering speed and moving on a gradient can affect an animal's posture and gait, which in turn can change the energetic requirements of terrestrial locomotion. Here, the energetic and kinematic effects of locomoting on an incline were investigated in the Indian peacock, Pavo cristatus. The mass-specific metabolic rate of the Indian peacock was elevated on an incline, but this change was not dependent on the angle ascended and the cost of lifting remained similar between the two inclines (+5 and +7°). Interestingly, the Indian peacock had the highest efficiency when compared to any other previously studied avian biped, despite the presence of a large train. Duty factors were higher for birds moving on an incline, but there was no difference between +5 and +7°. Our results highlight the importance of investigating kinematic responses during energetic studies, as these may enable explanation of what is driving the underlying metabolic differences when moving on inclines. Further investigations are required to elucidate the underlying mechanical processes occurring during incline movement.

  5. Strong Arcwise Connectedness

    OpenAIRE

    Espinoza, Benjamin; Gartside, Paul; Kovan-Bakan, Merve; Mamatelashvili, Ana

    2012-01-01

    A space is `n-strong arc connected' (n-sac) if for any n points in the space there is an arc in the space visiting them in order. A space is omega-strong arc connected (omega-sac) if it is n-sac for all n. We study these properties in finite graphs, regular continua, and rational continua. There are no 4-sac graphs, but there are 3-sac graphs and graphs which are 2-sac but not 3-sac. For every n there is an n-sac regular continuum, but no regular continuum is omega-sac. There is an omega-sac ...

  6. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally......'s scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims....

  7. Forming mechanism and prevention of water-coal-burst disaster on extremely inclined faces under Ordovician aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q.; Qian, Z.; Dong, D.; Song, E.; Hong, Y. [China University Of Mining and Technology, Beijing (China). Beijing Campus

    2000-08-01

    The formation of a saturated body of coal-water mixture is due to the actions of multiple controlling factors of water source, coal characteristics, potential energy and time. Coal-water burst disaster is characterized by paroxysm, huge energy, short duration, strong explosive force and causing severe damages. Very often it takes place only under special background conditions. In extremely inclined coal seam districts, because the working faces are generally arranged under water-prevention coal pillars, the mining inbreak heights are too near the location of the body of coal-water mixture. Hence the mining activity may induce the occurrence of coal-water burst disaster. Based on the analysis of the disaster mechanism, some effective preventive measures for coal-water burst disaster in coal mines are put forward. 3 refs., 1 fig.

  8. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.

    1992-01-01

    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  9. Inclined head position improves dose distribution during hippocampal-sparing whole brain radiotherapy using VMAT

    International Nuclear Information System (INIS)

    Kim, Kyung Su; Seo, Suk-Jin; Lee, Jaegi; Kim, Eunji; Choi, Noorie; Seok, Jin-Yong; Hong, Joo Wan; Chung, Jin-Beom; Eom, Keun-Yong; Kim, Jae-Sung; Kim, In Ah

    2016-01-01

    Hippocampal-sparing whole brain radiotherapy (HS-WBRT) aims to preserve neurocognitive functions in patients undergoing brain radiotherapy (RT). Volumetric modulated arc therapy (VMAT) involves intensity-modulated RT using a coplanar arc. An inclined head position might improve dose distribution during HS-WBRT using VMAT. This study analyzed 8 patients receiving brain RT with inclined head positioning. A comparable set of CT images simulating a non-inclined head position was obtained by rotating the original CT set. HS-WBRT plans of coplanar VMAT for each CT set were generated with a prescribed dose of 30 Gy in 10 fractions. Maximum dose to the hippocampi was limited to 16 Gy; to the optic nerve, optic chiasm, and eyeballs this was confined to less than 37.5 Gy; for the lenses to 8 Gy. Dosimetric parameters of the two different plans of 8 patients were compared with paired t-test. Mean inclined head angle was 11.09 ± 0.73 . The homogeneity (HI) and conformity (CI) indexes demonstrated improved results, with an average 8.4 ± 10.0 % (p = 0.041) and 5.3 ± 3.9 % (p = 0.005) reduction, respectively, in the inclined vs. non-inclined position. The inclined head position had lower hippocampi D min (10.45 ± 0.36 Gy), D max (13.70 ± 0.25 Gy), and D mean (12.01 ± 0.38 Gy) values vs. the non-inclined head position (D min = 12.07 ± 1.07 Gy; D max = 15.70 ± 1.25 Gy; D mean = 13.91 ± 1.01 Gy), with 12.8 ± 8.9 % (p = 0.007), 12.2 ± 6.8 % (p = 0.003), and 13.2 ± 7.2 % (p = 0.002) reductions, respectively. Mean D max for the lenses was 6.34 ± 0.72 Gy and 7.60 ± 0.46 Gy, respectively, with a 16.3 ± 10.8 % reduction in the inclined position (p = 0.004). D max for the optic nerve and D mean for the eyeballs also decreased by 7.0 ± 5.9 % (p = 0.015) and 8.4 ± 7.2 % (p = 0.015), respectively. Inclining the head position to approximately 11 during HS-WBRT using VMAT improved dose distribution in the planning target volume and allowed lower doses to the hippocampi and

  10. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  11. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  12. In-Clinic Blood Pressure Prediction of Normal Ambulatory Blood Pressure Monitoring in Pediatric Hypertension Referrals.

    Science.gov (United States)

    Johnson, Philip K; Ferguson, Michael A; Zachariah, Justin P

    2016-07-01

    Since younger patients have low pretest probability of hypertension and are susceptible to reactive and masked hypertension, ambulatory blood pressure monitoring (ABPM) can be useful. To better target use in referred patients, we sought to define in-clinic systolic blood pressure (SBP) measures that predicted normal ABPM and target end organ damage. Data were collected on consecutive patients referred for high BP undergoing an ambulatory BP monitor from 2010 to 2013 (n = 248, 33.9% female, mean age 15.5 ± 3.6 years). Candidate in-clinic predictors were systolic maximum, minimum, or average BPs obtained by auscultative, oscillometric, or both. Multivariable logistic regression models were used to determine the prediction of normal ABPM by in-clinic BP predictors. Separate models considered predicting left ventricular hypertrophy (LVH) by in-clinic SBP vs. ABPM-defined hypertension. Identified predictor utility was tested with receiver operator characteristic curves. Maximum (OR 0.97 [95% CI 0.94-0.99]; P = .047), minimum (0.96 [0.94-0.99]; P = .002), and average (0.97 [0.95-1.00]; P = .04) in-clinic auscultative SBP predicted normal ABPM. Each had a c-statistic of 0.58. LVH was associated with in-clinic auscultative minimum SBP treated continuously (1.05, [1.01-1.10], P = .01) or dichotomized at the 90th percentile (8.23, [1.48-45.80], P = .02), as well as ABPM-defined hypertension (3.31, [1.23-8.91], P = .02). Both predictors had poor sensitivity and specificity. In youth, normal auscultative in-clinic systolic blood pressure indices weakly predicted normal ambulatory blood pressure and target end organ damage. © 2016 Wiley Periodicals, Inc.

  13. Numerical investigation of turbulent natural convection in an inclined square cavity with a hot wavy wall

    Energy Technology Data Exchange (ETDEWEB)

    Aounallah, M.; Imine, O.; Adjlout, L. [Department of Marine Engineering, Faculty of Mechanics, P.O. Box 1505, El-Mnaouar (Algeria); Addad, Y. [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, P.O. Box 88, Sackville Street, Manchester M60 1QD (United Kingdom); Benhamadouche, S.; Laurence, D. [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, P.O. Box 88, Sackville Street, Manchester M60 1QD (United Kingdom); Electricite de France R and D, Departement de Mecanique des Fluides et Transferts Thermiques (MFTT), 6 Quai Watier, 78400 Chatou (France)

    2007-05-15

    The turbulent natural convection of air flow in a confined cavity with two differentially heated side walls is investigated numerically up to Rayleigh number of 10{sup 12}. The objective of the present work is to study the effect of the inclination angle and the amplitude of the undulation on turbulent heat transfer. The low-Reynolds-number k-{epsilon}, k-{omega}, k-{omega}-SST RANS models and a coarse DNS are used and compared to the experimental benchmark data of Ampofo and Karayiannis [F. Ampofo, T.G. Karayiannis, Experimental benchmark data for turbulent natural convection in an air filled square cavity, Int. J. Heat Mass Transfer 46 (2003) 3551-3572]. The k-{omega}-SST model is then used for the following test-cases as it gives the closest results to experimental data and coarse DNS for this case. The mean flow quantities and temperature field show good agreement with coarse DNS and measurements, but there are some slight discrepancies in the prediction of the turbulent statistics. Also, the numerical results of the heat flux at the hot wall are over predicted. The strong influence of the undulation of the cavity and its orientation is well shown. The trend of the local heat transfer is wavy with different frequencies for each undulation. The turbulence causes an increase in the convective heat transfer on the wavy wall surface compared to the square cavity for high Rayleigh numbers. A correlation of the mean Nusselt number function of the Rayleigh number is also proposed for the range of Rayleigh numbers of 10{sup 9}-10{sup 12}. (author)

  14. Gravity current down a steeply inclined slope in a rotating fluid

    Directory of Open Access Journals (Sweden)

    G. I. Shapiro

    Full Text Available The sinking of dense water down a steep continental slope is studied using laboratory experiments, theoretical analysis and numerical simulation. The experiments were made in a rotating tank containing a solid cone mounted on the tank floor and originally filled with water of constant density. A bottom gravity current was produced by injecting more dense coloured water at the top of the cone. The dense water plume propagated from the source down the inclined cone wall and formed a bottom front separating the dense and light fluids. The location of the bottom front was measured as a function of time for various experimental parameters. In the majority of runs a stable axisymmetric flow was observed. In certain experiments, the bottom layer became unstable and was broken into a system of frontal waves which propagated down the slope. The fluid dynamics theory was developed for a strongly non-linear gravity current forming a near-bottom density front. The theory takes into account both bottom and interfacial friction as well as deviation of pressure from the hydrostatic formula in the case of noticeable vertical velocities. Analytical and numerical solutions were found for the initial (t < 1/ƒ, intermediate (t1/ƒ, and main (t » 1/ƒ stages, where ƒ is the Coriolis parameter. The model results show that during the initial stage non-linear inertial oscillations are developed. During the main stage, the gravity current is concentrated in the bottom layer which has a thickness of the order of the Ekman scale. The numerical solutions are close to the same analytical one. Stability analysis shows that the instability threshold depends mainly on the Froude number and does not depend on the Ekman number. The results of laboratory experiments confirm the similarity properties of the bottom front propagation and agree well with the theoretical predictions.

  15. ANALYSIS OF INFLUENCE OF DESIGN CHARACTERISTICS OF INCLINED BUCKET ELEVATOR ON THE POWER OF ITS DRIVE

    Directory of Open Access Journals (Sweden)

    V. M. Bohomaz

    2016-12-01

    Full Text Available Purpose.One of the main elements of the inclined belt bucket elevators is their drive. To determine the drive power, it is necessary to carry out calculations according to standard methods, which are described in the modern literature. The basic design parameters are the productivity, lifting height, type and properties of the transported material, the angle of inclination. It is necessary to build a parametric dependence of the driving power of the elevator on its design parameters, which takes into account the standard sizes and types of buckets and belts. Methodology. Using the methodology of traction calculation of inclined belt bucket elevator there were built parametric dependences of efforts in specific points of the route of the elevator, as well as the parametric dependences of the drive power of high-speed elevators with deep and shallow buckets on their design parameters and characteristics. Findings. On the basis of constructed parametric dependencies, it was found that the function of changing the value of the elevator’s power from design capacity (at fixed lifting height, type of cargo, belt speed is piecewise constant and monotonically increasing. It was built a graphical representation of elevator drive power on the angle of its inclination within acceptable limits of change. The resulting relationship is non-linear and monotonically decreasing. In general terms the intervals of project performance values, which provide a constant value of drive power of inclined elevator were defined. As an example of the obtained results it was observed the process of dependence construction of the drive power on design capacity and inclination angle of the elevator for transporting the fine coal. Originality. For the first time there were constructed the parametric dependences of drive power of inclined bucket elevator on its design parameters that take into account the standard sizes and types of buckets and belts. Practical value. Using

  16. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  17. Strong interaction and QFD

    International Nuclear Information System (INIS)

    Ebata, T.

    1981-01-01

    With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)

  18. A comparative computed tomographic evaluation of expression of angulation and inclination in self ligating brackets

    Directory of Open Access Journals (Sweden)

    Rehana Bashir

    2018-01-01

    Full Text Available Introduction: An important objective of orthodontic treatment is to obtain the correct angulation and inclination for all the teeth. Very few studies have been conducted so far comparing the expression of angulation and inclination in conventional and self-ligating brackets (SLBs. The present study was designed to evaluate and compare the inclination and angulation in conventional brackets and active and passive SLBs. Materials and Methods: Totally 21 patients who required four 1st premolar extractions were selected and were randomly allotted to three groups: Group 1: Conventional Brackets (3M Unitek MBT (mean age 19.14 ± 2.12 years, Group 2: Passive Brackets (Smart Clip Brackets-3M Unitek MBT (mean age 19.71 ± 1.80 years, Group 3: Active Brackets (Empower Brackets-American Orthodontics MBT (mean age 18.29 ± 2.29 years computed tomographic records were collected before the start of treatment, after leveling and aligning and at 6 months into retraction. Results: The data were evaluated using SPSS version 16.0 using one-way ANOVA and post hoc Bonferroni tests. There was no statistically significant difference in the expression of angulation and inclination in conventional, active, and passive SLB systems. Conclusion: Self-ligating brackets seem to be no better than conventional brackets when it comes to the expression of angulation and inclination.

  19. Critical heat flux during natural convective boiling in inclined tubes submerged in saturated liquids

    International Nuclear Information System (INIS)

    Liu Zhenhua; Yang Ronghua

    2005-01-01

    An experimental study was carried out to improve and expand understanding of boiling phenomena and the critical heat flux (CHF) during natural convective boiling in uniformly heated inclined tubes submerged in a pool of saturated liquids under atmospheric pressure. The test conditions were as follows: inter diameters of the test tubes ranged from 0.9 to 8.0 mm; heated lengths ranged from 100 to 400 mm, and inclination angles varied from 30 o to vertical position. The test fluids were water and R-11. The experimental results showed that the CHF decreases with the increasing ratio of the tube length to the tube diameter, and with the reducing of the inclination angle. A semi-theoretical correlation, which originally used for the CHF during natural convective boiling in vertical tubes, was modified to predict the CHF occurs in the inclined tubes. The modified correlation agreed reasonably well with the present experimental data and other CHF data for narrow inclined annular tubes

  20. A Liquid-Surface-Based Three-Axis Inclination Sensor for Measurement of Stage Tilt Motions.

    Science.gov (United States)

    Shimizu, Yuki; Kataoka, Satoshi; Ishikawa, Tatsuya; Chen, Yuan-Liu; Chen, Xiuguo; Matsukuma, Hiraku; Gao, Wei

    2018-01-30

    In this paper a new concept of a liquid-surface-based three-axis inclination sensor for evaluation of angular error motion of a precision linear slide, which is often used in the field of precision engineering such as ultra-precision machine tools, coordinate measuring machines (CMMs) and so on, is proposed. In the liquid-surface-based three-axis inclination sensor, a reference float mounting a line scale grating having periodic line grating structures is made to float over a liquid surface, while its three-axis angular motion is measured by using an optical sensor head based on the three-axis laser autocollimation capable of measuring three-axis angular motion of the scale grating. As the first step of research, in this paper, theoretical analysis on the angular motion of the reference float about each axis has been carried out based on simplified kinematic models to evaluate the possibility of realizing the proposed concept of a three-axis inclination sensor. In addition, based on the theoretical analyses results, a prototype three-axis inclination sensor has been designed and developed. Through some basic experiments with the prototype, the possibility of simultaneous three-axis inclination measurement by the proposed concept has been verified.

  1. Investigation of Oriented Magnetic Field Effects on Entropy Generation in an Inclined Channel Filled with Ferrofluids

    Directory of Open Access Journals (Sweden)

    Elgiz Baskaya

    2017-07-01

    Full Text Available Dispersion of super-paramagnetic nanoparticles in nonmagnetic carrier fluids, known as ferrofluids, offers the advantages of tunable thermo-physical properties and eliminate the need for moving parts to induce flow. This study investigates ferrofluid flow characteristics in an inclined channel under inclined magnetic field and constant pressure gradient. The ferrofluid considered in this work is comprised of Cu particles as the nanoparticles and water as the base fluid. The governing differential equations including viscous dissipation are non-dimensionalised and discretized with Generalized Differential Quadrature Method. The resulting algebraic set of equations are solved via Newton-Raphson Method. The work done here contributes to the literature by searching the effects of magnetic field angle and channel inclination separately on the entropy generation of the ferrofluid filled inclined channel system in order to achieve best design parameter values so called entropy generation minimization is implemented. Furthermore, the effect of magnetic field, inclination angle of the channel and volume fraction of nanoparticles on velocity and temperature profiles are examined and represented by figures to give a thorough understanding of the system behavior.

  2. Study on natural circulation characteristics of an IPWR under inclined and rolling condition

    Energy Technology Data Exchange (ETDEWEB)

    He, Lihui [College of Computer Science and Information Technology, Harbin Normal University, Harbin (China); Wang, Bing [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China); Xia, Genglei, E-mail: xiagenglei@163.com [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China); Peng, Minjun [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China)

    2017-06-15

    Highlights: • An ocean-based thermal-hydraulic analysis code was developed based on RELAP5 codes. • The inclination condition can reduce the mass flow rate of reactor core. • The system parameters asymmetry increases with the increasing inclination angle. • Flow oscillation of different loops cancel each other due to the symmetrical arrangement of the reactor. • The off-center roll axis location can break the symmetry and enlarge fluctuation amplitude of the core flow rate. - Abstract: An ocean-based thermal-hydraulic system analysis code was developed based on RELAP5/MOD3 code by adding additional force model of ocean condition and control volume coordinate solver model. The natural circulation operation characteristics of integrated pressurized water reactor (IPWR) under ocean conditions were studied and the effects of inclination and rolling motions were analyzed. The results conclude that, the inclination condition can reduce the mass flow rate of reactor core and lead to inconsistent coolant flow rates of the left and right loops, furthermore, it affects the heat transfer of once-through steam generators (OTSGs). In the case of rolling motion, the additional pressure drop of the loop is dominated by tangential force, and flow oscillation of different loops cancel each other due to the symmetrical arrangement of the reactor. The off-center roll axis location, the combination of the inclination and rolling motion, both can break the thermal-hydraulic symmetry among different loops and enlarge fluctuation amplitude of the core flow rate.

  3. Peri-implant strain around mesially inclined two-implant-retained mandibular overdentures with Locator attachments.

    Science.gov (United States)

    Elsyad, Moustafa A; Eltowery, Salem M; Gebreel, Ashraf A

    2017-12-27

    This study aimed to evaluate the peri-implant strain around mesially inclined implants used to retain mandibular overdentures with Locator resilient attachments. Four mandibular edentulous acrylic resin models received two implants in the canine areas with 0°, 5°, 10°, and 20° mesial inclinations. Overdentures were connected to the implants using Locator attachments. Pink nylon inserts (light retention) were used for all implant inclinations, and red inserts were used for 20° inclination (20°red). Four strain gages were bonded on the mesial (M), distal (D), buccal (B), and lingual (L) surfaces of each implant. Peri-implant strains were measured during bilateral and unilateral loading. The 20° inclination showed the highest strain, followed by 10° and 5°, and both 0° and 20°red presented with the lowest strain. Site D was associated with the highest strain, followed by M, B, and L, which showed the lowest strain values. Unilateral loading and the loading side presented with significantly higher strain values than bilateral loading and the nonloading side, respectively. Hence, in this study, strains around the two-implant-retained overdentures with Locator attachments increased with increases in mesial implant angulation, except when red male inserts were used.

  4. Walking on inclines: how do desert ants monitor slope and step length

    Directory of Open Access Journals (Sweden)

    Seidl Tobias

    2008-06-01

    Full Text Available Abstract Background During long-distance foraging in almost featureless habitats desert ants of the genus Cataglyphis employ path-integrating mechanisms (vector navigation. This navigational strategy requires an egocentric monitoring of the foraging path by incrementally integrating direction, distance, and inclination of the path. Monitoring the latter two parameters involves idiothetic cues and hence is tightly coupled to the ant's locomotor behavior. Results In a kinematic study of desert ant locomotion performed on differently inclined surfaces we aimed at pinpointing the relevant mechanisms of estimating step length and inclination. In a behavioral experiment with ants foraging on slippery surfaces we broke the otherwise tightly coupled relationship between stepping frequency and step length and examined the animals' ability to monitor distances covered even under those adverse conditions. We show that the ants' locomotor system is not influenced by inclined paths. After removing the effect of speed, slope had only marginal influence on kinematic parameters. Conclusion From the obtained data we infer that the previously proposed monitoring of angles of the thorax-coxa joint is not involved in inclinometry. Due to the tiny variations in cycle period, we also argue that an efference copy of the central pattern generator coding the step length in its output frequency will most likely not suffice for estimating step length and complementing the pedometer. Finally we propose that sensing forces acting on the ant's legs could provide the desired neuronal correlate employed in monitoring inclination and step length.

  5. Experimental studies on the flow characteristics in an inclined bend-free OWC device

    Directory of Open Access Journals (Sweden)

    Krishnil Ravinesh Ram

    2016-01-01

    Full Text Available A bend-free rectangular cross-section OWC device was designed and constructed for studying the effect of inclination on the flow characteristics inside the device. The inclination is meant to reduce reflection of waves and induce higher velocities in the turbine section. Experimental measurements were made in a wave channel where the OWC device was tested. An S-type Pitot tube was used to measure dynamic pressure of air in the turbine section at several inclinations. Particle Image Velocimetry (PIV was also done to study the flow of both air and water in the OWC device. In order to focus solely on primary energy capture, no turbine was installed in the OWC device. The dynamic pressure readings were analysed for suction and compression stages. Water volume fluctuations inside the capture chamber were also recorded and compared for different inclinations. The result was an increase in the velocity of air flowing in the capture chamber and hence a rise in the kinetic energy available to the turbine. It was found from experimental studies that as the angle of inclination reduced, the velocity of air in the turbine section increased. The lower angles also caused higher run-up and larger volume of water into the capture chamber.

  6. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  7. A Re-examination of Shallow Paleomagnetic Inclinations From the Cretaceous Valle Group Sedimentary Rocks, Baja California, Mexico

    Science.gov (United States)

    Li, Y.; Kodama, K. P.; Smith, D. P.

    2001-05-01

    A paleomagnetic, rock magnetic, and sedimentological study was conducted in order to determine whether depositional/compactional processes have caused the shallow inclinations observed in the Valle Group sedimentary rocks. A total of 126 samples (14 sites) were collected from the middle Cenomanian section of the Valle along the northern coast of the Vizcaino Peninsula, Baja California, approximately 20 km east of Punta Eugenia at Campito. Samples were subjected to detailed thermal and alternating field (af) demagnetization, typically in 14 steps to 610° C for thermal demagnetization and ~24 steps to 130 mT for af demagnetization. NRMs were strong for marine sedimentary rocks, typically 10 mA/m. The mean of the site means for the demagnetized data was Inc=54.2° , Dec=306° , α 95=4.8° , N=12, in geographic coordinates, and Inc=20.5° , Dec=341.3° , α 95=4° , N=12 in stratigraphic coordinates. AMS fabrics have minimum axes clustered nearly perpendicular to bedding, typical of primary depositional/compactional fabrics. Some sites exhibited minimum axes clustering about 10° from the vertical and maximum axes clustered about 10° from the horizontal suggesting that currents and/or initial bedding dip affected the magnetization of these samples at deposition. Since the stratigraphy of the Valle Group dips consistently to the NE at approximately 50° , we sampled a tight slump fold at one site in order to constrain the age of magnetization. Both the AMS fabric and the characteristic remanence (ChRM) fail the fold test at the 95% confidence level. At another site, we sampled adjacent beds each approximately 5 cm thick composed of coarse, medium, or fine-grained sandstone. The directions of these beds are within 2° of each other. These results can be interpreted to indicate either a late remagnetization of the Valle group or an acquisition of the Valle's detrital remanence after slumping, but early in the rock's post-depositional history. Smith and Busby's (1993

  8. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  9. Motion of a carrier with a mobile load along a rough inclined plane

    Science.gov (United States)

    Bilchenko, G. G.

    2018-03-01

    The mechanical system consisting of a carrier and a load is considered. The load can move respectively the carrier according to the preset given motion law. The carrier motion from rest caused the load motion is investigated. The carrier can move translationally along rectilinear trajectory along rough inclined plane. The trajectory is the line of the greatest descent. The axis of rectilinear channel along which the load moves is situated in vertical plane containing the carrier trajectory. The Coulomb model is taken to describe the friction forces on sloped plane. Differential equations of motion of carrier with load are obtained. The sufficient condition of the carrier motion without detachment from inclined plane is given. For two special cases of the channel installation angle and the plane inclination angle combination the motion types are described. The computation experiments results are presented: the carrier motions in the special cases are illustrated, the phase portraits for some types of motions are constructed.

  10. HEAT EXCHANGE AND AERODYNAMICS OF THE COMBINED TUBING BUNDLES WITH CROSS INCLINED FINS

    Directory of Open Access Journals (Sweden)

    Knyazyuk V. I

    2013-04-01

    Full Text Available The paper presents results of experimental research and analyses air-side thermal performance of combined tube bundles with cross inclined fins. The empirical correlations for heat transfer and flow friction of tubes with inclined fins at different orientation finned tubes relatively of air flow are presented. The errors of thermal and aerodynamic tests are 3-5% and 9.2%, respectively. The proposed correlations describe an experimental data with a coefficient of determination about 0.979-0.998. The impact of tubes arrangement in a bundle on energy performance of heat exchanger were analyzed using complete and local heat modeling methods at a stationary heat flux. Experimental research indicates that efficiency of inclined fins can be calculated by using the equation for cross rectangular fins with average deviation of ±5 %.

  11. [Reliability study in the measurement of the cusp inclination angle of a chairside digital model].

    Science.gov (United States)

    Xinggang, Liu; Xiaoxian, Chen

    2018-02-01

    This study aims to evaluate the reliability of the software Picpick in the measurement of the cusp inclination angle of a digital model. Twenty-one trimmed models were used as experimental objects. The chairside digital impression was then used for the acquisition of 3D digital models, and the software Picpick was employed for the measurement of the cusp inclination of these models. The measurements were repeated three times, and the results were compared with a gold standard, which was a manually measured experimental model cusp angle. The intraclass correlation coefficient (ICC) was calculated. The paired t test value of the two measurement methods was 0.91. The ICCs between the two measurement methods and three repeated measurements were greater than 0.9. The digital model achieved a smaller coefficient of variation (9.9%). The software Picpick is reliable in measuring the cusp inclination of a digital model.

  12. Numerical study of heat and mass transfer optimization in a 3D inclined solar distiller

    Directory of Open Access Journals (Sweden)

    Ghachem Kaouther

    2017-01-01

    Full Text Available A numerical study of the 3-D double-diffusive natural convection in an inclined solar distiller was established. The flow is considered laminar and caused by the interaction of thermal energy and the chemical species diffusions. The governing equations of the problem, are formulated using vector potential-vorticity formalism in its 3-D form, then solved by the finite volumes method. The Rayleigh number is fixed at Ra = 105 and effects of the buoyancy ratio and inclination are studied for opposed temperature and concentration gradients. The main purpose of the study is to find the optimum inclination angle of the distiller which promotes the maximum mass and heat transfer.

  13. Flow behaviour and local concentration of coarse particles-water mixture in inclined pipes

    Directory of Open Access Journals (Sweden)

    Vlasak Pavel

    2017-06-01

    Full Text Available Narrow particle size distribution basalt pebbles of mean particle size 11.5 mm conveyed by water in the pipe sections of different inclination were investigated on an experimental pipe loop, consisting of smooth stainless steel pipes of inner diameter D = 100 mm. Mixture flow-behaviour and particles motion along the pipe invert were studied in a pipe viewing section, the concentration distribution in pipe cross-section was studied with the application of a gamma-ray densitometer. The study refers to the effect of mixture velocity, overall concentration, and angle of pipe inclination on chord-averaged concentration profiles and local concentration maps, and flow behaviour of the coarse particle-water mixtures. The study revealed that the coarse particle-water mixtures in the inclined pipe sections were significantly stratified, the solid particles moved principally close to the pipe invert, and for higher and moderate flow velocities particle saltation becomes the dominant mode of particle conveying.

  14. Experimental investigation of coarse particles-water mixture flow in horizontal and inclined pipes

    Directory of Open Access Journals (Sweden)

    Vlasák Pavel

    2014-09-01

    Full Text Available The effect of solid concentration and mixture velocity on the flow behaviour, pressure drops, and concentration distribution of coarse particle-water mixtures in horizontal, vertical, and inclined smooth stainless steel pipes of inner diameter D = 100 mm was experimentally investigated. Graded basalt pebbles were used as solid particles. The study revealed that the coarse-grained particle-water mixtures in the horizontal and inclined pipes were significantly stratified. The solid particles moved principally in a layer close to the pipe invert; however for higher and moderate flow velocities, particle saltation became the dominant mode of particle conveyance. Frictional pressure drops in the horizontal pipe were found to be markedly higher than in the vertical pipe, while the frictional pressure drops in the ascending pipe increased with inclination angle up to about 30°.

  15. Aerodynamics of flapping insect wing in inclined stroke plane hovering with ground effect

    Science.gov (United States)

    Gowda v, Krishne; Vengadesan, S.

    2014-11-01

    This work presents the time-varying aerodynamic forces and the unsteady flow structures of flapping insect wing in inclined stroke plane hovering with ground effect. Two-dimensional dragonfly model wing is chosen and the incompressible Navier-Stokes equations are solved numerically by using immersed boundary method. The main objective of the present work is to analyze the ground effect on the unsteady forces and vortical structures for the inclined stroke plane motions. We also investigate the influences of kinematics parameters such as Reynolds number (Re), stroke amplitude, wing rotational timing, for various distances between the airfoil and the ground. The effects of aforementioned parameters together with ground effect, on the stroke averaged force coefficients and regimes of force behavior are similar in both normal (horizontal) and inclined stroke plane motions. However, the evolution of the vortex structures which produces the effects are entirely different.

  16. Experimental investigation of turbulent flow in a channel with the backward-facing inclined step

    Directory of Open Access Journals (Sweden)

    Uruba Václav

    2012-04-01

    Full Text Available The work deals with the experimental investigation of turbulent flow in a closed channel with the backward-facing inclined step. Experiments were carried by means of the PIV optical measuring method in the channel of the rectangular cross-section in the inlet part and with inclined steps of the constant height H mm and various inclination angles for a wide range of the Reynolds number. The attention was paid especially to the separation region behind the step and to the relaxation of the shear layer after the reattachment in the outlet part of the channel. The dependence of the length of the separation region on the Reynolds number was obtained for various step angles. Optical measurements were completed by the measurement of static pressure distribution in the inlet and outlet part of the channel to estimate energy losses.

  17. A waveless two-dimensional flow in a channel against an inclined wall with surface tension effect

    International Nuclear Information System (INIS)

    Merzougui, Abdelkrim; Mekias, Hocine; Guechi, Fairouz

    2007-01-01

    Surface tension effect on a two-dimensional channel flow against an inclined wall is considered. The flow is assumed to be steady, irrotational, inviscid and incompressible. The effect of surface tension is taken into account and the effect of gravity is neglected. Numerical solutions are obtained via series truncation procedure. The problem is solved numerically for various values of the Weber number α and for various values of the inclination angle β between the horizontal bottom and the inclined wall

  18. Comparison of the Activity of the Gluteus Medius According to the Angles of Inclination of a Treadmill with Vertical Load

    OpenAIRE

    Jeong, Da-Eun; Lee, Su-Kyoung; Kim, Kyoung

    2014-01-01

    [Purpose] The purpose of this study was to compare the muscle activity of the gluteus medius according to treadmill inclination during gait with a vertical load on a treadmill. [Methods] Sixteen healthy subjects were recruited for this study. The subjects walked on a treadmill at inclination angles of 0, 5, and 10 degrees. [Results] Muscle activity of the gluteus medius increased at 5° compared to 0° treadmill inclination, though the difference was not significant. On the other hand, gluteus ...

  19. Detecting and correcting for paleomagnetic inclination shallowing of sedimentary rocks: A review

    Directory of Open Access Journals (Sweden)

    Yong-Xiang eLi

    2016-02-01

    Full Text Available Magnetic anisotropy and the elongation/inclination (E-I approaches have been increasingly employed as two important means for detecting and correcting the paleomagnetic inclination shallowing in sedimentary rocks that was first recognized sixty years ago. Both approaches are based on certain assumptions, and thus have advantages and intrinsic limitations in investigating shallow inclinations in sedimentary rocks. The E-I approach is relatively easy to use, but it needs a large dataset to adequately sample paleomagnetic directions due to paleosecular variation of the geomagnetic field. Also, slow sediment accumulation rates and local tectonics could lead to under- or over-corrections using the E-I approach. For the magnetic anisotropy technique, labor-intensive, sophisticated laboratory rock magnetic experiments are required in order to accurately determine both bulk magnetic anisotropy of remanence-carrying grains and magnetic anisotropy of an individual particle, i.e., a factor, of samples. Our review shows that, despite the intensive laboratory work necessary for applying anisotropy-based inclination corrections, it is worth investing the effort. In addition, the joint use of magnetic susceptibility and remanence anisotropy measurements as well as detailed rock magnetic measurements for determining the particle anisotropy a factor have the advantage of retrieving direct evidence of inclination shallowing and correcting for it with high confidence. We caution against use of either of the two approaches without full appreciation of the underlying assumptions and intrinsic limitations of each technique. The use and comparison of both techniques could provide the most robust inclination shallowing correction for sedimentary rocks.

