Strongly Correlated Systems Theoretical Methods
Avella, Adolfo
2012-01-01
The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as po...
Strongly correlated systems numerical methods
Mancini, Ferdinando
2013-01-01
This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...
Strongly correlated systems experimental techniques
Mancini, Ferdinando
2015-01-01
The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...
PREFACE: Strongly correlated electron systems Strongly correlated electron systems
Saxena, Siddharth S.; Littlewood, P. B.
2012-07-01
This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which
EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems
Ronning, Filip; Batista, Cristian
2011-03-01
Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed
Strongly correlated perovskite fuel cells
Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram
2016-06-01
Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.
Strongly correlating liquids and their isomorphs
Pedersen, Ulf R.; Gnan, Nicoletta; Bailey, Nicholas P.; Schröder, Thomas B.; Dyre, Jeppe C.
2010-01-01
This paper summarizes the properties of strongly correlating liquids, i.e., liquids with strong correlations between virial and potential energy equilibrium fluctuations at constant volume. We proceed to focus on the experimental predictions for strongly correlating glass-forming liquids. These predictions include i) density scaling, ii) isochronal superposition, iii) that there is a single function from which all frequency-dependent viscoelastic response functions may be calculated, iv) that...
Theoretical studies of strongly correlated fermions
Energy Technology Data Exchange (ETDEWEB)
Logan, D [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Strongly correlated fermions are investigated. An understanding of strongly correlated fermions underpins a diverse range of phenomena such as metal-insulator transitions, high-temperature superconductivity, magnetic impurity problems and the properties of heavy-fermion systems, in all of which local moments play an important role. (author).
Wavelet Correlation Coefficient of 'strongly correlated' financial time series
Razdan, Ashok
2003-01-01
In this paper we use wavelet concepts to show that correlation coefficient between two financial data's is not constant but varies with scale from high correlation value to strongly anti-correlation value This studies is important because correlation coefficient is used to quantify degree of independence between two variables. In econophysics correlation coefficient forms important input to evolve hierarchial tree and minimum spanning tree of financial data.
Electronic Structure of Strongly Correlated Materials
Anisimov, Vladimir
2010-01-01
Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.
Universal behavior of strongly correlated Fermi systems
Energy Technology Data Exchange (ETDEWEB)
Shaginyan, Vasilii R [B.P. Konstantinov St. Petersburg Institute of Nuclear Physics, Russian Academy of Sciences, Gatchina, Leningrad region, Rusian Federation (Russian Federation); Amusia, M Ya [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Popov, Konstantin G [Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar (Russian Federation)
2007-06-30
This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T{sub c} superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)
Universal behavior of strongly correlated Fermi systems
International Nuclear Information System (INIS)
Shaginyan, Vasilii R; Amusia, M Ya; Popov, Konstantin G
2007-01-01
This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T c superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)
Quantum Transport in Strongly Correlated Systems
DEFF Research Database (Denmark)
Bohr, Dan
2007-01-01
the density matrix renormalization group (DMRG) method. We present two DMRG setups for calculating the linear conductance of strongly correlated nanostructures in the infinitesimal source-drain voltage regime. The first setup describes the leads by modified real-space tight-binding chains, whereas the second....... Thus both coherence and correlation effects are important in this model, and the methods applied should be able to handle both these effects rigorously. We present the DMRG setup for this model and benchmark against existing Greens function results for the model. Then we present initial DMRG results...... screening plays a much less significant role than in bulk systems due to the reduced size of the objects, therefore making it necessary to consider the importance of correlations between electrons. The work presented in this thesis deals with quantum transport through strongly correlated systems using...
Optical spectral weight anomalies and strong correlation
International Nuclear Information System (INIS)
Toschi, A.; Capone, M.; Ortolani, M.; Calvani, P.; Lupi, S.; Castellani, C.
2007-01-01
The anomalous behavior observed in the optical spectral weight (W) of the cuprates provides valuable information about the physics of these compounds. Both the doping and the temperature dependences of W are hardly explained through conventional estimates based on the f-sum rule. By computing the optical conductivity of the doped Hubbard model with the Dynamical Mean Field Theory, we point out that the strong correlation plays a key role in determining the basic features of the observed anomalies: the proximity to a Mott insulating phase accounts simultaneously for the strong temperature dependence of W and for its zero temperature value
Transport phenomena in strongly correlated Fermi liquids
International Nuclear Information System (INIS)
Kontani, Hiroshi
2013-01-01
Comprehensive overview. Written by an expert of this topic. Provides the reader with current developments in the field. In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals.
Strong correlations in few-fermion systems
Energy Technology Data Exchange (ETDEWEB)
Bergschneider, Andrea
2017-07-26
In this thesis, I report on the deterministic preparation and the observation of strongly correlated few-fermion systems in single and double-well potentials. In a first experiment, we studied a system of one impurity interacting with a number of majority atoms which we prepared in a single potential well in the one-dimensional limit. With increasing number of majority particles, we observed a decrease in the quasi-particle residue which is in agreement with expectations from the Anderson orthogonality catastrophe. In a second experiment, we prepared two fermions in a double-well potential which represents the fundamental building block of the Fermi-Hubbard model. By increasing the repulsion between the two fermions, we observed the crossover into the antiferromagnetic Mott-insulator regime. Furthermore, I describe a new imaging technique, which allows spin-resolved single-atom detection both in in-situ and in time-of-flight. We use this technique to investigate the emergence of momentum correlations of two repulsive fermions in the ground state of the double well. With the methods developed in this thesis, we have established a framework for quantum simulation of strongly correlated many-body systems in tunable potentials.
Towards TDDFT for Strongly Correlated Materials
Directory of Open Access Journals (Sweden)
Shree Ram Acharya
2016-09-01
Full Text Available We present some details of our recently-proposed Time-Dependent Density-Functional Theory (TDDFT for strongly-correlated materials in which the exchange-correlation (XC kernel is derived from the charge susceptibility obtained using Dynamical Mean-Field Theory (the TDDFT + DMFT approach. We proceed with deriving the expression for the XC kernel for the one-band Hubbard model by solving DMFT equations via two approaches, the Hirsch–Fye Quantum Monte Carlo (HF-QMC and an approximate low-cost perturbation theory approach, and demonstrate that the latter gives results that are comparable to the exact HF-QMC solution. Furthermore, through a variety of applications, we propose a simple analytical formula for the XC kernel. Additionally, we use the exact and approximate kernels to examine the nonhomogeneous ultrafast response of two systems: a one-band Hubbard model and a Mott insulator YTiO3. We show that the frequency dependence of the kernel, i.e., memory effects, is important for dynamics at the femtosecond timescale. We also conclude that strong correlations lead to the presence of beats in the time-dependent electric conductivity in YTiO3, a feature that could be tested experimentally and that could help validate the few approximations used in our formulation. We conclude by proposing an algorithm for the generalization of the theory to non-linear response.
Phase diagram of strongly correlated Fermi systems
International Nuclear Information System (INIS)
Zverev, M.V.; Khodel', V.A.; Baldo, M.
2000-01-01
Phase transitions in uniform Fermi systems with repulsive forces between the particles caused by restructuring of quasiparticle filling n(p) are analyzed. It is found that in terms of variables, i.e. density ρ, nondimensional binding constant η, phase diagram of a strongly correlated Fermi system for rather a wide class of interactions reminds of a puff-pastry pie. Its upper part is filled with fermion condensate, the lower one - with normal Fermi-liquid. They are separated by a narrow interlayer - the Lifshits phase, characterized by the Fermi multibound surface [ru
Machine Learning Phases of Strongly Correlated Fermions
Directory of Open Access Journals (Sweden)
Kelvin Ch’ng
2017-08-01
Full Text Available Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling. We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.
Strongly correlated electrons on two coupled chains
International Nuclear Information System (INIS)
Weihong, Z.; Oitmaa, J.; Hamer, C.J.
2000-01-01
Full text: The discovery of materials containing S = 1/2 ions which form a 2-leg ladder structure has led to much current research on ladder systems. Pure spin ladders show an unexpected difference between odd-legged ladders (including the single chain) which are gapless with long-range correlations and even-legged ladders which have a spin gap and short range correlations. Even more interesting behaviour occurs when these systems are doped, creating a system of strongly correlated mobile holes, as in the cuprate superconductors. The simplest models in this context are the Hubbard model and the t-J model. Considerable work has been reported on both of these models, using both numerical calculations and approximate analytic theories. We have used series expansion methods to study both of these systems. Our results, in some cases, confirm those of other approaches. In other cases we are able to probe regions of the phase diagram inaccessible to other methods, or to obtain results of increased precision. In this paper we focus on:- 1. The energy and dispersion relation of 1-hole states. 2.The existence of a 2-hole bound state and its energy and dispersion. 3. Spin and charge gaps and the question of phase separation
Strongly Correlated Electron Systems: An Operatorial Perspective
Di Ciolo, Andrea; Avella, Adolfo
2018-05-01
We discuss the operatorial approach to the study of strongly correlated electron systems and show how the exact solution of target models on small clusters chosen ad-hoc (minimal models) can suggest very efficient bulk approximations. We use the Hubbard model as case study (target model) and we analyze and discuss the crucial role of spin fluctuations in its 2-site realization (minimal model). Accordingly, we devise a novel three-pole approximation for the 2D case, including in the basic field an operator describing the dressing of the electronic one by the nearest-neighbor spin-fluctuations. Such a solution is in very good agreement with the exact one in the minimal model (2-site case) and performs very well once compared to advanced (semi-)numerical methods in the 2D case, being by far less computational-resource demanding.
Transport phenomena in strongly correlated Fermi liquids
Kontani, Hiroshi
2013-01-01
In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \\tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical poi...
Atomic physics of strongly correlated systems
International Nuclear Information System (INIS)
Lin, C.D.
1986-01-01
This abstract summarizes the progress made in the last year and the future plans of our research in the study of strongly correlated atomic systems. In atomic structure and atomic spectroscopy we are investigating the classification and supermultiplet structure of doubly excited states. We are also beginning the systematic study of triply excited states. In ion-atom collisions, we are exploring an AO-MO matching method for treating multi-electron collision systems to extract detailed information such as subshell cross sections, alignment and orientation parameters, etc. We are also beginning ab initio calculations on the angular distributions for electron transfer processes in low-energy (about 10-100eV/amu) ion-atom collisions in a full quantum mechanical treatment of the motion of heavy particles
Noise Spectroscopy in Strongly Correlated Oxides
Alsaqqa, Ali M.
Strongly correlated materials are an interesting class of materials, thanks to the novel electronic and magnetic phenomena they exhibit as a result of the interplay of various degrees of freedom. This gives rise to an array of potential applications, from Mott-FET to magnetic storage. Many experimental probes have been used to study phase transitions in strongly correlated oxides. Among these, resistance noise spectroscopy, together with conventional transport measurements, provides a unique viewpoint to understand the microscopic dynamics near the phase transitions in these oxides. In this thesis, utilizing noise spectroscopy and transport measurements, four different strongly correlated materials were studied: (1) neodymium nickel oxide (NdNiO 3) ultrathin films, (2) vanadium dioxide (VO2) microribbons, (3) copper vanadium bronze (CuxV2O 5) microribbons and (4) niobium triselenide (NbSe3) microribbons. Ultra thin films of rare-earth nickelates exhibit several temperature-driven phase transitions. In this thesis, we studied the metal-insulator and Neel transitions in a series of NdNiO3 films with different lattice mismatches. Upon colling down, the metal-insulator phase transition is accompanied by a structural (orthorohombic to monoclinic) and magnetic (paramagnetic to antiferromagnetic) transitions as well, making the problem more interesting and complex at the same time. The noise is of the 1/f type and is Gaussian in the high temperature phase, however deviations are seen in the low temperature phases. Below the metal-insulator transition, noise magnitude increases by orders of magnitude: a sign of inhomogeneous electrical conduction as result of phase separation. This is further assured by the non-Gaussian noise signature. At very low temperatures (T switches between Gaussian and non-Gaussian over several hours, possibly arising from dynamically competing ground states. VO2 is one of the most widely studied strongly correlated oxides and is important from the
Phase structure of strongly correlated Fermi gases
International Nuclear Information System (INIS)
Roscher, Dietrich
2015-01-01
Strongly correlated fermionic many-body systems are ubiquitous in nature. Their theoretical description poses challenging problems which are further complicated when imbalances in, e.g., the particle numbers of the involved species or their masses are introduced. In this thesis, a number of different approaches is developed and applied in order to obtain predictions for physical observables of such systems that mutually support and confirm each other. In a first step, analytically well-founded mean-field analyses are carried through. One- and three-dimensional ultracold Fermi gases with spin and mass imbalance as well as Gross-Neveu and NJL-type relativistic models at finite baryon chemical potential are investigated with respect to their analytic properties in general and the occurrence of spontaneous breaking of translational invariance in particular. Based on these studies, further methods are devised or adapted allowing for investigations also beyond the mean-field approximation. Lattice Monte Carlo simulations with imaginary imbalance parameters are employed to surmount the infamous sign problem and compute the equation of state of the respective unitary Fermi gases. Moreover, in-medium two-body analyses are used to confirm and explain the characteristics of inhomogeneously ordered phases. Finally, functional RG methods are applied to the unitary Fermi gas with spin and mass imbalance. Besides quantitatively competitive predictions for critical temperatures for the superfluid state, strong hints on the stability of inhomogeneous phases with respect to order parameter fluctuations in the regime of large mass imbalance are obtained. Combining the findings from these different theoretical studies suggests the possibility to find such phases in experiments presently in preparation.
Negative mobility of a Brownian particle: Strong damping regime
Słapik, A.; Łuczka, J.; Spiechowicz, J.
2018-02-01
We study impact of inertia on directed transport of a Brownian particle under non-equilibrium conditions: the particle moves in a one-dimensional periodic and symmetric potential, is driven by both an unbiased time-periodic force and a constant force, and is coupled to a thermostat of temperature T. Within selected parameter regimes this system exhibits negative mobility, which means that the particle moves in the direction opposite to the direction of the constant force. It is known that in such a setup the inertial term is essential for the emergence of negative mobility and it cannot be detected in the limiting case of overdamped dynamics. We analyse inertial effects and show that negative mobility can be observed even in the strong damping regime. We determine the optimal dimensionless mass for the presence of negative mobility and reveal three mechanisms standing behind this anomaly: deterministic chaotic, thermal noise induced and deterministic non-chaotic. The last origin has never been reported. It may provide guidance to the possibility of observation of negative mobility for strongly damped dynamics which is of fundamental importance from the point of view of biological systems, all of which in situ operate in fluctuating environments.
Surface correlation effects in two-band strongly correlated slabs.
Esfahani, D Nasr; Covaci, L; Peeters, F M
2014-02-19
Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.
TRANSPORT PROPERTIES OF THE STRONGLY CORRELATED SYSTEMS
Directory of Open Access Journals (Sweden)
T.Domanski
2004-01-01
Full Text Available The transport properties of various systems are studied here in the context of three different models. These are: - the disordered Hubbard model applicable to correlated binary alloys with a general disorder, - the Anderson model used in describing the Kondo physics of a quantum dot connected to the external superconducting leads, and - the Ranninger-Robaszkiewicz model applied to the study of optical properties of the system with preformed electron pairs above the temperature of transition to the superconducting state. We calculate the density of states, specific heat, the Wilson ratio and conductivity of the correlated binary alloy with off-diagonal disorder. We investigate the conditions under which the Kondo peak appears in the density of states and in the conductance of a dot coupled to the external superconducting leads. We analyze the effect of the pseudogap on the optical spectra in the high temperature superconductors described by the boson-fermion model.
Directory of Open Access Journals (Sweden)
Takashi Yanagisawa
2015-01-01
Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.
Circulating steroids negatively correlate with tinnitus.
Chrbolka, Pavel; Palúch, Zoltán; Hill, Martin; Alušík, Štefan
2017-07-01
While not a disease entity in itself; symptoms of tinnitus (from Latin tinnio - clink) accompany a number of diseases. Tinnitus prevalence increases with age, deteriorates one's quality of life, and may even result in suicidal behavior. Tinnitus develops in response to a variety of risk factors, otoxic substances, noise exposure, hearing disorders, and psychological alterations. Tinnitus is closely related to mood, depression, and psychological state. In the present study, we focused on alterations of the steroid metabolome and particularly neuroactive, neuroprotective, and immunomodulatory steroids in patients with tinnitus. The study group consisted of 28 patients without evidence of an organic cause of tinnitus as well as without associated diseases or the effect of ototoxic medications. All patients underwent a complete audiological assessment and laboratory tests including routine biochemical markers and quantification of circulating steroids using gas chromatography/mass spectrometry and immunoassays. To rule out a pathology in the cerebellopontine angle area, CT scan or MRI were performed. To diagnose stem lesions, evoked potentials were also measured. Pearson's correlations and multivariate regression were used to assess any links between tinnitus intensity and frequency on the one hand, and steroid levels on the other. Results indicated a significant and consistent negative correlation between tinnitus indices and intensity of adrenal steroidogenesis. The circulating steroid metabolome including hormones and neuroactive, neuroprotective, and immunomodulatory steroids negatively correlates with the degree of tinnitus due to hypothalamo-pituitary-adrenal axis malfunction. Our results may help explain the pathophysiology of tinnitus and improve its diagnosis. However, further studies are needed to verify our postulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Strong correlation effects on surfaces of topological insulators via holography
Seo, Yunseok; Song, Geunho; Sin, Sang-Jin
2017-07-01
We investigate the effects of strong correlation on the surface state of a topological insulator (TI). We argue that electrons in the regime of crossover from weak antilocalization to weak localization are strongly correlated, and calculate the magnetotransport coefficients of TIs using the gauge-gravity principle. Then, we examine the magnetoconductivity (MC) formula and find excellent agreement with the data of chrome-doped Bi2Te3 in the crossover regime. We also find that the cusplike peak in MC at low doping is absent, which is natural since quasiparticles disappear due to the strong correlation.
Nonperturbative stochastic dynamics driven by strongly correlated colored noise
Jing, Jun; Li, Rui; You, J. Q.; Yu, Ting
2015-02-01
We propose a quantum model consisting of two remote qubits interacting with two correlated colored noises and establish an exact stochastic Schrödinger equation for this open quantum system. It is shown that the quantum dynamics of the qubit system is profoundly modulated by the mutual correlation between baths and the bath memory capability through dissipation and fluctuation. We report a physical effect on generating inner correlation and entanglement of two distant qubits arising from the strong bath-bath correlation.
Pair correlation of particles in strongly nonideal systems
International Nuclear Information System (INIS)
Vaulina, O. S.
2012-01-01
A new semiempirical model is proposed for describing the spatial correlation between interacting particles in nonideal systems. The developed model describes the main features in the behavior of the pair correlation function for crystalline structures and can also be used for qualitative and quantitative description of the spatial correlation of particles in strongly nonideal liquid systems. The proposed model is compared with the results of simulation of the pair correlation function.
Joint statistics of strongly correlated neurons via dimensionality reduction
International Nuclear Information System (INIS)
Deniz, Taşkın; Rotter, Stefan
2017-01-01
The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input. (paper)
International Conference on Strongly Correlated Electron Systems 2017 (SCES2017)
2018-05-01
The 2017 International Conference on Strongly Correlated Electron Systems, SCES 2017, took place at the Clarion Congress Hotel in Prague, Czech Republic from July 17 to 21, 2017. The meeting was held under the auspices of the Department of Condensed Matter Physics of the Faculty of Mathematics and Physics of the Charles University.
Strong Correlation in Kohn-Sham Density Functional Theory
Malet, F.; Gori Giorgi, P.
2012-01-01
We use the exact strong-interaction limit of the Hohenberg-Kohn energy density functional to approximate the exchange-correlation energy of the restricted Kohn-Sham scheme. Our approximation corresponds to a highly nonlocal density functional whose functional derivative can be easily constructed,
Reduced larval feeding rate is a strong evolutionary correlate of ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Genetics; Volume 85; Issue 3. Reduced larval feeding rate is a strong evolutionary correlate of rapid development in Drosophila melanogaster. M. Rajamani N. Raghavendra ... Keywords. life-history evolution; development time; larval feeding rate; competition; tradeoffs; Drosophila melanogaster.
Mismeasurement and the resonance of strong confounders: correlated errors.
Marshall, J R; Hastrup, J L; Ross, J S
1999-07-01
Confounding in epidemiology, and the limits of standard methods of control for an imperfectly measured confounder, have been understood for some time. However, most treatments of this problem are based on the assumption that errors of measurement in confounding and confounded variables are independent. This paper considers the situation in which a strong risk factor (confounder) and an inconsequential but suspected risk factor (confounded) are each measured with errors that are correlated; the situation appears especially likely to occur in the field of nutritional epidemiology. Error correlation appears to add little to measurement error as a source of bias in estimating the impact of a strong risk factor: it can add to, diminish, or reverse the bias induced by measurement error in estimating the impact of the inconsequential risk factor. Correlation of measurement errors can add to the difficulty involved in evaluating structures in which confounding and measurement error are present. In its presence, observed correlations among risk factors can be greater than, less than, or even opposite to the true correlations. Interpretation of multivariate epidemiologic structures in which confounding is likely requires evaluation of measurement error structures, including correlations among measurement errors.
Describing a Strongly Correlated Model System with Density Functional Theory.
Kong, Jing; Proynov, Emil; Yu, Jianguo; Pachter, Ruth
2017-07-06
The linear chain of hydrogen atoms, a basic prototype for the transition from a metal to Mott insulator, is studied with a recent density functional theory model functional for nondynamic and strong correlation. The computed cohesive energy curve for the transition agrees well with accurate literature results. The variation of the electronic structure in this transition is characterized with a density functional descriptor that yields the atomic population of effectively localized electrons. These new methods are also applied to the study of the Peierls dimerization of the stretched even-spaced Mott insulator to a chain of H 2 molecules, a different insulator. The transitions among the two insulating states and the metallic state of the hydrogen chain system are depicted in a semiquantitative phase diagram. Overall, we demonstrate the capability of studying strongly correlated materials with a mean-field model at the fundamental level, in contrast to the general pessimistic view on such a feasibility.
Strong phase correlations of solitons of nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Litvak, A.G.; Mironov, V.A.; Protogenov, A.P.
1994-06-01
We discuss the possibility to suppress the collapse in the nonlinear 2+1 D Schroedinger equation by using the gauge theory of strong phase correlations. It is shown that invariance relative to q-deformed Hopf algebra with deformation parameter q being the fourth root of unity makes the values of the Chern-Simons term coefficient, k=2, and of the coupling constant, g=1/2, fixed; no collapsing solutions are present at those values. (author). 21 refs
Magnetic properties of metallic impurities with strongly correlated electrons
Czech Academy of Sciences Publication Activity Database
Janiš, Václav; Ringel, Matouš
2009-01-01
Roč. 115, č. 1 (2009), s. 30-35 ISSN 0587-4246 R&D Projects: GA ČR GA202/07/0644 Institutional research plan: CEZ:AV0Z10100520 Keywords : And erson impurity * strong electron correlations * spin-polarized solution * three-channel parquet equations * magnetic field Subject RIV: BE - Theoretical Physics Impact factor: 0.433, year: 2009 http://przyrbwn.icm.edu.pl/APP/ABSTR/115/a115-1-5.html
Towards a large deviation theory for strongly correlated systems
International Nuclear Information System (INIS)
Ruiz, Guiomar; Tsallis, Constantino
2012-01-01
A large-deviation connection of statistical mechanics is provided by N independent binary variables, the (N→∞) limit yielding Gaussian distributions. The probability of n≠N/2 out of N throws is governed by e −Nr , r related to the entropy. Large deviations for a strong correlated model characterized by indices (Q,γ) are studied, the (N→∞) limit yielding Q-Gaussians (Q→1 recovers a Gaussian). Its large deviations are governed by e q −Nr q (∝1/N 1/(q−1) , q>1), q=(Q−1)/(γ[3−Q])+1. This illustration opens the door towards a large-deviation foundation of nonextensive statistical mechanics. -- Highlights: ► We introduce the formalism of relative entropy for a single random binary variable and its q-generalization. ► We study a model of N strongly correlated binary random variables and their large-deviation probabilities. ► Large-deviation probability of strongly correlated model exhibits a q-exponential decay whose argument is proportional to N, as extensivity requires. ► Our results point to a q-generalized large deviation theory and suggest a large-deviation foundation of nonextensive statistical mechanics.
Observations of strong ion-ion correlations in dense plasmas
Energy Technology Data Exchange (ETDEWEB)
Ma, T.; Fletcher, L.; Pak, A.; Chapman, D. A.; Falcone, R. W.; Fortmann, C.; Galtier, E.; Gericke, D. O.; Gregori, G.; Hastings, J.; Landen, O. L.; Le Pape, S.; Lee, H. J.; Nagler, B.; Neumayer, P.; Turnbull, D.; Vorberger, J.; White, T. G.; Wünsch, K.; Zastrau, U.; Glenzer, S. H.; Döppner, T.
2014-05-01
Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ~3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4k=4Å-1. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.
Phase transition transistors based on strongly-correlated materials
Nakano, Masaki
2013-03-01
The field-effect transistor (FET) provides electrical switching functions through linear control of the number of charges at a channel surface by external voltage. Controlling electronic phases of condensed matters in a FET geometry has long been a central issue of physical science. In particular, FET based on a strongly correlated material, namely ``Mott transistor,'' has attracted considerable interest, because it potentially provides gigantic and diverse electronic responses due to a strong interplay between charge, spin, orbital and lattice. We have investigated electric-field effects on such materials aiming at novel physical phenomena and electronic functions originating from strong correlation effects. Here we demonstrate electrical switching of bulk state of matter over the first-order metal-insulator transition. We fabricated FETs based on VO2 with use of a recently developed electric-double-layer transistor technique, and found that the electrostatically induced carriers at a channel surface drive all preexisting localized carriers of 1022 cm-3 even inside a bulk to motion, leading to bulk carrier delocalization beyond the electrostatic screening length. This non-local switching of bulk phases is achieved with just around 1 V, and moreover, a novel non-volatile memory like character emerges in a voltage-sweep measurement. These observations are apparently distinct from those of conventional FETs based on band insulators, capturing the essential feature of collective interactions in strongly correlated materials. This work was done in collaboration with K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura. This work was supported by the Japan Society for the Promotion of Science (JSAP) through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).''
Bound states in strongly correlated magnetic and electronic systems
International Nuclear Information System (INIS)
Trebst, S.
2002-02-01
A novel strong coupling expansion method to calculate two-particle spectra of quantum lattice models is developed. The technique can be used to study bosonic and fermionic models and in principle it can be applied to systems in any dimension. A number of strongly correlated magnetic and electronic systems are examined including the two-leg spin-half Heisenberg ladder, the dimerized Heisenberg chain with a frustrating next-nearest neighbor interaction, coupled Heisenberg ladders, and the one-dimensional Kondo lattice model. In the various models distinct bound states are found below the two-particle continuum. Quantitative calculations of the dispersion, coherence length and binding energy of these bound states are used to describe spectroscopic experiments on (Ca,La) 14 Cu 24 O 41 and NaV 2 O 5 . (orig.)
Robust mesoscopic superposition of strongly correlated ultracold atoms
International Nuclear Information System (INIS)
Hallwood, David W.; Ernst, Thomas; Brand, Joachim
2010-01-01
We propose a scheme to create coherent superpositions of annular flow of strongly interacting bosonic atoms in a one-dimensional ring trap. The nonrotating ground state is coupled to a vortex state with mesoscopic angular momentum by means of a narrow potential barrier and an applied phase that originates from either rotation or a synthetic magnetic field. We show that superposition states in the Tonks-Girardeau regime are robust against single-particle loss due to the effects of strong correlations. The coupling between the mesoscopically distinct states scales much more favorably with particle number than in schemes relying on weak interactions, thus making particle numbers of hundreds or thousands feasible. Coherent oscillations induced by time variation of parameters may serve as a 'smoking gun' signature for detecting superposition states.
Strongly correlated Fermi-Bose mixtures in disordered optical lattices
International Nuclear Information System (INIS)
Sanchez-Palencia, L; Ahufinger, V; Kantian, A; Zakrzewski, J; Sanpera, A; Lewenstein, M
2006-01-01
We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes
Strongly correlated Fermi-Bose mixtures in disordered optical lattices
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Palencia, L [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS and Universite Paris-Sud XI, Bat 503, Centre scientifique, F-91403 Orsay Cedex (France); Ahufinger, V [ICREA and Grup d' optica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Kantian, A [Institut fuer Theoretische Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Zakrzewski, J [Instytut Fizyki imienia Mariana Smoluchowskiego i Centrum Badan Ukladow Zlozonych imienia Marka Kaca, Uniwersytet Jagiellonski, ulica Reymonta 4, PL-30-059 Krakow (Poland); Sanpera, A [ICREA and Grup de FIsica Teorica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Lewenstein, M [ICREA and ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la TecnologIa, E-08860 Castelldefels (Barcelona) (Spain); Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany)
2006-05-28
We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes.
Quantum simulation of strongly correlated condensed matter systems
Hofstetter, W.; Qin, T.
2018-04-01
We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.
Fast electronic structure methods for strongly correlated molecular systems
International Nuclear Information System (INIS)
Head-Gordon, Martin; Beran, Gregory J O; Sodt, Alex; Jung, Yousung
2005-01-01
A short review is given of newly developed fast electronic structure methods that are designed to treat molecular systems with strong electron correlations, such as diradicaloid molecules, for which standard electronic structure methods such as density functional theory are inadequate. These new local correlation methods are based on coupled cluster theory within a perfect pairing active space, containing either a linear or quadratic number of pair correlation amplitudes, to yield the perfect pairing (PP) and imperfect pairing (IP) models. This reduces the scaling of the coupled cluster iterations to no worse than cubic, relative to the sixth power dependence of the usual (untruncated) coupled cluster doubles model. A second order perturbation correction, PP(2), to treat the neglected (weaker) correlations is formulated for the PP model. To ensure minimal prefactors, in addition to favorable size-scaling, highly efficient implementations of PP, IP and PP(2) have been completed, using auxiliary basis expansions. This yields speedups of almost an order of magnitude over the best alternatives using 4-center 2-electron integrals. A short discussion of the scope of accessible chemical applications is given
Strong correlation effects in theoretical STM studies of magnetic adatoms
Dang, Hung T.; dos Santos Dias, Manuel; Liebsch, Ansgar; Lounis, Samir
2016-03-01
We present a theoretical study for the scanning tunneling microscopy (STM) spectra of surface-supported magnetic nanostructures, incorporating strong correlation effects. As concrete examples, we study Co and Mn adatoms on the Cu(111) surface, which are expected to represent the opposite limits of Kondo physics and local moment behavior, using a combination of density functional theory and both quantum Monte Carlo and exact diagonalization impurity solvers. We examine in detail the effects of temperature T , correlation strength U , and impurity d electron occupancy Nd on the local density of states. We also study the effective coherence energy scale, i.e., the Kondo temperature TK, which can be extracted from the STM spectra. Theoretical STM spectra are computed as a function of STM tip position relative to each adatom. Because of the multiorbital nature of the adatoms, the STM spectra are shown to consist of a complicated superposition of orbital contributions, with different orbital symmetries, self-energies, and Kondo temperatures. For a Mn adatom, which is close to half-filling, the STM spectra are featureless near the Fermi level. On the other hand, the quasiparticle peak for a Co adatom gives rise to strongly position-dependent Fano line shapes.
Neural Correlates of Processing Negative and Sexually Arousing Pictures
Bailey, Kira; West, Robert; Mullaney, Kellie M.
2012-01-01
Recent work has questioned whether the negativity bias is a distinct component of affective picture processing. The current study was designed to determine whether there are different neural correlates of processing positive and negative pictures using event-related brain potentials. The early posterior negativity and late positive potential were greatest in amplitude for erotic pictures. Partial Least Squares analysis revealed one latent variable that distinguished erotic pictures from neutral and positive pictures and another that differentiated negative pictures from neutral and positive pictures. The effects of orienting task on the neural correlates of processing negative and erotic pictures indicate that affective picture processing is sensitive to both stimulus-driven, and attentional or decision processes. The current data, together with other recent findings from our laboratory, lead to the suggestion that there are distinct neural correlates of processing negative and positive stimuli during affective picture processing. PMID:23029071
Strongly-correlated ultracold atoms in optical lattices
International Nuclear Information System (INIS)
Dao, Tung-Lam
2008-01-01
This thesis is concerned with the theoretical study of strongly correlated quantum states of ultra-cold fermionic atoms trapped in optical lattices. This field has grown considerably in recent years, following the experimental progress made in cooling and controlling atomic gases, which has led to the observation of the first Bose-Einstein condensation (in 1995). The trapping of these gases in optical lattices has opened a new field of research at the interface between atomic physics and condensed matter physics. The observation of the transition from a superfluid to a Mott insulator for bosonic atoms paved the way for the study of strongly correlated phases and quantum phase transitions in these systems. Very recently, the investigation of the Mott insulator state of fermionic atoms provides additional motivation to conduct such theoretical studies. This thesis can be divided broadly into two types of work: - On the one hand, we have proposed a new type of spectroscopy to measure single-particle correlators and associated physical observables in these strongly correlated states. - On the other hand, we have studied the ground state of the fermionic Hubbard model under different conditions (mass imbalance, population imbalance) by using analytical techniques and numerical simulations. In a collaboration with J. Dalibard and C. Salomon (LKB at the ENS Paris) and I. Carusotto (Trento, Italy), we have proposed and studied a novel spectroscopic method for the measurement and characterization of single particle excitations (in particular, the low energy excitations, namely the quasiparticles) in systems of cold fermionic atoms, with energy and momentum resolution. This type of spectroscopy is an analogue of angular-resolved photoemission in solid state physics (ARPES). We have shown, via simple models, that this method of measurement can characterize quasiparticles not only in the 'conventional' phases such as the weakly interacting gas in the lattice or in Fermi
Vector neural net identifying many strongly distorted and correlated patterns
Kryzhanovsky, Boris V.; Mikaelian, Andrei L.; Fonarev, Anatoly B.
2005-01-01
We suggest an effective and simple algorithm providing a polynomial storage capacity of a network of the form M ~ N2s+1, where N is the dimension of the stored binary patterns. In this problem the value of the free parameter s is restricted by the inequalities N >> slnN >= 1. The algorithm allows us to identify a large number of highly distorted similar patterns. The negative influence of correlations of the patterns is suppressed by choosing a sufficiently large value of the parameter s. We show the efficiency of the algorithm by the example of a perceptron identifier, but it also can be used to increase the storage capacity of full connected systems of associative memory.
Debunking vaccination myths: strong risk negations can increase perceived vaccination risks.
Betsch, Cornelia; Sachse, Katharina
2013-02-01
Information about risks is often contradictory, especially in the health domain. A vast amount of bizarre information on vaccine-adverse events (VAE) can be found on the Internet; most are posted by antivaccination activists. Several actors in the health sector struggle against these statements by negating claimed risks with scientific explanations. The goal of the present work is to find optimal ways of negating risk to decrease risk perceptions. In two online experiments, we varied the extremity of risk negations and their source. Perception of the probability of VAE, their expected severity (both variables serve as indicators of perceived risk), and vaccination intentions. Paradoxically, messages strongly indicating that there is "no risk" led to a higher perceived vaccination risk than weak negations. This finding extends previous work on the negativity bias, which has shown that information stating the presence of risk decreases risk perceptions, while information negating the existence of risk increases such perceptions. Several moderators were also tested; however, the effect occurred independently of the number of negations, recipient involvement, and attitude. Solely the credibility of the information source interacted with the extremity of risk negation: For credible sources (governmental institutions), strong and weak risk negations lead to similar perceived risk, while for less credible sources (pharmaceutical industries) weak negations lead to less perceived risk than strong negations. Optimal risk negation may profit from moderate rather than extreme formulations as a source's trustworthiness can vary.
Oscillating molecular dipoles require strongly correlated electronic and nuclear motion
International Nuclear Information System (INIS)
Chang, Bo Y; Shin, Seokmin; Palacios, Alicia; Martín, Fernando; Sola, Ignacio R
2015-01-01
To create an oscillating electric dipole in an homonuclear diatomic cation without an oscillating driver one needs (i) to break the symmetry of the system and (ii) to sustain highly correlated electronic and nuclear motion. Based on numerical simulations in H 2 + we present results for two schemes. In the first one (i) is achieved by creating a superposition of symmetric and antisymmetric electronic states freely evolving, while (ii) fails. In a second scheme, by preparing the system in a dressed state of a strong static field, both conditions hold. We then analyze the robustness of this scheme with respect to features of the nuclear wave function and its intrinsic sources of decoherence. (tutorial)
Doubly excited helium. From strong correlation to chaos
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yuhai
2006-03-15
In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I{sub 15}, and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I{sub 5} to I{sub 9} and I{sub 7}, respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I{sub 4} were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I{sub 4} by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)
Doubly excited helium. From strong correlation to chaos
International Nuclear Information System (INIS)
Jiang, Yuhai
2006-03-01
In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I 15 , and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I 5 to I 9 and I 7 , respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I 4 were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I 4 by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)
Stabilizing strongly correlated photon fluids with non-Markovian reservoirs
Lebreuilly, José; Biella, Alberto; Storme, Florent; Rossini, Davide; Fazio, Rosario; Ciuti, Cristiano; Carusotto, Iacopo
2017-09-01
We introduce a frequency-dependent incoherent pump scheme with a square-shaped spectrum as a way to study strongly correlated photons in arrays of coupled nonlinear resonators. This scheme can be implemented via a reservoir of population-inverted two-level emitters with a broad distribution of transition frequencies. Our proposal is predicted to stabilize a nonequilibrium steady state sharing important features with a zero-temperature equilibrium state with a tunable chemical potential. We confirm the efficiency of our proposal for the Bose-Hubbard model by computing numerically the steady state for finite system sizes: first, we predict the occurrence of a sequence of incompressible Mott-insulator-like states with arbitrary integer densities presenting strong robustness against tunneling and losses. Secondly, for stronger tunneling amplitudes or noninteger densities, the system enters a coherent regime analogous to the superfluid state. In addition to an overall agreement with the zero-temperature equilibrium state, exotic nonequilibrium processes leading to a finite entropy generation are pointed out in specific regions of parameter space. The equilibrium ground state is shown to be recovered by adding frequency-dependent losses. The promise of this improved scheme in view of quantum simulation of the zero-temperature many-body physics is highlighted.
PREFACE: International Conference on Strongly Correlated Electron Systems (SCES 2011)
Littlewood, P. B.; Lonzarich, G. G.; Saxena, S. S.; Sutherland, M. L.; Sebastian, S. E.; Artacho, E.; Grosche, F. M.; Hadzibabic, Z.
2012-11-01
The Strongly Correlated Electron Systems Conference (SCES) 2011, was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 was dedicated to 100 years of superconductivity and covered a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The meeting welcomed to Cambridge 657 participants from 23 countries, who presented 127 talks (including 16 plenary, 57 invited, and 54 contributed) and 736 posters in 40 sessions over five full days of meetings. This proceedings volume contains papers reporting on the science presented at the meeting. This work deepens our understanding of the rich physical phenomena that arise from correlation effects. Strongly correlated systems are known for their remarkable array of emergent phenomena: the traditional subjects of superconductivity, magnetism and metal-insulator transitions have been joined by non-Fermi liquid phenomena, topologically protected quantum states, atomic and photonic gases, and quantum phase transitions. These are some of the most challenging and interesting phenomena in science. As well as the science driver, there is underlying interest in energy-dense materials, which make use of 'small' electrons packed to the highest possible density. These are by definition 'strongly correlated'. For example: good photovoltaics must be efficient optical absorbers, which means that photons will generate tightly bound electron-hole pairs (excitons) that must then be ionised at a heterointerface and transported to contacts; efficient solid state refrigeration depends on substantial entropy changes in a unit cell, with large local electrical or magnetic moments; efficient lighting is in a real sense the inverse of photovoltaics; the limit of an efficient battery is a supercapacitor employing mixed valent ions; fuel cells and solar to fuel conversion
Negatively correlated local and global stock externalities: tax or subsidy?
International Nuclear Information System (INIS)
Zili Yang
2006-01-01
Fossil fuel combustion generates both CO 2 and SO 2 . CO 2 is the most important greenhouse gas; SO 2 can cause serious local pollution. But it can alleviate the potential global warming because of negative radiative forcing. Such a phenomenon can be characterized as negatively correlated local and global stock externalities. In this paper, we set up an optimal control problem of negatively correlated local and global stock externality provision. The efficiency conditions for this problem are derived. These conditions modify the Samuelson rules for optimal provision of externalities. In addition, we examine several policy related scenarios of negatively correlated local and global stock externality provisions. Finally, we discuss policy implications and limitation of the theoretical results derived in this paper. We also indicate applications of the theoretical results here to empirical research, particularly to economic analysis of multiple-gas issues in climate change. (Author)
Nonlinear phononics and structural control of strongly correlated materials
Energy Technology Data Exchange (ETDEWEB)
Mankowsky, Roman
2016-01-20
Mid-infrared light pulses can be used to resonantly excite infrared-active vibrational modes for the phase control of strongly correlated materials on subpicosecond timescales. As the energy is transferred directly into atomic motions, dissipation into the electronic system is reduced, allowing for the emergence of unusual low energy collective properties. Light-induced superconductivity, insulator-metal transitions and melting of magnetic order demonstrate the potential of this method. An understanding of the mechanism, by which these transitions are driven, is however missing. The aim of this work is to uncover this process by investigating the nonlinear lattice dynamics induced by the excitation and to elucidate their contribution to the modulation of collective properties of strongly correlated materials. The first signature of nonlinear lattice dynamics was reported in the observation of coherent phonon oscillations, resonant with the excitation of an infrared-active phonon mode in a manganite. This nonlinear phononic coupling can be described within a model, which predicts not only oscillatory coherent phonons dynamics but also directional atomic displacements along the coupled modes on average, which could cause the previously observed transitions. We verified this directional response and quantified the anharmonic coupling constant by tracing the atomic motions in a time-resolved hard X-ray diffraction experiment with sub-picometer spatial and femtosecond temporal resolution. In a subsequent study, we investigated the role of nonlinear lattice dynamics in the emergence of superconductivity far above the equilibrium transition temperature, an intriguing effect found to follow lattice excitation of YBa{sub 2}Cu{sub 3}O{sub 6+x}. By combining density functional theory (DFT) calculations of the anharmonic coupling constants with time-resolved X-ray diffraction experiments, we identified a structural rearrangement, which appears and decays with the same temporal
Non perturbative aspects of strongly correlated electron systems
International Nuclear Information System (INIS)
Controzzi, D.
2000-01-01
In this thesis we report some selected works on Strongly Correlated Electron Systems. A common ingredient of these works is the use of non-perturbative techniques available in low dimensions. In the first part we use the Bethe Ansatz to study some properties of two families of integrable models introduced by Fateev. We calculate the Thermodynamics of the models and show how they can be interpreted as effective Landau-Ginzburg theories for coupled two-dimensional superconductors interacting with an insulating substrate. This allows us to study exactly the dependence of the critical temperature on the thickness of the insulating layer, and on the interaction between the order parameters of two different superconducting planes. In the second part of the thesis we study the optical conductivity of the sine-Gordon model using the Form Factor method and Conformal Perturbation Theory. This allows us to develop, for the first time, a complete theory of the optical conductivity of one-dimensional Mott insulators, in the Quantum Field Theory limit. (author)
Theory of L -edge spectroscopy of strongly correlated systems
Lüder, Johann; Schött, Johan; Brena, Barbara; Haverkort, Maurits W.; Thunström, Patrik; Eriksson, Olle; Sanyal, Biplab; Di Marco, Igor; Kvashnin, Yaroslav O.
2017-12-01
X-ray absorption spectroscopy measured at the L edge of transition metals (TMs) is a powerful element-selective tool providing direct information about the correlation effects in the 3 d states. The theoretical modeling of the 2 p →3 d excitation processes remains to be challenging for contemporary ab initio electronic structure techniques, due to strong core-hole and multiplet effects influencing the spectra. In this work, we present a realization of the method combining the density-functional theory with multiplet ligand field theory, proposed in Haverkort et al. [Phys. Rev. B 85, 165113 (2012), 10.1103/PhysRevB.85.165113]. In this approach, a single-impurity Anderson model (SIAM) is constructed, with almost all parameters obtained from first principles, and then solved to obtain the spectra. In our implementation, we adopt the language of the dynamical mean-field theory and utilize the local density of states and the hybridization function, projected onto TM 3 d states, in order to construct the SIAM. The developed computational scheme is applied to calculate the L -edge spectra for several TM monoxides. A very good agreement between the theory and experiment is found for all studied systems. The effect of core-hole relaxation, hybridization discretization, possible extensions of the method as well as its limitations are discussed.
Non-equilibrium magnetic interactions in strongly correlated systems
Energy Technology Data Exchange (ETDEWEB)
Secchi, A., E-mail: a.secchi@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands); Brener, S.; Lichtenstein, A.I. [Institut für Theoretische Physik, Universitat Hamburg, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I. [Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands)
2013-06-15
We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii–Moriya coupling, but is not due to spin–orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well. -- Highlights: •We develop a theory for magnetism of strongly correlated systems out of equilibrium. •Our theory is suitable for laser-induced ultrafast magnetization dynamics. •We write time-dependent exchange parameters in terms of electronic Green functions. •We find a new magnetic interaction, a “twist exchange”. •We give general expressions for magnetic noise in itinerant-electron systems.
Strongly correlated quantum transport out-of-equilibrium
Dutt, Prasenjit
The revolutionary advances in nanotechnology and nanofabrication have facilitated the precise control and manipulation of mesoscopic systems where quantum effects are pronounced. Quantum devices with tunable gates have made it possible to access regimes far beyond the purview of linear response theory. In particular, the influence of strong voltage and thermal biases has led to the observation of novel phenomena where the non-equilibrium characteristics of the system are of paramount importance. We study transport through quantum-impurity systems in the regime of strong correlations and determine the effects of large temperature and potential gradients on its many-body physics. In Part I of this thesis we focus on the steady-state dynamics of the system, a commonly encountered experimental scenario. For a system consisting of several leads composed of non-interacting electrons, each individually coupled to a quantum impurity with interactions and maintained at different chemical potentials, we reformulate the system in terms of an effective-equilibrium density matrix. This density matrix has a simple Boltzmann-like form in terms of the system's Lippmann-Schwinger (scattering) operators. We elaborate the conditions for this description to be valid based on the microscopic Hamiltonian of the system. We then prove the equivalence of physical observables computed using this formulation with corresponding expressions in the Schwinger-Keldysh approach and provide a dictionary between Green's functions in either scheme. An imaginary-time functional integral framework to compute finite temperature Green's functions is proposed and used to develop a novel perturbative expansion in the interaction strength which is exact in all other system parameters. We use these tools to study the fate of the Abrikosov-Suhl regime on the Kondo-correlated quantum dot due to the effects of bias and external magnetic fields. Next, we expand the domain of this formalism to additionally
On the relationship between positive and negative affect: Their correlation and their co-occurrence.
Larsen, Jeff T; Hershfield, Hal E; Stastny, Bradley J; Hester, Neil
2017-03-01
Understanding the nature of emotional experience requires understanding the relationship between positive and negative affect. Two particularly important aspects of that relationship are the extent to which positive and negative affect are correlated with one another and the extent to which they co-occur. Some researchers have assumed that weak negative correlations imply greater co-occurrence (i.e., more mixed emotions) than do strong negative correlations, but others have noted that correlations may imply very little about co-occurrence. We investigated the relationship between the correlation between positive and negative affect and co-occurrence. Participants in each of 2 samples provided moment-to-moment happiness and sadness ratings as they watched an evocative film and listened to music. Results indicated (a) that 4 measures of the correlation between positive and negative affect were quite highly related to 1 another; (b) that the strength of the correlation between measures of mixed emotions varied considerably; (c) that correlational measures were generally (but not always) weakly correlated with mixed emotion measures; and (d) that bittersweet stimuli consistently led to elevations in mixed emotion measures but did not consistently weaken the correlation between positive and negative affect. Results highlight that the correlation between positive and negative affect and their co-occurrence are distinct aspects of the relationship between positive and negative affect. Such insight helps clarify the implications of existing work on age-related and cultural differences in emotional experience and sets the stage for greater understanding of the experience of mixed emotions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Farrelly, Matthew C; Davis, Kevin C; Nonnemaker, James M; Kamyab, Kian; Jackson, Christine
2011-07-01
To understand the relative effectiveness of television advertisements that differ in their thematic focus and portrayals of negative emotions and/or graphic images in promoting calls to a smokers' quitline. Regression analysis is used to explain variation in quarterly media market-level per smoker calls to the New York State Smokers' Quitline from 2001 to 2009. The primary independent variable is quarterly market-level delivery of television advertisements measured by target audience rating points (TARPs). Advertisements were characterised by their overall objective--promoting cessation, highlighting the dangers of secondhand smoke (SHS) or other--and by their portrayals of strong negative emotions and graphic images. Per smoker call volume is positively correlated with total TARPs (padvertisements are more effective than SHS advertisements in promoting quitline call volume. Advertisements with graphic images only or neither strong negative emotions nor graphic images are associated with higher call volume with similar effect sizes. Call volume was not significantly associated with the number of TARPs for advertisements with strong negative emotions only (p=0.71) or with both graphic images and strong emotions (p=0.09). Exposure to television advertisements is strongly associated with quitline call volume, and both cessation and SHS advertisements can be effective. The use of strong negative emotions in advertisements may be effective in promoting smoking cessation in the population but does not appear to influence quitline call volume. Further research is needed to understand the role of negative emotions in promoting calls to quitlines and cessation more broadly among the majority of smokers who do not call quitlines.
Superconductivity in strongly correlated electron systems: successes and open questions
International Nuclear Information System (INIS)
Shastry, B. Sriram
2000-01-01
Correlated electronic systems and superconductivity is a field which has unique track record of producing exciting new phases of matter. The article gives an overview of trends in solving the problems of superconductivity and correlated electronic systems
Aspects of Strongly Correlated Many-Body Fermi Systems
Porter, William J., III
A, by now, well-known signal-to-noise problem plagues Monte Carlo calculations of quantum-information-theoretic observables in systems of interacting fermions, particularly the Renyi entanglement entropies Sn, even in many cases where the infamous sign problem does not appear. Several methods have been put forward to circumvent this affliction including ensemble-switching techniques using auxiliary partition-function ratios. This dissertation presents an algorithm that modifies the recently proposed free-fermion decomposition in an essential way: we incorporate the entanglement-sensitive correlations directly into the probability measure in a natural way. Implementing this algorithm, we demonstrate that it is compatible with the hybrid Monte Carlo algorithm, the workhorse of the lattice quantum chromodynamics community and an essential tool for studying gauge theories that contain dynamical fermions. By studying a simple one-dimensional Hubbard model, we demonstrate that our method does not exhibit the same debilitating numerical difficulties that naive attempts to study entanglement often encounter. Following that, we illustrate some key probabilistic insights, using intuition derived from the previous method and its successes to construct a simpler, better behaved, and more elegant algorithm. Using this method, in combination with new identities which allow us to avoid seemingly necessary numerical difficulties, the inversion of the restricted one-body density matrices, we compute high order Renyi entropies and perform a thorough comparison to this new algorithm's predecessor using the Hubbard model mentioned before. Finally, we characterize non-perturbatively the Renyi entropies of degree n = 2,3,4, and 5 of three-dimensional, strongly coupled many-fermion systems in the scale-invariant regime of short interaction range and large scattering length, i.e. in the unitary limit using the algorithms detailed herein. We also detail an exact, few-body projective method
Quantum phase transition in strongly correlated many-body system
You, Wenlong
The past decade has seen a substantial rejuvenation of interest in the study of quantum phase transitions (QPTs), driven by experimental advance on the cuprate superconductors, the heavy fermion materials, organic conductors, Quantum Hall effect, Fe-As based superconductors and other related compounds. It is clear that strong electronic interactions play a crucial role in the systems of current interest, and simple paradigms for the behavior of such systems near quantum critical points remain unclear. Furthermore, the rapid progress in Feshbach resonance and optical lattice provides a flexible platform to study QPT. Quantum Phase Transition (QPT) describes the non-analytic behaviors of the ground-state properties in a many-body system by varying a physical parameter at absolute zero temperature - such as magnetic field or pressure, driven by quantum fluctuations. Such quantum phase transitions can be first-order phase transition or continuous. The phase transition is usually accompanied by a qualitative change in the nature of the correlations in the ground state, and describing this change shall clearly be one of our major interests. We address this issue from three prospects in a few strong correlated many-body systems in this thesis, i.e., identifying the ordered phases, studying the properties of different phases, characterizing the QPT points. In chapter 1, we give an introduction to QPT, and take one-dimensional XXZ model as an example to illustrate the QPT therein. Through this simple example, we would show that when the tunable parameter is varied, the system evolves into different phases, across two quantum QPT points. The distinct phases exhibit very different behaviors. Also a schematic phase diagram is appended. In chapter 2, we are engaged in research on ordered phases. Originating in the work of Landau and Ginzburg on second-order phase transition, the spontaneous symmetry breaking induces nonzero expectation of field operator, e.g., magnetization M
Directory of Open Access Journals (Sweden)
Jenkins Dafyd J
2008-01-01
Full Text Available Abstract Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusion Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic
Tree-level correlations in the strong field regime
Gelis, François
2017-09-01
We consider the correlation function of an arbitrary number of local observables in quantum field theory, in situations where the field amplitude is large. Using a quasi-classical approximation (valid for a highly occupied initial mixed state, or for a coherent initial state if the classical dynamics has instabilities), we show that at tree level these correlations are dominated by fluctuations at the initial time. We obtain a general expression of the correlation functions in terms of the classical solution of the field equation of motion and its derivatives with respect to its initial conditions, that can be arranged graphically as the sum of labeled trees where the nodes are the individual observables, and the links are pairs of derivatives acting on them. For 3-point (and higher) correlation functions, there are additional tree-level terms beyond the quasi-classical approximation, generated by fluctuations in the bulk.
