WorldWideScience

Sample records for strong motion estimates

  1. Rapid Moment Magnitude Estimation Using Strong Motion Derived Static Displacements

    OpenAIRE

    Muzli, Muzli; Asch, Guenter; Saul, Joachim; Murjaya, Jaya

    2015-01-01

    The static surface deformation can be recovered from strong motion records. Compared to satellite-based measurements such as GPS or InSAR, the advantage of strong motion records is that they have the potential to provide real-time coseismic static displacements. The use of these valuable data was optimized for the moment magnitude estimation. A centroid grid search method was introduced to calculate the moment magnitude by using1 model. The method to data sets was applied of the 2011...

  2. Strong Earthquake Motion Estimates for Three Sites on the U.C. Riverside Campus; TOPICAL

    International Nuclear Information System (INIS)

    Archuleta, R.; Elgamal, A.; Heuze, F.; Lai, T.; Lavalle, D.; Lawrence, B.; Liu, P.C.; Matesic, L.; Park, S.; Riemar, M.; Steidl, J.; Vucetic, M.; Wagoner, J.; Yang, Z.

    2000-01-01

    The approach of the Campus Earthquake Program (CEP) is to combine the substantial expertise that exists within the UC system in geology, seismology, and geotechnical engineering, to estimate the earthquake strong motion exposure of UC facilities. These estimates draw upon recent advances in hazard assessment, seismic wave propagation modeling in rocks and soils, and dynamic soil testing. The UC campuses currently chosen for application of our integrated methodology are Riverside, San Diego, and Santa Barbara. The procedure starts with the identification of possible earthquake sources in the region and the determination of the most critical fault(s) related to earthquake exposure of the campus. Combined geological, geophysical, and geotechnical studies are then conducted to characterize each campus with specific focus on the location of particular target buildings of special interest to the campus administrators. We drill and geophysically log deep boreholes next to the target structure, to provide direct in-situ measurements of subsurface material properties, and to install uphole and downhole 3-component seismic sensors capable of recording both weak and strong motions. The boreholes provide access below the soil layers, to deeper materials that have relatively high seismic shear-wave velocities. Analyses of conjugate downhole and uphole records provide a basis for optimizing the representation of the low-strain response of the sites. Earthquake rupture scenarios of identified causative faults are combined with the earthquake records and with nonlinear soil models to provide site-specific estimates of strong motions at the selected target locations. The predicted ground motions are shared with the UC consultants, so that they can be used as input to the dynamic analysis of the buildings. Thus, for each campus targeted by the CEP project, the strong motion studies consist of two phases, Phase 1-initial source and site characterization, drilling, geophysical logging

  3. Estimation of strong ground motion and micro-zonation for the city of Rome

    International Nuclear Information System (INIS)

    Faeh, D.; Iodice, C.; Suhadolc, P.; Panza, G.F.

    1994-03-01

    A hybrid technique, based on mode summation and finite differences, is used to simulate the ground motion induced in the city of Rome by possible earthquakes occurring in the main seismogenetic areas surrounding the city: the Central Apennines and the Alban Hills. The results of the numerical simulations are used for a first order seismic micro-zonation in the city of Rome, which can be used for the retrofitting of buildings of special social and cultural value. Rome can be divided into six main zones: (1) the edge and (2) the central part of the alluvial basin of the river Tiber; (3) the edges and (4) the central part of the Paleotiber basin; the areas outside the large basins of the Tiber and Paleotiber, where we distinguish between (5) areas without, and (6) areas with a layer of volcanic rocks close to the surface. The strongest amplification effects have to be expected at the edges of the Tiber basin, with maximum spectral amplification of the order of 5 to 6, and strong amplifications occur inside the entire alluvial basin of the Tiber. The presence of a near-surface layer of rigid material is not sufficient to classify a location as a ''hard-rock site'', when the rigid material covers a sedimentary complex. The reason is that the underlying sedimentary complex causes amplifications at the surface due to resonance effects. This phenomenon can be observed in the Paleotiber basin, where spectral amplifications in the frequency range 0.3-1.0 Hz reach values of the order of 3 to 4. (author). 17 refs, 5 figs, 2 tabs

  4. Using a Full Complex Site Transfer Function to Estimate Strong Ground Motion in Port-au-Prince (Haiti).

    Science.gov (United States)

    ST Fleur, S.; Courboulex, F.; Bertrand, E.; Mercier De Lepinay, B. F.; Hough, S. E.; Boisson, D.; Momplaisir, R.

    2017-12-01

    To assess the possible impact of a future earthquake in the urban area of Port-au-Prince (Haiti), we have implemented a simulation approach for complex ground motions produced by an earthquake. To this end, we have integrated local site effect in the prediction of strong ground motions in Port-au-Prince using the complex transfer functions method, which takes into account amplitude changes as well as phase changes. This technique is particularly suitable for basins where a conventional 1D digital approach proves inadequate, as is the case in Port-au-Prince. To do this, we use the results of the Standard Spectral Ratio (SSR) approach of St Fleur et al. (2016) to estimate the amplitude of the response of the site to a nearby rock site. Then, we determine the phase difference between sites, interpreted as changes in the phase of the signal related to local site conditions, using the signals of the 2010 earthquake aftershocks records. Finally, the accelerogram of the simulated earthquake is obtain using the technique of the inverse Fourier transform. The results of this study showed that the strongest soil motions are expected in neighborhoods of downtown Port-au-Prince and adjacent hills. In addition, this simulation method by complex transfer functions was validated by comparison with recorded actual data. Our simulated response spectra reproduce very well both the amplitude and the shape of the response spectra of recorded earthquakes. This new approach allowed to reproduce the lengthening of the signal that could be generated by surface waves at certain stations in the city of Port-au-Prince. However, two points of vigilance must be considered: (1) a good signal-to-noise ratio is necessary to obtain a robust estimate of the site-reference phase shift (ratio at least equal to 10); (2) unless the amplitude and phase changes are measured on strong motion records, this technique does not take non-linear effects into account.