  20. Detecting and correcting for paleomagnetic inclination shallowing of sedimentary rocks: A review

    Science.gov (United States)

    Li, Yong-Xiang; Kodama, Kenneth

    2016-02-01

    Magnetic anisotropy and the elongation/inclination (E-I) approaches have been increasingly employed as two important means for detecting and correcting the paleomagnetic inclination shallowing in sedimentary rocks that was first recognized sixty years ago. Both approaches are based on certain assumptions, and thus have advantages and intrinsic limitations in investigating shallow inclinations in sedimentary rocks. The E-I approach is relatively easy to use, but it needs a large dataset to adequately sample paleomagnetic directions due to paleosecular variation of the geomagnetic field. Also, slow sediment accumulation rates and local tectonics could lead to under- or over-corrections using the E-I approach. For the magnetic anisotropy technique, labor-intensive, sophisticated laboratory rock magnetic experiments are required in order to accurately determine both bulk magnetic anisotropy of remanence-carrying grains and magnetic anisotropy of an individual particle, i.e., "a" factor, of samples. Our review shows that, despite the intensive laboratory work necessary for applying anisotropy-based inclination corrections, it is worth investing the effort. In addition, the joint use of magnetic susceptibility and remanence anisotropy measurements as well as detailed rock magnetic measurements for determining the particle anisotropy "a" factor have the advantage of retrieving direct evidence of inclination shallowing and correcting for it with high confidence. We caution against use of either of the two approaches without full appreciation of the underlying assumptions and intrinsic limitations of each technique. The use and comparison of both techniques could provide the most robust inclination shallowing correction for sedimentary rocks.

  1. COMPARISON OF PLANTAR PRESSURE DISTRIBUTION BETWEEN DIFFERENT SPEED AND INCLINE DURING TREADMILL JOGGING

    Directory of Open Access Journals (Sweden)

    I-Ju Ho

    2010-03-01

    Full Text Available The aim of this study was to examine the effect of changes in speed and incline slope on plantar pressure distribution of the foot during treadmill jogging. Plantar pressure parameters were measured with the Pedar-X system in twenty healthy girls (mean age of 20.7 years, mean height of 1.60m, and a mean weight of 53.35kg. Because variations in walking speed or slope can significantly change the magnitude of plantar pressure, comparisons of plantar pressure distribution between the two independent protocols during treadmill jogging were considered in this study. First, the subjects ran at the same speed of 2 m·s-1 with different incline slopes of 0%, 5%, 10%, and 15%. Second, they ran on the same slope of 0% with different speeds of 1.5 m·s-1, 2.0 m·s-1, and 2.5 m·s-1. The peak pressure of the eight plantar surface areas, apart from the medial forefoot and the hallux, significantly increased (p < 0.05 with an increase of 33% of peak pressure from 1.5 m·s-1 to 2.5 m·s-1 (speed at heel region. In contrast, the peak pressures at the heel, medial fore-foot, toe and hallux decreased significantly (p < 0. 05 with increasing incline slope. At the heel, peak pressure reduced by 27% from 0% to 15% incline, however, pressure at the lateral midfoot region increased as following. Different speeds and incline slopes during jogging were associated with changes in plantar pressures. By systematic investigation of foot kinematics and plantar pressure during jogging with varying incline slope and speed, the results of this study provided further insight into foot biomechanics during jogging

  2. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R. [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States); Greenberg, Richard [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Boulevard, Tucson, AZ 86716 (United States); Raymond, Sean N., E-mail: rory@astro.washington.edu [NASA Astrobiology Institute-Virtual Planetary Laboratory Lead Team (United States)

    2015-03-10

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits.

  3. Revealing the inclined circumstellar disk in the UX Ori system KK Ophiuchi

    Science.gov (United States)

    Kreplin, A.; Weigelt, G.; Kraus, S.; Grinin, V.; Hofmann, K.-H.; Kishimoto, M.; Schertl, D.; Tambovtseva, L.; Clausse, J.-M.; Massi, F.; Perraut, K.; Stee, Ph.

    2013-07-01

    We study the inner sub-AU region of the circumstellar environment of the UX Ori type star KK Oph with near-infrared VLTI/AMBER interferometry. We are particularly interested in the inclination of the star-disk system, and we will use this information to test the current standard picture for UX Ori stars. We recorded spectrally dispersed (R˜35) interferograms in the near-infrared H and K bands with the VLTI/AMBER instrument. The derived visibilities, closure phases and the SED of KK Oph were compared with two-dimensional geometric and radiative transfer models (RADMC). We obtained visibilities at four different position angles. Using two-dimensional geometric models, we derive an axis ratio ˜3.0 corresponding to an inclination of ˜70 degree. A fitted inclined ring model leads to a ring radius of 2.8 ± 0.2 mas, corresponding to 0.44 ± 0.03 AU at a distance of 160 pc, which is larger than the dust sublimation radius of ˜0.1 AU predicted for a dust sublimation temperature of 1500 K. Our derived two-dimensional RADMC model consists of a circumstellar disk with an inclination angle of ˜70 degree and an additional dust envelope. The finding of an ˜70 degree inclined disk around KK Oph is consistent with the prediction that UX Ori objects are seen under large inclination angles, and orbiting clouds in the line of sight cause the observed variability. Furthermore, our results suggest that the orbit of the companion KK Oph B and the disk plane are coplanar.

  4. Revealing the inclined circumstellar disk in the UX Orionis system KK Ophiuchi

    Science.gov (United States)

    Kreplin, A.; Weigelt, G.; Kraus, S.; Grinin, V.; Hofmann, K.-H.; Kishimoto, M.; Schertl, D.; Tambovtseva, L.; Clausse, J.-M.; Massi, F.; Perraut, K.; Stee, Ph.

    2013-03-01

    Aims: We study the inner sub-AU region of the circumstellar environment of the UX Ori-type star KK Oph with near-infrared VLTI/AMBER interferometry. We are particularly interested in the inclination of the star-disk system, and we use this information to test the current standard picture for UX Ori stars. Methods: We recorded spectrally dispersed (R ~ 35) interferograms in the near-infrared H and K bands with the VLTI/AMBER instrument. The derived visibilities, closure phases, and the spectral energy distribution of KK Oph were compared with two-dimensional geometric and radiative transfer models (RADMC). Results: We obtained visibilities at four different position angles. Using two-dimensional geometric models, we derive an axis ratio ~3.0 corresponding to an inclination of ~70°. A fitted inclined ring model leads to a ring radius of 2.8 ± 0.2 mas, corresponding to 0.44 ± 0.03 AU at a distance of 160 pc, which is larger than the dust sublimation radius of ~0.1 AU predicted for a dust sublimation temperature of 1500 K. Our derived two-dimensional RADMC model consists of a circumstellar disk with an inclination angle of ~70° and an additional dust envelope. Conclusions: The finding of an ~70° inclined disk around KK Oph is consistent with the prediction that UX Ori objects are seen under large inclination angles, and orbiting clouds in the line of sight cause the observed variability. Furthermore, our results suggest that the orbit of the companion KK Oph B and the disk plane are coplanar. Based on observations made with ESO telescopes at Paranal Observatory under program ID: 083.D-0224(C) and 088.C-0575(A).

  5. Analysis of three-dimensional interference patterns of an inclined capillary.

    Science.gov (United States)

    Zhang, Yiding; Xu, Mingfeng; Tian, Wenjing; Xu, Qiwei; Xiao, Jinghua

    2016-08-01

    We study the interference patterns from an inclined capillary tube filled with liquid by using the ray tracing method and interference theory. A beautiful elliptical pattern is found on the screen, with refined fringes embedded in it. Particularly, the fringes on top of the pattern are continuously swallowed to the center with the angle of incidence increasing. In addition, a method is demonstrated to determine the refractive index of the liquid and the wavelength of the incident light by measuring the capillary tilt of every 10-fringe being swallowed, which looks like fringe crossover, with respect to the change of the inclined angle of the capillary.

  6. Model and experimental vizualisation of a bubble interacting with an inclined wall

    Science.gov (United States)

    Podvin, Berengere; Khoja, Suleman; Attinger, Daniel; Moraga, Francisco

    2006-11-01

    We describe the motion of an air bubble rising through water as it interacts with a wall of variable inclination. The bubble diameter varies about O(1) mm. We use lubrication theory to determine the modification of the bubble interface and compute the hydrodynamic force exerted by the wall. The present work is an extension of Moraga et al's model [Computers and Fluids 2006], which was devised for a horizontal wall. The predictions of the model are checked against experimental visualizations. The influence of the Weber number, Reynolds number and wall inclination is examined

  7. QUALITATIVE ANALYSIS OF DEPENDENCE OF DRIVE POWER HORIZONTAL-INCLINED BELT CONVEYOR ON ITS INITIAL PARAMETERS

    Directory of Open Access Journals (Sweden)

    V. M. Bohomaz

    2017-02-01

    Full Text Available Purpose.One of the main elements of band conveyors is a drive. To analyze the effect of design parameters on the drive power it is necessary to carry out the calculations according to standard procedures outlined in the current technical literature. The main design parameters of the band conveyor are: the type of cargo, project performance, the geometric dimensions of sections and track configuration as a whole. The feature of band conveyor calculation as compared to the elevators is the dependence of the band width on its performance, the inclination angle and the type of cargo. In the article for the account of this fact during calculations it is necessary to construct the dependence of the band width on the generalized parameter, which takes into account change in the design parameters. To determine the general pattern of changing the value of band conveyor drive power when varying its design parameters in the article it is necessary to construct the corresponding graphic dependences taking into account the standard sizes and bands parameters. Methodology. We consider the band conveyor with two sections: the inclined and horizontal one. It is conducted a detailed analysis of dependence of the conveyor band width and its drive power on the type of cargo, project performance, geometric dimensions and configuration of the conveyor track, using the appropriate parameter dependences constructed by the authors in previous papers. Findings. For band conveyors of this type there were constructed the graphics dependences of the band width on the parameter characterizing the project performance and the inclination angle of the track section, and on the performance at a fixed angle of inclination. Taking into account the changes in the band width with an increase in the value of project performance the graph dependences of drive power on the productivity and the inclination angle of the inclined section were built. Originality. For the first time there

  8. A Numerical Study on a Vertical-Axis Wind Turbine with Inclined Arms

    OpenAIRE

    Agostino De Marco; Domenico P. Coiro; Domenico Cucco; Fabrizio Nicolosi

    2014-01-01

    This work focuses on a particular type of vertical-axis wind turbine, in which a number of inclined arms with airfoil-shaped cross-sections are mounted to connect the principal blades to their hub. While the majority of the known studies on vertical-axis turbines is devoted to the role of principal blades, in most of the cases without taking into account other parts of the wind turbine, the objective of this work is to investigate the effect of uncommon arm geometries, such as the inclined ar...

  9. Cyclotron resonance in InAs/GaSb heterostructure in inclined magnetic field

    CERN Document Server

    Greshnov, A A; Vasilev, Yu B; Suchalkin, S D; Meltser, B Y; Ivanov, S V; Kopev, P S

    2002-01-01

    The mechanism of splitting the cyclotron resonance line in the InAs/GaSb heterostructure in the inclined magnetic field is experimentally and theoretically studied. It is shown that the electrons and holes mixing in leads to the anticrossing Landau levels and consequently to the cyclotron resonance line splitting. Splitting in the case of the inclined magnetic field was not observed which is explained by damping the electrons and holes states mixing in on the account of originating the additional barrier for the electrons and holes by availability of the magnetic field longitudinal constituent

  10. Aerodynamic coefficients of stationary dry inclined bridge cables in laminar flow

    DEFF Research Database (Denmark)

    Matteoni, Giulia; Georgakis, Christos; Ricciardelli, Francesco

    2011-01-01

    Stay cables are the most flexible elements of cable-stayed bridges. When exposed to wind loading, they often undergo large amplitude vibrations, thus motivating serious design concerns. In most cases, vibrations are observed in the presence of water rivulets or ice accretions, which lead...... to an effective change in the cable cross section, and its aerodynamic properties. On the other hand, divergent, self-excited vibrations have been observed in the field also for dry, inclined stay cables, in warm temperatures. The need for reliable design guidelines for inclined stay cables has motivated...

  11. Non-destructive automated express method for determining the inclination of chromium-nickel steels IGC

    International Nuclear Information System (INIS)

    Nazarov, A.A.; Kamenev, Yu.B.; Kuusk, L.V.; Kormin, E.G.; Vasil'ev, A.N.; Sumbaeva, T.E.

    1986-01-01

    Methods of automated control of 18-10-type steel inclination to IGC are developed and a corresponding automated testing complex (ATS) is created. 08Kh18N10T steel samples had two variants of thermal treatment: 1) 1200 deg (5 h), 600 deg (50 h); 2) 1200 deg (5 h). Methods of non-destructive automated control of 18-10-type steel inclination to IGC are developed on the basis of potentiodynamic reactivation (PR) principle. Automated testing complex is developed, which has undergone experimental running and demonstrated a high confidence of results, reliability and easy operation

  12. An analytical model for force prediction in ball nose micro milling of inclined surfaces

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2010-01-01

    Ball nose micro milling is a key process for the generation of free form surfaces and inclined surfaces often present in mould inserts for micro replication. This paper presents a new cutting force model for ball nose micro milling that is capable of taking into account the effect of the edge rad...... radius and the effect of the surface topography due to the previous milling passes. The model is completely analytical can be applied to ball end micro milling of slanted surfaces for any value of the surface inclination angle relative to the tool axis....

  13. Formation of Close-in Super-Earths by Giant Impacts: Effects of Initial Eccentricities and Inclinations of Protoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yuji [Planetary Exploration Research Center, Chiba Institute of Technology, Narashino, Chiba, 275-0016 (Japan); Kokubo, Eiichiro, E-mail: ymatsumoto@cfca.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2017-07-01

    Recent observations have revealed the eccentricity and inclination distributions of close-in super-Earths. These distributions have the potential to constrain their formation processes. In the in situ formation scenario, the eccentricities and inclinations of planets are determined by gravitational scattering and collisions between protoplanets on the giant impact stage. We investigate the effect of the initial eccentricities and inclinations of protoplanets on the formation of close-in super-Earths. We perform N -body simulations of protoplanets in gas-free disks, changing the initial eccentricities and inclinations systematically. We find that while the eccentricities of protoplanets are well relaxed through their evolution, the inclinations are not. When the initial inclinations are small, they are not generally pumped up since scattering is less effective and collisions occur immediately after orbital crossing. On the other hand, when the initial inclinations are large, they tend to be kept large since collisional damping is less effective. Not only the resultant inclinations of planets, but also their number, eccentricities, angular momentum deficit, and orbital separations are affected by the initial inclinations of protoplanets.

  14. John Strong (1941 - 2006)

    CERN Multimedia

    Wickens, F

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

  15. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  16. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.

    1989-01-01

    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  17. Complex network analysis in inclined oil–water two-phase flow

    International Nuclear Information System (INIS)

    Zhong-Ke, Gao; Ning-De, Jin

    2009-01-01

    Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil–water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil–water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil–water flow patterns. To investigate the dynamic characteristics of the inclined oil–water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil–water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil–water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice. (general)

  18. On the influence of gravity on the static state of an inclined tensioned string

    NARCIS (Netherlands)

    Van Horssen, W.T.

    2004-01-01

    In this paper the static state of an inclined stretched string due to gravity is considered. The string is stretched between two fixed supports which are situated at two different levels. It is assumed that the tension in the string is suffiently large such that the sag of the string due to gravity

  19. Demographic Factors, Personality and Entrepreneurial Inclination: A Study among Indian University Students

    Science.gov (United States)

    Chaudhary, Richa

    2017-01-01

    Purpose: The purpose of this paper is to investigate the influence of demographic, social and personal dispositional factors on determining the entrepreneurial inclination. Specifically, the author examined the role of gender, age, stream of study, family business background and six psychological traits of locus of control, tolerance for…

  20. Constraining the Relative Inclinations of the Planets B and C of the ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We investigate on the relative inclination of the planets B and C orbiting the pulsar PSR B1257+12. First, we show that the third Kepler's law does represent an adequate model for the orbital periods of the planets, because other Newtonian and Einsteinian corrections are orders of magnitude smaller than ...

  1. Effect of seat surface inclination on postural control during reaching in preterm children with cerebral palsy

    NARCIS (Netherlands)

    Hadders-Algra, Mijna; van der Heide, Jolanda C.; Fock, Johanna M.; Stremmelaar, Elisabeth; van Eykern, Leo A.; Otten, Bert

    Background and Purpose Because it is debatable whether seat surface inclination improves motor function in children with cerebral palsy (CP), the effect of seat surface tilting on postural control and quality of reaching was studied. Subjects The subjects were 58 children with CP aged 2 to 11 years

  2. The effects of porosity and angle of inclination on the deflection of ...

    African Journals Online (AJOL)

    The effects of porosity and angle of inclination on the deflection of fluid flow in porous media. ... a helpful Frequently Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

  3. Deformation of two welded elastic half-spaces due to a long inclined ...

    Indian Academy of Sciences (India)

    2Department of Mathematics, University of Delhi South Campus, New Delhi 110 021, India. ∗e-mail: ... Airy stress function for a tensile line source in two welded half-spaces are first obtained. These expressions ... computing the displacement and stress fields around a long inclined tensile fault near an internal boundary. 1.

  4. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    NARCIS (Netherlands)

    Pierre Auger Collaboration, [No Value; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; D\\'\\iaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; Garc\\'\\ia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agëra, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Mart\\'\\inez Bravo, O.; Martraire, D.; Mas\\'\\ias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodr\\'\\iguez-Fr\\'\\ias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiał kowski, A.; Šm\\'\\ida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2014-01-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade

  5. Effect of dual task type on gait and dynamic stability during stair negotiation at different inclinations

    NARCIS (Netherlands)

    Madehkhaksar, F.; Egges, J.

    Stair gait is a common daily activity with great potential risk for falls. Stairs have varying inclinations and people may perform other tasks concurrently with stair gait. This study investigated dual-task interference in the context of complex gait tasks, such as stair gait at different

  6. EFFECT OF BRIDGE PIERS INCLINATION AND ROUGHNESS ON SCOUR PIT DIMENSIONS

    Directory of Open Access Journals (Sweden)

    Moaed S. Khalil

    2013-05-01

    Full Text Available In this paper a laboratory work was performed to study the effect of bridge piers inclination and surface roughness on scour pit dimensions. Fifty four experiments were conducted using three different sizes and inclinations Pier models fixed in a sandy bed channel. First, the axis of the pier was parallel to the flow, then it was inclined by 30° and finally by 45°. Each model was tested under three different flow discharges for a period not less than two hours and at the end of each experiment the dimensions of the scour pit were measured. The same experiments were repeated after roughening the surface of each pier by fine gravel of 2mm in diameter to increase its roughness.The results of the experiment showed a clear reduction in scour pit dimensions after increasing pier roughness, the percentage of decreases in scour depth was between 2 % and 61%, while the scour length decreased between 2.5% and 22%, and finally the width of scour decreases was between 3% and 19.7%. The results also showed that the inclination of pier's axis produced an increase in scour pit dimensions. Finally, the empirical relationships of the results showed that it's possible to explain the relation between the flow discharge and each of scour pit dimensions by a simple linear equation, where the determination coefficient were more than 0.94 for all relations. 

  7. First Measurements of the Inclined Boron Layer Thermal-Neutron Detector for Reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Clonts, Lloyd G [ORNL; Crow, Lowell [ORNL; Van Vuure, Thorwald L [ORNL; Robertson, Lee [ORNL; Riedel, Richard A [ORNL; Richards, John D [ORNL; Cooper, Ronald G [ORNL; Remec, Igor [ORNL; Ankner, John Francis [ORNL; Browning, Jim [ORNL

    2010-01-01

    A prototype detector based on the inclined boron layer principle is introduced. For typical measurement conditions at the Liquids Reflectometer at the Spallation Neutron Source, its count rate capability is shown to be superior to that of the current detector by nearly two orders of magnitude.

  8. The Racing-Game Effect : Why Do Video Racing Games Increase Risk-Taking Inclinations?

    NARCIS (Netherlands)

    Fischer, Peter; Greitemeyer, Tobias; Morton, Thomas; Kastenmueller, Andreas; Postmes, Tom; Frey, Dieter; Kubitzki, Joerg; Odenwaelder, Joerg; Kastenmüller, A.; Odenwälder, J.

    2009-01-01

    The present studies investigated why video racing games increase players' risk-taking inclinations. Four studies reveal that playing video racing games increases risk taking in a subsequent simulated road traffic situation, as well as risk-promoting cognitions and emotions, blood pressure, sensation

  9. A Study of Static Performance of Fixed Inclined Slider Bearings – A ...

    African Journals Online (AJOL)

    In this paper, the performance of a fixed inclined slider bearing whose surfaces are lubricated by a non Newtonian power law lubricant is investigated numerically. Based on the power law model, the modified Reynolds equation is derived and solved using the finite element method. The effect of flow index on pressure ...

  10. The effects of porosity and angle of inclination on the deflection of ...

    African Journals Online (AJOL)

    -section of soils in deflecting contaminated fluid from septic tank to different directions from the source of water within the same small portion of land. It was observed that angle of inclination does not have a significant effect on the deflection of ...

  11. Constraining the Relative Inclinations of the Planets B and C of the ...

    Indian Academy of Sciences (India)

    of the orbital inclinations iB and iC independently of the pulsar's mass M. It turns out that coplanarity of the orbits of B and C would imply a violation of the equivalence principle. Adopting a pulsar mass range 1 ≲ M ≲ 3, in solar masses (supported by present-day theoretical and observational bounds for pulsar's masses), ...

  12. Second law analysis of a solar air heater having 60° inclined ...

    African Journals Online (AJOL)

    Artificially roughened solar air heaters perform better than the smooth ones under the same operating conditions. However, artificial roughness leads to even more fluid pressure thereby increasing the pumping power. The entropy generation in the duct of solar air heater having 60° inclined discrete rib roughness on one ...

  13. A Numerical Study on a Vertical-Axis Wind Turbine with Inclined Arms

    Directory of Open Access Journals (Sweden)

    Agostino De Marco

    2014-01-01

    Full Text Available This work focuses on a particular type of vertical-axis wind turbine, in which a number of inclined arms with airfoil-shaped cross-sections are mounted to connect the principal blades to their hub. While the majority of the known studies on vertical-axis turbines is devoted to the role of principal blades, in most of the cases without taking into account other parts of the wind turbine, the objective of this work is to investigate the effect of uncommon arm geometries, such as the inclined arms. The inclined arms are known to have a potentially beneficial role in the power extraction from the wind current but, due to the complexity of the phenomena, the investigation on aerodynamics of this type of turbine is often impossible through analytical models, such as blade-element momentum theory. It turns out that adequate studies can only be carried out by wind tunnel experiments or CFD simulations. This work presents a methodical CFD study on how inclined arms can be used on a selected wind turbine configuration to harvest additional power from the wind. The turbine configuration, geometry, and some fundamental definitions are introduced first. Then an in-depth CFD analysis is presented and discussed.

  14. Exact solution of cilia induced flow of a Jeffrey fluid in an inclined tube.

    Science.gov (United States)

    Maqbool, K; Shaheen, S; Mann, A B

    2016-01-01

    The present study investigated the cilia induced flow of MHD Jeffrey fluid through an inclined tube. This study is carried out under the assumptions of long wavelength and low Reynolds number approximations. Exact solutions for the velocity profile, pressure rise, pressure gradient, volume flow rate and stream function are obtained. Effects of pertinent physical parameters on the computational results are presented graphically.

  15. Mitigation of Traffic-Induced Ground Vibration by Inclined Wave Barriers

    DEFF Research Database (Denmark)

    Andersen, Lars; Augustesen, Anders Hust

    2009-01-01

    Double sheet pile walls can be used as wave barriers in order to mitigate ground vibrations from railways. The present analysis concerns the efficiency of such barriers, especially with regard to the influence of the barrier inclination and the backfill between the walls. Thus, the screening...

  16. The Effect of Multi-inclined Holes on the Creep Properties of Nickel-Based Superalloy

    Science.gov (United States)

    Li, Dongfan; Wen, Zhixun; Wang, Shaofei; Liu, Chenyu; Yue, Zhufeng

    2017-07-01

    The creep properties of GH3536 nickel-based superalloy plate specimens without/with multi-inclined holes were studied under applied stress 80/90/100 MPa at 850 °, respectively. Interesting finding is focused on the inflection point, that is, both the fraction elongation and creep strain achieve the maximum value under 90 MPa. Further study is carried out by two methods: the finite element analysis (FEA) calculation and scanning electron microscope (SEM). The FEA results show that the dangerous areas appear in the regions near the end of ellipse axis along the inclined angle orientation, which is similar to the actual fracture appearances. What is more, the tiny holes and dimples are the main characters of creep fracture for multi-inclined hole specimens, whereas the creep fracture of specimens without holes is the result of growth and coalescence of voids. In addition, based on creep performance, laser drilling is better than that of the electric spark drilling, which provides a proof that the creep performance of specimens with multi-inclined holes will be better with the improvement of the drilling process.

  17. Is Mandibular Fossa Morphology and Articular Eminence Inclination Associated with Temporomandibular Dysfunction?

    Science.gov (United States)

    Paknahad, Maryam; Shahidi, Shoaleh; Akhlaghian, Marzieh; Abolvardi, Masoud

    2016-06-01

    Finding a significant relationship between temporomandibular joint (TMJ) morphology and the incidence of temporomandibular dysfunction (TMD) may help early prediction and prevention of these problems. The purpose of the present study was to determine the morphology of mandibular fossa and the articular eminence inclination in patients with TMD and in control group using cone beam computed tomography (CBCT). The CBCT data of bilateral TMJs of 40 patients with TMD and 23 symptom-free cases were evaluated. The articular eminence inclination, as well as the glenoid fossa depth and width of the mandibular fossa were measured. The paired t-test was used to compare these values between two groups. The articular eminence inclination and glenoid fossa width and depth were significantly higher in patients with TMD than in the control group (p < 0.05). The articular eminence inclination was steeper in patients with TMD than in the control group. Glenoid fossa width and depth were higher in patients with TMD than that in the control group. This information may shed light on the relationship between TMJ morphology and the incidence of TMD.

  18. Effect of inclined ribs on heat transfer coefficient in stationary square channel

    Directory of Open Access Journals (Sweden)

    Natthaporn Kaewchoothong

    2017-11-01

    Full Text Available The main objective of this research is to study the effect of rib arrangement on the distributions of the local heat transfer coefficient in a stationary channel. In this study, the ribs with square cross section were used to place on two side walls for study. The rib height-to-hydraulic diameter ratio (e/D h and the rib pitch-to-height (p/e ratio were fixed at 0.133 and 10, respectively. Three different types of rib arrangement for inclined ribs, V-shaped ribs and inverted V-shaped ribs were investigated. The rib angle of attack (α was varied from 30° to 90° for inclined ribs and 45° and 60° for both V-shaped and inverted V-shaped ribs, and compared at constant Reynolds number Re =30000. Thermal Liquid Crystal sheet was applied for evaluating the heat transfer distributions. The results showed that the average Nusselt number on surface with rib inclined angle at 60°, 45°, and 60° V-shaped ribs was improved up to about 20%, 25% and 30% higher than case of angle 90° and the rib inclined angle at 60° V-shaped ribs provided the highest Nusselt number covering largest area when compared to the other cases.

  19. Hairpin packet structure of a turbulent boundary layer in inclined wall-normal/spanwise planes

    Science.gov (United States)

    Lee, Jae Hwa; Sung, Hyung Jin

    2009-11-01

    Turbulent coherent structures associated with hairpin packet motions have been scrutinized using the instantaneous flow fields obtained from the direct numerical simulation (DNS) of a turbulent boundary layer (TBL). The Reynolds number based on the momentum thickness was varied in the range Reθ=890˜2560. This study focused on the hairpin packet motions in inclined wall-normal/spanwise planes. The hairpin vortex signature associated with the hairpin leg components in the vertical inclined plane consists of a counter-rotating vortex pair, upward and downward motions and a stagnation point induced by the Q2 and Q4 events. These hairpin signatures were observed in the instantaneous flow field, in the two-point correlations and in the conditionally averaged flow fields, respectively. We considered three inclined planes (45^o, 90^o, and 135^o) to investigate the spatial characteristics of the hairpin packet motions in the log and wake regions. The statistical flow fields showed that significantly different flow patterns are induced by the intersections of the three inclined planes with the hairpin packet motions.

  20. A Study of Static Performance of Fixed Inclined Slider Bearings – A ...

    African Journals Online (AJOL)

    Michael Horsfall

    and friction. He compared numerical solutions for the bearing performance metrics with analytical solution using a range of bearing aspect ratios and power law indices. In this paper, we present the effect of power law fluids on the static performance characteristics of inclined slider bearings. Based on the power law model ...

  1. Experimental studies on circular and AR4 elliptic vortex-ring impingement upon inclined surfaces

    Science.gov (United States)

    Shi, Shengxian; New, Tze How; Chen, Jian

    2014-11-01

    PLIF flow visualisation and TR-PIV measurements were performed on the impingement of circular and AR4 elliptic vortex-rings upon flat surface with different inclination angles at Re = 4000. This is aimed to investigate the effects of nozzle geometry, surface inclination angle and exit-surface separation distance on the vortex-ring impingement behaviour. Separation distance between nozzle exit and flat surface were adjusted for the elliptic vortex-ring so as to examine the flow structures for impingement prior, at and posterior the axis-switching point. Current results on circular vortex-ring show that at low inclination angle, vortex-ring underwent severe stretching during the impingement and vortex-ring core closer to the flat surface was observed to induce secondary vortex-ring and pair with it before its pinch-off. Meanwhile, vortex-ring core further away from the flat surface produced secondary and tertiary vortex-rings before transit into turbulence. At high inclination angles, vortex-ring core closer to the flat surface was quickly entrained by the primary vortex-ring after the impingement. Experiments on elliptic vortex-ring are undergoing at the moment, more findings will be presented in the conference.

  2. Effects of turbulence and flow inclination on the performance of cup anemometers in the field

    DEFF Research Database (Denmark)

    Papadopoulos, K.H.; Stefantos, N.C.; Schmidt Paulsen, U.

    2001-01-01

    Four commercial and one research cup anemometers were comparatively tested in a complex terrain site to quantify the effects of turbulence and flow inclination on the wind speed measurements. The difference of the mean wind speed reading between the anemometers was as much as 2% for wind directio...

  3. Changes of occlusal plane inclination after orthodontic treatment in different dentoskeletal frames.

    Science.gov (United States)

    Li, Jin-le; Kau, Chung; Wang, Min

    2014-06-25

    The inclination of the occlusal plane (OP) is related to facial types and experiences physiological growth-related changes. The aims of this research were to determine if there were any differences in the inclination of OP in subjects with three types of skeletal malocclusion and to investigate the characteristics and differences of functional occlusal plane (FOP) compared to bisected occlusal plane (BOP). A sample of 90 Caucasians patients was skeletal-classified into three (n = 30), and pre- and post-treatment cephalograms were digitized. Six linear and 8 angular cephalometric measurements were selected. The changes of OP inclination within each group and the differences among the three groups pre- and post-treatment were compared with paired t test and ANOVA test, respectively. The comparison and correlation between BOP and FOP were analyzed with paired t test and coefficient of correlation, respectively. The BOP angle increased in all of the three groups but only had statistically significant differences in skeletal class II patients in a mean of 1.51° (p stability (p > 0.05) in all three groups. The inclination of FOP was closely related to that of BOP (p stability in orthodontically treated patients with all three skeletal patterns.

  4. Economic Investigation of Different Configurations of Inclined Solar Water Desalination Systems

    Directory of Open Access Journals (Sweden)

    O. Phillips Agboola

    2014-02-01

    Full Text Available This study empirically investigated the performance of four configurations of inclined solar water desalination (ISWD system for parameters such as daily production, efficiency, system cost, and distilled water production cost. The empirical findings show that in terms of daily productivity improved inclined solar water desalination (IISWD performed best with 6.41 kg/m2/day while improved inclined solar water desalination with wire mesh (IISWDWM produced the least with 3.0 kg/m2/day. In terms of cost price of the systems, the control system inclined solar water desalination (ISWD is the cheapest while IISWDWM is the most expensive system. Distilled water cost price ranges from 0.059 TL/kg, for IISWDW, to 0.134 TL/kg, for IISWDWM system. All the systems are economically and technically feasible as a solar desalination system for potable water in northern Cyprus. Potable water from vendors/hawkers ranges from 0.2 to 0.3 TL/kg.

  5. Experimental investigation of coarse particles-water mixture flow in horizontal and inclined pipes

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk; Krupička, Jan; Konfršt, Jiří

    2014-01-01

    Roč. 62, č. 3 (2014), s. 241-247 ISSN 0042-790X R&D Projects: GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : hydraulic pipelining * coarse-grained slurry * pressure drops * pipe inclination * concentration distribution Subject RIV: BK - Fluid Dynamics Impact factor: 1.486, year: 2014

  6. Articular Eminence Inclination, Height, and Condyle Morphology on Cone Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Dilhan İlgüy

    2014-01-01

    Full Text Available Aim. The aim of the present study was to examine the relationship between articular eminence inclination, height, and thickness of the roof of the glenoid fossa (RGF according to age and gender and to assess condyle morphology including incidental findings of osseous characteristics associated with osteoarthritis (OA of the temporomandibular joint (TMJ using cone beam computed tomography (CBCT. Materials and Methods. CBCT images of 105 patients were evaluated retrospectively. For articular eminence inclination and height, axial views on which the condylar processes were seen with their widest mediolateral extent being used as a reference view for secondary reconstruction. Condyle morphology was categorized both in the sagittal and coronal plane. Results. The mean values of eminence inclination and height of males were higher than those of females (P<0.05. There were significant differences in the RGF thickness in relation to sagittal condyle morphology. Among the group of OA, the mean value of the RGF thickness for “OA-osteophyte” group was the highest (1.59 mm, whereas the lowest RGF values were seen in the “OA-flattening.” Conclusion. The sagittal osteoarthritic changes may have an effect on RGF thickness by mechanical stimulation and changed stress distribution. Gender has a significant effect on eminence height (Eh and inclination.