Excitonic condensation in systems of strongly correlated electrons
Czech Academy of Sciences Publication Activity Database
Kuneš, Jan
2015-01-01
Roč. 27, č. 33 (2015), s. 333201 ISSN 0953-8984 Institutional support: RVO:68378271 Keywords : electronic correlations * exciton * Bose-Einstein condensation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.209, year: 2015
DEFF Research Database (Denmark)
Overgaard, A; Axel, A M; Lie, M E
2015-01-01
OBJECTIVE: It is well known that reproductive capacity is lower in obese individuals, but what mediators and signals are involved is unclear. Kisspeptin is a potent stimulator of GnRH release, and it has been suggested that kisspeptin neurons located in the arcuate nucleus transmit metabolic...... signals to the GnRH neurons. METHODS: In this study, we measured body weight and plasma concentrations of leptin, insulin, testosterone, and triglycerides after high fat diet exposure and correlated these parameters with the number of kisspeptin-immunoreactive neurons in the arcuate nucleus of male rats...... with increased fat in the diet. Kisspeptin-immunoreactive cells are not correlated with body weight, testosterone, leptin or insulin. However, we find that the number of kisspeptin-immunoreactive cells is strongly and negatively correlated with the level of plasma triglycerides (R2=0.49, p=0.004). CONCLUSION: We...
Magnetic field correlations in random flow with strong steady shear
International Nuclear Information System (INIS)
Kolokolov, I. V.; Lebedev, V. V.; Sizov, G. A.
2011-01-01
We analyze the magnetic kinematic dynamo in a conducting fluid where a stationary shear flow is accompanied by relatively weak random velocity fluctuations. The diffusionless and diffusion regimes are described. The growth rates of the magnetic field moments are related to the statistical characteristics of the flow describing divergence of the Lagrangian trajectories. The magnetic field correlation functions are examined, and their growth rates and scaling behavior are established. General assertions are illustrated by the explicit solution of a model where the velocity field is short-correlated in time.
Strong Country Level Correlation between Syphilis and HSV-2 Prevalence
Kenyon, Chris Richard; Tsoumanis, Achilleas
2016-01-01
Background. Syphilis is curable but Herpes Simplex Virus-2 (HSV-2) is not. As a result, the prevalence of syphilis but not HSV-2 may be influenced by the efficacy of national STI screening and treatment capacity. If the prevalence of syphilis and HSV-2 is found to be correlated, then this makes it more likely that something other than differential STI treatment is responsible for variations in the prevalence of both HSV-2 and syphilis. Methods. Simple linear regression was used to evaluate the relationship between national antenatal syphilis prevalence and HSV-2 prevalence in women in two time periods: 1990–1999 and 2008. Adjustments were performed for the laboratory syphilis testing algorithm used and the prevalence of circumcision. Results. The prevalence of syphilis was positively correlated with that of HSV-2 for both time periods (adjusted correlations, 20–24-year-olds: 1990–99: R 2 = 0.54, P < 0.001; 2008: R 2 = 0.41, P < 0.001 and 40–44-year-olds: 1990–99: R 2 = 0.42, P < 0.001; 2008: R 2 = 0.49, P < 0.001). Conclusion. The prevalence of syphilis and HSV-2 is positively correlated. This could be due to a common set of risk factors underpinning both STIs. PMID:27069710
Rydberg-atom formation in strongly correlated ultracold plasmas
International Nuclear Information System (INIS)
Bannasch, G.; Pohl, T.
2011-01-01
In plasmas at very low temperatures, the formation of neutral atoms is dominated by collisional three-body recombination, owing to the strong ∼T -9/2 scaling of the corresponding recombination rate with the electron temperature T. While this law is well established at high temperatures, the unphysical divergence as T→0 clearly suggests a breakdown in the low-temperature regime. Here, we present a combined molecular dynamics Monte Carlo study of electron-ion recombination over a wide range of temperatures and densities. Our results reproduce the known behavior of the recombination rate at high temperatures, but reveal significant deviations with decreasing temperature. We discuss the fate of the kinetic bottleneck and resolve the divergence problem as the plasma enters the ultracold, strongly coupled domain.
Some Applications of Holography to Study Strongly Correlated Systems
Directory of Open Access Journals (Sweden)
Bhatnagar Neha
2018-01-01
Full Text Available In this work, we study the transport coefficients of strongly coupled condensed matter systems using gauge/gravity duality (holography. We consider examples from the real world and evaluate the conductivities from their gravity duals. Adopting the bottom-up approach of holography, we obtain the frequency response of the conductivity for (1+1-dimensional systems. We also evaluate the DC conductivities for non-relativistic condensed matter systems with hyperscaling violating geometry.
Neural correlates of attitude change following positive and negative advertisements
Directory of Open Access Journals (Sweden)
Junko Kato
2009-05-01
Full Text Available Understanding changes in attitudes towards others is critical to understanding human behaviour. Neuropolitical studies have found that the activation of emotion-related areas in the brain is linked to resilient political preferences, and neuroeconomic research has analysed the neural correlates of social preferences that favour or oppose consideration of intrinsic rewards. This study aims to identify the neural correlates in the prefrontal cortices of changes in political attitudes toward others that are linked to social cognition. Functional magnetic resonance imaging (fMRI experiments have presented videos from previous electoral campaigns and television commercials for major cola brands and then used the subjects’ self-rated affinity toward political candidates as behavioural indicators. After viewing negative campaign videos, subjects showing stronger fMRI activation in the dorsolateral prefrontal cortex lowered their ratings of the candidate they originally supported more than did those with smaller fMRI signal changes in the same region. Subjects showing stronger activation in the medial prefrontal cortex tended to increase their ratings more than did those with less activation. The same regions were not activated by viewing negative advertisements for cola. Correlations between the self-rated values and the neural signal changes underscore the metric representation of observed decisions (i.e., whether to support or not in the brain. This indicates that neurometric analysis may contribute to the exploration of the neural correlates of daily social behaviour.
Neural Correlates of Attitude Change Following Positive and Negative Advertisements
Kato, Junko; Ide, Hiroko; Kabashima, Ikuo; Kadota, Hiroshi; Takano, Kouji; Kansaku, Kenji
2009-01-01
Understanding changes in attitudes towards others is critical to understanding human behaviour. Neuropolitical studies have found that the activation of emotion-related areas in the brain is linked to resilient political preferences, and neuroeconomic research has analysed the neural correlates of social preferences that favour or oppose consideration of intrinsic rewards. This study aims to identify the neural correlates in the prefrontal cortices of changes in political attitudes toward others that are linked to social cognition. Functional magnetic resonance imaging (fMRI) experiments have presented videos from previous electoral campaigns and television commercials for major cola brands and then used the subjects' self-rated affinity toward political candidates as behavioural indicators. After viewing negative campaign videos, subjects showing stronger fMRI activation in the dorsolateral prefrontal cortex lowered their ratings of the candidate they originally supported more than did those with smaller fMRI signal changes in the same region. Subjects showing stronger activation in the medial prefrontal cortex tended to increase their ratings more than did those with less activation. The same regions were not activated by viewing negative advertisements for cola. Correlations between the self-rated values and the neural signal changes underscore the metric representation of observed decisions (i.e., whether to support or not) in the brain. This indicates that neurometric analysis may contribute to the exploration of the neural correlates of daily social behaviour. PMID:19503749
Transverse transport in coupled strongly correlated electronic chains
International Nuclear Information System (INIS)
Capponi, S.; Poilblanc, D.
1997-01-01
One-particle interchain hopping in a system of coupled Luttinger liquids is investigated by use of exact diagonalizations techniques. We give numerical evidence that inter-chain coherent hopping (defined by a non-vanishing splitting) can be totally suppressed for the Luttinger liquid exponent α ∝ 0.4 or even smaller α values. The transverse conductivity is shown to exhibit a strong incoherent part even when coherent inter-chain hopping is believed to occur. Implications for the optical experiments in quasi-1D organic or high-T c superconductors is outlined. (orig.)
The Electron-Phonon Interaction in Strongly Correlated Systems
International Nuclear Information System (INIS)
Castellani, C.; Grilli, M.
1995-01-01
We analyze the effect of strong electron-electron repulsion on the electron-phonon interaction from a Fermi-liquid point of view and show that the electron-electron interaction is responsible for vertex corrections, which generically lead to a strong suppression of the electron-phonon coupling in the v F q/ω >>1 region, while such effect is not present when v F q/ω F is the Fermi velocity and q and ω are the transferred momentum and frequency respectively. In particular the e-ph scattering is suppressed in transport properties which are dominated by low-energy-high-momentum processes. On the other hand, analyzing the stability criterion for the compressibility, which involves the effective interactions in the dynamical limit, we show that a sizable electron-phonon interaction can push the system towards a phase-separation instability. Finally a detailed analysis of these ideas is carried out using a slave-boson approach for the infinite-U three-band Hubbard model in the presence of a coupling between the local hole density and a dispersionless optical phonon. (author)
Can strong correlations be experimentally revealed for Ҡ -mesons?
Directory of Open Access Journals (Sweden)
Hiesmayr Beatrix C.
2014-01-01
Full Text Available In 1964 the physicists John St. Bell working at CERN took the 1935-idea of Einstein-Podolsky-Rosen seriously and found that all theories based on local realism have to satisfy a certain inequality, nowadays dubbed Bell’s inequality. Experiments with ordinary matter systems or light show violations of Bell’s inequality favouring the quantum theory though a loophole free experiment has not yet been performed. This contribution presents an experimentally feasible Bell inequality for systems at higher energy scales, i.e. entangled neutral Ҡ -meson pairs that are typically produced in Φ -mesons decays or proton-antiproton annihilation processes. Strong requirements have to be overcome in order to achieve a conclusive tests, such a proposal was recently published. Surprisingly, this new Bell inequality reveals new features for weakly decaying particles, in particular, a strong sensitivity to the combined charge-conjugation-parity (CP symmetry. Here-with, a puzzling relation between a symmetry breaking for mesons and Bell’s inequality—which is a necessary and sufficient condition for the security of quantum cryptography protocols— is established. This becomes the more important since CP symmetry is related to the cosmological question why the antimatter disappeared after the Big Bang.
Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect
International Nuclear Information System (INIS)
Hung Nguyen, V; Mazzamuto, F; Saint-Martin, J; Bournel, A; Dollfus, P
2012-01-01
Using atomistic quantum simulation based on a tight binding model, we have investigated the transport characteristics of graphene nanomesh-based devices and evaluated the possibilities of observing negative differential conductance. It is shown that by taking advantage of bandgap opening in the graphene nanomesh lattice, a strong negative differential conductance effect can be achieved at room temperature in pn junctions and n-doped structures. Remarkably, the effect is improved very significantly (with a peak-to-valley current ratio of a few hundred) and appears to be weakly sensitive to the transition length in graphene nanomesh pn hetero-junctions when inserting a pristine (gapless) graphene section in the transition region between n and p zones. The study therefore suggests new design strategies for graphene electronic devices which may offer strong advantages in terms of performance and processing over the devices studied previously. (paper)
Signals of strong electronic correlation in ion scattering processes
Bonetto, F.; Gonzalez, C.; Goldberg, E. C.
2016-05-01
Previous measurements of neutral atom fractions for S r+ scattered by gold polycrystalline surfaces show a singular dependence with the target temperature. There is still not a theoretical model that can properly describe the magnitude and the temperature dependence of the neutralization probabilities found. Here, we applied a first-principles quantum-mechanical theoretical formalism to describe the time-dependent scattering process. Three different electronic correlation approaches consistent with the system analyzed are used: (i) the spinless approach, where two charge channels are considered (S r0 and S r+ ) and the spin degeneration is neglected; (ii) the infinite-U approach, with the same charge channels (S r0 and S r+ ) but considering the spin degeneration; and (iii) the finite-U approach, where the first ionization and second ionization energy levels are considered very, but finitely, separated. Neutral fraction magnitudes and temperature dependence are better described by the finite-U approach, indicating that e -correlation plays a significant role in charge-transfer processes. However, none of them is able to explain the nonmonotonous temperature dependence experimentally obtained. Here, we suggest that small changes in the surface work function introduced by the target heating, and possibly not detected by experimental standard methods, could be responsible for that singular behavior. Additionally, we apply the same theoretical model using the infinite-U approximation for the Mg-Au system, obtaining an excellent description of the experimental neutral fractions measured.
Strongly correlated electron materials. I. Theory of the quasiparticle structure
International Nuclear Information System (INIS)
Lopez-Aguilar, F.; Costa-Quintana, J.; Puig-Puig, L.
1993-01-01
In this paper we give a method for analyzing the renormalized electronic structure of the Hubbard systems. The first step is the determination of effective interactions from the random-phase approximation (RPA) and from an extended RPA (ERPA) that introduces vertex effects within the bubble polarization. The second step is the determination of the density of states deduced from the spectral functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we analyze the conditions for which there is only one type of resonance and the causes that lead to the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective interactions within the strong-coupling theory and we give the conditions for obtaining coupling and superconductivity
Quantum phase transitions of strongly correlated electron systems
International Nuclear Information System (INIS)
Imada, Masatoshi
1998-01-01
Interacting electrons in solids undergo various quantum phase transitions driven by quantum fluctuations. The quantum transitions take place at zero temperature by changing a parameter to control quantum fluctuations rather than thermal fluctuations. In contrast to classical phase transitions driven by thermal fluctuations, the quantum transitions have many different features where quantum dynamics introduces a source of intrinsic fluctuations tightly connected with spatial correlations and they have been a subject of recent intensive studies as we see below. Interacting electron systems cannot be fully understood without deep analyses of the quantum phase transitions themselves, because they are widely seen and play essential roles in many phenomena. Typical and important examples of the quantum phase transitions include metal-insulator transitions, (2, 3, 4, 5, 6, 7, 8, 9) metal-superconductor transitions, superconductor-insulator transitions, magnetic transitions to antiferromagnetic or ferromagnetic phases in metals as well as in Mott insulators, and charge ordering transitions. Here, we focus on three different types of transitions
Lattice disorder in strongly correlated lanthanide and actinide intermetallics
International Nuclear Information System (INIS)
Booth, C.H.; Bauer, E.D.; Maple, M.B.; Lawrence, J.M.; Kwei, G.H.; Sarrao, J.L.
2001-01-01
Lanthanide and actinide intermetallic compounds display a wide range of correlated-electron behavior, including ferromagnetism, antiferromagnetism, nonmagnetic (Kondo) ground states, and so-called 'non-Fermi liquid' (NFL) behavior. The interaction between f electrons and the conduction band is a dominant factor in determining the ground state of a given system. However, lattice disorder can create a distribution of interactions, generating unusual physical properties. These properties may include NFL behavior in many materials. In addition, lattice disorder can cause deviations from standard Kondo behavior that is less severe than NFL behavior. A review of the lattice disorder mechanism within a tight-binding model is presented, along with measurements of the YbBCu 4 and UPd x Cu 5-x systems, demonstrating the applicability of the model. These measurements indicate that while the YbBCu 4 system appears to be well ordered, both site interchange and continuous bond-length disorder occur in the UPd x Cu 5-x series. Nevertheless, the measured bond-length disorder in UPdCu 4 does not appear to be enough to explain the NFL properties simply with the Kondo disorder model. (au)
International Nuclear Information System (INIS)
Zhou, Yongxi; Ernzerhof, Matthias; Bahmann, Hilke
2015-01-01
Drawing on the adiabatic connection of density functional theory, exchange-correlation functionals of Kohn-Sham density functional theory are constructed which interpolate between the extreme limits of the electron-electron interaction strength. The first limit is the non-interacting one, where there is only exchange. The second limit is the strong correlated one, characterized as the minimum of the electron-electron repulsion energy. The exchange-correlation energy in the strong-correlation limit is approximated through a model for the exchange-correlation hole that is referred to as nonlocal-radius model [L. O. Wagner and P. Gori-Giorgi, Phys. Rev. A 90, 052512 (2014)]. Using the non-interacting and strong-correlated extremes, various interpolation schemes are presented that yield new approximations to the adiabatic connection and thus to the exchange-correlation energy. Some of them rely on empiricism while others do not. Several of the proposed approximations yield the exact exchange-correlation energy for one-electron systems where local and semi-local approximations often fail badly. Other proposed approximations generalize existing global hybrids by using a fraction of the exchange-correlation energy in the strong-correlation limit to replace an equal fraction of the semi-local approximation to the exchange-correlation energy in the strong-correlation limit. The performance of the proposed approximations is evaluated for molecular atomization energies, total atomic energies, and ionization potentials
Negative correlation learning for customer churn prediction: a comparison study.
Rodan, Ali; Fayyoumi, Ayham; Faris, Hossam; Alsakran, Jamal; Al-Kadi, Omar
2015-01-01
Recently, telecommunication companies have been paying more attention toward the problem of identification of customer churn behavior. In business, it is well known for service providers that attracting new customers is much more expensive than retaining existing ones. Therefore, adopting accurate models that are able to predict customer churn can effectively help in customer retention campaigns and maximizing the profit. In this paper we will utilize an ensemble of Multilayer perceptrons (MLP) whose training is obtained using negative correlation learning (NCL) for predicting customer churn in a telecommunication company. Experiments results confirm that NCL based MLP ensemble can achieve better generalization performance (high churn rate) compared with ensemble of MLP without NCL (flat ensemble) and other common data mining techniques used for churn analysis.
Negative correlates of computer game play in adolescents.
Colwell, J; Payne, J
2000-08-01
There is some concern that playing computer games may be associated with social isolation, lowered self-esteem, and aggression among adolescents. Measures of these variables were included in a questionnaire completed by 204 year eight students at a North London comprehensive school. Principal components analysis of a scale to assess needs fulfilled by game play provided some support for the notion of 'electronic friendship' among boys, but there was no evidence that game play leads to social isolation. Play was not linked to self-esteem in girls, but a negative relationship was obtained between self-esteem and frequency of play in boys. However, self-esteem was not associated with total exposure to game play. Aggression scores were not related to the number of games with aggressive content named among three favourite games, but they were positively correlated with total exposure to game play. A multiple regression analysis revealed that sex and total game play exposure each accounted for a significant but small amount of the variance in aggression scores. The positive correlation between playing computer games and aggression provides some justification for further investigation of the causal hypothesis, and possible methodologies are discussed.
Detection of a strongly negative surface potential at Saturn's moon Hyperion.
Nordheim, T A; Jones, G H; Roussos, E; Leisner, J S; Coates, A J; Kurth, W S; Khurana, K K; Krupp, N; Dougherty, M K; Waite, J H
2014-10-28
On 26 September 2005, Cassini conducted its only close targeted flyby of Saturn's small, irregularly shaped moon Hyperion. Approximately 6 min before the closest approach, the electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moon's surface. Plasma wave activity detected by the Radio and Plasma Wave instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low-Energy Magnetospheric Measurement System, indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (∼ -200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator.
Hillstrom, E L; Strachan, M
2000-02-01
Numerous studies have yielded small, negative correlations between measures of paranormal and "traditional religious beliefs". This may partly reflect opinions of Christians in the samples who take biblical sanctions against many "paranormal" activities seriously. To test this, 391 college students (270 women and 121 men) rated their beliefs in various paranormal phenomena and were classified as Believers, Nominal Believers, and Nonbelievers on the strength of their self-rated commitment to key biblical (particularly Protestant) doctrines. As predicted, Believers were significantly less likely than Nominal Believers or Nonbelievers to endorse reincarnation, contact with the dead, UFOs, telepathy, prophecy, psychokinesis, or healing, while the beliefs of Nominal Believers were similar to those of Nonbelievers. Substantial percentages of Nominal and Nonbelievers (30-50%) indicated at least moderate acceptance of the paranormal phenomena surveyed.
Three-qutrit correlations violate local realism more strongly than those of three qubits
International Nuclear Information System (INIS)
Kaszlikowski, Dagomir; Gosal, Darwin; Ling, E.J.; Oh, C.H.; Kwek, L.C.; Zukowski, Marek
2002-01-01
We present numerical data showing that three-qutrit correlations for a pure state, which is not maximally entangled, violate local realism more strongly than three-qubit correlations. The strength of violation is measured by the minimal amount of noise that must be admixed to the system so that the noisy correlations have a local and realistic model
Atomic physics of strongly correlated systems: Progress report, 1 February 1988--15 January 1989
International Nuclear Information System (INIS)
Lin Chii-Dong.
1989-01-01
This report presents the progress made in our continuing study of strongly correlated atomic systems for the last contract period. In the area of hyperspherical coordinates for Coulombic three-body systems of arbitrary masses a general computing code has been developed. Calculation of the adiabatic potential curves have been accomplished for the e/sup /minus//e + e/sup /minus// system of arbitrary L, S and parity π. It was found that these curves behave very similar to the potential curves of H/sup /minus// except for a mass scaling. We have also examined the mass dependence of the ground state potential curves for systems of three charged particles, AAB, and showed that the curves become more attractive as the mass m/sub A/ becomes larger than m/sub B/. For ion-atom collisions we have examined the transfer-excitation (TE) processes to establish the importance of electron correlations in these two-electron transitions. We have also examined the orientation parameters for excited states formed in collisions with positive and negative charged particles to establish the relation between the sign of the charge of the incident particles to the sign of
Growth rate correlates negatively with protein turnover in Arabidopsis accessions.
Ishihara, Hirofumi; Moraes, Thiago Alexandre; Pyl, Eva-Theresa; Schulze, Waltraud X; Obata, Toshihiro; Scheffel, André; Fernie, Alisdair R; Sulpice, Ronan; Stitt, Mark
2017-08-01
Previous studies with Arabidopsis accessions revealed that biomass correlates negatively to dusk starch content and total protein, and positively to the maximum activities of enzymes in photosynthesis. We hypothesized that large accessions have lower ribosome abundance and lower rates of protein synthesis, and that this is compensated by lower rates of protein degradation. This would increase growth efficiency and allow more investment in photosynthetic machinery. We analysed ribosome abundance and polysome loading in 19 accessions, modelled the rates of protein synthesis and compared them with the observed rate of growth. Large accessions contained less ribosomes than small accessions, due mainly to cytosolic ribosome abundance falling at night in large accessions. The modelled rates of protein synthesis resembled those required for growth in large accessions, but were up to 30% in excess in small accessions. We then employed 13 CO 2 pulse-chase labelling to measure the rates of protein synthesis and degradation in 13 accessions. Small accessions had a slightly higher rate of protein synthesis and much higher rates of protein degradation than large accessions. Protein turnover was negligible in large accessions but equivalent to up to 30% of synthesised protein day -1 in small accessions. We discuss to what extent the decrease in growth in small accessions can be quantitatively explained by known costs of protein turnover and what factors may lead to the altered diurnal dynamics and increase of ribosome abundance in small accessions, and propose that there is a trade-off between protein turnover and maximisation of growth rate. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Overlapping Neural Correlates of Reading Emotionally Positive and Negative Adjectives
Demirakca, Traute; Herbert, Cornelia; Kissler, Johanna; Ruf, Matthias; Wokrina, Tim; Ende, Gabriele
2009-01-01
Comparison of positive and negative naturally read adjectives to neutral adjectives yielded an overlapping higher BOLD response in the occipital and the orbitofrontal cortex (gyrus rectus). Superior medial frontal gyrus and posterior cingulate gyrus showed higher BOLD response to negative adjectives and inferior frontal gyrus to positive adjectives. The overlap of activated regions and lack of pronounced distinct regions supports the assumption that the processing of negative and positive wor...
Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems
Sprik, R.; Tourin, A.; de Rosny, J.; Fink, M.
2008-01-01
We experimentally study the effects of correlations in the propagation of ultrasonic waves in water from a multielement source to a multielement detector through a strongly scattering system of randomly placed vertical rods. Due to the strong scattering, the wave transport in the sample is in the
Residual correlation in two-proton interferometry from Λ-proton strong interactions
International Nuclear Information System (INIS)
Wang, Fuqiang
1999-01-01
We investigate the residual effect of Λp strong interactions in pp correlations with one proton from Λ decays. It is found that the residual correlation is about 10% of the Λp correlation strength, and has a broad distribution centered around q≅40 MeV/c. The residual correlation cannot explain the observed structure on the tail of the recently measured pp correlation function in central Pb+Pb collisions by NA49 at the Super Proton Synchrotron. (c) 1999 The American Physical Society
Finite-Temperature Variational Monte Carlo Method for Strongly Correlated Electron Systems
Takai, Kensaku; Ido, Kota; Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi
2016-03-01
A new computational method for finite-temperature properties of strongly correlated electrons is proposed by extending the variational Monte Carlo method originally developed for the ground state. The method is based on the path integral in the imaginary-time formulation, starting from the infinite-temperature state that is well approximated by a small number of certain random initial states. Lower temperatures are progressively reached by the imaginary-time evolution. The algorithm follows the framework of the quantum transfer matrix and finite-temperature Lanczos methods, but we extend them to treat much larger system sizes without the negative sign problem by optimizing the truncated Hilbert space on the basis of the time-dependent variational principle (TDVP). This optimization algorithm is equivalent to the stochastic reconfiguration (SR) method that has been frequently used for the ground state to optimally truncate the Hilbert space. The obtained finite-temperature states allow an interpretation based on the thermal pure quantum (TPQ) state instead of the conventional canonical-ensemble average. Our method is tested for the one- and two-dimensional Hubbard models and its accuracy and efficiency are demonstrated.
Communication: A Jastrow factor coupled cluster theory for weak and strong electron correlation
International Nuclear Information System (INIS)
Neuscamman, Eric
2013-01-01
We present a Jastrow-factor-inspired variant of coupled cluster theory that accurately describes both weak and strong electron correlation. Compatibility with quantum Monte Carlo allows for variational energy evaluations and an antisymmetric geminal power reference, two features not present in traditional coupled cluster that facilitate a nearly exact description of the strong electron correlations in minimal-basis N 2 bond breaking. In double-ζ treatments of the HF and H 2 O bond dissociations, where both weak and strong correlations are important, this polynomial cost method proves more accurate than either traditional coupled cluster or complete active space perturbation theory. These preliminary successes suggest a deep connection between the ways in which cluster operators and Jastrow factors encode correlation
Interplay between strong correlation and adsorption distances: Co on Cu(001)
Bahlke, Marc Philipp; Karolak, Michael; Herrmann, Carmen
2018-01-01
Adsorbed transition metal atoms can have partially filled d or f shells due to strong on-site Coulomb interaction. Capturing all effects originating from electron correlation in such strongly correlated systems is a challenge for electronic structure methods. It requires a sufficiently accurate description of the atomistic structure (in particular bond distances and angles), which is usually obtained from first-principles Kohn-Sham density functional theory (DFT), which due to the approximate nature of the exchange-correlation functional may provide an unreliable description of strongly correlated systems. To elucidate the consequences of this popular procedure, we apply a combination of DFT with the Anderson impurity model (AIM), as well as DFT + U for a calculation of the potential energy surface along the Co/Cu(001) adsorption coordinate, and compare the results with those obtained from DFT. The adsorption minimum is shifted towards larger distances by applying DFT+AIM, or the much cheaper DFT +U method, compared to the corresponding spin-polarized DFT results, by a magnitude comparable to variations between different approximate exchange-correlation functionals (0.08 to 0.12 Å). This shift originates from an increasing correlation energy at larger adsorption distances, which can be traced back to the Co 3 dx y and 3 dz2 orbitals being more correlated as the adsorption distance is increased. We can show that such considerations are important, as they may strongly affect electronic properties such as the Kondo temperature.
Directory of Open Access Journals (Sweden)
Breno F. Cruz
2016-01-01
Full Text Available Objective: To analyze the correlation between quality of life, symptoms, and cognition assessed by the interview-based Schizophrenia Cognition Rating Scale (SCoRS. Methods: Seventy-nine outpatients diagnosed with schizophrenia were evaluated with the Quality of Life Scale – Brazilian version (QLS-BR, the SCoRS, and symptoms scales (Positive and Negative Syndrome Scale [PANSS]. After determining the potential explanatory variables using Spearman’s correlation and Student’s t test results, we ran simple, multivariate, and decision-tree regression analyses to assess the impact of SCoRS and PANSS ratings on mean overall quality of life. Results: Cognitive deficits and negative symptoms were the best predictors of quality of life. A low degree of negative symptoms (PANSS negative < 11 was a strong predictor of better quality of life (QLS ∼ 75, regardless of SCoRS rating. Among participants with more severe negative symptoms, elevated cognitive impairment (interviewer SCoRS ∼ 44 was a predictor of worse quality of life (QLS ∼ 44. Conclusions: Cognitive impairment determined by interview-based assessment seems to be a strong predictor of quality of life in subjects with severe negative symptoms. These results support the usefulness of SCoRS for cognitive assessment that is relevant to the everyday life of patients with schizophrenia.
Adams, Allan; Carr, Lincoln D.; Schafer, Thomas; Steinberg, Peter; Thomas, John E.
2012-01-01
Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These sy...
Study of correlations of positive and negative charged particles
International Nuclear Information System (INIS)
Takahashi, Y.; Chan, C.H.; Dong, B.L.; Duthie, J.G.; Gregory, J.C.; Hayashi, T.; Yokomi, H.; Christl, M.J.; Derrickson, J.H.; Eby, P.B.; Fountain, W.F.; Parnell, T.A.; Roberts, F.E.; Nagamiya, S.; Dake, S.; Tominaga, T.; Fuki, M.; Iyono, A.; Ogata, T.; Miyamura, O.
1991-01-01
Particle correlations of the central collision events of 32 S + Pb at 200 GeV/AMU have been studied by utilizing a Magnetic-Interferomagnetic-Emulsion-Chamber (MAGIC) detector. Particle angles, momentum, and charge-signs are measured for all produced charged tracks for each event. Two-particle correlation functions, C 2 = dN (vertical strokep 1 - p 2 vertical stroke = q)/dp 1 dp 2 , for (++), (--) and (+-) particles are examined. A source radius around 4 - 6 fm is observed for overall identical particle correlations, while unexpected short-range correlations of unlike-sign pairs are observed in the high rapidity region. An analysis of unlike-sign pairs in terms of resonance decays indicated that a large amount (40% relative to pions) of η or ω mesons (decaying into 3 π), or of scalar iso-scalar σ mesons (decaying into 2 π) would be required to explain some of the data. Multi-particle charge-sign clusters are recognized; however, their 'run-test' and 'conjugate-test' show small deviations from statistical fluctuations. (orig.)
Disorder and pseudogap in strongly correlated systems: Phase diagram in the DMFT + Σ approach
International Nuclear Information System (INIS)
Kuleeva, N. A.; Kuchinskii, E. Z.
2013-01-01
The influence of disorder and pseudogap fluctuations on the Mott insulator-metal transition in strongly correlated systems has been studied in the framework of the generalized dynamic mean field theory (DMFT + Σ approach). Using the results of investigations of the density of states (DOS) and optical conductivity, a phase diagram (disorder-Hubbard interaction-temperature) is constructed for the paramagnetic Anderson-Hubbard model, which allows both the effects of strong electron correlations and the influence of strong disorder to be considered. Strong correlations are described using the DMFT, while a strong disorder is described using a generalized self-consistent theory of localization. The DOS and optical conductivity of the paramagnetic Hubbard model have been studied in a pseudogap state caused by antiferromagnetic spin (or charge) short-range order fluctuations with a finite correlation length, which have been modeled by a static Gaussian random field. The effect of a pseudogap on the Mott insulator-metal transition has been studied. It is established that, in both cases, the static Gaussian random field (related to the disorder or pseudogap fluctuations) leads to suppression of the Mott transition, broadening of the coexistence region of the insulator and metal phases, and an increase in the critical temperature at which the coexistence region disappears
Aryanpour, K.; Roberts, A.; Sandhu, A.; Rathore, R.; Shukla, A.; Mazumdar, S.
2013-01-01
Strong electron correlation effects in the photophysics of quasi-one-dimensional $\\pi$-conjugated organic systems such as polyenes, polyacetylenes, polydiacetylenes, etc., have been extensively studied. Far less is known on correlation effects in two-dimensional $\\pi$-conjugated systems. Here we present theoretical and experimental evidence for moderate repulsive electron-electron interactions in a number of finite polycyclic aromatic hydrocarbon molecules with $D_{6h}$ symmetry. We show that...
Energy Technology Data Exchange (ETDEWEB)
Katano, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
Neutron scattering experiments in our group on strongly correlated electron systems are reviewed Metal-insulator transitions caused by structural phase transitions in (La{sub 1-x}Sr{sub x}) MnO{sub 3}, a novel magnetic transition in the CeP compound, correlations between antiferromagnetism and superconductivity in UPd{sub 2}Al{sub 3} and so forth are discussed. Here, in this note, the phase transition of Mn-oxides was mainly described. (author)
Characterizing quantum correlations. The genuine multiparticle negativity as entanglement monotone
International Nuclear Information System (INIS)
Hofmann, Martin
2014-01-01
Multiparticle entanglement is a useful resource in quantum information processing. It is involved in some quantum key distribution protocols, quantum metrology and many other physical applications and phenomena and can be experimentally observed in various quantum systems. Having said this, its classification, detection and especially its quantification is quite challenging. To this day there exists no general mixed state measure for genuine multiparticle entanglement, which can be computed and analytically treated at the same time. In this thesis the analytical characterisation of genuine multiparticle entanglement in quantum systems using the computable genuine multiparticle negativity as entanglement measure is provided. Furthermore, the notion of stabiliser states, which are families of symmetric genuine multiparticle entangled states, is generalised and a useful method to exploit local symmetries to speed up the computation of the investigated entanglement measure is provided. In the first part, after a short introduction, the genuine multiparticle negativity, which is defined as an optimisation problem known as semidefinite programming problem, is investigated. It is discussed, how this entanglement measure can be characterised in an analytical way. First, it is shown that the genuine multiparticle negativity with an appropriate renormalisation can be considered as coming from a mixed convex roof construction. Using this result, its analytical value for generalised n-qubit Greenberger-Horne-Zeilingerdiagonal states and four-qubit cluster-diagonal states is determined. In the second part of this thesis, the genuine multiparticle negativity is used to study the scaling and spatial distribution of genuine multiparticle entanglement in three- and four-spin reduced states of a onedimensional spin model at its quantum phase transition. At the quantum phase transition of the one dimensional XY -model, which can be studied with analytic rigour, a logarithmic
Delignières, Didier; Marmelat, Vivien
2014-01-01
In this paper, we analyze empirical data, accounting for coordination processes between complex systems (bimanual coordination, interpersonal coordination, and synchronization with a fractal metronome), by using a recently proposed method: detrended cross-correlation analysis (DCCA). This work is motivated by the strong anticipation hypothesis, which supposes that coordination between complex systems is not achieved on the basis of local adaptations (i.e., correction, predictions), but results from a more global matching of complexity properties. Indeed, recent experiments have evidenced a very close correlation between the scaling properties of the series produced by two coordinated systems, despite a quite weak local synchronization. We hypothesized that strong anticipation should result in the presence of long-range cross-correlations between the series produced by the two systems. Results allow a detailed analysis of the effects of coordination on the fluctuations of the series produced by the two systems. In the long term, series tend to present similar scaling properties, with clear evidence of long-range cross-correlation. Short-term results strongly depend on the nature of the task. Simulation studies allow disentangling the respective effects of noise and short-term coupling processes on DCCA results, and suggest that the matching of long-term fluctuations could be the result of short-term coupling processes.
de Simone, Giovanni; Roman, Mary J; De Marco, Marina; Bella, Jonathan N; Izzo, Raffaele; Lee, Elisa T; Devereux, Richard B
2015-09-28
We evaluated the relationship of aortic root dimension (ARD) with flow output and both peripheral and central blood pressure, using multivariable equations predicting ideal sex-specific ARD at a given age and body height. We measured echocardiographic diastolic ARD at the sinuses of Valsalva in 3160 adults (aged 42±16 years, 61% women) from the fourth examination of the Strong Heart Study who were free of prevalent coronary heart disease, and we compared measured data with the theoretical predicted value to calculate a z score. Central blood pressure was estimated by applanation tonometry of the radial artery in 2319 participants. ARD z scores were divided into tertiles representing small, normal, and large ARD. Participants with large ARD exhibited greater prevalence of central obesity and higher levels of inflammatory markers and lipids (0.05
negatively to pulse pressure. Large ARD was also independently correlated to higher waist circumference and percentages of neutrophils and plasminogen activator inhibitor-1 (all P<0.01). Aortic root dilatation is associated with high diastolic blood pressure, high stroke volume, central fat distribution, and inflammatory status. In contrast, at a given diastolic blood pressure and stroke volume, aortic root dilatation is associated with lower pulse pressure and systolic blood pressure. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Exact time-dependent exchange-correlation potentials for strong-field electron dynamics
International Nuclear Information System (INIS)
Lein, Manfred; Kuemmel, Stephan
2005-01-01
By solving the time-dependent Schroedinger equation and inverting the time-dependent Kohn-Sham scheme we obtain the exact time-dependent exchange-correlation potential of density-functional theory for the strong-field dynamics of a correlated system. We demonstrate that essential features of the exact exchange-correlation potential can be related to derivative discontinuities in stationary density-functional theory. Incorporating the discontinuity in a time-dependent density-functional calculation greatly improves the description of the ionization process
Social jetlag negatively correlates with academic performance in undergraduates.
Haraszti, Réka Ágnes; Ella, Krisztina; Gyöngyösi, Norbert; Roenneberg, Till; Káldi, Krisztina
2014-06-01
Discrepancies between sleep timing on workdays and weekends, also known as social jetlag (SJL), affect the majority of the population and have been found to be associated with increased health risk and health-impairing behaviors. In this study, we explored the relationship between SJL and academic performance in a sample of undergraduates of the Semmelweis University. We assessed SJL and other sleep-related parameters with the Munich ChronoType Questionnaire (MCTQ) (n = 753). Academic performance was measured by the average grade based on weekly test results as well as scores acquired on the final test (n = 247). The average mid-sleep point on free days in the Hungarian sample fits well the regression line plotted for longitudes within the Central European Time Zone and chronotypes, confirming that sunlight has a major impact on chronotype. Multivariate analysis showed negative effect of SJL on the weekly average grade (p = 0.028, n = 247) during the lecture term with its highly regular teaching schedules, while this association disappeared in the exam period (p = 0.871, n = 247) when students had no scheduled obligations (lower SJL). We also analyzed the relationship between the time of the weekly tests and academic performance and found that students with later sleep times on free days achieved worse in the morning (p = 0.017, n = 129), while the inverse tendency was observed for the afternoon test-takers (p = 0.10, n = 118). We did not find significant association between academic performance and sleep duration or sleep debt on work days. Our data suggest that circadian misalignment can have a significant negative effect on academic performance. One possible reason for this misalignment is socially enforced sleep times.
The Role of screening in the strongly correlated 2D systems
Hwang, E H
2003-01-01
We investigate recently observed experiments in the strongly correlated 2D systems (r sub s >> 1) (low-density 2D plasmons, metallic behaviour of 2D systems and frictional drag resistivity between two 2D hole layers). We compare them with our theoretical results calculated within a conventional Fermi liquid theory with RPA screening.
Energy Technology Data Exchange (ETDEWEB)
Kong, Tai [Iowa State Univ., Ames, IA (United States)
2016-12-17
Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.
Quantum group random walks in strongly correlated 2+1 D spin systems
International Nuclear Information System (INIS)
Protogenov, A.P.; Rostovtsev, Yu.V.; Verbus, V.A.
1994-06-01
We consider the temporal evolution of strong correlated degrees of freedom in 2+1 D spin systems using the Wilson operator eigenvalues as variables. It is shown that the quantum-group diffusion equation at deformation parameter q being the k-th root of unity has the polynomial solution of degree k. (author). 20 refs, 1 tab
Communication: Thermodynamics of condensed matter with strong pressure-energy correlations
DEFF Research Database (Denmark)
Ingebrigtsen, Trond; Bøhling, Lasse; Schrøder, Thomas
2012-01-01
We show that for any liquid or solid with strong correlation between its NVT virial and potential-energy equilibrium fluctuations, the temperature is a product of a function of excess entropy per particle and a function of density, T = f(s)h(ρ). This implies that (1) the system's isomorphs (curve...
Stability of matrices with sufficiently strong negative-dominant-diagonal submatrices
Nieuwenhuis, H.J.; Schoonbeek, L.
A well-known sufficient condition for stability of a system of linear first-order differential equations is that the matrix of the homogeneous dynamics has a negative dominant diagonal. However, this condition cannot be applied to systems of second-order differential equations. In this paper we
Negative tunneling magneto-resistance in quantum wires with strong spin-orbit coupling.
Han, Seungju; Serra, Llorenç; Choi, Mahn-Soo
2015-07-01
We consider a two-dimensional magnetic tunnel junction of the FM/I/QW(FM+SO)/I/N structure, where FM, I and QW(FM+SO) stand for a ferromagnet, an insulator and a quantum wire with both magnetic ordering and Rashba spin-orbit (SOC), respectively. The tunneling magneto-resistance (TMR) exhibits strong anisotropy and switches sign as the polarization direction varies relative to the quantum-wire axis, due to interplay among the one-dimensionality, the magnetic ordering, and the strong SOC of the quantum wire.
Strongly correlated photons generated by coupling a three- or four-level system to a waveguide
Zheng, Huaixiu; Gauthier, Daniel J.; Baranger, Harold U.
2012-04-01
We study the generation of strongly correlated photons by coupling an atom to photonic quantum fields in a one-dimensional waveguide. Specifically, we consider a three-level or four-level system for the atom. Photon-photon bound states emerge as a manifestation of the strong photon-photon correlation mediated by the atom. Effective repulsive or attractive interaction between photons can be produced, causing either suppressed multiphoton transmission (photon blockade) or enhanced multiphoton transmission (photon-induced tunneling). As a result, nonclassical light sources can be generated on demand by sending coherent states into the proposed system. We calculate the second-order correlation function of the transmitted field and observe bunching and antibunching caused by the bound states. Furthermore, we demonstrate that the proposed system can produce photon pairs with a high degree of spectral entanglement, which have a large capacity for carrying information and are important for large-alphabet quantum communication.
Selected results on strong and coulomb-induced correlations from the STAR experiment
International Nuclear Information System (INIS)
Sumbera, M.
2007-01-01
Using recent high-statistics STAR data from Au + Au and Cu + Cu collisions at full RHIC energy I discuss strong and Coulomb-induced final state interaction effects on identical (pi-pi) and non-identical (pi-XI) particle correlations. Analysis of pi-XI correlations reveals the strong and Coulomb-induced FSI effects, allowing for the first time to estimate spatial extension of pi and XI sources and the average shift between them. Source imaging techniques provide clean separation of details of the source function and are applied to the one-dimensional relative momentum correlation function of identical pions. For low momentum pions, and/or non-central collisions, a large departure from a single-Gaussian shape is observed. (author)
DEFF Research Database (Denmark)
Andersen, H.W.; Pedersen, M.B.; Hammer, Karin
2001-01-01
enhanced in the strain deleted for lactate dehydrogenase. What is more surprising is that the enzyme had a strong negative control (C- LDH(F1)J=-1.3) on the flux to formate at the wild-type level of lactate dehydrogenase. Furthermore, we showed that L. lactis has limited excess of capacity of lactate...
Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.
2013-04-01
interdisciplinary appeal and include new studies of high temperature superfluidity, viscosity, spin-transport, spin-imbalanced mixtures, and three-component gases, this last having a close parallel to color superconductivity. Another system important for the field of strongly-interacting quantum fluids was revealed by analysis of data from the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. Despite naive expectations based on asymptotic freedom that the deconfinement of quarks and gluons at high temperatures would lead to a weakly-interacting quark gluon plasma (QGP), the system appeared to be quite strongly coupled. Subsequent estimates of the viscosity-to-entropy ratio suggest that the system is tantalizingly close to the postulated bound from AdS/CFT calculations. The field is quite dynamic at the moment; new measurements are expected from upgraded detectors at RHIC, and an entirely new energy regime is being opened up by heavy ion collisions at the Large Hadron Collider (LHC) at CERN. On the theoretical side, much work remains to be done to extract the precise values of the transport coefficients, and to characterize the nature of quasi-particle excitations in the plasma. Finally, holographic dualities such as anti-de Sitter/conformal field theory (AdS/CFT) have opened a new theoretical window on strongly correlated fluids. Holography relates strongly-interacting quantum many-body systems to weakly-coupled semi-classical gravitational systems, replacing quasiparticles with geometry and translating various difficult questions about quantum fluids into simple and calculable geometric exercises. Already, some of the earliest lessons of holography, such as the conjectural bound on the viscosity-to-entropy ratio, have had a considerable impact on the theoretical and experimental study of strongly correlated fluids, from RHIC to ultracold atoms. More recently, the study of holographic superconductors, non-Fermi liquids and unitary quantum gases has touched
Hu, Tao; Liu, Yinshang; Xiao, Hong; Mu, Gang; Yang, Yi-Feng
2017-08-25
The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (T) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-T resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation [Formula: see text], which bridges the slope of the linear-T-dependent resistivity (dρ/dT) to the London penetration depth λ L at zero temperature among cuprate superconductor Bi 2 Sr 2 CaCu 2 O 8+δ and heavy fermion superconductors CeCoIn 5 , where μ 0 is vacuum permeability, k B is the Boltzmann constant and ħ is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (D) approaching the quantum limit D ~ ħ/m*, where m* is the quasi-particle effective mass.
Directory of Open Access Journals (Sweden)
Szymański Maciej
2015-01-01
Full Text Available In this article, the analysis of baryon-antibaryon femtoscopic correlations is presented. In particular, it is shown that taking into account residual correlations is crucial for the description of pΛ¯$\\bar \\Lambda $ and p̄Λ correlation functions measured by the STAR experiment in Au–Au collisions at the centre-of-mass energy per nucleon pair √sNN = 200 GeV. This approach enables to obtain pΛ¯$\\bar \\Lambda $ (p̄Λ source size consistent with the sizes extracted from correlations in pΛ (p̄Λ¯$\\bar \\Lambda $ and lighter pair systems as well as with model predictions. Moreover, with this analysis it is possible to derive the unknown parameters of the strong interaction potential for baryon-antibaryon pairs under several assumptions.
Energy deposition of heavy ions in the regime of strong beam-plasma correlations.
Gericke, D O; Schlanges, M
2003-03-01
The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.
Strongly correlated states of a small cold-atom cloud from geometric gauge fields
International Nuclear Information System (INIS)
Julia-Diaz, B.; Dagnino, D.; Barberan, N.; Guenter, K. J.; Dalibard, J.; Grass, T.; Lewenstein, M.
2011-01-01
Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.
Strongly correlated states of a small cold-atom cloud from geometric gauge fields
Energy Technology Data Exchange (ETDEWEB)
Julia-Diaz, B. [Dept. ECM, Facultat de Fisica, U. Barcelona, E-08028 Barcelona (Spain); ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); Dagnino, D.; Barberan, N. [Dept. ECM, Facultat de Fisica, U. Barcelona, E-08028 Barcelona (Spain); Guenter, K. J.; Dalibard, J. [Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Superieure, 24 rue Lhomond, F-75005 Paris (France); Grass, T. [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); Lewenstein, M. [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, E-08010 Barcelona (Spain)
2011-11-15
Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.
Quantum correlations responsible for remote state creation: strong and weak control parameters
Doronin, S. I.; Zenchuk, A. I.
2017-03-01
We study the quantum correlations between the two remote qubits (sender and receiver) connected by the transmission line (homogeneous spin-1/2 chain) depending on the parameters of the sender's and receiver's initial states (control parameters). We consider two different measures of quantum correlations: the entanglement (a traditional measure) and the informational correlation (based on the parameter exchange between the sender and receiver). We find the domain in the control parameter space yielding (i) zero entanglement between the sender and receiver during the whole evolution period and (ii) non-vanishing informational correlation between the sender and receiver, thus showing that the informational correlation is responsible for the remote state creation. Among the control parameters, there are the strong parameters (which strongly effect the values of studied measures) and the weak ones (whose effect is negligible), therewith the eigenvalues of the initial state are given a privileged role. We also show that the problem of small entanglement (concurrence) in quantum information processing is similar (in certain sense) to the problem of small determinants in linear algebra. A particular model of 40-node spin-1/2 communication line is presented.
Mikuni, Shintaro; Yamamoto, Johtaro; Horio, Takashi; Kinjo, Masataka
2017-08-25
The glucocorticoid receptor (GR) is a transcription factor, which interacts with DNA and other cofactors to regulate gene transcription. Binding to other partners in the cell nucleus alters the diffusion properties of GR. Raster image correlation spectroscopy (RICS) was applied to quantitatively characterize the diffusion properties of EGFP labeled human GR (EGFP-hGR) and its mutants in the cell nucleus. RICS is an image correlation technique that evaluates the spatial distribution of the diffusion coefficient as a diffusion map. Interestingly, we observed that the averaged diffusion coefficient of EGFP-hGR strongly and negatively correlated with its transcriptional activities in comparison to that of EGFP-hGR wild type and mutants with various transcriptional activities. This result suggests that the decreasing of the diffusion coefficient of hGR was reflected in the high-affinity binding to DNA. Moreover, the hyper-phosphorylation of hGR can enhance the transcriptional activity by reduction of the interaction between the hGR and the nuclear corepressors.
Small Fermi surfaces and strong correlation effects in Dirac materials with holography
Seo, Yunseok; Song, Geunho; Park, Chanyong; Sin, Sang-Jin
2017-10-01
Recent discovery of transport anomaly in graphene demonstrated that a system known to be weakly interacting may become strongly correlated if system parameter (s) can be tuned such that fermi surface is sufficiently small. We study the strong correlation effects in the transport coefficients of Dirac materials doped with magnetic impurity under the magnetic field using holographic method. The experimental data of magneto-conductivity are well fit by our theory, however, not much data are available for other transports of Dirac material in such regime. Therefore, our results on heat transport, thermo-electric power and Nernst coefficients are left as predictions of holographic theory for generic Dirac materials in the vicinity of charge neutral point with possible surface gap. We give detailed look over each magneto-transport observable and 3Dplots to guide future experiments.
Peculiarities of the momentum distribution functions of strongly correlated charged fermions
Larkin, A. S.; Filinov, V. S.; Fortov, V. E.
2018-01-01
New numerical version of the Wigner approach to quantum thermodynamics of strongly coupled systems of particles has been developed for extreme conditions, when analytical approximations based on different kinds of perturbation theories cannot be applied. An explicit analytical expression of the Wigner function has been obtained in linear and harmonic approximations. Fermi statistical effects are accounted for by effective pair pseudopotential depending on coordinates, momenta and degeneracy parameter of particles and taking into account Pauli blocking of fermions. A new quantum Monte-Carlo method for calculations of average values of arbitrary quantum operators has been developed. Calculations of the momentum distribution functions and the pair correlation functions of degenerate ideal Fermi gas have been carried out for testing the developed approach. Comparison of the obtained momentum distribution functions of strongly correlated Coulomb systems with the Maxwell-Boltzmann and the Fermi distributions shows the significant influence of interparticle interaction both at small momenta and in high energy quantum ‘tails’.
Many-body Tunneling and Nonequilibrium Dynamics of Doublons in Strongly Correlated Quantum Dots.
Hou, WenJie; Wang, YuanDong; Wei, JianHua; Zhu, ZhenGang; Yan, YiJing
2017-05-30
Quantum tunneling dominates coherent transport at low temperatures in many systems of great interest. In this work we report a many-body tunneling (MBT), by nonperturbatively solving the Anderson multi-impurity model, and identify it a fundamental tunneling process on top of the well-acknowledged sequential tunneling and cotunneling. We show that the MBT involves the dynamics of doublons in strongly correlated systems. Proportional to the numbers of dynamical doublons, the MBT can dominate the off-resonant transport in the strongly correlated regime. A T 3/2 -dependence of the MBT current on temperature is uncovered and can be identified as a fingerprint of the MBT in experiments. We also prove that the MBT can support the coherent long-range tunneling of doublons, which is well consistent with recent experiments on ultracold atoms. As a fundamental physical process, the MBT is expected to play important roles in general quantum systems.
Pizarro, J. M.; Calderón, M. J.; Liu, J.; Muñoz, M. C.; Bascones, E.
2017-02-01
Undoped iron superconductors accommodate n =6 electrons in five d orbitals. Experimental and theoretical evidence shows that the strength of correlations increases with hole doping, as the electronic filling approaches half filling with n =5 electrons. This evidence delineates a scenario in which the parent compound of iron superconductors is the half-filled system, in analogy to cuprate superconductors. In cuprates the superconductivity can be induced upon electron or hole doping. In this work we propose to search for high-Tc superconductivity and strong correlations in chromium pnictides and chalcogenides with n slave-spin and multiorbital random-phase-approximation calculations we analyze the strength of the correlations and the superconducting and magnetic instabilities in these systems with the main focus on LaCrAsO. We find that electron-doped LaCrAsO is a strongly correlated system with competing magnetic interactions, with (π ,π ) antiferromagnetism and nodal d -wave pairing being the most plausible magnetic and superconducting instabilities, respectively.
Wang, Jigang
2014-03-01
Research of non-equilibrium phase transitions of strongly correlated electrons is built around addressing an outstanding challenge: how to achieve ultrafast manipulation of competing magnetic/electronic phases and reveal thermodynamically hidden orders at highly non-thermal, femtosecond timescales? Recently we reveal a new paradigm called quantum femtosecond magnetism-photoinduced femtosecond magnetic phase transitions driven by quantum spin flip fluctuations correlated with laser-excited inter-atomic coherent bonding. We demonstrate an antiferromagnetic (AFM) to ferromagnetic (FM) switching during about 100 fs laser pulses in a colossal magneto-resistive manganese oxide. Our results show a huge photoinduced femtosecond spin generation, measured by magnetic circular dichroism, with photo-excitation threshold behavior absent in the picosecond dynamics. This reveals an initial quantum coherent regime of magnetism, while the optical polarization/coherence still interacts with the spins to initiate local FM correlations that compete with the surrounding AFM matrix. Our results thus provide a framework that explores quantum non-equilibrium kinetics to drive phase transitions between exotic ground states in strongly correlated elecrons, and raise fundamental questions regarding some accepted rules, such as free energy and adiabatic potential surface. This work is in collaboration with Tianqi Li, Aaron Patz, Leonidas Mouchliadis, Jiaqiang Yan, Thomas A. Lograsso, Ilias E. Perakis. This work was supported by the National Science Foundation (contract no. DMR-1055352). Material synthesis at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences (contract no. DE-AC02-7CH11358).
Lee, Tsung-Han
Strongly correlated materials are a class of materials that cannot be properly described by the Density Functional Theory (DFT), which is a single-particle approximation to the original many-body electronic Hamiltonian. These systems contain d or f orbital electrons, i.e., transition metals, actinides, and lanthanides compounds, for which the electron-electron interaction (correlation) effects are too strong to be described by the single-particle approximation of DFT. Therefore, complementary many-body methods have been developed, at the model Hamiltonians level, to describe these strong correlation effects. Dynamical Mean Field Theory (DMFT) and Rotationally Invariant Slave-Boson (RISB) approaches are two successful methods that can capture the correlation effects for a broad interaction strength. However, these many-body methods, as applied to model Hamiltonians, treat the electronic structure of realistic materials in a phenomenological fashion, which only allow to describe their properties qualitatively. Consequently, the combination of DFT and many body methods, e.g., Local Density Approximation augmented by RISB and DMFT (LDA+RISB and LDA+DMFT), have been recently proposed to combine the advantages of both methods into a quantitative tool to analyze strongly correlated systems. In this dissertation, we studied the possible improvements of these approaches, and tested their accuracy on realistic materials. This dissertation is separated into two parts. In the first part, we studied the extension of DMFT and RISB in three directions. First, we extended DMFT framework to investigate the behavior of the domain wall structure in metal-Mott insulator coexistence regime by studying the unstable solution describing the domain wall. We found that this solution, differing qualitatively from both the metallic and the insulating solutions, displays an insulating-like behavior in resistivity while carrying a weak metallic character in its electronic structure. Second, we
Effects of strong and electromagnetic correlations on neutrino interactions in dense matter
International Nuclear Information System (INIS)
Reddy, S.; Prakash, M.; Lattimer, J.M.; Reddy, S.; Pons, J.A.
1999-01-01
An extensive study of the effects of correlations on both charged and neutral current weak interaction rates in dense matter is performed. Both strong and electromagnetic correlations are considered. The propagation of particle-hole interactions in the medium plays an important role in determining the neutrino mean free paths. The effects due to Pauli blocking and density, spin, and isospin correlations in the medium significantly reduce the neutrino cross sections. As a result of the lack of experimental information at high density, these correlations are necessarily model dependent. For example, spin correlations in nonrelativistic models are found to lead to larger suppressions of neutrino cross sections compared to those of relativistic models. This is due to the tendency of the nonrelativistic models to develop spin instabilities. Notwithstanding the above caveats, and the differences between nonrelativistic and relativistic approaches such as the spin- and isospin-dependent interactions and the nucleon effective masses, suppressions of order 2 - 3, relative to the case in which correlations are ignored, are obtained. Neutrino interactions in dense matter are especially important for supernova and early neutron star evolution calculations. The effects of correlations for protoneutron star evolution are calculated. Large effects on the internal thermodynamic properties of protoneutron stars, such as the temperature, are found. These translate into significant early enhancements in the emitted neutrino energies and fluxes, especially after a few seconds. At late times, beyond about 10 s, the emitted neutrino fluxes decrease more rapidly compared to simulations without the effects of correlations, due to the more rapid onset of neutrino transparency in the protoneutron star. copyright 1999 The American Physical Society
Quasiparticles of strongly correlated Fermi liquids at high temperatures and in high magnetic fields
International Nuclear Information System (INIS)
Shaginyan, V. R.
2011-01-01
Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau-Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.
Correlation potential of a test ion near a strongly charged plate.
Lu, Bing-Sui; Xing, Xiangjun
2014-03-01
We analytically calculate the correlation potential of a test ion near a strongly charged plate inside a dilute m:-n electrolyte. We do this by calculating the electrostatic Green's function in the presence of a nonlinear background potential, the latter having been obtained using the nonlinear Poisson-Boltzmann theory. We consider the general case where the dielectric constants of the plate and the electrolyte are distinct. The following generic results emerge from our analyses: (1) If the distance to the plate Δz is much larger than a Gouy-Chapman length, the plate surface will behave effectively as an infinitely charged surface, and the dielectric constant of the plate effectively plays no role. (2) If Δz is larger than a Gouy-Chapman length but shorter than a Debye length, the correlation potential can be interpreted in terms of an image charge that is three times larger than the source charge. This behavior is independent of the valences of the ions. (3) The Green's function vanishes inside the plate if the surface charge density is infinitely large; hence the electrostatic potential is constant there. In this respect, a strongly charged plate behaves like a conductor plate. (4) If Δz is smaller than a Gouy-Chapman length, the correlation potential is dominated by the conventional image charge due to the dielectric discontinuity at the interface. (5) If Δz is larger than a Debye length, the leading order behavior of the correlation potential will depend on the valences of the ions in the electrolyte. Furthermore, inside an asymmetric electrolyte, the correlation potential is singly screened, i.e., it undergoes exponential decay with a decay width equal to the Debye length.
Theoretical development and first-principles analysis of strongly correlated systems
Energy Technology Data Exchange (ETDEWEB)
Liu, Chen [Iowa State Univ., Ames, IA (United States)
2016-12-17
A variety of quantum many-body methods have been developed for studying the strongly correlated electron systems. We have also proposed a computationally efficient and accurate approach, named the correlation matrix renormalization (CMR) method, to address the challenges. The initial implementation of the CMR method is designed for molecules which have theoretical advantages, including small size of system, manifest mechanism and strongly correlation effect such as bond breaking process. The theoretic development and benchmark tests of the CMR method are included in this thesis. Meanwhile, ground state total energy is the most important property of electronic calculations. We also investigated an alternative approach to calculate the total energy, and extended this method for magnetic anisotropy energy (MAE) of ferromagnetic materials. In addition, another theoretical tool, dynamical mean- field theory (DMFT) on top of the DFT , has also been used in electronic structure calculations for an Iridium oxide to study the phase transition, which results from an interplay of the d electrons' internal degrees of freedom.
Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems
Kucska, Nóra; Gulácsi, Zsolt
2018-06-01
A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.
Strong correlation and ferromagnetism in (Ga,Mn)As and (Ga,Mn)N
International Nuclear Information System (INIS)
Filippetti, A.; Spaldin, N.A.; Sanvito, S.
2005-01-01
The band energies of the ferromagnetic diluted magnetic semiconductors (Ga,Mn)As and (Ga,Mn)N are calculated using a self-interaction-free approach which describes covalent and strongly correlated electrons without adjustable parameters. Both materials are half-metallic, although the contribution of Mn-derived d states to the bands around the Fermi energy is very different in the two cases. In (Ga,Mn)As the bands are strongly p-d hybridized, with a dominance of As p states. In contrast in (Ga,Mn)N the Fermi energy lies within three flat bands of mainly d character that are occupied by two electrons. Thus the Mn ion in (Ga,Mn)N behaves as a deep trap acceptor, with the hole at 1.39 eV above the GaN valence band top, and is in excellent agreement with the experimental data
Microscopic origin of marginal Fermi-liquid in strongly correlated spin systems
International Nuclear Information System (INIS)
Protogenov, A.P.; Ryndyk, D.A.
1992-08-01
We consider the consequences of separation of spin and charge degrees of freedom in 2+1D strongly correlated spin systems. Self-consistent spin and charge motions induced by doping in sites of ground and dual lattices form such a spectrum of quasiparticles which together with the dispersionless character of the collective excitation spectrum and the chemical potential pinning in the band centre yield the necessary behavior of charge and spin polarizability to support the theory of marginal liquid formulated by C.M. Varma et al. (Phys. Rev. Lett. 63, 1996 (1989)). (author). 28 refs, 4 figs
Universal Behavior of Pair Correlations in a Strongly Interacting Fermi Gas
International Nuclear Information System (INIS)
Kuhnle, E. D.; Hu, H.; Liu, X.-J.; Dyke, P.; Mark, M.; Drummond, P. D.; Hannaford, P.; Vale, C. J.
2010-01-01
We show that short-range pair correlations in a strongly interacting Fermi gas follow a simple universal law described by Tan's relations. This is achieved through measurements of the static structure factor which displays a universal scaling proportional to the ratio of Tan's contact to the momentum C/q. Bragg spectroscopy of ultracold 6 Li atoms from a periodic optical potential is used to measure the structure factor for a wide range of momenta and interaction strengths, providing broad confirmation of this universal law. We calibrate our Bragg spectra using the f-sum rule, which is found to improve the accuracy of the structure factor measurement.
Electron-muon correlation as a new probe of strongly interacting quark-gluon plasma
International Nuclear Information System (INIS)
Akamatsu, Yukinao; Hatsuda, Tetsuo; Hirano, Tetsufumi
2009-01-01
As a new and clean probe to the strongly interacting quark-gluon plasma (sQGP), we propose an azimuthal correlation of an electron and a muon that originate from the semileptonic decay of charm and bottom quarks. By solving the Langevin equation for the heavy quarks under the hydrodynamic evolution of the hot plasma, we show that substantial quenching of the away-side peak in the electron-muon correlation can be seen if the sQGP drag force acting on heavy quarks is large enough as suggested from the gauge/gravity correspondence. The effect could be detected in high-energy heavy ion collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider.
High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems
Chin, Siu A.
2015-03-01
In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.
On strong-coupling correlation functions of circular Wilson loops and local operators
International Nuclear Information System (INIS)
Alday, Luis F; Tseytlin, Arkady A
2011-01-01
Motivated by the problem of understanding 3-point correlation functions of gauge-invariant operators in N=4 super Yang-Mills theory we consider correlators involving Wilson loops and a 'light' operator with fixed quantum numbers. At leading order in the strong-coupling expansion such correlators are given by the 'light' vertex operator evaluated on a semiclassical string world surface ending on the corresponding loops at the boundary of AdS 5 x S 5 . We study in detail the example of a correlator of two concentric circular Wilson loops and a dilaton vertex operator. The resulting expression is given by an integral of combinations of elliptic functions and can be computed analytically in some special limits. We also consider a generalization of the minimal surface ending on two circles to the case of non-zero angular momentum J in S 5 and discuss a special limit when one of the Wilson loops is effectively replaced by a 'heavy' operator with charge J. (paper)
Ma, Manman; Xu, Zhenli
2014-12-28
Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.
Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media
Energy Technology Data Exchange (ETDEWEB)
Ma, Manman, E-mail: mmm@sjtu.edu.cn; Xu, Zhenli, E-mail: xuzl@sjtu.edu.cn [Department of Mathematics, Institute of Natural Sciences, and MoE Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240 (China)
2014-12-28
Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.
International Nuclear Information System (INIS)
Backes, Steffen
2017-04-01
The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non
Energy Technology Data Exchange (ETDEWEB)
Backes, Steffen
2017-04-15
The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non
The ALPS project release 2.0: open source software for strongly correlated systems
International Nuclear Information System (INIS)
Bauer, B; Gamper, L; Gukelberger, J; Hehn, A; Isakov, S V; Ma, P N; Mates, P; Carr, L D; Evertz, H G; Feiguin, A; Freire, J; Koop, D; Fuchs, S; Gull, E; Guertler, S; Igarashi, R; Matsuo, H; Parcollet, O; Pawłowski, G; Picon, J D
2011-01-01
We present release 2.0 of the ALPS (Algorithms and Libraries for Physics Simulations) project, an open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. The code development is centered on common XML and HDF5 data formats, libraries to simplify and speed up code development, common evaluation and plotting tools, and simulation programs. The programs enable non-experts to start carrying out serial or parallel numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), the density matrix renormalization group (DMRG) both in a static version and a dynamic time-evolving block decimation (TEBD) code, and quantum Monte Carlo solvers for dynamical mean field theory (DMFT). The ALPS libraries provide a powerful framework for programmers to develop their own applications, which, for instance, greatly simplify the steps of porting a serial code onto a parallel, distributed memory machine. Major changes in release 2.0 include the use of HDF5 for binary data, evaluation tools in Python, support for the Windows operating system, the use of CMake as build system and binary installation packages for Mac OS X and Windows, and integration with the VisTrails workflow provenance tool. The software is available from our web server at http://alps.comp-phys.org/
Numerical path integral solution to strong Coulomb correlation in one dimensional Hooke's atom
Ruokosenmäki, Ilkka; Gholizade, Hossein; Kylänpää, Ilkka; Rantala, Tapio T.
2017-01-01
We present a new approach based on real time domain Feynman path integrals (RTPI) for electronic structure calculations and quantum dynamics, which includes correlations between particles exactly but within the numerical accuracy. We demonstrate that incoherent propagation by keeping the wave function real is a novel method for finding and simulation of the ground state, similar to Diffusion Monte Carlo (DMC) method, but introducing new useful tools lacking in DMC. We use 1D Hooke's atom, a two-electron system with very strong correlation, as our test case, which we solve with incoherent RTPI (iRTPI) and compare against DMC. This system provides an excellent test case due to exact solutions for some confinements and because in 1D the Coulomb singularity is stronger than in two or three dimensional space. The use of Monte Carlo grid is shown to be efficient for which we determine useful numerical parameters. Furthermore, we discuss another novel approach achieved by combining the strengths of iRTPI and DMC. We also show usefulness of the perturbation theory for analytical approximates in case of strong confinements.
First-principles study of strong correlation effects in pyrochlore iridates
Energy Technology Data Exchange (ETDEWEB)
Shinaoka, Hiroshi [Department of Physics, Saitama University (Japan); Hoshino, Shintaro [Department of Basic Science, The University of Tokyo (Japan); Troyer, Matthias [Theoretische Physik, ETH Zuerich (Switzerland); Werner, Philipp [Department of Physics, University of Fribourg (Switzerland)
2016-07-01
The pyrochlore iridates A{sub 2}Ir{sub 2}O{sub 7} (A=Pr, Nd, Y, etc.) are an ideal system to study fascinating phenomena induced by strong electron correlations and spin-orbit coupling. In this talk, we study strong correlation effects in the prototype compound Y{sub 2}Ir{sub 2}O{sub 7} using the local density approximation and dynamical mean-field theory (LDA+DMFT). We map out the phase diagram in the space of temperature, onsite Coulomb repulsion U, and filling. Consistent with experiments, we find that an all-in/all-out ordered insulating phase is stable for realistic values of U. We reveal the importance of the hybridization between j{sub eff} = 1/2 and j{sub eff} = 3/2 states under the Coulomb interaction and trigonal crystal field. We demonstrate a substantial band narrowing in the paramagnetic metallic phase and non-Fermi liquid behavior in the electron/hole doped system originating from long-lived quasi-spin moments induced by nearly flat bands. We further compare our results with recent experimental results of Eu{sub 2}Ir{sub 2}O{sub 7} under hydrostatic pressure.
Strongly correlated electrons at high pressure: an approach by inelastic X-Ray scattering
International Nuclear Information System (INIS)
Rueff, J.P.
2007-06-01
Inelastic X-ray scattering (IXS) and associated methods has turn out to be a powerful alternative for high-pressure physics. It is an all-photon technique fully compatible with high-pressure environments and applicable to a vast range of materials. Standard focalization of X-ray in the range of 100 microns is typical of the sample size in the pressure cell. Our main aim is to provide an overview of experimental results obtained by IXS under high pressure in 2 classes of materials which have been at the origin of the renewal of condensed matter physics: strongly correlated transition metal oxides and rare-earth compounds. Under pressure, d and f-electron materials show behaviors far more complex that what would be expected from a simplistic band picture of electron delocalization. These spectroscopic studies have revealed unusual phenomena in the electronic degrees of freedom, brought up by the increased density, the changes in the charge-carrier concentration, the over-lapping between orbitals, and hybridization under high pressure conditions. Particularly we discuss about pressure induced magnetic collapse and metal-insulator transitions in 3d compounds and valence fluctuations phenomena in 4f and 5f compounds. Thanks to its superior penetration depth, chemical selectivity and resonant enhancement, resonant inelastic X-ray scattering has appeared extremely well suited to high pressure physics in strongly correlated materials. (A.C.)
SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene
Wu, Lian-Ao; Murphy, Matthew; Guidry, Mike
2017-03-01
A formalism is presented for treating strongly correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle-hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree-Fock-Bogoliubov solutions, or equivalently a microscopically derived Ginzburg-Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.
Energy Technology Data Exchange (ETDEWEB)
Amusia, M.Ya.; Kornyushin, Y. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)]. E-mail: yurik@vms.huji.ac.il
2000-09-01
The nuclear liquid drop model is applied to describe some basic properties of a negative hydrogen ion in the strong electric field of a laser. The equilibrium ionic size, energy and polarizability of the ion are calculated. Collective modes of the dipole oscillations are considered. A barrier which arises in a strong electric field is studied. The barrier vanishes at some large value of the electric field, which is defined as a critical value. The dependence of the critical field on frequency is studied. At frequencies {omega}{>=}({omega}{sub d}/2{sup 1/2}) ({omega}{sub d} is the frequency of the dipole oscillations of the electronic cloud relative to the nucleus) the barrier remains for any field. At high frequencies a 'stripping' mechanism for instability arises. At the resonant frequency a rather low amplitude of the electric field causes the 'stripping' instability. (author)
Ovchinnikov, Sergey G.; Makarov, Ilya A.; Kozlov, Peter A.
2017-03-01
In this work dependences of the electron band structure and spectral function in the HTSC cuprates on magnitude of electron-phonon interaction (EPI) and temperature are investigated. We use three-band p-d model with diagonal and offdiagonal EPI with breathing and buckling phonon mode in the frameworks of polaronic version of the generalized tight binding (GTB) method. The polaronic quasiparticle excitation in the system with EPI within this approach is formed by a hybridization of the local multiphonon Franck-Condon excitations with lower and upper Hubbard bands. Increasing EPI leads to transfer of spectral weight to high-energy multiphonon excitations and broadening of the spectral function. Temperature effects are taken into account by occupation numbers of local excited polaronic states and variations in the magnitude of spin-spin correlation functions. Increasing the temperature results in band structure reconstruction, spectral weight redistribution, broadening of the spectral function peak at the top of the valence band and the decreasing of the peak intensity. The effect of EPI with two phonon modes on the polaron spectral function is discussed.
Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide
Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.
2018-04-01
The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.
Can we bet on negative emissions to achieve the 2°C target even under strong carbon cycle feedbacks?
Tanaka, K.; Yamagata, Y.; Yokohata, T.; Emori, S.; Hanaoka, T.
2015-12-01
Negative emission technologies such as Bioenergy with Carbon dioxide Capture and Storage (BioCCS) play an ever more crucial role in meeting the 2°C stabilization target. However, such technologies are currently at their infancy and their future penetrations may fall short of the scale required to stabilize the warming. Furthermore, the overshoot in the mid-century prior to a full realization of negative emissions would give rise to a risk because such a temporal but excessive warming above 2°C might amplify itself by strengthening climate-carbon cycle feedbacks. It has not been extensively assessed yet how carbon cycle feedbacks might play out during the overshoot in the context of negative emissions. This study explores how 2°C stabilization pathways, in particular those which undergo overshoot, can be influenced by carbon cycle feedbacks and asks their climatic and economic consequences. We compute 2°C stabilization emissions scenarios under a cost-effectiveness principle, in which the total abatement costs are minimized such that the global warming is capped at 2°C. We employ a reduced-complexity model, the Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate model (ACC2), which comprises a box model of the global carbon cycle, simple parameterizations of the atmospheric chemistry, and a land-ocean energy balance model. The total abatement costs are estimated from the marginal abatement cost functions for CO2, CH4, N2O, and BC.Our preliminary results show that, if carbon cycle feedbacks turn out to be stronger than what is known today, it would incur substantial abatement costs to keep up with the 2°C stabilization goal. Our results also suggest that it would be less expensive in the long run to plan for a 2°C stabilization pathway by considering strong carbon cycle feedbacks because it would cost more if we correct the emission pathway in the mid-century to adjust for unexpectedly large carbon cycle feedbacks during overshoot. Furthermore, our
Spin-orbit coupling and transport in strongly correlated two-dimensional systems
Huang, Jian; Pfeiffer, L. N.; West, K. W.
2017-05-01
Measuring the magnetoresistance (MR) of ultraclean GaAs two-dimensional holes for a large rs range of 20-50, two striking behaviors in relation to the spin-orbit coupling (SOC) emerge in response to strong electron-electron interaction. First, in exact correspondence to the zero-field metal-to-insulator transition (MIT), the sign of the MR switches from being positive in the metallic regime to being negative in the insulating regime when the carrier density crosses the critical density pc of MIT (rs˜39 ). Second, as the SOC-driven correction Δ ρ to the MR decreases with reducing carrier density (or the in-plane wave vector), it exhibits an upturn in the close proximity just above pc where rs is beyond 30, indicating a substantially enhanced SOC effect. This peculiar behavior echoes with a trend of delocalization long suspected for the SOC-interaction interplay. Meanwhile, for p 40 , in contrast to the common belief that a magnet field enhances Wigner crystallization, the negative MR is likely linked to enhanced interaction.
Microscopic theory of photon-correlation spectroscopy in strong-coupling semiconductors
Energy Technology Data Exchange (ETDEWEB)
Schneebeli, Lukas
2009-11-27
would be a great contribution in the growing field of quantum optics in semiconductors. The efforts in QD systems are again driven by the atomic systems which not only have shown the vacuum Rabi splitting, but also the second rung, e.g. via direct spectroscopy and via photon-correlation measurements. In this thesis, it is shown that spectrally resolved photon-statistics measurements of the resonance fluorescence from realistic semiconductor quantum-dot systems allow for high contrast identification of the two-photon strong-coupling states. Using a microscopic theory, the second-rung resonance of Jaynes-Cummings ladder is analyzed and optimum excitation conditions are determined. The computed photon-statistics spectrum displays gigantic, experimentally robust resonances at the energetic positions of the second-rung emission. The resonance fluorescence equations are derived and solved for strong-coupling semiconductor quantum-dot systems using a fully quantized multimode theory and a cluster-expansion approach. A reduced model is developed to explain the origin of auto- and cross-correlation resonances in the two-photon emission spectrum of the fluorescent light. These resonances are traced back to the two-photon strong-coupling states of Jaynes-Cummings ladder. The accuracy of the reduced model is verified via numerical solution of the resonance fluorescence equations. The analysis reveals the direct relation between the squeezed-light emission and the strong-coupling states in optically excited semiconductor systems. (orig.)
Fan, Rong; Olbricht, Gayla; Baker, Xavior; Hou, Chen
2016-12-08
Larger dog breeds live shorter than the smaller ones, opposite of the mass-lifespan relationship observed across mammalian species. Here we use data from 90 dog breeds and a theoretical model based on the first principles of energy conservation and life history tradeoffs to explain the negative correlation between longevity and body size in dogs. We found that the birth/adult mass ratio of dogs scales negatively with adult size, which is different than the weak interspecific scaling in mammals. Using the model, we show that this ratio, as an index of energy required for growth, is the key to understanding why the lifespan of dogs scales negatively with body size. The model also predicts that the difference in mass-specific lifetime metabolic energy usage between dog breeds is proportional to the difference in birth/adult mass ratio. Empirical data on lifespan, body mass, and metabolic scaling law of dogs strongly supports this prediction.
Quantum criticality and emergence of the T/B scaling in strongly correlated metals
International Nuclear Information System (INIS)
Watanabe, Shinji; Miyake, Kazumasa
2016-01-01
A new type of scaling observed in heavy-electron metal β-YbAlB_4, where the magnetic susceptibility is expressed as a single scaling function of the ratio of temperature T and magnetic field B over four decades, is examined theoretically. We develop the mode-coupling theory for critical Yb-valence fluctuations under a magnetic field, verifying that the T/B scaling behavior appears near the QCP of the valence transition. Emergence of the T/B scaling indicates the presence of the small characteristic temperature of the critical Yb-valence fluctuation due to the strong local correlation effect. It is discussed that the T/B scaling as well as the unconventional criticality is explained from the viewpoint of the quantum valence criticality in a unified way.
Holstein-Primakoff representation and supercoherent states for strongly correlated electron systems
International Nuclear Information System (INIS)
Azakov, S.
1999-09-01
First we show that the algebra of operators entering the Hamiltonian of the t-J model describing the strongly correlated electron system is graded spl(2.1) algebra. Then after a brief discussion of its atypical representations we construct the Holstein-Primakoff nonlinear realization of these operators which allows to carry out the systematic semiclassical approximation, similarly to the spin-wave theory of localized magnetism. The fact that the t-J model describes the itinerant magnetism is reflected in the presence of the spinless fermions. For the supersymmetric spl(2.1) algebra the supercoherent states are proposed and the partition function of the t-J model is represented as a path integral with the help of these states. (author)
Thermal properties of UO2 from density functional theory: role of strong correlations
International Nuclear Information System (INIS)
Panigrahi, Puspamitra; Kaur Gurpreet; Valsakumar, M.C.
2011-01-01
We report a study of ground state magnetic structure of Uranium-dioxide (UO 2 ) using ab initio calculations employing PAW pseudopotentials and Dudarev's version of GGA+U formalism as implemented in VASP to take into account the strong on-site Coulomb correlation among the localized Uranium-5f electrons. By choosing the value of the Hubbard parameter U eff to be 4.0 eV, we have confirmed the experimental observation that the ground state of UO 2 is an insulator with an anti-ferromagnetic (AFM) ordering. We study systematically the ground state structural, electronic, and magnetic properties of UO 2 and focus on the structure sensitive thermal properties such as specific heat, thermal expansion and comment on the calculation of thermal conductivity. (author)
Quantum physics of light and matter photons, atoms, and strongly correlated systems
Salasnich, Luca
2017-01-01
This compact but exhaustive textbook, now in its significantly revised and expanded second edition, provides an essential introduction to the field quantization of light and matter with applications to atomic physics and strongly correlated systems. Following an initial review of the origins of special relativity and quantum mechanics, individual chapters are devoted to the second quantization of the electromagnetic field and the consequences of light field quantization for the description of electromagnetic transitions. The spin of the electron is then analyzed, with particular attention to its derivation from the Dirac equation. Subsequent topics include the effects of external electric and magnetic fields on the atomic spectra and the properties of systems composed of many interacting identical particles. The book also provides a detailed explanation of the second quantization of the non-relativistic matter field, i.e., the Schrödinger field, which offers a powerful tool for the investigation of many-body...
Quantum criticality and emergence of the T/B scaling in strongly correlated metals
Energy Technology Data Exchange (ETDEWEB)
Watanabe, Shinji [Department of Basic Sciences, Kyushu Institute of Technology, Kitakyushu (Japan); Miyake, Kazumasa [Toyota Physical and Chemical Research Institute, Nagakute (Japan)
2016-02-15
A new type of scaling observed in heavy-electron metal β-YbAlB{sub 4}, where the magnetic susceptibility is expressed as a single scaling function of the ratio of temperature T and magnetic field B over four decades, is examined theoretically. We develop the mode-coupling theory for critical Yb-valence fluctuations under a magnetic field, verifying that the T/B scaling behavior appears near the QCP of the valence transition. Emergence of the T/B scaling indicates the presence of the small characteristic temperature of the critical Yb-valence fluctuation due to the strong local correlation effect. It is discussed that the T/B scaling as well as the unconventional criticality is explained from the viewpoint of the quantum valence criticality in a unified way.
Strongly correlated quasi-one-dimensional bands: Ground states, optical absorption, and phonons
International Nuclear Information System (INIS)
Campbell, D.K.; Gammel, J.T.; Loh, E.Y. Jr.
1989-01-01
Using the Lanczos method for exact diagonalization on systems up to 14 sites, combined with a novel ''phase randomization'' technique for extracting more information from these small systems, we investigate several aspects of the one-dimensional Peierls-Hubbard Hamiltonian, in the context of trans-polyacetylene: the dependence of the ground state dimerization on the strength of the electron-electron interactions, including the effects of ''off-diagonal'' Coulomb terms generally ignored in the Hubbard model; the phonon vibrational frequencies and dispersion relations, and the optical absorption properties, including the spectrum of absorptions as a function of photon energy. These three different observables provide considerable insight into the effects of electron-electron interactions on the properties of real materials and thus into the nature of strongly correlated electron systems. 29 refs., 11 figs
Energy Technology Data Exchange (ETDEWEB)
Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation)
2009-06-15
Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh{sub 2}Si{sub 2}.
International Nuclear Information System (INIS)
Shaginyan, V.R.; Amusia, M.Ya.; Popov, K.G.
2009-01-01
Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh 2 Si 2 .
Strongly correlated impurity band superconductivity in diamond: X-ray spectroscopic evidence
Directory of Open Access Journals (Sweden)
G. Baskaran
2006-01-01
Full Text Available In a recent X-ray absorption study in boron doped diamond, Nakamura et al. have seen a well isolated narrow boron impurity band in non-superconducting samples and an additional narrow band at the chemical potential in a superconducting sample. We interpret the beautiful spectra as evidence for upper Hubbard band of a Mott insulating impurity band and an additional metallic 'mid-gap band' of a conducting 'self-doped' Mott insulator. This supports the basic framework of a recent theory of the present author of strongly correlated impurity band superconductivity (impurity band resonating valence bond, IBRVB theory in a template of a wide-gap insulator, with no direct involvement of valence band states.
Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Systems, the Final Report
Energy Technology Data Exchange (ETDEWEB)
Chang, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-11-07
In this final report, we present preliminary results of ground state phases of interacting spinless Dirac fermions. The name "Dirac fermion" originates from the fact that low-energy excitations of electrons hopping on the honeycomb lattice are described by a relativistic Dirac equation. Dirac fermions have received much attention particularly after the seminal work of Haldale1 which shows that the quantum Hall physics can be realized on the honeycomb lattice without magnetic fields. Haldane's work later becomes the foundation of topological insulators (TIs). While the physics of TIs is based largely on spin-orbit coupled non-interacting electrons, it was conjectured that topological insulators can be induced by strong correlations alone.
International Nuclear Information System (INIS)
Chou, C-P; Lee, T K; Ho, C-M
2009-01-01
We examine the strong correlation effects of the d-wave superconducting state by including the Gutzwiller projection for no electron double occupancy at each lattice site. The spectral weights (SW's) for adding and removing an electron on the projected superconducting state, the ground state of the 2-dimensional t-t'-t - J model with moderate doped holes describing the high T c cuprates, are studied numerically on finite lattices and compared with the observation made by low-temperature tunneling (particle asymmetry of tunneling conductance) and angle-resolved photoemission (SW transfer from the projected Fermi liquid state) spectroscopies. The contrast with the d-wave case without projection is alo presented.
Plasma homovanillic acid levels in schizophrenic patients: correlation with negative symptoms.
Dávila, Ricardo; Zumárraga, Mercedes; Basterreche, Nieves; Arrúe, Aurora; Anguiano, Juan B
2007-05-30
The relation between changes in the levels of plasma homovanillic acid (pHVA) and clinical evolution during neuroleptic treatment of schizophrenic patients has not been satisfactorily characterized, as a number of conflicting findings have been reported. Significant correlations have generally been found using the assessment of positive symptoms as an index of clinical outcome. Nevertheless, attempts to correlate pHVA concentrations with negative symptoms have yielded contradictory results. With a view to evaluating if different responses in negative symptoms are associated with distinct pHVA profiles, we examined the levels of pHVA in 46 neuroleptic-free schizophrenic patients and in these patients after neuroleptic treatment. Negative and positive symptoms were also addressed before and after treatment. Our results reveal that at least two classes of negative symptoms exist; the clinical evolution of the first class of negative symptoms parallels that of positive symptoms, and clinical improvement correlates with reduced dopaminergic activity. In contrast, in the second class, reduced dopaminergic activity is associated with a further deterioration of negative symptoms. These findings corroborate the heterogeneity of negative symptoms and may contribute to a better definition of endophenotypes in the schizophrenic syndrome.
Directory of Open Access Journals (Sweden)
John D Morrey
Full Text Available West Nile virus (WNV disease can be fatal for high-risk patients. Since WNV or its antigens have been identified in multiple anatomical locations of the central nervous system of persons or rodent models, one cannot know where to investigate the actual mechanism of mortality without careful studies in animal models. In this study, depressed respiratory functions measured by plethysmography correlated strongly with mortality. This respiratory distress, as well as reduced oxygen saturation, occurred beginning as early as 4 days before mortality. Affected medullary respiratory control cells may have contributed to the animals' respiratory insufficiency, because WNV antigen staining was present in neurons located in the ventrolateral medulla. Starvation or dehydration would be irrelevant in people, but could cause death in rodents due to lethargy or loss of appetite. Animal experiments were performed to exclude this possibility. Plasma ketones were increased in moribund infected hamsters, but late-stage starvation markers were not apparent. Moreover, daily subcutaneous administration of 5% dextrose in physiological saline solution did not improve survival or other disease signs. Therefore, infected hamsters did not die from starvation or dehydration. No cerebral edema was apparent in WNV- or sham-infected hamsters as determined by comparing wet-to-total weight ratios of brains, or by evaluating blood-brain-barrier permeability using Evans blue dye penetration into brains. Limited vasculitis was present in the right atrium of the heart of infected hamsters, but abnormal electrocardiograms for several days leading up to mortality did not occur. Since respiratory insufficiency was strongly correlated with mortality more than any other pathological parameter, it is the likely cause of death in rodents. These animal data and a poor prognosis for persons with respiratory insufficiency support the hypothesis that neurological lesions affecting respiratory
High energy x-ray scattering studies of strongly correlated oxides
International Nuclear Information System (INIS)
Hatton, Peter D; Wilkins, S B; Spencer, P D; Zimmermann, M v; D'Almeida, T
2003-01-01
Many transition metal oxides display strongly correlated charge, spin, or orbital ordering resulting in varied phenomena such as colossal magnetoresistance, high temperature superconductivity, metal-insulator transitions etc. X-ray scattering is one of the principle techniques for probing the structural response to such effects. In this paper, we discuss and review the use of synchrotron radiation high energy x-rays (50-200 keV) for the study of transition metal oxides such as nickelates (La 2-x Sr x NiO 4 ) and manganites (La 2-2x Sr 1+2x Mn 2 O 7 ). High energy x-rays have sufficient penetration to allow us to study large flux-grown single crystals. The huge increase in sample scattering volume means that extremely weak peaks can be observed. This allows us to study very weak charge ordering. Measurements of the intensity, width and position of the charge ordering satellites as a function of temperature provide us with quantitative measures of the charge amplitude, inverse correlation length and wavevector of the charge ordering
International Nuclear Information System (INIS)
Dorado, B.
2010-09-01
Uranium dioxide UO 2 is the standard nuclear fuel used in pressurized water reactors. During in-reactor operation, the fission of uranium atoms yields a wide variety of fission products (FP) which create numerous point defects while slowing down in the material. Point defects and FP govern in turn the evolution of the fuel physical properties under irradiation. In this study, we use electronic structure calculations in order to better understand the fuel behavior under irradiation. In particular, we investigate point defect behavior, as well as the stability of three volatile FP: iodine, krypton and xenon. In order to take into account the strong correlations of uranium 5f electrons in UO 2 , we use the DFT+U approximation, based on the density functional theory. This approximation, however, creates numerous metastable states which trap the system and induce discrepancies in the results reported in the literature. To solve this issue and to ensure the ground state is systematically approached as much as possible, we use a method based on electronic occupancy control of the correlated orbitals. We show that the DFT+U approximation, when used with electronic occupancy control, can describe accurately point defect and fission product behavior in UO 2 and provide quantitative information regarding point defect transport properties in the oxide fuel. (author)
Record statistics of a strongly correlated time series: random walks and Lévy flights
Godrèche, Claude; Majumdar, Satya N.; Schehr, Grégory
2017-08-01
We review recent advances on the record statistics of strongly correlated time series, whose entries denote the positions of a random walk or a Lévy flight on a line. After a brief survey of the theory of records for independent and identically distributed random variables, we focus on random walks. During the last few years, it was indeed realized that random walks are a very useful ‘laboratory’ to test the effects of correlations on the record statistics. We start with the simple one-dimensional random walk with symmetric jumps (both continuous and discrete) and discuss in detail the statistics of the number of records, as well as of the ages of the records, i.e. the lapses of time between two successive record breaking events. Then we review the results that were obtained for a wide variety of random walk models, including random walks with a linear drift, continuous time random walks, constrained random walks (like the random walk bridge) and the case of multiple independent random walkers. Finally, we discuss further observables related to records, like the record increments, as well as some questions raised by physical applications of record statistics, like the effects of measurement error and noise.
Computational time-resolved and resonant x-ray scattering of strongly correlated materials
Energy Technology Data Exchange (ETDEWEB)
Bansil, Arun [Northeastern Univ., Boston, MA (United States)
2016-11-09
Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source, literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of x-ray science. In particular, our Collaborative Research Team (CRT) focused on developing viable computational schemes for modeling x-ray scattering and photoemission spectra of strongly correlated materials in the time-domain. The vast arsenal of formal/numerical techniques and approaches encompassed by the members of our CRT were brought to bear through appropriate generalizations and extensions to model the pumped state and the dynamics of this non-equilibrium state, and how it can be probed via x-ray absorption (XAS), emission (XES), resonant and non-resonant x-ray scattering, and photoemission processes. We explored the conceptual connections between the time-domain problems and other second-order spectroscopies, such as resonant inelastic x-ray scattering (RIXS) because RIXS may be effectively thought of as a pump-probe experiment in which the incoming photon acts as the pump, and the fluorescent decay is the probe. Alternatively, when the core-valence interactions are strong, one can view K-edge RIXS for example, as the dynamic response of the material to the transient presence of a strong core-hole potential. Unlike an actual pump-probe experiment, here there is no mechanism for adjusting the time-delay between the pump and the probe. However, the core hole
International Nuclear Information System (INIS)
Plakida, N. M.; Anton, L.; Adam, S. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO); Adam, Gh. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO)
2001-01-01
A microscopical theory of superconductivity in the two-band singlet-hole Hubbard model, in the strong coupling limit in a paramagnetic state, is developed. The model Hamiltonian is obtained by projecting the p-d model to an asymmetric Hubbard model with the lower Hubbard subband occupied by one-hole Cu d-like states and the upper Hubbard subband occupied by two-hole p-d singlet states. The model requires two microscopical parameters only, the p-d hybridization parameter t and the charge-transfer gap Δ. It was previously shown to secure an appropriate description of the normal state properties of the high -T c cuprates. To treat rigorously the strong correlations, the Hubbard operator technique within the projection method for the Green function is used. The Dyson equation is derived. In the molecular field approximation, d-wave superconducting pairing of conventional hole (electron) pairs in one Hubbard subband is found, which is mediated by the exchange interaction given by the interband hopping, J ij = 4 (t ij ) 2 / Δ. The normal and anomalous components of the self-energy matrix are calculated in the self-consistent Born approximation for the electron-spin-fluctuation scattering mediated by kinematic interaction of the second order of the intraband hopping. The derived numerical and analytical solutions predict the occurrence of singlet d x 2 -y 2 -wave pairing both in the d-hole and singlet Hubbard subbands. The gap functions and T c are calculated for different hole concentrations. The exchange interaction is shown to be the most important pairing interaction in the Hubbard model in the strong correlation limit, while the spin-fluctuation coupling results only in a moderate enhancement of T c . The smaller weight of the latter comes from two specific features: its vanishing inside the Brillouin zone (BZ) along the lines, |k x | + |k y |=π pointing towards the hot spots and the existence of a small energy shell within which the pairing is effective. By
Adler Award Lecture: Fermi-Liquid Instabilities in Strongly Correlated f-Electron Materials.^*
Maple, M. Brian
1996-03-01
Strongly correlated f-electron materials are replete with novel electronic states and phenomena ; e. g. , a metallic ``heavy electron'' state with a quasiparticle effective mass of several hundred times the free electron mass, anisotropic superconductivity with an energy gap that may vanish at points or along lines on the Fermi surface, the coexistence of superconductivity and antiferromagnetism over different parts of the Fermi surface, multiple superconducting phases in the hyperspace of chemical composition, temperature, pressure, and magnetic field, and an insulating phase, in so-called ``hybridization gap semiconductors'' or ``Kondo insulators'', with a small energy gap of only a few meV. During the last several years, a new low temperature non-Fermi-liquid (NFL) state has been observed in a new class of strongly correlated f-electron materials which currently consists of certain Ce and U intermetallics into which a nonmagnetic element has been substituted.(M. B. Maple et al./) , J. Low Temp. Phys. 99 , 223 (1995). The Ce and U ions have partially-filled f-electron shells and carry magnetic dipole or electric quadrupole moments which interact with the spins and charges of the conduction electrons and can participate in magnetic or quadrupolar ordering at low temperatures. The physical properties of these materials exhibit weak power law or logarithmic divergences in temperature and suggest the existence of a critical point at T=0 K. Possible origins of the 0 K critical point include an unconventional moment compensation process, such as a multichannel Kondo effect, and fluctuations of the order parameter in the vicinity of a 0 K second order phase transition. In some systems, such as Y_1-xU_xPd 3 and U_1-xTh_xPd _2Al 3 , the NFL characteristics appear to be single ion effects since they persist to low concentrations of f-moments, whereas in other systems, such as CeCu _5.9Au _0.1 , the NFL behavior seems to be associated with interactions between the f
Entropy excess in strongly correlated Fermi systems near a quantum critical point
Energy Technology Data Exchange (ETDEWEB)
Clark, J.W., E-mail: jwc@wuphys.wustl.edu [McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States); Zverev, M.V. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); Moscow Institute of Physics and Technology, Moscow, 123098 (Russian Federation); Khodel, V.A. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States)
2012-12-15
A system of interacting, identical fermions described by standard Landau Fermi-liquid (FL) theory can experience a rearrangement of its Fermi surface if the correlations grow sufficiently strong, as occurs at a quantum critical point where the effective mass diverges. As yet, this phenomenon defies full understanding, but salient aspects of the non-Fermi-liquid (NFL) behavior observed beyond the quantum critical point are still accessible within the general framework of the Landau quasiparticle picture. Self-consistent solutions of the coupled Landau equations for the quasiparticle momentum distribution n(p) and quasiparticle energy spectrum {epsilon}(p) are shown to exist in two distinct classes, depending on coupling strength and on whether the quasiparticle interaction is regular or singular at zero momentum transfer. One class of solutions maintains the idempotency condition n{sup 2}(p)=n(p) of standard FL theory at zero temperature T while adding pockets to the Fermi surface. The other solutions are characterized by a swelling of the Fermi surface and a flattening of the spectrum {epsilon}(p) over a range of momenta in which the quasiparticle occupancies lie between 0 and 1 even at T=0. The latter, non-idempotent solution is revealed by analysis of a Poincare mapping associated with the fundamental Landau equation connecting n(p) and {epsilon}(p) and validated by solution of a variational condition that yields the symmetry-preserving ground state. Significantly, this extraordinary solution carries the burden of a large temperature-dependent excess entropy down to very low temperatures, threatening violation of the Nernst Theorem. It is argued that certain low-temperature phase transitions, notably those involving Cooper-pair formation, offer effective mechanisms for shedding the entropy excess. Available measurements in heavy-fermion compounds provide concrete support for such a scenario. - Highlights: Black-Right-Pointing-Pointer Extension of Landau
Quantum Monte Carlo methods and strongly correlated electrons on honeycomb structures
Energy Technology Data Exchange (ETDEWEB)
Lang, Thomas C.
2010-12-16
In this thesis we apply recently developed, as well as sophisticated quantum Monte Carlo methods to numerically investigate models of strongly correlated electron systems on honeycomb structures. The latter are of particular interest owing to their unique properties when simulating electrons on them, like the relativistic dispersion, strong quantum fluctuations and their resistance against instabilities. This work covers several projects including the advancement of the weak-coupling continuous time quantum Monte Carlo and its application to zero temperature and phonons, quantum phase transitions of valence bond solids in spin-1/2 Heisenberg systems using projector quantum Monte Carlo in the valence bond basis, and the magnetic field induced transition to a canted antiferromagnet of the Hubbard model on the honeycomb lattice. The emphasis lies on two projects investigating the phase diagram of the SU(2) and the SU(N)-symmetric Hubbard model on the hexagonal lattice. At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. Previously elusive in experimentally relevant microscopic two-dimensional models, we show by means of large-scale quantum Monte Carlo simulations of the SU(2) Hubbard model on the honeycomb lattice, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Inspired by the rich phase diagrams of SU(N) models we study the SU(N)-symmetric Hubbard Heisenberg quantum antiferromagnet on the honeycomb lattice to investigate the reliability of 1/N corrections to large-N results by means of numerically exact QMC simulations. We study the melting of phases
Wiewiorka, Ondrej; Dastych, Milan; Čermáková, Zdenka
2013-08-01
With discrepancies encountered as early as the verification of enzymatic method for quantification of serum creatinine, our research pointed to a later confirmed interference caused by a compound called ethamsylate present in the commonly used antihemorrhagic drug Dicynone. We measured concentrations of creatinine of 10 patients with blood taken before and 15 minutes after the intravenous administration of a 500 mg dose of Dicynone. The creatinine concentration was determined using Jaffe method and enzymatic method that utilize Trinder reaction (Roche) in analyzer Cobas c 501 (Roche AG, Basel, Switzerland). We also monitored concentration of blood creatinine in three patients before and 15 minutes after application of Dicynone (500 mg i.v.) and in the following 6th, 12th, 18th, and 24th hours. We discovered a significant negative bias in creatinine results using enzymatic assay with Trinder reaction in blood taken 15 min after i.v. application of 500 mg Dicynone to patients compared to their pre-application values (average decrease of 47%). Unlike this, the results of compensated Jaffe method yielded steady results in all samples (average deviation 0.6% from original values). However, 12 h after the drug administration comparable results were seen as before the administration. Considering the strong negative interference of ethamsylate in enzymatic assay using Trinder reaction for creatinine quantification, blood from patients with prescribed Dicynone should be taken at least 12 h after the last application of the drug for obtaining the correct creatinine values.
Ryou, Albert
Synthetic materials made of engineered quasiparticles are a powerful platform for studying manybody physics and strongly correlated systems due to their bottom-up approach to Hamiltonian modeling. Photonic quasiparticles called polaritons are particularly appealing since they inherit fast dynamics from light and strong interaction from matter. This thesis describes the experimental demonstration of cavity Rydberg polaritons, which are composite particles arising from the hybridization of an optical cavity with Rydberg EIT, as well as the tools for probing and stabilizing the cavity. We first describe the design, construction, and testing of a four-mirror Fabry-Perot cavity, whose small waist size on the order of 10 microns is comparable to the Rydberg blockade radius. By achieving strong coupling between the cavity photon and an atomic ensemble undergoing electromagnetically induced transparency (EIT), we observe the emergence of the dark-state polariton and characterize its single-body properties as well as the single-quantum nonlinearity. We then describe the implementation of a holographic spatial light modulator for exciting different transverse modes of the cavity, an essential tool for studying polariton-polariton scattering. For compensating optical aberrations, we employ a digital micromirror device (DMD), combining beam shaping with adaptive optics to produce diffraction-limited light. We quantitatively measure the purity of the DMD-produced Hermite-Gauss modes and confirm up to 99.2% efficiency. One application of the technique is to create Laguerre-Gauss modes, which have been used to probe synthetic Landau levels for photons in a twisted, nonplanar cavity. Finally, we describe the implementation of an FPGA-based FIR filter for stabilizing the cavity. We digitally cancel the acoustical resonances of the feedback-controlled mechanical system, thereby demonstrating an order-of-magnitude enhancement in the feedback bandwidth from 200 Hz to more than 2 k
Directory of Open Access Journals (Sweden)
Sofia Nora
Full Text Available Anthropogenic habitat deterioration can promote changes in plant mating systems that subsequently may affect progeny performance, thereby conditioning plant recruitment for the next generation. However, very few studies yet tested mating system parameters other than outcrossing rates; and the direct effects of the genetic diversity of the pollen received by maternal plants (i.e. correlated paternity has often been overlooked. In this study, we investigated the relation between correlated paternity and progeny performance in two common Mediterranean shrubs, Myrtus communis and Pistacia lentiscus. To do so, we collected open-pollinated progeny from selected maternal plants, calculated mating system parameters using microsatellite genotyping and conducted sowing experiments under greenhouse and field conditions. Our results showed that some progeny fitness components were negatively affected by the high correlated paternity of maternal plants. In Myrtus communis, high correlated paternity had a negative effect on the proportion and timing of seedling emergence in the natural field conditions and in the greenhouse sowing experiment, respectively. In Pistacia lentiscus, seedling emergence time under field conditions was also negatively influenced by high correlated paternity and a progeny survival analysis in the field experiment showed greater mortality of seedlings from maternal plants with high correlated paternity. Overall, we found effects of correlated paternity on the progeny performance of Myrtus communis, a self-compatible species. Further, we also detected effects of correlated paternity on the progeny emergence time and survival in Pistacia lentiscus, an obligate outcrossed species. This study represents one of the few existing empirical examples which highlight the influence that correlated paternity may exert on progeny performance in multiple stages during early seedling growth.
Tubman, Norm; Whaley, Birgitta
The development of exponential scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, allows exact diagonalization through stochastically sampling of determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, together with a stochastic projected wave function, which are used to explore the important parts of Hilbert space. However, a stochastic representation of the wave function is not required to search Hilbert space efficiently and new deterministic approaches have recently been shown to efficiently find the important parts of determinant space. We shall discuss the technique of Adaptive Sampling Configuration Interaction (ASCI) and the related heat-bath Configuration Interaction approach for ground state and excited state simulations. We will present several applications for strongly correlated Hamiltonians. This work was supported through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences.