  7. Rapid prototyping and inclined plane technique in the treatment of maxillofacial malformations in a fox

    Science.gov (United States)

    Freitas, Elisangela P.; Rahal, Sheila C.; Teixeira, Carlos R.; Silva, Jorge V.L.; Noritomi, Pedro Y.; Villela, Carlos H.S.; Yamashita, Seizo

    2010-01-01

    An approximately 9-month-old fox (Pseudalopex vetulus) was presented with malocclusion and deviation of the lower jaw to the right side. Orthodontic treatment was performed using the inclined plane technique. Virtual 3D models and prototypes of the head were based on computed tomography (CT) image data to assist in diagnosis and treatment. PMID:20514249

  8. Impact of cusp inclinations on dental fractures in cracked tooth syndrome model and relevant risk evaluation.

    Science.gov (United States)

    Xie, Nina; Wang, Penglai; Wu, Cui; Song, Wenting; Wang, Wen; Liu, Zongxiang

    2017-12-01

    We explored the impact of cusp inclinations on dental fractures in cracked tooth syndrome model and formulated corresponding risk scale. Forty maxillary premolars were randomized into four groups for cusp inclination measurements by digital radiovisiography (RVG). For cracked tooth models, buccal and palatal cusp inclinations were achieved by grinding in groups I (59°-50°), II (64°-55°) and III (69°-60°), with group IV as blank control. All groups underwent compression loading test, with fracture levels recorded for statistical analysis. The fracture modes included a majority of crown root fractures and a minority of crown fractures in groups I and II, exclusive crown root fractures in group III, and exclusive crown fractures in group IV. Overall, palatal fractures were predominant versus buccal fractures, with exclusive palatal fractures in group IV, and oblique fractures were overwhelming versus the scanty vertical fractures. Fracture risk classification: grade III was prevalent in groups I and II, grade IV in group III, and grades I and II in group IV only. The fracture risk scores in groups III and IV had significant statistical differences versus groups I and II (P0.05). Cracked teeth are more vulnerable to complex fractures, with increment of cusp inclinations contributable to complex fracture modes, involving deep roots and high risk scores.

  9. Average course approximation of measured subsidence and inclinations of mining area by smooth splines

    Directory of Open Access Journals (Sweden)

    Justyna Orwat

    2017-01-01

    Full Text Available The results of marking average courses of subsidence measured on the points of measuring line no. 1 of the “Budryk” Hard Coal Mine, set approximately perpendicularly to a face run of four consecutively mined longwalls in coal bed 338/2 have been presented in the article. Smooth splines were used to approximate the average course of measured subsidence after subsequent exploitation stages. The minimising of the sum of the squared differences between the average and forecasted subsidence, using J. Bialek's formula, was used as a selection criterion of parameter values of smoothing an approximating function. The parameter values of this formula have been chosen in order to match forecasted subsidence with measured ones. The average values of inclinations have been calculated on the basis of approximated values of observed subsidence. It has been shown that by doing this the average values of extreme measured inclinations can be obtained in almost the same way as extreme observed inclinations. It is not necessary to divide the whole profile of a subsidence basin into parts. The obtained values of variability coefficients of a random scattering for subsidence and inclinations are smaller than their values which occur in the literature.

  10. Biomimetic walking trajectory generation of humanoid robot on an inclined surface using Fourier series.

    Science.gov (United States)

    Park, Ill-Woo; Kim, Jung-Yup

    2014-10-01

    This article describes a novel method to generate a biomimetic walking trajectory for a biped humanoid robot on an inclined surface. We assume that the configuration of the inclined surface is known, and we solve the human-like walking trajectory generation problem by obtaining the solution from the desired zero moment point (ZMP) trajectory to the center of gravity (CoG) trajectory. We present an analytic solution for the walking trajectory generation by using Fourier series. From the given ZMP trajectory biomimetically represented by the Fourier series, we focus on how to find the CoG trajectory in an analytical way. A time-segmentation based approach is adopted for generating the trajectories. The trajectory functions need to be continuous between the segments; thus, the solution is found by calculating the coefficients under these connectivity conditions. We derive a general form of the ZMP equation using a simple inverted pendulum model (SIPM), which includes the ZMP and the CoG trajectories in the horizontal and vertical directions to quantify the walking parameters on the inclined surface. The performance of the proposed approach is verified by conducting walking simulations using a full-body dynamic simulator on three different inclined surfaces and comparing them to the authors' previous approach.

  11. Investigation on novel raceway pond with inclined paddle wheels through simulation and microalgae culture experiments.

    Science.gov (United States)

    Zeng, Fanxue; Huang, Jianke; Meng, Chen; Zhu, Fachao; Chen, Jianpei; Li, Yuanguang

    2016-01-01

    The open raceway ponds are nowadays the most used large-scale reactors for microalgae culture. To avoid the stacking of microalgae, the paddle wheels are the most widely used to circulate and mix the culture medium. In this paper, a numerical simulation using computational fluid dynamics (CFD) was used to investigate the hydrodynamic characteristics of open raceway ponds with different types of paddle wheels (the traditional paddle wheels and the novel paddle wheels with specially inclined angle of the blades). The particle image velocimetry (PIV) was used to validate the reliability of the CFD model. The CFD simulation results showed that the novel raceway pond with 15° inclined angle of the blades had the best mixing efficiency under the same power consumption. Lastly, the results of microalgae culture experiments showed that the growth rates of Chlorella pyrenoidosa in the novel raceway pond with 15° inclined angle of the blades were higher than those in the traditional reactor. The results of the culture experiments and CFD simulations were identical with each other. Therefore, a novel paddle wheel with 15° inclined angle of the blades was obtained for better microalgae cultivation.

  12. The Dark Side of Strongly Coupled Theories

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos

    2008-01-01

    We investigate the constraints of dark matter search experiments on the different candidates emerging from the minimal quasi-conformal strong coupling theory with fermions in the adjoint representation. For one candidate, the current limits of CDMS exclude a tiny window of masses around 120 GeV. We...... also investigate under what circumstances the newly proposed candidate composed of a -2 negatively charged particle and a $^4He^{+2}$ can explain the discrepancy between the results of the CDMS and DAMA experiments. We found that this type of dark matter should give negative results in CDMS, while...

  13. Evaluation of Bearing Capacity of Strip Foundation Subjected to Eccentric Inclined Loads Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Ahmed Majeed Ali

    2016-08-01

    Full Text Available In real conditions of structures, foundations like retaining walls, industrial machines and platforms in offshore areas are commonly subjected to eccentrically inclined loads. This type of loading significantly affects the overall stability of shallow foundations due to exposing the foundation into two components of loads (horizontal and vertical and consequently reduces the bearing capacity Based on a numerical analysis performed using finite element software (Plaxis 3D Foundation, the behavior of model strip foundation rested on dry sand under the effect of eccentric inclined loads with different embedment ratios (D/B ranging from (0-1 has been explored. The results display that, the bearing capacity of strip foundation is noticeably decreased with the increase of inclination angle (α and eccentricity ratio (e/B. As well as, a reduction factor (RF expression was appointed to measure the degree of decreasing in the bearing capacity when the model footing is subjected to eccentric inclined load. It was observed that, the (RF decreases as the embedment ratio increases. Moreover, the test results also exhibit that, the model footing bearing capacity is reduced by about (69% when the load inclination is varied from (0° to 20° and the model footing is on the surface. While, the rate of decreasing in the bearing capacity was found to be (58%, for both cases of footing when they are at embedment ratios of (0.5 and 1.0. Also, a comparative study was carried out between the present results and previous experimental test results under the same conditions (soil properties and boundary condition. A good agreement was obtained between the predicted bearing capacities for the two related studies.

  14. Influence of thread shape and inclination on the biomechanical behaviour of plateau implant systems.

    Science.gov (United States)

    Calì, Michele; Zanetti, Elisabetta Maria; Oliveri, Salvatore Massimo; Asero, Riccardo; Ciaramella, Stefano; Martorelli, Massimo; Bignardi, Cristina

    2018-03-01

    To assess the influence of implant thread shape and inclination on the mechanical behaviour of bone-implant systems. The study assesses which factors influence the initial and full osseointegration stages. Point clouds of the original implant were created using a non-contact reverse engineering technique. A 3D tessellated surface was created using Geomagic Studio ® software. From cross-section curves, generated by intersecting the tessellated model and cutting-planes, a 3D parametric CAD model was created using SolidWorks ® 2017. By the permutation of three thread shapes (rectangular, 30° trapezoidal, 45° trapezoidal) and three thread inclinations (0°, 3° or 6°), nine geometric configurations were obtained. Two different osseointegration stages were analysed: the initial osseointegration and a full osseointegration. In total, 18 different FE models were analysed and two load conditions were applied to each model. The mechanical behaviour of the models was analysed by Finite Element (FE) Analysis using ANSYS ® v. 17.0. Static linear analyses were also carried out. ANOVA was used to assess the influence of each factor. Models with a rectangular thread and 6° inclination provided the best results and reduced displacement in the initial osseointegration stages up to 4.58%. This configuration also reduced equivalent VM stress peaks up to 54%. The same effect was confirmed for the full osseointegration stage, where 6° inclination reduced stress peaks by up to 62%. The FE analysis confirmed the beneficial effect of thread inclination, reducing the displacement in immediate post-operative conditions and equivalent VM stress peaks. Thread shape does not significantly influence the mechanical behaviour of bone-implant systems but contributes to reducing stress peaks in the trabecular bone in both the initial and full osseointegration stages. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Effects of inclined star-disk encounter on protoplanetary disk size

    Science.gov (United States)

    Bhandare, Asmita; Breslau, Andreas; Pfalzner, Susanne

    2016-10-01

    Most, if not all, young stars are initially surrounded by protoplanetary disks. Owing to the preferential formation of stars in stellar clusters, the protoplanetary disks around these stars may potentially be affected by the cluster environment. Various works have investigated the influence of stellar fly-bys on disks, although many of them consider only the effects due to parabolic, coplanar encounters often for equal-mass stars, which is only a very special case. We perform numerical simulations to study the fate of protoplanetary disks after the impact of parabolic star-disk encounter for the less investigated case of inclined up to coplanar, retrograde encounters, which is a much more common case. Here, we concentrate on the disk size after such encounters because this limits the size of the potentially forming planetary systems. In addition, with the possibilities that ALMA offers, now a direct comparison to observations is possible. Covering a wide range of periastron distances and mass ratios between the mass of the perturber and central star, we find that despite the prograde, coplanar encounters having the strongest effect on the disk size, inclined and even the least destructive retrograde encounters mostly also have a considerable effect, especially for close periastron passages. Interestingly, we find a nearly linear dependence of the disk size on the orbital inclination for the prograde encounters, but not for the retrograde case. We also determine the final orbital parameters of the particles in the disk such as eccentricities, inclinations, and semi-major axes. Using this information the presented study can be used to describe the fate of disks and also that of planetary systems after inclined encounters.

  16. Compact Planetary Systems Perturbed by an Inclined Companion. II. Stellar Spin-Orbit Evolution

    Science.gov (United States)

    Boué, Gwenaël; Fabrycky, Daniel C.

    2014-07-01

    The stellar spin orientation relative to the orbital planes of multiplanet systems is becoming accessible to observations. Here, we analyze and classify different types of spin-orbit evolution in compact multiplanet systems perturbed by an inclined outer companion. Our study is based on classical secular theory, using a vectorial approach developed in a separate paper. When planet-planet perturbations are truncated at the second order in eccentricity and mutual inclination, and the planet-companion perturbations are developed at the quadrupole order, the problem becomes integrable. The motion is composed of a uniform precession of the whole system around the total angular momentum, and in the rotating frame, the evolution is periodic. Here, we focus on the relative motion associated with the oscillations of the inclination between the planet system and the outer orbit and of the obliquities of the star with respect to the two orbital planes. The solution is obtained using a powerful geometric method. With this technique, we identify four different regimes characterized by the nutation amplitude of the stellar spin axis relative to the orbital plane of the planets. In particular, the obliquity of the star reaches its maximum when the system is in the Cassini regime where planets have more angular momentum than the star and where the precession rate of the star is similar to that of the planets induced by the companion. In that case, spin-orbit oscillations exceed twice the inclination between the planets and the companion. Even if the mutual inclination is only ~= 20°, this resonant case can cause the spin-orbit angle to oscillate between perfectly aligned and retrograde values.

  17. Finding the Acceleration and Speed of a Light-Emitting Object on an Inclined Plane with a Smartphone Light Sensor

    Science.gov (United States)

    Kapucu, Serkan

    2017-01-01

    This study investigates how the acceleration and speed of a light-emitting object on an inclined plane may be determined using a smartphone's light sensor. A light-emitting object was released from the top of an inclined plane and its illuminance values were detected by a smartphone's light sensor during its subsequent motion down the plane. Using…

  18. Experimental study of air-cooled water condensation in slightly inclined circular tube using infrared temperature measurement technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungdae [Nuclear Engineering Department, Kyung Hee University, Yongin (Korea, Republic of); Kwon, Tae-Soon [Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Dong Eok, E-mail: dekim@knu.ac.kr [Department of Precision Mechanical Engineering, Kyungpook National University, Sangju (Korea, Republic of)

    2016-11-15

    Highlights: • Air-cooled condensation experiments in an inclined Pyrex glass tube were performed. • High-resolution wall temperature data and flow regime formations could be obtained. • The local heat flux was strongly dependent on the air-side heat transfer. • A CFD analysis was conducted for calculating the local heat flux distribution. - Abstract: This study presents the results of an investigation of the air-cooled water condensation heat transfer characteristics inside a slightly inclined circular tube made of transparent Pyrex glass. The high-resolution wall temperature data and stratified film formations could be obtained with the assistance of an infrared (IR) thermometry technique and side-view visualization using a CCD camera. In all experimental cases, the condensation flow patterns were in the fully-stratified flow region. In addition, the experimentally measured void fraction corresponded well with the logarithmic mean void fraction model. The local temperature differences in the cooling air flow across the condenser tube and high-resolution temperature profiles on the tube’s outer wall were obtained in the experimental measurements. Under the experimental conditions of this study, the local heat flux distributions in the longitudinal direction of the test tube were strongly dependent on the cooling air velocity. And, with the help of IR thermometry, the tube outer wall temperature data at 45 local points could be measured. From the data, the asymmetry distribution of the local wall temperatures and the accurate location of the transition from two-phase mixture to single phase liquid inside the tube could be obtained. Also, the analysis of the thermal resistances by condensation, wall conduction and air convection showed that the air convective heat transfer behavior can play a dominant role to the local heat transfer characteristics. Finally, in order to obtain the local heat flux distribution along the tube’s outer wall, a two

  19. Strong Laws of Large Numbers for Arrays of Rowwise NA and LNQD Random Variables

    Directory of Open Access Journals (Sweden)

    Jiangfeng Wang

    2011-01-01

    Full Text Available Some strong laws of large numbers and strong convergence properties for arrays of rowwise negatively associated and linearly negative quadrant dependent random variables are obtained. The results obtained not only generalize the result of Hu and Taylor to negatively associated and linearly negative quadrant dependent random variables, but also improve it.

  20. Cognitive dissonance, social comparison, and disseminating untruthful or negative truthful eWOM messages

    OpenAIRE

    Liu, Y-L; Keng, Ching-Jui

    2014-01-01

    In this research we explored consumers' intentions to provide untruthful or negative truthful electronic word-of-mouth (eWOM) messages when undergoing conflicting cognitive dissonance and after experiencing social comparison. We recruited 480 Taiwanese Internet users to participate in a scenario-based experiment. The findings show that after making downward comparisons on the Internet, consumers with high cognitive dissonance were more inclined to disseminate negative truthful eWOM messages c...

  1. Testing correction for paleomagnetic inclination error in sedimentary rocks: a comparative approach

    Science.gov (United States)

    Tauxe, L.; Kodama, K. P.; Kent, D. V.

    2008-05-01

    Paleomagnetic inclinations in sedimentary formations are frequently suspected of being too shallow. Recognition and correction of shallow bias is therefore critical for paleogeographical reconstructions. The elongation/inclination (E/I) correction method of Tauxe and Kent (2004) relies on the twin assumptions that inclination flattening follows the empirical sedimentary flattening formula and that the distribution of paleomagnetic directions can be predicted from a paleosecular variation (PSV) model. We will test the reliability of the E/I correction method in several ways. First we consider the E/I trends predicted by various PSV models. The Giant Gaussian Process-type paleosecular variation models were all constrained by paleomagnetic data from lava flows of the last five million years. Therefore, to test whether the method can be used in more ancient times, we will compare model predictions of E/I trends with observations from four Large Igneous Provinces since the Jurassic (Yemen, Kerguelen, Faroe Islands, and Deccan basalts). All data are consistent at the 95% level of confidence with the elongation/inclination trends predicted by the paleosecular variation models. Then we will then discuss the geological implications of various applications of the E/I method. In general the E/I corrected data are more consistent with data from contemporaneous lavas, with predictions from the well constrained synthetic apparent polar wander paths, and other geological constraints. Finally, we will compare the E/I corrections with corrections from an entirely different method of inclination correction: the anisotropy of remanence method of Jackson et al. (1991) which relies on measurement of remanence and particle anisotropies of the sediments. In the two cases where a direct comparison can be made, the two methods give corrections that are consistent within error. In summary, it appears that the elongation/inclination method for recognizing and corrected the effects of

  2. Measurement of the buccolingual inclination of teeth: manual technique vs 3-dimensional software.

    Science.gov (United States)

    Nouri, Mahtab; Abdi, Amir Hossein; Farzan, Arash; Mokhtarpour, Faraneh; Baghban, AliReza Akbarzadeh

    2014-10-01

    In this study, we aimed to measure the inclination of teeth on dental casts by a manual technique with the tooth inclination protractor (TIP; MBI, Newport, United Kingdom) and a newly designed 3-dimensional (3D) software program. The correlation of the 2 techniques was evaluated, and the reliability of each technique was assessed separately. This study was conducted on 36 dental casts of normal, well-aligned Class I occlusions; we assessed 432 teeth. All casts had a normal Class I occlusion. After determining the facial axis of the clinical crown and the facial axis points on the dental casts, we measured the inclinations of the incisors and posterior teeth up to the first molars in each dental arch relative to Andrews' occlusal plane and the posterior occlusal plane using the TIP. Moreover, the casts were scanned by a structured-light 3D scanner. The inclination of teeth relative to the occlusal plane was determined using the new software. To assess the reliability, measurements of all teeth from 15 casts were repeated twice by the 2 methods. Intraclass correlation coefficient and Dahlberg's formula were used for calculation of correlation and reliability. Overall, the 2 techniques were not significantly different in the measurements of the inclinations of the teeth in both jaws. The ranges of Dahlberg's formula were 3.1° to 5.8° for the maxilla and 3.3° to 5.9° for the mandible. The overall correlation of the 2 techniques according to the intraclass correlation coefficient was 0.91. For calculation of reliability, the intraclass correlation coefficients for the TIP and the 3D method were 0.73 and 0.82, respectively. The TIP and the 3D software showed a high correlation for measurement of the inclinations of maxillary and mandibular teeth relative to the occlusal plane. Also, the reproducibility of the measurements in each method was high. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  3. Manipulating light with strongly modulated photonic crystals

    International Nuclear Information System (INIS)

    Notomi, Masaya

    2010-01-01

    Recently, strongly modulated photonic crystals, fabricated by the state-of-the-art semiconductor nanofabrication process, have realized various novel optical properties. This paper describes the way in which they differ from other optical media, and clarifies what they can do. In particular, three important issues are considered: light confinement, frequency dispersion and spatial dispersion. First, I describe the latest status and impact of ultra-strong light confinement in a wavelength-cubic volume achieved in photonic crystals. Second, the extreme reduction in the speed of light is reported, which was achieved as a result of frequency dispersion management. Third, strange negative refraction in photonic crystals is introduced, which results from their unique spatial dispersion, and it is clarified how this leads to perfect imaging. The last two sections are devoted to applications of these novel properties. First, I report the fact that strong light confinement and huge light-matter interaction enhancement make strongly modulated photonic crystals promising for on-chip all-optical processing, and present several examples including all-optical switches/memories and optical logics. As a second application, it is shown that the strong light confinement and slow light in strongly modulated photonic crystals enable the adiabatic tuning of light, which leads to various novel ways of controlling light, such as adiabatic frequency conversion, efficient optomechanics systems, photon memories and photons pinning.

  4. Aesthetically Inclined.

    Science.gov (United States)

    Newman, Mark A.

    2002-01-01

    Describes the new Ford Building at Detroit's College for Creative Studies. The building's design is intended to "inspire future artisans" with its open setting incorporating flexible space and natural light. Includes photographs and information on suppliers. (EV)

  5. Oblique Wave-Induced Responses of A VLFS Edged with A Pair of Inclined Perforated Plates

    Science.gov (United States)

    Cheng, Yong; Ji, Chun-yan; Zhai, Gang-jun; Oleg, Gaidai

    2018-03-01

    This paper is concerned with the hydroelastic responses of a mat-like, rectangular very large floating structure (VLFS) edged with a pair of horizontal/inclined perforated anti-motion plates in the context of the direct coupling method. The updated Lagrangian formulae are applied to establish the equilibrium equations of the VLFS and the total potential formula is employed for fluids in the numerical model including the viscous effect of the perforated plates through the Darcy's law. The hybrid finite element-boundary element (FE-BE) method is implemented to determine the response reduction of VLFS with attached perforated plates under various oblique incident waves. Also, the numerical solutions are validated against a series of experimental tests. The effectiveness of the attached perforated plates in reducing the deflections of the VLFS can be significantly improved by selecting the proper design parameters such as the porous parameter, submergence depth, plate width and inclination angle for the given sea conditions.

  6. Role of edge inclination in an optical microdisk resonator for label-free sensing.

    Science.gov (United States)

    Gandolfi, Davide; Ramiro-Manzano, Fernando; Rebollo, Francisco Javier Aparicio; Ghulinyan, Mher; Pucker, Georg; Pavesi, Lorenzo

    2015-02-26

    In this paper, we report on the measurement and modeling of enhanced optical refractometric sensors based on whispering gallery modes. The devices under test are optical microresonators made of silicon nitride on silicon oxide, which differ in their sidewall inclination angle. In our approach, these microresonators are vertically coupled to a buried waveguide with the aim of creating integrated and cost-effective devices. Device modeling shows that the optimization of the device is a delicate balance of the resonance quality factor and evanescent field overlap with the surrounding environment to analyze. By numerical simulations, we show that the microdisk thickness is critical to yield a high figure of merit for the sensor and that edge inclination should be kept as high as possible. We also show that bulk-sensing figures of merit as high as 1600 RIU(-1) (refractive index unit) are feasible.

  7. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    collaboration, The Pierre Augur

    2014-08-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.

  8. Magnetohydrodynamics Carreau nanofluid flow over an inclined convective heated stretching cylinder with Joule heating

    Directory of Open Access Journals (Sweden)

    Imad Khan

    Full Text Available Current work highlights the computational aspects of MHD Carreau nanofluid flow over an inclined stretching cylinder with convective boundary conditions and Joule heating. The mathematical modeling of physical problem yields nonlinear set of partial differential equations. A suitable scaling group of variables is employed on modeled equations to convert them into non-dimensional form. The integration scheme Runge-Kutta-Fehlberg on the behalf of shooting technique is utilized to solve attained set of equations. The interesting aspects of physical problem (linear momentum, energy and nanoparticles concentration are elaborated under the different parametric conditions through graphical and tabular manners. Additionally, the quantities (local skin friction coefficient, local Nusselt number and local Sherwood number which are responsible to dig out the physical phenomena in the vicinity of stretched surface are computed and delineated by varying controlling flow parameters. Keywords: MHD, Carreau nanofluid, Inclined stretching cylinder, Joule heating, Shooting technique

  9. The Bearing Capacity of Strip Footings in Cohesionless Soil Subject to Eccentric and Inclined Loads

    DEFF Research Database (Denmark)

    Krabbenhøft, Sven; Damkilde, Lars; Krabbenhøft, Kristian

    2014-01-01

    the Mohr-Coulomb failure criterion. The results are reported as graphs showing the bearing capacity as a function of the friction angle, the eccentricity, inclination and the surcharge. The results have been compared with the Eurocode 7 and for smaller eccentricities, except in the case of no surcharge......Lower bound calculations based on the finite element method is used to determine the bearing capacity of a strip foundation subjected to an inclined, eccentric load on cohesionless soil with varying surcharges and with friction angles 25, 30 and 35°. The soil is assumed perfectly plastic following...... and especially for small friction angles and great surcharges the Eurocode values are considerably greater than the LB values....

  10. Effect of magnetic field on Blasius and Sakiadis flow of nanofluids past an inclined plate

    Directory of Open Access Journals (Sweden)

    S.P. Anjali Devi

    2017-11-01

    Full Text Available A theoretical study on the effect of magnetic field on the classical Blasius and Sakiadis flow of nanofluids over an inclined plate is presented in this paper. The governing partial differential equations are converted into ordinary differential equations using suitable similarity transformations. The transformed boundary layer equations are solved numerically using MATLAB (bvp4c. Two types of nanoparticles are chosen namely copper and alumina in the base fluid of water with the Prandtl number (Pr = 6.2. The effects of the governing physical parameters over the velocity, temperature, skin friction coefficient and reduced Nusselt number for both the Blasius and Sakiadis flows are displayed graphically. The characteristics of physical and engineering interest are discussed in detail. Keywords: Nanofluid, Blasius flow, Sakiadis flow, MHD, Inclined plate, Mixed convection

  11. Computation of coupled surface radiation and natural convection in an inclined form cavity

    International Nuclear Information System (INIS)

    Amraqui, Samir; Mezrhab, Ahmed; Abid, Cherifa

    2011-01-01

    The present paper is concerned with computation of the radiation-natural convection interactions in an inclined form cavity. The cavity contains two symmetrically identical isothermal blocks and is vented by two opening located in a vertical median axis at the top and the bottom parts of the cavity. Calculations are made by using a finite volume method and an efficient numerical procedure is introduced for calculating the view factors, with shadow effects included. Effects of Rayleigh number Ra and inclination angle φ are investigated for Pr = 0.71 in presence and in absence of the radiation exchange. Results are reported in terms of isotherms, streamlines, local and average Nusselt numbers and mass flow rate. In light of the obtained results, we can conclude that the heat transfer decreases with increasing φ. In addition, the increase of Ra and the taking into account of the radiation exchange produce a considerable increase in the heat transfer.

  12. A comparative numerical study on natural convection in inclined wavy and flat-plate solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Varol, Yasin [Department of Mechanical Education, Firat University, 23119 Elazig (Turkey); Oztop, Hakan F. [Department of Mechanical Engineering, Firat University, 23119 Elazig (Turkey)

    2008-09-15

    The present study deals with the numerical analysis of natural convection heat transfer inside the inclined solar collectors. Two collectors are compared. In the first case, the collector has wavy absorber and in the second case, it has flat absorber. The solution was performed assuming the isothermal boundary conditions of absorbers and covers of collectors. CFDRC commercial software is used to simulate the laminar flow and thermal field. Governing parameters are taken as Rayleigh number (from 1 x 10{sup 6} to 5 x 10{sup 7}), inclination angle (from 20 to 60 ), wave length (from 1.33 to 4) and aspect ratio (from 0 to 4). Results are presented by streamlines, isotherms and local and mean Nusselt numbers. It is observed that flow and thermal fields are affected by the shape of enclosure and heat transfer rate increases in the case of wavy enclosure than that of flat enclosure. (author)

  13. MHD boundary layer flow and heat transfer in an inclined porous square cavity filled with nanofluids

    Directory of Open Access Journals (Sweden)

    Chandra Shekar Balla

    2017-06-01

    Full Text Available The present paper deals with the magnetohydrodynamic boundary layer flow of a free convection heat transfer in an inclined square cavity filled with nanofluid-saturated porous medium. The effects of different nanoparticles Cu, Al2O3, TiO2 and SiO2 are considered. The top and bottom horizontal walls of cavity are considered adiabatic, while the vertical walls are kept at constant temperatures. The governing partial differential equations are solved by finite element method of Galerkin weighted residual scheme. Numerical results are obtained for different values of the Rayleigh number, angle of inclination, magnetic field and nanofluid volume fraction. The overall investigation of variation of streamlines, isotherms and Nusselt numbers is presented graphically. To examine the accuracy, the present results are compared with the available results.

  14. MHD natural convection in an inclined square porous cavity with a heat conducting solid block

    Science.gov (United States)

    Sivaraj, C.; Sheremet, M. A.

    2017-03-01

    This paper deals with natural convection in an inclined porous cavity with a heat conducting solid body placed at its center under the influence of the applied magnetic field of different orientations. The left and right vertical walls of the cavity are maintained at different temperatures Th and Tc, respectively, while the horizontal walls are adiabatic. The governing coupled partial differential equations were solved using a finite volume method on a uniformly staggered grid system. The effects of the inclination angles of the magnetic field and cavity and the Hartmann number on the flow and thermal fields are investigated in detail. Numerical results are presented in terms of isotherms, streamlines and average Nusselt numbers. In general, the results indicate that the inclusion of the magnetic field reduces the convective heat transfer rate in the cavity. It is also found that an increase in the angle of the applied magnetic field produces a non-linear variation in the average Nusselt numbers.

  15. Simulation on Natural Convection of a Nanofluid along an Isothermal Inclined Plate

    Science.gov (United States)

    Mitra, Asish

    2017-08-01

    A numerical algorithm is presented for studying laminar natural convection flow of a nanofluid along an isothermal inclined plate. By means of similarity transformation, the original nonlinear partial differential equations of flow are transformed to a set of nonlinear ordinary differential equations. Subsequently they are reduced to a first order system and integrated using Newton Raphson and adaptive Runge-Kutta methods. The computer codes are developed for this numerical analysis in Matlab environment. Dimensionless velocity, temperature profiles and nanoparticle concentration for various angles of inclination are illustrated graphically. The effects of Prandtl number, Brownian motion parameter and thermophoresis parameter on Nusselt number are also discussed. The results of the present simulation are then compared with previous one available in literature with good agreement.

  16. Microscopic calculation of the sticking force for nanodrops on an inclined surface

    Science.gov (United States)

    Berim, Gersh O.; Ruckenstein, Eli

    2008-09-01

    A two-dimensional nanodrop on a vertical rough solid surface is examined using a nonlocal density functional theory in the presence of gravity. The roughness is modeled either as a chemical inhomogeneity of the solid or as a result of the decoration with pillars of a smooth homogeneous surface. From the obtained fluid density distribution, the sticking force, which opposes the drop motion along an inclined surface, and the contact angles on the lower and upper leading edges of the drop are calculated. On the basis of these results, it is shown that the macroscopically derived equation for a drop in equilibrium on an inclined surface is also applicable to nanodrops. The liquid-vapor surface tension involved in this equation was calculated for various specific cases, and the values obtained are of the same order of magnitude as those obtained in macroscopic experiments.

  17. Reconstruction of inclined shower coordinates in electromagnetic calorimeters based on lead glass

    International Nuclear Information System (INIS)

    Vasil'ev, A.N.; Mochalov, V.V.; Solov'ev, L.F.

    2007-01-01

    A method for reconstructing the coordinates of inclined showers in lead glass electromagnetic calorimeters is described. Such showers are generated by photons with energies of 0.5-4.0 GeV that are incident on the detector at angles of as great as 30 deg. An analytical expression for the description of the actual photon coordinate in the calorimeter versus the coordinates of the shower center of gravity is proposed. Using this expression, it is possible to reconstruct the coordinates of inclined electromagnetic showers over wide ranges of angles and energies. The dependences of the spatial resolution on the photon energy and angle are determined. The longitudinal fluctuations of the shower length and their effect on the spatial resolution of the calorimeter are discussed [ru

  18. Inclinations to Conformity as a Potential Social Limit of Giftedness Development

    Directory of Open Access Journals (Sweden)

    Ilona Kočvarová

    2017-04-01

    Full Text Available The article deals with the problem of gifted pupils´ conformity, which may form a social barrier to their development during school teaching. The aim of the research is to analyse the inclination to conformity of gifted pupils during the application of differentiated enriching curriculum. The research sample consists of 86 diagnosed gifted pupils from the level of education ISCED2. The research instrument is semantically differentially based on the principle of the tool ATER. The study results suggest non-conformal inclinations of gifted pupils, which are subjectively declared in relation to the five statements describing work on a task during the application of differentiated enriching curriculum in school lessons.

  19. Robotic complex for the development of thick steeply-inclined coal seams and ore deposits

    Science.gov (United States)

    Nikitenko, M. S.; Malakhov, Yu V.; Neogi, Biswarup; Chakraborty, Pritam; Banerjee, Dipesu

    2017-09-01

    Proposal for the formulation of robotic complexes for steeply inclined coal seams as a basis of the supportive-enclosing walking module and power support with a controlled outlet for mining industry has been represented in this literature. In mining industry, the available resource base reserves and mineral deposits are concentrated deep down the earth crust leading towards a complicated geological condition i.e. abrupt ore bedding and steeply inclined strata with the high gas content and fire hazard of thick coal stratum, heading against an unfavorable and sometimes human labor life risk during subversive mining. Prevailing towards the development of effective robotic complexes based on the means of “unmanned technologies” for extraction of minerals from hard-to-reach deposits and make sure the safety of underground staff during sublevel mining technology.

  20. Flow Over Backward Facing Step with Inclined Wall Solved by Finite Volume and Finite Element Method

    Science.gov (United States)

    Louda, Petr; Sváček, Petr; Kozel, Karel; Příhoda, Jaromír

    2010-09-01

    The work deals with numerical solution of 2D incompressible flow over backward facing step. The inclination angles of the upper wall of the channel were chosen as in measurements by Driver and Seegmiller [1]. Two numerical methods are considered. One is finite volume method, the other one is finite element method. Turbulence is modeled using two-equation turbulence models of k-ω type. The influence of outlet boundary condition is discussed and do-nothing-like condition found suitable also for finite volume method. The comparison of both methods is presented for laminar as well as turbulent cases, including experimental results. The differences of the results are studied using one turbulence model and both numerical methods or one method and more turbulence models. It is found that sensitivity of the computation to these circumstances increases for higher inclination angles (diffuser flow).

  1. Studies from Cassini's high-inclination orbits: ion cyclotron wave belt

    Science.gov (United States)

    Leisner, J. S.; Russell, C. T.; Dougherty, M. K.; Persoon, A. M.; Blanco-Cano, X.; Strangeway, R. J.; Cowee, M. M.