Damping at positive frequencies in the limit J⊥-->0 in the strongly correlated Hubbard model
Mohan, Minette M.
1992-08-01
I show damping in the two-dimensional strongly correlated Hubbard model within the retraceable-path approximation, using an expansion around dominant poles for the self-energy. The damping half-width ~J2/3z occurs only at positive frequencies ω>5/2Jz, the excitation energy of a pure ``string'' state of length one, where Jz is the Ising part of the superexchange interaction, and occurs even in the absence of spin-flip terms ~J⊥ in contrast to other theoretical treatments. The dispersion relation for both damped and undamped peaks near the upper band edge is found and is shown to have lost the simple J2/3z dependence characteristic of the peaks near the lower band edge. The position of the first three peaks near the upper band edge agrees well with numerical simulations on the t-J model. The weight of the undamped peaks near the upper band edge is ~J4/3z, contrasting with Jz for the weight near the lower band edge.
Directory of Open Access Journals (Sweden)
Hongtao Yang
2018-01-01
Full Text Available This paper proposes a novel strong tracking filter (STF, which is suitable for dealing with the filtering problem of nonlinear systems when the following cases occur: that is, the constructed model does not match the actual system, the measurements have the one-step random delay, and the process and measurement noises are correlated at the same epoch. Firstly, a framework of decoupling filter (DF based on equivalent model transformation is derived. Further, according to the framework of DF, a new extended Kalman filtering (EKF algorithm via using first-order linearization approximation is developed. Secondly, the computational process of the suboptimal fading factor is derived on the basis of the extended orthogonality principle (EOP. Thirdly, the ultimate form of the proposed STF is obtained by introducing the suboptimal fading factor into the above EKF algorithm. The proposed STF can automatically tune the suboptimal fading factor on the basis of the residuals between available and predicted measurements and further the gain matrices of the proposed STF tune online to improve the filtering performance. Finally, the effectiveness of the proposed STF has been proved through numerical simulation experiments.
Neuromimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems
Ha, Sieu D.; Shi, Jian; Meroz, Yasmine; Mahadevan, L.; Ramanathan, Shriram
2014-12-01
Strongly correlated electron systems such as the rare-earth nickelates (R NiO3 , R denotes a rare-earth element) can exhibit synapselike continuous long-term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory neurons. We establish a physical model for the device behavior based on electric-field-driven coupled ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to simulate a variety of associate and nonassociative learning mechanisms, as well as a feedforward recurrent network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be readily generalized to other forms of cellular learning and extinction. The simulation of neural function with electronic device analogs may provide insight into biological processes such as decision making, learning, and adaptation, while facilitating advanced parallel information processing in hardware.
PREFACE: International Conference on Strongly Correlated Electron Systems 2014 (SCES2014)
2015-03-01
The 2014 International Conference on Strongly Correlated Electron Systems (SCES) was held in Grenoble from the 7th to 11th of July on the campus of the University of Grenoble. It was a great privilege to have the conference in Grenoble after the series of meetings in Sendai (1992), San Diego (1993), Amsterdam (1994), Goa (1995), Zürich (1996), Paris (1998), Nagano (1999), Ann Arbor (2001), Krakow (2002), Karlsruhe (2004), Vienna (2005), Houston (2007), Buzios (2008), Santa Fe (2010), Cambridge (2011) and Tokyo (2013). Every three years, SCES joins the triennial conference on magnetism ICM. In 2015, ICM will take place in Barcelona. The meeting gathered an audience of 875 participants who actively interacted inside and outside of conference rooms. A large number of posters (530) was balanced with four parallel oral sessions which included 86 invited speakers and 141 short oral contributions. A useful arrangement was the possibility to put poster presentations on the website so participants could see them all through the conference week. Each morning two plenary sessions were held, ending on Friday with experimental and theoretical summaries delivered by Philipp Gegenwart (Augsburg) and Andrew Millis (Columbia). The plenary sessions were given by Gabriel Kotliar (Rutgers), Masashi Kawasaki (Tokyo), Jennifer Hoffman (Harvard), Mathias Vojta (Dresden), Ashvin Vishwanath (Berkeley), Andrea Cavalleri (Hamburg), Marc-Henri Julien (Grenoble), Neil Mathur (Cambridge), Giniyat Khaliullin (Stuttgart), and Toshiro Sakakibara (Tokyo). The parallel oral sessions were prepared by 40 symposium organizers selected by the chairman (Antoine Georges) and co-chairman (Kamran Behnia) of the Program Committee with the supplementary rule that speakers had not delivered an invited talk at the previous SCES conference held in 2013 in Tokyo. Special attention was given to help young researchers via grants to 40 overseas students. Perhaps due to the additional possibility of cheap
Systematic bias of correlation coefficient may explain negative accuracy of genomic prediction.
Zhou, Yao; Vales, M Isabel; Wang, Aoxue; Zhang, Zhiwu
2017-09-01
Accuracy of genomic prediction is commonly calculated as the Pearson correlation coefficient between the predicted and observed phenotypes in the inference population by using cross-validation analysis. More frequently than expected, significant negative accuracies of genomic prediction have been reported in genomic selection studies. These negative values are surprising, given that the minimum value for prediction accuracy should hover around zero when randomly permuted data sets are analyzed. We reviewed the two common approaches for calculating the Pearson correlation and hypothesized that these negative accuracy values reflect potential bias owing to artifacts caused by the mathematical formulas used to calculate prediction accuracy. The first approach, Instant accuracy, calculates correlations for each fold and reports prediction accuracy as the mean of correlations across fold. The other approach, Hold accuracy, predicts all phenotypes in all fold and calculates correlation between the observed and predicted phenotypes at the end of the cross-validation process. Using simulated and real data, we demonstrated that our hypothesis is true. Both approaches are biased downward under certain conditions. The biases become larger when more fold are employed and when the expected accuracy is low. The bias of Instant accuracy can be corrected using a modified formula. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Local Magnetism in Strongly Correlated Electron Systems with Orbital Degrees of Freedom
Ducatman, Samuel Charles
The central aim of my research is to explain the connection between the macroscopic behavior and the microscopic physics of strongly correlated electron systems with orbital degrees of freedom through the use of effective models. My dissertation focuses on the sub-class of these materials where electrons appear to be localized by interactions, and magnetic ions have well measured magnetic moments. This suggests that we can capture the low-energy physics of the material by employing a minimal model featuring localized spins which interact with each other through exchange couplings. I describe Fe1+y Te and beta-Li2IrO3 with effective models primarily focusing on the spins of the magnetic ions, in this case Fe and Ir, respectively. The goal with both materials is to gain insight and make predictions for experimentalists. In chapter 2, I focus on Fe1+yTe. I describe why we believe the magnetic ground state of this material, with an observed Bragg peak at Q +/- pi/2, pi/2), can be described by a Heisenberg model with 1st, 2nd, and 3rd neighbor interactions. I present two possible ground states of this model in the small J1 limit, the bicollinear and plaquette states. In order to predict which ground state the model prefers, I calculate the spin wave spectrum with 1/S corrections, and I find the model naturally selects the "plaquette state." I give a brief description of the ways this result could be tested using experimental techniques such as polarized neutron scattering. In chapter 3, I extend the model used in chapter 2. This is necessary because the Heisenberg model we employed cannot explain why Fe1+yTe undergoes a phase transition as y is increased. We add an additional elements to our calculation; we assume that electrons in some of the Fe 3D orbitals have selectively localized while others remain itinerant. We write a new Hamiltonian, where localized moments acquire a new long-range RKKY-like interaction from interactions with the itinerant electrons. We are
New developments in the theoretical treatment of low dimensional strongly correlated systems.
James, Andrew J A; Konik, Robert M; Lecheminant, Philippe; Robinson, Neil; Tsvelik, Alexei M
2017-10-09
We review two important non-perturbative approaches for extracting the physics of low- dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of confor- mal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symme- tries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1+1D quantum chro- modynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics. © 2017 IOP Publishing Ltd.
Directory of Open Access Journals (Sweden)
Andrey D. Pryamikov
2017-11-01
Full Text Available In this paper we would like to continue a discussion started in our previous work and devoted to the mechanism of light localization in hollow core microstructured fibers with a noncircular core-cladding boundary. It has been shown in many works that, for waveguide microstructures with different types of core-cladding boundary shape, the positions of the transmission bands’ edges can be predicted by applying the well-known anti–resonant reflecting optical waveguide (ARROW model. At the same time, the ARROW model cannot explain the strong light localization and guiding at high material loss inside the transmission bands which are observed in negative curvature hollow core fibers, for example. In this paper we want to clarify our previous findings and consider the light localization process from another point of view, namely, by comparing the light leakage process in waveguide microstructures with different shapes of the core-cladding boundary. The results are discussed based on the ARROW model and a new approach associated with the consideration of spatial dispersion occurring under the interaction of the air core mode with the core-cladding boundary.
Aly, Sharif S; Zhao, Jianyang; Li, Ben; Jiang, Jiming
2014-01-01
The Intraclass Correlation Coefficient (ICC) is commonly used to estimate the similarity between quantitative measures obtained from different sources. Overdispersed data is traditionally transformed so that linear mixed model (LMM) based ICC can be estimated. A common transformation used is the natural logarithm. The reliability of environmental sampling of fecal slurry on freestall pens has been estimated for Mycobacterium avium subsp. paratuberculosis using the natural logarithm transformed culture results. Recently, the negative binomial ICC was defined based on a generalized linear mixed model for negative binomial distributed data. The current study reports on the negative binomial ICC estimate which includes fixed effects using culture results of environmental samples. Simulations using a wide variety of inputs and negative binomial distribution parameters (r; p) showed better performance of the new negative binomial ICC compared to the ICC based on LMM even when negative binomial data was logarithm, and square root transformed. A second comparison that targeted a wider range of ICC values showed that the mean of estimated ICC closely approximated the true ICC.
Qian, Tingting; Wang, Lianlian; Lu, Guanghua
2017-07-01
Radar correlated imaging (RCI) introduces the optical correlated imaging technology to traditional microwave imaging, which has raised widespread concern recently. Conventional RCI methods neglect the structural information of complex extended target, which makes the quality of recovery result not really perfect, thus a novel combination of negative exponential restraint and total variation (NER-TV) algorithm for extended target imaging is proposed in this paper. The sparsity is measured by a sequential order one negative exponential function, then the 2D total variation technique is introduced to design a novel optimization problem for extended target imaging. And the proven alternating direction method of multipliers is applied to solve the new problem. Experimental results show that the proposed algorithm could realize high resolution imaging efficiently for extended target.
Marceau, Kristine; Horwitz, Briana N.; Ganiban, Jody M.; Reiss, David; Narusyte, Jurgita; Spotts, Erica L.; Neiderhiser, Jenae M.
2014-01-01
Studies of adolescent or parent-based twins suggest that gene–environment correlation (rGE) is an important mechanism underlying parent–adolescent relationships. However, information on how parents′ and children’s genes and environments influence correlated parent and child behaviors is needed to distinguish types of rGE. The present study used the novel Extended Children of Twins model to distinguish types of rGE underlying associations between negative parenting and adolescent (age 11–22 years) externalizing problems with a Swedish sample of 909 twin parents and their adolescent offspring and a U.S.-based sample of 405 adolescent siblings and their parents. Results suggest that evocative rGE, not passive rGE or direct environmental effects of parenting on adolescent externalizing, explains associations between maternal and paternal negativity and adolescent externalizing problems. PMID:23573986
Ran, Shi-Ju
2016-05-01
In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a single optimization problem of a local function with finite number of physical and ancillary degrees of freedom. This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas of different well-established methods, including the density matrix renormalization group (DMRG), infinite time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc., providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D) AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a transverse Ising
Matrix-product states for strongly correlated systems and quantum information processing
International Nuclear Information System (INIS)
Saberi, Hamed
2008-01-01
This thesis offers new developments in matrix-product state theory for studying the strongly correlated systems and quantum information processing through three major projects: In the first project, we perform a systematic comparison between Wilson's numerical renormalization group (NRG) and White's density-matrix renormalization group (DMRG). The NRG method for solving quantum impurity models yields a set of energy eigenstates that have the form of matrix-product states (MPS). White's DMRG for treating quantum lattice problems can likewise be reformulated in terms of MPS. Thus, the latter constitute a common algebraic structure for both approaches. We exploit this fact to compare the NRG approach for the single-impurity Anderson model to a variational matrix-product state approach (VMPS), equivalent to single-site DMRG. For the latter, we use an ''unfolded'' Wilson chain, which brings about a significant reduction in numerical costs compared to those of NRG. We show that all NRG eigenstates (kept and discarded) can be reproduced using VMPS, and compare the difference in truncation criteria, sharp vs. smooth in energy space, of the two approaches. Finally, we demonstrate that NRG results can be improved upon systematically by performing a variational optimization in the space of variational matrix-product states, using the states produced by NRG as input. In the second project we demonstrate how the matrix-product state formalism provides a flexible structure to solve the constrained optimization problem associated with the sequential generation of entangled multiqubit states under experimental restrictions. We consider a realistic scenario in which an ancillary system with a limited number of levels performs restricted sequential interactions with qubits in a row. The proposed method relies on a suitable local optimization procedure, yielding an efficient recipe for the realistic and approximate sequential generation of any entangled multiqubit state. We give
Spin-Projected Matrix Product States: Versatile Tool for Strongly Correlated Systems.
Li, Zhendong; Chan, Garnet Kin-Lic
2017-06-13
, which are simple to implement with MPS. To illustrate the versatility of SP-MPS, we formulate algorithms for the optimization of ground and excited states, develop perturbation theory based on SP-MPS, and describe how to evaluate spin-independent and spin-dependent properties such as the reduced density matrices. We demonstrate the numerical performance of SP-MPS with applications to several models typical of strong correlation, including the Hubbard model, and [2Fe-2S] and [4Fe-4S] model complexes.
Matrix-product states for strongly correlated systems and quantum information processing
Energy Technology Data Exchange (ETDEWEB)
Saberi, Hamed
2008-12-12
This thesis offers new developments in matrix-product state theory for studying the strongly correlated systems and quantum information processing through three major projects: In the first project, we perform a systematic comparison between Wilson's numerical renormalization group (NRG) and White's density-matrix renormalization group (DMRG). The NRG method for solving quantum impurity models yields a set of energy eigenstates that have the form of matrix-product states (MPS). White's DMRG for treating quantum lattice problems can likewise be reformulated in terms of MPS. Thus, the latter constitute a common algebraic structure for both approaches. We exploit this fact to compare the NRG approach for the single-impurity Anderson model to a variational matrix-product state approach (VMPS), equivalent to single-site DMRG. For the latter, we use an ''unfolded'' Wilson chain, which brings about a significant reduction in numerical costs compared to those of NRG. We show that all NRG eigenstates (kept and discarded) can be reproduced using VMPS, and compare the difference in truncation criteria, sharp vs. smooth in energy space, of the two approaches. Finally, we demonstrate that NRG results can be improved upon systematically by performing a variational optimization in the space of variational matrix-product states, using the states produced by NRG as input. In the second project we demonstrate how the matrix-product state formalism provides a flexible structure to solve the constrained optimization problem associated with the sequential generation of entangled multiqubit states under experimental restrictions. We consider a realistic scenario in which an ancillary system with a limited number of levels performs restricted sequential interactions with qubits in a row. The proposed method relies on a suitable local optimization procedure, yielding an efficient recipe for the realistic and approximate sequential generation of any
Directory of Open Access Journals (Sweden)
Shen Wenwen
2012-10-01
Full Text Available Abstract Background Methamphetamine (METH use, especially in females, has become a growing public health concern in China. In this study, we aimed to characterize the factors that contributed to drug craving in female METH users under isolated compulsory detoxification. We characterized factors contributing to craving such as duration of detoxification, history of drug use and self-reported mood state. Methods Subjects (N=113 undergoing a 1- to 3-year METH detoxification program were recruited from the Zhejiang Compulsory Detoxification Center for Women. The Questionnaire of METH-use Urge (QMU was used to evaluate the level of craving for METH. The Abbreviate Profile of Mood States (A-POMS was applied as an assessment for the negative mood disturbances. Results The participants were at a mean age of 25.2, primarily lowly educated and unemployed, and single. Smoking was the only route of METH administration at an average dose of 0.5 g/day, and 4 times/week. The reported craving level was positively correlated with the negative mood disturbances and the weekly dose of METH, but independent of the duration of detoxification. Furthermore, all five aspects of negative mood disturbances, including fatigue, bewilderment, anxiety, depression and hostility, were shown to positively correlate to the self-reported craving level after controlling for weekly dose of METH. Conclusions The data demonstrate a robust correlation between mood distress and craving for METH. Our results call for close evaluation of mood distress in treatment of METH users in China.
Serum acylated ghrelin is negatively correlated with the insulin resistance in the CODING study.
Directory of Open Access Journals (Sweden)
Peyvand Amini
Full Text Available Ghrelin is a 28-amino acid orexigenic peptide synthesized mainly in the stomach. Acute administration of ghrelin has been found to decrease insulin secretion. However, little data is available regarding whether ghrelin contributes to the long-term regulation of insulin resistance at the population level. The aim of this study is to investigate the association between circulating ghrelin and insulin resistance in a large population based study.A total of 2082 CODING study (Complex Diseases in the Newfoundland population: Environment and Genetics subjects were assessed. Subjects were of at least third generation Newfoundland descent, between the ages of 20 and 79 years, and had no serious metabolic, cardiovascular, or endocrine diseases. Ghrelin was measured with an Enzyme Immunoassay method. Insulin and fasting glucose were measured by Immulite 2500 autoanalyzer and Lx20 clinical chemistry analyzer, respectively. Homeostatic Model Assessment of β cell function (HOMA-β and Insulin Resistance (HOMA-IR and Quantitative Insulin-sensitivity Check Index (QUICKI were used for measurement of insulin resistance.Partial correlation analyses showed a significant negative correlation between circulating ghrelin and insulin level and insulin resistance in the entire cohort and also in men and women separately. The aforementioned correlation was independent of age, percentage of trunk fat and HDL-cholesterol. According to menopausal status, only pre-menopausal women revealed negative correlations.Our results suggest that except for postmenopausal women, high circulating ghrelin level is associated with lower insulin resistance in the general population.
Johnson, Timothy J; Youmans, Bonnie P; Noll, Sally; Cardona, Carol; Evans, Nicholas P; Karnezos, T Peter; Ngunjiri, John M; Abundo, Michael C; Lee, Chang-Won
2018-04-06
Defining the baseline bacterial microbiome is critical towards understanding its relationship with health and disease. In broiler chickens, the core microbiome and its possible relationships with health and disease have been difficult to define due to high variability between birds and flocks. Presented are data from a large, comprehensive microbiota-based study in commercial broilers. The primary goals of this study included understanding what constitutes the core bacterial microbiota in the broiler gastrointestinal, respiratory, and barn environments; how these core players change across age, geography, and time; and which bacterial taxa correlate with enhanced bird performance in antibiotic-free flocks. Using 2,309 samples from 37 different commercial flocks within a vertically integrated broiler system, and metadata from these and an additional 512 flocks within that system, the baseline bacterial microbiota was defined using 16S rRNA gene sequencing. The effects of age, sample type, flock, and successive flock cycles were compared, and results indicate a consistent, predictable, age-dependent bacterial microbiota, irrespective of flock. The tracheal bacterial microbiota of broilers was comprehensively defined, and Lactobacillus was the dominant bacterial taxa in the trachea. Numerous bacterial taxa were identified which were strongly correlated with broiler chicken performance, across multiple tissues. While many positively correlated taxa were identified, negatively associated potential pathogens were also identified in the absence of clinical disease, indicating subclinical dynamics occurring that impact performance. Overall, this work provides necessary baseline data for the development of effective antibiotic alternatives, such as probiotics, for sustainable poultry production. Importance Multidrug resistant bacterial pathogens are perhaps the greatest medical challenge we will face in the 21 st century and beyond. Antibiotics are necessary in animal
The negative ultraslow potential, electrophysiological correlate of infarction in the human cortex.
Lückl, Janos; Lemale, Coline L; Kola, Vasilis; Horst, Viktor; Khojasteh, Uldus; Oliveira-Ferreira, Ana I; Major, Sebastian; Winkler, Maren K L; Kang, Eun-Jeung; Schoknecht, Karl; Martus, Peter; Hartings, Jed A; Woitzik, Johannes; Dreier, Jens P
2018-06-01
Spreading depolarizations are characterized by abrupt, near-complete breakdown of the transmembrane ion gradients, neuronal oedema, mitochondrial depolarization, glutamate excitotoxicity and activity loss (depression). Spreading depolarization induces either transient hyperperfusion in normal tissue; or hypoperfusion (inverse coupling = spreading ischaemia) in tissue at risk for progressive injury. The concept of the spreading depolarization continuum is critical since many spreading depolarizations have intermediate characteristics, as opposed to the two extremes of spreading depolarization in either severely ischaemic or normal tissue. In animals, the spreading depolarization extreme in ischaemic tissue is characterized by prolonged depolarization durations, in addition to a slow baseline variation termed the negative ultraslow potential. The negative ultraslow potential is initiated by spreading depolarization and similar to the negative direct current (DC) shift of prolonged spreading depolarization, but specifically refers to a negative potential component during progressive recruitment of neurons into cell death in the wake of spreading depolarization. We here first quantified the spreading depolarization-initiated negative ultraslow potential in the electrocorticographic DC range and the activity depression in the alternate current range after middle cerebral artery occlusion in rats. Relevance of these variables to the injury was supported by significant correlations with the cortical infarct volume and neurological outcome after 72 h of survival. We then identified negative ultraslow potential-containing clusters of spreading depolarizations in 11 patients with aneurysmal subarachnoid haemorrhage. The human platinum/iridium-recorded negative ultraslow potential showed a tent-like shape. Its amplitude of 45.0 (39.0, 69.4) mV [median (first, third quartile)] was 6.6 times larger and its duration of 3.7 (3.3, 5.3) h was 34.9 times longer than the negative DC
Gram-negative, but not Gram-positive, bacteria elicit strong PGE2 production in human monocytes.
Hessle, Christina C; Andersson, Bengt; Wold, Agnes E
2003-12-01
Gram-positive and Gram-negative bacteria induce different cytokine patterns in human mononuclear cells. We have seen that Gram-positives preferentially induce IL-12 and TNF-alpha, whereas Gram-negatives induce more IL-10, IL-6, and IL-8. In this study, we compared the capacity of these two groups of bacteria to induce PGE2. Monocytes stimulated with Gram-negative bacterial species induced much more PGE2 than did Gram-positive bacteria (5600 +/- 330 vs. 1700 +/- 670 pg/mL, p Gram-positive and Gram-negative bacteria. We suggest that Gram-positive and Gram-negative bacteria may stimulate different innate effector functions; Gram-positive bacteria promoting cell-mediated effector functions whereas Gram-negative bacteria inducing mediators inhibiting the same.
International Nuclear Information System (INIS)
Yamanaka, Masanori; Honjo, Shinsuke; Kohmoto, Mahito
1996-01-01
We investigate one-dimensional strongly correlated electron models which have the resonating-valence-bond state as the exact ground state. The correlation functions are evaluated exactly using the transfer matrix method for the geometric representations of the valence-bond states. In this method, we only treat matrices with small dimensions. This enables us to give analytical results. It is shown that the correlation functions decay exponentially with distance. The result suggests that there is a finite excitation gap, and that the ground state is insulating. Since the corresponding noninteracting systems may be insulating or metallic, we can say that the gap originates from strong correlation. The persistent currents of the present models are also investigated and found to be exactly vanishing
Method of correlation operators in the theory of a system of particles with strong interactions
International Nuclear Information System (INIS)
Kuz'min, Y.M.
1985-01-01
A similarity transformation of the density matrix is performed with the help of the correlation operator. This does not change the value of the partition function. A method of calculating the transformed partition function with the help of a finite translation operator is given. A general system of coupled equations is obtained from which the matrix elements of correlation operators of increasing order can be found
Kulasekararaj, Austin G; Smith, Alexander E; Mian, Syed A; Mohamedali, Azim M; Krishnamurthy, Pramila; Lea, Nicholas C; Gäken, Joop; Pennaneach, Coralie; Ireland, Robin; Czepulkowski, Barbara; Pomplun, Sabine; Marsh, Judith C; Mufti, Ghulam J
2013-03-01
This study aimed to determine the incidence/prognostic impact of TP53 mutation in 318 myelodysplastic syndrome (MDS) patients, and to correlate the changes to cytogenetics, single nucleotide polymorphism array karyotyping and clinical outcome. The median age was 65 years (17-89 years) and median follow-up was 45 months [95% confidence interval (CI) 27-62 months]. TP53 mutations occurred in 30 (9.4%) patients, exclusively in isolated del5q (19%) and complex karyotype (CK) with -5/5q-(72%), correlated with International Prognostic Scoring System intermediate-2/high, TP53 protein expression, higher blast count and leukaemic progression. Patients with mutant TP53 had a paucity of mutations in other genes implicated in myeloid malignancies. Median overall survival of patients with TP53 mutation was shorter than wild-type (9 versus 66 months, P disappearance of the mutant clone or emergence of new clones, suggesting an early occurrence of TP53 mutations. A reduction in mutant clone correlated with response to 5-azacitidine, however clones increased in non-responders and persisted at relapse. The adverse impact of TP53 persists after adjustment for cytogenetic risk and is of practical importance in evaluating prognosis. The relatively common occurrence of these mutations in two different prognostic spectrums of MDS, i.e. isolated 5q- and CK with -5/5q-, possibly implies two different mechanistic roles for TP53 protein. © 2013 Crown copyright. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.
Full-gap superconductivity with strong electron correlations in the β-pyrochlore KOs2O6
International Nuclear Information System (INIS)
Kasahara, Y.; Shimono, Y.; Kato, T.; Hashimoto, K.; Shibauchi, T.; Matsuda, Y.; Yonezawa, S.; Muraoka, Y.; Yamaura, J.; Nagao, Y.; Hiroi, Z.
2008-01-01
To elucidate the superconducting gap structure and the influence of rattling motion on quasiparticle dynamics in the superconducting state of KOs 2 O 6 , the thermal conductivity and microwave surface impedance were measured at low temperatures. The magnetic field dependence of thermal conductivity and temperature dependence of penetration depth demonstrate full-gap superconductivity in KOs 2 O 6 . The quasiparticle scattering time is strongly enhanced in the superconducting state, indicating a strong electron inelastic scattering in the normal state. These results highlight that KOs 2 O 6 is unique among superconductors with strong electron correlations
Prayogi, A.; Majidi, M. A.
2017-07-01
In condensed-matter physics, strongly-correlated systems refer to materials that exhibit variety of fascinating properties and ordered phases, depending on temperature, doping, and other factors. Such unique properties most notably arise due to strong electron-electron interactions, and in some cases due to interactions involving other quasiparticles as well. Electronic correlation effects are non-trivial that one may need a sufficiently accurate approximation technique with quite heavy computation, such as Quantum Monte-Carlo, in order to capture particular material properties arising from such effects. Meanwhile, less accurate techniques may come with lower numerical cost, but the ability to capture particular properties may highly depend on the choice of approximation. Among the many-body techniques derivable from Feynman diagrams, we aim to formulate algorithmic implementation of the Ladder Diagram approximation to capture the effects of electron-electron interactions. We wish to investigate how these correlation effects influence the temperature-dependent properties of strongly-correlated metals and semiconductors. As we are interested to study the temperature-dependent properties of the system, the Ladder diagram method needs to be applied in Matsubara frequency domain to obtain the self-consistent self-energy. However, at the end we would also need to compute the dynamical properties like density of states (DOS) and optical conductivity that are defined in the real frequency domain. For this purpose, we need to perform the analytic continuation procedure. At the end of this study, we will test the technique by observing the occurrence of metal-insulator transition in strongly-correlated metals, and renormalization of the band gap in strongly-correlated semiconductors.
Directory of Open Access Journals (Sweden)
James Nicholson
Full Text Available There is compelling evidence in humans that peripheral endocannabinoid signaling is disrupted in obesity. However, little is known about the corresponding central signaling. Here, we have investigated the relationship between gender, leptin, body mass index (BMI and levels of the endocannabinoids anandamide (AEA and 2-arachidonoylglycerol (2-AG in the serum and cerebrospinal fluid (CSF of primarily overweight to obese patients with osteoarthritis.Patients (20 females, 15 males, age range 44-78 years, BMI range 24-42 undergoing total knee arthroplasty for end-stage osteoarthritis were recruited for the study. Endocannabinoids were quantified by liquid chromatography - mass spectrometry. AEA and 2-AG levels in the serum and CSF did not correlate with either age or BMI. However, 2-AG levels in the CSF, but not serum, correlated negatively with CSF leptin levels (Spearman's ρ -0.48, P=0.0076, n=30. No such correlations were observed for AEA and leptin.In the patient sample investigated, there is a negative association between 2-AG and leptin levels in the CSF. This is consistent with pre-clinical studies in animals, demonstrating that leptin controls the levels of hypothalamic endocannabinoids that regulate feeding behavior.
Nicholson, James; Azim, Syed; Rebecchi, Mario J; Galbavy, William; Feng, Tian; Reinsel, Ruth; Rizwan, Sabeen; Fowler, Christopher J; Benveniste, Helene; Kaczocha, Martin
2015-01-01
There is compelling evidence in humans that peripheral endocannabinoid signaling is disrupted in obesity. However, little is known about the corresponding central signaling. Here, we have investigated the relationship between gender, leptin, body mass index (BMI) and levels of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the serum and cerebrospinal fluid (CSF) of primarily overweight to obese patients with osteoarthritis. Patients (20 females, 15 males, age range 44-78 years, BMI range 24-42) undergoing total knee arthroplasty for end-stage osteoarthritis were recruited for the study. Endocannabinoids were quantified by liquid chromatography - mass spectrometry. AEA and 2-AG levels in the serum and CSF did not correlate with either age or BMI. However, 2-AG levels in the CSF, but not serum, correlated negatively with CSF leptin levels (Spearman's ρ -0.48, P=0.0076, n=30). No such correlations were observed for AEA and leptin. In the patient sample investigated, there is a negative association between 2-AG and leptin levels in the CSF. This is consistent with pre-clinical studies in animals, demonstrating that leptin controls the levels of hypothalamic endocannabinoids that regulate feeding behavior.
Rivers, Alannah Shelby; Sanford, Keith
2018-04-01
When people who are married or cohabiting face stressful life situations, their ability to cope may be associated with two separate dimensions of interpersonal behavior: positive and negative. These behaviors can be assessed with the Couple Resilience Inventory (CRI). It was expected that scales on this instrument would correlate with outcome variables regarding life well-being, stress, and relationship satisfaction. It was also expected that effects for negative behavior would be larger than effects for positive and that the effects might be curvilinear. Study 1 included 325 married or cohabiting people currently experiencing nonmedical major life stressors and Study 2 included 154 married or cohabiting people with current, serious medical conditions. All participants completed an online questionnaire including the CRI along with an alternate measure of couple behavior (to confirm scale validity), a measure of general coping style (to serve as a covariate), and measures of outcome variables regarding well-being, quality of life, perceived stress, and relationship satisfaction. The effects for negative behavior were larger than effects for positive in predicting most outcomes, and many effects were curvilinear. Notably, results remained significant after controlling for general coping style, and scales measuring positive and negative behavior demonstrated comparable levels of validity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Strongly reduced band gap in a correlated insulator in close proximity to a metal
Hesper, R.; Tjeng, L.H; Sawatzky, G.A
1997-01-01
Using a combination of photoelectron and inverse photoelectron spectroscopy, we show that the band gap in a monolayer of C-60 on a Ag surface is strongly reduced from the solid C-60 surface value. We argue that this is a result of the reduction of the on-site molecular Coulomb interaction due to the
MORGENSTERN, [No Value; FRICK, M; VONDERLINDEN, W
We present quantum simulation studies for a system of strongly correlated fermions coupled to local anharmonic phonons. The Monte Carlo calculations are based on a generalized version of the Projector Quantum Monte Carlo Method allowing a simultaneous treatment of fermions and dynamical phonons. The
Ferromagnetic instabilities in disordered systems in the limit of strong correlations
International Nuclear Information System (INIS)
Magalhaes, A.N.; Troper, A.; Gomes, A.A.
1976-05-01
One derives the criterion for ferromagnetic instabilities in hybridized disordered systems, e.g. transition metal like systems and actinides, within the Coherent Potential Approximation (CPA), the electron-electron correlations being described by Hubbard' approximation. In the case of actinides, one treats approximately the motion of d electrons while the diagonal disorder within the f band is fully taken into account. In the case of a trnsition metal like system, except for Hubbard's approximation in dealing with d-d electron correlations, our procedure is exact within the spirit of CPA
DEFF Research Database (Denmark)
Nysteen, Anders; McCutcheon, Dara; Mørk, Jesper
2015-01-01
We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could be quanti......We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could...
International Nuclear Information System (INIS)
Davis, Anthony B.; Mineev-Weinstein, Mark B.
2011-01-01
We survey research on radiation propagation or ballistic particle motion through media with randomly variable material density, and we investigate the topic with an emphasis on very high spatial frequencies. Our new results are based on a specific variability model consisting of a zero-mean Gaussian scaling noise riding on a constant value that is large enough with respect to the amplitude of the noise to yield overwhelmingly non-negative density. We first generalize known results about sub-exponential transmission from regular functions, which are almost everywhere continuous, to merely 'measurable' ones, which are almost everywhere discontinuous (akin to statistically stationary noises), with positively correlated fluctuations. We then use the generalized measure-theoretic formulation to address negatively correlated stochastic media without leaving the framework of conventional (continuum-limit) transport theory. We thus resolve a controversy about recent claims that only discrete-point process approaches can accommodate negative correlations, i.e., anti-clustering of the material particles. We obtain in this case the predicted super-exponential behavior, but it is rather weak. Physically, and much like the alternative discrete-point process approach, the new model applies most naturally to scales commensurate with the inter-particle distance in the material, i.e., when the notion of particle density breaks down due to Poissonian-or maybe not-so-Poissonian-number-count fluctuations occur in the sample volume. At the same time, the noisy structure must prevail up to scales commensurate with the mean-free-path to be of practical significance. Possible applications are discussed.
Testosterone levels in healthy men correlate negatively with serotonin 4 receptor binding
DEFF Research Database (Denmark)
Perfalk, Erik; Cunha-Bang, Sofi da; Holst, Klaus K
2017-01-01
The serotonergic system integrates sex steroid information and plays a central role in mood and stress regulation, cognition, appetite and sleep. This interplay may be critical for likelihood of developing depressive episodes, at least in a subgroup of sensitive individuals. The serotonin 4...... positron emission tomography in a group of 41 healthy men. We estimated global 5-HT4R binding using a latent variable model framework, which models shared correlation between 5-HT4R across multiple brain regions (hippocampus, amygdala, posterior and anterior cingulate, thalamus, pallidostriatum...... and neocortex). We tested whether testosterone and estradiol predict global 5-HT4R, adjusting for age. We found that testosterone, but not estradiol, correlated negatively with global 5-HT4R levels (p=0.02) suggesting that men with high levels of testosterone have higher cerebral serotonergic tonus. Our...
International Nuclear Information System (INIS)
Bouis, F.
1999-01-01
Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)
Quantum Glassiness in Strongly Correlated Clean Systems: An Example of Topological Overprotection
Chamon, Claudio
2005-01-01
This Letter presents solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three-dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, (1)have no quenched disorder, (2)have solely local interactions, (3)have an exactly solvable spectrum, (4)have topologically ordered ground states, and (5)have slow dynamical relaxation rates akin to those of strong structural glasses.
Prus, O.; Yaish, Y.; Reznikov, M.; Sivan, U.; Pudalov, V.
2002-01-01
A novel method invented to measure the minute thermodynamic spin magnetization of dilute two dimensional fermions is applied to electrons in a silicon inversion layer. Interplay between the ferromagnetic interaction and disorder enhances the low temperature susceptibility up to 7.5 folds compared with the Pauli susceptibility of non-interacting electrons. The magnetization peaks in the vicinity of the density where transition to strong localization takes place. At the same density, the suscep...
Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation
Czech Academy of Sciences Publication Activity Database
Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M.C.D.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Coserea, R. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Gangaharan, D.R.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Milner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S.Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Vander Molen, A.M.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.S.M.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zhu, X.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.; Tlustý, David
2009-01-01
Roč. 103, č. 25 (2009), 251601/1-251601/7 ISSN 0031-9007 R&D Projects: GA ČR GA202/07/0079; GA MŠk LC07048; GA MŠk LA09013 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : heavy-ion collisions * local parity violation * strong interaction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 7.328, year: 2009
Directory of Open Access Journals (Sweden)
Richard E. Tracy
2011-01-01
Full Text Available Cardiac myocytes are presumed to enlarge with left ventricular hypertrophy (LVH. This study correlates histologically measured myocytes with lean and fat body mass. Cases of LVH without coronary heart disease and normal controls came from forensic autopsies. The cross-sectional widths of myocytes in H&E-stained paraffin sections followed log normal distributions almost to perfection in all 104 specimens, with constant coefficient of variation across the full range of ventricular weight, as expected if myocytes of all sizes contribute proportionately to hypertrophy. Myocyte sizes increased with height. By regression analysis, height2.7 as a proxy for lean body mass and body mass index (BMI as a proxy for fat body mass, exerted equal effects in the multiple correlation with myocyte volume, and the equation rejected race and sex. In summary, myocyte sizes, as indexes of LVH, suggest that lean and fat body mass may contribute equally.
Baumgärtel, M.; Ghanem, K.; Kiani, A.; Koch, E.; Pavarini, E.; Sims, H.; Zhang, G.
2017-07-01
We discuss the efficient implementation of general impurity solvers for dynamical mean-field theory. We show that both Lanczos and quantum Monte Carlo in different flavors (Hirsch-Fye, continuous-time hybridization- and interaction-expansion) exhibit excellent scaling on massively parallel supercomputers. We apply these algorithms to simulate realistic model Hamiltonians including the full Coulomb vertex, crystal-field splitting, and spin-orbit interaction. We discuss how to remove the sign problem in the presence of non-diagonal crystal-field and hybridization matrices. We show how to extract the physically observable quantities from imaginary time data, in particular correlation functions and susceptibilities. Finally, we present benchmarks and applications for representative correlated systems.
Reply to ``Comment on `Cluster methods for strongly correlated electron systems' ''
Biroli, G.; Kotliar, G.
2005-01-01
We reply to the Comment by Aryanpour, Maier, and Jarrell [Phys. Rev. B 71, 037101 (2005)] on our paper [Phys. Rev. B 65, 155112 (2002)]. We demonstrate, using general arguments and explicit examples, that whenever the correlation length is finite, local observables converge exponentially fast in the cluster size Lc within cellular dynamical mean field theory. This is a faster rate of convergence than the 1/ L2c behavior of the dynamical cluster approximation, thus refuting the central assertion of their Comment.
Strong Solar Control of Infrared Aurora on Jupiter: Correlation Since the Last Solar Maximum
Kostiuk, T.; Livengood, T. A.; Hewagama, T.
2009-01-01
Polar aurorae in Jupiter's atmosphere radiate throughout the electromagnetic spectrum from X ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based spectroscopic measurements of Jupiter's northern mid-IR aurora, acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane emission brightness and solar 10.7 cm radio flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high solar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the Europa Jupiter System Mission. Results of observations at the Infrared Telescope Facility (IRTF) operated by the University of Hawaii under Cooperative Agreement no. NCC5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. This work was supported by the NASA Planetary Astronomy Program.
Kametani, F; Jiang, J; Scheuerlein, C; Malagoli, A; Di Michiel, M; Huang, Y; Miao, H; Parrell, J A; Hellstrom, E E; Larbalestier, D C
2011-01-01
Most studies of Bi2Sr2CaCu2Ox (Bi2212) show that the critical current density Jc is limited by the connectivity of the filaments, but what determines the connectivity is still elusive. Here we report on the role played by filament porosity in limiting Jc. By a microstructural investigation of wires quenched from the melt state, we find that porosity in the unreacted wire agglomerates into bubbles that segment the Bi2212 melt within the filaments into discrete sections. These bubbles do not disappear during subsequent processing because they are only partially filled by Bi2212 grains as the Bi2212 forms on cooling. Correlating the microstructure of quenched wires to their final, fully processed Jc values shows an inverse relation between Jc and bubble density. Bubbles are variable between conductors and perhaps from sample to sample, but they occur frequently and almost completely fill the filament diameter, so they exert a strongly variable but always negative effect on Jc. Bubbles reduce the continuous Bi221...
Strain-Induced Enhancement of the Electron Energy Relaxation in Strongly Correlated Superconductors
Directory of Open Access Journals (Sweden)
C. Gadermaier
2014-03-01
Full Text Available We use femtosecond optical spectroscopy to systematically measure the primary energy relaxation rate Γ_{1} of photoexcited carriers in cuprate and pnictide superconductors. We find that Γ_{1} increases monotonically with increased negative strain in the crystallographic a axis. Generally, the Bardeen-Shockley deformation potential theorem and, specifically, pressure-induced Raman shifts reported in the literature suggest that increased negative strain enhances electron-phonon coupling, which implies that the observed direct correspondence between a and Γ_{1} is consistent with the canonical assignment of Γ_{1} to the electron-phonon interaction. The well-known nonmonotonic dependence of the superconducting critical temperature T_{c} on the a-axis strain is also reflected in a systematic dependence T_{c} on Γ_{1}, with a distinct maximum at intermediate values (∼16 ps^{−1} at room temperature. The empirical nonmonotonic systematic variation of T_{c} with the strength of the electron-phonon interaction provides us with unique insight into the role of electron-phonon interaction in relation to the mechanism of high-T_{c} superconductivity as a crossover phenomenon.
Sun, Jian
2012-02-21
A two-contact extraordinary magnetoresistance (EMR) device has been fabricated and characterized at various temperatures under magnetic fields applied in different directions. Large performance variations across the temperature range have been found, which are due to the strong dependence of the EMR effect on the mobility. The device shows the highest sensitivity of 562ω/T at 75 K with the field applied perpendicularly. Due to the overlap between the semiconductor and the metal shunt, the device is also sensitive to planar fields but with a lower sensitivity of about 20 to 25% of the one to perpendicular fields. © 2012 The Japan Society of Applied Physics.
Directory of Open Access Journals (Sweden)
Ling-ming KONG
2017-11-01
Full Text Available Objective To explore the correlation of circRNAs' expression level to the negative- and positive symptoms of patients with schizophrenia (SZ. Methods Gene chip screening was performed with the peripheral blood samples from each five of SZ patients and normal controls. Nine circRNAs showing differentiate expression were confirmed, and further verification was done by real-time fluorescence quantitative PCR in 102 SZ patients and 103 normal controls. All the SZ patients were assessed with Positive and Negative Symptom Scale (PANSS. Results It was revealed that the expression levels of circRNA_102101, circRNA_102315, circRNA_104597, circRNA_101835 and circRNA_101836 were significantly down-regulated (P<0.01 or P<0.05, and circRNA_103102 and circRNA_103704 were up-regulated in SZ group (P<0.01. The ΔCT value of circRNA_102101 and circRNA_103102 was positively correlated to the positive symptoms (P<0.01 or P<0.05, and the ΔCT value of circRNA_103704 also showed positive correlation with positive symptoms and general psychopathological symptoms (P<0.01 or P<0.05. The ΔCT values of circRNA_102101, circRNA_103102, circRNA_102315, circRNA_103704 and circRNA_102802 were correlated with thinking disorder (P<0.01 or P<0.05, and the ΔCT values of circRNA_102101, circRNA_103102, circRNA_104597, circRNA_103704 and circRNA_102802 were correlated with the activation (P<0.01 or P<0.05. The ΔCT values of circRNA_102101, circRNA_103102, circRNA_103704 and circRNA_102802 were positively correlated with paranoid (P<0.01 or P<0.05, and of circRNA_102101, circRNA_103102, circRNA_103704 and circRNA_102802 were markedly correlated with assault (P<0.01 or P<0.05. Therefore, circRNA_103704 was chosen into regressive equation of positive symptoms (P<0.01, and circRNA_103704 and circRNA_102315 were chosen into regressive equation of general pathological findings (P<0.01 or P<0.05. Conclusion The expression levels of circRNA_103704 and circRNA_103102 are obviously up
Energy Technology Data Exchange (ETDEWEB)
Schriber, Jeffrey B.; Evangelista, Francesco A. [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)
2016-04-28
We introduce a new procedure for iterative selection of determinant spaces capable of describing highly correlated systems. This adaptive configuration interaction (ACI) determines an optimal basis by an iterative procedure in which the determinant space is expanded and coarse grained until self-consistency. Two importance criteria control the selection process and tune the ACI to a user-defined level of accuracy. The ACI is shown to yield potential energy curves of N{sub 2} with nearly constant errors, and it predicts singlet-triplet splittings of acenes up to decacene that are in good agreement with the density matrix renormalization group.
International Nuclear Information System (INIS)
Elyutin, P V; Rubtsov, A N
2008-01-01
The energy evolution of a quantum chaotic system under the perturbation that harmonically depends on time is studied for the case of large perturbation, in which the rate of transition calculated from the Fermi golden rule (FGR) is about or exceeds the frequency of perturbation. For this case, the models of the Hamiltonian with random non-correlated matrix elements demonstrate that the energy evolution retains its diffusive character, but the rate of diffusion increases slower than the square of the magnitude of perturbation, thus destroying the quantum-classical correspondence for the energy diffusion and the energy absorption in the classical limit ℎ → 0. The numerical calculation carried out for a model built from the first principles (the quantum analog of the Pullen-Edmonds oscillator) demonstrates that the evolving energy distribution, apart from the diffusive component, contains a ballistic one with the energy dispersion that is proportional to the square of time. This component originates from the chains of matrix elements with correlated signs and vanishes if the signs of matrix elements are randomized. The presence of the ballistic component formally extends the applicability of the FGR to the non-perturbative domain and restores the quantum-classical correspondence
Structural study of liquids with strong short-range correlation in the atomic distribution
International Nuclear Information System (INIS)
Uzuki, Kenji
1976-01-01
Structure factors of liquids and amorphous solids having a relatively high degree of ordering in their short-range structures have been measured over a wide range of scattering vectors by means of the T-O-F neutron diffraction using epithermal pulsed neutrons generated by an electron linear accelerator. It has been shown in the case of liquid CS 2 that the size and shape of a molecule existing in the liquid phase are determined from the behaviour of the structure factor in the range of high scattering vectors, and that the structure factor in the region of low scattering vectors informs on inter-molecular orientational and center-center correlations in the liquid state. Moreover, based on highly resoluted radial distribution functions, a free rotating chain model has been discussed for chain molecules contained in liquid Se, and a splitting of the nearest neighbour Pd-Pd and Pd-Si correlation has been clearly found in the amorphous Pdsub(0.8) - Sisub(0.2) alloy. (orig./HK) [de
Physics of heavy fermions heavy fermions and strongly correlated electrons systems
Onuki, Yoshichika
2018-01-01
A large variety of materials prove to be fascinating in solid state and condensed matter physics. New materials create new physics, which is spearheaded by the international experimental expert, Prof Yoshichika Onuki. Among them, the f electrons of rare earth and actinide compounds typically exhibit a variety of characteristic properties, including spin and charge orderings, spin and valence fluctuations, heavy fermions, and anisotropic superconductivity. These are mainly manifestations of better competitive phenomena between the RKKY interaction and the Kondo effect. The present text is written so as to understand these phenomena and the research they prompt. For example, superconductivity was once regarded as one of the more well-understood many-body problems. However, it is, in fact, still an exciting phenomenon in new materials. Additionally, magnetism and superconductivity interplay strongly in heavy fermion superconductors. The understanding of anisotropic superconductivity and magnetism is a challengin...
Assessing the importance of frustration in a narrow-band strongly correlated electronic chain
International Nuclear Information System (INIS)
Lal, Siddhartha; Laad, Mukul S.
2007-08-01
We study a one-dimensional extended Hubbard model with longer-range Coulomb interactions at quarter-filling in the strong coupling limit. In this limit, we find the one dimensional transverse field Ising model (TFIM) to be the effective Hamiltonian governing the dynamics of the charge degrees of freedom. We find two different charge-ordered (CO) ground states as the strength of the longer range interactions is varied. At lower energies, these CO states drive two different spin-ordered ground states. A variety of response functions computed here bear a remarkable resemblance to recent experimental observations for organic TMTSF systems, and so we propose that these systems are proximate to a QCP associated with T = 0 charge order. (author)
Quantum glassiness in clean strongly correlated systems: an example of topological overprotection
Chamon, Claudio
2005-03-01
Describing matter at near absolute zero temperature requires understanding a system's quantum ground state and the low energy excitations around it, the quasiparticles, which are thermally populated by the system's contact to a heat bath. However, this paradigm breaks down if thermal equilibration is obstructed. I present solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, 1) have no quenched disorder, 2) have solely local interactions, 3) have an exactly solvable spectrum, 4) have topologically ordered ground states, and 5) have slow dynamical relaxation rates akin to those of strong structural glasses.
Kavaliunas, Andrius; Wiberg, Michael; Tinghög, Petter; Glaser, Anna; Gyllensten, Hanna; Alexanderson, Kristina; Hillert, Jan
2015-01-01
Multiple sclerosis (MS) patients earn lower incomes and receive higher benefits. However, there is limited knowledge of how this is correlated with their disability. To elucidate sources and levels of income among MS patients with different disability, assessed with the Expanded Disability Status Scale. A total of 7929 MS patients aged 21-64 years and living in Sweden in 2010 were identified for this cross-sectional study. Descriptive statistics, logistic and truncated linear regression models were used to estimate differences between MS patients regarding earnings, disability pension, sickness absence, disability allowance, unemployment compensation, and social assistance. The average level of earnings was ten times lower and the average level of health- related benefits was four times higher when comparing MS patients with severe and mild disability. MS patients with severe disability had on average SEK 166,931 less annual income from earnings and SEK 54,534 more income from benefits compared to those with mild disability. The combined average income for MS patients was 35% lower when comparing patients in the same groups. The adjusted risk ratio for having earnings among MS patients with severe disability compared to the patients with mild disability was 0.33 (95% CI 0.29-0.39), while the risk ratio for having benefits was 1.93 (95% CI 1.90-1.94). Disease progression affects the financial situation of MS patients considerably. Correlations between higher disability and patient income were observed, suggesting that earnings and benefits could be used as measures of MS progression and proxies of disability.
International Nuclear Information System (INIS)
Fuller, Lillian M.; Mirza, Nadeem Q.; Palmer, J. Lynn; Davis, Barry R.; Ha, Chul S.; Rodriguez, M. Alma; Hagemeister, Fredrick B.; Cabanillas, Fernando; McLaughlin, Peter; Butler, James J.; North, Luceil B.; Martin, Richard G.
1998-01-01
Purpose: At a time both when late complications and second malignancies have become a growing concern and when staging laparotomy has been largely abandoned and comparative studies for staging Hodgkin's disease by state of the art computed tomography (CT) vs. lymphangiography have revealed minimal differences in results for these procedures, our purpose for undertaking this study was twofold. Our initial reason was to determine and compare probabilities for negative abdominal findings for patients with Stage I presentations with those for patients with Stage II as determined by lymphangiography and subsequently by laparotomy for those patients who had negative lymphangiograms. Our second reason, being an extension of the first, was to create a resource that can be used in conjunction with other information for arriving at appropriate treatment decisions including giving either more or particularly less than standard institutional therapy and especially with respect to the abdomen. Methods and Materials: Data on 714 patients with prelymphangiogram Stage I-II upper torso presentations of Hodgkin's disease were entered prospectively in our database between 1968 and 1987. Twenty-eight with lymphocyte predominant disease, who had both negative lymphangiogram and negative laparotomy findings and 17 with questionable diagnoses of lymphocyte-depleted or unclassified disease were excluded from subsequent analyses of 669 patients with nodular sclerosis (NS) and mixed cellularity (MC) diagnoses. Results: Stage I: in final logistic models, negative lymphangiogram findings were associated strongly with a combination of no constitutional symptoms and nodular sclerosis histology, whereas negative laparotomy findings correlated strongly with a combination of no constitutional symptoms and female sex. Predicted probabilities depended on the ratios of favorable to unfavorable characteristics. Stage II: in final logistic models, negative lymphangiogram findings were associated
Phase separation in strongly correlated electron systems with two types of charge carriers
International Nuclear Information System (INIS)
Kugel, K.I.; Rakhmanov, A.L.; Sboychakov, A.O.
2007-01-01
Full text: A competition between the localization of the charge carriers due to Jahn-Teller distortions and the energy gain due to their delocalization in doped manganite and related magnetic oxides is analyzed based on a Kondo-lattice type model. The resulting effective Hamiltonian is, in fact, a generalization of the Falicov-Kimball model. We find that the number of itinerant charge carriers can be significantly lower than that implied by the doping level x. The phase diagram of the model in the T plane is constructed. The system exhibits magnetic ordered (antiferromagnetic, ferromagnetic, or canted) states as well the paramagnetic states with zero and nonzero density of the itinerant electrons. It is shown that a phase-separation is favorable in energy for a wide doping range. The characteristic size of inhomogeneities in a phase-separated state is of the order of several lattice constants. We also analyzed the two-band Hubbard model in the limit of strong on-site Coulomb repulsion. It was shown that such a system has a tendency to phase separation into the regions with different charge densities even in the absence of magnetic or any other ordering, if the ratio of the bandwidths is large enough. The work was supported by the European project CoMePhS and by the Russian Foundation for Basic Research, project no. 05-02-17600. (authors)
Amashukeli, Medea; Korinteli, Maka; Zerekidze, Tamar; Jikurauli, Nino; Shanava, Shorena; Tsagareli, Marina; Giorgadze, Elen
2013-06-01
Graves' disease is an autoimmune disorder with various clinical manifestations. Thyrotropin receptor antibodies (TRAbs), the circulating autoantibodies specific to Graves' disease, are the cause for hyperthyroidism, the most prevalent abnormality. Hyperthyroidism leads to increased bone turnover and a negative bone balance. The aims of the present study were to determine the relationship between TRAbs and bone mineral density (BMD), to assess the extent of BMD change in patients with Graves' disease, and to determine the impact of conservative and surgical therapy on BMD. Fifty female postmenopausal patients with Graves' disease were chosen for this study. Twenty women had a recent diagnosis of Graves' disease, 30 women presented with a compensated disease state after either conservative or surgical treatment, and 30 healthy postmenopausal women served as controls. Thyroid parameters were measured, and BMD values were obtained by dual energy x-ray absorptiometry scan.Femoral neck and lumbar spine BMD and T-scores were significantly lower in newly diagnosed patients compared with the control group, but a difference was not observed between the treated and control groups. Statistical analysis revealed a strong and significant negative correlation between femoral neck and lumbar spine BMD and TRAb values.Both surgical and conservative therapies are effective for restoring BMD in postmenopausal patients with Graves' disease, and the increased level of TRAb can be a useful marker of bone density impairment.
Free fatty acid has a negative correlation with myocardial uptake of FDG
Energy Technology Data Exchange (ETDEWEB)
Eo, Jae Seon; Lee, Won Woo; Park, Eun Kyung; So, Young; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)
2004-07-01
Free fatty acid (FFA) is a marker of insulin resistance. Myocardial uptake of FDG is influenced by insulin resistance. We investigated the correlation of FFA and myocardial uptake of FDG in whole body PET. We measured serum FFA levels in consecutive 112 patients who underwent whole body FDG PET due to malignancy work up. Twelve patients with diabetes. 13 with liver disease, 4 with suspicious ischemic heart disease. 1 with steroid therapy, and 10 with final diagnosis of benign disease were excluded. After fasting of diet or beverages for at least 6 hours, blood was aspirated at peripheral vein for measurement of FFA and glucose in serum. FDG was injected as a dose of 0.14 mCi/kg body weight. Fifty minutes later, whole body PET scan was performed from skull base to upper thigh. Maximum SUV (maxSUV) using lean body weight was obtained in heart. liver, cerebellum, muscle and malignant tissues. Finally 72 patients (M:F 45:27, age 56.9{+-}15.8 years) were enrolled. There were 27 non small cell lung cancer, 14 lymphoma, 10 esophageal cancer, 3 breast cancer, 3 colon cancer, 3 renal cell cancer, 2 melanoma, and 10 other cancers. Serum glucose level was 96.6{+-}14.3 mg/dL. Serum FFA level was 720.0{+-}315.2 uEq/L. MaxSUV of main malignant tissue ranged from 0.7 to 11.5 (mean 4.9{+-}2.6). MaxSUV of each organs were 1.0 to 14.6 (mean 4.0{+-}3.0) in heart, 2.7 to 6.4 (mean 3.9{+-}0.6) in cerebellum, 1.0 to 2.6 (mean 1.9{+-}0.3) in liver, and 0.6 to 1.1 (mean 0.8{+-}0.1) in gluteal muscle. FFA and maxSUV of heart had a negative correlation. The best fitting line was MaxSUV of Heart = -4.4583 x In(FF A) + 32.964. But FFA had no correlation with any other parameters like serum glucose level, and MaxSUV of cerebellum, muscle, liver and malignant tissues. We found a negative correlation between FFA levels and myocardial uptake of FDG. FFA modifying drugs such as nicotinic acid derivatives may have influence on myocardial uptake of FDG.
Energy Technology Data Exchange (ETDEWEB)
Heilmann, D.B.
2007-02-15
The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)
Targeted metabolomics profiles are strongly correlated with nutritional patterns in women.
Menni, Cristina; Zhai, Guangju; Macgregor, Alexander; Prehn, Cornelia; Römisch-Margl, Werner; Suhre, Karsten; Adamski, Jerzy; Cassidy, Aedin; Illig, Thomas; Spector, Tim D; Valdes, Ana M
2013-04-01
Nutrition plays an important role in human metabolism and health. Metabolomics is a promising tool for clinical, genetic and nutritional studies. A key question is to what extent metabolomic profiles reflect nutritional patterns in an epidemiological setting. We assessed the relationship between metabolomic profiles and nutritional intake in women from a large cross-sectional community study. Food frequency questionnaires (FFQs) were applied to 1,003 women from the TwinsUK cohort with targeted metabolomic analyses of serum samples using the Biocrates Absolute-IDQ™ Kit p150 (163 metabolites). We analyzed seven nutritional parameters: coffee intake, garlic intake and nutritional scores derived from the FFQs summarizing fruit and vegetable intake, alcohol intake, meat intake, hypo-caloric dieting and a "traditional English" diet. We studied the correlation between metabolite levels and dietary intake patterns in the larger population and identified for each trait between 14 and 20 independent monozygotic twins pairs discordant for nutritional intake and replicated results in this set. Results from both analyses were then meta-analyzed. For the metabolites associated with nutritional patterns, we calculated heritability using structural equation modelling. 42 metabolite nutrient intake associations were statistically significant in the discovery samples (Bonferroni P hypo-caloric dieting. Using the twin study design we find that two thirds the metabolites associated with nutritional patterns have a significant genetic contribution, and the remaining third are solely environmentally determined. Our data confirm the value of metabolomic studies for nutritional epidemiologic research.
International Nuclear Information System (INIS)
Heilmann, D.B.
2007-02-01
The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)
Karima, H. R.; Majidi, M. A.
2018-04-01
Excitons, quasiparticles associated with bound states between an electron and a hole and are typically created when photons with a suitable energy are absorbed in a solid-state material. We propose to study a possible emergence of excitons, created not by photon absorption but the effect of strong electronic correlations. This study is motivated by a recent experimental study of a substrate material SrTiO3 (STO) that reveals strong exitonic signals in its optical conductivity. Here we conjecture that some excitons may already exist in the ground state as a result of the electronic correlations before the additional excitons being created later by photon absorption. To investigate the existence of excitons in the ground state, we propose to study a simple 4-energy-level model that mimics a situation in strongly-correlated semiconductors. The four levels are divided into two groups, lower and upper groups separated by an energy gap, Eg , mimicking the valence and the conduction bands, respectively. Further, we incorporate repulsive Coulomb interactions between the electrons. The model is then solved by exact diagonalization method. Our result shows that the toy model can demonstrate band gap widening or narrowing and the existence of exciton in the ground state depending on interaction parameter values.
International Nuclear Information System (INIS)
Sarkadi, L.; Orban, A.
2007-01-01
Complete text of publication follows. In this report we present experimental data for a process when two electrons with velocity vectors equal to that of the projectile are emitted from collisions. By observing the two electron cusp the study of the threshold phenomenon for two-electron break-up is possible. It is a particularly interesting question whether the outgoing charged projectile can attract the two repulsing electrons so strongly that the two-electron cusp is formed. If it is so, a further question arises: Are the two electrons correlated in the final state as it is predicted by the Wannier theory? The experiments have been done at the 1 MeV VdG accelerator of ATOMKI using our TOF spectrometer. The first measurements clearly showed the formation of the two-electron cusp and signature of the electron correlation in 200 keV He 0 +He collisions. These promising results motivated us to carry out the experiment at 100 keV beam energy where the coincidence count rate is still reasonable but the energy resolution is better. For an acceptable data acquisition time we improved our data acquisition and data processing system for triple coincidence measurements. In Fig. 1a we present our measured relative fourfold differential cross section (FDCS) that shows strong electron correlation. For a comparison, in Fig. 1b we displayed the contour plot for uncorrelated electron pair emission. These latter data were synthesized artificially, generating the energies of the electron pairs from two independent double coincidence experiments. In both figures the distributions are characterized by two ridges. In Fig. 1b the ridges are perpendicular straight lines (E 1 = E 2 .13.6 eV). As a result of the correlation, the ridges in Fig. 1a are distorted in such a way that they have a joint straight-line section following the line E 1 + E 2 = 27.2 eV. This means that the electron pairs in the vicinity of the cusp maximum are emitted with a center of- mass velocity equal to that of
Nuovo, Gerard J; Wu, Xin; Volinia, Stefano; Yan, Fengting; di Leva, Gianpiero; Chin, Nena; Nicol, Alcina F; Jiang, Jinmai; Otterson, Gregory; Schmittgen, Thomas D; Croce, Carlo
2010-09-01
Infection by the human papillomavirus (HPV) is a cause of cervical intraepithelial neoplasia (CIN) and cancer. microRNA (miRNA) in situ analysis of the transformation zone epithelia, the site of initial cervical HPV infection, showed that miRNAs let-7c, -99a, 26a, and 125b were the most abundantly expressed. In situ testing of CIN 1 showed a dramatic reduction in miR-125b expression in the koilocytes, the cytologic marker of productive HPV infection. A marked reduction in miR-125b was likewise observed in the HPV-infected cells of the condyloma acuminatum, verruca vulgaris, and epidermodysplasia verruciformis. Reverse transcriptase in situ polymerase chain reaction (PCR) showed that the pre-miRNA 125b was present in the koilocyte, suggesting direct inactivation of the mature miRNA. HEK cells transfected with only the antimiR-125b showed perinuclear halos equivalent to HPV-infected koilocytes. NIH 3T3 cells transfected with the HPV 16 full-length genome and mimetic miR-125b showed a marked reduction in viral DNA and protein synthesis by quantitative PCR and in situ-based analyses, respectively (P=0.002). Alternatively, cotransfection with anti-miR-125b and HPV 16 markedly increased HPV DNA (P=0.002). Sequence analyses showed strong homology between L2 of different HPV genotypes and miR-125b. Transfection with HPV 16 L2 resulted in a marked reduction in miR-125b levels in the NIH 3T3 cells. HPV L2-induced inactivation of miR-125b is associated with the classic cytologic changes of the koilocyte, and the exogenous application of mimetic miR-125b markedly inhibits HPV DNA synthesis.
Directory of Open Access Journals (Sweden)
Michaela Vlkova
2011-10-01
Full Text Available BACKGROUND: Phlebotomine sand flies are blood-sucking insects that can transmit Leishmania parasites. Hosts bitten by sand flies develop an immune response against sand fly salivary antigens. Specific anti-saliva IgG indicate the exposure to the vector and may also help to estimate the risk of Leishmania spp. transmission. In this study, we examined the canine antibody response against the saliva of Phlebotomus perniciosus, the main vector of Leishmania infantum in the Mediterranean Basin, and characterized salivary antigens of this sand fly species. METHODOLOGY/PRINCIPAL FINDINGS: Sera of dogs bitten by P. perniciosus under experimental conditions and dogs naturally exposed to sand flies in a L. infantum focus were tested by ELISA for the presence of anti-P. perniciosus antibodies. Antibody levels positively correlated with the number of blood-fed P. perniciosus females. In naturally exposed dogs the increase of specific IgG, IgG1 and IgG2 was observed during sand fly season. Importantly, Leishmania-positive dogs revealed significantly lower anti-P. perniciosus IgG2 compared to Leishmania-negative ones. Major P. perniciosus antigens were identified by western blot and mass spectrometry as yellow proteins, apyrases and antigen 5-related proteins. CONCLUSIONS: Results suggest that monitoring canine antibody response to sand fly saliva in endemic foci could estimate the risk of L. infantum transmission. It may also help to control canine leishmaniasis by evaluating the effectiveness of anti-vector campaigns. Data from the field study where dogs from the Italian focus of L. infantum were naturally exposed to P. perniciosus bites indicates that the levels of anti-P. perniciosus saliva IgG2 negatively correlate with the risk of Leishmania transmission. Thus, specific IgG2 response is suggested as a risk marker of L. infantum transmission for dogs.
Quantum criticality around metal-insulator transitions of strongly correlated electron systems
Misawa, Takahiro; Imada, Masatoshi
2007-03-01
Quantum criticality of metal-insulator transitions in correlated electron systems is shown to belong to an unconventional universality class with violation of the Ginzburg-Landau-Wilson (GLW) scheme formulated for symmetry breaking transitions. This unconventionality arises from an emergent character of the quantum critical point, which appears at the marginal point between the Ising-type symmetry breaking at nonzero temperatures and the topological transition of the Fermi surface at zero temperature. We show that Hartree-Fock approximations of an extended Hubbard model on square lattices are capable of such metal-insulator transitions with unusual criticality under a preexisting symmetry breaking. The obtained universality is consistent with the scaling theory formulated for Mott transitions and with a number of numerical results beyond the mean-field level, implying that preexisting symmetry breaking is not necessarily required for the emergence of this unconventional universality. Examinations of fluctuation effects indicate that the obtained critical exponents remain essentially exact beyond the mean-field level. It further clarifies the whole structure of singularities by a unified treatment of the bandwidth-control and filling-control transitions. Detailed analyses of the criticality, containing diverging carrier density fluctuations around the marginal quantum critical point, are presented from microscopic calculations and reveal the nature as quantum critical “opalescence.” The mechanism of emerging marginal quantum critical point is ascribed to a positive feedback and interplay between the preexisting gap formation present even in metals and kinetic energy gain (loss) of the metallic carrier. Analyses of crossovers between GLW type at nonzero temperature and topological type at zero temperature show that the critical exponents observed in (V,Cr)2O3 and κ-ET -type organic conductors provide us with evidence for the existence of the present marginal
Semple, Shirley J; Strathdee, Steffanie A; Zians, Jim; Patterson, Thomas L
2011-01-01
While many studies have examined correlates of trading sex for money, few have examined factors associated with exclusive trading of sex for drugs. We identified sociodemographic, behavioral, and psychological correlates of trading sex for methamphetamine in a sample of HIV-negative heterosexual men and women who were enrolled in a sexual risk reduction intervention in San Diego, California. Of 342 participants, 26% overall (21% of males and 31% of females) reported trading sex for methamphetamine in the past two months. Multiple logistic regression analysis revealed that recently trading sex for methamphetamine was independently associated with being female, homeless, binging on methamphetamine, sexual victimization in the past two months, engaging in anal sex 24 or more times in the past two months, and higher sexual compulsivity scores. Effective interventions for this high-risk population should consider gender-focused counseling for sexual abuse, motivational enhancement therapy, social-cognitive skills training, as well as enhanced access and utilization of social services, including drug treatment.
Zygner, Wojciech; Gójska-Zygner, Olga
2014-09-01
The increase of the serum urea to creatinine ratio (UCR) was observed in dogs infected with Babesia canis. Previous studies have suggested that decrease of blood pressure can be one of the reasons for this phenomenon. In this work statistically significant increase of the UCR was observed in dogs with babesiosis. Comparison of the UCR between 23 azotaemic dogs and 25 non-azotaemic dogs infected with Babesia canis showed statistically significantly higher mean of the UCR in azotaemic dogs. Correlations between UCR and systolic, diastolic and mean arterial pressure (SAP, DAP and MAP) in 48 dogs infected with B. canis were negative (UCR and SAP: r = -0.3909; UCR and DAP: r = -0.3182; UCR and MAP: r = -0.3682) and statistically significant (p high, and there was no statistically significant correlation between UCR and arterial pressures in azotaemic dogs. Thus, it seems that decrease of blood pressure in dogs with babesiosis explains only partially the cause of increased UCR in infected dogs. The other authors suggested hyperureagenesis and myocardial injury as a potential reason for the increased UCR in canine babesiosis. Thus, further studies are needed to determine causes of increased UCR in dogs with babesiosis, especially on the connection between UCR changes and the concentrations of plasma cardiac troponins and ammonia, and the occurrence of occult blood on fecal examination.
Ainley, Vivien; Tsakiris, Manos
2013-01-01
'Self-objectification' is the tendency to experience one's body principally as an object, to be evaluated for its appearance rather than for its effectiveness. Within objectification theory, it has been proposed that self-objectification accounts for the poorer interoceptive awareness observed in women, as measured by heartbeat perception. Our study is, we believe, the first specifically to test this relationship. Using a well-validated and reliable heartbeat perception task, we measured interoceptive awareness in women and compared this with their scores on the Self-Objectification Questionnaire, the Self-Consciousness Scale and the Body Consciousness Questionnaire. Interoceptive awareness was negatively correlated with self-objectification. Interoceptive awareness, public body consciousness and private body consciousness together explained 31% of the variance in self-objectification. However, private body consciousness was not significantly correlated with interoceptive awareness, which may explain the many nonsignificant results in self-objectification studies that have used private body consciousness as a measure of body awareness. We propose interoceptive awareness, assessed by heartbeat perception, as a measure of body awareness in self-objectification studies. Our findings have implications for those clinical conditions, in women, which are characterised by self-objectification and low interoceptive awareness, such as eating disorders.
Directory of Open Access Journals (Sweden)
Vivien Ainley
Full Text Available BACKGROUND: 'Self-objectification' is the tendency to experience one's body principally as an object, to be evaluated for its appearance rather than for its effectiveness. Within objectification theory, it has been proposed that self-objectification accounts for the poorer interoceptive awareness observed in women, as measured by heartbeat perception. Our study is, we believe, the first specifically to test this relationship. METHODOLOGY/PRINCIPAL FINDINGS: Using a well-validated and reliable heartbeat perception task, we measured interoceptive awareness in women and compared this with their scores on the Self-Objectification Questionnaire, the Self-Consciousness Scale and the Body Consciousness Questionnaire. Interoceptive awareness was negatively correlated with self-objectification. Interoceptive awareness, public body consciousness and private body consciousness together explained 31% of the variance in self-objectification. However, private body consciousness was not significantly correlated with interoceptive awareness, which may explain the many nonsignificant results in self-objectification studies that have used private body consciousness as a measure of body awareness. CONCLUSIONS/SIGNIFICANCE: We propose interoceptive awareness, assessed by heartbeat perception, as a measure of body awareness in self-objectification studies. Our findings have implications for those clinical conditions, in women, which are characterised by self-objectification and low interoceptive awareness, such as eating disorders.
Lindauer, Steven E.; DeLeon, Iser G.; Fisher, Wayne W.
1999-01-01
This study evaluated effects of an enriched environment, based on a paired-choice preference assessment, on rates of self-injurious behavior (SIB) and frequency of negative affect displayed by a woman with mental retardation and a mood disorder. Results suggested that SIB and negative affect were highly correlated and that the enriched environment…
Energy Technology Data Exchange (ETDEWEB)
Lim, Ki Chun; Kim, J. S.; Kim, C. Y.; Lee, H. K.; Moon, D. H. [Ulsan University, Seoul (Korea, Republic of)
2002-07-01
We investigated the relations between rCBF and psychopathology in schizophrenic patients using a SPM99. Thirty-two patients(M/F:22/10, 25{+-}5,6yr) with active symptoms of schizophrenia and 15 age matched normal controls underwent Tc-99m ECD brain perfusion SPECT. Psychopathology of all patients were also assessed according to PANSS (positive and negative syndrome scale in schizophrenia). By covariate SPM analysis, specific areas where rCBF correlated with sum scores of positive/negative synptoms were identified. Regional CBF of schizophrenics was different in several cortical regions from normal controls. Sum scores of positive symptoms were positively correlated with rCBF of both rectal and inferior frontal gyri and right transverse temporal gyrus, and negatively correlated with rCBF of left lingual and right middle temporal gyri (p<0.01). Sum scores of negative symptoms were positively correlated with rCBF of both middle temporal gyri and negatively correlated with rCBF of right superior parietal lobule and medial frontal gyrus (p<0.01). Positive and negative symptoms of schizophrenia were correlated with rCBF change in different regions of cerebral association cortex.
International Nuclear Information System (INIS)
Lim, Ki Chun; Kim, J. S.; Kim, C. Y.; Lee, H. K.; Moon, D. H.
2002-01-01
We investigated the relations between rCBF and psychopathology in schizophrenic patients using a SPM99. Thirty-two patients(M/F:22/10, 25±5,6yr) with active symptoms of schizophrenia and 15 age matched normal controls underwent Tc-99m ECD brain perfusion SPECT. Psychopathology of all patients were also assessed according to PANSS (positive and negative syndrome scale in schizophrenia). By covariate SPM analysis, specific areas where rCBF correlated with sum scores of positive/negative synptoms were identified. Regional CBF of schizophrenics was different in several cortical regions from normal controls. Sum scores of positive symptoms were positively correlated with rCBF of both rectal and inferior frontal gyri and right transverse temporal gyrus, and negatively correlated with rCBF of left lingual and right middle temporal gyri (p<0.01). Sum scores of negative symptoms were positively correlated with rCBF of both middle temporal gyri and negatively correlated with rCBF of right superior parietal lobule and medial frontal gyrus (p<0.01). Positive and negative symptoms of schizophrenia were correlated with rCBF change in different regions of cerebral association cortex
Zhang, Dongdong; Chen, Ling; Yin, Dan; Miao, Jinping; Sun, Yehuan
2014-07-01
To explore the correlation between suicide ideation and family function & negative life events, as well as other influential factors in adolescents, thus present a theoretical base for clinicians and school staff to develop intervention for those problems. By adopting current situation random sampling method, Self-Rating Idea of Suicide Scale, Adolescent Self-Rating Life Events Check List and Family APGAR Index were used to assess adolescents at random in a hygiene vocational school in Changzhou City, Jiangsu Province and a collage in Wuhu City, Anhui Province. 3700 questionnaires were granted, 3675 questionnaires were collected, among which 3620 were valid. Chi-square test, t-test, and univariate logistic regression were employed in univariate analysis, multivariate logistic regression was used in multivariate analysis. The detection rate of suicide ideation is 7.0%, and the top five suicide ideation characteristics were: poor academic performance (33.6%), serious family functional impairment (25.8%), lower-middle academic performance (11.7%), bad economic conditions (10.8%) and study in Grade Three (9.9%). Multiple logistic regression showed that the following three high-level stress amount in negative life events are most crucial for suicide ideation. They are "relationships" (OR = 1.135, 95% CI 1.071 - 1. 202), "academic pressure" (OR = 1.169, 95% CI 1.101 - 1.241), and "external events" (OR = 1.278, 95% CI 1.187 - 1.376). What' s more, the stress of attending higher grades (OR = 1.980, 95% CI 1.302 - 3.008), poor academic performance (OR = 7.206, 95% CI 1.745 - 9.789), moderate family functional impairment (OR = 2.562, 95% CI 1.527 - 2.892) and its serious level (OR = 8.287, 95% CI 3.154 - 6.917) are also influential factors for suicide ideation. Severe family functional impairment and high-level stress amount of negative life events produced the main factors of suicide ideation. Therefore, necessary and sufficient support should be given to adolescents by
Radaelli, P G; Dhesi, S S
2015-03-06
We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007-2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
International Nuclear Information System (INIS)
He Feng; Becker, Andreas; Thumm, Uwe
2008-01-01
We show that the electronic dynamics in a molecule driven by a strong field is complex and potentially even counterintuitive. As a prototype example, we simulate the interaction of a dissociating H 2 + molecule with an intense infrared laser pulse. Depending on the laser intensity, the direction of the electron's motion between the two nuclei is found to follow or oppose the classical laser-electric force. We explain the sensitive dependence of the correlated electronic-nuclear motion in terms of the diffracting electronic momentum distribution of the dissociating two-center system. The distribution is dynamically modulated by the nuclear motion and periodically shifted in the oscillating infrared electric field
de la Vega, Irmgard; Graebe, Julia; Härtner, Leonie; Dudschig, Carolin; Kaup, Barbara
2015-01-01
Recent studies have provided evidence for an association between valence and left/right modulated by handedness, which is predicted by the body-specificity hypothesis (Casasanto, 2009) and also reflected in response times. We investigated whether such a response facilitation can also be observed with foot responses. Right-footed participants classified positive and negative words according to their valence by pressing a key with their left or right foot. A significant interaction between valence and foot only emerged in the by-items analysis. However, when dividing participants into two groups depending on the strength of their footedness, an interaction between valence and left/right was observed for strong right-footers, who responded faster with the right foot to positive words, and with the left foot to negative words. No interaction emerged for weak right-footers. The results strongly support the assumption that fluency lies at the core of the association between valence and left/right.
Kumfor, Fiona; Irish, Muireann; Hodges, John R.; Piguet, Olivier
2013-01-01
Patients with frontotemporal dementia have pervasive changes in emotion recognition and social cognition, yet the neural changes underlying these emotion processing deficits remain unclear. The multimodal system model of emotion proposes that basic emotions are dependent on distinct brain regions, which undergo significant pathological changes in frontotemporal dementia. As such, this syndrome may provide important insight into the impact of neural network degeneration upon the innate ability to recognise emotions. This study used voxel-based morphometry to identify discrete neural correlates involved in the recognition of basic emotions (anger, disgust, fear, sadness, surprise and happiness) in frontotemporal dementia. Forty frontotemporal dementia patients (18 behavioural-variant, 11 semantic dementia, 11 progressive nonfluent aphasia) and 27 healthy controls were tested on two facial emotion recognition tasks: The Ekman 60 and Ekman Caricatures. Although each frontotemporal dementia group showed impaired recognition of negative emotions, distinct associations between emotion-specific task performance and changes in grey matter intensity emerged. Fear recognition was associated with the right amygdala; disgust recognition with the left insula; anger recognition with the left middle and superior temporal gyrus; and sadness recognition with the left subcallosal cingulate, indicating that discrete neural substrates are necessary for emotion recognition in frontotemporal dementia. The erosion of emotion-specific neural networks in neurodegenerative disorders may produce distinct profiles of performance that are relevant to understanding the neurobiological basis of emotion processing. PMID:23805313
Sleep duration in elderly obese patients correlated negatively with intake fatty
Directory of Open Access Journals (Sweden)
Santana Aline
2012-08-01
Full Text Available Abstract Study objectives The purpose of the present study was to evaluate the relationship between sleep duration and dietary habits in elderly obese patients treated at an institute of cardiology. Methods The fifty-eight volunteers were elderly patients with obesity (classified as obese according to BMI of both genders, between 60 and 80 years of age. All participants were subjected to assessments of food intake, anthropometry, level of physical activity, and duration of sleep. Results The men had significantly greater weight, height, and waist circumference than women. Sleep durations were correlated with dietary nutrient compositions only in men. We found a negative association between short sleep and protein intake (r = -0.43; p = 0.02, short sleep and monounsaturated fatty acids intake (r = -0.40; p = 0.03, and short sleep and cholesterol dietary intake (r = -0.50; p = 0.01. Conclusions We conclude that mainly in men, volunteers that had short sleep duration showed a preference for high energy-density as fatty food, at least in part, may explain the relationship between short sleep duration and the development of metabolic abnormalities.
Directory of Open Access Journals (Sweden)
Aviva Berkovich-Ohana
2016-09-01
Full Text Available FMRI data described here was recorded during resting-state in Mindfulness Meditators (MM and control participants (see “Task-induced activity and resting-state fluctuations undergo similar alterations in visual and DMN areas of long-term meditators” Berkovich-Ohana et al. (2016 [1] for details. MM participants were also scanned during meditation. Analyses focused on functional connectivity within and between the default mode network (DMN and visual network (Vis. Here we show data demonstrating that: 1 Functional connectivity within the DMN and the Visual networks were higher in the control group than in the meditators; 2 Data show an increase for the functional connectivity between the DMN and the Visual networks in the meditators compared to controls; 3 Data demonstrate that functional connectivity both within and between networks reduces during meditation, compared to the resting-state; and 4 A significant negative correlation was found between DMN functional connectivity and meditation expertise. The reader is referred to Berkovich-Ohana et al. (2016 [1] for further interpretation and discussion.
Two-electron germanium centers with a negative correlation energy in lead chalcogenides
International Nuclear Information System (INIS)
Terukov, E. I.; Marchenko, A. V.; Zaitseva, A. V.; Seregin, P. P.
2007-01-01
It is shown that the charge state of the 73 Ge antisite defect that arises in anionic sublattices of PbS, PbSe, and PbTe after radioactive transformation of 73 As does not depend on the position of the Fermi level, whereas the 73 Ge center in cationic sublattices of PbS and PbSe represents a two-electron donor with the negative correlation energy: the Moessbauer spectrum for the n-type samples corresponds to the neutral state of the donor center (Ge 2+ ), while this spectrum corresponds to the doubly ionized state (Ge 4+ ) of the center in the p-type samples. In partially compensated PbSe samples, a fast electron exchange between the neutral and ionized donor centers is realized. It is shown by the method of Moessbauer spectroscopy for the 119 Sn isotope that the germanium-related energy levels are located higher than the levels formed in the band gap of these semiconductors by the impurity tin atoms
International Nuclear Information System (INIS)
Moritz, B; Johnston, S; Greven, M; Shen, Z-X; Devereaux, T P; Schmitt, F; Meevasana, W; Motoyama, E M; Lu, D H; Kim, C; Scalettar, R T
2009-01-01
Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.
Szolnoki, Attila; Perc, Matjaž
2013-10-01
Economic experiments reveal that humans value cooperation and fairness. Punishing unfair behavior is therefore common, and according to the theory of strong reciprocity, it is also directly related to rewarding cooperative behavior. However, empirical data fail to confirm that positive and negative reciprocity are correlated. Inspired by this disagreement, we determine whether the combined application of reward and punishment is evolutionarily advantageous. We study a spatial public goods game, where in addition to the three elementary strategies of defection, rewarding, and punishment, a fourth strategy that combines the latter two competes for space. We find rich dynamical behavior that gives rise to intricate phase diagrams where continuous and discontinuous phase transitions occur in succession. Indirect territorial competition, spontaneous emergence of cyclic dominance, as well as divergent fluctuations of oscillations that terminate in an absorbing phase are observed. Yet, despite the high complexity of solutions, the combined strategy can survive only in very narrow and unrealistic parameter regions. Elementary strategies, either in pure or mixed phases, are much more common and likely to prevail. Our results highlight the importance of patterns and structure in human cooperation, which should be considered in future experiments.
Directory of Open Access Journals (Sweden)
Attila Szolnoki
2013-11-01
Full Text Available Economic experiments reveal that humans value cooperation and fairness. Punishing unfair behavior is therefore common, and according to the theory of strong reciprocity, it is also directly related to rewarding cooperative behavior. However, empirical data fail to confirm that positive and negative reciprocity are correlated. Inspired by this disagreement, we determine whether the combined application of reward and punishment is evolutionarily advantageous. We study a spatial public goods game, where in addition to the three elementary strategies of defection, rewarding, and punishment, a fourth strategy that combines the latter two competes for space. We find rich dynamical behavior that gives rise to intricate phase diagrams where continuous and discontinuous phase transitions occur in succession. Indirect territorial competition, spontaneous emergence of cyclic dominance, as well as divergent fluctuations of oscillations that terminate in an absorbing phase are observed. Yet, despite the high complexity of solutions, the combined strategy can survive only in very narrow and unrealistic parameter regions. Elementary strategies, either in pure or mixed phases, are much more common and likely to prevail. Our results highlight the importance of patterns and structure in human cooperation, which should be considered in future experiments.
Energy Technology Data Exchange (ETDEWEB)
Rueff, J.P
2007-06-15
Inelastic X-ray scattering (IXS) and associated methods has turn out to be a powerful alternative for high-pressure physics. It is an all-photon technique fully compatible with high-pressure environments and applicable to a vast range of materials. Standard focalization of X-ray in the range of 100 microns is typical of the sample size in the pressure cell. Our main aim is to provide an overview of experimental results obtained by IXS under high pressure in 2 classes of materials which have been at the origin of the renewal of condensed matter physics: strongly correlated transition metal oxides and rare-earth compounds. Under pressure, d and f-electron materials show behaviors far more complex that what would be expected from a simplistic band picture of electron delocalization. These spectroscopic studies have revealed unusual phenomena in the electronic degrees of freedom, brought up by the increased density, the changes in the charge-carrier concentration, the over-lapping between orbitals, and hybridization under high pressure conditions. Particularly we discuss about pressure induced magnetic collapse and metal-insulator transitions in 3d compounds and valence fluctuations phenomena in 4f and 5f compounds. Thanks to its superior penetration depth, chemical selectivity and resonant enhancement, resonant inelastic X-ray scattering has appeared extremely well suited to high pressure physics in strongly correlated materials. (A.C.)
Tsuchimochi, Takashi
2015-10-14
Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.
International Nuclear Information System (INIS)
Sakai, Yoichi; Tominaga, Takeshi; Ikuta, Shigeru
1986-01-01
The atomic negative muon capture ratios determined experimentally in organic sp 2 -hybridization compound, C x H y Cl z , were compared with the electron populations of carbon atomic orbitals obtained by an ab initio molecular orbital calculation in such systems. A clear positive correlation was found between the C 2s and C 2pz populations and the negative muon capture ratio A (C/Cl), suggesting the mesomolecular process in the initial stage of muon capture. (orig.)
Erbas, Yasemin; Ceulemans, Eva; Lee Pe, Madeline; Koval, Peter; Kuppens, Peter
2014-01-01
Previous research has shown that individual differences in negative emotion differentiation may play a prominent role in well-being. Yet, many basic questions about negative emotion differentiation remain unanswered, including how it relates and overlaps with related and known dimensions of individual differences and what its possible underlying processes are. To answer these questions, in the current article we present three correlational studies that chart the nomological network of individual differences in negative emotion differentiation in terms of personality, difficulties in identifying and describing feelings, and several indicators of well-being, propose a novel paradigm to assess it in the lab, and explore relationships with a possible underlying mechanism in terms of the motivation to approach or avoid emotions. The results affirm consistent relations between negative emotion differentiation and indicators of adjustment like negative affect, self-esteem, neuroticism, depression and meta-knowledge about one's emotions, and show how it is related to the motivation to experience affective states.
Li, Xiaokai; Wang, Chuncheng; Yuan, Zongqiang; Ye, Difa; Ma, Pan; Hu, Wenhui; Luo, Sizuo; Fu, Libin; Ding, Dajun
2017-09-01
By combining kinematically complete measurements and a semiclassical Monte Carlo simulation we study the correlated-electron dynamics in the strong-field double ionization of Kr. Interestingly, we find that, as we step into the sequential-ionization regime, there are still signatures of correlation in the two-electron joint momentum spectrum and, more intriguingly, the scaling law of the high-energy tail is completely different from early predictions on the low-Z atom (He). These experimental observations are well reproduced by our generalized semiclassical model adapting a Green-Sellin-Zachor potential. It is revealed that the competition between the screening effect of inner-shell electrons and the Coulomb focusing of nuclei leads to a non-inverse-square central force, which twists the returned electron trajectory at the vicinity of the parent core and thus significantly increases the probability of hard recollisions between two electrons. Our results might have promising applications ranging from accurately retrieving atomic structures to simulating celestial phenomena in the laboratory.
Directory of Open Access Journals (Sweden)
Z. T. Guo
2009-02-01
Full Text Available We correlate the China loess and Antarctica ice records to address the inter-hemispheric climate link over the past 800 ka. The results show a broad coupling between Asian and Antarctic climates at the glacial-interglacial scale. However, a number of decoupled aspects are revealed, among which marine isotope stage (MIS 13 exhibits a strong anomaly compared with the other interglacials. It is characterized by unusually positive benthic oxygen (δ^{18}O and carbon isotope (δ^{13}C values in the world oceans, cooler Antarctic temperature, lower summer sea surface temperature in the South Atlantic, lower CO_{2} and CH_{4} concentrations, but by extremely strong Asian, Indian and African summer monsoons, weakest Asian winter monsoon, and lowest Asian dust and iron fluxes. Pervasive warm conditions were also evidenced by the records from northern high-latitude regions. These consistently indicate a warmer Northern Hemisphere and a cooler Southern Hemisphere, and hence a strong asymmetry of hemispheric climates during MIS-13. Similar anomalies of lesser extents also occurred during MIS-11 and MIS-5e. Thus, MIS-13 provides a case that the Northern Hemisphere experienced a substantial warming under relatively low concentrations of greenhouse gases. It suggests that the global climate system possesses a natural variability that is not predictable from the simple response of northern summer insolation and atmospheric CO_{2} changes. During MIS-13, both hemispheres responded in different ways leading to anomalous continental, marine and atmospheric conditions at the global scale. The correlations also suggest that the marine δ^{18}O record is not always a reliable indicator of the northern ice-volume changes, and that the asymmetry of hemispheric climates is one of the prominent factors controlling the strength of Asian, Indian and African monsoon circulations, most likely through modulating the position of
Moritz, B; Kemper, A F; Sentef, M; Devereaux, T P; Freericks, J K
2013-08-16
We examine electron-electron mediated relaxation following ultrafast electric field pump excitation of the fermionic degrees of freedom in the Falicov-Kimball model for correlated electrons. The results reveal a dichotomy in the temporal evolution of the system as one tunes through the Mott metal-to-insulator transition: in the metallic regime relaxation can be characterized by evolution toward a steady state well described by Fermi-Dirac statistics with an increased effective temperature; however, in the insulating regime this quasithermal paradigm breaks down with relaxation toward a nonthermal state with a complicated electronic distribution as a function of momentum. We characterize the behavior by studying changes in the energy, photoemission response, and electronic distribution as functions of time. This relaxation may be observable qualitatively on short enough time scales that the electrons behave like an isolated system not in contact with additional degrees of freedom which would act as a thermal bath, especially when using strong driving fields and studying materials whose physics may manifest the effects of correlations.
Creswell, Kasey G; Chung, Tammy; Wright, Aidan G C; Clark, Duncan B; Black, Jessica J; Martin, Christopher S
2015-05-01
This study examined the personality traits of negative emotionality and constraint and the ability to resist drinking during negative affective states as correlates of solitary drinking in adolescence. We hypothesized that higher levels of negative emotionality and lower levels of constraint would predict solitary drinking and that these relationships would be mediated by the ability to resist drinking in response to negative emotions. Structural equation modeling was used to fit a path model from the personality traits of negative emotionality and constraint to solitary drinking status through intermediate effects on the ability to resist drinking during negative emotions using cross-sectional data. Clinical and community settings in Pennsylvania, USA. The sample included 761 adolescent drinkers (mean age = 17.1). Adolescents completed the Lifetime Drinking History, the Multidimensional Personality Questionnaire, the Constructive Thinking Inventory and the Situational Confidence Questionnaire. The path model provided a good fit to the data. The association between trait negative emotionality and solitary drinking was fully mediated by adolescents' ability to resist drinking during negative affective states (b = 0.05, P = 0.01). In contrast, constraint had a direct effect on solitary drinking (odds ratio (OR) = 0.79, b = -0.23, P<0.01), as well as an indirect effect through the ability to resist drinking during negative affective states (b = -0.03, P = 0.02). The ability to resist drinking while experiencing negative feelings or emotions may be an important underlying mechanism linking trait negative emotionality (a tendency toward depression, anxiety and poor reaction to stress) and constraint (lack of impulsiveness) to adolescent solitary drinking. © 2015 Society for the Study of Addiction.
Energy Technology Data Exchange (ETDEWEB)
Ristow, T.
2007-12-17
Electron-ion-collisions in plasmas in the presence of an ultra-short intensive laser pulse can cause high energy transfers to the electrons. During the collision the oscillation energy of the electron in the laser field is changed into drift energy. In this regime, multi-photon processes, known from the ionization of neutral atoms (Above-Threshold Ionization), and successive, so called correlated collisions, are important. The subject of the thesis is a study of binary Coulomb collisions in strong laser fields. The collisions are treated both in the context of classical Newtonian mechanics and in the quantum-mechanical framework by the Schroedinger equation. In the classical case a simplified instantaneous collision model and a complete dynamical treatment are discussed. Collisions can be treated instantaneously, if the ratio of the impact parameter to the quiver amplitude is small. The energy distributions calculated in this approximation show an elastic peak and a broad plateau due to rescattered electrons. At incident velocities smaller than the quiver velocity, correlated collisions are observed in the electron trajectories of the dynamical model. This effect leads to characteristic momentum distributions of the electrons, that are explicitly calculated and compared with the results of the instantaneous model. In addition, the time-dependence of the collisions is discussed in the framework of a singular perturbation theory. The complete description of the Coulomb scattering requires a quantum-mechanical description. A time-dependent method of wave-packet scattering is used and the corresponding time-dependent three-dimensional Schroedinger equation is solved by an implicit ADImethod on a spatial grid. The momentum and the energy distributions of the scattered electrons are calculated by the Fourier transformation of the wavefunction. A comparison of the scattering from a repulsive and an attractive potential is used to distinguish between simple collisions and
Marceau, Kristine; Horwitz, Briana N.; Narusyte, Jurgita; Ganiban, Jody M.; Spotts, Erica L.; Reiss, David; Neiderhiser, Jenae M.
2013-01-01
Studies of adolescent or parent-based twins suggest that gene-environment correlation (rGE) is an important mechanism underlying parent-adolescent relationships. However, information on how parents' and children's genes and environments influence correlated parent "and" child behaviors is needed to distinguish types of rGE. The present…
Pizzagalli, D; Lehmann, D; Gianotti, L; Koenig, T; Tanaka, H; Wackermann, J; Brugger, P
2000-12-22
The neurocognitive processes underlying the formation and maintenance of paranormal beliefs are important for understanding schizotypal ideation. Behavioral studies indicated that both schizotypal and paranormal ideation are based on an overreliance on the right hemisphere, whose coarse rather than focussed semantic processing may favor the emergence of 'loose' and 'uncommon' associations. To elucidate the electrophysiological basis of these behavioral observations, 35-channel resting EEG was recorded in pre-screened female strong believers and disbelievers during resting baseline. EEG data were subjected to FFT-Dipole-Approximation analysis, a reference-free frequency-domain dipole source modeling, and Regional (hemispheric) Omega Complexity analysis, a linear approach estimating the complexity of the trajectories of momentary EEG map series in state space. Compared to disbelievers, believers showed: more right-located sources of the beta2 band (18.5-21 Hz, excitatory activity); reduced interhemispheric differences in Omega complexity values; higher scores on the Magical Ideation scale; more general negative affect; and more hypnagogic-like reveries after a 4-min eyes-closed resting period. Thus, subjects differing in their declared paranormal belief displayed different active, cerebral neural populations during resting, task-free conditions. As hypothesized, believers showed relatively higher right hemispheric activation and reduced hemispheric asymmetry of functional complexity. These markers may constitute the neurophysiological basis for paranormal and schizotypal ideation.
Kinnunen, Ulla; Feldt, Taru; Geurts, Sabine; Pulkkinen, Lea
2006-04-01
The aim of the present study was to test the structure of the work-family interface measure, which was intended to take into account both the positive and negative spillover between work and family demands in both directions. In addition, the links among the types of work-family spillover and the subjects' general and domain-specific well-being were examined. The sample (n = 202) consisted of Finnish employees, aged 42, who had a spouse/partner. Confirmatory factor analyses indicated that a four-factor model, including negative work-to-family spillover, negative family-to-work spillover, positive work-to-family spillover, and positive family-to-work spillover, was superior compared to the other factor models examined. Path analysis showed, as hypothesized, that the negative work-to-family spillover was most strongly related to low well-being at work (job exhaustion) and next strongly to low general well-being (psychological distress), whereas the negative family-to-work spillover was associated with low well-being in the domain of family (marital dissatisfaction). Positive work-to-family spillover was positively related both to well-being at work and general well-being. Inconsistent with our expectations, positive family-to-work spillover was not directly related to any of the well-being indicators examined.
Van Strien, Jan W; Van Kampen, Dirk
2009-10-30
Fourteen men scoring high and 14 men scoring low on a positive schizotypy scale participated in a lateralized emotional Stroop task. Vocal reaction times for color naming of neutral, positive and negative emotional words were recorded. Across participants, the color naming of neutral and emotional words was slightly faster to right than to left visual field presentations. In men with high scores on positive schizotypy, the presentation of negative words to the left visual field (right hemisphere) resulted in significant affective interference with color naming, which was significantly larger than in men with low scores. Correlational analysis also showed that positive schizotypy was significantly associated with emotional interference in response to LVF negative words. The outcome is discussed in terms of right hemispheric engagement in negative emotions in high positive schizotypic men.
Energy Technology Data Exchange (ETDEWEB)
Hofmann, Felix
2016-07-05
The self-energy functional theory (SFT) is extended to the nonequilibrium case and applied to the real-time dynamics of strongly correlated lattice-fermions. Exploiting the basic structure of the well established equilibrium theory the entire formalism is reformulated in the language of Keldysh-Matsubara Green's functions. To this end, a functional of general nonequilibrium self-energies is constructed which is stationary at the physical point where it moreover yields the physical grand potential of the initial thermal state. Nonperturbative approximations to the full self-energy can be constructed by reducing the original lattice problem to smaller reference systems and varying the functional on the space of the respective trial self-energies, which are parametrized by the reference system's one-particle parameters. Approximations constructed in this way can be shown to respect the macroscopic conservation laws related to the underlying symmetries of the original lattice model. Assuming thermal equilibrium, the original SFT is recovered from the extended formalism. However, in the general case, the nonequilibrium variational principle comprises functional derivatives off the physical parameter space. These can be carried out analytically to derive inherently causal conditional equations for the optimal physical parameters of the reference system and a computationally realizable propagation scheme is set up. As a benchmark for the numerical implementation the variational cluster approach is applied to the dynamics of a dimerized Hubbard model after fast ramps of its hopping parameters. Finally, the time-evolution of a homogeneous Hubbard model after sudden quenches and ramps of the interaction parameter is studied by means of a dynamical impurity approximation with a single bath site. Sharply separated by a critical interaction at which fast relaxation to a thermal final state is observed, two differing response regimes can be distinguished, where the
International Nuclear Information System (INIS)
Oda, Hiromi; Igarashi, Mitsuo; Sase, Hiroshi; Sase, Takeshi; Yamamoto, Seizo
2008-01-01
The findings of magnetic resonance imaging (MRI) have not been studied systematically in patients with osteoarthritis (OA). The objective here was to compare MRI findings with radiological findings in patients with knee pain and to identify factors that influence the progression of OA of the knee. Of 212 patients with knee pain and MRI of the knee joint, 161 patients were selected for the study after exclusion of cases of trauma and other arthritides. MRI was used to evaluate the presence and degree of bone bruise, hydrarthrosis, and injuries to the cruciate ligament and meniscus. Bone bruise was classified into four types, and hydrarthrosis into four grades. Radiologically, OA progression in the femorotibial and patellofemoral joints was analyzed according to the Kellgren-Lawrence classification. Age was divided into four groups based on distribution quartiles. Logistic regression analysis and a generalized linear model with Poisson regression were used to analyze correlations among these factors. Bone bruise was present in 87 cases, hydrarthrosis in 100, cruciate ligament injury in 20, and meniscus injury in 98. The presence of bone bruise was not related to age, cruciate ligament injury, meniscus injury, nor to OA of the patellofemoral joint, but was related to hydrarthrosis and to OA of the femorotibial joint. Femorotibial OA was much more strongly associated with bone bruise than with hydrarthrosis. Furthermore, analyzing the relation between the types of bone bruise and the degree of hydrarthrosis using a generalized linear model with Poisson regression, there was a positive correlation between the grade of bone bruise and the amount of hydrarthrosis. A factor associated with the degree of osteoarthritis of the knee is bone bruise observed on MRI. The degree of hydrarthrosis is related to the grade of bone bruise, but is not linked to the degree of osteoarthritis. (author)
Flegr, Jaroslav; Dama, Madhukar
2014-12-01
Latent toxoplasmosis is probably the most common protistan parasitic disease with many indirect negative impacts on human health. One of the important impacts is impaired psychomotor function leading to reduced driving efficiency in Toxoplasma-seropositive subjects. Numerous case-control studies have established a positive relation between the seroprevalence of Toxoplasma gondii (Nicolle et Manceaux, 1908) and probability of traffic accidents in study populations. The prevalence of toxoplasmosis varies between populations according to local geographical conditions, hygienic practices and kitchen habits. Similarly, we see a striking variation in the incidence of traffic accidents across countries. Hence, we compiled the largest ever data set on the seroprevalence of toxoplasmosis and tried to understand its role in traffic accident-related deaths and disabilities across 87 countries. Simple non-parametric analysis showed a positive and strong relation of T. gondii seroprevalence and traffic accident related disabilities. Further, we conducted multivariate analysis to control for confounding factors. After controlling for wealth, geographical latitude, health of population, length of roads and number of vehicles, the correlation disappeared. When the frequency of RhD negativity and its interaction with toxoplasmosis were included into the model, the effects of toxoplasmosis seemingly returned. However, the analysed data suffered from the problem of multicollinearity. When a proper method of analysis, ridge regression, was applied, the effects of toxoplasmosis prevalence and RhD negativity frequency disappeared again. The existence of a strong correlation between the prevalence of toxoplasmosis and health of population in particular countries, which was the probable cause of multicollinearity and possible reason for the negative result of the present study, suggests that 'asymptomatic' latent toxoplasmosis could have a large impact on public health.
Correlations between Strong Range Spread-F and GPS L-Band Scintillations Observed in Hainan in 2004
International Nuclear Information System (INIS)
Guo-Jun, Wang; Jian-Kui, Shi; She-Ping, Shang; Xiao, Wang
2009-01-01
Data from the DPS-4 digisonde and the GPS L-band ionospheric scintillation monitor are employed to study the correlations between strong range spread-F (SSF) and GPS L-band scintillations observed in the ionosphere over Hainan Island, China (19.5°N, 109.1°E geogr., dip lat. 9°N) in 2004. The SSF in the ionogram is different from the general range spread-F because it extends in frequency well beyond FoF2 and makes FoF2 difficult to be determined. The observations show that the SSF phenomenon is frequently accompanied by the occurrence of GPS L-band scintillations. The SSF and GPS L-band scintillations occur frequently in the equinoctial months (March, April, September, and October), but rarely in the winter (January, February, November, and December) and summer (May–August); especially, occurrence variations of the SSF and GPS L-band scintillations nearly have a same trend. The SSF and scintillations may be associated with the occurrence of topside plasma bubbles and could be explained by the generalized Rayleigh–Taylor instability
Davidson, Zoe E; Ryan, Monique M; Kornberg, Andrew J; Walker, Karen Z; Truby, Helen
2015-03-01
Accelerometry provides information on habitual physical capability that may be of value in the assessment of function in Duchenne muscular dystrophy. This preliminary investigation describes the relationship between community ambulation measured by the StepWatch activity monitor and the current standard of functional assessment, the 6-minute walk test, in ambulatory boys with Duchenne muscular dystrophy (n = 16) and healthy controls (n = 13). All participants completed a 6-minute walk test and wore the StepWatch™ monitor for 5 consecutive days. Both the 6-minute walk test and StepWatch accelerometry identified a decreased capacity for ambulation in boys with Duchenne compared to healthy controls. There were strong, significant correlations between 6-minute walk distance and all StepWatch parameters in affected boys only (r = 0.701-0.804). These data proffer intriguing observations that warrant further exploration. Specifically, accelerometry outcomes may compliment the 6-minute walk test in assessment of therapeutic interventions for Duchenne muscular dystrophy. © The Author(s) 2014.