    2007-08-01

    Surrounding Saturn is a cloud of neutral water-group molecules. When these particles are ionized and accelerated by Saturn's corotating magnetized plasma, they generate ion cyclotron waves. When the inclination of the Cassini spacecraft's orbits rose to about fifty-five degrees in late 2006, new insights into the behavior of these ion cyclotron waves were obtained as the spacecraft passed through the equatorial plane, revealing latitudinal structure of the wave belt. Centered at the magnetic equator the wave amplitude grows with height in either direction, reaching a maximum at +/- 0.2 Rs and then decreasing until they disappear by +/- 0.3 Rs. Doppler shifts caused by the motion of the spacecraft reveal that these waves propagate primarily away from the equatorial plane. Using these high-inclination orbits, we study the wave growth and damping regions and their propagation characteristics. These properties give insight into the structure and ionization of Saturn's water cloud.

  2. Sagittal crystal focusing of undulator radiation with high heat load inclined crystals

    International Nuclear Information System (INIS)

    Ice, G.E.; Sparks, C.J.

    1992-01-01

    Sagittal focusing of undulator radiation is shown to be compatible with the proposed inclined double-crystal monochromator geometry for heat load reduction. The focusing aberrations are found to be negligible for typical undulator-beam divergences over a range of magnifications from 1:2 to 6:1 and energies from 3 to 40 keV. The inclined geometry reduces the required signal sagittal curvature of the focusing crystal compared to focusing with conventional symmetric crystals; hence, focusing is possible at higher X-ray energies and with less anticlastic bending. In addition, anticlastic stiffening ribs project a smaller footprint to the beam so that the achievable focal spot size is potentially better than with conventional symmetrically cut crystals. 16 refs

  3. Hydrodynamic and thermal mechanisms of filtration combustion inclinational instability based on non-uniform distribution of initial preheating temperature

    Science.gov (United States)

    Xia, Yongfang; Shi, Junrui; Xu, Youning; Ma, Rui

    2018-03-01

    Filtration combustion (FC) is one style of porous media combustion with inert matrix, in which the combustion wave front propagates, only downstream or reciprocally. In this paper, we investigate the FC flame front inclinational instability of lean methane/air mixtures flowing through a packed bed as a combustion wave front perturbation of the initial preheating temperature non-uniformity is assumed. The predicted results show that the growth rate of the flame front inclinational angle is proportional to the magnitude of the initial preheating temperature difference. Additionally, depending on gas inlet gas velocity and equivalence ratio, it is demonstrated that increase of gas inlet gas velocity accelerates the FC wave front deformation, and the inclinational instability evolves faster at lower equivalence ratio. The development of the flame front inclinational angle may be regarded as a two-staged evolution, which includes rapid increase, and approaching maximum value of inclinational angle due to the quasi-steady condition of the combustion system. The hydrodynamic and thermal mechanisms of the FC inclinational instability are analyzed. Consequently, the local propagation velocity of the FC wave front is non-uniform to result in the development of inclinational angle at the first stage of rapid increase.

  4. Irreversibility analysis for gravity driven non-Newtonian liquid film along an inclined isothermal plate

    International Nuclear Information System (INIS)

    Makinde, O.D.

    2005-10-01

    In this paper, the first and second law of thermodynamics are employed in order to study the inherent irreversibility for a gravity driven non-Newtonian Ostwald-de Waele power law liquid film along an inclined isothermal plate. Based on some simplified assumptions, the governing equations are obtained and solved analytically. Expressions for fluid velocity, temperature, volumetric entropy generation numbers, irreversibility distribution ratio and the Bejan number are also determined. (author)

  5. Role of Edge Inclination in an Optical Microdisk Resonator for Label-Free Sensing

    OpenAIRE

    Gandolfi, Davide; Ramiro-Manzano, Fernando; Rebollo, Francisco Javier Aparicio; Ghulinyan, Mher; Pucker, Georg; Pavesi, Lorenzo

    2015-01-01

    In this paper, we report on the measurement and modeling of enhanced optical refractometric sensors based on whispering gallery modes. The devices under test are optical microresonators made of silicon nitride on silicon oxide, which differ in their sidewall inclination angle. In our approach, these microresonators are vertically coupled to a buried waveguide with the aim of creating integrated and cost-effective devices. Device modeling shows that the optimization of the devic...

  6. Comparison of Plantar Pressure Distribution between Different Speed and Incline During Treadmill Jogging.

    Science.gov (United States)

    Ho, I-Ju; Hou, Yi-You; Yang, Chich-Haung; Wu, Wen-Lan; Chen, Sheng-Kai; Guo, Lan-Yuen

    2010-01-01

    The aim of this study was to examine the effect of changes in speed and incline slope on plantar pressure distribution of the foot during treadmill jogging. Plantar pressure parameters were measured with the Pedar-X system in twenty healthy girls (mean age of 20.7 years, mean height of 1.60m, and a mean weight of 53.35kg). Because variations in walking speed or slope can significantly change the magnitude of plantar pressure, comparisons of plantar pressure distribution between the two independent protocols during treadmill jogging were considered in this study. First, the subjects ran at the same speed of 2 m·s(-1) with different incline slopes of 0%, 5%, 10%, and 15%. Second, they ran on the same slope of 0% with different speeds of 1.5 m·s(-1), 2.0 m·s(-1), and 2.5 m·s(-1). The peak pressure of the eight plantar surface areas, apart from the medial forefoot and the hallux, significantly increased (p jogging were associated with changes in plantar pressures. By systematic investigation of foot kinematics and plantar pressure during jogging with varying incline slope and speed, the results of this study provided further insight into foot biomechanics during jogging. Key pointsThe study aimed to compare the plantar pressure distribution of the foot between different incline and speed during treadmill jogging by using plantar insole measurement system.With the increase of speed, apart from the hallux and medical forefoot, the peak pressure of all regions was raised significantly.As the slope increased, there was reduced peak pressure of the heel, medial forefoot, and hallux and toes.

  7. Influence of Initial Inclined Surface Crack on Estimated Residual Fatigue Lifetime of Railway Axle

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Pokorný, Pavel; Ševčík, Martin; Hutař, Pavel

    2016-01-01

    Roč. 7, č. 4 (2016), č. článku 1640007. ISSN 1756-9737. [FDM 2016 - International Conference on Fracture and Damage Mechanics /15./. Alicante, 14.09.2016-16.09.2016] R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : inclined crack * railway axle * residual fatigue lifetime * fatigue crack propagation Subject RIV: JL - Materials Fatigue, Friction Mechanics

  8. CORRELATION BETWEEN PRONATED FOOT AND PELVIC INCLINATION, FEMORAL ANTEVERSION, QUADRICEPS ANGLE AND TIBIAL TORSION

    Directory of Open Access Journals (Sweden)

    Nishita Gandhi

    2017-08-01

    Full Text Available Background: A pronated foot can produce changes in the lower limb kinetic chain. This can affect the gait and increase energy expenditure. However, the relationship between pronated foot and other static alignment factors remains poorly understood. Hence, the objective was to correlate pronated foot with pelvic inclination, femoral anteversion, Q-angle and tibial torsion. Method: An observational study was performed on 60 subjects in the age group of 18-30 years with a BMI of not more than 30. Foot Posture Index was performed on the subjects, and people with a score of +6 or more were selected. Pelvic inclination, femoral anteversion, Q-angle and tibial torsion were measured. Correlation between the Foot Posture Index score and the above four static alignment factors was done using Graph Pad Prism 7 (Pearson’s correlation coefficient and Spearman’s correlation coefficient. Results: There was no significant correlation between Pronated foot and Pelvic inclination (r-value = 0.03309, p-value = 0.8018, Pronated foot and Femoral anteversion (r-value = 0.2185, p-value = 0.0934 Pronated foot and Q-angle (r-value = 0.1801, p-value = 0.1685, Pronated foot and Tibial torsion (r- value = -0.1285, p-value = 0.3277. Conclusion: There is no significant correlation between foot pronation and pelvic inclination, femoral anteversion, Q-angle and tibial torsion. However, the correlation between these factors cannot be completely ignored, and thus, further studies and literature are required to prove the same.

  9. MHD boundary layer flow and heat transfer in an inclined porous square cavity filled with nanofluids

    OpenAIRE

    Chandra Shekar Balla; Naikoti Kishan; Rama S.R. Gorla; B.J. Gireesha

    2017-01-01

    The present paper deals with the magnetohydrodynamic boundary layer flow of a free convection heat transfer in an inclined square cavity filled with nanofluid-saturated porous medium. The effects of different nanoparticles Cu, Al2O3, TiO2 and SiO2 are considered. The top and bottom horizontal walls of cavity are considered adiabatic, while the vertical walls are kept at constant temperatures. The governing partial differential equations are solved by finite element method of Galerkin weighted...

  10. Minimum energy shapes of one-side-pinned static drops on inclined surfaces.

    Science.gov (United States)

    Thampi, Sumesh P; Govindarajan, Rama

    2011-10-01

    The shape that a liquid drop will assume when resting statically on a solid surface inclined to the horizontal is studied here in two dimensions. Earlier experimental and numerical studies yield multiple solutions primarily because of inherent differences in surface characteristics. On a solid surface capable of sustaining any amount of hysteresis, we obtain the global, and hence unique, minimum energy shape as a function of equilibrium contact angle, drop volume, and plate inclination. It is shown, in the energy minimization procedure, how the potential energy of this system is dependent on the basis chosen to measure it from, and two realistic bases, front-pinned and back-pinned, are chosen for consideration. This is at variance with previous numerical investigations where both ends of the contact line are pinned. It is found that the free end always assumes Young's equilibrium angle. Using this, simple equations that describe the angles and the maximum volume are then derived. The range of parameters where static drops are possible is presented. We introduce a detailed force balance for this problem and study the role of the wall in supporting the drop. We show that a portion of the wall reaction can oppose gravity while the other portion aids it. This determines the maximum drop volume that can be supported at a given plate inclination. This maximum volume is the least for a vertical wall, and is higher for all other wall inclinations. This study can be extended to three-dimensional drops in a straightforward manner and, even without this, lends itself to experimental verification of several of its predictions.

  11. Inclined periodic homoclinic breather and rogue waves for the (1+1 ...

    Indian Academy of Sciences (India)

    [8], financial markets [9] and other related fields. The first-order .... where p1, p, α, β, b1 and b2 are real constants to be determined. Computing D2 .... β t. ) +γ = 0 with period 2π/p. So this solution is called the inclined periodic homoclinic breather solution. Using eq. (10) and taking b2 = 1, γ = ln(. √ b2) = 0 in u2. So, solution ...

  12. Probing Disk Stratification by Combining X-ray and Disk Inclination Data for Taurus-Auriga

    Science.gov (United States)

    Arraki, Kenza S.; Daly, B.; Harding, M.; McCleary, J.; Cox, A. W.; Grady, C. A.; Woodgate, B. E.; Hamaguchi, K.; Wisniewski, J. P.; Brakken-Thal, S.; Hilton, G.; Bonfield, D.; Williger, G. M.

    2010-01-01

    Photoelectric neutral Hydrogen absorption, N(H), is a probe of the gas and dust column towards the star. Kastner et al. (2005) found a correlation between N(H) and proplyd aspect ratio in the Orion nebula cluster. We extend this study to Taurus-Auriga by combining publicly available N(H) data from the XMM-Newton Extended Survey of the Taurus molecular cloud (XEST), with published disk inclination data obtained from HST coronagraphic imagery and mm interferometry. Additional inclinations were derived from jet proper motion and radial velocity data obtained from archival HST imagery and the Apache Point Observatory 3.5m telescope's Goddard Fabry-Perot and DIS long-slit spectrograph. Both N(H) and extinction have linear relations with system inclination, where the extinction has a smaller slope than the N(H) trend. Correlations with system inclination demonstrate that the bulk of both N(H) and extinction arise in the disk rather than in remnant envelopes, nearby molecular cloud material, or foreground material. The deficit in extinction compared with predictions for ISM-like gas to dust ratios is consistent with grain growth and settling toward the disk midplane and stratification in disks occurring by 2 Myr. However, the disks remain gas-rich, indicating that giant planet formation is still feasible. We gratefully acknowledge the support of the NASA Motivating Undergraduates in Science and Technology (MUST) Project and of NASA's APRA program under WBS#399131.02.06.02.32. A grant of Director's Discretionary Time funded observing time at the Apache Point Observatory.

  13. The new Permian-Triassic paleomagnetic pole for the East European Platform corrected for inclination shallowing

    Science.gov (United States)

    Fetisova, A. M.; Veselovskiy, R. V.; Scholze, F.; Balabanov, Yu. P.

    2018-01-01

    The results of detailed paleomagnetic studies in seven Upper Permian and Lower Triassic reference sections of East Europe (Middle Volga and Orenburg region) and Central Germany are presented. For each section, the coefficient of inclination shallowing f (King, 1955) is estimated by the Elongation-Inclination (E-I) method (Tauxe and Kent, 2004) and is found to vary from 0.4 to 0.9. The paleomagnetic directions, corrected for the inclination shallowing, are used to calculate the new Late Permian-Early Triassic paleomagnetic pole for the East European Platform (N = 7, PLat = 52.1°, PLong = 155.8°, A95 = 6.6°). Based on this pole, the geocentric axial dipole hypothesis close to the Paleozoic/Mesozoic boundary is tested by the single plate method. The absence of the statistically significant distinction between the obtained pole and the average Permian-Triassic (P-Tr) paleomagnetic pole of the Siberian Platform and the coeval pole of the North American Platform corrected for the opening of the Atlantic (Shatsillo et al., 2006) is interpreted by us as evidence that 250 Ma the configuration of the magnetic field of the Earth was predominantly dipolar; i.e., the contribution of nondipole components was at most 10% of the main magnetic field. In our opinion, the hypothesis of the nondipolity of the geomagnetic field at the P-Tr boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), resulted from disregarding the effect of inclination shallowing in the paleomagnetic determinations from sedimentary rocks of "stable" Europe (the East European platform and West European plate).

  14. The Racing-Game Effect: Why Do Video Racing Games Increase Risk-Taking Inclinations?

    OpenAIRE

    Fischer, Peter; Greitemeyer, Tobias; Morton, Thomas; Kastenmüller, Andreas; Postmes, Tom; Frey, Dieter; Kubitzki, Jörg; Odenwälder, Jörg

    2009-01-01

    The present studies investigated why video racing games increase players’ risk-taking inclinations. Four studies reveal that playing video racing games increases risk taking in a subsequent simulated road traffic situation, as well as risk-promoting cognitions and emotions, blood pressure,sensation seeking, and attitudes toward reckless driving. Study 1 ruled out the role of experimental demand in creating such effects. Studies 2 and 3 showed that the effect of playing video racing games on r...

  15. Flow behaviour and local concentration of coarse particles-water mixture in inclined pipes

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří

    2017-01-01

    Roč. 65, č. 2 (2017), s. 183-191 ISSN 0042-790X R&D Projects: GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : coarse particle mixture * concentration distribution * effect of pipe inclination * gamma-ray radiometry * Hydraulic conveying * mixture flow behaviour Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.654, year: 2016

  16. Variation of the mean and median inclinations in the numbered minor planet sample

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, Z. (Astronomical Observatory, Belgrade, Yugoslavia)

    1982-01-01

    Variations of the mean and median minor planet inclinations with the increase of the numbered minor planet sample size are investigated. An analysis is presented of the role of real features of the minor planet system and of the selectional effects connected with discoveries and inclusion in the list of numbered objects. Available data are discussed and prediction of the future behaviour of variations attempted.

  17. Inclination of the soul toward obscenity in the human life from viewpoint of the Quran and School of the analytical psychology

    Directory of Open Access Journals (Sweden)

    Hamid Taher Neshat Doost

    2015-02-01

    Full Text Available The human being sometimes inclines toward the goodness and beauty, and sometimes toward the obscenity. So, Allah in the Quran has reminded man of dangers and wicked thoughts of the soul, and has described “al-Nafsul Ammāra” (commanding soul as a source of the souls` inclination toward the obscenity which is quite deceptive. It has also been mentioned that self-scrutiny would act as cause for attaining the way of life recommended by Quran. One of the duties of the psychology is to elaborate on the sources of the souls` inclination toward obscenity and the factors that deviating the human life. One of the psychological schools that especially studies this issue is the School of analytical psychology. Among psychologists of this school, viewpoints of Sigmund Freud and Carl Jung need to be compared with the Islamic-Quranic viewpoint. This article firstly tries to clarify the concept of the soul and its characteristics, and then explains the process through which “al-Nafsul Ammāra”, influences. It also describes the origin of the soul's tendency toward obscenity from Freuds` viewpoint and satanic influences from viewpoint of Carl Jung comparing them with the Quranic attitude. The origin of inclination of the soul toward the obscenity is called “al-Nafsul Ammāra” based in the Quranic text while according to the Frauds` theory it is called ID. From the Quranic viewpoint, “al-Nafsul Ammāra” that is affected by the internal negative tendencies of the soul (Haway-e Nafs and external invisible stimuli(Satan commands the human and leads him to the obscenity. So the Quran introduces the Satan as the enemy of the human being that brings about his decadence. The Quran presents the human being a practical plan for struggling against the Satan. Analytical psychology of Jung also emphasizes the role of the satanic influences on the human tendency toward the obscenity and considers struggling with the Satan as a way for freedom and

  18. Inclination of the soul toward obscenity in the human life from viewpoint of the Quran and School of the analytical psychology

    Directory of Open Access Journals (Sweden)

    Ali Banaeian Esfahani

    2015-03-01

    Full Text Available The human being sometimes inclines toward the goodness and beauty, and sometimes toward the obscenity. So, Allah in the Quran has reminded man of dangers and wicked thoughts of the soul, and has described “al-Nafsul Ammāra” (commanding soul as a source of the souls` inclination toward the obscenity which is quite deceptive. It has also been mentioned that self-scrutiny would act as cause for attaining the way of life recommended by Quran. One of the duties of the psychology is to elaborate on the sources of the souls` inclination toward obscenity and the factors that deviating the human life. One of the psychological schools that especially studies this issue is the School of analytical psychology. Among psychologists of this school, viewpoints of Sigmund Freud and Carl Jung need to be compared with the Islamic-Quranic viewpoint. This article firstly tries to clarify the concept of the soul and its characteristics, and then explains the process through which “al-Nafsul Ammāra”, influences. It also describes the origin of the soul's tendency toward obscenity from Freuds` viewpoint and satanic influences from viewpoint of Carl Jung comparing them with the Quranic attitude. The origin of inclination of the soul toward the obscenity is called “al-Nafsul Ammāra” based in the Quranic text while according to the Frauds` theory it is called ID. From the Quranic viewpoint, “al-Nafsul Ammāra” that is affected by the internal negative tendencies of the soul (Haway-e Nafs and external invisible stimuli(Satan commands the human and leads him to the obscenity. So the Quran introduces the Satan as the enemy of the human being that brings about his decadence. The Quran presents the human being a practical plan for struggling against the Satan. Analytical psychology of Jung also emphasizes the role of the satanic influences on the human tendency toward the obscenity and considers struggling with the Satan as a way for freedom and sublimation

  19. Effect of the inclination of support in cervical and upper limb development

    Directory of Open Access Journals (Sweden)

    Ailime Perito Feiber Heck

    Full Text Available Introduction It is expected that a child will acquire control of posture (CP of the head and upper limbs in a gradual, sequential and organized way. However, there is still no consensus regarding the best position to achieve this; the evidence suggests that it is prone. Objective To investigate whether age and inclination of the supporting surface in the prone position influence the alignment of the head and upper limbs of children with typical motor development (TMD and atypical motor development (AMD. Methods The study included 29 children aged between one and three months divided according to the Alberta Infant Motor Scale (AIMS into groups with TMD (n = 18 and AMD (n = 11. The children were placed in the prone position with three angles of the support surface (0°, 25° and 45°. Kinematic analysis was conducted to evaluate the alignment angles of the head and upper limbs. Results Children with TMD had higher head alignment. There was no difference in the upper limbs’ alignment between the group with TMD and the group with AMD. In the third month of age compared with the first, increased head alignment and decreased upper limb alignment were found in both groups. The inclination of the supporting surface did not influence the alignment of the head and upper limbs. Conclusions Among the positions evaluated, the prone position without inclination of the supporting surface was more appropriate for weight discharge in the upper limbs, favoring the development of postural control of the child.

  20. Heat removal capability of core-catcher with inclined cooling channels

    International Nuclear Information System (INIS)

    Suzuki, Y.; Tahara, M.; Kurita, T.; Hamazaki, R.; Morooka, S.

    2009-01-01

    A core-catcher is one of the mitigation systems that provide functions of molten corium cooling and stabilization during a severe accident. Toshiba has been developing a compact core-catcher to be placed at the lower drywell floor in the containment vessel for the next generation BWR as well as near term ABWR. This paper presents the evaluation of heat removal capability of the core-catcher with inclined cooling channels, our verification status and plan. The heat removal capability of the core-catcher is analyzed by using the newly developed two-phase flow analysis code which incorporates drift flux parameters for inclined channels and the CHF correlation obtained from SULTAN tests. Effects of geometrical parameters such as the inclination and the gap size of the cooling channel on the heat removal capability are also evaluated. These results show that the core-catcher has sufficient capability to cool the molten corium during a severe accident. Based on the analysis, it has been shown that the core-catcher has an efficient capability of heat removal to cool the molten corium. (author)

  1. Students’ understanding of forces: Force diagrams on horizontal and inclined plane

    Science.gov (United States)

    Sirait, J.; Hamdani; Mursyid, S.

    2018-03-01

    This study aims to analyse students’ difficulties in understanding force diagrams on horizontal surfaces and inclined planes. Physics education students (pre-service physics teachers) of Tanjungpura University, who had completed a Basic Physics course, took a Force concept test which has six questions covering three concepts: an object at rest, an object moving at constant speed, and an object moving at constant acceleration both on a horizontal surface and on an inclined plane. The test is in a multiple-choice format. It examines the ability of students to select appropriate force diagrams depending on the context. The results show that 44% of students have difficulties in solving the test (these students only could solve one or two items out of six items). About 50% of students faced difficulties finding the correct diagram of an object when it has constant speed and acceleration in both contexts. In general, students could only correctly identify 48% of the force diagrams on the test. The most difficult task for the students in terms was identifying the force diagram representing forces exerted on an object on in an inclined plane.

  2. Linear and Nonlinear Gait Features in Older Adults Walking on Inclined Surfaces at Different Speeds.

    Science.gov (United States)

    Vieira, Marcus Fraga; Rodrigues, Fábio Barbosa; de Sá E Souza, Gustavo Souto; Magnani, Rina Márcia; Lehnen, Georgia Cristina; Andrade, Adriano O

    2017-06-01

    This study evaluated linear and nonlinear gait features in healthy older adults walking on inclined surfaces at different speeds. Thirty-seven active older adults (experimental group) and fifty young adults (control group) walked on a treadmill at 100% and ±20% of their preferred walking speed for 4 min under horizontal (0%), upward (UP) (+8%), and downward (DOWN) (-8%) conditions. Linear gait variability was assessed using the average standard deviation of trunk acceleration between strides (VAR). Gait stability was assessed using the margin of stability (MoS). Nonlinear gait features were assessed by using the maximum Lyapunov exponent, as a measure of local dynamic stability (LDS), and sample entropy (SEn), as a measure of regularity. VAR increased for all conditions, but the interaction effects between treadmill inclination and age, and speed and age were higher for young adults. DOWN conditions showed the lowest stability in the medial-lateral MoS, but not in LDS. LDS was smaller in UP conditions. However, there were no effects of age for either MoS or LDS. The values of SEn decreased almost linearly from the DOWN to the UP conditions, with significant interaction effects of age for anterior-posterior SEn. The overall results supported the hypothesis that inclined surfaces modulate nonlinear gait features and alter linear gait variability, particularly in UP conditions, but there were no significant effects of age for active older adults.

  3. Attachment systems for implant overdenture: influence of implant inclination on retentive and lateral forces.

    Science.gov (United States)

    Yang, Tsung-Chieh; Maeda, Yoshinobu; Gonda, Tomoya; Kotecha, Sunny

    2011-11-01

    To evaluate the retentive force and lateral force of an implant with various types of attachments for overdentures in relation to implant inclination. An implant (3.75 × 13 mm) was embedded into an acrylic resin block, simulating the edentulous ridge. Four different attachment systems were used, including: (1) Locator black and blue, (2) a ball attachment, (3) a flat-type magnetic attachment and (4) a self-adjusting magnetic attachment, which has vertical and rotational movement. All of the attachments were under a constant dislodging force with an angle of the implant at 0°, 15°, 30° and 45°, and the experiments were repeated 10 times using a universal testing machine to measure the retentive force. The lateral force to the implant was measured by strain gauges attached on the implant surface. Statistical analysis was performed by multiple comparisons with Bonferroni's correction. Pattachments. The Locator blue and ball attachment maintained the retentive force until a 30° inclination; however, the lateral force increased significantly, especially with the ball attachment. The retentive force of the magnetic attachment was significantly lower at 0°, as well as the lateral force in the self-adjusting magnetic attachment. Within the limitations of this study, we conclude that the retentive force decreases with an increase in implant inclination, whereas the lateral force increases, except for in magnetic attachments. © 2011 John Wiley & Sons A/S.

  4. Modelling and Simulation of Free Floating Pig for Different Pipeline Inclination Angles

    Directory of Open Access Journals (Sweden)

    Woldemichael Dereje Engida

    2016-01-01

    Full Text Available This paper presents a modelling and simulation of free floating pig to determine the flow parameters to avoid pig stalling in pigging operation. A free floating spherical shaped pig was design and equipped with necessary sensors to detect leak along the pipeline. The free floating pig does not have internal or external power supply to navigate through the pipeline. Instead, it is being driven by the flowing medium. In order to avoid stalling of the pig, it is essential to conduct simulation to determine the necessary flow parameters for different inclination angles. Accordingly, a pipeline section with inclination of 0°, 15°, 30°, 45°, 60°, 75°, and 90° were modelled and simulated using ANSYS FLUENT 15.0 with water and oil as working medium. For each case, the minimum velocity required to propel the free floating pig through the inclination were determined. In addition, the trajectory of the free floating pig has been visualized in the simulation.

  5. Three-dimensional unsteady natural convection and entropy generation in an inclined cubical trapezoidal cavity with

    Directory of Open Access Journals (Sweden)

    Ahmed Kadhim Hussein

    2016-06-01

    Full Text Available Numerical computation of unsteady laminar three-dimensional natural convection and entropy generation in an inclined cubical trapezoidal air-filled cavity is performed for the first time in this work. The vertical right and left sidewalls of the cavity are maintained at constant cold temperatures. The lower wall is subjected to a constant hot temperature, while the upper one is considered insulated. Computations are performed for Rayleigh numbers varied as 103 ⩽ Ra ⩽ 105, while the trapezoidal cavity inclination angle is varied as 0° ⩽ Φ ⩽ 180°. Prandtl number is considered constant at Pr = 0.71. Second law of thermodynamics is applied to obtain thermodynamic losses inside the cavity due to both heat transfer and fluid friction irreversibilities. The variation of local and average Nusselt numbers is presented and discussed, while, streamlines, isotherms and entropy contours are presented in both two and three-dimensional pattern. The results show that when the Rayleigh number increases, the flow patterns are changed especially in three-dimensional results and the flow circulation increases. Also, the inclination angle effect on the total entropy generation becomes insignificant when the Rayleigh number is low. Moreover, when the Rayleigh number increases the average Nusselt number increases.

  6. Rolling and sliding motion of spheres propagating down inclined planes in still water

    Science.gov (United States)

    Tee, Yi Hui; Longmire, Ellen

    2016-11-01

    In modelling the motion of spheres submerged in liquid, gravity, drag, lift, and added mass forces have to be taken into account. For spheres contacting bounding surfaces, friction coefficients due to rolling and sliding increase the complexity of the model. In this study, experiments are conducted to investigate the effects of particle density and diameter on the rolling and sliding motion of spheres. Spherical particles with marked surfaces are released from rest on an inclined glass plate in still water at various inclination angles and allowed to accelerate. A 45° mirror mounted beneath the plate allows simultaneous capture of both longitudinal and spanwise motions of the sphere. Based on sequences obtained by high speed imaging, the translational and rotational velocities are determined. Particle Reynolds numbers at terminal velocity range from 400 to 2500 corresponding with Galileo numbers of 800 to 2800. By comparing the translational and rotational velocities, the occurrence of sliding motion can be identified. The onset of sliding motion is then determined as a function of inclination angle and Galileo number for multiple particle materials. The experimental results are also compared against the existing models from the literature. Supported by NSF (CBET-1510154).

  7. Valuation of coefficient of rolling friction by the inclined plane method

    Science.gov (United States)

    Ciornei, F. C.; Alaci, S.; Ciogole, V. I.; Ciornei, M. C.

    2017-05-01

    A major objective of tribological researches is characterisation of rolling friction, due to various cases encountered in classical engineering applications, like gear transmissions and cam mechanisms or more recent examples met in bioengineering and biomedical devices. A characteristic of these examples consists in reduced dimensions of the contact zones, theoretically zero, the relative motion occurring between the contact points being either sliding or rolling. A characteristic parameter for the rolling motion is the coefficient of rolling friction. The paper proposes a method for estimation of coefficient of rolling friction by studying the motion of a body of revolution on an inclined plane. Assuming the hypothesis that moment of rolling friction is proportional to the normal reaction force, the law of motion for the body on the inclined plane is found under the premise of pure rolling. It is reached the conclusion that there is an uniformly accelerated motion, and thus for a known plane slope, it is sufficient to find the time during which the body runs a certain distance, starting from motionless situation. To obtain accurate results assumes finding precisely the time of motion. The coefficient of rolling friction was estimated for several slopes of the inclined plane and it is concluded that with increased slope, the values of coefficient of rolling friction increase, fact that suggest that the proportionality between the rolling torque and normal load is valid only for domains of limited variations of normal load.

  8. Heat transfer coefficient in pool boiling for an electrically heated tube at various inclinations

    International Nuclear Information System (INIS)

    Fahmy, A.S.A.; Mariy, A.H.; Mahmoud, S.I.; Ibrahim, N.A.

    1987-01-01

    An experimental investigation is carried out study the behaviour of heat transfer in pool boiling from a vertical and inclined heated tube at atmospheric pressure. An imperial correlation joining the different parameters affecting the heat transfer coefficient in pool boiling for an electrically heated tube at various inclinations is developed. Two test sections (zircaloy-4 and stainless steel) of 16 n n outer diameter and 120 nm length are investigated. Four levels of heat flux are used for heating the two lest sections (e.g. 381, 518, 721 and 929 k.watt/n 2). The maximum surface temperature achieved is 146.5 degree c for both materials, and the maximum bulk temperature is 95 degree C. It is found that the average heat transfer coefficient is inversely proportional with heated length l, where it reaches a constant value in the horizontal position. The heat transfer coefficient curves at various inclinations with respect to the heated tube length pass around one point which is defined as limit length

  9. Why People with More Emotion Regulation Difficulties Made a More Deontological Judgment: The Role of Deontological Inclinations.

    Science.gov (United States)

    Zhang, Lisong; Li, Zhongquan; Wu, Xiaoyuan; Zhang, Ziyuan

    2017-01-01

    Previous studies have demonstrated the key role of emotion in moral judgment, and explored the relationship between emotion regulation and moral judgment. The present study investigated the influence of individual differences in emotion regulation difficulties on moral judgment. Study 1 examined whether individuals with high emotion regulation difficulties made a more deontological judgment. Study 2 explored the underlying mechanism using a process-dissociation approach, examining whether deontological inclinations and utilitarian inclinations separately or jointly accounted for the association. The results indicated that individuals with high emotion regulation difficulties rated the utilitarian actions less morally appropriate, and one's deontological inclinations mediated the association between emotion regulation difficulties and moral judgment.

  10. Combined free and forced laminar convection in inclined rectangular channels heated from below and cooled from above

    International Nuclear Information System (INIS)

    Akinsete, V.A.; Bello-Ochende, F.L.

    1981-01-01

    Steady-state numerical results for the solution to the non-linear thermal problem of combined free and forced laminar convection in inclined rectangular channels with constant but unequal surface temperature are presented for an incompressible, viscous fluid whose Prandtl number, Pr = 0.73. Fluid properties are assumed constant, except for density variations with temperature. Maximum values exist for the mean friction factor, Nusselt and Stanton numbers when the inclination to the horizontal lies between 30 0 and 60 0 for a given Archimedes number, Ar. Also, for any given inclination a unique solution exists when Ar = 0,50. (Author) [pt

  11. Influence of the nucleation surface inclination on heat transfers and on the growth dynamics of a steam bubble

    International Nuclear Information System (INIS)

    Barthes, M.; Reynard, Ch.; Santini, R.; Tadrist, L.

    2006-01-01

    The influence of the inclination of the nucleation surface on heat and mass transfers and on the growth dynamics of a single steam bubble is experimentally studied. The bubble is created beneath a wall with an imposed heating flux. The evolution of geometrical bubble parameters and of the frequency of emission with respect to the inclination angle are presented. The total heat flux measurements are compared to the evaporation fluxes determined by image processing. Contrary to the evaporation flux, the total flux is conditioned by the inclination and thus is correlated to the frequency of bubbles emission. (J.S.)

  12. A study of the rates of heat transfer and bubble site density for nucleate boiling on an inclined heating surface

    International Nuclear Information System (INIS)

    Bonamy, S.E.; Symons, J.G.

    1974-08-01

    Nucleate pool boiling of distilled water from an electrically heated surface at atmospheric pressure is studied for varying heating surface inclinations. The constants of the accepted boiling equation phi = K Tsup(B) and the Rohsenow Correlation Coefficient are found to be dependent on surface orientation. Convection cooling is observed to play a major role in pool boiling phenomena and causes large changes in the heat transfer rates for a given excess of temperature of the heated surface. Active nucleation site density is studied and found to be independent of surface inclination. Empirical relations are presented to provide an understanding of the effects of inclination on other boiling parameters. (author)

  13. Velocity and turbulence measurements of oil-water flow in horizontal and slightly inclined pipes using PIV

    OpenAIRE

    Kumara, W.A.S.; Halvorsen, Britt; Melaaen, Morten Christian

    2009-01-01

    Oil-water flows in horizontal and slightly inclined pipes are investigated using Particle Image Velocimetry (PIV). PIV offers a powerful non-invasive tool to study such flow fields. The experiments are conducted in a 15 m long, 56 mm diameter, inclinable steel pipe using Exxsol D60 oil (viscosity 1.64 mPa s, density 790 kg/m3) and water (viscosity 1.0 mPa s, density 996 kg/m3) as test fluids. The test pipe inclination is changed in the range from 5° upward to 5° downward. The experiments are ...

  14. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes

    International Nuclear Information System (INIS)

    Park, Hyungmin; Choi, Haecheon

    2012-01-01

    In the present study, we conduct an experiment using a one-paired dynamically scaled model of an insect wing, to investigate how asymmetric strokes with different wing kinematic parameters are used to control the aerodynamics of a dragonfly-like inclined flapping wing in still fluid. The kinematic parameters considered are the angles of attack during the mid-downstroke (α md ) and mid-upstroke (α mu ), and the duration (Δτ) and time of initiation (τ p ) of the pitching rotation. The present dragonfly-like inclined flapping wing has the aerodynamic mechanism of unsteady force generation similar to those of other insect wings in a horizontal stroke plane, but the detailed effect of the wing kinematics on the force control is different due to the asymmetric use of the angle of attack during the up- and downstrokes. For example, high α md and low α mu produces larger vertical force with less aerodynamic power, and low α md and high α mu is recommended for horizontal force (thrust) production. The pitching rotation also affects the aerodynamics of a flapping wing, but its dynamic rotational effect is much weaker than the effect from the kinematic change in the angle of attack caused by the pitching rotation. Thus, the influences of the duration and timing of pitching rotation for the present inclined flapping wing are found to be very different from those for a horizontal flapping wing. That is, for the inclined flapping motion, the advanced and delayed rotations produce smaller vertical forces than the symmetric one and the effect of pitching duration is very small. On the other hand, for a specific range of pitching rotation timing, delayed rotation requires less aerodynamic power than the symmetric rotation. As for the horizontal force, delayed rotation with low α md and high α mu is recommended for long-duration flight owing to its high efficiency, and advanced rotation should be employed for hovering flight for nearly zero horizontal force. The present

  15. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.

    Science.gov (United States)

    Park, Hyungmin; Choi, Haecheon

    2012-03-01

    In the present study, we conduct an experiment using a one-paired dynamically scaled model of an insect wing, to investigate how asymmetric strokes with different wing kinematic parameters are used to control the aerodynamics of a dragonfly-like inclined flapping wing in still fluid. The kinematic parameters considered are the angles of attack during the mid-downstroke (α(md)) and mid-upstroke (α(mu)), and the duration (Δτ) and time of initiation (τ(p)) of the pitching rotation. The present dragonfly-like inclined flapping wing has the aerodynamic mechanism of unsteady force generation similar to those of other insect wings in a horizontal stroke plane, but the detailed effect of the wing kinematics on the force control is different due to the asymmetric use of the angle of attack during the up- and downstrokes. For example, high α(md) and low α(mu) produces larger vertical force with less aerodynamic power, and low α(md) and high α(mu) is recommended for horizontal force (thrust) production. The pitching rotation also affects the aerodynamics of a flapping wing, but its dynamic rotational effect is much weaker than the effect from the kinematic change in the angle of attack caused by the pitching rotation. Thus, the influences of the duration and timing of pitching rotation for the present inclined flapping wing are found to be very different from those for a horizontal flapping wing. That is, for the inclined flapping motion, the advanced and delayed rotations produce smaller vertical forces than the symmetric one and the effect of pitching duration is very small. On the other hand, for a specific range of pitching rotation timing, delayed rotation requires less aerodynamic power than the symmetric rotation. As for the horizontal force, delayed rotation with low α(md) and high α(mu) is recommended for long-duration flight owing to its high efficiency, and advanced rotation should be employed for hovering flight for nearly zero horizontal force. The

  16. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  17. Comparison of the activity of the gluteus medius according to the angles of inclination of a treadmill with vertical load.

    Science.gov (United States)

    Jeong, Da-Eun; Lee, Su-Kyoung; Kim, Kyoung

    2014-02-01

    [Purpose] The purpose of this study was to compare the muscle activity of the gluteus medius according to treadmill inclination during gait with a vertical load on a treadmill. [Methods] Sixteen healthy subjects were recruited for this study. The subjects walked on a treadmill at inclination angles of 0, 5, and 10 degrees. [Results] Muscle activity of the gluteus medius increased at 5° compared to 0° treadmill inclination, though the difference was not significant. On the other hand, gluteus medius muscle activity significantly decreased in treadmill walking at an inclination of 10° compared to 5°. [Conclusion] Selective strengthening exercises using a 5° treadmill angle could be useful for patients experiencing gluteus medius weakness.

  18. Visualization of the impact of water drops on a hot surface: effect of drop velocity and surface inclination

    Energy Technology Data Exchange (ETDEWEB)

    Celata, Gian Piero; Mariani, Andrea; Zummo, Giuseppe [ENEA, Institute of Thermal-Fluid Dynamics, S. Maria di Galeria (Rome) (Italy); Cumo, Maurizio [Universita di Roma ' ' La Sapienza' ' , Rome (Italy)

    2006-08-15

    The behaviour of one drop impinging on a hot surface by varying the surface temperature, the drop velocity and the position of the surface (horizontal and a inclined 45 ) both at a temperature below and above the Leidenfrost temperature has been experimentally evaluated, estimating the temperature at which the drop rebounds. A large influence on the drop velocity has been evidenced. The inclination of the surface decreases the critical value of the temperature above which the surface is not rewetted. (orig.)

  19. The Effects of Boundary Conditions and Friction on the Helical Buckling of Coiled Tubing in an Inclined Wellbore.

    Science.gov (United States)

    Gong, Yinchun; Ai, Zhijiu; Sun, Xu; Fu, Biwei

    2016-01-01

    Analytical buckling models are important for down-hole operations to ensure the structural integrity of the drill string. A literature survey shows that most published analytical buckling models do not address the effects of inclination angle, boundary conditions or friction. The objective of this paper is to study the effects of boundary conditions, friction and angular inclination on the helical buckling of coiled tubing in an inclined wellbore. In this paper, a new theoretical model is established to describe the buckling behavior of coiled tubing. The buckling equations are derived by applying the principles of virtual work and minimum potential energy. The proper solution for the post-buckling configuration is determined based on geometric and natural boundary conditions. The effects of angular inclination and boundary conditions on the helical buckling of coiled tubing are considered. Many significant conclusions are obtained from this study. When the dimensionless length of the coiled tubing is greater than 40, the effects of the boundary conditions can be ignored. The critical load required for helical buckling increases as the angle of inclination and the friction coefficient increase. The post-buckling behavior of coiled tubing in different configurations and for different axial loads is determined using the proposed analytical method. Practical examples are provided that illustrate the influence of the angular inclination on the axial force. The rate of change of the axial force decreases with increasing angular inclination. Moreover, the total axial friction also decreases with an increasing inclination angle. These results will help researchers to better understand helical buckling in coiled tubing. Using this knowledge, measures can be taken to prevent buckling in coiled tubing during down-hole operations.

  20. The Effects of Boundary Conditions and Friction on the Helical Buckling of Coiled Tubing in an Inclined Wellbore.

    Directory of Open Access Journals (Sweden)

    Yinchun Gong

    Full Text Available Analytical buckling models are important for down-hole operations to ensure the structural integrity of the drill string. A literature survey shows that most published analytical buckling models do not address the effects of inclination angle, boundary conditions or friction. The objective of this paper is to study the effects of boundary conditions, friction and angular inclination on the helical buckling of coiled tubing in an inclined wellbore. In this paper, a new theoretical model is established to describe the buckling behavior of coiled tubing. The buckling equations are derived by applying the principles of virtual work and minimum potential energy. The proper solution for the post-buckling configuration is determined based on geometric and natural boundary conditions. The effects of angular inclination and boundary conditions on the helical buckling of coiled tubing are considered. Many significant conclusions are obtained from this study. When the dimensionless length of the coiled tubing is greater than 40, the effects of the boundary conditions can be ignored. The critical load required for helical buckling increases as the angle of inclination and the friction coefficient increase. The post-buckling behavior of coiled tubing in different configurations and for different axial loads is determined using the proposed analytical method. Practical examples are provided that illustrate the influence of the angular inclination on the axial force. The rate of change of the axial force decreases with increasing angular inclination. Moreover, the total axial friction also decreases with an increasing inclination angle. These results will help researchers to better understand helical buckling in coiled tubing. Using this knowledge, measures can be taken to prevent buckling in coiled tubing during down-hole operations.

  1. Correlation between cuspal inclination and tooth cracked syndrome: a three-dimensional reconstruction measurement and finite element analysis.

    Science.gov (United States)

    Qian, Yunzhu; Zhou, Xuefeng; Yang, Jianxin

    2013-06-01

    This paper explored the correlation between cuspal inclination and tooth cracked syndrome by measuring and reconstructing the cuspal inclinations of cracked maxillary first molars through three-dimensional (3D) finite element analysis (FEA). The cuspal inclinations of 11 maxillary left first molars with cracked tooth syndrome and 22 intact controls were measured by 3D reconstruction. The mean values of each group were used to construct two 3D finite element models of maxillary first molar for comparing stress distribution under the loads of 200N at 0°, 45°, and 90°, respectively, to the tooth axis. There was statistically significant difference in the cuspal inclination between the incompletely fractured group and the intact control group ( P  < 0.001), which was 5.5-6.7 degrees steeper. The model from the mean cuspal inclinations of the incompletely fractured molars showed the maximum tensile stress of 5.83, 10.87, and 25.32 MPa, respectively, in comparison with 5.40, 8.49, and 22.76 MPa for the model of the control group. Besides, the tensile stress was mainly at the center groove and cervical region of the molar model. Steeper cuspal inclinations resulted in an increment in tensile stress that was mainly at the center groove and cervical region of the molar model under equivalent loads. Higher unfavorable tensile stress was generated with the increasing horizontal component load on the cuspal incline. This indicates an effective reduction of cuspal inclination to the compromised teeth for dentists. © 2012 John Wiley & Sons A/S.

  2. ANISOTROPY-BASED INCLINATION CORRECTION FOR THE MOENAVE FORMATION AND WINGATE SANDSTONE: IMPLICATIONS FOR COLORADO PLATEAU ROTATION

    Directory of Open Access Journals (Sweden)

    Andrea eMcCall

    2014-07-01

    Full Text Available The ~ 201 Ma paleopole for North America at the Triassic-Jurassic boundary is observed in two widely different locations; one paleopole is determined from the Mesozoic rift basins in eastern North America and the other from the Colorado Plateau in the southwestern United States. A large discrepancy in paleopole positions from these two localities has been attributed to large amounts of clockwise vertical axis rotation of the Colorado Plateau (>10º combined with inclination shallowing of the paleomagnetism. The sedimentary inclinations of the eastern North American basins have been corrected for shallowing, but the Colorado Plateau inclinations have not. Simple vertical axis rotation of the Colorado Plateau is not enough to bring the two paleopoles into agreement. This study of the Moenave and Wingate Formations was conducted to correct Colorado Plateau inclinations using their high field isothermal remanent anisotropy. The Moenave Formation and laterally equivalent Wingate Sandstone, which span the Triassic-Jurassic boundary, were sampled in southern Utah and northern Arizona. Thermal demagnetization isolated a characteristic remanence carried by hematite from 20 sites. High field (5 T isothermal remanent anisotropy indicated shallowing of the characteristic remanence with an average flattening factor of f=0.69. An inclination-corrected paleopole for the Moenave and Wingate Formations is located at 62.5˚N 69.9˚E (α95=5.5˚ and is shifted northward by 2.9˚ with respect to the uncorrected paleopole. When the inclination corrected paleopole is rotated counterclockwise 9.7º about an Euler pole local to the Colorado Plateau, it is statistically indistinguishable from the inclination-corrected paleopole from the eastern North American rift basins. Rotation of the uncorrected paleopole does not bring it into statistical agreement with rift basin paleopole, therefore an inclination shallowing correction is necessary to support rotation of the

  3. Sentential Negation in English

    Science.gov (United States)

    Mowarin, Macaulay

    2009-01-01

    This paper undertakes a detailed analysis of sentential negation in the English language with Chomsky's Government-Binding theory of Transformational Grammar as theoretical model. It distinguishes between constituent and sentential negation in English. The essay identifies the exact position of Negation phrase in an English clause structure. It…

  4. Strong WW Interaction at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, Jose R

    1998-12-14

    We present a brief pedagogical introduction to the Effective Electroweak Chiral Lagrangians, which provide a model independent description of the WW interactions in the strong regime. When it is complemented with some unitarization or a dispersive approach, this formalism allows the study of the general strong scenario expected at the LHC, including resonances.

  5. Cross-Lagged Associations Between Adolescents' Depressive Symptoms and Negative Cognitive Style: The Role of Negative Life Event

    NARCIS (Netherlands)

    Kindt, K.C.M.; Kleinjan, M.; Janssens, J.M.A.M.; Scholte, R.H.J.

    2015-01-01

    Previous research has established that cognitive theory-based depression prevention programs aiming change in negative cognitive style in early adolescents do not have strong effects in universal settings. Although theories suggest that a negative cognitive style precedes depressive symptoms,

  6. Studi Numerik Pengaruh Baffle Inclination Pada Alat Penukar Kalor Tipe U – Tube Terhadap Aliran Fluida Dan Perpindahan Panas

    Directory of Open Access Journals (Sweden)

    Reza Hidayatullah

    2014-09-01

    Full Text Available Alat penukar kalor sangat berpengaruh dalam industri terhadap keberhasilan keseluruhan rangkaian proses, karena kegagalan operasi alat ini baik akibat kegagalan mekanikal maupun opersional dapat menyebabkan berhentinya operasi unit. Penelitian terhadap desain heat exchanger masih terus dilakukan untuk mencari kinerja dari heat exchanger yang paling optimal, baik pada bagian baffle cut dan baffles inclination maupun susunan dari tube dengan menggunakan heat exchanger ukuran kecil sebagai model. Berdasarkan pada permasalahan di atas, maka dilakukan penelitian terhadap kinerja heat exchanger tipe U-tube dengan memvariasikan baffle inclination. Penelitian ini dilakukan secara numerik dengan variasi baffle inclination sebesar 0o, 10o, 20o dan variasi laju aliran massa sebesar 0,5 kg/s, 1kg/s, dan 2 kg/s. Tube yang digunakan adalah tipe U-tube yang disusun secara persegi. Model viskous yang digunakan adalah turbulensi model yaitu k-ε standar, dimana fluida yang digunakan adalah air pada boundary condition. Hasil analisa numerik menunjukkan adanya pengaruh baffle inclination pada alat penukar kalor tipe U – tube terhadap aliran fluida dan perpindahan panas. Peningkatan laju aliran massa dapat meningkatkan pressure drop secara cepat, alat penukar kalor shell and tube tipe U – tube dengan baffle inclination 20o memiliki unjuk kerja yang terbaik dibandingkan dengan baffle inclination 0o dan 10o.

  7. Influence of angle of inclination on power of solar module; Taiyo denchi module no keisha kakudo to shutsuryoku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, K.; Nishitani, M. [Dai Ichi University, College of Technology, Kagoshima (Japan)

    1997-11-25

    Experiment/study were conducted on the influence of angle of inclination on output of solar modules. In the experiment, changing the angle of inclination of the photovoltaic module installed on the top of school building to 0, 30, 60 and 90 degC, the global radiation on an inclined surface was measured by pyranometer equipped with the module, and at the same time output characteristics were measured by I-V curve tracer. In the I-V curve tracer, voltage, current, and output capability diagram are illustrated automatically changing bias voltage to get the maximum output. The global radiation on an inclined surface and the maximum output indicated an almost proportional relation and were expressed in a recursion method. Moreover, measurement of the global radiation is usually conducted using the amount of global radiation on a horizontal surface, and the global radiation on an inclined surface is calculated as a sum of the direct solar radiation amount and the sky solar radiation amount after determining a penetration rate by the relational equation. By calculating the global radiation on an inclined surface, it becomes possible to calculate the maximum output of photovoltaic modules by this recursion method. 1 ref., 6 figs., 1 tab.

  8. Strong-back safety latch

    International Nuclear Information System (INIS)

    DeSantis, G.N.

    1995-01-01

    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch

  9. Strong-back safety latch

    Energy Technology Data Exchange (ETDEWEB)

    DeSantis, G.N.

    1995-03-06

    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch.

  10. She Bought the Unicorn from the Pet Store: Six- to Seven-Year-Olds Are Strongly Inclined to Generate Natural Explanations

    Science.gov (United States)

    Nancekivell, Shaylene E.; Friedman, Ori

    2017-01-01

    In two experiments (N = 64), we told 6- to 7-year-olds about improbable or impossible outcomes (Experiment 1) and about impossible outcomes concerning ordinary or magical agents (Experiment 2). In both experiments, children claimed that the outcomes were impossible and could not happen, but nonetheless generated realistic and natural explanations…

  11. Negative ion sources

    International Nuclear Information System (INIS)

    Ishikawa, Junzo; Takagi, Toshinori

    1983-01-01

    Negative ion sources have been originally developed at the request of tandem electrostatic accelerators, and hundreds of nA to several μA negative ion current has been obtained so far for various elements. Recently, the development of large current hydrogen negative ion sources has been demanded from the standpoint of the heating by neutral particle beam injection in nuclear fusion reactors. On the other hand, the physical properties of negative ions are interesting in the thin film formation using ions. Anyway, it is the present status that the mechanism of negative ion action has not been so fully investigated as positive ions because the history of negative ion sources is short. In this report, the many mechanisms about the generation of negative ions proposed so far are described about negative ion generating mechanism, negative ion source plasma, and negative ion generation on metal surfaces. As a result, negative ion sources are roughly divided into two schemes, plasma extraction and secondary ion extraction, and the former is further classified into the PIG ion source and its variation and Duoplasmatron and its variation; while the latter into reflecting and sputtering types. In the second half of the report, the practical negative ion sources of each scheme are described. If the mechanism of negative ion generation will be investigated more in detail and the development will be continued under the unified know-how as negative ion sources in future, the development of negative ion sources with which large current can be obtained for any element is expected. (Wakatsuki, Y.)

  12. Strong Interactions Physics at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Pioppi, M.

    2005-03-14

    Recent results obtained by BABAR experiment and related to strong interactions physics are presented, with particular attention to the extraction of the first four hadronic-mass moments and the first three lepton-energy moments in semileptonic decays. From a simultaneous fit to the moments, the CKM element |V{sub cb}|, the inclusive B {yields} X{sub c}lv and other heavy quark parameters are derived. The second topic is the ambiguity-free measurement of cos(2{beta}) in B {yields} J/{Psi}K* decays. With approximately 88 million of B{bar B} pairs, negative solutions for cos(2{beta}) are excluded at 89%.

  13. Polemic and Descriptive Negations

    DEFF Research Database (Denmark)

    Horslund, Camilla Søballe

    2011-01-01

    as such may be more or less central to the meaning of the utterance. The present paper investigates the role of morphosyntactic and prosodic prominence as well as register and social setting on the interpretation of negations. It seems plausible to expect that if the negation as such is central to the meaning...... of the utterance (as in polemic negations), the negation will be articulated prominently in order to emphasise this importance. Likewise, if the negation is not central to the meaning of the utterance, it should not be articulated prominently. Moreover, it is plausible to expect descriptive negations to be more...... common in certain social context or genres, while polemic negations are more likely to come up in other genres and social settings. Previous studies have shown a relation between articulatory prominence and register, which may further inform the analysis. Hence, the paper investigates how articulatory...

  14. Continuous inclination record of the geomagnetic field from a Brazilian stalagmite

    Science.gov (United States)

    Jaqueto, P.; Trindade, R. I.; Hartmann, G. A.; Feinberg, J. M.; Novello, V. F.; Cruz, F. W.

    2013-12-01

    It is known that South America contributes with less than ~3% of the global database and some of these data (obtained decades ago) do not obey minimum quality criteria, such as standard deviations and age controls. In this sense, continuous full-vector records (direction and intensity) provide important high-resolution data on the spatial and temporal behavior of Earth's magnetic field of utmost importance to describe the evolution of major field features, such as the South Atlantic Magnetic Anomaly (SAMA). Here, we present results of magnetic inclination determined from a stalagmite collected in Pau d'Alho cave located at 14.8° S, 56.4° W (Mato Grosso, Brazil), where no previous geomagnetic record was available. The sample is a 23-cm-long stalagmite which grew continuously during most of the last 1400 years. The chronology based on high-quality U-Th dating ranges from 500 AD to 1900 AD and reveals a nearly constant growth rate of ~150 μm/yr. Remanence measurements of the stalagmite were performed continuously using a SQUID magnetometer with a spatial resolution of 0.5 cm. Magnetic values for each measured point were deconvolved using the singular value decomposition (SVD) method. Hysteresis and low-temperature magnetization analyses indicate a very homogeneous magnetic mineralogy with the presence of tiny concentrations of pure magnetite in the SD-PSD state. After stepwise alternating field demagnetization, inclination data show maximum angular deviation (MAD) for most samples below 5° (with anomalous MAD of up to 15° for the 1660 AD to 1690 AD period). In general, our magnetic inclination data are consistent with those predicted by geomagnetic field models, and will provide a firm observational anchor for future modeling efforts. In this way, continuous magnetic measurements on speleothems can provide important, high-quality information about the short term behavior of the geomagnetic field.

  15. MHD natural convection in open inclined square cavity with a heated circular cylinder

    Science.gov (United States)

    Hosain, Sheikh Anwar; Alim, M. A.; Saha, Satrajit Kumar

    2017-06-01

    MHD natural convection in open cavity becomes very important in many scientific and engineering problems, because of it's application in the design of electronic devices, solar thermal receivers, uncovered flat plate solar collectors having rows of vertical strips, geothermal reservoirs, etc. Several experiments and numerical investigations have been presented for describing the phenomenon of natural convection in open cavity for two decades. MHD natural convection and fluid flow in a two-dimensional open inclined square cavity with a heated circular cylinder was considered. The opposite wall to the opening side of the cavity was first kept to constant heat flux q, at the same time the surrounding fluid interacting with the aperture was maintained to an ambient temperature T∞. The top and bottom wall was kept to low and high temperature respectively. The fluid with different Prandtl numbers. The properties of the fluid are assumed to be constant. As a result a buoyancy force is created inside the cavity due to temperature difference and natural convection is formed inside the cavity. The Computational Fluid Dynamics (CFD) code are used to discretize the solution domain and represent the numerical result to graphical form.. Triangular meshes are used to obtain the solution of the problem. The streamlines and isotherms are produced, heat transfer parameter Nu are obtained. The results are presented in graphical as well as tabular form. The results show that heat flux decreases for increasing inclination of the cavity and the heat flux is a increasing function of Prandtl number Pr and decreasing function of Hartmann number Ha. It is observed that fluid moves counterclockwise around the cylinder in the cavity. Various recirculations are formed around the cylinder. The almost all isotherm lines are concentrated at the right lower corner of the cavity. The object of this work is to develop a Mathematical model regarding the effect of MHD natural convection flow around

  16. Iron-mineral-based magnetoreceptor in birds: polarity or inclination compass?

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Greiner, Walter

    2009-01-01

    In the present paper we demonstrate that the iron-mineral-based magnetoreceptor model can provide birds with a magnetic compass in addition to the generally believed "magnetic map". We show that the iron-mineral-based magnetoreceptor system possesses all properties of a polarity compass, which...... is extremely important for avian navigation. We study how parameters of the magnetoreceptor system influence on the properties of the compass and show that at certain conditions it acquires features of an inclination compass. In the present paper we address the question of avian magnetoreception theoretically...

  17. Exponentially varying viscosity of magnetohydrodynamic mixed convection Eyring-Powell nanofluid flow over an inclined surface

    Science.gov (United States)

    Khan, Imad; Fatima, Sumreen; Malik, M. Y.; Salahuddin, T.

    2018-03-01

    This paper explores the theoretical study of the steady incompressible two dimensional MHD boundary layer flow of Eyring-Powell nanofluid over an inclined surface. The fluid is considered to be electrically conducting and the viscosity of the fluid is assumed to be varying exponentially. The governing partial differential equations (PDE's) are reduced into ordinary differential equations (ODE's) by applying similarity approach. The resulting ordinary differential equations are solved successfully by using Homotopy analysis method. The impact of pertinent parameters on velocity, concentration and temperature profiles are examined through graphs and tables. Also coefficient of skin friction, Sherwood and Nusselt numbers are illustrated in tabular and graphical form.

  18. Testing corrections for paleomagnetic inclination error in sedimentary rocks: A comparative approach

    Science.gov (United States)

    Tauxe, Lisa; Kodama, Kenneth P.; Kent, Dennis V.

    2008-08-01

    Paleomagnetic inclinations in sedimentary formations are frequently suspected of being too shallow. Recognition and correction of shallow bias is therefore critical for paleogeographical reconstructions. This paper tests the reliability of the elongation/inclination ( E/ I) correction method in several ways. First we consider the E/ I trends predicted by various PSV models. We explored the role of sample size on the reliability of the E/ I estimates and found that for data sets smaller than ˜100-150, the results were less reliable. The Giant Gaussian Process-type paleosecular variation models were all constrained by paleomagnetic data from lava flows of the last five million years. Therefore, to test whether the method can be used in more ancient times, we compare model predictions of E/ I trends with observations from five Large Igneous Provinces since the early Cretaceous (Yemen, Kerguelen, Faroe Islands, Deccan and Paraná basalts). All data are consistent at the 95% level of confidence with the E/ I trends predicted by the paleosecular variation models. The Paraná data set also illustrated the effect of unrecognized tilting and combining data over a large latitudinal spread on the E/ I estimates underscoring the necessity of adhering to the two principle assumptions of the method. Then we discuss the geological implications of various applications of the E/ I method. In general the E/ I corrected data are more consistent with data from contemporaneous lavas, with predictions from the well constrained synthetic apparent polar wander paths, and other geological constraints. Finally, we compare the E/ I corrections with corrections from an entirely different method of inclination correction: the anisotropy of remanence method of Jackson et al. [Jackson, M.J., Banerjee, S.K., Marvin, J.A., Lu, R., Gruber, W., 1991. Detrital remanence, inclination errors and anhysteretic remanence anisotropy: quantitative model and experimental results. Geophys. J. Int. 104, 95

  19. Simulation of the effect of incline incident angle in DMD Maskless Lithography

    Science.gov (United States)

    Liang, L. W.; Zhou, J. Y.; Xiang, L. L.; Wang, B.; Wen, K. H.; Lei, L.

    2017-06-01

    The aim of this study is to provide a simulation method for investigation of the intensity fluctuation caused by the inclined incident angle in DMD (digital micromirror device) maskless lithography. The simulation consists of eight main processes involving the simplification of the DMD aperture function and light propagation utilizing the non-parallel angular spectrum method. These processes provide a possibility of co-simulation in the spatial frequency domain, which combines the microlens array and DMD in the maskless lithography system. The simulation provided the spot shape and illumination distribution. These two parameters are crucial in determining the exposure dose in the existing maskless lithography system.

  20. On the unsteady flow of two visco-elastic fluids between two inclined porous plates

    Directory of Open Access Journals (Sweden)

    P. R. Sengupta

    1992-01-01

    Full Text Available This study is concerned with both hydrodynamic and hydromagnetic unsteady slow flows of two immiscible visco-elastic fluids of Rivlin-Ericksen type between two porous parallel nonconducting plates inclined at a certain angle to the horizontal. The exact solutions for the velocity fields, skin frictions, and the interface velocity distributions are found for both fluid models. Numerical results are presented in graphs. A comparison is made between the hydrodynamic and hydromagnetic velocity profiles. It is shown that the velocity is diminished due to the presence of a transverse magnetic field.

  1. Possible inclinations for psychostimulant, toxic agent and drug abuse among youths and students

    Directory of Open Access Journals (Sweden)

    V. G. Ginzburg

    2012-03-01

    Full Text Available Taking into account modern achievements in medicine, psychology and sociology, the attempt at complex research of possible inclinations for psychostimulant, toxic agent and drug abuse among youths and students was made with the subsequent determination of the possible alternates of primary prevention. It is analysed the basic and additional risk factors promoting smoking, drinking, psychostimulant abuse, toxicomania and narcomania among young people. The dynamics of possible influences of medical, psychological and social factors is studied. The attempt of short-term prognostication and ranking was made.

  2. GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. II. INCLINED DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2013-07-20

    We examine the observational appearance of partial gaps being opened by planets in protoplanetary disks, considering the effects of the inclination relative to the line of sight. We model the disks with static {alpha}-models with detailed radiative transfer, parameterizing the shape and size of the partially cleared gaps based on the results of hydrodynamic simulations. As in previous work, starlight falling across the gap leads to high surface brightness contrasts. The gap's trough is darkened by both shadowing and cooling, relative to the uninterrupted disk. The gap's outer wall is brightened by direct illumination and also by heating, which puffs it up so that it intercepts more starlight. In this paper, we examine the effects of inclination on resolved images of disks with and without gaps at a wide range of wavelengths. The scattering surface's offset from the disk midplane creates a brightness asymmetry along the axis of inclination, making the disk's near side appear brighter than the far side in scattered light. Finite disk thickness also causes the projected distances of equidistant points on the disk surface to be smaller on the near side of the disk as compared to the far side. Consequently, the gap shoulder on the near side of the disk should appear brighter and closer to the star than on the far side. However, if the angular resolution of the observation is coarser than the width of the brightened gap shoulder, then the gap shoulder on the far side may appear brighter because of its larger apparent size. We present a formula to recover the scale height and inclination angle of an imaged disk using simple geometric arguments and measuring disk asymmetries. Resolved images of circumstellar disks have revealed clearings and gaps, such as the transitional disk in LkCa 15. Models created using our synthetic imaging attempting to match the morphology of observed scattered light images of LkCa 15 indicate that the H-band flux deficit in

  3. Particle acceleration in relativistic magnetized collisionless pair shocks: a survey of magnetic inclination angles

    Science.gov (United States)

    Sironi, Lorenzo

    We investigate particle acceleration in relativistic magnetized collisionless pair shocks with two-dimensional particle-in-cell numerical simulations. For fixed upstream bulk Lorentz factor γ0 = 15 and magnetic to kinetic energy fraction σ = 0.1, we explore a range of inclination angles θ between the magnetic field and the shock normal. The inclination is measured in the downstream rest frame and the magnetic field lies in a plane perpendicular to the simulation plane. The downstream energy spectrum for subluminal shocks consists of a relativistic Maxwellian and a high-energy power-law tail modified by an exponential cutoff. For parallel shocks (θ = 0° ), the tail accounts for ˜ 1% of the downstream particle number and ˜ 5% of the energy, and its energy spectral index is -2.7 ± 0.1. Accelerated particles bounce between the upstream and the downstream, and the upstream scattering is provided by oblique filaments, which have both an electromagnetic and an electrostatic component. Such filaments propagate towards the shock and are generated by the accelerated particles that escape upstream. For larger inclination angles the acceleration efficiency increases, and particles are efficiently boosted by the motional upstream electric field when gyrating across the shock. Close to the superluminality threshold θ ≈ 30° , the number and energy fractions of downstream accelerated particles are ˜ 3% and ˜ 12% respectively; the spectral index of the corresponding power-law tail is -2.4 ± 0.1. When the shock becomes superluminal (θ 30° ), the acceleration efficiency abruptly drops. Our results show that the range of upstream-frame inclination angles suitable for efficient acceleration in relativistic magnetized pair shocks is indeed very small 30° /γ0 , as suggested by previous Monte-Carlo simulations. Self-generated shock turbulence is shown to be not large enough to overcome the kinematic constraints for superluminal shocks. These findings place constraints

  4. Assessment of slip resistance under footwear materials, tread designs, floor contamination, and floor inclination conditions.

    Science.gov (United States)

    Li, Kai Way; Chen, Chih-Yong; Chen, Ching Chung; Liu, Liwen

    2012-01-01

    Slip and fall incidences are common in our daily lives. They are not only important environmental safety issues but also important occupational safety and health problems. The purpose of this study was to use the Brungraber Mark II to measure the friction so as to investigate the effects of the shoe sole, surface condition and the inclined angle of the floor and their interactions on friction coefficient. The results of the study showed the effects of all the main factors and their interactions were significant (p<0.001). Engineering designs & ergonomic interventions in slip & fall prevention should take these factors in full consideration.