International Nuclear Information System (INIS)
Lee, Kil Jun; Lee, Ji Yeon; Han, Sung Nim; Jeong, Seong Ki; Tae, Seok; Shin, Kyoung Ja; Lee, Sang Chun
1995-01-01
Recent mammographic equipment have been of good quality and yielded high diagnostic accuracy for the detection of breast cancer. However, negative mammogram does not necessarily rule out breast cancer. Therefore were viewed cause of false negative mammography in confirmed breast cancer to improve diagnostic accuracy and for adequate clinical approach. We reviewed 19 cases of confirmed breast cancer, which showed false negative mammography with positive sonographic findings. Retrospective analysis was done by correlating the patient's age, sonographic finding and mass size, mammographic breast pattern and cause of false negative mammogram, and clinical symptoms. Among the 5 patients below 35 years in age, mass was not visible due to dense breast in 4 and due to small size in 1 case. In 14 patients over 35 years in age, 11 had normal mammographic findings, 4 had dense breast, and 7 had small sized mass. Remaining 3 cases showed asymmetric density in 2 and architecture distortion in 1 case. All showed mass lesion in sonography : ill defined malignant appearance in 14,well defined malignant appearance in 2, and well defined benign in 3 cases. Negative mammogram should be correlated with sonography in case of dense breast, below 35 years in age with palpable mass and under risk for breast cancer
Jong, Eelke de
2001-01-01
This paper investigates whether in OECD-countries the negative relation between central bank independence and inflation is related to culture, in the sense of common values and norms. It appears that inflation is lower in countries where people dislike uncertainty. The tolerance in a society with
Neural correlates of preparatory and regulatory control over positive and negative emotion.
Seo, Dongju; Olman, Cheryl A; Haut, Kristen M; Sinha, Rajita; MacDonald, Angus W; Patrick, Christopher J
2014-04-01
This study used functional magnetic resonance imaging to investigate brain activation during preparatory and regulatory control while participants (N = 24) were instructed either to simply view or decrease their emotional response to, pleasant, neutral or unpleasant pictures. A main effect of emotional valence on brain activity was found in the right precentral gyrus, with greater activation during positive than negative emotion regulation. A main effect of regulation phase was evident in the bilateral anterior prefrontal cortex (PFC), precuneus, posterior cingulate cortex, right putamen and temporal and occipital lobes, with greater activity in these regions during preparatory than regulatory control. A valence X regulation interaction was evident in regions of ventromedial PFC and anterior cingulate cortex, reflecting greater activation while regulating negative than positive emotion, but only during active emotion regulation (not preparation). Conjunction analyses revealed common brain regions involved in differing types of emotion regulation including selected areas of left lateral PFC, inferior parietal lobe, temporal lobe, right cerebellum and bilateral dorsomedial PFC. The right lateral PFC was additionally activated during the modulation of both positive and negative valence. Findings demonstrate significant modulation of brain activity during both preparation for, and active regulation of positive and negative emotional states.
DEFF Research Database (Denmark)
Habekost, G.; Bratholm, P.; Christensen, Niels Juel
2008-01-01
of the poly A(-) transcript (designated Heg) in mononuclear cells was correlated with CD14 mRNA in normal subjects and with CD14 mRNA and TSH receptor autoantibodies in patients with acute and untreated Graves' disease. mRNA was expressed in amol/mu g DNA. The main study groups were: (i) normal subjects; (ii......) patients with early and untreated Graves' disease; and (iii) patients with Graves' disease studied after treatment. In 18 normal subjects and in 20 patients with treated Graves' disease CD14 mRNA was negatively correlated with Heg (P Graves' disease Heg and thyroid...
Ishiwata, Sayuri; Hattori, Kotaro; Sasayama, Daimei; Teraishi, Toshiya; Miyakawa, Tomoko; Yokota, Yuuki; Matsumura, Ryo; Nishikawa, Toru; Kunugi, Hiroshi
2018-01-15
D-serine is an endogenous co-agonist of N-methyl-D-aspartate receptor (NMDAR) and plays an important role in glutamate neurotransmission. Several studies suggested the possible involvement of D-serine related in the pathophysiology of psychiatric disorders including major depression disorders (MDD). We tried to examine whether cerebrospinal fluid (CSF) or plasma D-serine concentrations are altered in MDD and whether D-serine concentrations correlated with disease severity. 26 MDD patients and 27 healthy controls matched for age, sex and ethnicity were enrolled. We measured amino acids in these samples using by high-performance liquid chromatography with fluorometric detection. D-serine and L-serine, precursor of D-serine, levels in CSF or plasma were not significantly different in patients of MDD compared to controls. Furthermore, a significant correlation between D-serine levels in CSF and Hamilton Depression Rating Scale (HAMD)-17 score was observed (r = -0.65, p = 0.006). Furthermore, we found a positive correlation between CSF D-serine and HVA concentrations in MDD patients (r = 0.54, p = 0.007). CSF D-serine concentrations were correlated with those of plasma in MDD (r = 0.61, p = 0.01) but not in controls. In CSF, we also confirmed a significant correlation between D-serine and L-serine levels in MDD (r = 0.72, p depression severity and HVA concentrations and further investigation were required to reveal the effect of medication and disease heterogeneity. Copyright © 2017 Elsevier B.V. All rights reserved.
Hyde, Luke W.; Byrd, Amy L.; Votruba-Drzal, Elizabeth; Hariri, Ahmad R.; Manuck, Stephen B.
2014-01-01
Previous studies have emphasized that antisocial personality disorder (APD) and psychopathy overlap highly but differ critically in several features, notably negative emotionality (NEM) and possibly amygdala reactivity to social signals of threat and distress. Here we examined whether dimensions of psychopathy and APD correlate differentially with NEM and amygdala reactivity to emotional faces. Testing these relationships among healthy individuals, dimensions of psychopathy and APD were gener...
Directory of Open Access Journals (Sweden)
Kavarljit Kaur Gill
2013-01-01
Full Text Available Learning another language is very much affected by positive or negative connotations attached to the new language by the language learner. Entering Malaysian public universities there are many students with a low proficiency in English, despite spending eleven years studying English in schools. Could it be that the lack of progress among these students could be attributed to a negative view of what it means to be a speaker of English? This study investigated the perceptions of students at a public university, to determine whether there is a correlation between low-proficiency and negative perceptions of what it means to be an English speaker. Analysis of the results showed that Malaysian students have a very positive perception of what it means to be an English speaker.
Triglycerides are negatively correlated with cognitive function in nondemented aging adults.
Parthasarathy, Vishnu; Frazier, Darvis T; Bettcher, Brianne M; Jastrzab, Laura; Chao, Linda; Reed, Bruce; Mungas, Dan; Weiner, Michael; DeCarli, Charles; Chui, Helena; Kramer, Joel H
2017-09-01
Vascular risk factors like hyperlipidemia may adversely affect brain function. We hypothesized that increased serum triglycerides are associated with decreased executive function and memory in nondemented elderly subjects. We also researched possible vascular mediators and white matter microstructure as assessed with diffusion tensor imaging (DTI). Participants were 251 nondemented elderly adults (54% male) with a mean age of 78 (SD = 6.4; range: 62-94) years and a mean education of 15.6 (SD = 2.9; range: 8-23) years. Fasting blood samples were used to detect serum triglyceride and low-density lipoprotein (LDL) levels along with ApoE4 status. DTI was used to determine whole brain fractional anisotropy (FA). Composite executive and memory scores were derived from item response theory. Clinical Dementia Rating (CDR) scores provided informant-based measures of daily functioning. Triglyceride levels were inversely correlated with executive function, but there was no relationship with memory. Controlling for age, gender, and education did not affect this correlation. This relationship persisted after controlling for vascular risk factors like LDL, total cholesterol, CDR and ApoE4 status. Lastly, adding whole-brain FA to the model did not affect the correlation between triglycerides and executive function. Triglyceride levels are inversely correlated with executive function in nondemented elderly adults after controlling for age, education, gender, total cholesterol, LDL, ApoE4 status, CDR, and white-matter microstructure. The fact that the effect of triglycerides on cognition was not clearly mediated by vascular risks or cerebrovascular injury raises questions about widely held assumptions of how triglycerides might impact cognition function. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Liu, Neng; Liu, Shaohui; Yu, Nan; Peng, Yunhua; Wen, Yumei; Tang, Jie; Kong, Lingyu
2018-01-01
We investigated the influencing factors of the psychological resilience and self-efficacy of acute myocardial infarction (AMI) patients after percutaneous coronary intervention (PCI) and the relationships of psychological resilience and self-efficacy with negative emotion. Eighty-eight participants were enrolled. Psychological resilience, self-efficacy, and negative emotion were assessed with the Psychological Resilience Scale, Self-Efficacy Scale, Zung Self-Rating Anxiety Scale (SAS), and Zung Self-Rating Depression Scale (SDS), respectively. Furthermore, the relationships of psychological resilience and self-efficacy with negative emotion were investigated. The average scores of psychological resilience, self-efficacy, anxiety, and depression were 70.08 ± 13.26, 21.56 ± 9.66, 53.68 ± 13.10, and 56.12 ± 12.37, respectively. The incidences of anxiety and depression were 23.90% (21/88) and 28.40% (25/88), respectively. The psychological resilience and self-efficacy scores of AMI patients after PCI varied significantly with age and economic status. SAS scores and SDS scores were significantly negatively correlated with psychological resilience and self-efficacy. Negative emotions in AMI patients after PCI are closely related to psychological resilience and self-efficacy. Therefore, anxiety and depression could be alleviated by improving the psychological resilience and self-efficacy of patients undergoing PCI, thus improving patients' quality of life.
Lin, Cheng-Yuan; Huang, Tao; Zhao, Ling; Zhong, Linda L D; Lam, Wai Ching; Fan, Bao-Min; Bian, Zhao-Xiang
2018-05-01
Spexin is a newly identified neuropeptide that is involved in satiety control, glucose, and lipids metabolism. It has also been related to human diseases, such as obesity and type 2 diabetes. However, whether spexin changes with age or not is still unclear. The aim of this study is to investigate the relationship between circulating spexin levels and age and to study their interaction effects on body mass index (BMI), fasting glucose, and -lipids. This is a cross-sectional study, including 68 healthy adult women whose ages are in a wide range (minimum: 23; median: 38.5; maximum: 64). The serum spexin levels were measured by an enzyme-linked immunosorbent assay. Fasting glucose, total cholesterol, triglycerides (TG), alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine were measured by routine biochemical test. Shapiro-Wilk's test, Spearman and Pearson correlation analyses, χ 2 test, and two-way analysis of variance were used to interpret the data. Serum spexin levels are significantly correlated with age (Spearman r = -0.277, P = 0.022), BMI (Spearman r = -0.445, P glucose (Spearman r = -0.302, P = 0.014), and TG (Spearman r = -0.324, P = 0.008). Spexin levels independently predict the risk of high BMI and high fasting glucose. No interaction effects of spexin and age on BMI and fasting glucose were found. Circulating spexin levels decrease with age, suggesting a possible role of this peptide in aging-related functions and disorders. Further investigations are needed to expand the clinical significance of this finding.
Stenlöf, Kaj; Wernstedt, Ingrid; Fjällman, Ted; Wallenius, Ville; Wallenius, Kristina; Jansson, John-Olov
2003-09-01
Recently, we demonstrated that intracerebroventricular injection of IL-6 increases energy expenditure and decreases body fat in rodents. Therefore, IL-6 may play a role in appetite and body weight control in the central nervous system. In the present study we evaluated cerebrospinal fluid (CSF) and serum IL-6 levels in humans in relation to body fat content and to CSF and serum levels of leptin. Thirty-two healthy overweight/obese male subjects with a body mass index range of 29.3-36.0 kg/m(2) were studied. Total and sc body fat were measured by dual energy x-ray absorptiometry and computed tomography, respectively. CSF IL-6 levels were in some individuals higher than serum IL-6 levels and correlated negatively with total body weight, sc and total body fat. In contrast, CSF leptin levels were 30-60 times lower than serum leptin levels and correlated positively with serum leptin, body weight, sc and total body fat. Furthermore, there was a negative correlation between CSF IL-6 and leptin. In conclusion, CSF IL-6 differs in many ways from CSF leptin. CSF IL-6 may be locally produced rather than serum derived, and body fat-regulating regions in the central nervous system may be exposed to insufficient IL-6 levels in more severe obesity.
Zhong, P; Sun, D M; Wu, D H; Li, T M; Liu, X Y; Liu, H Y
2017-01-26
We evaluated serum total bilirubin levels as a predictor for metabolic syndrome (MetS) and investigated the relationship between serum total bilirubin levels and MetS prevalence. This cross-sectional study included 1728 participants over 65 years of age from Eastern China. Anthropometric data, lifestyle information, and previous medical history were collected. We then measured serum levels of fasting blood-glucose, total cholesterol, triglycerides, and total bilirubin, as well as alanine aminotransferase activity. The prevalence of MetS and each of its individual component were calculated per quartile of total bilirubin level. Logistic regression was used to assess the correlation between serum total bilirubin levels and MetS. Total bilirubin level in the women who did not have MetS was significantly higher than in those who had MetS (Pbilirubin quartiles were linearly and negatively correlated with MetS prevalence and hypertriglyceridemia (HTG) in females (Pbilirubin was an independent predictor of MetS for females (OR: 0.910, 95%CI: 0.863-0.960; P=0.001). The present study suggests that physiological levels of serum total bilirubin might be an independent risk factor for aged Chinese women, and the prevalence of MetS and HTG are negatively correlated to serum total bilirubin levels.
Hülür, Gizem; Hoppmann, Christiane A.; Ram, Nilam; Gerstorf, Denis
2015-01-01
Conceptual notions and empirical evidence suggest that the intraindividual correlation (iCorr) of positive affect (PA) and negative affect (NA) is a meaningful characteristic of affective functioning. PA and NA are typically negatively correlated within-person. Previous research has found that the iCorr of PA and NA is relatively stable over time…
Lira, Fabio S; Rosa, Jose C; Pimentel, Gustavo D; Souza, Hélio A; Caperuto, Erico C; Carnevali, Luiz C; Seelaender, Marília; Damaso, Ana R; Oyama, Lila M; de Mello, Marco T; Santos, Ronaldo V
2010-08-04
A sedentary lifestyle increases the risk of developing cardiovascular disease, obesity, and diabetes. This phenomenon is supported by recent studies suggesting a chronic, low-grade inflammation status. Endotoxin derived from gut flora may be key to the development of inflammation by stimulating the secretion of inflammatory factors. This study aimed to examine plasma inflammatory markers and endotoxin levels in individuals with a sedentary lifestyle and/or in highly trained subjects at rest. Fourteen male subjects (sedentary lifestyle n = 7; highly trained subjects n = 7) were recruited. Blood samples were collected after an overnight fast (approximately 12 h). The plasmatic endotoxin, plasminogen activator inhibitor type-1 (PAI-1), monocyte chemotactic protein-1 (MCP1), ICAM/CD54, VCAM/CD106 and lipid profile levels were determined. Endotoxinemia was lower in the highly trained subject group relative to the sedentary subjects (p < 0.002). In addition, we observed a positive correlation between endotoxin and PAI-1 (r = 0.85, p < 0.0001), endotoxin and total cholesterol (r = 0.65; p < 0.01), endotoxin and LDL-c (r = 0.55; p < 0.049) and endotoxin and TG levels (r = 0.90; p < 0.0001). The plasma levels of MCP-1, ICAM/CD54 and VCAM/CD106 did not differ. These results indicate that a lifestyle associated with high-intensity and high-volume exercise induces favorable changes in chronic low-grade inflammation markers and may reduce the risk for diseases such as obesity, diabetes and cardiovascular diseases.
Pelzer, Kenley; Greenman, Loren; Gidofalvi, Gergely; Mazziotti, David A
2011-06-09
Polyaromatic hydrocarbons (PAHs) are a class of organic molecules with importance in several branches of science, including medicine, combustion chemistry, and materials science. The delocalized π-orbital systems in PAHs require highly accurate electronic structure methods to capture strong electron correlation. Treating correlation in PAHs has been challenging because (i) traditional wave function methods for strong correlation have not been applicable since they scale exponentially in the number of strongly correlated orbitals, and (ii) alternative methods such as the density-matrix renormalization group and variational two-electron reduced density matrix (2-RDM) methods have not been applied beyond linear acene chains. In this paper we extend the earlier results from active-space variational 2-RDM theory [Gidofalvi, G.; Mazziotti, D. A. J. Chem. Phys. 2008, 129, 134108] to the more general two-dimensional arrangement of rings--acene sheets--to study the relationship between geometry and electron correlation in PAHs. The acene-sheet calculations, if performed with conventional wave function methods, would require wave function expansions with as many as 1.5 × 10(17) configuration state functions. To measure electron correlation, we employ several RDM-based metrics: (i) natural-orbital occupation numbers, (ii) the 1-RDM von Neumann entropy, (iii) the correlation energy per carbon atom, and (iv) the squared Frobenius norm of the cumulant 2-RDM. The results confirm a trend of increasing polyradical character with increasing molecular size previously observed in linear PAHs and reveal a corresponding trend in two-dimensional (arch-shaped) PAHs. Furthermore, in PAHs of similar size they show significant variations in correlation with geometry. PAHs with the strictly linear geometry (chains) exhibit more electron correlation than PAHs with nonlinear geometries (sheets).
Directory of Open Access Journals (Sweden)
J. Spałek
2010-01-01
Full Text Available We use the concept of generalized (almost localized Fermi Liquid composed of nonstandard quasiparticles with spin-dependence effective masses and the effective field induced by electron correlations. This Fermi liquid is obtained within the so-called statistically-consistent Gutzwiller approximation (SGA proposed recently [cf. J. Jędrak et al., arXiv: 1008.0021] and describes electronic states of the correlated quantum liquid. Particular emphasis is put on real space pairing driven by the electronic correlations, the Fulde-Ferrell state of the heavy-fermion liquid, and the d-wave superconducting state of high temperature curate superconductors in the overdoped limit. The appropriate phase diagrams are discussed showing in particular the limits of stability of the Bardeen-Cooper-Schrieffer (BCS type of state.
International Nuclear Information System (INIS)
Krsek, Pavel; Komarek, Vladimir; Hajek, Milan; Dezortova, Monika; Jiru, Filip; Skoch, Antonin; Marusic, Petr; Zamecnik, Josef; Kyncl, Martin; Tichy, Michal
2007-01-01
Proton magnetic resonance spectroscopy ( 1 H MRS) is beneficial in the lateralization of the epileptogenic zone in temporal lobe epilepsy; however, its role in extratemporal and, especially, MRI-negative epilepsy has not been established. This study seeks to verify how 1 H MRS could help in localizing the epileptogenic zone in patients with MRI-negative extratemporal epilepsy. Seven patients (8-23 years) with MRI-negative refractory focal epilepsy were studied using 1 H MRS on a 1.5T MR system. Chemical shift imaging sequence in the transversal plane was directed towards the suspected epileptogenic zone localized by seizure semiology, scalp video/EEG, ictal SPECT and 18 FDG-PET. Spectra were evaluated using the program CULICH, and the coefficient of asymmetry was used for quantitative lateralization. MRS detected lateralization in all patients and was able to localize pathology in five. The most frequent findings were decreased ratios of N-acetylaspartate to choline compounds characterized by increasing choline concentration. The localization of the 1 H MRS abnormality correlated well with ictal SPECT and subdural mapping. In all cases, histopathological analysis revealed MRI-undetected focal cortical dysplasias. 1 H MRS could be more sensitive for the detection of discrete malformations of cortical development than conventional MRI. It is valuable in the presurgical evaluation of patients without MRI-apparent lesions. (orig.)
International Nuclear Information System (INIS)
Pati, J.; Shafi, Q.; Yu Lu
1993-01-01
This is a collection of five lectures on quantum field theory and its applications, two lectures on aspects of particle and nuclear physics (unification in the superstring context; and topics in P and CP violation in nuclear and particle physics), and ten lectures mainly on the physics of strong correlations, all but one of which are within the INIS scope. Refs, figs and tabs
International Nuclear Information System (INIS)
Adzhemyan, L.Ts.; Vasil'ev, A.N.; Pis'mak, Yu.M.
1988-01-01
The investigation of the infrared behavior of the propagator of a light wave in a randomly inhomogeneous medium with massless Gaussian noise is continued. The infrared representation of the propagator for correlation function D varphi (k)∼k -2 is generalized to the case of an arbitrary power-law noise correlation function is rigorously established in the first two orders of the infrared asymptotic behavior by construction of a suitable R operation. As a consequence, the results are generalized to the case of critical opalescence, when D varphi (k)∼k -2+η , where η ∼ 0.03 is the Fisher index
S.U. de Willige; Keane, F.M. (Fiona M.); Bowen, D.G. (David G.); J.J.M.C. Malfliet (Joyce); Zhang, H.E. (H. Emma); Maneck, B. (Bharvi); G. McCaughan (Geoff); F.W.G. Leebeek (Frank); D.C. Rijken (Dingeman); Gorrell, M.D. (Mark D.)
2017-01-01
textabstractBackground and aim: Circulating fibroblast activation protein (cFAP) is a constitutively active enzyme expressed by activated fibroblasts that has both dipeptidyl peptidase and endopeptidase activities. We aimed to assess the correlation between cFAP activity and antigen levels and to
van Hulzen, J.B.; Van Soelen, J.; Bouma, T.J.
2007-01-01
We explored to what extent morphological variation and habitat modification are correlated for an autogenic ecosystem engineer, which is an organism that modifies its habitat via its own physical structures. The intertidal salt marsh species Spartina anglica is well known for its capacity to enhance
Sajna, A. S.; Polak, T. P.
2018-06-01
Gauge potentials with different configurations have been recently realized in the optical lattice experiments. It is remarkable that one of the simplest gauge potential can generate particle energy spectrum with the self-similar structure known as a Hofstadter butterfly. We investigate theoretically the impact of strong on-site interaction on such a spectrum in the bosonic Mott insulator within Bose-Hubbard model. In particular, it is shown that the fractal structure is encoded in the quasi-particle and hole bosonic branches for different lattice backgrounds. For example a square lattice and other structures (brick-wall and staggered magnetic flux lattice) which contain Dirac points in energy dispersions are considered. This shows that single-particle physics is still present even in the strong interaction limit for whole Hofstadter spectrum. Additionally we observe, that although in brick-wall and staggered flux lattices the quasi-particle densities of states look qualitatively similar, the corresponding Hofstadter butterfly assumes different forms. In particular, we use a superposition of two different synthetic gauge fields which appears to be a generator of non-trivial phenomena in the optical lattice systems. We also discuss the consequences of these phenomena on the phase diagrams between bosonic Mott insulator and superfluid phase. The analysis is carried out within the strong coupling expansion method on the finite size lattices and also at finite temperatures which are relevant for the currently made experiments.
Bustos-Segura, Carlos; Poelman, Erik H; Reichelt, Michael; Gershenzon, Jonathan; Gols, Rieta
2017-01-01
Intraspecific plant diversity can modify the properties of associated arthropod communities and plant fitness. However, it is not well understood which plant traits determine these ecological effects. We explored the effect of intraspecific chemical diversity among neighbouring plants on the associated invertebrate community and plant traits. In a common garden experiment, intraspecific diversity among neighbouring plants was manipulated using three plant populations of wild cabbage that differ in foliar glucosinolates. Plants were larger, harboured more herbivores, but were less damaged when plant diversity was increased. Glucosinolate concentration differentially correlated with generalist and specialist herbivore abundance. Glucosinolate composition correlated with plant damage, while in polycultures, variation in glucosinolate concentrations among neighbouring plants correlated positively with herbivore diversity and negatively with plant damage levels. The results suggest that intraspecific variation in secondary chemistry among neighbouring plants is important in determining the structure of the associated insect community and positively affects plant performance. © 2016 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Quantum correlations in a system of nuclear s = 1/2 spins in a strong magnetic field
International Nuclear Information System (INIS)
Fel’dman, E B; Kuznetsova, E I; Yurishchev, M A
2012-01-01
Entanglement and quantum discord for a pair of nuclear spins s = 1/2 in a nanopore filled with a gas of spin-carrying molecules (atoms) are studied. The correlation functions describing dynamics of dipolar-coupled spins in a nanopore are found. The dependence of spin-pair entanglement on the temperature and the number of spins is obtained from the reduced density matrix, which is centrosymmetric (CS). An analytic expression for the concurrence is obtained for an arbitrary CS density matrix. It is shown that the quantum discord as a measure of quantum correlations attains a significant value at low temperatures. It is also shown that the discord in the considered model has ‘flickering’ character and disappears periodically in the course of time evolution of the system. The geometric discord is studied for arbitrary 4 × 4 CS density matrices. (paper)
DEFF Research Database (Denmark)
Wone, B W M; Madsen, Per; Donovan, E R
2015-01-01
Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection...... on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols...... and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR...
Electronic structure of YBa2Cu3O/sub 7-//sub δ/ including strong correlation effects
International Nuclear Information System (INIS)
Costa-Quintana, J.; Lopez-Aguilar, F.; Balle, S.; Salvador, R.
1989-01-01
The occupied and unoccupied valence-band density of states of YBa 2 Cu 3 O/sub 7-//sub δ/ is determined considering a coherent potential which includes the Coulomb intrasite d-d correlation. The p states tend to be all occupied and, as a consequence, the most localized d states with the XZ symmetry tend to be unoccupied giving rise to an upper Hubbard band. This picture is in good agreement with the direct and inverse photoemission spectroscopies
Wone, B W M; Madsen, P; Donovan, E R; Labocha, M K; Sears, M W; Downs, C J; Sorensen, D A; Hayes, J P
2015-04-01
Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR, and BMR was slightly, but not significantly, higher (2.5%). Compared with controls, MMR was significantly higher (5.3%) in antagonistically selected lines, and BMR was slightly, but not significantly, lower (4.2%). Analysis of breeding values revealed no positive genetic trend for elevated BMR in high-MMR lines. A weak positive genetic correlation was detected between MMR and BMR. That weak positive genetic correlation supports the aerobic capacity model for the evolution of endothermy in the sense that it fails to falsify a key model assumption. Overall, the results suggest that at least in these mice there is significant capacity for independent evolution of metabolic traits. Whether that is true in the ancestral animals that evolved endothermy remains an important but unanswered question.
DEFF Research Database (Denmark)
Tornehave, D; Jensen, Charlotte Harken; Teisner, B
1996-01-01
Fetal antigen 1 (FA1) is a glycoprotein containing six epidermal growth factor (EGF)-like repeats. It is closely similar to the protein translated from the human delta-like (dlk) cDNA and probably constitutes a proteolytically processed form of dlk. dlk is homologous to the Drosophila homeotic...... proteins delta and notch and to the murine preadipocyte differentiation factor Pref-1. These proteins participate in determining cell fate choices during differentiation. We now report that FA1 immunoreactivity is present in a number of neuroectodermally derived tumours as well as in pancreatic endocrine...... tumours. A negative correlation between FA1 and glucagon immunoreactants in these tumours prompted a reexamination of FA1 immunoreactants during fetal pancreatic development. At the earliest stages of development, FA1 was expressed by most of the non-endocrine parenchymal cells and, with ensuing...
Rydosz, Artur
2015-07-01
Exhaled acetone analysis has long been recognized as a supplementary tool for diagnosis and monitoring diabetes, especially type 1 diabetes. It is essential, therefore to determine the relationship between exhaled acetone concentration and glucose in blood. Usually, a direct linear correlation between this both compounds has been expected. However, in some cases we can observe a reverse correlation. When blood glucose was increasing, breath acetone declined. The breath analysis as a supplementary tool for diagnosing and monitoring diabetes makes sense only in case of utilization of portable analyzers. This need has created a market for gas sensors. However, commercially available acetone gas sensors are developed for measuring samples at several tens part per million. The exhaled acetone concentration was measured using commercial acetone gas sensor (TGS 822, 823 Figaro, Arlington Heights, IL, USA Inc) with micropreconcentrator in low temperature cofired ceramics. The reference analyzer-mass spectrometry (HPR-20 QIC, Hiden Analytical, Warrington, UK) was used. Twenty-two healthy volunteers with no history of any respiratory disease participated in the research, as did 31 patients diagnosed with type 1 diabetes. Respectively, 3 healthy volunteer and 5 type 1 diabetes mellitus subjects with reverse trend were selected. The linear fitting coefficient various from 0.1139 to 0.9573. Therefore, it is necessary to determine the correlation between blood glucose concentrations and under different conditions, for example, insulin levels, as well as correlate the results with clinical tests, for example, Hb1Ac. It is well known that the concentration of acetone is strongly influenced by diet, insulin treatment, and so on. Therefore, much more complex analysis with long-term measurements are required. Thus, presented results should be regarded as tentative, and validation studies with the analysis of clinical test and in a large number of patients, including control groups
International Nuclear Information System (INIS)
Sugimoto, Satoru; Ikeda, Kiyomi; Toki, Hiroshi
2004-01-01
We propose a new mean-field-type framework which can treat the strong correlation induced by the tensor force. To treat the tensor correlation we break the charge and parity symmetries of a single-particle state and restore these symmetries of the total system by the projection method. We perform the charge and parity projections before variation and obtain a Hartree-Fock-like equation, which is solved self-consistently. We apply the Hartree-Fock-like equation to the alpha particle and find that by breaking the parity and charge symmetries, the correlation induced by the tensor force is obtained in the projected mean-field framework. We emphasize that the projection before the variation is important to pick up the tensor correlation in the present framework
Molnár, Orsolya; Bajer, Katalin; Mészáros, Boglárka; Török, János; Herczeg, Gábor
2013-06-01
During female mate choice, conspicuous male sexual signals are used to infer male quality and choose the best sire for the offspring. The theory of parasite-mediated sexual selection (Hamilton-Zuk hypothesis) presumes that parasite infection can influence the elaboration of sexual signals: resistant individuals can invest more energy into signal expression and thus advertise their individual quality through signal intensity. By preferring these males, females can provide resistance genes for their offspring. Previous research showed that nuptial throat colour of male European green lizard, Lacerta viridis, plays a role in both inter- and intrasexual selections as a condition-dependent multiple signalling system. The aim of this study was to test the predictions of the Hamilton-Zuk hypothesis on male European green lizards. By blood sampling 30 adult males during the reproductive season, we found members of the Haemogregarinidae family in all but one individual (prevalence = 96 %). The infection intensity showed strong negative correlation with the throat and belly colour brightness in line with the predictions of the Hamilton-Zuk hypothesis. In addition, we found other correlations between infection intensity and other fitness-related traits, suggesting that parasite load has a remarkable effect on individual fitness. This study shows that throat patch colour of the European green lizards not only is a multiple signalling system but also possibly acts as an honest sexual signal of health state in accordance with the Hamilton-Zuk hypothesis.
Marceau, Kristine; Knopik, Valerie S.; Neiderhiser, Jenae M.; Lichtenstein, Paul; Spotts, Erica L.; Ganiban, Jody M.; Reiss, David
2015-01-01
In the present study we examined how genotype-environment correlation processes differ as a function of adolescent age. We tested whether adolescent age moderates genetic and environmental influences on positivity and negativity in mother-adolescent and father-adolescent relationships using parallel samples of twin parents from the Twin and Offspring Study in Sweden and twin/sibling adolescents from the Nonshared Environment in Adolescent Development Study. We inferred differences in the role of passive and non-passive genotype-environment correlation based on biometric moderation findings. Findings indicated that non-passive rGE played a stronger role for positivity in mother- and father- adolescent relationships in families with older adolescents than families with younger adolescents, and that passive rGE played a stronger role for positivity in the mother-adolescent relationship in families with younger adolescents than in families with older adolescents. Implications of these findings for the timing and targeting of interventions on family relationships are discussed. PMID:25924807
Woods, Lucy A; Dolezal, Olan; Ren, Bin; Ryan, John H; Peat, Thomas S; Poulsen, Sally-Ann
2016-03-10
Fragment-based drug discovery (FBDD) is contingent on the development of analytical methods to identify weak protein-fragment noncovalent interactions. Herein we have combined an underutilized fragment screening method, native state mass spectrometry, together with two proven and popular fragment screening methods, surface plasmon resonance and X-ray crystallography, in a fragment screening campaign against human carbonic anhydrase II (CA II). In an initial fragment screen against a 720-member fragment library (the "CSIRO Fragment Library") seven CA II binding fragments, including a selection of nonclassical CA II binding chemotypes, were identified. A further 70 compounds that comprised the initial hit chemotypes were subsequently sourced from the full CSIRO compound collection and screened. The fragment results were extremely well correlated across the three methods. Our findings demonstrate that there is a tremendous opportunity to apply native state mass spectrometry as a complementary fragment screening method to accelerate drug discovery.
Directory of Open Access Journals (Sweden)
Edoardo Baldini
2016-11-01
Full Text Available A femtosecond pump-probe setup is described that is optimised for broadband transient reflectivity experiments on solid samples over a wide temperature range. By combining high temporal resolution and a broad detection window, this apparatus can investigate the interplay between coherent collective modes and high-energy electronic excitations, which is a distinctive characteristic of correlated electron systems. Using a single-shot readout array detector at frame rates of 10 kHz allows resolving coherent oscillations with amplitudes <10−4. We demonstrate its operation on the charge-transfer insulator La2CuO4, revealing coherent phonons with frequencies up to 13 THz and providing access into their Raman matrix elements.
DEFF Research Database (Denmark)
Ibrom, Andreas; Dellwik, Ebba; Flyvbjerg, Henrik K.
2007-01-01
datasets for this substantial measurement error. In contrast to earlier studies, a large number of spectra and raw data have been used in the analysis to define the low-pass filtering characteristic of the EC system. This revealed that the cut-off frequency of the closed-path EC system for water vapour......Turbulent water vapour fluxes measured with closed-path eddy correlation (EC) systems are unintentionally low-pass filtered by the system in a manner that varies with environmental conditions. Why and how is described here. So is the practical method that systematically corrects long-term flux...... concentration measurements decreases exponentially with increasing relative humidity. After correction for this unintended filtering, the fluxes are consistent with CO2 and H2O fluxes that were measured with an open-path sensor at the same time. The correction of water vapour flux measurements over a Beech...
Ma, Peng-Fei; Vorontsova, Maria S; Nanjarisoa, Olinirina Prisca; Razanatsoa, Jacqueline; Guo, Zhen-Hua; Haevermans, Thomas; Li, De-Zhu
2017-12-21
Heterogeneous rates of molecular evolution are universal across the tree of life, posing challenges for phylogenetic inference. The temperate woody bamboos (tribe Arundinarieae, Poaceae) are noted for their extremely slow molecular evolutionary rates, supposedly caused by their mysterious monocarpic reproduction. However, the correlation between substitution rates and flowering cycles has not been formally tested. Here we present 15 newly sequenced plastid genomes of temperate woody bamboos, including the first genomes ever sequenced from Madagascar representatives. A data matrix of 46 plastid genomes representing all 12 lineages of Arundinarieae was assembled for phylogenetic and molecular evolutionary analyses. We conducted phylogenetic analyses using different sequences (e.g., coding and noncoding) combined with different data partitioning schemes, revealing conflicting relationships involving internodes among several lineages. A great difference in branch lengths were observed among the major lineages, and topological inconsistency could be attributed to long-branch attraction (LBA). Using clock model-fitting by maximum likelihood and Bayesian approaches, we furthermore demonstrated extensive rate variation among these major lineages. Rate accelerations mainly occurred for the isolated lineages with limited species diversification, totaling 11 rate shifts during the tribe's evolution. Using linear regression analysis, we found a negative correlation between rates of molecular evolution and flowering cycles for Arundinarieae, notwithstanding that the correlation maybe insignificant when taking the phylogenetic structure into account. Using the temperate woody bamboos as an example, we found further evidence that rate heterogeneity is universal in plants, suggesting that this will pose a challenge for phylogenetic reconstruction of bamboos. The bamboos with longer flowering cycles tend to evolve more slowly than those with shorter flowering cycles, in accordance
International Nuclear Information System (INIS)
Karnland, O.
1998-01-01
A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed. This report discusses a number of models which possibly can be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved model predicts a substantial bentonite swelling pressure also in a saturated sodium chloride solution if the density of the system is sufficiently high. This means in practice that the buffer in a KBS-3 repository will give rise to an acceptable swelling pressure, but that the positive effects of mixing bentonite into a backfill material will be lost if the system is exposed to brines. (orig.)
Fei, Minghui; Harvey, Jeffrey A; Yin, Yi; Gols, Rieta
2017-06-01
The effects of temporal variation in the quality of short-lived annual plants on oviposition preference and larval performance of insect herbivores has thus far received little attention. This study examines the effects of plant age on female oviposition preference and offspring performance in the large cabbage white butterfly Pieris brassicae. Adult female butterflies lay variable clusters of eggs on the underside of short-lived annual species in the family Brassicaceae, including the short-lived annuals Brassica nigra and Sinapis arvensis, which are important food plants for P. brassicae in The Netherlands. Here, we compared oviposition preference and larval performance of P. brassicae on three age classes (young, mature, and pre-senescing) of B. nigra and S. arvensis plants. Oviposition preference of P. brassicae declined with plant age in both plant species. Whereas larvae performed similarly on all three age classes in B. nigra, preference and performance were weakly correlated in S. arvensis. Analysis of primary (sugars and amino acids) and secondary (glucosinolates) chemistry in the plant shoots revealed that differences in their quality and quantity were more pronounced with respect to tissue type (leaves vs. flowers) than among different developmental stages of both plant species. Butterflies of P. brassicae may prefer younger and smaller plants for oviposition anticipating that future plant growth and size is optimally synchronized with the final larval instar, which contributes >80% of larval growth before pupation.
International Nuclear Information System (INIS)
Banacky, P.
2010-01-01
Complex electronic ground state of molecular and solid state system is analyzed on the ab initio level beyond the adiabatic Born-Oppenheimer approximation (BOA). The attention is focused on the band structure fluctuation (BSF) at Fermi level, which is induced by electron-phonon coupling in superconductors, and which is absent in the non-superconducting analogues. The BSF in superconductors results in breakdown of the adiabatic BOA. At these circumstances, chemical potential is substantially reduced and system is stabilized (effect of nuclear dynamics) in the anti adiabatic state at broken symmetry with a gap(s) in one-particle spectrum. Distorted nuclear structure has fluxional character and geometric degeneracy of the anti adiabatic ground state enables formation of mobile bipolarons in real space. It has been shown that an effective attractive e-e interaction (Cooper-pair formation) is in fact correction to electron correlation energy at transition from adiabatic into anti adiabatic ground electronic state. In this respect, Cooper-pair formation is not the primary reason for transition into superconducting state, but it is a consequence of anti adiabatic state formation. It has been shown that thermodynamic properties of system in anti adiabatic state correspond to thermodynamics of superconducting state. Illustrative application of the theory for different types of superconductors is presented.
Energy Technology Data Exchange (ETDEWEB)
Karnland, O. [Clay Technology, Lund (Sweden)
1997-12-01
A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed by different researchers over the years. The present report examines some of the models which possibly may be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved thermodynamic model predicts substantial bentonite swelling pressures also in saturated sodium chloride solution if the density of the system is high enough. In practice, the model predicts a substantial swelling pressure for the buffer in a KBS-3 repository if the system is exposed to brines, but the positive effects of mixing bentonite into a backfill material will be lost, since the available compaction technique does not give a sufficiently high bentonite density 37 refs, 15 figs
Energy Technology Data Exchange (ETDEWEB)
Karnland, O. [Clay Technology, Lund (Sweden)
1998-01-01
A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed. This report discusses a number of models which possibly can be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved model predicts a substantial bentonite swelling pressure also in a saturated sodium chloride solution if the density of the system is sufficiently high. This means in practice that the buffer in a KBS-3 repository will give rise to an acceptable swelling pressure, but that the positive effects of mixing bentonite into a backfill material will be lost if the system is exposed to brines. (orig.). 14 refs.
International Nuclear Information System (INIS)
Karnland, O.
1997-12-01
A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed by different researchers over the years. The present report examines some of the models which possibly may be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved thermodynamic model predicts substantial bentonite swelling pressures also in saturated sodium chloride solution if the density of the system is high enough. In practice, the model predicts a substantial swelling pressure for the buffer in a KBS-3 repository if the system is exposed to brines, but the positive effects of mixing bentonite into a backfill material will be lost, since the available compaction technique does not give a sufficiently high bentonite density
Kuperman, Victor; Drieghe, Denis; Keuleers, Emmanuel; Brysbaert, Marc
2013-01-01
We assess the amount of shared variance between three measures of visual word recognition latencies: eye movement latencies, lexical decision times, and naming times. After partialling out the effects of word frequency and word length, two well-documented predictors of word recognition latencies, we see that 7-44% of the variance is uniquely shared between lexical decision times and naming times, depending on the frequency range of the words used. A similar analysis of eye movement latencies shows that the percentage of variance they uniquely share either with lexical decision times or with naming times is much lower. It is 5-17% for gaze durations and lexical decision times in studies with target words presented in neutral sentences, but drops to 0.2% for corpus studies in which eye movements to all words are analysed. Correlations between gaze durations and naming latencies are lower still. These findings suggest that processing times in isolated word processing and continuous text reading are affected by specific task demands and presentation format, and that lexical decision times and naming times are not very informative in predicting eye movement latencies in text reading once the effect of word frequency and word length are taken into account. The difference between controlled experiments and natural reading suggests that reading strategies and stimulus materials may determine the degree to which the immediacy-of-processing assumption and the eye-mind assumption apply. Fixation times are more likely to exclusively reflect the lexical processing of the currently fixated word in controlled studies with unpredictable target words rather than in natural reading of sentences or texts.
Koenigsberg, Harold W; Denny, Bryan T; Fan, Jin; Liu, Xun; Guerreri, Stephanie; Mayson, Sarah Jo; Rimsky, Liza; New, Antonia S; Goodman, Marianne; Siever, Larry J
2014-01-01
Extreme emotional reactivity is a defining feature of borderline personality disorder, yet the neural-behavioral mechanisms underlying this affective instability are poorly understood. One possible contributor is diminished ability to engage the mechanism of emotional habituation. The authors tested this hypothesis by examining behavioral and neural correlates of habituation in borderline patients, healthy comparison subjects, and a psychopathological comparison group of patients with avoidant personality disorder. During fMRI scanning, borderline patients, healthy subjects, and avoidant personality disorder patients viewed novel and repeated pictures, providing valence ratings at each presentation. Statistical parametric maps of the contrasts of activation during repeated versus novel negative picture viewing were compared between groups. Psychophysiological interaction analysis was employed to examine functional connectivity differences between groups. Unlike healthy subjects, neither borderline nor avoidant personality disorder patients exhibited increased activity in the dorsal anterior cingulate cortex when viewing repeated versus novel pictures. This lack of an increase in dorsal anterior cingulate activity was associated with greater affective instability in borderline patients. In addition, borderline and avoidant patients exhibited smaller increases in insula-amygdala functional connectivity than healthy subjects and, unlike healthy subjects, did not show habituation in ratings of the emotional intensity of the images. Borderline patients differed from avoidant patients in insula-ventral anterior cingulate functional connectivity during habituation. Unlike healthy subjects, borderline patients fail to habituate to negative pictures, and they differ from both healthy subjects and avoidant patients in neural activity during habituation. A failure to effectively engage emotional habituation processes may contribute to affective instability in borderline
Chua, Chian Sem; Bai, Chyi-Huey; Shiao, Chen-Yu; Hsu, Chien-Yeh; Cheng, Chiao-Wen; Yang, Kuo-Ching; Chiu, Hung-Wen; Hsu, Jung-Lung
2017-01-01
Irritable bowel syndrome (IBS) manifests as chronic abdominal pain. One pathophysiological theory states that the brain-gut axis is responsible for pain control in the intestine. Although several studies have discussed the structural changes in the brain of IBS patients, most of these studies have been conducted in Western populations. Different cultures and sexes experience different pain sensations and have different pain responses. Accordingly, we aimed to identify the specific changes in the cortical thickness of Asian women with IBS and to compare these data to those of non-Asian women with IBS. Thirty Asian female IBS patients (IBS group) and 39 healthy individuals (control group) were included in this study. Brain structural magnetic resonance imaging was performed. We used FreeSurfer to analyze the differences in the cortical thickness and their correlations with patient characteristics. The left cuneus, left rostral middle frontal cortex, left supramarginal cortex, right caudal anterior cingulate cortex, and bilateral insula exhibited cortical thinning in the IBS group compared with those in the controls. Furthermore, the brain cortical thickness correlated negatively the severity as well as duration of abdominal pain. Some of our findings differ from those of Western studies. In our study, all of the significant brain regions in the IBS group exhibited cortical thinning compared with those in the controls. The differences in cortical thickness between the IBS patients and controls may provide useful information to facilitate regulating abdominal pain in IBS patients. These findings offer insights into the association of different cultures and sexes with differences in cortical thinning in patients with IBS.
Ellingson, A.R.; Andersen, D.C.
2002-01-01
1. The hypothesis that the habitat-scale spatial distribution of the Apache cicada Diceroprocta apache Davis is unaffected by the presence of the invasive exotic saltcedar Tamarix ramosissima was tested using data from 205 1-m2 quadrats placed within the flood-plain of the Bill Williams River, Arizona, U.S.A. Spatial dependencies within and between cicada density and habitat variables were estimated using Moran's I and its bivariate analogue to discern patterns and associations at spatial scales from 1 to 30 m.2. Apache cicadas were spatially aggregated in high-density clusters averaging 3 m in diameter. A positive association between cicada density, estimated by exuvial density, and the per cent canopy cover of a native tree, Goodding's willow Salix gooddingii, was detected in a non-spatial correlation analysis. No non-spatial association between cicada density and saltcedar canopy cover was detected.3. Tests for spatial cross-correlation using the bivariate IYZ indicated the presence of a broad-scale negative association between cicada density and saltcedar canopy cover. This result suggests that large continuous stands of saltcedar are associated with reduced cicada density. In contrast, positive associations detected at spatial scales larger than individual quadrats suggested a spill-over of high cicada density from areas featuring Goodding's willow canopy into surrounding saltcedar monoculture.4. Taken together and considered in light of the Apache cicada's polyphagous habits, the observed spatial patterns suggest that broad-scale factors such as canopy heterogeneity affect cicada habitat use more than host plant selection. This has implications for management of lower Colorado River riparian woodlands to promote cicada presence and density through maintenance or creation of stands of native trees as well as manipulation of the characteristically dense and homogeneous saltcedar canopies.
Directory of Open Access Journals (Sweden)
Jana Chakrabarti
2012-01-01
Full Text Available Context: A critical body mass of adipose tissue is essential for the normal development of female reproductive functions. Leptin, an adipocyte-derived hormone encoded by the ′Ob′ gene has been proposed as a peripheral signal indicating the adequacy of nutritional status for reproductive functions. It is reported as a direct regulator of gametogenic and steroidogenic potential of ovary. Though leptin is widely present in reproductive tissues, its relationship to reproductive hormones is still poorly understood. Aims: Present investigation attempts to explore ovarian response to secretory profile of leptin and its impact on pregnancy outcome in women undergoing controlled ovarian hyperstimulation for in vitro fertilization and embryo transfer (IVF-ET. Settings and Design: Patients enrolled for IVF-ET underwent pituitary-ovarian suppression by ′Long Protocol′ GnRH-agonist downregulation followed by ovarian stimulation. Materials and Methods: Sera were procured at different phases of IVF-ET for the assay of estradiol, progesterone, human chorionic gonadotropin, and for leptin. Ovarian follicular fluids were also assayed for leptin. Luteinized granulosa cells were cultured in vitro to evaluate their steroidogenic potential. Statistical Analysis Used: Statistical analyses were done by student′s t-test, ANOVA, and Chi-square tests as applicable. All results were expressed as Mean ± SE. P values < 0.05 were considered significant. Results: Positive correlation was observed between serum and ovarian follicular fluid leptin. A negative correlation was noted between the serum leptin levels and endometrial thickness. Conclusions: Elevated leptin response may exert adverse impacts on pregnancy success during IVF-ET possibly by modulating uterine receptivity.
Ito, Takehito; Kimura, Yasuyuki; Seki, Chie; Ichise, Masanori; Yokokawa, Keita; Kawamura, Kazunori; Takahashi, Hidehiko; Higuchi, Makoto; Zhang, Ming-Rong; Suhara, Tetsuya; Yamada, Makiko
2018-06-14
The histamine H 3 receptor is regarded as a drug target for cognitive impairments in psychiatric disorders. H 3 receptors are expressed in neocortical areas, including the prefrontal cortex, the key region of cognitive functions such as working memory. However, the role of prefrontal H 3 receptors in working memory has not yet been clarified. Therefore, using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) techniques, we aimed to investigate the association between the neural activity of working memory and the density of H 3 receptors in the prefrontal cortex. Ten healthy volunteers underwent both fMRI and PET scans. The N-back task was used to assess the neural activities related to working memory. H 3 receptor density was measured with the selective PET radioligand [ 11 C] TASP457. The neural activity of the right dorsolateral prefrontal cortex during the performance of the N-back task was negatively correlated with the density of H 3 receptors in this region. Higher neural activity of working memory was associated with lower H 3 receptor density in the right dorsolateral prefrontal cortex. This finding elucidates the role of H 3 receptors in working memory and indicates the potential of H 3 receptors as a therapeutic target for the cognitive impairments associated with neuropsychiatric disorders.
Fu, Liangliang; Xu, Yueyuan; Hou, Ye; Qi, Xiaolong; Zhou, Lian; Liu, Huiying; Luan, Yu; Jing, Lu; Miao, Yuanxin; Zhao, Shuhong; Liu, Huazhen; Li, Xinyun
2017-03-01
Feed efficiency (FE) is a highly important economic trait in pig production. Investigating the molecular mechanisms of FE is essential for trait improvement. In this study, the skeletal muscle proteome of high-FE and low-FE pigs were investigated by the iTRAQ approach. A total of 1780 proteins were identified, among which 124 proteins were differentially expressed between the high- and low-FE pigs, with 74 up-regulated and 50 down-regulated in the high-FE pigs. Ten randomly selected differentially expressed proteins (DEPs) were validated by Western blotting and quantitative PCR (qPCR). Gene ontology (GO) analysis showed that all the 25 DEPs located in mitochondria were down-regulated in the high-FE pigs. Furthermore, the glucose-pyruvate-tricarboxylic acid (TCA)-oxidative phosphorylation energy metabolism signaling pathway was found to differ between high- and low-FE pigs. The key enzymes involved in the conversion of glucose to pyruvate were up-regulated in the high-FE pigs. Thus, our results suggested mitochondrial energy metabolism in the skeletal muscle tissue was negatively correlated with FE in pigs, and glucose utilization to generate ATP was more efficient in the skeletal muscle tissue of high-FE pigs. This study offered new targets and pathways for improvement of FE in pigs.
Shiota, Noboru; Narikiyo, Kimiya; Masuda, Akira; Aou, Shuji
2016-05-01
Rodents show grooming, a typical self-care behavior, under stress and non-stress conditions. Previous studies revealed that grooming under stress conditions such as the open-field test (OFT) or the elevated plus-maze test (EPM) is associated with anxiety, but the roles of grooming under non-stress conditions are not well understood. Here, we examined spray-induced grooming as a model of grooming under a non-stress condition to investigate the relationship between this grooming and depression-like behavior in the forced swim test (FST) and tail suspension test, and we compared spray-induced grooming with OFT- and EPM-induced grooming. The main finding was that the duration of spray-induced grooming, but not that of OFT/EPM-induced grooming, was negatively correlated with the duration of immobility in the FST, an index of depression-like behavior. The results suggest that spray-induced grooming is functionally different from the grooming in the OFT and EPM and is related to reduction of depressive behavior.
Directory of Open Access Journals (Sweden)
Ren-Yi Tang
2017-01-01
Full Text Available Aim. To demonstrate the regulatory role of miRNA in colorectal carcinoma (CRC and reveal the transcript markers that may be associated with CRC clinical outcomes. Method. Herein, we analyzed both mRNA and miRNA gene expression profiles of 255 CRC tumor samples from The Cancer Genome Atlas project to reveal the regulatory association between miRNA and mRNA. Also, the potential role of gene coexpression network in CRC has been explored. Results. The negative correlation between miR-200c and DCN (Decorin was calculated in CRC, indicating that DCN could be a potential target of miR-200c. Clinical features indicated that colon polyp history and overall survival were significantly related to the expression level of miR-200c. Three coexpression networks have been constructed, and genes involved in the networks are related to cell cycle, NOTCH, and mTOR signaling pathways. Conclusion. Our result provides a new insight into cancer related mRNA coexpression network in CRC research.
Directory of Open Access Journals (Sweden)
Yingjun Zheng
2016-11-01
Full Text Available Patients with schizophrenia exhibit consistent abnormalities in face-evoked N170. However, the relation between face-specific N170 abnormalities in schizophrenic patients and schizophrenia clinical characters, which probably based on common neural mechanisms, is still rarely discovered. Using event-related potentials (ERPs recording in both schizophrenic patients and healthy controls, the amplitude and latency of N170 were recorded when participants were passively watching face and non-face (table pictures. The results showed a face-specific N170 latency sluggishness in schizophrenic patients, i.e., the N170 latencies of schizophrenic patients were significantly longer than those of healthy controls under both upright face and inverted face conditions. Importantly, the face-related N170 latencies of the left temporo-occipital electrodes (P7 and PO7 were positively correlated with negative symptoms and general psychiatric symptoms. Besides the analysis of latencies, the N170 amplitudes became weaker in schizophrenic patients under both inverted face and inverted table conditions, with a left hemisphere dominant. More interestingly, the FIEs (the difference of N170 amplitudes between upright and inverted faces were absent in schizophrenic patients, which suggested the abnormality of holistic face processing. These results above revealed a marked symptom-relevant neural sluggishness of face-specific processing in schizophrenic patients, supporting the demyelinating hypothesis of schizophrenia.
Directory of Open Access Journals (Sweden)
Katri Koli
Full Text Available Idiopathic pulmonary fibrosis (IPF is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.
Koli, Katri; Sutinen, Eva; Rönty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipilä, Petra; Myllärniemi, Marjukka
2016-01-01
Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.
Koli, Katri; Sutinen, Eva; Rönty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipilä, Petra; Myllärniemi, Marjukka
2016-01-01
Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung. PMID:27428020
International Nuclear Information System (INIS)
Mehnane, N.; Badi, F.; Abid, H.; Reda Aced, M.; Sekkal, N.
2008-05-01
By means of a simple physical argumentation, we give the proof that the giant bowing observed in GaAsN is correlated to a strong interaction between 4d-As and 2p-N orbitals. The calculations were carried out within the first principles full potential linear muffin-tin orbitals method (FPLMTO) method in its plane wave approximation (PLW) which enables an accurate treatment of the interstitial regions. The choice of this method ensures our work to be free from adjustable parameters and enables us to perform a microscopic study. (author)
International Nuclear Information System (INIS)
Weck, Philippe F.; Kim, Eunja
2016-01-01
The structure–property relationships of bulk CeO_2 and Ce_2O_3 have been investigated using AM05 and PBEsol exchange–correlation functionals within the frameworks of Hubbard-corrected density functional theory (DFT+U) and density functional perturbation theory (DFPT+U). Compared with conventional PBE+U, RPBE+U, PW91+U and LDA+U functionals, AM05+U and PBEsol+U describe experimental crystalline parameters and properties of CeO_2 and Ce_2O_3 with superior accuracy, especially when +U is chosen close to its value derived by the linear-response approach. Lastly, the present findings call for a reexamination of some of the problematic oxide materials featuring strong f- and d-electron correlation using AM05+U and PBEsol+U.
Hyde, Luke W; Byrd, Amy L; Votruba-Drzal, Elizabeth; Hariri, Ahmad R; Manuck, Stephen B
2014-02-01
Previous studies have emphasized that antisocial personality disorder (APD) and psychopathy overlap highly but differ critically in several features, notably negative emotionality (NEM) and possibly amygdala reactivity to social signals of threat and distress. Here we examined whether dimensions of psychopathy and APD correlate differentially with NEM and amygdala reactivity to emotional faces. Testing these relationships among healthy individuals, dimensions of psychopathy and APD were generated by the profile matching technique of Lynam and Widiger (2001), using facet scales of the NEO Personality Inventory-Revised, and amygdala reactivity was measured using a well-established emotional faces task, in a community sample of 103 men and women. Higher psychopathy scores were associated with lower NEM and lower amygdala reactivity, whereas higher APD scores were related to greater NEM and greater amygdala reactivity, but only after overlapping variance in APD and psychopathy was adjusted for in the statistical model. Amygdala reactivity did not mediate the relationship of APD and psychopathy scores to NEM. Supplemental analyses also compared other measures of factors within psychopathy in predicting NEM and amygdala reactivity and found that Factor 2 psychopathy was positively related to NEM and amygdala reactivity across measures of psychopathy. The overall findings replicate seminal observations on NEM in psychopathy by Hicks and Patrick (2006) and extend this work to neuroimaging in a normative population. They also suggest that one critical way in which APD and psychopathy dimensions may differ in their etiology is through their opposing levels of NEM and amygdala reactivity to threat. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Acar, Sezer; Paketçi, Ahu; Küme, Tuncay; Tuhan, Hale; Gürsoy Çalan, Özlem; Demir, Korcan; Böber, Ece; Abacı, Ayhan
2017-09-01
Galectin-1, a recently identified peptide, is primarily released from the adipose tissue. Although galectin-1 was shown to have an anti-inflammatory effect, its specific function is not clearly understood. We aimed to evaluate the relationship of serum galectin-1 levels with clinical and laboratory parameters in childhood obesity. A total of 45 obese children (mean age: 12.1±3.1years) and 35 normal-weight children (mean age: 11.8±2.2years) were enrolled. Clinical [body mass index (BMI), waist circumference (WC), percentage of body fat and blood pressure] and biochemical [glucose, insulin, lipids, galectin-1, high-sensitive C-reactive protein (hsCRP) and leptin levels] parameters were assessed. Serum galectin-1, hsCRP and leptin levels were significantly higher in obese children than those in normal-weight children (12.4 vs 10.2ng/mL, pobese children, galectin-1 levels correlated negatively with fasting glucose (r=-0.346, p=0.020) and positively with fat mass (r=0.326, p=0.026) and WC standard deviation score (SDS) (r=0.451, p=0.002). The multivariate regression analysis demonstrated that serum galectin-1 levels were significantly associated with fasting glucose and WC SDS. This study showed that obese children had significantly higher galectin-1 levels in proportion to fat mass in obese cases than those in healthy children, which may be interpreted as a compensatory increase in an attempt to improve glucose metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.
Sumbele, Sally; Fotelli, Mariangela N; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A; Karabourniotis, George
2012-01-01
Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective-defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (A(max)) and TP and CT across species from different ecosystems in different continents? A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. The results revealed a negative relationship between TP and CT and A(max) among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, A(max) and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species.
Energy Technology Data Exchange (ETDEWEB)
Moritz, B; Johnston, S; Greven, M; Shen, Z-X; Devereaux, T P [Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory and Stanford University, Stanford, CA 94305 (United States); Schmitt, F; Meevasana, W; Motoyama, E M [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Lu, D H [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Kim, C [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Scalettar, R T [Physics Department, University of California-Davis, Davis, CA 95616 (United States)], E-mail: moritzb@slac.stanford.edu
2009-09-15
Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.
Wang, Yinan; Kong, Feng; Huang, Lijie; Liu, Jia
2016-10-01
Self-esteem is a widely studied construct in psychology that is typically measured by the Rosenberg Self-Esteem Scale (RSES). However, a series of cross-sectional and longitudinal studies have suggested that a simple and widely used unidimensional factor model does not provide an adequate explanation of RSES responses due to method effects. To identify the neural correlates of the method effect, we sought to determine whether and how method effects were associated with the RSES and investigate the neural basis of these effects. Two hundred and eighty Chinese college students (130 males; mean age = 22.64 years) completed the RSES and underwent magnetic resonance imaging (MRI). Behaviorally, method effects were linked to both positively and negatively worded items in the RSES. Neurally, the right amygdala volume negatively correlated with the negative method factor, while the hippocampal volume positively correlated with the general self-esteem factor in the RSES. The neural dissociation between the general self-esteem factor and negative method factor suggests that there are different neural mechanisms underlying them. The amygdala is involved in modulating negative affectivity; therefore, the current study sheds light on the nature of method effects that are related to self-report with a mix of positively and negatively worded items. © 2015 Wiley Periodicals, Inc.
Cator, E; Van Mieghem, P
2014-05-01
By invoking the famous Fortuin, Kasteleyn, and Ginibre (FKG) inequality, we prove the conjecture that the correlation of infection at the same time between any pair of nodes in a network cannot be negative for (exact) Markovian susceptible-infected-susceptible (SIS) and susceptible-infected-removed (SIR) epidemics on networks. The truth of the conjecture establishes that the N-intertwined mean-field approximation (NIMFA) upper bounds the infection probability in any graph so that network design based on NIMFA always leads to safe protections against malware spread. However, when the infection or/and curing are not Poisson processes, the infection correlation between two nodes can be negative.
Cator, E.; Van Mieghem, P.
2014-05-01
By invoking the famous Fortuin, Kasteleyn, and Ginibre (FKG) inequality, we prove the conjecture that the correlation of infection at the same time between any pair of nodes in a network cannot be negative for (exact) Markovian susceptible-infected-susceptible (SIS) and susceptible-infected-removed (SIR) epidemics on networks. The truth of the conjecture establishes that the N-intertwined mean-field approximation (NIMFA) upper bounds the infection probability in any graph so that network design based on NIMFA always leads to safe protections against malware spread. However, when the infection or/and curing are not Poisson processes, the infection correlation between two nodes can be negative.
Bares, Cristina; Delva, Jorge
2012-01-01
Introduction: We examined the association of peer, parental, and environmental factors with negative attitudes toward cigarettes among youth from Santiago, Chile. Methods: A total of 860 youth from Santiago, Chile, completed questions regarding their lifetime use of cigarettes, intentions to smoke, attitudes toward cigarettes, and questions that assessed peer, parental, and environmental factors. Results: For both boys and girls, peer disapproval of smoking was associated with more negative attitudes toward cigarettes and peer smoking was associated with less negative attitudes toward cigarettes. Peer pressure was significantly associated with more negative attitudes toward cigarettes for girls only. Parental smoking was associated with less negative attitudes and parental control with more negative attitudes, but these associations were significant in the overall sample only. School prevention efforts and exposure to cigarette ads were not associated with cigarette attitudes. Difficulty in accessing cigarettes was positively associated with negative attitudes for boys and girls. Conclusion: Smoking prevention efforts focus on attitude change, but scant information is available about the experiences that influence Chilean youth’s attitudes toward cigarettes. Results from the current study suggest that prevention efforts could benefit from gender-specific strategies. Girls’ but not boys’ attitudes were influenced by peer pressure. Moreover, negative attitudes toward cigarettes were associated with lower current smoking in girls only. Parental smoking was an important influence on youth’s attitudes toward cigarettes. Efforts to reduce smoking among Chilean youth may benefit from concurrently reducing parental smoking. PMID:22157230
Lorenzo-Blanco, Elma I; Bares, Cristina; Delva, Jorge
2012-02-01
We examined the association of peer, parental, and environmental factors with negative attitudes toward cigarettes among youth from Santiago, Chile. A total of 860 youth from Santiago, Chile, completed questions regarding their lifetime use of cigarettes, intentions to smoke, attitudes toward cigarettes, and questions that assessed peer, parental, and environmental factors. For both boys and girls, peer disapproval of smoking was associated with more negative attitudes toward cigarettes and peer smoking was associated with less negative attitudes toward cigarettes. Peer pressure was significantly associated with more negative attitudes toward cigarettes for girls only. Parental smoking was associated with less negative attitudes and parental control with more negative attitudes, but these associations were significant in the overall sample only. School prevention efforts and exposure to cigarette ads were not associated with cigarette attitudes. Difficulty in accessing cigarettes was positively associated with negative attitudes for boys and girls. Smoking prevention efforts focus on attitude change, but scant information is available about the experiences that influence Chilean youth's attitudes toward cigarettes. Results from the current study suggest that prevention efforts could benefit from gender-specific strategies. Girls' but not boys' attitudes were influenced by peer pressure. Moreover, negative attitudes toward cigarettes were associated with lower current smoking in girls only. Parental smoking was an important influence on youth's attitudes toward cigarettes. Efforts to reduce smoking among Chilean youth may benefit from concurrently reducing parental smoking.
International Nuclear Information System (INIS)
Johnson, S.; Brown, S.; Porter, G.; Steel, J.; Paisley, K.; Watkins, R.; Holgate, C.
2011-01-01
Aim: To investigate whether the histopathological characteristics of primary breast cancer tumours could predict the likelihood of false-negative axillary ultrasound. Materials and methods: Screening and symptomatic patients were identified from pathology records and imaging and pathology records reviewed. True and false-negative axillary staging ultrasound groups were compared statistically in terms of tumour size, pathological type and grade, lymphovascular invasion, and oestrogen receptor (ER) status. Results: Of 155 women with normal ultrasounds, 45 (29%) were node positive at axillary surgery. Breast tumour size was significantly different with the average size smaller in the true-negative group: 21 versus 30 mm (p < 0.02). The histological type varied significantly between the groups, with more lobular carcinomas in the false-negative group [6/110 (5%) versus 6/45 (13%), p < 0.001]. The false-negative group was also more likely to show lymphovascular invasion in the breast [6/110 (5%) versus 14/45 (31%), p < 0.001]. There was no significant difference in tumour grade or ER status. Conclusion: The present study has found significant differences in tumour characteristics between women with true-negative and false-negative axillary staging ultrasound in terms of size, primary tumour histological type and presence of lymphovascular invasion. In particular, axillary ultrasound in primary lobular carcinoma may be less accurate and a negative result is more likely to be spurious than with primary ductal carcinomas.
Scherzer, Rebecca; Shen, Wei; Bacchetti, Peter; Kotler, Donald; Lewis, Cora E; Shlipak, Michael G; Heymsfield, Steven B; Grunfeld, Carl
2008-06-01
Studies in persons without HIV infection have compared percentage body fat (%BF) and waist circumference as markers of risk for the complications of excess adiposity, but only limited study has been conducted in HIV-infected subjects. We compared anthropometric and magnetic resonance imaging (MRI)-based adiposity measures as correlates of metabolic complications of adiposity in HIV-infected and control subjects. The study was a cross-sectional analysis of 666 HIV-positive and 242 control subjects in the Fat Redistribution and Metabolic Change in HIV Infection (FRAM) study assessing body mass index (BMI), waist (WC) and hip (HC) circumferences, waist-to-hip ratio (WHR), %BF, and MRI-measured regional adipose tissue. Study outcomes were 3 metabolic risk variables [homeostatic model assessment (HOMA), triglycerides, and HDL cholesterol]. Analyses were stratified by sex and HIV status and adjusted for demographic, lifestyle, and HIV-related factors. In HIV-infected and control subjects, univariate associations with HOMA, triglycerides, and HDL were strongest for WC, MRI-measured visceral adipose tissue, and WHR; in all cases, differences in correlation between the strongest measures for each outcome were small (r HDL, WC appeared to be the best anthropometric correlate of metabolic complications, whereas, for triglycerides, the best was WHR. Relations of simple anthropometric measures with HOMA, triglycerides, and HDL cholesterol are approximately as strong as MRI-measured whole-body adipose tissue depots in both HIV-infected and control subjects.
International Nuclear Information System (INIS)
Dahl, Edgar; Dunn, Sandra E; Mertens, Peter R; En-Nia, Abdelaziz; Wiesmann, Frank; Krings, Renate; Djudjaj, Sonja; Breuer, Elisabeth; Fuchs, Thomas; Wild, Peter J; Hartmann, Arndt
2009-01-01
Y-box binding protein-1 (YB-1) is the prototypic member of the cold shock protein family that fulfills numerous cellular functions. In the nucleus YB-1 protein orchestrates transcription of proliferation-related genes, whereas in the cytoplasm it associates with mRNA and directs translation. In human tumor entities, such as breast, lung and prostate cancer, cellular YB-1 expression indicates poor clinical outcome, suggesting that YB-1 is an attractive marker to predict patients' prognosis and, potentially, is suitable to individualize treatment protocols. Given these predictive qualities of YB-1 detection we sought to establish a highly specific monoclonal antibody (Mab) for diagnostic testing and its characterization towards outcome prediction (relapse-free and overall survival). Hybridoma cell generation was carried out with recombinant YB-1 protein as immunogen and Mab characterization was performed using immunoblotting and ELISA with recombinant and tagged YB-1 proteins, as well as immunohistochemistry of healthy and breast cancer specimens. Breast tumor tissue array staining results were analyzed for correlations with receptor expression and outcome parameters. YB-1-specific Mab F-E2G5 associates with conformational binding epitopes mapping to two domains within the N-terminal half of the protein and detects nuclear YB-1 protein by immunohistochemistry in paraffin-embedded breast cancer tissues. Prognostic evaluation of Mab F-E2G5 was performed by immunohistochemistry of a human breast cancer tissue microarray comprising 179 invasive breast cancers, 8 ductal carcinoma in situ and 37 normal breast tissue samples. Nuclear YB-1 detection in human breast cancer cells was associated with poor overall survival (p = 0.0046). We observed a close correlation between nuclear YB-1 detection and absence of progesterone receptor expression (p = 0.002), indicating that nuclear YB-1 detection marks a specific subgroup of breast cancer. Likely due to limitation of sample
Gonda, X; Eszlari, N; Kovacs, D; Anderson, I M; Deakin, J F W; Juhasz, G; Bagdy, G
2016-05-03
Several studies indicate that 5-HTTLPR mediates the effect of childhood adversity in the development of depression, while results are contradictory for recent negative life events. For childhood adversity the interaction with genotype is strongest for sexual abuse, but not for other types of childhood maltreatment; however, possible interactions with specific recent life events have not been investigated separately. The aim of our study was to investigate the effect of four distinct types of recent life events in the development of depressive symptoms in a large community sample. Interaction between different types of recent life events measured by the List of Threatening Experiences and the 5-HTTLPR genotype on current depression measured by the depression subscale and additional items of the Brief Symptom Inventory was investigated in 2588 subjects in Manchester and Budapest. Only a nominal interaction was found between life events overall and 5-HTTLPR on depression, which failed to survive correction for multiple testing. However, subcategorising life events into four categories showed a robust interaction between financial difficulties and the 5-HTTLPR genotype, and a weaker interaction in the case of illness/injury. No interaction effect for the other two life event categories was present. We investigated a general non-representative sample in a cross-sectional approach. Depressive symptoms and life event evaluations were self-reported. The 5-HTTLPR polymorphism showed a differential interaction pattern with different types of recent life events, with the strongest interaction effects of financial difficulties on depressive symptoms. This specificity of interaction with only particular types of life events may help to explain previous contradictory findings.
Directory of Open Access Journals (Sweden)
Grégoria eKalpouzos
2012-09-01
Full Text Available Some studies have suggested that the memory advantage for negative emotional information over neutral information (negativity effect is reduced in aging. Besides the fact that most findings are based on immediate retrieval, the neural underpinnings of long-term emotional memory in aging have so far not been investigated. To address these issues, we assessed recognition of neutral and negative scenes after one- and 3-week retention intervals in younger and older adults using fMRI. We further used an event-related design in order to disentangle successful, false and true recognition. This study revealed 4 key findings: 1 Increased retention interval induced an increased rate of false recognitions for negative scenes, cancelling out the negativity effect (present for hit rates only on discrimination in both younger and older adults; 2 In younger, but not older, adults, reduced activity of the medial temporal lobe was observed over time for neutral scenes, but not for negative scenes, where stable or increased activity was seen; 3 Engagement of amygdala was observed in older adults after a 3-week delay during successful recognition of negative scenes (hits versus misses in comparison with neutral scenes, which may indicate engagement of automatic processes, but engagement of ventrolateral prefrontal cortex was unrelated to amygdala activity and performance; and 4 After 3 weeks, but not after one week, true recognition of negative scenes was characterized by more activity in left hippocampus and lateral occipito-temporal regions (hits versus false alarms. As these regions are known to be related to consolidation mechanisms, the observed pattern may indicate the presence of delayed consolidation of true memories. Nonetheless, older adults’ low performance in discrimination of negative scenes could reflect the fact that overall, after long delays of retention, they rely more on general information rather than on perceptual detail in making
Small, David W; Head-Gordon, Martin
2017-07-14
The Coupled Cluster Valence Bond (CCVB) method, previously presented for closed-shell (CS) systems, is extended to open-shell (OS) systems. The theoretical development is based on embedding the basic OS CCVB wavefunction in a fictitious singlet super-system. This approach reveals that the OS CCVB amplitude equations are quite similar to those of CS CCVB, and thus that OS CCVB requires the same level of computational effort as CS CCVB, which is an inexpensive method. We present qualitatively correct CCVB potential energy curves for all low-lying spin states of P 2 and Mn 2 + . CCVB is successfully applied to the low-lying spin states of some model linear polycarbenes, systems that appear to be a hindrance to standard density functionals. We examine an octa-carbene dimer in a side-by-side orientation, which, in the monomer dissociation limit, exhibits maximal strong correlation over the length of the polycarbene.
Directory of Open Access Journals (Sweden)
Jiajin Yuan
Full Text Available BACKGROUND: Various affective disorders are linked with enhanced processing of unpleasant stimuli. However, this link is likely a result of the dominant negative mood derived from the disorder, rather than a result of the disorder itself. Additionally, little is currently known about the influence of mood on the susceptibility to emotional events in healthy populations. METHOD: Event-Related Potentials (ERP were recorded for pleasant, neutral and unpleasant pictures while subjects performed an emotional/neutral picture classification task during positive, neutral, or negative mood induced by instrumental Chinese music. RESULTS: Late Positive Potential (LPP amplitudes were positively related to the affective arousal of pictures. The emotional responding to unpleasant pictures, indicated by the unpleasant-neutral differences in LPPs, was enhanced during negative compared to neutral and positive moods in the entire LPP time window (600-1000 ms. The magnitude of this enhancement was larger with increasing self-reported negative mood. In contrast, this responding was reduced during positive compared to neutral mood in the 800-1000 ms interval. Additionally, LPP reactions to pleasant stimuli were similar across positive, neutral and negative moods except those in the 800-900 ms interval. IMPLICATIONS: Negative mood intensifies the humans' susceptibility to unpleasant events in healthy individuals. In contrast, music-induced happy mood is effective in reducing the susceptibility to these events. Practical implications of these findings were discussed.
International Nuclear Information System (INIS)
Freericks, J. K.; Turkowski, V.
2009-01-01
Spectral moment sum rules are presented for the inhomogeneous many-body problem described by the fermionic Falicov-Kimball or Hubbard models. These local sum rules allow for arbitrary hoppings, site energies, and interactions. They can be employed to quantify the accuracy of numerical solutions to the inhomogeneous many-body problem such as strongly correlated multilayered devices, ultracold atoms in an optical lattice with a trap potential, strongly correlated systems that are disordered, or systems with nontrivial spatial ordering such as a charge-density wave or a spin-density wave. We also show how the spectral moment sum rules determine the asymptotic behavior of the Green function, self-energy, and dynamical mean field when applied to the dynamical mean-field theory solution of the many-body problem. In particular, we illustrate in detail how one can dramatically reduce the number of Matsubara frequencies needed to solve the Falicov-Kimball model while still retaining high precision, and we sketch how one can incorporate these results into Hirsch-Fye quantum Monte Carlo solvers for the Hubbard (or more complicated) models. Since the solution of inhomogeneous problems is significantly more time consuming than periodic systems, efficient use of these sum rules can provide a dramatic speed up in the computational time required to solve the many-body problem. We also discuss how these sum rules behave in nonequilibrium situations as well, where the Hamiltonian has explicit time dependence due to a driving field or due to the time-dependent change in a parameter such as the interaction strength or the origin of the trap potential.
Covington, Michael A; Lunden, S L Anya; Cristofaro, Sarah L; Wan, Claire Ramsay; Bailey, C Thomas; Broussard, Beth; Fogarty, Robert; Johnson, Stephanie; Zhang, Shayi; Compton, Michael T
2012-12-01
Aprosody, or flattened speech intonation, is a recognized negative symptom of schizophrenia, though it has rarely been studied from a linguistic/phonological perspective. To bring the latest advances in computational linguistics to the phenomenology of schizophrenia and related psychotic disorders, a clinical first-episode psychosis research team joined with a phonetics/computational linguistics team to conduct a preliminary, proof-of-concept study. Video recordings from a semi-structured clinical research interview were available from 47 first-episode psychosis patients. Audio tracks of the video recordings were extracted, and after review of quality, 25 recordings were available for phonetic analysis. These files were de-noised and a trained phonologist extracted a 1-minute sample of each patient's speech. WaveSurfer 1.8.5 was used to create, from each speech sample, a file of formant values (F0, F1, F2, where F0 is the fundamental frequency and F1 and F2 are resonance bands indicating the moment-by-moment shape of the oral cavity). Variability in these phonetic indices was correlated with severity of Positive and Negative Syndrome Scale negative symptom scores using Pearson correlations. A measure of variability of tongue front-to-back position-the standard deviation of F2-was statistically significantly correlated with the severity of negative symptoms (r=-0.446, p=0.03). This study demonstrates a statistically significant and meaningful correlation between negative symptom severity and phonetically measured reductions in tongue movements during speech in a sample of first-episode patients just initiating treatment. Further studies of negative symptoms, applying computational linguistics methods, are warranted. Copyright © 2012 Elsevier B.V. All rights reserved.
Scherzer, Rebecca; Shen, Wei; Bacchetti, Peter; Kotler, Donald; Lewis, Cora E; Shlipak, Michael G; Heymsfield, Steven B
2008-01-01
Background Studies in persons without HIV infection have compared percentage body fat (%BF) and waist circumference as markers of risk for the complications of excess adiposity, but only limited study has been conducted in HIV-infected subjects. Objective We compared anthropometric and magnetic resonance imaging (MRI)–based adiposity measures as correlates of metabolic complications of adiposity in HIV-infected and control subjects. Design The study was a cross-sectional analysis of 666 HIV-positive and 242 control subjects in the Fat Redistribution and Metabolic Change in HIV Infection (FRAM) study assessing body mass index (BMI), waist (WC) and hip (HC) circumferences, waist-to-hip ratio (WHR), %BF, and MRI-measured regional adipose tissue. Study outcomes were 3 metabolic risk variables [homeostatic model assessment (HOMA), triglycerides, and HDL cholesterol]. Analyses were stratified by sex and HIV status and adjusted for demographic, lifestyle, and HIV-related factors. Results In HIV-infected and control subjects, univariate associations with HOMA, triglycerides, and HDL were strongest for WC, MRI-measured visceral adipose tissue, and WHR; in all cases, differences in correlation between the strongest measures for each outcome were small (r ≤ 0.07). Multivariate adjustment found no significant difference for optimally fitting models between the use of anthropometric and MRI measures, and the magnitudes of differences were small (adjusted R2 ≤ 0.06). For HOMA and HDL, WC appeared to be the best anthropometric correlate of metabolic complications, whereas, for triglycerides, the best was WHR. Conclusion Relations of simple anthropometric measures with HOMA, triglycerides, and HDL cholesterol are approximately as strong as MRI-measured whole-body adipose tissue depots in both HIV-infected and control subjects. PMID:18541572
Kinnunen, U.; Feldt, T.; Geurts, S.A.E.; Pulkkinen, L.
2006-01-01
The aim of the present study was to test the structure of the work-family interface measure, which was intended to take into account both the positive and negative spillover between work and family demands in both directions. In addition, the links among the types of work-family spillover and the
Strien, J.W.; van Kampen, D.
2010-01-01
Fourteen men scoring high and 14 men scoring low on a positive schizotypy scale participated in a lateralized emotional Stroop task. Vocal reaction times for color naming of neutral, positive and negative emotional words were recorded. Across participants, the color naming of neutral and emotional
Moshier, M. S.; York, T. P.; Silberg, J. L.; Elsea, S. H.
2012-01-01
Background: Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder that affects approximately one out of 25 000 births worldwide. To date, no research has been conducted to investigate how having an individual with SMS in a family is a positive or negative influence on siblings. Methods: To investigate this question we conducted a study…
DEFF Research Database (Denmark)
Kupers, Ron; Frokjaer, Vibe G.; Erritzoe, David
2010-01-01
There is a large body of evidence that the serotonergic system plays an important role in the transmission and regulation of pain. Here we used positron emission tomography (PET) with the serotonin transporter (SERT) tracer [11C]DASB to study the relationship between SERT binding in the brain and....... The negative correlation between SERT binding in the hypothalamus and insula with tonic pain ratings suggests a possible serotonergic control of the role of these areas in the modulation or in the affective appreciation of pain.......) tonic noxious heat stimulus. PET data were analyzed using both volume-of-interest (VOI) and voxel-based approaches. VOI analysis revealed a significant negative correlation between tonic pain ratings and SERT binding in the hypothalamus (r = −0.59; p = 0.008), a finding confirmed by the parametric...... analysis. The parametric analysis also revealed a negative correlation between tonic pain ratings and SERT binding in the right anterior insula. Measures of regional SERT binding did not correlate with pain threshold or with responses to short phasic suprathreshold phasic heat stimuli. Finally, the VOI...
Zhang, Hao; Guan, Shihe; Yang, Kai; Ye, Jun; Yan, Kaili; Pan, Ying; Wu, Yuanyuan; Wang, Aihua; Sun, Beibei
2015-10-01
To study the frequency of CD14⁺HLA-DR(-/low) myeloid-derived suppressor cells (MDSCs) in the peripheral blood of chronic hepatitis B (CHB) patients and the relationship with biochemical characteristics, viral load and liver pathology. The frequency of CD14⁺HLA-DR(-/low) MDSCs in the peripheral blood of 96 patients with CHB and 20 healthy control cases were detected by flow cytometry. Ultrasound-guided liver biopsies as well as HBV-related serological tests were performed in HBV-infected individuals to analyze the biochemical characteristics, viral load and pathology. The data were assessed using Spearman correlation analysis. The frequency of the peripheral blood CD14⁺HLA-DR(-/low) MDSCs in the 96 CHB cases was (6.03 ± 0.09)%, which was significantly higher than that of the 20 healthy control cases (1.87 ± 0.05)%. The group of HBeAg positive cases had a significantly higher frequency of the peripheral blood CD14⁺HLA-DR(-/low) MDSCs compared with the group of HBeAg negative cases and the healthy control group. The frequency of CD14⁺HLA-DR(-/low) MDSCs in the peripheral blood was negatively correlated with serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. There was no correlation between the frequency of peripheral blood CD14⁺HLA-DR(-/low) MDSCs and HBV load. The frequency of CD14⁺HLA-DR(-/low) MDSCs in the peripheral blood was negatively correlated with the liver inflammation grade, but not related with the fibrosis stage in patients with CHB. The frequency of CD14⁺HLA-DR(-/low) MDSCs is negatively correlated with the inflammation of CHB.
Berger, Barbara; Minarik, Tamas; Griesmayr, Birgit; Stelzig-Schoeler, Renate; Aichhorn, Wolfgang; Sauseng, Paul
2016-01-01
Working Memory and executive functioning deficits are core characteristics of patients suffering from schizophrenia. Electrophysiological research indicates that altered patterns of neural oscillatory mechanisms underpinning executive functioning are associated with the psychiatric disorder. Such brain oscillatory changes have been found in local amplitude differences at gamma and theta frequencies in task-specific cortical areas. Moreover, interregional interactions are also disrupted as signified by decreased phase coherence of fronto-posterior theta activity in schizophrenia patients. However, schizophrenia is not a one-dimensional psychiatric disorder but has various forms and expressions. A common distinction is between positive and negative symptomatology but most patients have both negative and positive symptoms to some extent. Here, we examined three groups-healthy controls, predominantly negative, and predominantly positive symptomatic schizophrenia patients-when performing a working memory task with increasing cognitive demand and increasing need for executive control. We analyzed brain oscillatory activity in the three groups separately and investigated how predominant symptomatology might explain differences in brain oscillatory patterns. Our results indicate that differences in task specific fronto-posterior network activity (i.e., executive control network) expressed by interregional phase synchronization are able to account for working memory dysfunctions between groups. Local changes in the theta and gamma frequency range also show differences between patients and healthy controls, and more importantly, between the two patient groups. We conclude that differences in oscillatory brain activation patterns related to executive processing can be an indicator for positive and negative symptomatology in schizophrenia. Furthermore, changes in cognitive and especially executive functioning in patients are expressed by alterations in a task-specific fronto
International Nuclear Information System (INIS)
Bishop, Raymond F; Krueger, Sven E
2003-01-01
The coupled cluster method (CCM) of microscopic quantum many-body theory has become an ab initio method of first choice in quantum chemistry and many fields of nuclear, subnuclear and condensed matter physics, when results of high accuracy are required. In recent years it has begun to be applied with equal success to strongly correlated systems of electrons or quantum spins defined on a regular spatial lattice. One regularly finds that the CCM is able to describe accurately the various zero-temperature phases and the quantum phase transitions between them, even when frustration is present and other methods such as quantum Monte Carlo often fail. We illustrate the use and powerfulness of the method here by applying it to a square-lattice spin-half Heisenberg model where frustration is introduced by competing nearest neighbour bonds. The model exhibits the physically interesting phenomenon of competition between magnetic order and dimerization. Results obtained for the model with the CCM are compared with those found from spin-wave theory and from extrapolating the results of exact diagonalizations of small lattices. We show that the CCM is essentially unique among available methods in being able both to describe accurately all phases of this complex model and to provide accurate predictions of the various phase boundaries and the order of the corresponding transitions
Veeraraghavan, Srikant; Mazziotti, David A
2014-03-28
We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502-R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C2, CN, Cr2, and NO2.
Bize, Pierre; Daniel, Grégory; Viblanc, Vincent A; Martin, Julien G A; Doligez, Blandine
2017-07-01
Natural selection is expected to favour the integration of dispersal and phenotypic traits allowing individuals to reduce dispersal costs. Accordingly, associations have been found between dispersal and personality traits such as aggressiveness and exploration, which may facilitate settlement in a novel environment. However, the determinism of these associations has only rarely been explored. Here, we highlight the functional integration of individual personality in nest-defence behaviour and natal dispersal propensity in a long-lived colonial bird, the Alpine swift ( Apus melba ), providing insights into genetic constraints shaping the coevolution of these two traits. We report a negative association between natal dispersal and nest-defence (i.e. risk taking) behaviour at both the phenotypic and genetic level. This negative association may result from direct selection if risk-averseness benefits natal dispersers by reducing the costs of settlement in an unfamiliar environment, or from indirect selection if individuals with lower levels of nest defence also show lower levels of aggressiveness, reducing costs of settlement among unfamiliar neighbours in a colony. In both cases, these results highlight that risk taking is an important behavioural trait to consider in the study of dispersal evolution. © 2017 The Author(s).
International Nuclear Information System (INIS)
Kiesel, Maximilian Ludwig
2013-01-01
A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate Na x CoO 2 and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general considerations on
Energy Technology Data Exchange (ETDEWEB)
Kiesel, Maximilian Ludwig
2013-02-08
A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate Na{sub x}CoO{sub 2} and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general
Jie, Ding; Zhongmin, Zhang; Guoqing, Liao; Sheng, Liu; Yi, Zhang; Jing, Wen; Liang, Zeng
2013-06-01
The first identified lysine-specific demethylase, LSD1, plays an important role in the metastatic progression of several types of cancer. The aim of this study was to investigate LSD1, E-cadherin, and N-cadherin expression in colon cancer specimens and their clinical significance. The expression of LSD1, E-cadherin, and N-cadherin in colon cancer specimens was determined by immunohistochemistry, and the relationship between the expression of the respective molecules and clinicopathological characteristics was analyzed. The positive expression rates of LSD1, E-cadherin, and N-cadherin in colon cancer specimens were 66.7 % (72/108), 85.2 % (92/108), and 41.7 % (45/108), respectively. LSD1 was significantly more highly expressed in colon cancer specimens classified as high TNM stage lesions and with distant metastasis (P colon cancer specimens classified as high TNM stage lesions and with distant metastasis (P clinical and pathological characteristics (P > 0.05). Correlation analysis revealed that LSD1 expression was negatively correlated with E-cadherin expression (r s = -0.318, P = 0.001), but not evidently correlated with N-cadherin expression (r s = 0.182, P = 0.06). Colon cancer specimens with positive LSD1 expression and negative E-cadherin expression were correlated with significantly lower overall survival. LSD1 showed a significantly higher expression, in contrast to the significantly lower expression of E-cadherin, in colon cancer specimens classified as high TNM stage lesions and with distant metastasis. Positive expression of LSD1 and negative expression of E-cadherin may be predictors of a worse colon cancer prognosis.
James, Andrew J A; Konik, Robert M; Lecheminant, Philippe; Robinson, Neil J; Tsvelik, Alexei M
2018-02-26
We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symmetries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1 + 1D quantum chromodynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.
James, Andrew J. A.; Konik, Robert M.; Lecheminant, Philippe; Robinson, Neil J.; Tsvelik, Alexei M.
2018-04-01
We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symmetries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb–Liniger model, 1 + 1D quantum chromodynamics, as well as Landau–Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.
Energy Technology Data Exchange (ETDEWEB)
Doyen, J. [Department of Radiation Oncology, Centre A. Lacassagne, Nice (France); Trastour, C. [Department of Gynecology, Archet II Hospital, 06202 Nice (France); Ettore, F.; Peyrottes, I.; Toussant, N. [Department of Pathology, Centre A. Lacassagne, Nice (France); Gal, J. [Department of Medical Statistics, Centre A. Lacassagne, Nice (France); Ilc, K.; Roux, D. [Institute for Research on Cancer and Aging (IRCAN), University of Nice, Centre A. Lacassagne, 06189 Nice (France); Parks, S.K. [Centre Scientifique de Monaco (CSM) (Monaco); Ferrero, J.M. [Department of Medical Oncology, Centre A. Lacassagne, Nice (France); Pouysségur, J., E-mail: jacques.pouyssegur@unice.fr [Institute for Research on Cancer and Aging (IRCAN), University of Nice, Centre A. Lacassagne, 06189 Nice (France); Centre Scientifique de Monaco (CSM) (Monaco)
2014-08-15
Highlights: • Glycolytic markers are highly expressed in triple negative breast cancers. • Lactate/H{sup +} symporter MCT4 demonstrated the strongest deleterious impact on survival. • MCT4 should serve as a new prognostic factor in node-negative breast cancers. - Abstract: Background: {sup 18}Fluor-deoxy-glucose PET-scanning of glycolytic metabolism is being used for staging in many tumors however its impact on prognosis has never been studied in breast cancer. Methods: Glycolytic and hypoxic markers: glucose transporter (GLUT1), carbonic anhydrase IX (CAIX), monocarboxylate transporter 1 and 4 (MCT1, 4), MCT accessory protein basigin and lactate-dehydrogenase A (LDH-A) were assessed by immunohistochemistry in two cohorts of breast cancer comprising 643 node-negative and 127 triple negative breast cancers (TNBC) respectively. Results: In the 643 node-negative breast tumor cohort with a median follow-up of 124 months, TNBC were the most glycolytic (≈70%), followed by Her-2 (≈50%) and RH-positive cancers (≈30%). Tumoral MCT4 staining (without stromal staining) was a strong independent prognostic factor for metastasis-free survival (HR = 0.47, P = 0.02) and overall-survival (HR = 0.38, P = 0.002). These results were confirmed in the independent cohort of 127 cancer patients. Conclusion: Glycolytic markers are expressed in all breast tumors with highest expression occurring in TNBC. MCT4, the hypoxia-inducible lactate/H{sup +} symporter demonstrated the strongest deleterious impact on survival. We propose that MCT4 serves as a new prognostic factor in node-negative breast cancer and can perhaps act soon as a theranostic factor considering the current pharmacological development of MCT4 inhibitors.
Miyai, Caio A; Carretero Sanches, Fábio H; Costa, Tânia M; Colpo, Karine Delevati; Volpato, Gilson L; Barreto, Rodrigo E
2011-12-01
Eye darkening has been linked to social status in fish. The subordinate's eyes darken, while the eyes of the dominant fish become pale. Although this phenomenon has been described in salmonid fishes and in the African cichlid Nile tilapia Oreochromis niloticus, it is unclear whether eye darkening correlates with a reduction in aggressive behaviour. Thus, we evaluated the link between social status and eye darkening. We evaluated whether the eye colours of subordinate fish correlate with the frequency of received attacks in a neotropical fish, the pearl cichlid Geophagus brasiliensis. We paired pearl cichlids and quantified both the aggressive behaviour and the eye darkening of each fish. As has been described for Nile tilapia and Atlantic salmon, a clear-cut hierarchical relationship formed, where dominance and subordination were associated with pale and dark eye colours, respectively. Initially, eye colour darkening was positively correlated with the frequency of received attacks; however, a negative association occurred following eye darkening, in which the intensity of aggressive interactions decreased. Thus, fish that initially received a high number of attacks signalled subordination more rapidly and intensely (rapid and dramatic eye darkening), thereby inducing a negative social feedback mechanism that led to reduced aggression. Copyright Â© 2011 Elsevier GmbH. All rights reserved.
Chao, Wen-Cheng; Huang, Yi-Wen; Yu, Ming-Chih; Yang, Wen-Ta; Lin, Chou-Jui; Lee, Jen-Jyh; Huang, Ruay-Ming; Shieh, Chi-Chang; Chien, Shun-Tien; Chien, Jung-Yien
2015-02-18
The appearance of smear-positivity but culture-negativity (SPCN) for acid-fast bacilli among sputum specimen is frequently found in pulmonary tuberculosis (TB) patients during treatment. This study aimed to investigate clinical risk factors, impacts on treatment course, and relapse pattern associated with sputum SPCN. We retrospectively enrolled 800 patients with culture-proven pulmonary TB who were receiving standard treatment and follow-up at six TB-referral hospitals in Taiwan between January 2006 and December 2007. Relevant patient characteristics and chemotherapy data were analyzed for associations with incidence of SPCN. Data from patients who relapsed within 3 years after completing treatment were analyzed for associations with SPCN during treatment. Of the 800 subjects, 111 (13.8%) had sputum SPCN during treatment. Three factors were found to predict the development of SPCN; namely, high initial acid-fast staining grading (OR, 3.407; 95% CI, 2.090-5.553), cavitation on chest-X ray films (OR, 2.217; 95% CI, 1.359-3.615), and smoking (OR, 1.609; 95% CI, 1.006-2.841). Patients with SPCN had longer treatment duration (rifampicin: 284 ± 91 vs. 235 ± 69 days, P <0.001; isoniazid: 289 ± 90 vs. 234 ± 69 days, P < 0.001) than those without SPCN. Finally, the rate of relapse within 3 years of completing treatment was similar for groups with/without SPCN (2.7%, 3/111 vs. 1.0%, 7/689, respectively; P = 0.15). In conclusion, severity of infection was a major risk factor for SPCN during treatment; however, the relapse rate within 3 years of completing treatment was not affected by the appearance of SPCN.
Directory of Open Access Journals (Sweden)
Shrestha LB
2018-04-01
Full Text Available Lok Bahadur Shrestha, Narayan Raj Bhattarai, Basudha Khanal Department of Microbiology and Infectious Diseases, B. P. Koirala Institute of Health Sciences, Dharan, Nepal Introduction: Coagulase-negative staphylococci (CNS are normal commensals of human skin and mucous membranes. The objective of the study was to determine the prevalence of CNS among clinical isolates, characterize them up to species level, compare the three conventional methods for detection of biofilm formation, and study their antimicrobial susceptibility pattern.Materials and methods: CNS were obtained from various clinical samples including blood, urine, central venous catheter tips, endotracheal tube aspirate, and pus during a 1-year period (July 1, 2014, to June 30, 2015. Characterization up to species level was done using biochemical tests, and biofilm formation was detected by tube adherence, Congo red agar, and tissue culture plate method. Antimicrobial susceptibility testing was performed following Clinical and Laboratory Standards Institute guidelines.Results: A total of 71 CNS isolates, comprising of seven species were obtained. Staphylococcus epidermidis was the most common species followed by S. saprophyticus and S. haemolyticus. We detected biofilm formation in 71.8% of isolates. Considering the fact that tissue culture plate method is the gold standard, sensitivity of tube adherence method and Congo red agar method was found as 82% and 78%, respectively. The isolates exhibited high resistance toward penicillin (90%, azithromycin (60%, co-trimoxazole (60%, and ceftriaxone (40%, while all were susceptible to vancomycin and linezolid. Biofilm former isolates showed higher resistance than the non-formers.Conclusion: Among 71 CNS isolated, S. epidermidis was the most common isolate followed by S. saprophyticus and S. haemolyticus. Biofilm formation was detected in 71.8% of the isolates. All of the methods were effective in detecting biofilm-producing CNS strains. The
Fearon, R M Pasco; Reiss, David; Leve, Leslie D; Shaw, Daniel S; Scaramella, Laura V; Ganiban, Jody M; Neiderhiser, Jenae M
2015-11-01
Past research has documented pervasive genetic influences on emotional and behavioral disturbance across the life span and on liability to adult psychiatric disorder. Increasingly, interest is turning to mechanisms of gene-environment interplay in attempting to understand the earliest manifestations of genetic risk. We report findings from a prospective adoption study, which aimed to test the role of evocative gene-environment correlation in early development. Included in the study were 561 infants adopted at birth and studied between 9 and 27 months, along with their adoptive parents and birth mothers. Birth mother psychiatric diagnoses and symptoms scales were used as indicators of genetic influence, and multiple self-report measures were used to index adoptive mother parental negativity. We hypothesized that birth mother psychopathology would be associated with greater adoptive parent negativity and that such evocative effects would be amplified under conditions of high adoptive family adversity. The findings suggested that genetic factors associated with birth mother externalizing psychopathology may evoke negative reactions in adoptive mothers in the first year of life, but only when the adoptive family environment is characterized by marital problems. Maternal negativity mediated the effects of genetic risk on child adjustment at 27 months. The results underscore the importance of genetically influenced evocative processes in early development.
International Nuclear Information System (INIS)
Bordovsky, G. A.; Nemov, S. A.; Marchenko, A. V.; Seregin, P. P.
2012-01-01
The results of the study of donor U − -centers of tin and germanium in lead chalcogenides by Mössbauer emission spectroscopy are discussed. The published data regarding the identification of amphoteric U − -centers of tin in glassy binary arsenic and germanium chalcogenides using Mössbauer emission spectroscopy, and in multicomponent chalcogenide glasses using Mössbauer absorption spectroscopy are considered. Published data concerning the identification of two-atom U − -centers of copper in lattices of semimetal copper oxides by Mössbauer emission spectroscopy are analyzed. The published data on the detection of spatial inhomogeneity of the Bose-Einstein condensate in superconducting semiconductors and semimetal compounds, and on the existence of the correlation between the electron density in lattice sites and the superconducting transition temperature are presented. The principal possibility of using Mössbauer U − -centers as a tool for studying the Bose-Einstein condensation of electron pairs during the superconducting phase transition in semiconductors and semimetals is considered.
Energy Technology Data Exchange (ETDEWEB)
Bouis, F
1999-10-14
Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)
Forrest, Matthew J; Schlaepfer, Martin A
2011-01-01
Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis), from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10-50°C), including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75-100% in water 30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications.There must be quite a few things a hot bath won't cure, but I don't know many of them--Sylvia Plath, "The Bell Jar" (1963).
Directory of Open Access Journals (Sweden)
Matthew J Forrest
Full Text Available Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd. Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis, from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10-50°C, including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75-100% in water 30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications.There must be quite a few things a hot bath won't cure, but I don't know many of them--Sylvia Plath, "The Bell Jar" (1963.
Directory of Open Access Journals (Sweden)
Ming-Bao Ye
2017-06-01
Full Text Available Objective: To study the SDF-1/CXCR4 expression in bladder cancer tissue and the correlation with negative costimulatory molecule PD-L1, cell apoptosis and invasion. Methods: A total of 118 cases of bladder cancer tissue and para-carcinoma tissue surgically removed in our hospital between May 2014 and May 2016 were selected as the research samples, the RNA was extracted and then reverse-transcribed into cDNA, and the expression levels of SDF-1/ CXCR4, PD-L1/PD-1, cell apoptosis-related molecules and cell invasion-related molecules were detected. Results: SDF-1 and CXCR4 mRNA expression in bladder cancer tissue were significantly higher than those in para-carcinoma tissue; PD-L1, PD-1, Rec1, Survivin, MRPS5, Nanog, BCAPP2Ac, TRPM8, TRPV2, ILK, β-catenin and GUGBP1 mRNA expression in bladder cancer tissue were significantly higher than those in para-carcinoma tissue and positively correlated with SDF-1 and CXCR4 mRNA expression. Conclusion: Highly expressed SDF-1/CXCR4 in bladder cancer tissue are closely related to the high expression of negative costimulatory molecule PD-L1, pro-proliferation molecules and proinvasion molecules, and SDF-1/CXCR4 can promote the immune escape, proliferation and invasion of bladder cancer cells.
Energy Technology Data Exchange (ETDEWEB)
Krsek, Pavel; Komarek, Vladimir [Charles University, Department of Pediatric Neurology, Second Medical School, Motol Hospital, Prague (Czech Republic); Hajek, Milan [Institute for Clinical and Experimental Medicine, MR Unit, Department of Diagnostic and Interventional Radiology, Prague (Czech Republic); Institute for Clinical and Experimental Medicine, MR Spectroscopy, Prague 4 (Czech Republic); Dezortova, Monika; Jiru, Filip; Skoch, Antonin [Institute for Clinical and Experimental Medicine, MR Unit, Department of Diagnostic and Interventional Radiology, Prague (Czech Republic); Marusic, Petr [Charles University, Department of Neurology, Second Medical School, Motol Hospital, Prague (Czech Republic); Zamecnik, Josef [Charles University, Department of Pathology and Molecular Medicine, Second Medical School, Motol Hospital, Prague (Czech Republic); Kyncl, Martin [Charles University, Department of Radiology, Second Medical School, Motol Hospital, Prague (Czech Republic); Tichy, Michal [Charles University, Department of Pediatric Neurosurgery, Second Medical School, Motol Hospital, Prague (Czech Republic)
2007-08-15
Proton magnetic resonance spectroscopy ({sup 1}H MRS) is beneficial in the lateralization of the epileptogenic zone in temporal lobe epilepsy; however, its role in extratemporal and, especially, MRI-negative epilepsy has not been established. This study seeks to verify how {sup 1}H MRS could help in localizing the epileptogenic zone in patients with MRI-negative extratemporal epilepsy. Seven patients (8-23 years) with MRI-negative refractory focal epilepsy were studied using {sup 1}H MRS on a 1.5T MR system. Chemical shift imaging sequence in the transversal plane was directed towards the suspected epileptogenic zone localized by seizure semiology, scalp video/EEG, ictal SPECT and {sup 18}FDG-PET. Spectra were evaluated using the program CULICH, and the coefficient of asymmetry was used for quantitative lateralization. MRS detected lateralization in all patients and was able to localize pathology in five. The most frequent findings were decreased ratios of N-acetylaspartate to choline compounds characterized by increasing choline concentration. The localization of the {sup 1}H MRS abnormality correlated well with ictal SPECT and subdural mapping. In all cases, histopathological analysis revealed MRI-undetected focal cortical dysplasias. {sup 1}H MRS could be more sensitive for the detection of discrete malformations of cortical development than conventional MRI. It is valuable in the presurgical evaluation of patients without MRI-apparent lesions. (orig.)
Directory of Open Access Journals (Sweden)
Philip ePrinz
2015-06-01
Full Text Available Bile acids may be involved in the regulation of food intake and energy metabolism. The aim of the study was to investigate the association of plasma bile acids with body mass index (BMI and the possible involvement of circulating bile acids in the modulation of physical activity and eating behavior. Blood was obtained in a group of hospitalized patients with normal weight (BMI 18.5-25 kg/m2, underweight (anorexia nervosa, BMI 50 kg/m2, n=14-15/group and plasma bile acid concentrations assessed. Physical activity and plasma bile acids were measured in a group of patients with anorexia nervosa (BMI 14.6±0.3 kg/m2, n=43. Lastly, in a population of obese patients (BMI 48.5±0.9 kg/m2, n=85, psychometric parameters related to disordered eating and plasma bile acids were assessed. Plasma bile acids showed a positive correlation with BMI (r=0.26, p=0.03 in the population of patients with broad range of BMI (9-85 kg/m2, n=74. No associations were observed between plasma bile acids and different parameters of physical activity in anorexic patients (p>0.05. Plasma bile acids were negatively correlated with cognitive restraint of eating (r=-0.30, p=0.008, while no associations were observed with other psychometric eating behavior-related parameters (p>0.05 in obese patients. In conclusion, these data may point towards a role of bile acids in the regulation of body weight. Since plasma bile acids are negatively correlated with the cognitive restraint of eating in obese patients, this may represent a compensatory adaptation to prevent further overeating.