  5. Pemakaian Inclined Bite Plane untuk Koreksi Gigitan Terbalik Interior pada Anak

    Directory of Open Access Journals (Sweden)

    Debrania Santoso

    2012-12-01

    Full Text Available Latar Belakang. Anak dengan gigitan terbalik pada anterior pada umumnya mempunyai keluhan dalam hal estetik dan fungsi pengunyahan. Kondisi gigitan terbalik biasanya disebabkan oleh adanya kebiasaan buruk dan faktor keturunan yang semakin memperparah keadaan tersebut. Pada kasus ini ditampilkan dua anak dengan gigitan terbalik anterior yang disebabkan oleh adanya kebiasaan buruk bertopang dagu dan mendorong lidah ke gigi anterior bawah. Perawatan menggunakan inclined bite plane dapat mengkoreksi gigitan terbalik anterior. Tujuan. Laporan kasus ini adalah untuk melaporkan bahwa pemakaian alat inlined bite plane dapat mengkoreksi gigitan terbalik anterior pada anak. Kasus. Dua orang anak perempuan dengan kasus gigitan terbalik anterior dilakukan pemeriksaan di poli gigi anak RSGM. Dari anamnesa diketahui bahwa anak pertama memiliki kebiasaan buruk bertopang dagu dan anak kedua mendorong lidah ke gigi anterior bawah. Perawatan yang dipilih adalah menggunakan alat inlined bite plane yang harus digunakan setiap hari saat tidur kecuali waktu makan dan menggosok gigi. Perawatan lanjutan pasien pertama tetap menggunakan alat removable dan pasien kedua dengan fixed orthodonti. Kesimpulan. Pasien pertama setelah 7 minggu gigitan terbalik anterior terkoreksi dan kebiasaan buruk dapat dihentikan. Pada pasien kedua gigitan terbalik anterior terkoreksi setelah 5 minggu. Hubungan oklusi pada pasien kedua lebih baik dibandingkan pasien pertama.   Background. Children with anterior crossbite generally complaint about aesthetic and masticatory function. Anterior crossbite is usually caused by bad habits and hereditary factors that exacerbated this situation. In this case was displayed two children with anterior crossbite caused by a bad habit pushing the chin with one hand and pushing the tongue to the lower anterior teeth. Treatment approach using inclined bite plane correct the anterior crossbite. Purpose. The purpose of this case report is to report the use

  6. Titanium: light, strong, and white

    Science.gov (United States)

    Woodruff, Laurel; Bedinger, George

    2013-01-01

    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  7. Mixed convection in a nanofluid filled-cavity with partial slip subjected to constant heat flux and inclined magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ismael, Muneer A. [Mechanical Engineering Department, Engineering College, University of Basrah, Basrah (Iraq); Mansour, M.A. [Department of Mathematics, Assuit University, Faculty of Science, Assuit (Egypt); Chamkha, Ali J. [Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al-Khobar 31952 (Saudi Arabia); Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952 (Saudi Arabia); Rashad, A.M., E-mail: am_rashad@yahoo.com [Department of Mathematics, Aswan University, Faculty of Science, Aswan 81528 (Egypt)

    2016-10-15

    Mixed convection in a lid-driven square cavity filled with Cu-water nanofluid and subjected to inclined magnetic field is investigated in this paper. Partial slip effect is considered along the lid driven horizontal walls. A constant heat flux source on the left wall is considered, meanwhile the right vertical wall is cooled isothermally. The remainder cavity walls are thermally insulted. A control finite volume method is used as a numerical appliance of the governing equations. Six pertinent parameters were studied these; the orientation of the magnetic field (Φ=0–360°), Richardson number (Ri=0.001–1000), Hartman number (Ha=0–100), the size and position of the heat source (B=0.2–0.8, D=0.3–0.7, respectively), nanoparticles volume fraction (ϕ=0.0–0.1), and the lid-direction of the horizontal walls (λ=±1) where the positive sign means lid-driven to the right while the negative sign means lid-driven to the left. The results show that the orientation and the strength of the magnetic field can play a significant role in controlling the convection under the effect of partial slip. It is also found that the natural convection decreases with increasing the length of the heat source for all ranges of the studied parameters, while it is do so due to the vertical distance up to Hartman number of 50, beyond this value the natural convection decreases with lifting the heat source narrower to the top wall. - Highlights: • Partial slip along moving walls of MHD cavity filled with nanofluid is considered. • The suppression exerted by the magnetic field decreases with its orientation. • Nusselt number is enhanced slightly with nanoparticles at shortest heat source. • Nusselt number is enhanced with nanoparticles at stronger magnetic field.

  8. Molar heights and incisor inclinations in adults with Class II and Class III skeletal open-bite malocclusions.

    Science.gov (United States)

    Arriola-Guillén, Luis Ernesto; Flores-Mir, Carlos

    2014-03-01

    The aim of this research was to compare maxillary and mandibular molar heights and incisor inclinations in patients with skeletal open-bite Class II, patients with skeletal open-bite Class III, and an untreated control group. Pretreatment lateral cephalograms of 70 orthodontic patients (34 men, 36 women) between 16 and 40 years of age were examined. The sample was divided into 3 groups according to facial growth pattern and overbite. The control group (n = 25) included normodivergent Class I subjects with adequate overbite; the skeletal open-bite Class II group (n = 25) and the skeletal open-bite Class III group (n = 20) included hyperdivergent Class II or Class III subjects with negative overbite. Measurements considered were ANB angle, palatal and mandibular plane angles, maxillary incisor palatal plane angulation, and mandibular incisor mandibular plane angulation, as well as the distance from the palatal or the mandibular plane to the mesial cusp of the molars. Multivariate analysis of covariance and multivariate analysis of variance tests were used to determine the differences between the groups, followed by the Tukey post-hoc test. Additionally, the Mann-Whitney U test and Kruskall-Wallis test were performed. Significant differences in molar height were found (P open-bite and control groups was found. Mandibular molar height was greater in the skeletal open-bite Class II group (P open-bite Class III group by approximately 6°. Mandibular incisor to mandibular plane angulation was 10° more lingual in the skeletal open-bite Class III group (P open-bite groups had greater molar heights than did the control group. The skeletal open-bite Class II group had more eruption of the mandibular molars. The maxillary incisors were more proclined and the mandibular incisors were more lingual in the skeletal open-bite Class III group. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  9. How do ants make sense of gravity? A Boltzmann Walker analysis of Lasius niger trajectories on various inclines.

    Directory of Open Access Journals (Sweden)

    Anaïs Khuong

    Full Text Available The goal of this study is to describe accurately how the directional information given by support inclinations affects the ant Lasius niger motion in terms of a behavioral decision. To this end, we have tracked the spontaneous motion of 345 ants walking on a 0.5×0.5 m plane canvas, which was tilted with 5 various inclinations by [Formula: see text] rad ([Formula: see text] data points. At the population scale, support inclination favors dispersal along uphill and downhill directions. An ant's decision making process is modeled using a version of the Boltzmann Walker model, which describes an ant's random walk as a series of straight segments separated by reorientation events, and was extended to take directional influence into account. From the data segmented accordingly ([Formula: see text] segments, this extension allows us to test separately how average speed, segments lengths and reorientation decisions are affected by support inclination and current walking direction of the ant. We found that support inclination had a major effect on average speed, which appeared approximately three times slower on the [Formula: see text] incline. However, we found no effect of the walking direction on speed. Contrastingly, we found that ants tend to walk longer in the same direction when they move uphill or downhill, and also that they preferentially adopt new uphill or downhill headings at turning points. We conclude that ants continuously adapt their decision making about where to go, and how long to persist in the same direction, depending on how they are aligned with the line of maximum declivity gradient. Hence, their behavioral decision process appears to combine klinokinesis with geomenotaxis. The extended Boltzmann Walker model parameterized by these effects gives a fair account of the directional dispersal of ants on inclines.

  10. Designing of the bord and pillar mining method to extract gently inclined seams of the Do Gye Coal Mine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Shik; Lee, Kyung-Woon; Kim, Oak-Hwan; Kim, Dae-Kyung [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The reducing coal market has been enforcing the coal industry to make exceptional rationalization and restructuring efforts since the end of the eighties. To the competition from crude oil and natural gas has been added the growing pressure from rising wages and rising production cost as the workings get deeper. To improve the competitive position of the remaining 11 coal mines after the rationalization of the industry, studies to improve mining system have been carried out. The Jung Ang pit of the Do Gye Coal Mine has a gently inclined coal seam with an average dip of 15deg. and thickness of 2m ranging from 0.3m to 4m. And it is relatively strong with a compressive strength of upto 200kg/cm{sup 2}. The seam continues only 30m at average to geological limits. The fundamental concept of the present mining method is that the coal seam is divided into a regular pillar by driving headings on centers of 9m through it. Later the pillars are extracted by cutting rib coal upto 1-2m deep by blasting, leaving 2-3m wide centre parts as safety pillars. This method shows low productivity and recovery. To introduce a new suitable mining method, an investigation on the bord and pillar method was carried out. Taking into account the seam`s dip, thickness and strength, and working depth the Wongawilli system of the bord and pillar method seems to be suitable for the seam. A hand worked modified Wongawilli system was designed and will be implemented at the site. Cost reduction through improvement of productivity and recovery are expected. (author). 14 tabs., 39 figs.

  11. Estimate of the magnetic anisotropy effect on the archaeomagnetic inclination of ancient bricks

    Science.gov (United States)

    Tema, Evdokia

    2009-10-01

    The magnetic fabric of 59 bricks coming from 5 ancient kilns has been studied by measuring the anisotropy of magnetic susceptibility (AMS) and the anisotropy of isothermal (AIRM), anhysteretic (AARM) and thermal (ATRM) remanent magnetization. The bricks are characterized by a well developed magnetic fabric that matches their flat shape. The shape of the anisotropy ellipsoids is in almost all cases oblate with the maximum and intermediate axes lying parallel to the large face of the brick and the minimum axis perpendicular to it. The directions of the principal axes are almost the same irrespectively of the type of anisotropy measured, whereas the degree of anisotropy of the AIRM, AARM and ATRM is much higher than the AMS. As the bricks lie horizontally within the kiln, the planar magnetic fabric results in an inclination shallowing of the archaeomagnetic direction with respect to that of the Earth's magnetic field at the time of their last cooling. Estimation of this effect on the grounds of ATRM measurements yields a shallowing that varies from 4° to 10° for individual samples. Such inclination difference may significantly bias archeomagnetic dating; for the case of the Canosa late-Roman kiln it leads to a dating error of more than two centuries.

  12. Lower limb joint forces during walking on the level and slopes at different inclinations.

    Science.gov (United States)

    Alexander, Nathalie; Schwameder, Hermann

    2016-03-01

    Sloped walking is associated with an increase of lower extremity joint loading compared to level walking. Therefore, the aim of this study was to analyse lower limb joint compression forces as well as tibiofemoral joint shear forces during sloped walking at different inclinations. Eighteen healthy male participants (age: 27.0 ± 4.7 years, height: 1.80 ± 0.05 m, mass: 74.5 ± 8.2 kg) were asked to walk at a pre-set speed of 1.1m/s on a ramp (6 m × 1.5 m) at the slopes of -18°, -12°, -6°, 0°, 6°, 12° and 18°. Kinematic data were captured with a twelve-camera motion capture system (Vicon). Kinetic data were recorded with two force plates (AMTI) imbedded into a ramp. A musculoskeletal model (AnyBody) was used to compute lower limb joint forces. Results showed that downhill walking led to significantly increased hip, tibiofemoral and patellofemoral joint compression forces (pforces (pforces with increasing inclination (pforces did not increase with the gradient. Due to diverse tibiofemoral joint shear force patterns in the literature, results should be treated with caution in general. Finally, lower limb joint force analyses provided more insight in the structure loading conditions during sloped walking than joint moment analyses. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. DEM simulation of flow of dumbbells on a rough inclined plane

    Science.gov (United States)

    Mandal, Sandip; Khakhar, Devang

    2015-11-01

    The rheology of non-spherical granular materials such as food grains, sugar cubes, sand, pharmaceutical pills, among others, is not understood well. We study the flow of non-spherical dumbbells of different aspect ratios on a rough inclined plane by using soft sphere DEM simulations. The dumbbells are generated by fusing two spheres together and a linear spring dashpot model along with Coulombic friction is employed to calculate inter-particle forces. At steady state, a uni-directional shear flow is obtained which allows for a detailed study of the rheology. The effect of aspect ratio and inclination angle on mean velocity, volume fraction, shear rate, shear stress, pressure and viscosity profiles is examined. The effect of aspect ratio on probability distribution of angles, made by the major axes of the dumbbells with the flow direction, average angle and order parameter is analyzed. The dense flow rheology is well explained by Bagnold's law and the constitutive laws of JFP model. The dependencies of first and second normal stress differences on aspect ratio are studied. The probability distributions of translational and rotational velocity are analyzed.

  14. An analytic solution of the static problem of inclined risers conveying fluid

    KAUST Repository

    Alfosail, Feras

    2016-05-28

    We use the method of matched asymptotic expansion to develop an analytic solution to the static problem of clamped–clamped inclined risers conveying fluid. The inclined riser is modeled as an Euler–Bernoulli beam taking into account its self-weight, mid-plane stretching, an applied axial tension, and the internal fluid velocity. The solution consists of three parts: an outer solution valid away from the two boundaries and two inner solutions valid near the two ends. The three solutions are then matched and combined into a so-called composite expansion. A Newton–Raphson method is used to determine the value of the mid-plane stretching corresponding to each applied tension and internal velocity. The analytic solution is in good agreement with those obtained with other solution methods for large values of applied tensions. Therefore, it can be used to replace other mathematical solution methods that suffer numerical limitations and high computational cost. © 2016 Springer Science+Business Media Dordrecht

  15. Effect of incisor inclination changes on cephalometric points a and b

    International Nuclear Information System (INIS)

    Hassan, S.; Shaikh, A.; Fida, M.

    2015-01-01

    The position of cephalometric points A and B are liable to be affected by alveolar remodelling caused by orthodontic tooth movement during incisor retraction. This study was conducted to evaluate the change in positions of cephalometric points A and B in sagittal and vertical dimensions due to change in incisor inclinations. Methods: Total sample of 31 subjects were recruited into the study. The inclusion criteria were extraction of premolars in upper and lower arches, completion of growth and orthodontic treatment. The exclusion criteria were patients with craniofacial anomalies and history of orthodontic treatment. By superimposition of pre and post treatment tracings, various linear and angular parameters were measured. Various tests and multiple linear regression analysis were performed to determine changes in outcome variables. Statistically significant p-value was <0.05. Results:One-sample t-test showed that change in position of only point A was statistically significant which was 1.61mm (p<0.01) in sagittal direction and 1.49mm (p<0.01) in vertical direction. Multiple linear regression analysis showed that if we retrocline upper incisor by 100, the point A will move superiorly by 0.6mm. Conclusions: Total change in the position of point A is in a downward and forward direction. Total Change in upper incisors inclinations causes change in position of point A only in vertical direction. (author)

  16. Slip resistance of winter footwear on snow and ice measured using maximum achievable incline.

    Science.gov (United States)

    Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff

    2016-05-01

    Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear-surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established.

  17. Electric field effects on the dynamics of bubble detachment from an inclined surface

    International Nuclear Information System (INIS)

    Di Marco, P; Morganti, N; Saccone, G

    2015-01-01

    An experimental apparatus to study bubble detachment from an inclined surface under the action of electric forces is described. It consists of a container filled with FC72 at room temperature and pressure where a train of gas bubbles is injected from an orifice. An electrostatic field can be imposed around the bubble, while the cell can be tilted from 0 to 90°. It is possible to study interface growth with the aid of high-speed cinematography. Since the interface is asymmetrical, a mirror system allowed to acquire, in the same frame, two images at 90° of the bubble. Different inclinations, injection rates and voltages were tested in order to couple the effects of shear gravity and electric field. Curvature and contact angles have been derived with appropriate interpolation methods of the profile. Force balances on the bubble were checked, finding an electric force, which, at first pulls the bubbles from the orifice, then pushes it against the surface. The motion of the center of gravity confirms this behaviour. A power balance has been developed to determine the energy contributions, revealing that surface growth incorporates both the effects of inlet power and electric field. (paper)

  18. Vibration Analysis of Inclined Laminated Composite Beams under Moving Distributed Masses

    Directory of Open Access Journals (Sweden)

    E. Bahmyari

    2014-01-01

    Full Text Available The dynamic response of laminated composite beams subjected to distributed moving masses is investigated using the finite element method (FEM based on the both first-order shear deformation theory (FSDT and the classical beam theory (CLT. Six and ten degrees of freedom beam elements are used to discretize the CLT and FSDT equations of motion, respectively. The resulting spatially discretized beam governing equations including the effect of inertial, Coriolis, and centrifugal forces due to moving distributed mass are evaluated in time domain by applying Newmark’s scheme. The presented approach is first validated by studying its convergence behavior and comparing the results with those of existing solutions in the literature. Then, the effect of incline angle, mass, and velocity of moving body, layer orientation, load length, and inertial, Coriolis, and centrifugal forces due to the moving distributed mass and friction force between the beam and the moving distributed mass on the dynamic behavior of inclined laminated composite beams are investigated.

  19. Dynamic Fracturing Behavior of Layered Rock with Different Inclination Angles in SHPB Tests

    Directory of Open Access Journals (Sweden)

    Jiadong Qiu

    2017-01-01

    Full Text Available The fracturing behavior of layered rocks is usually influenced by bedding planes. In this paper, five groups of bedded sandstones with different bedding inclination angles θ are used to carry out impact compression tests by split Hopkinson pressure bar. A high-speed camera is used to capture the fracturing process of specimens. Based on testing results, three failure patterns are identified and classified, including (A splitting along bedding planes; (B sliding failure along bedding planes; (C fracturing across bedding planes. The failure pattern (C can be further classified into three subcategories: (C1 fracturing oblique to loading direction; (C2 fracturing parallel to loading direction; (C3 mixed fracturing across bedding planes. Meanwhile, a numerical model of layered rock and SHPB system are established by particle flow code (PFC. The numerical results show that the shear stress is the main reason for inducing the damage along bedding plane at θ = 0°~75°. Both tensile stress and shear stress on bedding planes contribute to the splitting failure along bedding planes when the inclination angle is 90°. Besides, tensile stress is the main reason that leads to the damage in rock matrixes at θ = 0°~90°.

  20. Investigation of very high energy cosmic rays by means of inclined muon bundles

    Science.gov (United States)

    Bogdanov, A. G.; Kokoulin, R. P.; Mannocchi, G.; Petrukhin, A. A.; Saavedra, O.; Shutenko, V. V.; Trinchero, G.; Yashin, I. I.

    2018-03-01

    In a typical approach to extensive air shower (EAS) investigations, horizontal arrays are used and near-vertical EAS are detected. In contrast, in this work vertically arranged muon detectors are used to study inclined EAS. At large zenith angles, EAS consisting solely of muon component are employed. The transverse dimensions of EAS rapidly increase when the zenith angle increases. Hence, EAS in a wide energy interval can be explored by means of a relatively small detector. Here we present results of the analysis of the data on inclined muon bundles accumulated from 2002 to 2016 in the DECOR experiment. For the first time, these results demonstrate with more than 3σ significance the existence of the second knee in the EAS muon component spectrum near 1017 eV primary energy. An excess of muon bundles at energies about 1 EeV found earlier in DECOR data has been confirmed and analyzed in detail. It is highly likely that the obtained outcomes indicate the appearance of new processes of muon generation.

  1. A novel method of microneedle array fabrication using inclined deep x-ray exposure

    International Nuclear Information System (INIS)

    Moon, Sang Jun; Jin, Chun Yan; Lee, Seung S

    2006-01-01

    We report a novel fabrication method for the microneedle array with a 3-dimensional feature and its replication method; 'Hot-pressing' process with bio-compatible material, PLLA (Poly L-LActide). Using inclined deep X-ray exposure technique, we fabricate a band type microneedle array with a single body on the same material basement. Since the single body feature does not make adhesion problem with the microneedle shank and basement during peel-off step of a mold, the PMMA (Poly-Methyl-MethAcrylate) microneedle array mold insert can be used for mold process which is used with the soft material mold, PDMS (Poly-Di- Methyl-Siloxane). The side inclined deep X-ray exposure also makes complex 3-dimensional features by the regions which are not exposed during twice successive exposure steps. In addition, the successive exposure does not need an additional mask alignment after the first side exposure. The fabricated band type microneedle array mold inserts are assembled for large area patch type out-of-plane microneedle array. The bio-compatible microneedle array can be fabricated to the laboratory scale mass production by the single body PMMA mold insert and 'Hot-pressing' process

  2. A novel method of microneedle array fabrication using inclined deep x-ray exposure

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sang Jun; Jin, Chun Yan; Lee, Seung S [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-dong, Daejeon (Korea, Republic of)

    2006-04-01

    We report a novel fabrication method for the microneedle array with a 3-dimensional feature and its replication method; 'Hot-pressing' process with bio-compatible material, PLLA (Poly L-LActide). Using inclined deep X-ray exposure technique, we fabricate a band type microneedle array with a single body on the same material basement. Since the single body feature does not make adhesion problem with the microneedle shank and basement during peel-off step of a mold, the PMMA (Poly-Methyl-MethAcrylate) microneedle array mold insert can be used for mold process which is used with the soft material mold, PDMS (Poly-Di- Methyl-Siloxane). The side inclined deep X-ray exposure also makes complex 3-dimensional features by the regions which are not exposed during twice successive exposure steps. In addition, the successive exposure does not need an additional mask alignment after the first side exposure. The fabricated band type microneedle array mold inserts are assembled for large area patch type out-of-plane microneedle array. The bio-compatible microneedle array can be fabricated to the laboratory scale mass production by the single body PMMA mold insert and 'Hot-pressing' process.

  3. Optical performance of inclined south-north single-axis tracked solar panels

    International Nuclear Information System (INIS)

    Li, Zhimin; Liu, Xinyue; Tang, Runsheng

    2010-01-01

    To investigate optical performance of the inclined south-north single-axis (ISN-axis, in short) tracked solar panels, a mathematical procedure to estimate the annual collectible radiation on fixed and tracked panels was suggested based on solar geometry and monthly horizontal radiation. For solar panels tracking about ISN-axis, the yearly optimal tilt-angle of ISN-axis for maximizing annual solar gain was about 3 o deviating from the site latitude in most of China except in areas with poor solar resources, and the maximum annual collectible radiation on ISN-axis tracked panels was about 97-98% of that on dual-axis tracked panels; whereas for ISN-axis tracked panels with the tilt-angle of ISN-axis being adjusted four times in a year at three fixed tilt-angles, the annual collectible radiation was almost close to that on dual-axis tracked panels, the optimum date of tilt-angle adjustment of ISN-axis was 23 days from the equinoxes, and the optimum tilt-angle adjustment value for each adjustment was about 22 o . Compared to fixed south-facing solar panels inclined at an optimal tilt-angle, the increase in the annual solar gain due to using ISN-axis sun tracking was above 30% in the areas with abundant solar resources and less than 20% in the areas with poor solar resources.

  4. Mixed convection in inclined lid driven cavity by Lattice Boltzmann Method and heat flux boundary condition

    International Nuclear Information System (INIS)

    D'Orazio, A; Karimipour, A; Nezhad, A H; Shirani, E

    2014-01-01

    Laminar mixed convective heat transfer in two-dimensional rectangular inclined driven cavity is studied numerically by means of a double population thermal Lattice Boltzmann method. Through the top moving lid the heat flux enters the cavity whereas it leaves the system through the bottom wall; side walls are adiabatic. The counter-slip internal energy density boundary condition, able to simulate an imposed non zero heat flux at the wall, is applied, in order to demonstrate that it can be effectively used to simulate heat transfer phenomena also in case of moving walls. Results are analyzed over a range of the Richardson numbers and tilting angles of the enclosure, encompassing the dominating forced convection, mixed convection, and dominating natural convection flow regimes. As expected, heat transfer rate increases as increases the inclination angle, but this effect is significant for higher Richardson numbers, when buoyancy forces dominate the problem; for horizontal cavity, average Nusselt number decreases with the increase of Richardson number because of the stratified field configuration

  5. Changing inclination of earth satellites using the gravity of the moon

    Directory of Open Access Journals (Sweden)

    Karla de Souza Torres

    2006-01-01

    Full Text Available We analyze the problem of the orbital control of an Earth's satellite using the gravity of the Moon. The main objective is to study a technique to decrease the fuel consumption of a plane change maneuver to be performed in a satellite that is in orbit around the Earth. The main idea of this approach is to send the satellite to the Moon using a single-impulsive maneuver, use the gravity field of the Moon to make the desired plane change of the trajectory, and then return the satellite to its nominal semimajor axis and eccentricity using a bi-impulsive Hohmann-type maneuver. The satellite is assumed to start in a Keplerian orbit in the plane of the lunar orbit around the Earth and the goal is to put it in a similar orbit that differs from the initial orbit only by the inclination. A description of the close-approach maneuver is made in the three-dimensional space. Analytical equations based on the patched conics approach are used to calculate the variation in velocity, angular momentum, energy, and inclination of the satellite. Then, several simulations are made to evaluate the savings involved. The time required by those transfers is also calculated and shown.

  6. A Comprehensive Comparison Study of Empirical Cutting Transport Models in Inclined and Horizontal Wells

    Directory of Open Access Journals (Sweden)

    Asep Mohamad Ishaq Shiddiq

    2017-07-01

    Full Text Available In deviated and horizontal drilling, hole-cleaning issues are a common and complex problem. This study explored the effect of various parameters in drilling operations and how they affect the flow rate required for effective cutting transport. Three models, developed following an empirical approach, were employed: Rudi-Shindu’s model, Hopkins’, and Tobenna’s model. Rudi-Shindu’s model needs iteration in the calculation. Firstly, the three models were compared using a sensitivity analysis of drilling parameters affecting cutting transport. The result shows that the models have similar trends but different values for minimum flow velocity. Analysis was conducted to examine the feasibility of using Rudi-Shindu’s, Hopkins’, and Tobenna’s models. The result showed that Hopkins’ model is limited by cutting size and revolution per minute (RPM. The minimum flow rate from Tobenna’s model is affected only by well inclination, drilling fluid weight and drilling fluid rheological property. Meanwhile, Rudi-Shindu’s model is limited by inclinations above 45°. The study showed that the investigated models are not suitable for horizontal wells because they do not include the effect of lateral section.

  7. A couple stress fluid modeling on free convection oscillatory hydromagnetic flow in an inclined rotating channel

    Directory of Open Access Journals (Sweden)

    Sahin Ahmed

    2014-12-01

    Full Text Available This study focuses analytically on the oscillatory hydromagnetic flow of a viscous, incompressible, electrically-conducting, non-Newtonian fluid in an inclined, rotating channel with non-conducting walls, incorporating couple stress effects. The model is then non-dimensionalized with appropriate variables and shown to be controlled by the inverse Ekman number (K2 = 1/Ek, the hydromagnetic body force parameter (M, channel inclination (α, Grashof number (Gr, Prandtl number (Pr, oscillation frequency (ω and time variable (ωT. Analytical solutions are derived using complex variables. Excellent agreement is obtained between both previous and present work. The influence of the governing parameters on the primary velocity, secondary velocity, temperature (θ, primary and secondary flow discharges per unit depth in the channel, and frictional shear stresses due to primary and secondary flow, is studied graphically and using tables. Applications of the study arise in the simulation of the manufacture of electrically-conducting polymeric liquids and hydromagnetic energy systems exploiting rheological working fluids.

  8. Signature of non-isotropic distribution of stellar rotation inclination angles in the Praesepe cluster

    Science.gov (United States)

    Kovacs, Geza

    2018-04-01

    The distribution of the stellar rotation axes of 113 main sequence stars in the open cluster Praesepe are examined by using current photometric rotation periods, spectroscopic rotation velocities, and estimated stellar radii. Three different samples of stellar rotation data on spotted stars from the Galactic field and two independent samples of planetary hosts are used as control samples to support the consistency of the analysis. Considering the high completeness of the Praesepe sample and the behavior of the control samples, we find that the main sequence F - K stars in this cluster are susceptible to rotational axis alignment. Using a cone model, the most likely inclination angle is 76° ± 14° with a half opening angle of 47° ± 24°. Non-isotropic distribution of the inclination angles is preferred over the isotropic distribution, except if the rotation velocities used in this work are systematically overestimated. We found no indication of this being the case on the basis of the currently available data. Data are only available at the CDS, together with the other two compiled datasets used in this paper, via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/L2

  9. Motion of phospholipidic vesicles along an inclined plane: sliding and rolling.

    Science.gov (United States)

    Abkarian, M; Lartigue, C; Viallat, A

    2001-04-01

    The migration of giant phospholipidic vesicles along an inclined plane in a quiescent fluid was observed as a function of the mass and the radius R of the vesicles, and as a function of the angle of inclination of the plane. Vesicles were swollen, and did not adhere to the substrate surface. It was observed from a side-view chamber that they have quasispherical shapes. The vesicles mainly slide along the plane, but also roll. The ratio omegaR/v of rotational to translational velocities is of the order of 0.15 for vesicles of radius ranging from 10 to 30 microm. Values of this ratio, and variations of v versus R, are well described by Goldman et al.'s model developed for the motion of rigid spheres close to a wall [Chem. Eng. Sci. 22, 637 (1967)]. In this framework, the thickness of the fluid film between the vesicle and the substrate derived from fitting experimental data was found to be equal to 48 nm.

  10. The effect of anterior inclined plane treatment on the dentoskeletal of Class II division 1 patients

    Directory of Open Access Journals (Sweden)

    Emami Meibodi

    2007-09-01

    Full Text Available Most of Class II malocclusions are due to underdeveloped mandible with increased overjet and overbite. Lack of incisal contact results in the extrusion of the upper and lower anterior dentoalveolar complex, which helps to lock the mandible and prevent its normal growth and development, and this abnormality is exaggerated by soft tissue imbalance. The purpose of this study was to evaluate the skeletal and dental changes in patients treated with anterior inclined plane appliance in growing patients with moderate Class II Division 1 having deep overbite. In this study, 25 patients, including 15 girls and 10 boys, with a mean age of 9 ±1.2 years were selected; all of them presented with moderate Class II deep bite with increased overjet and normal or horizontal growth pattern. Pre- and post-treatment X-rays and photos for an average of 8 months were taken. The statistical assessment of the data suggested that there were no significant changes in the vertical skeletal parameters. The mandibular incisors were protruded, whereas the maxillary incisors were retruded. Overbite and overjet were also reduced. There was significant increase in the mandibular length. The results revealed that in mixed dentition patients, the inclined plane corrected Class II discrepancies mostly through dentoskeletal changes.

  11. Differential Quadrature Method Based Study of Vibrational Behaviour of Inclined Edge Cracked Beams

    Directory of Open Access Journals (Sweden)

    Srivastava Shivani

    2017-01-01

    Full Text Available The study of vibration behaviour of cracked system is an important area of research. In the present work we present a mathematical model to study the effect of inclination, location and size of the crack on the vibrational behavior of beam with different boundary conditions. The model is based on the assumption that the equivalent flexible rigidity of the cracked beam can be written in terms of the flexible rigidity of the uncracked beam, based on the energy approach as proposed by earlier researchers. In the present work the Differential Quadrature Method (DQM is used to solve equation of motion derived by using Euler’s beam theory. The primary interest of the paper is to study the effect of inclined crack on natural frequency. We have also studied the beam vibration with and without vertical edge crack as a special case to validate the model. The DQM results for the natural frequencies of cracked beams agree well with other literature values and ANSYS solutions.

  12. Wake reconfiguration downstream of an inclined flexible cylinder at the onset of vortex-induced vibrations

    Science.gov (United States)

    Bourguet, Remi; Triantafyllou, Michael

    2016-11-01

    Slender flexible cylinders immersed in flow are common in nature (e.g. plants and trees in wind) and in engineering applications, for example in the domain of offshore engineering, where risers and mooring lines are exposed to ocean currents. Vortex-induced vibrations (VIV) naturally develop when the cylinder is placed at normal incidence but they also appear when the body is inclined in the current, including at large angles. In a previous work concerning a flexible cylinder inclined at 80 degrees, we found that the occurrence of VIV is associated with a profound alteration of the flow dynamics: the wake exhibits a slanted vortex shedding pattern in the absence of vibration, while the vortices are shed parallel to the body once the large-amplitude VIV regime is reached. The present study aims at bridging the gap between these two extreme configurations. On the basis of direct numerical simulations, we explore the intermediate states of the flow-structure system. We identify two dominant components of the flow: a high-frequency component that relates to the stationary body wake and a low-frequency component synchronized with body motion. We show that the scenario of flow reconfiguration is driven by the opposite trends of these two component contributions.

  13. An inclined wall jet: Mean flow characteristics and effects of acoustic excitation

    Science.gov (United States)

    Lai, J. C. S.; Lu, D.

    2000-12-01

    The mean velocity field of a 30° inclined wall jet has been investigated using both hot-wire and laser Doppler anemometry (LDA). Provided that the nozzle aspect ratio is greater than 30 and the inclined wall angle (β) is less than 50°, LDA measurements for various β show that the reattachment length is independent of the nozzle aspect ratio and the nozzle exit Reynolds number (in the range 6670-13,340). There is general agreement between the reattachment lengths determined by LDA and those determined using wall surface oil film visualisation technique. The role of coherent structures arising from initial instabilities of a 30° wall jet has been explored by hot-wire spectra measurements. Results indicate that the fundamental vortex roll-up frequency in both the inner and outer shear layer corresponds to a Strouhal number (based on nozzle exit momentum thickness and velocity) of 0.012. The spatial development of instabilities in the jet has been studied by introducing acoustic excitation at a frequency corresponding to the shear layer mode. The formation of the fundamental and its first subharmonic has been identified in the outer shear layer. However, the development of the first subharmonic in the inner shear layer has been severely suppressed. Distributions of mean velocities, turbulence intensities and Reynolds shear stress indicate that controlled acoustic excitation enhances the development of instabilities and promotes jet reattachment to the wall, resulting in a substantially reduced recirculation flow region.

  14. Inclined Pulsar Magnetospheres in General Relativity: Polar Caps for the Dipole, Quadrudipole, and Beyond

    Science.gov (United States)

    Gralla, Samuel E.; Lupsasca, Alexandru; Philippov, Alexander

    2017-12-01

    In the canonical model of a pulsar, rotational energy is transmitted through the surrounding plasma via two electrical circuits, each connecting to the star over a small region known as a “polar cap.” For a dipole-magnetized star, the polar caps coincide with the magnetic poles (hence the name), but in general, they can occur at any place and take any shape. In light of their crucial importance to most models of pulsar emission (from radio to X-ray to wind), we develop a general technique for determining polar cap properties. We consider a perfectly conducting star surrounded by a force-free magnetosphere and include the effects of general relativity. Using a combined numerical-analytical technique that leverages the rotation rate as a small parameter, we derive a general analytic formula for the polar cap shape and charge-current distribution as a function of the stellar mass, radius, rotation rate, moment of inertia, and magnetic field. We present results for dipole and quadrudipole fields (superposed dipole and quadrupole) inclined relative to the axis of rotation. The inclined dipole polar cap results are the first to include general relativity, and they confirm its essential role in the pulsar problem. The quadrudipole pulsar illustrates the phenomenon of thin annular polar caps. More generally, our method lays a foundation for detailed modeling of pulsar emission with realistic magnetic fields.

  15. Direct vessel inclined injection system for reduction of emergency core coolant direct bypass in advanced reactors

    International Nuclear Information System (INIS)

    Yoon, Sang H.; Lee, Jong G.; Suh, Kune Y.