Lausch, V; Hermann, P; Laue, M; Bannert, N
2014-06-01
Successive application of negative staining transmission electron microscopy (TEM) and tip-enhanced Raman spectroscopy (TERS) is a new correlative approach that could be used to rapidly and specifically detect and identify single pathogens including bioterrorism-relevant viruses in complex samples. Our objective is to evaluate the TERS-compatibility of commonly used electron microscopy (EM) grids (sample supports), chemicals and negative staining techniques and, if required, to devise appropriate alternatives. While phosphortungstic acid (PTA) is suitable as a heavy metal stain, uranyl acetate, paraformaldehyde in HEPES buffer and alcian blue are unsuitable due to their relatively high Raman scattering. Moreover, the low thermal stability of the carbon-coated pioloform film on copper grids (pioloform grids) negates their utilization. The silicon in the cantilever of the silver-coated atomic force microscope tip used to record TERS spectra suggested that Si-based grids might be employed as alternatives. From all evaluated Si-based TEM grids, the silicon nitride (SiN) grid was found to be best suited, with almost no background Raman signals in the relevant spectral range, a low surface roughness and good particle adhesion properties that could be further improved by glow discharge. Charged SiN grids have excellent particle adhesion properties. The use of these grids in combination with PTA for contrast in the TEM is suitable for subsequent analysis by TERS. The study reports fundamental modifications and optimizations of the negative staining EM method that allows a combination with near-field Raman spectroscopy to acquire a spectroscopic signature from nanoscale biological structures. This should facilitate a more precise diagnosis of single viral particles and other micro-organisms previously localized and visualized in the TEM. © 2014 The Society for Applied Microbiology.
Energy Technology Data Exchange (ETDEWEB)
Huang, Yin-Nan, E-mail: ynhuang@ntu.edu.tw [Dept. of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Yen, Wen-Yi, E-mail: b01501059@ntu.edu.tw [Dept. of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Whittaker, Andrew S., E-mail: awhittak@buffalo.edu [Dept. of Civil, Structural and Environmental Engineering, MCEER, State University of New York at Buffalo, Buffalo, NY 14260 (United States)
2016-12-15
Highlights: • The correlation of components of ground motion is studied using 1689 sets of records. • The data support an upper bound of 0.3 on the correlation coefficient. • The data support the related requirement in the upcoming edition of ASCE Standard 4. - Abstract: Design standards for safety-related nuclear facilities such as ASCE Standard 4-98 and ASCE Standard 43-05 require the correlation coefficient for two orthogonal components of ground motions for response-history analysis to be less than 0.3. The technical basis of this requirement was developed by Hadjian three decades ago using 50 pairs of recorded ground motions that were available at that time. In this study, correlation coefficients for (1) two horizontal components, and (2) the vertical component and one horizontal component, of a set of ground motions are computed using records from a ground-motion database compiled recently for large-magnitude shallow crustal earthquakes. The impact of the orientation of the orthogonal horizontal components on the correlation coefficient of ground motions is discussed. The rules in the forthcoming edition of ASCE Standard 4 for the correlation of components in a set of ground motions are shown to be reasonable.
Dessi, Roberta; Rustichini, Aldo
2015-01-01
A large literature in psychology, and more recently in economics, has argued that monetary rewards can reduce intrinsic motivation. We investigate whether the negative impact persists when intrinsic motivation is strong, and test this hypothesis experimentally focusing on the motivation to undertake interesting and challenging tasks, informative about individual ability. We find that this type of task can generate strong intrinsic motivation, that is impervious to the effect of monetary incen...
AUTHOR|(INSPIRE)INSPIRE-00508100
The strong interaction is one of the four fundamental forces of nature. It binds together quarks inside protons and neutrons (which are example of baryons - particles composed of three quarks) and assures the stability of the atomic nucleus. Parameters describing the strong potential are also crucial for the neutron stars models used in astrophysics. What is more, a precise study of strongly interacting particles may help to better understand the process of baryon annihilation. The current knowledge of the strong interactions between baryons other than nucle- ons is limited - there exist only a few measurements of the cross sections for pairs of (anti)baryons. The reason is that in many cases it is not possible to perform scattering experiments with beams of particles and antiparticles, as the exotic matter (such as Λ, Ξ or Σ baryons) is very shot-living. This issue can be solved thanks to the recent particle colliders like the Large Hadron Collider and experiments dedicated to study the heavy-ion collisio...
Energy Technology Data Exchange (ETDEWEB)
Koo, Hye Ryoung [Seoul National University College of Medicine, Department of Radiology, 28 Yongon-dong, Chongno-gu, Seoul (Korea, Republic of); Hanyang University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Park, Jeong Seon [Hanyang University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Kang, Keon Wook [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Han, Wonshik [Seoul National University College of Medicine, Department of Surgery, Seoul (Korea, Republic of); Park, In Ae [Seoul National University College of Medicine, Department of Pathology, Seoul (Korea, Republic of); Moon, Woo Kyung [Seoul National University College of Medicine, Department of Radiology, 28 Yongon-dong, Chongno-gu, Seoul (Korea, Republic of)
2015-11-15
The purpose of this study was to investigate whether a correlation exists between {sup 18}F-fluorodeoxyglucose (FDG) uptake and prognostic factors in triple-negative breast cancer (TNBC). Between January 2009 and December 2013, 103 patients (mean age, 50.6 years) with primary TNBC (mean, 2.6 cm; range, 1.0-6.5 cm) underwent {sup 18}F-FDG PET/CT for initial staging. Correlations between maximum standardized uptake value (SUV{sub max}) on PET/CT and prognostic factors including tumour size, nodal status, histological grade, Ki-67 proliferation index, tumour suppressor p53, and 'basal-like' markers (epidermal growth factor receptor and CK 5/6) were assessed. The mean SUV{sub max} of the 103 tumours was 10.94 ± 5.25 (range: 2-32.8). There was a positive correlation between SUV{sub max} and Ki-67 (Spearman's rho = 0.29, P = 0.003) and tumour size (Spearman's rho = 0.27, P = 0.006), whereas this relationship was not observed in the nodal status, histological grade, p53 status and 'basal-like' phenotypes. In a multivariate regression analysis, Ki-67 (P < 0.001) and tumour size (P = 0.009) were significantly associated with SUV{sub max} in TNBCs. Increased {sup 18}F-FDG uptake on PET/CT was correlated with a high Ki-67 proliferation index and larger tumour size in TNBC. These results suggest a potential role of {sup 18}F-FDG PET/CT in identifying TNBC with more aggressive behaviour. (orig.)
Czech Academy of Sciences Publication Activity Database
Kuneš, Jan; Augustinský, Pavel
2014-01-01
Roč. 90, č. 23 (2014), "235112-1"-"235112-5" ISSN 1098-0121 R&D Projects: GA ČR GA13-25251S Institutional support: RVO:68378271 Keywords : excitonic condensation * strongly correlated electrons * cobaltites Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014
DEFF Research Database (Denmark)
Katajainen, Jyrki
2008-01-01
In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...
De Bourdeaudhuij, I; Te Velde, S J; Maes, L; Pérez-Rodrigo, C; de Almeida, M D V; Brug, J
2009-02-01
To investigate whether fruit and vegetable (F&V) intake in 11-year-olds, and social-environmental correlates of F&V intake such as parental modelling and encouragement, family food rules and home availability, differ according to general parenting styles in Belgium, The Netherlands, Portugal and Spain. Cross-sectional study. Primary schools in four countries. Pupils and one of their parents completed questionnaires to measure F&V intake, related social-environmental correlates and general parenting styles. The sample size was 4555 (49.3 % boys); 1180 for Belgium, 883 for The Netherlands, 1515 for Portugal and 977 for Spain. Parenting styles were divided into authoritative, authoritarian, indulgent and neglectful. No differences were found in F&V intake across parenting styles and only very few significant differences in social-environmental correlates. The authoritarian (more parental encouragement and more demands to eat fruit) and the authoritative (more availability of fruit and vegetables) parenting styles resulted in more favourable correlates. Despite earlier studies suggesting that general parenting styles are associated with health behaviours in children, the present study suggests that this association is weak to non-existent for F&V intakes in four different European countries.
Kose, E; Hirai, T; Seki, T; Hidaka, S; Hamamoto, T
2018-05-16
Anticholinergic drugs are associated with risks of falls, confusion and cognitive dysfunction. However, the effect of anticholinergic drug use on rehabilitation outcomes after a stroke is poorly documented. We therefore aimed to establish whether the anticholinergic load was associated with functional recovery among geriatric patients convalescing after stroke. Consecutive geriatric stroke patients admitted and discharged from a convalescence rehabilitation ward between 2010 and 2016 were included in this retrospective cohort study. Anticholinergic load was assessed by the Anticholinergic Risk Scale (ARS), and functional recovery was assessed by the Functional Independence Measure (FIM). The primary outcome was cognitive FIM (FIM-C) gain, but we also assessed the interaction of other putative factors identified from univariate analysis. Multivariate analyses were performed, adjusting for confounding factors. We included 418 participants (171 males, 247 females) with a median age of 78 years (interquartile range, 72-84 years). Multiple regression analysis revealed that ARS change, length of stay, and epilepsy were independently and negatively correlated with cognitive FIM gain. Multiple logistic regression analysis indicated that the "Comprehension" and "Memory" items of the cognitive FIM gain were independently and negatively associated with anticholinergic load. A causal relationship cannot be established, but increased ARS scores during hospitalization may predict limited cognitive functional improvement in geriatric patients after stroke. Alternatively, cognitive impairment may lead to increased use of anticholinergic drugs. © 2018 John Wiley & Sons Ltd.
International Nuclear Information System (INIS)
Froissart, Marcel
1976-01-01
Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr
Directory of Open Access Journals (Sweden)
Gutmann Anja
2010-01-01
Full Text Available Abstract Background ID proteins are dominant negative inhibitors of basic helix-loop-helix transcription factors that have multiple functions during development and cellular differentiation. Ectopic (over-expression of ID1 extends the lifespan of primary human epithelial cells. High expression levels of ID1 have been detected in multiple human malignancies, and in some have been correlated with unfavorable clinical prognosis. ID1 protein is localized at the centrosomes and forced (over-expression of ID1 results in errors during centrosome duplication. Results Here we analyzed the steady state expression levels of the four ID-proteins in 18 tumor cell lines and assessed the number of centrosome abnormalities. While expression of ID1, ID2, and ID3 was detected, we failed to detect protein expression of ID4. Expression of ID1 correlated with increased supernumerary centrosomes in most cell lines analyzed. Conclusions This is the first report that shows that not only ectopic expression in tissue culture but endogenous levels of ID1 modulate centrosome numbers. Thus, our findings support the hypothesis that ID1 interferes with centrosome homeostasis, most likely contributing to genomic instability and associated tumor aggressiveness.
Directory of Open Access Journals (Sweden)
Anne-Claire Lavigne
Full Text Available PURPOSE: Epithelial-Mesenchymal Transition (EMT features appear to be key events in development and progression of breast cancer. Epigenetic modifications contribute to the establishment and maintenance of cancer subclasses, as well as to the EMT process. Whether histone variants contribute to these transformations is not known. We investigated the relative expression levels of histone macroH2A1 splice variants and correlated it with breast cancer status/prognosis/types. METHODS: To detect differential expression of macroH2A1 variant mRNAs in breast cancer cells and tumor samples, we used the following databases: GEO, EMBL-EBI and publisher databases (may-august 2012. We extracted macroH2A1.1/macroH2A1 mRNA ratios and performed correlation studies on intrinsic molecular subclasses of breast cancer and on molecular characteristics of EMT. Associations between molecular and survival data were determined. RESULTS: We found increased macroH2A1.1/macroH2A1 mRNA ratios to be associated with the claudin-low intrinsic subtype in breast cancer cell lines. At the molecular level this association translates into a positive correlation between macroH2A1 ratios and molecular characteristics of the EMT process. Moreover, untreated Triple Negative Breast Cancers presenting a high macroH2A1.1 mRNA ratio exhibit a poor outcome. CONCLUSION: These results provide first evidence that macroH2A1.1 could be exploited as an actor in the maintenance of a transient cellular state in EMT progress towards metastatic development of breast tumors.
The Brief Negative Symptom Scale: Psychometric Properties
Kirkpatrick, Brian; Strauss, Gregory P.; Nguyen, Linh; Fischer, Bernard A.; Daniel, David G.; Cienfuegos, Angel; Marder, Stephen R.
2010-01-01
The participants in the NIMH-MATRICS Consensus Development Conference on Negative Symptoms recommended that an instrument be developed that measured blunted affect, alogia, asociality, anhedonia, and avolition. The Brief Negative Symptom Scale (BNSS) is a 13-item instrument designed for clinical trials and other studies that measures these 5 domains. The interrater, test–retest, and internal consistency of the instrument were strong, with respective intraclass correlation coefficients of 0.93...
Abreu, Rui M. V.; Bastos, Estela; Amorim, Irina; Gut, Ivo G.; Gärtner, Fátima; Chaves, Raquel
2013-01-01
Human ERBB2 is a proto-oncogene that codes for the erbB-2 epithelial growth factor receptor. In human breast cancer (HBC), erbB-2 protein overexpression has been repeatedly correlated with poor prognosis. In more recent works, underexpression of this gene has been described in HBC. Moreover, it is also recognised that oncogenes that are commonly amplified or deleted encompass point mutations, and some of these are associated with HBC. In cat mammary lesions (CMLs), the overexpression of ERBB2 (27%–59.6%) has also been described, mostly at the protein level and although cat mammary neoplasias are considered to be a natural model of HBC, molecular information is still scarce. In the present work, a cat ERBB2 fragment, comprising exons 10 to 15 (ERBB2_10–15) was achieved for the first time. Allelic variants and genomic haplotype analyses were also performed, and differences between normal and CML populations were observed. Three amino acid changes, corresponding to 3 non-synonymous genomic sequence variants that were only detected in CMLs, were proposed to damage the 3D structure of the protein. We analysed the cat ERBB2 gene at the DNA (copy number determination), mRNA (expression levels assessment) and protein levels (in extra- and intra protein domains) in CML samples and correlated the last two evaluations with clinicopathological features. We found a positive correlation between the expression levels of the ERBB2 RNA and erbB-2 protein, corresponding to the intracellular region. Additionally, we detected a positive correlation between higher mRNA expression and better clinical outcome. Our results suggest that the ERBB2 gene is post-transcriptionally regulated and that proteins with truncations and single point mutations are present in cat mammary neoplastic lesions. We would like to emphasise that the recurrent occurrence of low erbB-2 expression levels in cat mammary tumours, suggests the cat mammary neoplasias as a valuable model for erbB-2 negative HBC
International Nuclear Information System (INIS)
Rudnick, J.J.; Filipkowski, M.E.; Tan, Z.; Chamberland, B.; Niedermayer, C.; Weidinger, A.; Golnik, A.; Simon, R.; Rauer, M.; Recknagel, E.; Gluckler, H.; Baines, C.
1990-01-01
In this paper the authors review results of a series of muon spin rotation (μSR) studies extending down to milli Kelvin temperatures in order to explore the existence of magnetic correlations below T C in the La 2-x Sr x CuO 4 system. Evidence is presented for the existence of local magnetic fields thought to originate from Cu electronic moments in both superconducting La 2-x Sr x CuO 4 and in superconducting oxygen deficient YBa 2 Cu 3 O 6.6 . μSR results are also presented for oxygen deficient and superconducting GdBa 2 Cu 3 O 6+x samples. Some discussion of the relevance of these results to recent proposals for pairing mechanisms is presented
Directory of Open Access Journals (Sweden)
Luan XR
2017-03-01
Full Text Available Xiaorong Luan,1,2 Chunjing Ma,2 Ping Wang,2 Fenglan Lou1 1Nursing College, Shandong University, 2Qilu Hospital of Shandong University, Jinan, People’s Republic of China Abstract: High-mobility group box protein 1 (HMGB1, a nuclear protein that plays a significant role in DNA architecture and transcription, was correlated with the progression of some types of cancer. However, the role of HMGB1 in endometrial cancer cell invasion and metastasis remains unexplored. HMGB1 expression was initially assessed by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR in normal endometrial tissue and endometrial carcinoma tissue. High expressions of HMGB1 protein were detected in normal endometrial tissues; however, in endometrial cancer tissues, the expressions of HMGB1 were found to be very weak. Furthermore, HMGB1 expressions were negatively correlated with advanced stage and lymph node metastasis in endometrial cancer. Then by RT-qPCR, Western blot and immunocytochemistry, HMGB1 was also detected in primary cultured endometrial cells and four kinds of endometrial cancer cell lines (Ishikawa, HEC-1A, HEC-1B and KLE. We found that the expression of HMGB1 was much higher in normal endometrial cells than in endometrial cancer cells, and reduced expression levels of HMGB1 were observed especially in the highly metastatic cell lines. Using lentivirus transfection, HMGB1 small hairpin RNA was constructed, and this infected the lowly invasive endometrial cancer cell lines, Ishikawa and HEC-1B. HMGB1 knockdown significantly enhanced the proliferation, invasion and metastasis of endometrial cancer cells and induced the process of epithelial-to-mesenchymal transition. These results can contribute to the development of a new potential therapeutic target for endometrial cancer. Keywords: HMGB1, endometrial cancer, invasion, metastasis, epithelial-to-mesenchymal transition
Kim, Do-Won; Kim, Han-Sung; Lee, Seung-Hwan; Im, Chang-Hwan
2013-12-01
Schizophrenia is one of the most devastating of all mental illnesses, and has dimensional characteristics that include both positive and negative symptoms. One problem reported in schizophrenia patients is that they tend to show deficits in face emotion processing, on which negative symptoms are thought to have stronger influence. In this study, four event-related potential (ERP) components (P100, N170, N250, and P300) and their source activities were analyzed using EEG data acquired from 23 schizophrenia patients while they were presented with facial emotion picture stimuli. Correlations between positive and negative syndrome scale (PANSS) scores and source activations during facial emotion processing were calculated to identify the brain areas affected by symptom scores. Our analysis demonstrates that PANSS positive scores are negatively correlated with major areas of the left temporal lobule for early ERP components (P100, N170) and with the right middle frontal lobule for a later component (N250), which indicates that positive symptoms affect both early face processing and facial emotion processing. On the other hand, PANSS negative scores are negatively correlated with several clustered regions, including the left fusiform gyrus (at P100), most of which are not overlapped with regions showing correlations with PANSS positive scores. Our results suggest that positive and negative symptoms affect independent brain regions during facial emotion processing, which may help to explain the heterogeneous characteristics of schizophrenia. © 2013 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Barrera-Ballesteros, J. K.; Heckman, T. [Department of Physics and Astronomy, Johns Hopkins University, Bloomberg Center, 3400 N. Charles St., Baltimore, MD 21218 (United States); Sánchez, S. F. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510 México, D.F., México (Mexico); Blanc, G. A., E-mail: jbarrer3@jhu.edu [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101 (United States); Collaboration: MaNGA Team
2017-07-20
We present the integrated stellar mass–metallicity relation (MZR) for more than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey. The spatially resolved data allow us to determine the metallicity at the same physical scale (effective radius, R {sub eff}) using a heterogeneous set of 10 abundance calibrators. In addition to scale factors, the shape of the MZR is similar for all calibrators, consistent with those reported previously using single-fiber and integral field spectroscopy. We compare the residuals of this relation against the star formation rate (SFR) and specific SFR (sSFR). We do not find a strong secondary relation of the MZR with either SFR or sSFR for any of the calibrators, in contrast with previous single-fiber spectroscopic studies. Our results agree with a scenario in which metal enrichment happens at local scales, with global outflows playing a secondary role in shaping the chemistry of galaxies and cold-gas inflows regulating the stellar formation.
International Nuclear Information System (INIS)
Barrera-Ballesteros, J. K.; Heckman, T.; Sánchez, S. F.; Blanc, G. A.
2017-01-01
We present the integrated stellar mass–metallicity relation (MZR) for more than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey. The spatially resolved data allow us to determine the metallicity at the same physical scale (effective radius, R eff ) using a heterogeneous set of 10 abundance calibrators. In addition to scale factors, the shape of the MZR is similar for all calibrators, consistent with those reported previously using single-fiber and integral field spectroscopy. We compare the residuals of this relation against the star formation rate (SFR) and specific SFR (sSFR). We do not find a strong secondary relation of the MZR with either SFR or sSFR for any of the calibrators, in contrast with previous single-fiber spectroscopic studies. Our results agree with a scenario in which metal enrichment happens at local scales, with global outflows playing a secondary role in shaping the chemistry of galaxies and cold-gas inflows regulating the stellar formation.
Barrera-Ballesteros, J. K.; Sánchez, S. F.; Heckman, T.; Blanc, G. A.; The MaNGA Team
2017-07-01
We present the integrated stellar mass-metallicity relation (MZR) for more than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey. The spatially resolved data allow us to determine the metallicity at the same physical scale (effective radius, R eff) using a heterogeneous set of 10 abundance calibrators. In addition to scale factors, the shape of the MZR is similar for all calibrators, consistent with those reported previously using single-fiber and integral field spectroscopy. We compare the residuals of this relation against the star formation rate (SFR) and specific SFR (sSFR). We do not find a strong secondary relation of the MZR with either SFR or sSFR for any of the calibrators, in contrast with previous single-fiber spectroscopic studies. Our results agree with a scenario in which metal enrichment happens at local scales, with global outflows playing a secondary role in shaping the chemistry of galaxies and cold-gas inflows regulating the stellar formation.
DEFF Research Database (Denmark)
Thaysen-Andersen, Morten; Mysling, Simon; Højrup, Peter
2009-01-01
Site-specific glycoprofiling of N-linked glycopeptides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an emerging technique, but its quantitative accuracy lacks documentation. Thus, a systematic study of widely different glycopeptides was perf......Site-specific glycoprofiling of N-linked glycopeptides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an emerging technique, but its quantitative accuracy lacks documentation. Thus, a systematic study of widely different glycopeptides...... was performed to determine the relationship between the relative abundances of the individual glycoforms and the MALDI-TOF MS signal strength. Glycopeptides derived from glycoproteins containing neutral glycans (ribonuclease B, IgG, and ovalbumin) were initially profiled and yielded excellent and reproducible...... quantitation (correlation coefficient r = 0.9958, n = 5) when evaluated against a normal phase HPLC 2-AB glycan profile. Similarly, precise quantitation was observed for various forms of N-glycans (free, permethylated, and fluorescence-labeled) using MS. In addition, three different sialoglycopeptides from...
Directory of Open Access Journals (Sweden)
Takeshi Fukushima
Full Text Available The serum levels of several metabolites are significantly altered in schizophrenia patients. In this study, we performed a targeted analysis of 34 candidate metabolites in schizophrenia patients (n = 25 and compared them with those in age- and gender-matched healthy subjects (n = 27. Orthogonal partial least square-discriminant analysis revealed that complete separation between controls and patients was achieved based on these metabolites. We found that the levels of γ-glutamylcysteine (γ-GluCys, linoleic acid, arachidonic acid, D-serine, 3-hydroxybutyrate, glutathione (GSH, 5-hydroxytryptamine, threonine, and tyrosine were significantly lower, while D-lactate, tryptophan, kynurenine, and glutamate levels were significantly higher in schizophrenia patients compared to controls. Using receiver operating characteristics (ROC curve analysis, the sensitivity, specificity, and the area under curve of γ-GluCys, a precursor of GSH, and D-lactate, a terminal metabolite of methylglyoxal, were 88.00%, 81.48%, and 0.8874, and 88.00%, 77.78%, and 0.8415, respectively. In addition, serum levels of D-lactate were negatively correlated with γ-GluCys levels in patients, but not in controls. The present results suggest that oxidative stress-induced damage may be involved in the pathogenesis of schizophrenia.
Falkowski, M.; Krychowski, D.; Strydom, A. M.
2016-11-01
An in-depth study of thermal and electron transport properties including thermal conductivity κ(T), thermoelectric power S(T), and electrical resistivity ρ(T) of the heavy fermion Kondo lattice Ce6Pd12In5 and its nonmagnetic reference compound La6Pd12In5 is presented. The absolute κ(T) value of Ce6Pd12In5 is smaller that than of La6Pd12In5, which indicates that conduction electron-4f electron scattering has a large impact on the reduction of thermal conductivity. The isolated 4f electron contributions to the electrical resistivity ρ 4 f (T), electronic thermal resistivity displayed in the form W e l , 4 f (T) .T, and thermoelectric power S 4 f (T) reveal a low- and high-temperature -lnT behaviour characteristic of Kondo systems with strong crystal-electric field (CEF) interactions. The analysis of phonon scattering processes of lattice thermal conductivity κph(T) in (Ce, La)6Pd12In5 was performed over the whole accessible temperature range according to the Callaway model. In the scope of a theoretical approach based on the perturbation type calculation, we were able to describe our experimental data of ρ 4 f (T) and W e l , 4 f (T) .T by using the model incorporating simultaneously the Kondo effect in the presence of the CEF splitting, as it is foreseen in the framework of the Cornut-Coqblin and Bhattacharjee-Coqblin theory. Considering the fact that there are not many cases of similar studies at all, we also show the numerical calculations of temperature-dependent behaviour of spin-disorder resistivity ρs(T), magnetic resistivity ρ 4 f (T), and occupation number ⟨ N i ⟩ due to the various types of degeneracy of the ground state multiplet of Ce 3 + (J = 5/2).
Mora-Santos, Mar; Limón-Mortés, M Cristina; Giráldez, Servando; Herrero-Ruiz, Joaquín; Sáez, Carmen; Japón, Miguel Á; Tortolero, Maria; Romero, Francisco
2011-08-26
PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCF(βTrCP) E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers.
Yang, Yan; Ding, Lili; Hu, Qun; Xia, Jia; Sun, Junjie; Wang, Xudong; Xiong, Hua; Gurbani, Deepak; Li, Lianbo; Liu, Yan; Liu, Aiguo
2017-08-22
Aberrant expression of microRNAs in different human cancer types has been widely reported. MiR-218 acts as a tumor suppressor in diverse human cancer types impacting regulation of multiple genes in oncogenic pathways. Here, we evaluated the expression and function of miR-218 in human lung cancer and ALDH positive lung cancer cells to understand the potential mechanisms responsible for disease pathology. Also, the association between its host genes and the target genes could be useful towards the better understanding of prognosis in clinical settings. Publicly-available data from The Cancer Genome Atlas (TCGA) was mined to compare the levels of miR-218 and its host gene SLIT2/3 between lung cancer tissues and normal lung tissues. Transfection of miR-218 to investigate its function in lung cancer cells was done and in vivo effects were determined using miR-218 expressing lentiviruses. Aldefluor assay and Flow cytometry was used to quantify and enrich ALDH positive lung cancer cells. Levels of miR-218, IL-6R, JAK3 and phosphorylated STAT3 were compared in ALDH1A1 positive and ALDH1A1 negative cells. Overexpression of miR-218 in ALDH positive cells was carried to test the survival by tumorsphere culture. Finally, utilizing TCGA data we studied the association of target genes of miR-218 with the prognosis of lung cancer. We observed that the expression of miR-218 was significantly down-regulated in lung cancer tissues compared to normal lung tissues. Overexpression of miR-218 decreased cell proliferation, invasion, colony formation, and tumor sphere formation in vitro and repressed tumor growth in vivo. We further found that miR-218 negatively regulated IL-6 receptor and JAK3 gene expression by directly targeting the 3'-UTR of their mRNAs. In addition, the levels of both miR-218 host genes and the components of IL-6/STAT3 pathway correlated with prognosis of lung cancer patients. MiR-218 acts as a tumor suppressor in lung cancer via IL-6/STAT3 signaling pathway
The brief negative symptom scale: psychometric properties.
Kirkpatrick, Brian; Strauss, Gregory P; Nguyen, Linh; Fischer, Bernard A; Daniel, David G; Cienfuegos, Angel; Marder, Stephen R
2011-03-01
The participants in the NIMH-MATRICS Consensus Development Conference on Negative Symptoms recommended that an instrument be developed that measured blunted affect, alogia, asociality, anhedonia, and avolition. The Brief Negative Symptom Scale (BNSS) is a 13-item instrument designed for clinical trials and other studies that measures these 5 domains. The interrater, test-retest, and internal consistency of the instrument were strong, with respective intraclass correlation coefficients of 0.93 for the BNSS total score and values of 0.89-0.95 for individual subscales. Comparisons with positive symptoms and other negative symptom instruments supported the discriminant and concurrent validity of the instrument.
Alvarez, Manuel; Llorente, Javier
This analysis presents measurements of transverse energy-energy correlations (TEEC) and its associated asymmetry (ATEEC) in multi-jet events in bins of the scalar sum of the two leading jets transverse momenta. The data are unfolded to the particle level and compared to Monte Carlo generators like PYTHIA8, HERWIG++ and SHERPA. A comparison with NLOJET++ predictions is also performed. The value of the strong coupling constant is extracted and the running is tested up to scales beyond 1 TeV.
Disorder effects in strongly correlated uranium compounds
International Nuclear Information System (INIS)
Suellow, S.; Maple, M.B.; Tomuta, D.; Nieuwenhuys, G.J.; Menovsky, A.A.; Mydosh, J.A.; Chau, R.
2001-01-01
Moderate levels of crystallographic disorder can dramatically affect the ground-state properties of heavy fermion compounds. In particular, the role of disorder close to a quantum critical point has been investigated in detail. However, crystallographic disorder is equally effective in altering the properties of magnetically ordered heavy fermion compounds like URh 2 Ge 2 , where disorder-induced spin-glass behavior has been observed. In this system, moreover, the magnetic ground state can be tuned from a spin-glass to a long-range ordered antiferromagnetic one by means of an annealing treatment. The transformation of the magnetic state is accompanied by a transition in the transport properties from 'quasi-insulating' (dρ/dT 2 Ge 2 will be discussed. Of particular interest is the resistivity of as-grown URh 2 Ge 2 , which resembles the Non-Fermi-liquid system UCu 4 Pd, suggesting that a common mechanism - the crystallographic disorder - controls the transport properties of these materials
DEFF Research Database (Denmark)
Zeuthen, Louise Hjerrild; Christensen, Hanne Risager; Frøkiær, Hanne
2006-01-01
The development and maintenance of immune homeostasis indispensably depend on signals from the gut flora. Lactic acid bacteria (LAB), which are gram-positive (G+) organisms, are plausible significant players and have received much attention. Gram-negative (G-) commensals, such as members...
Directory of Open Access Journals (Sweden)
Paul Chigozie Odinka
2014-11-01
Full Text Available Background. Duration of untreated psychosis (DUP has been widely recognised in recent years as a potentially important predictor of illness outcome, and the manifestations of schizophrenia have been known to influence its early recognition as a mental illness. Objective. To assess the association between the positive and negative symptoms of schizophrenia, help-seeking and DUP. Methods. We performed a cross-sectional study of 360 patients with schizophrenia, who had had no previous contact with Western mental health services. The Sociodemographic Questionnaire, World Health Organization Pathway Encounter Form and a questionnaire to establish DUP were used. The positive and negative syndrome scale and Composite International Diagnostic Interview were used for the assessment of mental disorders and to diagnose. Results. Respondents who had predominant positive symptoms and who had a median DUP of 8 weeks or 24 weeks, tended to use psychiatric hospitals and other Western medical facilities, respectively, as their first treatment options. However, those who had predominant negative symptoms and who had a median DUP of 144 weeks or 310 weeks, tended to use faith healers and traditional healers, respectively, as first treatment options. Conclusion. The predominance of negative symptoms could militate against early presentation among people with schizophrenia, probably because negative symptoms are poorly recognised as indicating mental illness in Nigeria, as they could be interpreted as deviant behaviour or spiritual problems that would require spiritual solutions.
DEFF Research Database (Denmark)
Spindler, Helle; Denollet, Johan; Kruse, Charlotte
2009-01-01
The Global Mood Scale (GMS), assessing negative affect (NA) and positive affect (PA), is sensitive to tapping treatment-related changes in patients with cardiac conditions. We examined the psychometric properties of the Danish GMS and the influence of NA and PA on distress and health-related qual...
Milicevic, Nataša
2008-01-01
In this paper I will discuss the formation of different types of yes/no questions in Serbian (examples in (1)), focusing on the syntactically and semantically puzzling example (1d), which involves the negative auxiliary inversion. Although there is a negative marker on the fronted auxiliary, the construction does not involve sentential negation. This coincides with the fact that the negative quantifying NPIs cannot be licensed. The question formation and sentential negation have similar synta...
International Nuclear Information System (INIS)
Onufrieva, F.
1994-01-01
Spin dynamics in cuprates is analysed in the framework of a new theory (based on the t-t'-J model and the diagrammatic technique for Hubbard operators) developed to treat correctly strong electron correlations within CuO 2 plane. The dynamic magnetic susceptibility is determined by two contributions different in nature, the ''localized'' and ''itinerant'' ones. The ''itinerant'' contribution reflects a response in the spin susceptibility on Cu related to the propagating carrier quasiparticles. The ''localized'' contribution reflects the existence of short-range correlations between localized spins. As a result of their competition, the spin dynamics evolves continuously within the metallic state from a normal-metal behaviour at high doping (overdoped regime) to a quantum spin-liquid-type dynamics with magnon-like excitations at low doping through a non-Fermi-liquid behaviour in all intermediate regimes. The picture of the spin dynamics in the metallic state of cuprates as a whole and in details in concern to INS and NMR experimental data is presented. Many exotic features of χ(Κ,ω) revealed by these experiments find a natural explanation within the proposed scenario. (author). 64 refs., 17 figs
Energy Technology Data Exchange (ETDEWEB)
Aaboud, M. [Univ. Mohamed Premier et LPTPM, Oujda (Morocco). Faculte des Sciences; Aad, G. [CPPM, Aix-Marseille Univ. et CNRS/IN2P3, Marseille (France); Abbott, B. [Oklahoma Univ., Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Collaboration: ATLAS Collaboration; and others
2017-12-15
Measurements of transverse energy-energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to √(s) = 8 TeV proton-proton collisions with an integrated luminosity of 20.2 fb{sup -1}. The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant is extracted for different energy regimes, thus testing the running of α{sub s}(μ) predicted in QCD up to scales over 1 TeV. A global fit to the transverse energy-energy correlation distributions yields α{sub s}(m{sub Z}) = 0.1162 ± 0.0011 (exp.){sup +0.0084}{sub -0.0070} (theo.), while a global fit to the asymmetry distributions yields a value of α{sub s}(m{sub Z}) = 0.1196 ± 0.0013 (exp.){sup +0.0075}{sub -0.0045} (theo.). (orig.)
International Nuclear Information System (INIS)
Aaboud, M.; Abbott, B.
2017-01-01
Measurements of transverse energy-energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to √(s) = 8 TeV proton-proton collisions with an integrated luminosity of 20.2 fb -1 . The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant is extracted for different energy regimes, thus testing the running of α s (μ) predicted in QCD up to scales over 1 TeV. A global fit to the transverse energy-energy correlation distributions yields α s (m Z ) = 0.1162 ± 0.0011 (exp.) +0.0084 -0.0070 (theo.), while a global fit to the asymmetry distributions yields a value of α s (m Z ) = 0.1196 ± 0.0013 (exp.) +0.0075 -0.0045 (theo.). (orig.)
Liu, Xiao Hong; Xu, Shuang Bing; Yuan, Jia; Li, Ben Hui; Zhang, Yan; Yuan, Qin; Li, Pin Dong; Li, Feng; Zhang, Wen Jie
2009-12-01
Interleukin-4 (IL-4)-induced Stat6 activities (phenotypes) vary among human cancer cells, of which the HT-29 cell line carries an active Stat6(high) phenotype, while Caco-2 carries a defective Stat6(null) phenotype, respectively. Cancer cells with Stat6(high) show resistance to apoptosis and exaggerated metastasis, suggesting the clinical significance of Stat6 phenotypes. We previously showed that Stat6(high) HT-29 cells exhibited low constitutive expression of Stat6-negative regulators SOCS-1 and SHP-1 because of gene hypermethylation. This study further examined the constitutive expression of other closely related SOCS family numbers including SOCS-3, SOCS-5, SOCS-7, and CISH using RT-PCR. Similar to SOCS-1 and SHP-1, Stat6(high) HT-29 cells expressed low constitutive mRNA of SOCS-3, SOCS-7, and CISH than Stat6(null) Caco-2 cells. Interestingly, DNA demethylation using 5-aza-2'-deoxycytidine in HT-29 cells up-regulated mRNA expression of the above genes, indicating a hypermethylation status, which was confirmed by methylation-specific sequencing in selected SOCS-3 gene. Furthermore, defective Stat6(null) Caco-2 exhibited impaired phosphorylation of Stat6 after IL-4 stimulation by flow cytometry, in keeping with the notion of an over-performed negative regulation. The findings that IL-4/Stat6 phenotypes show differential expression of multiple negative regulators suggest a model that a collective force of powerful negative regulators, directly and indirectly, acts on Stat6 activation, which may result in differential Stat6 phenotypes.
Instabilities in strongly coupled plasmas
Kalman, G J
2003-01-01
The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the plasma is strongly coupled. In the strongly coupled liquid state, the strong correlations between the dust grains fundamentally affect the conditions for instability. In the crystalline state, the inherent anisotropy couples the longitudinal and transverse polarizations, and results in unstable excitations in both polarizations. We summarize analyses of resonant and non-resonant, as well as resistive instabilities. We consider both ion-dust streaming and dust beam-plasma instabilities. Strong coupling, in general, leads to an enhancement of the growth rates. In the crystalline phase, a resonant transverse instability can be excited.
Wiendl, Heinz; Mitsdoerffer, Meike; Schneider, Dagmar; Chen, Lieping; Lochmüller, Hanns; Melms, Arthur; Weller, Michael
2003-10-01
B7-H1 is a novel B7 family protein attributed to costimulatory and immune regulatory functions. Here we report that human myoblasts cultured from control subjects and patients with inflammatory myopathies as well as TE671 muscle rhabdomyosarcoma cells express high levels of B7-H1 after stimulation with the inflammatory cytokine IFN-gamma. Coculture experiments of MHC class I/II-positive myoblasts with CD4 and CD8 T cells in the presence of antigen demonstrated the functional consequences of muscle-related B7-H1 expression: production of inflammatory cytokines, IFN-gamma and IL-2, by CD4 as well CD8 T cells was markedly enhanced in the presence of a neutralizing anti-B7-H1 antibody. This observation was paralleled by an augmented expression of the T cell activation markers CD25, ICOS, and CD69, thus showing B7-H1-mediated inhibition of T cell activation. Further, we investigated 23 muscle biopsy specimens from patients with polymyositis (PM), inclusion body myositis (IBM), dermatomyositis (DM), and nonmyopathic controls for B7-H1 expression by immunohistochemistry: B7-H1 was expressed in PM, IBM, and DM specimens but not in noninflammatory and nonmyopathic controls. Staining was predominantly localized to areas of strong inflammation and to muscle cells as well as mononuclear cells. These data highlight the immune regulatory properties of muscle cells and suggest that B7-H1 expression represents an inhibitory mechanism induced upon inflammatory stimuli and aimed at protecting muscle fibers from immune aggression.
Szubert, Sebastian; Szpurek, Dariusz; Moszynski, Rafal; Nowicki, Michal; Frankowski, Andrzej; Sajdak, Stefan; Michalak, Slawomir
2014-03-01
The primary aim of this paper was to evaluate the expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and its relationship with proangiogenic factors and microvessel density (MVD) in ovarian cancer. The study group included 58 epithelial ovarian cancers (EOCs), 35 benign ovarian tumors, and 21 normal ovaries. The expression of EMMPRIN, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) was assessed by ELISA of tissue homogenates. Antibodies against CD105, CD31, and CD34 were used to immunohistochemically assess MVD. We have found significantly higher EMMPRIN expression in EOC than in benign ovarian tumors and normal ovaries. Similarly, the VEGF expression was higher in EOC than in benign ovarian tumors and normal ovaries. By contrast, bFGF expression was lower in EOC than in benign ovarian tumors and ovary samples. EMMPRIN expression in EOC was directly correlated with VEGF expression and CD105-MVD, but inversely correlated with bFGF expression. Grade 2/3 ovarian cancers had increased expression of EMMPRIN and VEGF, increased CD105-MVD, and lowered expression of bFGF compared to grade 1 ovarian cancers. Moreover, EMMPRIN expression was higher in advanced (FIGO III and IV) ovarian cancer. The upregulation of EMMPRIN and VEGF expression is correlated with increased CD105-MVD and silenced bFGF, which suggests early and/or reactivated angiogenesis in ovarian cancer. Aggressive EOC is characterized by the following: high expression of EMMPRIN and VEGF, high CD105-MVD, and low expression of bFGF.
International Nuclear Information System (INIS)
Hammond, Richard T
2015-01-01
Some physical aspects of negative mass are examined. Several unusual properties, such as the ability of negative mass to penetrate any armor, are analysed. Other surprising effects include the bizarre system of negative mass chasing positive mass, naked singularities and the violation of cosmic censorship, wormholes, and quantum mechanical results as well. In addition, a brief look into the implications for strings is given. (paper)
Negativity Bias in Dangerous Drivers.
Directory of Open Access Journals (Sweden)
Jing Chai
Full Text Available The behavioral and cognitive characteristics of dangerous drivers differ significantly from those of safe drivers. However, differences in emotional information processing have seldom been investigated. Previous studies have revealed that drivers with higher anger/anxiety trait scores are more likely to be involved in crashes and that individuals with higher anger traits exhibit stronger negativity biases when processing emotions compared with control groups. However, researchers have not explored the relationship between emotional information processing and driving behavior. In this study, we examined the emotional information processing differences between dangerous drivers and safe drivers. Thirty-eight non-professional drivers were divided into two groups according to the penalty points that they had accrued for traffic violations: 15 drivers with 6 or more points were included in the dangerous driver group, and 23 drivers with 3 or fewer points were included in the safe driver group. The emotional Stroop task was used to measure negativity biases, and both behavioral and electroencephalograph data were recorded. The behavioral results revealed stronger negativity biases in the dangerous drivers than in the safe drivers. The bias score was correlated with self-reported dangerous driving behavior. Drivers with strong negativity biases reported having been involved in mores crashes compared with the less-biased drivers. The event-related potentials (ERPs revealed that the dangerous drivers exhibited reduced P3 components when responding to negative stimuli, suggesting decreased inhibitory control of information that is task-irrelevant but emotionally salient. The influence of negativity bias provides one possible explanation of the effects of individual differences on dangerous driving behavior and traffic crashes.
Ahmadi, Naser; Nabavi, Vahid; Nuguri, Vivek; Hajsadeghi, Fereshteh; Flores, Ferdinand; Akhtar, Mohammad; Kleis, Stanley; Hecht, Harvey; Naghavi, Morteza; Budoff, Matthew
2009-10-01
Previous studies showed strong correlations between low fingertip temperature rebound measured by digital thermal monitoring (DTM) during a 5 min arm-cuff induced reactive hyperemia and both the Framingham Risk Score (FRS), and coronary artery calcification (CAC) in asymptomatic populations. This study evaluates the correlation between DTM and coronary artery disease (CAD) measured by CT angiography (CTA) in symptomatic patients. It also investigates the correlation between CTA and a new index of neurovascular reactivity measured by DTM. 129 patients, age 63 +/- 9 years, 68% male, underwent DTM, CAC and CTA. Adjusted DTM indices in the occluded arm were calculated: temperature rebound: aTR and area under the temperature curve aTMP-AUC. DTM neurovascular reactivity (NVR) index was measured based on increased fingertip temperature in the non-occluded arm. Obstructive CAD was defined as >or=50% luminal stenosis, and normal as no stenosis and CAC = 0. Baseline fingertip temperature was not different across the groups. However, all DTM indices of vascular and neurovascular reactivity significantly decreased from normal to non-obstructive to obstructive CAD [(aTR 1.77 +/- 1.18 to 1.24 +/- 1.14 to 0.94 +/- 0.92) (P = 0.009), (aTMP-AUC: 355.6 +/- 242.4 to 277.4 +/- 182.4 to 184.4 +/- 171.2) (P = 0.001), (NVR: 161.5 +/- 147.4 to 77.6 +/- 88.2 to 48.8 +/- 63.8) (P = 0.015)]. After adjusting for risk factors, the odds ratio for obstructive CAD compared to normal in the lowest versus two upper tertiles of FRS, aTR, aTMP-AUC, and NVR were 2.41 (1.02-5.93), P = 0.05, 8.67 (2.6-9.4), P = 0.001, 11.62 (5.1-28.7), P = 0.001, and 3.58 (1.09-11.69), P = 0.01, respectively. DTM indices and FRS combined resulted in a ROC curve area of 0.88 for the prediction of obstructive CAD. In patients suspected of CAD, low fingertip temperature rebound measured by DTM significantly predicted CTA-diagnosed obstructive disease.
2013-03-01
Negative Leadership by Colonel David M. Oberlander United States Army United States Army War...SUBTITLE Negative Leadership 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Colonel David M...Dr. Richard C. Bullis Department of Command Leadership , and Management 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING
Dari-Mattiacci, G.
2009-01-01
Negative and positive externalities pose symmetrical problems to social welfare. The law internalizes negative externalities by providing general tort liability rules. According to such rules, those who cause harm to others should pay compensation. In theory, in the presence of positive
Giannakidou, A
The main claim of this paper is that a general theory of negative concord (NC) should allow for the possibility of NC involving scoping of a universal quantifier above negation. I propose that Greek NC instantiates this option. Greek n-words will be analyzed as polarity sensitive universal
Directory of Open Access Journals (Sweden)
G. Aad
2015-11-01
Full Text Available High transverse momentum jets produced in pp collisions at a centre of mass energy of 7 TeV are used to measure the transverse energy–energy correlation function and its associated azimuthal asymmetry. The data were recorded with the ATLAS detector at the LHC in the year 2011 and correspond to an integrated luminosity of 158 pb−1. The selection criteria demand the average transverse momentum of the two leading jets in an event to be larger than 250 GeV. The data at detector level are well described by Monte Carlo event generators. They are unfolded to the particle level and compared with theoretical calculations at next-to-leading-order accuracy. The agreement between data and theory is good and provides a precision test of perturbative Quantum Chromodynamics at large momentum transfers. From this comparison, the strong coupling constant given at the Z boson mass is determined to be αs(mZ=0.1173±0.0010 (exp. −0.0026+0.0065 (theo..
Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; St. Denis, R. D.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.
2015-11-01
High transverse momentum jets produced in pp collisions at a centre of mass energy of 7 TeV are used to measure the transverse energy-energy correlation function and its associated azimuthal asymmetry. The data were recorded with the ATLAS detector at the LHC in the year 2011 and correspond to an integrated luminosity of 158 pb-1. The selection criteria demand the average transverse momentum of the two leading jets in an event to be larger than 250 GeV. The data at detector level are well described by Monte Carlo event generators. They are unfolded to the particle level and compared with theoretical calculations at next-to-leading-order accuracy. The agreement between data and theory is good and provides a precision test of perturbative Quantum Chromodynamics at large momentum transfers. From this comparison, the strong coupling constant given at the Z boson mass is determined to be αs (mZ) = 0.1173 ± 0.0010 (exp.)-0.0026+0.0065 (theo.).
Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; L{ö}sel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz
2015-09-24
High transverse momentum jets produced in pp collisions at a centre of mass energy of 7 TeV are used to measure the transverse energy--energy correlation function and its associated azimuthal asymmetry. The data were recorded with the ATLAS detector at the LHC in the year 2011 and correspond to an integrated luminosity of 158 $\\mathrm{pb}^{-1}$. The selection criteria demand the average transverse momentum of the two leading jets in an event to be larger than 250 GeV. The data at detector level are well described by Monte Carlo event generators. They are unfolded to the particle level and compared with theoretical calculations at next-to-leading-order accuracy. The agreement between data and theory is good and provides a precision test of perturbative Quantum Chromodynamics at large momentum transfers. From this comparison, the strong coupling constant given at the $Z$ boson mass is determined to be $\\alpha_{\\mathrm{s}}(m_Z) = 0.1173 \\pm 0.0010 \\mbox{ (exp.) }^{+0.0065}_{-0.0026} \\mbox{ (theo.)}$.
Directory of Open Access Journals (Sweden)
Quintino R. Mano
2014-01-01
Full Text Available This study investigated implicit socioemotional modulation of working memory (WM in the context of symptom severity and functional status in individuals with psychosis (N = 21. A delayed match-to-sample task was modified wherein task-irrelevant facial distracters were presented early and briefly during the rehearsal of pseudoword memoranda that varied incrementally in load size (1, 2, or 3 syllables. Facial distracters displayed happy, sad, or emotionally neutral expressions. Implicit socioemotional modulation of WM was indexed by subtracting task accuracy on nonfacial geometrical distraction trials from facial distraction trials. Results indicated that the amount of implicit socioemotional modulation of high WM load accuracy was significantly associated with negative symptoms (r=0.63, P<0.01, role functioning (r=−0.50, P<0.05, social functioning (r=−0.55, P<0.01, and global assessment of functioning (r=−0.53, P<0.05. Specifically, greater attentional distraction of high WM load was associated with less severe symptoms and functional impairment. This study demonstrates the importance of the WM-socioemotional interface in influencing clinical and psychosocial functional status in psychosis.
Guerra-Calderas, Lissania; González-Barrios, Rodrigo; Patiño, Carlos César; Alcaraz, Nicolás; Salgado-Albarrán, Marisol; de León, David Cantú; Hernández, Clementina Castro; Sánchez-Pérez, Yesennia; Maldonado-Martínez, Héctor Aquiles; De la Rosa-Velazquez, Inti A.; Vargas-Romero, Fernanda; Herrera, Luis A.; García-Carrancá, Alejandro; Soto-Reyes, Ernesto
2018-01-01
Histone demethylase KDM4A is involved in H3K9me3 and H3K36me3 demethylation, which are epigenetic modifications associated with gene silencing and RNA Polymerase II elongation, respectively. KDM4A is abnormally expressed in cancer, affecting the expression of multiple targets, such as the CHD5 gene. This enzyme localizes at the first intron of CHD5, and the dissociation of KDM4A increases gene expression. In vitro assays showed that KDM4A-mediated demethylation is enhanced in the presence of CTCF, suggesting that CTCF could increase its enzymatic activity in vivo, however the specific mechanism by which CTCF and KDM4A might be involved in the CHD5 gene repression is poorly understood. Here, we show that CTCF and KDM4A form a protein complex, which is recruited into the first intron of CHD5. This is related to a decrease in H3K36me3/2 histone marks and is associated with its transcriptional downregulation. Depletion of CTCF or KDM4A by siRNA, triggered the reactivation of CHD5 expression, suggesting that both proteins are involved in the negative regulation of this gene. Furthermore, the knockout of KDM4A restored the CHD5 expression and H3K36me3 and H3K36me2 histone marks. Such mechanism acts independently of CHD5 promoter DNA methylation. Our findings support a novel mechanism of epigenetic repression at the gene body that does not involve promoter silencing. PMID:29682202
Light, Gregory A; Swerdlow, Neal R; Thomas, Michael L; Calkins, Monica E; Green, Michael F; Greenwood, Tiffany A; Gur, Raquel E; Gur, Ruben C; Lazzeroni, Laura C; Nuechterlein, Keith H; Pela, Marlena; Radant, Allen D; Seidman, Larry J; Sharp, Richard F; Siever, Larry J; Silverman, Jeremy M; Sprock, Joyce; Stone, William S; Sugar, Catherine A; Tsuang, Debby W; Tsuang, Ming T; Braff, David L; Turetsky, Bruce I
2015-04-01
Mismatch negativity (MMN) and P3a are auditory event-related potential (ERP) components that show robust deficits in schizophrenia (SZ) patients and exhibit qualities of endophenotypes, including substantial heritability, test-retest reliability, and trait-like stability. These measures also fulfill criteria for use as cognition and function-linked biomarkers in outcome studies, but have not yet been validated for use in large-scale multi-site clinical studies. This study tested the feasibility of adding MMN and P3a to the ongoing Consortium on the Genetics of Schizophrenia (COGS) study. The extent to which demographic, clinical, cognitive, and functional characteristics contribute to variability in MMN and P3a amplitudes was also examined. Participants (HCS n=824, SZ n=966) underwent testing at 5 geographically distributed COGS laboratories. Valid ERP recordings were obtained from 91% of HCS and 91% of SZ patients. Highly significant MMN (d=0.96) and P3a (d=0.93) amplitude reductions were observed in SZ patients, comparable in magnitude to those observed in single-lab studies with no appreciable differences across laboratories. Demographic characteristics accounted for 26% and 18% of the variance in MMN and P3a amplitudes, respectively. Significant relationships were observed among demographically-adjusted MMN and P3a measures and medication status as well as several clinical, cognitive, and functional characteristics of the SZ patients. This study demonstrates that MMN and P3a ERP biomarkers can be feasibly used in multi-site clinical studies. As with many clinical tests of brain function, demographic factors contribute to MMN and P3a amplitudes and should be carefully considered in future biomarker-informed clinical studies. Published by Elsevier B.V.