    2006-01-01

    Multidimensional thermal hydraulics in the APR1400 (Advanced Power Reactor 1400 MWe) downcomer during a large-break loss-of-coolant accident (LBLOCA) plays a pivotal role in determining the capability of the safety injection system. APR1400 adopts the direct vessel injection (DVI) method for more effective core penetration of the emergency core cooling (ECC) water than the cold leg injection (CLI) method in the OPR1000 (Optimized Power Reactor 1000 MWe). The DVI method turned out to be prone to occasionally lack in efficacious delivery of ECC to the reactor core during the reflood phase of a LBLOCA, however. This study intends to demonstrate a direct vessel inclined injection (DVII) method, one of various ideas with which to maximize the ECC core penetration and to minimize the direct bypass through the break during the reflood phase of a LBLOCA. The 1/7 scaled down THETA (Transient Hydrodynamics Engineering Test Apparatus) tests show that a vertical inclined nozzle angle of the DVII system increases the downward momentum of the injected ECC water by reducing the degree of impingement on the reactor downcomer, whereby lessening the extent of the direct bypass through the break. The proposed method may be combined with other innovative measures with which to ensure an enough thermal margin in the core during the course of a LBLOCA in APR1400

  16. The SNAP Strong Lens Survey

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, P.

    2005-01-03

    Basic considerations of lens detection and identification indicate that a wide field survey of the types planned for weak lensing and Type Ia SNe with SNAP are close to optimal for the optical detection of strong lenses. Such a ''piggy-back'' survey might be expected even pessimistically to provide a catalogue of a few thousand new strong lenses, with the numbers dominated by systems of faint blue galaxies lensed by foreground ellipticals. After sketching out our strategy for detecting and measuring these galaxy lenses using the SNAP images, we discuss some of the scientific applications of such a large sample of gravitational lenses: in particular we comment on the partition of information between lens structure, the source population properties and cosmology. Understanding this partitioning is key to assessing strong lens cosmography's value as a cosmological probe.

  17. Strong coupling phase in QED

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi

    1988-01-01

    Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

  18. A highly precise frequency-based method for estimating the tension of an inclined cable with unknown boundary conditions

    Science.gov (United States)

    Ma, Lin

    2017-11-01

    This paper develops a method for precisely determining the tension of an inclined cable with unknown boundary conditions. First, the nonlinear motion equation of an inclined cable is derived, and a numerical model of the motion of the cable is proposed using the finite difference method. The proposed numerical model includes the sag-extensibility, flexural stiffness, inclination angle and rotational stiffness at two ends of the cable. Second, the influence of the dynamic parameters of the cable on its frequencies is discussed in detail, and a method for precisely determining the tension of an inclined cable is proposed based on the derivatives of the eigenvalues of the matrices. Finally, a multiparameter identification method is developed that can simultaneously identify multiple parameters, including the rotational stiffness at two ends. This scheme is applicable to inclined cables with varying sag, varying flexural stiffness and unknown boundary conditions. Numerical examples indicate that the method provides good precision. Because the parameters of cables other than tension (e.g., the flexural stiffness and rotational stiffness at the ends) are not accurately known in practical engineering, the multiparameter identification method could further improve the accuracy of cable tension measurements.

  19. Parametric study on the effects of pile inclination angle on the response of batter piles in offshore jacket platforms

    Science.gov (United States)

    Aminfar, Ali; Ahmadi, Hamid; Aminfar, Mohammad Hossein

    2016-06-01

    Offshore jacket-type platforms are attached to the seabed by long batter piles. In this paper, results from a finite element analysis, verified against experimental data, are used to study the effect of the pile's inclination angle, and its interaction with the geometrical properties of the pile and the geotechnical characteristics of the surrounding soil on the behavior of the inclined piles supporting the jacket platforms. Results show that the inclination angle is one of the main parameters affecting the behavior of an offshore pile. We investigated the effect of the inclination angle on the maximum von Mises stress, maximum von Mises elastic strain, maximum displacement vector sum, maximum displacement in the horizontal direction, and maximum displacement in the vertical direction. The pile seems to have an operationally optimal degree of inclination of approximately 5°. By exceeding this value, the instability in the surrounding soil under applied loads grows extensively in all the geotechnical properties considered. Cohesive soils tend to display poorer results compared to grained soils.

  20. Inclined Weight-Loaded Walking at Different Speeds: Pelvis-Shoulder Coordination, Trunk Movements and Cost of Transport.

    Science.gov (United States)

    Rosa, Rodrigo Gomes da; Gomeñuka, Natalia Andrea; Oliveira, Henrique Bianchi de; Peyré-Tartaruga, Leonardo Alexandre

    2018-01-01

    Although studied at level surface, the trunk kinematics and pelvis-shoulder coordination of incline walking are unknown. The aim of this study was to evaluate the speed effects on pelvis-shoulder coordination and trunk movement and the cost of transport (C) during unloaded and loaded (25% of body mass) 15% incline walking. We collected 3-dimensional kinematic and oxygen consumption data from 10 physically active young men. The movements were analyzed in the sagittal plane (inclination and range of trunk motion) and the transverse plane (range of shoulder and pelvic girdle motion and phase difference). The rotational amplitude of the shoulder girdle decreased with load at all speeds, and it was lower at the highest speeds. The rotational amplitude of the pelvic girdle did not change with the different speeds. The phase difference was greater at optimal speed (3 km.hr -1 , at the lowest C) in the loaded and the unloaded conditions. The trunk inclination was greater with load and increased with speed, whereas the range of trunk motion was lower in the loaded condition and decreased with increasing speed. In conclusion, the load decreased the range of girdles and trunk motion, and the pelvis-shoulder coordination seemed to be critical for the incline walking performance.

  1. Negative thermal expansion materials

    International Nuclear Information System (INIS)

    Evans, J.S.O.

    1997-01-01

    The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)

  2. Some limit theorems for negatively associated random variables

    Indian Academy of Sciences (India)

    Zygmund strong law of large numbers for negatively associated sequences under the case where. {Xn,n ≥ 1} are uniformly dominated by a random variable X. The third result is to obtain a strong law for order statistics for a negatively associated ...

  3. Negative pressure pulmonary oedema after septoplasty.

    Science.gov (United States)

    García de Hombre, Alina M; Cuffini, Alejandro; Bonadeo, Alejandro

    2013-01-01

    Negative pressure pulmonary oedema (NPPO) is an anaesthetic complication due to acute obstruction of the upper airway, whose main cause is laryngospasm. The pathophysiology involves a strong negative intrapleural pressure during inspiration against a closed glottis, which triggers excessive pressure in the pulmonary microvasculature. Although its diagnosis can be difficult, its recognition helps to minimise morbidity and mortality. This article presents a case of NPPO due to postextubation laryngospasm. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  4. Strong Decomposition of Random Variables

    DEFF Research Database (Denmark)

    Hoffmann-Jørgensen, Jørgen; Kagan, Abram M.; Pitt, Loren D.

    2007-01-01

    A random variable X is stongly decomposable if X=Y+Z where Y=Φ(X) and Z=X-Φ(X) are independent non-degenerated random variables (called the components). It is shown that at least one of the components is singular, and we derive a necessary and sufficient condition for strong decomposability...

  5. Strong interaction at finite temperature

    Indian Academy of Sciences (India)

    Abstract. We review two methods discussed in the literature to determine the effective parameters of strongly interacting particles as they move through a heat bath. The first one is the general method of chiral perturbation theory, which may be readily applied to this problem. The other is the method of thermal QCD sum rules ...

  6. Strong-strong beam-beam simulation on parallel computer

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2004-08-02

    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders.

  7. Strong-strong beam-beam simulation on parallel computer

    International Nuclear Information System (INIS)

    Qiang, Ji

    2004-01-01

    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders

  8. Secular dynamics of an exterior test particle: the inverse Kozai and other eccentricity-inclination resonances

    Science.gov (United States)

    Vinson, Benjamin R.; Chiang, Eugene

    2018-03-01

    The behaviour of an interior test particle in the secular three-body problem has been studied extensively. A well-known feature is the Lidov-Kozai resonance in which the test particle's argument of periastron librates about ±90° and large oscillations in eccentricity and inclination are possible. Less explored is the inverse problem: the dynamics of an exterior test particle and an interior perturber. We survey numerically the inverse secular problem, expanding the potential to hexadecapolar order and correcting an error in the published expansion. Four secular resonances are uncovered that persist in full N-body treatments (in what follows, ϖ and Ω are the longitudes of periapse and of ascending node, ω is the argument of periapse, and subscripts 1 and 2 refer to the inner perturber and the outer test particle): (i) an orbit-flipping quadrupole resonance requiring a non-zero perturber eccentricity e1, in which Ω2 - ϖ1 librates about ±90°; (ii) a hexadecapolar resonance (the `inverse Kozai' resonance) for perturbers that are circular or nearly so and inclined by I ≃ 63°/117°, in which ω2 librates about ±90° and which can vary the particle eccentricity by Δe2 ≃ 0.2 and lead to orbit crossing; (iii) an octopole `apse-aligned' resonance at I ≃ 46°/107° wherein ϖ2 - ϖ1 librates about 0° and Δe2 grows with e1; and (iv) an octopole resonance at I ≃ 73°/134° wherein ϖ2 + ϖ1 - 2Ω2 librates about 0° and Δe2 can be as large as 0.3 for small but non-zero e1. Qualitatively, the more eccentric the perturber, the more the particle's eccentricity and inclination vary; also, more polar orbits are more chaotic. Our solutions to the inverse problem have potential application to the Kuiper belt and debris discs, circumbinary planets, and hierarchical stellar systems.

  9. Individuals with a vestibular-related disorder use a somatosensory-dominant strategy for postural orientation after inclined stance.

    Science.gov (United States)

    Chong, R; Berl, B; Cook, B; Turner, P; Walker, K

    2017-06-01

    The visual, somatosensory, and vestibular systems are critical for establishing a sensorimotor set for postural control and orientation. The goal of this study was to assess how individuals with a vestibular-related disorder keep their balance following prolonged stance on an inclined surface. We hypothesize that subjects will show greater reliance on the somatosensory system than age-matched controls as inferred by the presence of a forward postural lean aftereffect following the inclined stance (i.e., a positive response). The results revealed an underlying somatosensory-dominant strategy for postural control in the vestibular group: 100% of the subjects tested positive compared to 58% in the control group (P=.006). Individuals with a vestibular-related disorder use a somatosensory-dominant strategy for postural orientation following prolonged inclined stance. The implications for the management of this population are discussed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Effects of heat transfer on peristaltic motion of Oldroyd fluid in the presence of inclined magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Afsar Khan, A. [Department of Mathematics and Statistics, FBAS, IIUI, Islamabad (Pakistan); Ellahi, R., E-mail: rahmatellahi@yahoo.com [Department of Mathematics and Statistics, FBAS, IIUI, Islamabad (Pakistan); Department of Mechanical Engineering, Bourns Hall, University of California Riverside, CA 92521 (United States); Mudassar Gulzar, M. [National University of Sciences and Technology, College of Electrical and Mechanical Engineering Islamabad (Pakistan); Sheikholeslami, Mohsen [Department of Mechanical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2014-12-15

    In this study the peristaltic motion of Oldroyd fluid in an asymmetric channel is investigated. Mathematical analysis has been carried out in the presence of an inclined magnetic field. Heat transfer is also taken into account. The physical problem is first modeled and then the analytical solutions of coupled equations are developed by regular perturbation method. Assumptions of long wavelength approximation are used. Effects of inclined magnetic field on the axial velocity and temperature are presented. Physical features of pertinent parameters such as wave number δ, Reynolds number Re, Weissenberg number Wi, Prandtl number Pr and Hartmann number M are also discussed graphically at the end of the paper. - Highlights: • This paper analyses heat transfer and inclined magnetic effects in peristaltic motion of Oldroyd fluid. • An asymmetric channel under long wavelength approximation is considered. • Regular perturbation method is used to find analytical solutions. • Effects of sundry parameters are presented through graphs.

  11. Changes of occlusal plane inclination after orthodontic treatment with four premolars extraction in dento-alveolar bimaxillary protrusion cases

    Directory of Open Access Journals (Sweden)

    NR Yuliawati Zenab

    2009-07-01

    Full Text Available The purpose of this study was to find out whether there were changes in occlusal plane inclination after fixed orthodontic treatment of bimaxillary protrusion cases where extraction of four first premolars was needed using the standard Edgewise appliances. The sample was fourteen orthodontic patients, aged above sixteen years old, no sexual discrimination, treated with fixed appliances at Orthodontic Specialist Clinic Faculty of Dentistry Universitas Padjadjaran. The method was a pre-post design which compared occlusal plane inclination obtained from tracings of lateral cephalograms before and after orthodontic treatment. The results were calculated with the paired t-test analysis. The study revealed that there were no significant changes in occlusal plane inclination after the orthodontic treatment.

  12. Heat and mass transfer of Williamson nanofluid flow yield by an inclined Lorentz force over a nonlinear stretching sheet

    Directory of Open Access Journals (Sweden)

    Mair Khan

    2018-03-01

    Full Text Available The present analysis is devoted to explore the computational solution of the problem addressing the variable viscosity and inclined Lorentz force effects on Williamson nanofluid over a stretching sheet. Variable viscosity is assumed to vary as a linear function of temperature. The basic mathematical modelled problem i.e. system of PDE’s is converted nonlinear into ODE’s via applying suitable transformations. Computational solutions of the problem is also achieved via efficient numerical technique shooting. Characteristics of controlling parameters i.e. stretching index, inclined angle, Hartmann number, Weissenberg number, variable viscosity parameter, mixed convention parameter, Brownian motion parameter, Prandtl number, Lewis number, thermophoresis parameter and chemical reactive species on concentration, temperature and velocity gradient. Additionally, friction factor coefficient, Nusselt number and Sherwood number are describe with the help of graphics as well as tables verses flow controlling parameters. Keywords: Williamson nanofluid, Temperature depended viscosity, Inclined magnetic field, Mixed convection, Chemical reactive species, Variable viscosity, Shooting method

  13. Inclination and anteversion angles of the femoral head and neck in the dog: evaluation of a standard method of measurement

    International Nuclear Information System (INIS)

    Montavon, P.M.; Hohn, R.B.; Olmstead, M.L.; Rudy, R.L.

    1985-01-01

    The inclination and anteversion angles of the femoral head and neck in 30 mongrel dogs were determined using a radiographic biplanar technique. The angle of anteversion of the 30 necropsy specimens was measured directly and compared with the in vivo radiographic measurements. The average value for the angles of anteversion, inclination, and corrected real angles of inclination were 31.3°, 148.8°, and 144.7°, respectively. Graphs were established using existing trigonometric relations to facilitate the analysis. The method used was found to be simple, reliable, and accurate. The mean difference between the indirect radiographic biplanar technique and direct measurements on isolated bones was ° 1.5°. The difference between the mean values of anteversion angles determined after radiographic biplanar technique and direct bone measurements was not significant (p > 0.05)

  14. Negative thermal expansion

    International Nuclear Information System (INIS)

    Barrera, G D; Bruno, J A O; Barron, T H K; Allan, N L

    2005-01-01

    There has been substantial renewed interest in negative thermal expansion following the discovery that cubic ZrW 2 O 8 contracts over a temperature range in excess of 1000 K. Substances of many different kinds show negative thermal expansion, especially at low temperatures. In this article we review the underlying thermodynamics, emphasizing the roles of thermal stress and elasticity. We also discuss vibrational and non-vibrational mechanisms operating on the atomic scale that are responsible for negative expansion, both isotropic and anisotropic, in a wide range of materials. (topical review)

  15. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which

  16. Finite element and network electrical simulation of rotating magnetofluid flow in nonlinear porous media with inclined magnetic field and hall currents

    Directory of Open Access Journals (Sweden)

    Bég Anwar O.

    2014-01-01

    Full Text Available A mathematical model is presented for viscous hydromagnetic flow through a hybrid non-Darcy porous media rotating generator. The system is simulated as steady, incompressible flow through a nonlinear porous regime intercalated between parallel plates of the generator in a rotating frame of reference in the presence of a strong, inclined magnetic field A pressure gradient term is included which is a function of the longitudinal coordinate. The general equations for rotating viscous magnetohydrodynamic flow are presented and neglecting convective acceleration effects, the two-dimensional viscous flow equations are derived incorporating current density components, porous media drag effects, Lorentz drag force components and Hall current effects. Using an appropriate group of dimensionless variables, the momentum equations for primary and secondary flow are rendered nondimensional and shown to be controlled by six physical parameters-Hartmann number (Ha, Hall current parameter (Nh, Darcy number (Da, Forchheimer number (Fs, Ekman number (Ek and dimensionless pressure gradient parameter (Np, in addition to one geometric parameter-the orientation of the applied magnetic field (θ . Several special cases are extracted from the general model, including the non-porous case studied earlier by Ghosh and Pop (2006. A numerical solution is presented to the nonlinear coupled ordinary differential equations using both the Network Simulation Method and Finite Element Method, achieving excellent agreement. Additionally very good agreement is also obtained with the earlier analytical solutions of Ghosh and Pop (2006. for selected Ha, Ek and Nh values. We examine in detail the effects of magnetic field, rotation, Hall current, bulk porous matrix drag, second order porous impedance, pressure gradient and magnetic field inclination on primary and secondary velocity distributions and also frictional shear stresses at the plates. Primary velocity is seen to decrease

  17. The effect of model inclination during fabrication on mouthguard calliper-measured and CT scan-assessed thickness.

    Science.gov (United States)

    Farrington, Timothy; Coward, Trevor; Onambele-Pearson, Gladys; Taylor, Rebecca L; Earl, Philip; Winwood, Keith

    2016-06-01

    Excessive material thinning has been observed in the production of custom-made mouthguards in a number of studies, due to production anomalies that may lead to such thinning. This study investigated thinning material patterns of custom-made mouthguards when the anterior angulation of dental model was increased during the thermoforming process. A total of 60 samples of mouthguard blanks were thermoformed on identical maxillary models under four anterior inclination conditions (n = 4 × 15): control 0, 15, 30 and 45°. Each mouthguard sample was measured, using an electronic calliper gauge at three anatomical points (anterior labial sulcus, posterior occlusion and posterior lingual). Mouthguards were then CT scanned to give a visual representation of the surface thickness. Data showed a significant difference (P < 0.005) in the anterior mouthguard thickness between the four levels of anterior inclination, with the 45° inclination producing the thickest mouthguards, increasing the mean anterior thickness by 75% (2.8 mm, SD: 0.16) from the model on a flat plane (1.6 mm, SD: 0.34). Anterior model inclination of 30 and 45° inclinations increased consistencies between the thickest and thinnest mouthguards in the anterior region of these sample groups. This study highlights the importance of standardizing the thermoforming process, as this has a significant effect on the quality and material distribution of the resultant product. In particular, greater model inclination is advised as this optimizes the thickness of the anterior sulcus of the mouthguard which may be more prominently at risk from sport-related impact. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. The effect of inclined step stool on the quality of chest compression during in-hospital cardiopulmonary resuscitation.

    Science.gov (United States)

    Yun, Seong-Woo; Lee, Byung Kook; Jeung, Kyung Woon; Park, Sang Wook; Choi, Sung Soo; Lee, Chang-Hee; Ryu, So-Yeon

    2014-08-01

    A step stool is an ordinary device to improve the quality of chest compression (CC) during in-hospital cardiopulmonary resuscitation (CPR). We investigated the effect of an inclined step stool on the quality of CC during CPR on a hospital bed. We conducted a randomized crossover study of simulation using a manikin. Two different methods of CC were performed and compared: CC using a flat stool and CC using an inclined (20°) stool. Each session of CC was performed for 2 minutes using a metronome at a rate of 110 beats per minute. The primary outcome was the depth of CC. The adequate CC rate, duty cycle, rate of incomplete recoil, and the angle between the arm of the participants and the bed were also measured. The median value of the mean depth of CC was 50.5 mm (45.0-57.0 mm) in the flat stool group and 54.5 mm (47.0-58.3 mm) in the inclined stool group (P = .014). The adequate CC rate was significantly higher in the inclined stool group (84.2% [37.6%-99.1%] vs 57.0% [15.2%-95.0%]; P = .016). The duty cycle and the rate of incomplete recoil were comparable between the 2 groups. The angles between the arm of the participants and the bed were more vertical in the inclined stool group (84.0° ± 5.2° vs 81.0° ± 4.8°; P = .014). Using an inclined stool resulted in an improvement in the depth of CC and the adequate CC rate without increasing the rate of incomplete chest recoil. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Method to reduce variations of inclination angle of the acetabular component during mini-incision hip arthroplasty.

    Science.gov (United States)

    Nakamura, Shigeru; Matsuda, Kenta; Arai, Noriyuki; Kobayashi, Makoto; Wakimoto, Nobuhiro; Matsushita, Takashi

    2006-05-01

    To reduce variations of cup inclination after total hip arthroplasty using the mini-incision posterior approach, we introduced two techniques, one at a time. The first technique is measuring a pelvic tilt angle in the frontal plane in the initial lateral position in the operating room. The second technique is using a tilt-meter to adjust the direction of a cup holder. The purpose of this study was to evaluate the usefulness of these techniques. For 106 hips operated on, the cementless acetabular component was impacted using a cup holder targeting 45 degrees in inclination and 20 degrees in anteversion. These hips were divided into three consecutive groups. For the first group (30 hips), no radiograph in the lateral position was obtained, and the alignment frame of the cup holder was aligned parallel to the floor by eye measurement. For the second group (56 hips), we measured the pelvic tilt angle, and tilted the alignment frame by eye measurement. For the third group (20 hips), we measured the pelvic tilt angle and tilted the alignment frame using the tilt meter. Inclination and anteversion angles were measured on postoperative radiographs. The absolute value of the difference between the measured angle and the target angle was defined as the inclination error or anteversion error, respectively. The inclination error was more than 5 degrees for 33% in the first group, 20% in the second group, and 0% in the third group (P = 0.015, chi-squared test). There was a significant difference between the first group and the third group (P = 0.0039). For the anteversion error, there were no significant differences among the three groups. Adjustment using a tilt-meter after measuring a pelvic tilt angle is a useful method to reduce the rate of large inclination error.

  20. <strong>Size and local democracystrong>

    DEFF Research Database (Denmark)

    Mouritzen, Poul Erik; Rose, Lawrence

    2009-01-01

    The issue of the appropriate scale for local government has regularly appeared on the agenda of public sector reformers. In the empirical work devoted to this issue, the principal focus has been on the implications of size for efficiency in local service provision. Relatively less emphasis has been...... and investigated for each indicator in a successive, cumulative fashion employing a "funnel of causality" logic. The overall conclusion from these analyses is that the size of the local political system has a significant negative effect on the character of local democracy in about half of the models estimated...

  1. Application of inclined elliptic orbits - A new dimension in satellite sound broadcasting

    Science.gov (United States)

    Galligan, K. P.; Robson, D.

    1990-10-01

    The communications link between a geostationary satellite and a mobile user operating in a high latitude region is subject to fading through a combination of shadowing and multipath effects. The properties of the link may be substantially improved by the use of satellites in highly inclined elliptic (HEO) orbits, with a resultant improvement in availability of the satellite service. Such systems have been under study in Europe for several years primarily in connection with voice communications. The application to a sound broadcasting satellite service is currently under investigation within the Archimedes program of the European Space Agency. The design principles of such systems are described and the performance parameters for both applications within the wider European context are indicated. Finally, an initial economic assessment of the HEO system in comparison with geostationary satellite and terrestrial based alternatives is provided.

  2. An experimental investigation of stratified two-phase pipe flow at small inclinations

    Energy Technology Data Exchange (ETDEWEB)

    Espedal, Mikal

    1998-12-31

    The prediction of stratified flow is important for several industrial applications. Stratified flow experiments were carefully performed in order to investigate the performance of a typical model which uses wall friction factors based on single phase pipe flow as described above. The test facility has a 18.5 m long and 60 mm i.d. (L/D=300) acrylic test section which can be inclined between -10 {sup o} and +10 {sup o}. The liquid holdup was measured by using fast closing valves and the pressure gradients by using three differential pressure transducers. Interfacial waves were measured by thin wire conductance probes mounted in a plane perpendicular to the main flow. The experiments were performed using water and air at atmospheric pressure. The selected test section inclinations were between -3 {sup o} and +0.5 {sup o} to the horizontal plane. A large number of experiments were performed for different combinations of air and water flow rates and the rates were limited to avoid slug flow and stratified flow with liquid droplets. The pressure gradient and the liquid holdup were measured. In addition the wave probes were used to find the wave heights and the wave power spectra. The results show that the predicted pressure gradient using the standard models is approximately 30% lower than the measured value when large amplitude waves are present. When the flow is driven by the interfacial force the test section inclination has minor influence on the deviation between predicted and measured pressure gradients. Similar trends are apparent in data from the literature, although they seem to have gone unnoticed. For several data sets large spread in the predictions are observed when the model described above was used. Gas wall shear stress experiments indicate that the main cause of the deviation between measured and predicted pressure gradient and holdup resides in the modelling of the liquid wall friction term. Measurements of the liquid wall shear stress distribution

  3. Control by damping Injection of Electrodynamic Tether System in an Inclined Orbit

    DEFF Research Database (Denmark)

    Larsen, Martin Birkelund; Blanke, Mogens

    2009-01-01

    dynamical system. Based on this model, a nonlinear controller is designed that will make the system asymptotically stable around its open-loop equilibrium. The control scheme handles the time-varying nature of the system in a suitable manner resulting in a large operational region. The performance...... of the closed loop system is treated using Floquet theory, investigating the closed loop properties for their dependency of the controller gain and orbit inclination.......Control of a satellite system with an electrodynamic tether as actuator is a time-periodic and underactuated control problem. This paper considers the tethered satellite in a Hamiltonian framework and determines a port-controlled Hamiltonian formulation that adequately describes the nonlinear...

  4. Stochastic Response of an Inclined Shallow Cable with Linear Viscous Dampers under Stochastic Excitation

    DEFF Research Database (Denmark)

    Zhou, Qiang; Nielsen, Søren R.K.; Qu, Weilian

    2010-01-01

    Considering the coupling between the in-plane and out-of-plane vibration, the stochastic response of an inclined shallow cable with linear viscous dampers subjected to Gaussian white noise excitation is investigated in this paper. Selecting the static deflection shape due to a concentrated force...... at the dampers location and the first sine term as shape functions, a reduced four-degree-of-freedom system of nonlinear stochastic ordinary differential equations are derived to describe dynamic response of the cable. Since only polynomial-type terms are contained, the fourth-order cumulant-neglect closure...... and viscous coefficient of the damper are fixed. Moreover, the peak frequency and half-band width of the spectra of both the in-plane and the out-of-plane displacements are increasing with excitation level when the damper size is constant. It is also observed that, even though the actual optimal damper size...

  5. The inclination to evil and the punishment of crime - from the bible to behavioral genetics.

    Science.gov (United States)

    Gold, Azgad; S Appelbaum, Paul

    2014-01-01

    The evolving field of behavioral genetics is gradually elucidating the complex interplay between genes and environment. Scientific data pertaining to the behavioral genetics of violent behavior provides a new context for an old dilemma regarding criminal responsibility and punishment: if the inclination to violent behavior is inherent in someone's nature, how should it affect punishment for crime? Should it be considered as a mitigating or an aggravating factor? Given psychiatrists' increasing involvement in providing testimony on behavioral genetics in the criminal justice system, this paper first provides the necessary background required for understanding how this question arises and reviews the relevant literature. Then, we address this question from the perspective of the Bible and its commentators, in the belief that their insights may enrich the contemporary discussion of this question.

  6. Diagnosing Model Errors in Simulations of Solar Radiation on Inclined Surfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu; Sengupta, Manajit

    2016-06-01

    Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results suggest that an isotropic transposition model developed by Badescu substantially underestimates diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can be used as a guide for future development of physics-based transposition models.

  7. Radiation effect on the mixed convection flow of a viscoelastic fluid along an inclined stretching sheet

    Energy Technology Data Exchange (ETDEWEB)

    Qasim, Muhammad [COMSATS Institute of Information Technology, Islamabad (Pakistan). Dept. of Mathematics; Hayat, Tasawar [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; Obaidat, Saleem [King Saud Univ., Riyadh (Saudi Arabia). Dept. of Mathematics

    2012-03-15

    This study concentrates on the heat transfer analysis of the steady flow of viscoelastic fluid along an inclined stretching surface. Analysis has been carried out in the presence of thermal radiation and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The equations of continuity, momentum and energy are reduced into the system of governing differential equations and solved by homotopy analysis method (HAM). The velocity and temperature are illustrated through graphs. Exact and homotopy solutions are compared in a limiting sense. It is noticed that viscoelastic parameter decreases the velocity and boundary layer thickness. It is also observed that increasing values of viscoelastic parameter reduces the thickness of momentum boundary layer and increase the heat transfer rate. However, it is found that increasing the radiation parameter has the effect of decreasing the local Nusselt number. (orig.)

  8. Mixed convection heat and mass transfer in peristaltic flow with chemical reaction and inclined magnetic field

    Science.gov (United States)

    Noreen, S.; Hayat, T.; Alsaedi, A.; Qasim, M.

    2013-09-01

    A mathematical model is constructed to investigate the mixed convective heat and mass transfer effects on peristaltic flow of magnetohydrodynamic pseudoplastic fluid in a symmetric channel. An analysis has been carried out to examine the impact of an inclined magnetic field and chemical reaction in presence of heat sink/source. Mechanics of flow and heat/mass transfer described in terms of continuity, linear momentum, energy and concentration equations are predicted by using long wavelength and low Reynolds number. Expressions for stream function, temperature, concentration and pressure gradient are derived. Numerical simulation is performed for the rise in pressure per wave length. Effects of several physical parameters on the flow quantities are analyzed.

  9. Flow distribution in a solar collector panel with horizontally inclined absorber strips

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontally inclined strips. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid...... dynamics (CFD) calculations. Further, experimental investigations of a 12.5 m(2) solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...... rate, properties of solar collector fluid, solar collector fluid inlet temperature and collector tilt angle are shown. The flow distribution through the absorber fins is uniform if high flow rates are used. By decreased flow rate and decreased content of glycol in the glycol/water mixture used as solar...

  10. Effects of inclination and eccentricity on optimal trajectories between earth and Venus

    Science.gov (United States)

    Gravier, J.-P.; Marchal, C.; Culp, R. D.

    1973-01-01

    The true optimal transfers, including the effects of the inclination and eccentricity of the planets' orbits, between earth and Venus are presented as functions of the corresponding idealized Hohmann transfers. The method of determining the optimal transfers using the calculus of variations is presented. For every possible Hohmann window, specified as a continuous function of the longitude of perihelion of the Hohmann trajectory, the corresponding numerically exact optimal two-impulse transfers are given in graphical form. The cases for which the optimal two-impulse transfer is the absolute optimal, and those for which a three-impulse transfer provides the absolute optimal transfer are indicated. This information furnishes everything necessary for quick and accurate orbit calculations for preliminary Venus mission analysis. This makes it possible to use the actual optimal transfers for advanced planning in place of the standard Hohmann transfers.

  11. Approaching the brachistochrone using inclined planes—striving for shortest or equal travelling times

    Science.gov (United States)

    Theilmann, Florian

    2017-01-01

    The classical brachistochrone problem asks for the path on which a mobile point M just driven by its own gravity will travel in the shortest possible time between two given points A and B. The resulting curve, the cycloid, will also be the tautochrone curve, i.e. the travelling time of the mobile point will not depend on its starting position. We discuss three similar problems of increasing complexity that restrict the motion to inclined planes. Without using calculus we derive the respective optimal geometry and compare the theoretical values to measured travelling times. The observed discrepancies are quantitatively modelled by including angular motion and friction. We also investigate the correspondence between the original problem and our setups. The topic provides a conceptually simple yet non-trivial problem setting inviting for problem based learning and complex learning activities such as planing suitable experiments or modelling the relevant kinematics.

  12. Stochastic Response of an Inclined Shallow Cable with Linear Viscous Dampers under Stochastic Excitation

    DEFF Research Database (Denmark)

    Zhou, Qiang; Nielsen, Søren R.K.; Qu, Weilian

    2010-01-01

    of several factors, which include excitation level and direction as well as damper size, on the dynamic response of the cable is extensively investigated. It is found that the sum of mean square in-plane and out-of-plane displacement is primarily independent of the load direction when the excitation level...... and viscous coefficient of the damper are fixed. Moreover, the peak frequency and half-band width of the spectra of both the in-plane and the out-of-plane displacements are increasing with excitation level when the damper size is constant. It is also observed that, even though the actual optimal damper size......Considering the coupling between the in-plane and out-of-plane vibration, the stochastic response of an inclined shallow cable with linear viscous dampers subjected to Gaussian white noise excitation is investigated in this paper. Selecting the static deflection shape due to a concentrated force...

  13. Exploring the Strategic Inclinations of Japanese Environmental NPOs in Post-Fukushima Japan

    Directory of Open Access Journals (Sweden)

    Mark Heuer

    2018-03-01

    Full Text Available Following Sine and David’s research on the potential of environmental jolts shifting the status quo in U.S. energy policy, we focus on the potential for environmental non-profit organizations in Japan to shift the status quo through institutional entrepreneurial efforts following the environmental jolt from the Fukushima nuclear power catastrophe. We evaluate the institutionalization of energy policy in Japan both pre- and post-Fukushima as the context for examining the potential for change in Japan’s energy policy. We utilize mixed qualitative and quantitative research methods to evaluate the attitudes and strategic inclinations of privately funded Japanese environmental non-profit organizations. Following Dreiling and Wolf’s model of material–organizational dependencies versus ideological motivations of non-profit organizations, we develop a typology to identify which, if any, segments of environmental Japanese non-profit organizations might pursue institutional entrepreneurial (Levy and Scully opportunities in support of renewable energy policy.

  14. Experimental Study of Heat Transfer Enhancements from Array of Alternate Rectangular Dwarf Fins at Different Inclinations

    Science.gov (United States)

    Awasarmol, Umesh Vandeorao; Pise, Ashok T.

    2018-02-01

    The main objective of this experimental work is to investigate and compare heat transfer enhancement of alternate dwarf fin array at different angles of inclination. In this study, the steady state heat transfer from the full length fin arrays and alternate dwarf fin arrays are measured in natural convection and radiation environment. Largest increase in the Nusselt number was achieved with alternate dwarf fin at angle of orientation 90°, which shows about 28% enhanced heat transfer coefficient as opposed to the full-length fin array with 25% saving in material. In case of non-black FAB, contribution of radiation heat transfer is found to be very small nearly within 1% of the heater input. After coating lamp black contribution of radiation heat transfer is found to increase to about 3-4% of the heater input in the range of temperatures considered in this study.

  15. Performance Analysis of Transposition Models Simulating Solar Radiation on Inclined Surfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu; Sengupta, Manajit

    2016-06-01

    Transposition models are widely used in the solar energy industry to simulate solar radiation on inclined photovoltaic (PV) panels. These transposition models have been developed using various assumptions about the distribution of the diffuse radiation, and most of the parameterizations in these models have been developed using hourly ground data sets. Numerous studies have compared the performance of transposition models, but this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty using high-resolution ground measurements in the plane of array. Our results suggest that the amount of aerosol optical depth can affect the accuracy of isotropic models. The choice of empirical coefficients and the use of decomposition models can both result in uncertainty in the output from the transposition models. It is expected that the results of this study will ultimately lead to improvements of the parameterizations as well as the development of improved physical models.

  16. Assessment of the current state of Alazhar Mosque, Cairo, Egypt: Continuous Monitoring of Minarets Inclination

    Science.gov (United States)

    Aly, Nevin; Hamed, Ayman

    2017-04-01

    Al-Azhar considered one of the oldest mosques and the first theological college founded in Cairo. The main building material used in the mosque construction is dolomitic limestone and lime mortar. In many cases the wind affects the monumental structures and the direct action is related to the air flow by the rise of significant forces acting upon the surface of the structure. The inclination of the Mosque five minarets was monitored continuously in three dimensions X, Y &Z. Some oscillation sensors are installed on the top of the solid part of each minaret while the other sensors have been installed inside the minaret bulb to study the difference in dynamic behavior. From the recording data, it is obviously readable that all minarets are continuously oscillating in the three dimensions and such data is helpful for studying the dynamic behaviors of minarets which directly related to local wind forces.

  17. Linearized transfer between inclined circular orbits using low-thrust blow down propulsion system

    Science.gov (United States)

    Kechichian, J. A.; White, L. K.

    1983-01-01

    Noncoplanar transfers between neighboring circular orbits are presented for spacecraft using their own low-thrust blow down propulsion system. It is assumed that the out-of-plane angle between the decaying thrust vector and the current orbit plane remains constant for each extended burn. Switching conditions are derived for the cutoff and relight of the propulsion system in order to carry out a given transfer with inclination change. Furthermore the location where the thrust acceleration is initially applied with respect to the line of nodes of the two orbits is uniquely determined. Finally an analytic derivation of the linearized coplanar motion for stationkeeping and terminal rendezvous studies is also presented and a scheme for deriving the second order correction shown.

  18. Mine water pollution studies in Chapha Incline, Umaria Coalfield, Eastern Madhya Pradesh, India

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, V.; Banerjee, A.K. [Hari Singh Gour University, Sagar (India). Dept. of Chemistry

    1992-06-01

    Mining effects physical and chemical changes in the mine environment resulting in water pollution. Based on the geological distribution the coal mines in the state of Madhya Pradesh, the Coalfield can be categorised into three basins Northern, Southern and Satpura. The Northern belt lies along the Sone Valley whilst the Southern one lies within Mahanadi Valley and the Satpura basin lies south of the alluvial tract. Mine water pollution study reported in this paper is concerned with Chapha Incline, Umaria Coalfield in Eastern Madhya Pradesh. The water analysis was carried out on representative samples obtained from the site on pre-Monsoon and post-monsoon seasons, and reference samples were obtained from the area in the vicinity of the site of investigation. The samples were analysed in the laboratory for determining water quality parameters including trace element detection and microbial analyses. The chemical analysis results of mine water are presented in the form of Durov diagrams. 10 refs., 3 figs., 4 tabs.

  19. Entropy Generation in Magnetohydrodynamic Mixed Convection Flow over an Inclined Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Muhammad Idrees Afridi

    2016-12-01

    Full Text Available This research focuses on entropy generation rate per unit volume in magneto-hydrodynamic (MHD mixed convection boundary layer flow of a viscous fluid over an inclined stretching sheet. Analysis has been performed in the presence of viscous dissipation and non-isothermal boundary conditions. The governing boundary layer equations are transformed into ordinary differential equations by an appropriate similarity transformation. The transformed coupled nonlinear ordinary differential equations are then solved numerically by a shooting technique along with the Runge-Kutta method. Expressions for entropy generation (Ns and Bejan number (Be in the form of dimensionless variables are also obtained. Impact of various physical parameters on the quantities of interest is seen.

  20. Isotropic Single Negative Metamaterials

    Directory of Open Access Journals (Sweden)

    P. Protiva

    2008-09-01

    Full Text Available This paper presents the application of simple, and therefore cheap, planar resonators for building 3D isotropic metamaterials. These resonators are: a broadside-coupled split ring resonator with a magnetic response providing negative permeability; an electric dipole terminated by a loop inductor together with a double H-shaped resonator with an electric response providing negative permittivity. Two kinds of 3D isotropic single negative metamaterials are reported. The first material consists of unit cells in the form of a cube bearing on its faces six equal planar resonators with tetrahedral symmetry. In the second material, the planar resonators boxed into spherical plastic shells and randomly distributed in a hosting material compose a real 3D volumetric metamaterial with an isotropic response. In both cases the metamaterial shows negative permittivity or permeability, according to the type of resonators that are used. The experiments prove the isotropic behavior of the cells and of the metamaterial specimens.

  1. Frictional characteristics of erythrocytes on coated glass plates subject to inclined centrifugal forces.

    Science.gov (United States)

    Kandori, Takashi; Hayase, Toshiyuki; Inoue, Kousuke; Funamoto, Kenichi; Takeno, Takanori; Ohta, Makoto; Takeda, Motohiro; Shirai, Atsushi

    2008-10-01

    In recent years a diamond-like carbon (DLC) film and a 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer have attracted attention as coating materials for implantable artificial organs or devices. When these materials are coated on vascular devices, compatibility to blood is an important problem. The present paper focuses on friction characteristics of erythrocytes to these coating materials in a medium. With an inclined centrifuge microscope developed by the authors, observation was made for erythrocytes moving on flat glass plates with and without coating in a medium of plasma or saline under the effect of inclined centrifugal force. Friction characteristics of erythrocytes with respect to these coating materials were then measured and compared to each other to characterize DLC and MPC as coating materials. The friction characteristics of erythrocytes in plasma using the DLC-coated and noncoated glass plates are similar, changing approximately proportional to the 0.5th power of the cell velocity. The cells stick to these plates in saline as well, implying the influence of plasma protein. The results using the MPC-coated plate in plasma are similar to those of the other plates for large cell velocities, but deviate from the other results with decreased cell velocity. The results change nearly proportional to the 0.75th power of the cell velocity in the range of small velocities. The results for the MPC-coated plate in saline are similar to that in plasma but somewhat smaller, implying that the friction characteristics for the MPC-coated plate are essentially independent of plasma protein.

  2. Evaluation of different models to estimate the global solar radiation on inclined surface

    Science.gov (United States)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  3. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  4. FEATURES OF DESIGN OF TIED-ARCH BRIDGES WITH FLEXIBLE INCLINED SUSPENSION HANGERS

    Directory of Open Access Journals (Sweden)

    V. O. Samosvat

    2017-10-01

    Full Text Available Purpose. Investigation and analysis of the hanger arrangement and the structural stability of a Network arch bridge – a tied-arch bridge with inclined hangers that cross each other at least twice. It is also necessary to make a comparative analysis with other types of hanger arrangements. Methodology. The authors in their research investigated a large number of parameters to determine their influence in the force distribution in the arch. Eventually they determined optimal values for all parameters. These optimal values allowed developing a design guide that leads to optimal arch design. When solving this problem, the authors used three-dimensional finite element models and the objective was to determine the most suitable solution for a road bridge, with a span of 100 meters, consisting of two inclined steel arches, located on a road with two traffic lanes, subjected to medium traffic. The virtual prototype of the model is performed by finite element simulator Midas Civil. Findings. In this study, for the bridge deck, a concrete tie appears to be the best solution considering the structural behavior of network arches, but economic advantages caused by easier erection may lead to steel or a composite bridge deck as better alternatives. Design requirements and local conditions of each particular bridge project will decide the most economic deck design.Originality. To ensure passenger comfort and the stability and continuity of the track, deformations of bridges are constricted. A network arch is a stiff structure with small deflections and therefore suitable to comply with such demands even for high speed railway traffic.
A network arch bridge with a concrete tie usually saves more than half the steel required for tied arches with vertical hangers and concrete ties. Practical value. Following the study design advice given in this article leads to savings of about 60 % of structural steel compared with conventional tied arch bridges with

  5. Series Solution for Steady Three-Dimensional Flow due to Spraying on Inclined Spinning Disk by Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    Saeed Dinarvand

    2012-01-01

    Full Text Available The steady three-dimensional flow of condensation or spraying on inclined spinning disk is studied analytically. The governing nonlinear equations and their associated boundary conditions are transformed into the system of nonlinear ordinary differential equations. The series solution of the problem is obtained by utilizing the homotopy perturbation method (HPM. The velocity and temperature profiles are shown and the influence of Prandtl number on the heat transfer and Nusselt number is discussed in detail. The validity of our solutions is verified by the numerical results. Unlike free surface flows on an incline, this through flow is highly affected by the spray rate and the rotation of the disk.

  6. Development of a new mathematical model for prediction of surface subsidence due to inclined coal-seam mining

    Energy Technology Data Exchange (ETDEWEB)

    Asadi, A.; Shahriar, K.; Goshtasbi, K.; Najm, K. [Islam Azad University, Tehran (Iran). Dept. of Mining Engineering

    2005-01-01

    Subsidence phenomenon as an unwanted consequence of underground mining can cause problems for environment and surface structures in mine area. Surface subsidence prediction for inclined and steep seams has been given less attention than horizontal seams due to the difficulties involved in the extraction of such coal-seams. This paper introduces a new profile function method for prediction of surface subsidence due to inclined coal-seam mining. The results of calculation with the new function indicate that the predicted value has good agreement with the measured data.

  7. Variability of photovoltaic panels efficiency depending on the value of the angle of their inclination relative to the horizon

    Directory of Open Access Journals (Sweden)

    Majdak Marek

    2017-01-01

    Full Text Available The objective of this paper was to determine the relationship between the efficiency of photovoltaic panels and the value of the angle of their inclination relative to the horizon. For the purpose of experimental research have been done tests on the photovoltaic modules made of monocrystalline, polycrystalline and amorphous silicon. The experiment consisted of measurement of the voltage and current generated by photovoltaic panels at a known value of solar radiation and a specified resistance value determined by using resistor with variable value of resistance and known value of the angle of their inclination relative to the horizon.

  8. Strongly correlated systems experimental techniques

    CERN Document Server

    Mancini, Ferdinando

    2015-01-01

    The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...

  9. Strongly Correlated Systems Theoretical Methods

    CERN Document Server

    Avella, Adolfo

    2012-01-01

    The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as po...

  10. Strongly correlated systems numerical methods

    CERN Document Server

    Mancini, Ferdinando

    2013-01-01

    This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...

  11. Strongly nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2014-01-01

    This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...

  12. Flavour Democracy in Strong Unification

    CERN Document Server

    Abel, S A; Abel, Steven; King, Steven

    1998-01-01

    We show that the fermion mass spectrum may naturally be understood in terms of flavour democratic fixed points in supersymmetric theories which have a large domain of attraction in the presence of "strong unification". Our approach provides an alternative to the approximate Yukawa texture zeroes of the Froggatt-Nielsen mechanism. We discuss a particular model based on a broken gauged $SU(3)_L\\times SU(3)_R$ family symmetry which illustrates our approach.

  13. Flow with Negative Differential Viscosity

    OpenAIRE

    川口, 明彦; Akihiko, KAWAGUCHI; 京大人環; Graduate School of Human and Enviromental Studies, Kyoto University

    2000-01-01

    Only a monotonous flow appears to the movement of the incompressible flow body in a porous medium under a simple condition according to Darcy's law. However, the character of the flow changes greatly if we think about the model by which the temperature dependency in the coefficient of viscosity is considered. Becoming of the inclination of pressure deifference-flow velocity specific characteristics nagative if we think about the one-dimensnional flow under a suitable condition, that is, "Flow...

  14. NEGATION AFFIXES IN ENGLISH

    Directory of Open Access Journals (Sweden)

    Dedy Subandowo -

    2017-02-01

    Full Text Available Abstract: This research entitled "Negation Affixes in English". This study is aimed to describe the various negation affixes in English, morphological process, morphophonemic and meaning. The research data were taken from various sources of English grammar book, morphology, research journal and the book which relatees to the research. English grammar books used in this study are written by Otto Jesperson, Marcella Frank, Greenbaum and Geoffrey Leech.  The method used in this research is the descriptive-qualitative method. While the data collection techniques are performed by using jot-down method. And the results of analysis are presented in tabular form and descriptive method. The result of the research shows that English has six types of negative affixes which are categorized by the intensity of its appearance, such as dis-, in-, non-, un-, anti- and -less. Based on the function, negation affixes are divided into several categories such as adjectives, nouns, verbs, and adverbs. The morphophonemic affix in- has four allomorphs, they are in-, im-, il- and ir- . While the analysis revealed that negation affixes have some basic meanings, such as ‘not’, ‘without’, and ‘anti’.

  15. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.

    2002-01-01

    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  16. Strongly Interacting Light Dark Matter

    Directory of Open Access Journals (Sweden)

    Sebastian Bruggisser, Francesco Riva, Alfredo Urbano

    2017-09-01

    Full Text Available In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM can appear weakly coupled at small energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo Nambu-Goldstone Bosons and Goldstini are interesting targets for LHC missing-energy searches.

  17. Strongly interacting light dark matter

    International Nuclear Information System (INIS)

    Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo

    2016-07-01

    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  18. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.

    1985-01-01

    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  19. Scalar strong interaction hadron theory

    CERN Document Server

    Hoh, Fang Chao

    2015-01-01

    The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

  20. Strong Plate, Weak Slab Dichotomy

    Science.gov (United States)

    Petersen, R. I.; Stegman, D. R.; Tackley, P.

    2015-12-01

    Models of mantle convection on Earth produce styles of convection that are not observed on Earth.Moreover non-Earth-like modes, such as two-sided downwellings, are the de facto mode of convection in such models.To recreate Earth style subduction, i.e. one-sided asymmetric recycling of the lithosphere, proper treatment of the plates and plate interface are required. Previous work has identified several model features that promote subduction. A free surface or pseudo-free surface and a layer of material with a relatively low strength material (weak crust) allow downgoing plates to bend and slide past overriding without creating undue stress at the plate interface. (Crameri, et al. 2012, GRL)A low viscosity mantle wedge, possibly a result of slab dehydration, decouples the plates in the system. (Gerya et al. 2007, Geo)Plates must be composed of material which, in the case of the overriding plate, are is strong enough to resist bending stresses imposed by the subducting plate and yet, as in the case of the subducting plate, be weak enough to bend and subduct when pulled by the already subducted slab. (Petersen et al. 2015, PEPI) Though strong surface plates are required for subduction such plates may present a problem when they encounter the lower mantle.As the subducting slab approaches the higher viscosity, lower mantle stresses are imposed on the tip.Strong slabs transmit this stress to the surface.There the stress field at the plate interface is modified and potentially modifies the style of convection. In addition to modifying the stress at the plate interface, the strength of the slab affects the morphology of the slab at the base of the upper mantle. (Stegman, et al 2010, Tectonophysics)Slabs that maintain a sufficient portion of their strength after being bent require high stresses to unbend or otherwise change their shape.On the other hand slabs that are weakened though the bending process are more amenable to changes in morphology. We present the results of

  1. Nedtrykt af negative nyheder

    DEFF Research Database (Denmark)

    Skovsgaard, Morten; Søberg, Pernille Frantz

    2016-01-01

    I adskillige år er det blevet debatteret, hvorvidt nyhedernes negative fokus har konsekvenser for borgerne, og om det i sid-ste ende får flere til at vende ryggen til nyhederne. Vores viden om effekterne af positive og negative nyheder er dog begrænset, og derfor undersøges det i denne artikel......, hvordan henholdsvis positive og negative tv-nyheder påvirker seernes humør, hukom-melse af information fra indslaget og lyst til at se yderligere tv-nyheder. Det gør vi i et survey-eksperiment (N=204), hvor tre grupper så enten et originalt indslag eller det samme indslag klippet med henholdsvis et...

  2. On Various Negative Translations

    Directory of Open Access Journals (Sweden)

    Gilda Ferreira

    2011-01-01

    Full Text Available Several proof translations of classical mathematics into intuitionistic mathematics have been proposed in the literature over the past century. These are normally referred to as negative translations or double-negation translations. Among those, the most commonly cited are translations due to Kolmogorov, Godel, Gentzen, Kuroda and Krivine (in chronological order. In this paper we propose a framework for explaining how these different translations are related to each other. More precisely, we define a notion of a (modular simplification starting from Kolmogorov translation, which leads to a partial order between different negative translations. In this derived ordering, Kuroda and Krivine are minimal elements. Two new minimal translations are introduced, with Godel and Gentzen translations sitting in between Kolmogorov and one of these new translations.

  3. Negative ion sourcery

    International Nuclear Information System (INIS)

    Os, C.F.A. van.

    1989-01-01

    The work described in this thesis is involved by current research programs in the field of nuclear-fusion. A brief introduction to fusion is given, anticipated problems related to current drive of the fusion plasma are pinpointed and probable suggestions to overcome these problems are described. One probable means for current drive is highlighted; Neutral Beam Injection (NBI). This is based on injecting a 1 MeV neutral hydrogen or deuterium beam into a fusion plasma. Negative ions are needed as primary particles because they can easily be neutralized at 1 MeV. The two current schemes for production of negative ions are described, volume production and negative surface ionization. The latter method is extensively studied in this thesis. (author). 171 refs.; 55 figs.; 7 tabs

  4. Natural convection in inclined hemispherical cavities with isothermal disk and dome faced downwards. Experimental and numerical study

    International Nuclear Information System (INIS)

    Baïri, A.; Monier-Vinard, E.; Laraqi, N.; Baïri, I.; Nguyen, M.N.; Dia, C.T.

    2014-01-01

    The objective of this work is to propose correlations of Nusselt–Rayleigh type for controlling the thermal state of electronic devices used in various engineering sectors such as thermoregulation of electronic devices, solar energy, aeronautics or safety and security. The assemblies are contained in hemispherical air-filled cavities whose disk is maintained isothermal and inclined at an angle varying between 90° (vertical position) and 180° (disk horizontal with isothermal dome oriented downwards). The numerical approach performed by means of the finite volume method for Rayleigh numbers varying between 10 4 and 5 × 10 8 is validated by measurements for various combinations of inclination angle and Rayleigh number. The results of this work show that the natural convective heat transfer are between 13% and 21% higher when the disk is maintained isothermal as compared to the case corresponding to imposed heat flux on the disk, for the same inclination angle and Rayleigh ranges. - Highlights: • Quantification of steady state natural convective heat transfer. • Nu–Ra correlations for large Ra range and Dirichlet-type boundary condition. • Hemispherical air-filled inclined enclosure with dome oriented downwards. • Thermal control of electronic devices for engineering applications. • Experimental and numerical approaches

  5. Experimental Investigation of Two-Phase Oil (D130)-Water Flow in 4″ Pipe for Different Inclination Angles

    Science.gov (United States)

    Shaahid, S. M.; Basha, Mehaboob; Al-Hems, Luai M.

    2018-03-01

    Oil and water are often produced and transported together in pipelines that have various degrees of inclination from the horizontal. The flow of two immiscible liquids oil and water in pipes has been a research topic since several decades. In oil and chemical industries, knowledge of the frictional pressure loss in oil-water flows in pipes is necessary to specify the size of the pump required to pump the emulsions. An experimental investigation has been carried out for measurement of pressure drop of oil (D130)-water two-phase flows in 4 inch diameter inclined stainless steel pipe at different flow conditions. Experiments were conducted for different inclination angles including; 0°, 15°, 30° (for water cuts “WC” 0 - 100%). The flow rates at the inlet were varied from 4000 to 8000 barrels-per-day (BPD). For a given flow rate the frictional pressure drop has been found to increase (for all angles) from WC = 0 - 60%, and thereafter friction pressure drop decreases, this could be due phase inversion. For a given WC 40%, the frictional pressure drop has been found to increase with angle and flow rate. It has been noticed that inclination angle has appreciable effect on frictional pressure drop.

  6. Cart pushing: the effect of magnitude and direction of push force, and of trunk inclination on low back loading

    NARCIS (Netherlands)

    Hoozemans, M.J.M.; Faber, G.S.; Slaghuis, W.; van Dieen, J.H.

    2007-01-01

    The primary objective of the present study was to quantify the relative effect of the magnitude and direction of the exerted push force and of trunk inclination on the mechanical load at the low back using a regression analysis for correlated data. In addition, we explored the effects of handle

  7. Experimental examination of the effects of televised motor vehicle commercials on risk-positive attitudes, emotions and risky driving inclinations.

    Science.gov (United States)

    Vingilis, Evelyn; Roseborough, James E W; Wiesenthal, David L; Vingilis-Jaremko, Larissa; Nuzzo, Valentina; Fischer, Peter; Mann, Robert E

    2015-02-01

    This study examined the short-term effects of risky driving motor vehicle television commercials on risk-positive attitudes, emotions and risky driving inclinations in video-simulated critical road traffic situations among males and females, within an experimental design. Participants were randomly assigned to one of three televised commercial advertising conditions embedded in a television show: a risky driving motor vehicle commercial condition, a non-risky driving motor vehicle commercial condition and a control non-motor vehicle commercial condition. Participants subsequently completed the Implicit Attitude Test (IAT) to measure risk-positive attitudes, Driver Thrill Seeking Scale (DTSS) to measure risk-positive emotions and the Vienna Risk-Taking Test - Traffic (WRBTV) to measure risky driving inclinations. ANOVA analyses indicated that type of commercial participants watched did not affect their performance on the IAT, DTSS or WRBTV. However, a main effect of heightened risk-positive emotions and risky driving inclinations was found for males. Despite public and governmental concern that risky driving motor vehicle commercials may increase the likelihood that people exposed to these commercials engage in risky driving, this experimental study found no immediate effect of brief exposure to a risky driving motor vehicle commercial on risk-positive attitudes, emotions or risky driving inclinations. Subsequent research should examine the effects of cumulative exposure to risky driving motor vehicle television commercials and print advertisements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Studi Numerik Pengaruh Baffle Inclination Pada Alat Penukar Kalor Tipe Shell And Tube Terhadap Aliran Fluida Dan Perpindahan Panas

    Directory of Open Access Journals (Sweden)

    Rezky Fadil Arnaw

    2014-09-01

    Full Text Available Heat exchanger atau alat penukar kalor merupakan suatu peralatan yang digunakan untuk memindahkan sejumlah energi dalam bentuk panas dari satu fluida ke fluida yang lain. Perpindahan panas tersebut terjadi dari suatu fluida yang suhunya lebih tinggi ke fluida lain yang suhunya lebih rendah. Pada tugas akhir ini akan dilakukan penelitian tentang pengaruh baffle inclination terhadap aliran fluida dan perpindahan panas pada alat penukar kalor tipe shell and tube. Dalam penelitian ini akan dilakukan tiga variasi sudut baffle inclination yaitu 0º, 10° dan 20° dengan besar laju aliran massa yang divariasikan yaitu sebesar 0.5 kg/s, 1 kg/s dan 2 kg/s. Tipe baffle yang digunakan adalah single segmental baffle dengan baffle cut sebesar 36% dan menggunakan arah aliran jenis parallel. Hasil analisa simulasi menunjukkan bahwa laju aliran massa yang meningkat akan menyebabkan kenaikan pressure drop yang cukup drastis dan penurunan temperatur outlet. Alat penukar kalor dengan baffle inclination 0° memiliki nilai perpindahan panas terbaik jika dibandingkan dengan baffle inclination 10° dan 20°.

  9. Lifting style and participant’s sex do not affect optimal inertial sensor location for ambulatory assessment of trunk inclination

    NARCIS (Netherlands)

    Faber, G.S.; Chang, C.C.; Kingma, I.; Dennerlein, J.T.

    2013-01-01

    Trunk inclination (TI) is often used as a measure to quantify back loading in ergonomic workplace evaluation. The goal of the present study was to determine the effects of lifting style and participant's sex on the optimal inertial sensor (IS) location on the back of the trunk for the measurement of

  10. The effect of inclined position on stone free rates in patients with lower caliceal stones during SWL session

    Directory of Open Access Journals (Sweden)

    Basri Cakiroglu

    2015-03-01

    Full Text Available Objective: To compare the outcomes of shock wave lithotripsy (SWL combined with inclined position and SWL alone in patients with lower pole calyx stones. Methods: Seven hundred forty patients who underwent SWL treatment for lower pole renal stones with a total diameter of 2 cm or less were prospectively randomized into two groups. They were comparable in terms of age, sex, and stone diameters. Patients with lower calyceal stones (4-20 mm were randomized to SWL (368 patients or SWL with simultaneous inclination (372 patients with 30o head down Trendelenburg position. Shock wave and session numbers were standardized according to stone size. Additional standardized shock waves were given to patients with stone fragments determined by kidney urinary bladder film and ultrasound at weeks 1, 4, 10. Results: The overall stone free rate (SFR was 73% (268/368 in patients with SWL alone and 81% (300/372 in SWL with inclination at the end of 12th week (p = 0.015. No significant adverse events were noted in both treatment groups. Conclusion: Simultaneous inclination of patients during SWL session increase SFR in lower caliceal stones significantly compared to SWL treatment alone.

  11. Features in subjects with the frontal occlusal plane inclined toward the contralateral side of the mandibular deviation.

    Science.gov (United States)

    Uesugi, Shunsuke; Yonemitsu, Ikuo; Kokai, Satoshi; Takei, Maki; Omura, Susumu; Ono, Takashi

    2016-01-01

    The frontal occlusal plane of the maxilla generally inclines toward the ipsilateral side of the mandibular deviation in subjects with facial asymmetry; however, a few patients with facial asymmetry have their frontal occlusal planes inclined toward the contralateral side. We aimed to investigate the morphologic and functional features of such patients. The subjects were 40 patients with facial asymmetry divided into 2 groups based on the inclination of the frontal occlusal plane toward the ipsilateral or the contralateral side. We analyzed lateral and posteroanterior cephalometric radiographs and occlusal variables and evaluated temporomandibular joint symptoms. Statistical comparisons were performed between the 2 groups (P Occlusal force and occlusal contact area were significantly larger, and temporomandibular joint symptoms were more frequently found on the side of the upward-inclined frontal occlusal plane than on the opposite side in both groups. The features in the contralateral group in terms of occlusal force and temporomandibular disorders were clinically significant. Clinicians should note that the conditions associated with the contralateral group require less presurgical decompensation. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  12. The migration law of overlay rock and coal in deeply inclined coal seam with fully mechanized top coal caving.

    Science.gov (United States)

    Liu, Jian; Chen, Shan-Le; Wang, Hua-Jun; Li, Yu-Cheng; Geng, Xiaowei

    2015-07-01

    In a mine area, some environment geotechnics problems always occure, induced by mined-out region such as the subsidence and cracks at ground level, deformation and destruction of buildings, landslides destruction of water resources and the ecological environment. In order to research the migration of surrounding rock and coal in steeply inclined super high seams which used fully mechanized top coal caving, a working face of a certain mine was made as an example, analyzed the migration law of the overlay rock and coal under different caving ratio of fully mechanized top coal caving with numerical simulation analysis. The results suggest that the laws of overlay rock deformation caused by deeply inclined coal seam were different from horizontal coal seam. On the inclined direction, with an increase of dip angle and caving ratio, the vertical displacement of overlay rock and coal became greater, the asymmetric phenomenon of vertical displacement became obvious. On the trend direction, active region and transition region in goaf became smaller along with the increase of mining and caving ratio. On the contrary, the stable region area became greater. Therefore, there was an essential difference between the mechanism of surface movement deformation with deeply inclined coal seam and that with horizontal coal seam.

  13. Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface

    NARCIS (Netherlands)

    Weinhart, Thomas; Hartkamp, R.; Thornton, Anthony Richard; Luding, Stefan

    Dry, frictional, steady-state granular flows down an inclined, rough surface are studied with discrete particle simulations. From this exemplary flow situation, macroscopic fields, consistent with the conservation laws of continuum theory, are obtained from microscopic data by time-averaging and

  14. Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface

    NARCIS (Netherlands)

    Weinhart, Thomas; Hartkamp, Remco; Thornton, Anthony Richard; Luding, Stefan

    2013-01-01

    Dry, frictional, steady-state granular flows down an inclined, rough surface are studied with discrete particle simulations. From this exemplary flow situation, macroscopic fields, consistent with the conservation laws of continuum theory, are obtained from microscopic data by time-averaging and

  15. A new angle on clinging in geckos: incline, not substrate, triggers the deployment of the adhesive system

    Science.gov (United States)

    Russell, Anthony P.; Higham, Timothy E.

    2009-01-01

    Lizards commonly climb in complex three-dimensional habitats, and gekkotans are particularly adept at doing this by using an intricate adhesive system involving setae on the ventral surface of their digits. However, it is not clear whether geckos always deploy their adhesive system, given that doing so may result in decreased (i.e. reduction in speed) locomotor performance. Here, we investigate circumstances under which the adhesive apparatus of clinging geckos becomes operative, and examine the potential trade-offs between speed and clinging. We quantify locomotor kinematics of a gecko with adhesive capabilities (Tarentola mauritanica) and one without (Eublepharis macularius). Whereas, somewhat unusually, E. macularius did not suffer a decrease in locomotor performance with an increase in incline, T. mauritanica exhibited a significant decrease in speed between the level and a 10° incline. We demonstrate that this results from the combined influence of slope and the deployment of the adhesive system. All individuals kept their digits hyperextended on the level, but three of the six individuals deployed their adhesive system on the 10° incline, and they exhibited the greatest decrease in velocity. The deployment of the adhesive system was dependent on incline, not surface texture (600 grit sandpaper and Plexiglas), despite slippage occurring on the level Plexiglas substrate. Our results highlight the type of sensory feedback (gravity) necessary for deployment of the adhesive system, and the trade-offs associated with adhesion. PMID:19656797

  16. Experimental and numerical modelling of turbulent flow over an inclined backward-facing step in an open channel

    Czech Academy of Sciences Publication Activity Database

    Příhoda, Jaromír; Zubík, P.; Šulc, J.; Sedlář, M.

    2012-01-01

    Roč. 14, 4a (2012), s. 6-12 ISSN 1335-4205 R&D Projects: GA ČR GA103/09/0977 Institutional support: RVO:61388998 Keywords : open channel flow * inclined backward-facing step Subject RIV: BK - Fluid Dynamics

  17. ESTIMATION OF TOTAL SOLAR RADIATION INCIDENT ON AN INCLINED SURFACE OF A SOUTH-FACING GREENHOUSE ROOF

    Directory of Open Access Journals (Sweden)

    RONOH E.K.

    2017-12-01

    Full Text Available Solar radiation is the driving force for the surface energy balance in buildings such as greenhouses. Greenhouses are generally tilted towards the sun in order to maximize the solar irradiance on the surfaces. Precise computation of the solar radiation received on these surfaces assumes an important role in the energy simulation. It is practical to calculate the total solar irradiance on inclined surfaces based on the solar global and diffuse radiation intensities on horizontal surfaces. This study focused on estimating the total solar radiation incident on inclined greenhouse roof surfaces. In this work, a south-facing thermal box inclined at 26.5° from the horizontal was used for solar radiation measurements. Additionally, recorded solar radiation data were retrieved for the study location and used to develop an empirical correlation. The conversion factors for the beam, the diffuse and the reflected solar radiation components were essential in the prediction of the total solar radiation incident on the tilted surface. The measured solar radiation data were then compared with the simulated data. The model performance was assessed using both graphical and statistical methods. Overall, locally calibrated data led to a satisfactory improvement in estimation of the total solar radiation on an inclined surface.

  18. Relationship among Types of Growth Patterns, Buccolingual Molar Inclination and Cortical Bone Thickness of the Mandible: A CT Scan Study

    Directory of Open Access Journals (Sweden)

    Narendra Shriram Sharma

    2012-01-01

    Conclusion: The results of this study provide evidence that a significant, but complex relationship exists between structures of the mandibular body and types of growth pattern. The morphological features that relate to masticatory function and types of growth pattern are associated with the cortical bone thickness of the mandibular body and the buccolingual inclination of the first and second permanent mandibular molars.

  19. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  20. Physics of Strongly Coupled Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kraeft, Wolf-Dietrich [Universitat Rostock (Germany)

    2007-07-15

    Strongly coupled plasmas (or non-ideal plasmas) are multi-component charged many-particle systems, in which the mean value of the potential energy of the system is of the same order as or even higher than the mean value of the kinetic energy. The constituents are electrons, ions, atoms and molecules. Dusty (or complex) plasmas contain still mesoscopic (multiply charged) particles. In such systems, the effects of strong coupling (non-ideality) lead to considerable deviations of physical properties from the corresponding properties of ideal plasmas, i.e., of plasmas in which the mean kinetic energy is essentially larger than the mean potential energy. For instance, bound state energies become density dependent and vanish at higher densities (Mott effect) due to the interaction of the pair with the surrounding particles. Non-ideal plasmas are of interest both for general scientific reasons (including, for example, astrophysical questions), and for technical applications such as inertially confined fusion. In spite of great efforts both experimentally and theoretically, satisfactory information on the physical properties of strongly coupled plasmas is not at hand for any temperature and density. For example, the theoretical description of non-ideal plasmas is possible only at low densities/high temperatures and at extremely high densities (high degeneracy). For intermediate degeneracy, however, numerical experiments have to fill the gap. Experiments are difficult in the region of 'warm dense matter'. The monograph tries to present the state of the art concerning both theoretical and experimental attempts. It mainly includes results of the work performed in famous Russian laboratories in recent decades. After outlining basic concepts (chapter 1), the generation of plasmas is considered (chapter 2, chapter 3). Questions of partial (chapter 4) and full ionization (chapter 5) are discussed including Mott transition and Wigner crystallization. Electrical and