  5. Estimation of the 2010 Mentawai tsunami earthquake rupture process from joint inversion of teleseismic and strong ground motion data

    Directory of Open Access Journals (Sweden)

    Lifen Zhang

    2015-05-01

    Full Text Available Joint inversion of teleseismic body-wave data and strong ground motion waveforms was applied to determine the rupture process of the 2010 Mentawai earthquake. To obtain stable solutions, smoothing and non-negative constraints were introduced. A total of 33 teleseismic stations and 5 strong ground motion stations supplied data. The teleseismic and strong ground motion data were separately windowed for 150 s and 250 s and band-pass filtered with frequencies of 0.001–1.0 Hz and 0.005–0.5 Hz, respectively. The finite-fault model was established with length and width of 190 km and 70 km, and the initial seismic source parameters were set by referring to centroid moment tensor (CMT solutions. Joint inversion results indicate that the focal mechanism of this earthquake is thrust fault type, and the strike, dip, and rake angles are generally in accordance with CMT results. The seismic moment was determined as 5.814 × 1020 Nm (Mw7.8 and source duration was about 102 s, which is greater than those of other earthquakes of similar magnitude. The rupture nucleated near the hypocenter and then propagated along the strike direction to the northwest, with a maximum slip of 3.9 m. Large uncertainties regarding the amount of slip retrieved using different inversion methods still exist; however, the conclusion that the majority of slip occurred far from the islands at very shallow depths was found to be robust. The 2010 Mentawai earthquake was categorized as a tsunami earthquake because of the long rupture duration and the generation of a tsunami much larger than was expected for an earthquake of its magnitude.

  6. Detailed site effect estimation in the presence of strong velocity reversals within a small-aperture strong-motion array in Iceland

    KAUST Repository

    Rahpeyma, Sahar

    2016-08-11

    The rock site characterization for earthquake engineering applications in Iceland is common due to the easily exposed older bedrock and more recent volcanic lava rock. The corresponding site amplification is generally assumed to be low but has not been comprehensively quantified, especially for volcanic rock. The earthquake strong-motion of the Mw6.3 Ölfus earthquake on 29 May 2008 and 1705 of its aftershocks recorded on the first small-aperture strong-motion array (ICEARRAY I) in Iceland showed consistent and significant variations in ground motion amplitudes over short distances (<2 km) in an urban area located mostly on lava rock. This study analyses the aftershock recordings to quantify the local site effects using the Horizontal to Vertical Spectral Ratio (HVSR) and Standard Spectral Ratio (SSR) methods. Additionally, microseismic data has been collected at array stations and analyzed using the HVSR method. The results between the methods are consistent and show that while the amplification levels remain relatively low, the predominant frequency varies systematically between stations and is found to correlate with the geological units. In particular, for stations on lava rock the underlying geologic structure is characterized by repeated lava-soil stratigraphy characterized by reversals in the shear wave velocity with depth. As a result, standard modeling of HVSR using vertically incident body waves does not apply. Instead, modeling the soil structure as a two-degree-of-freedom dynamic system is found to capture the observed predominant frequencies of site amplification. The results have important implications for earthquake resistant design of structures on rock sites characterized by velocity reversals. © 2016 Elsevier Ltd

  7. Strong seismic ground motion propagation

    International Nuclear Information System (INIS)

    Seale, S.; Archuleta, R.; Pecker, A.; Bouchon, M.; Mohammadioun, G.; Murphy, A.; Mohammadioun, B.

    1988-10-01

    At the McGee Creek, California, site, 3-component strong-motion accelerometers are located at depths of 166 m, 35 m and 0 m. The surface material is glacial moraine, to a depth of 30.5 m, overlying homfels. Accelerations were recorded from two California earthquakes: Round Valley, M L 5.8, November 23, 1984, 18:08 UTC and Chalfant Valley, M L 6.4, July 21, 1986, 14:42 UTC. By separating out the SH components of acceleration, we were able to determine the orientations of the downhole instruments. By separating out the SV component of acceleration, we were able to determine the approximate angle of incidence of the signal at 166 m. A constant phase velocity Haskell-Thomson model was applied to generate synthetic SH seismograms at the surface using the accelerations recorded at 166 m. In the frequency band 0.0 - 10.0 Hz, we compared the filtered synthetic records to the filtered surface data. The onset of the SH pulse is clearly seen, as are the reflections from the interface at 30.5 m. The synthetic record closely matches the data in amplitude and phase. The fit between the synthetic accelerogram and the data shows that the seismic amplification at the surface is a result of the contrast of the impedances (shear stiffnesses) of the near surface materials

  8. Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green's function technique

    Directory of Open Access Journals (Sweden)

    K. Kamae

    1994-06-01

    Full Text Available We introduce a generalized method for simulating strong ground motion from large earthquakes by summing subevent records to follow the ?2 law. The original idea of the method is based on a constant stress parameter between the target event and the subevent. It is applicable to a case where both events have a different stress drop after some manipulation. However, the simulation for a very large earthquake from a small event with this method has inevitably some deficiencies of spectral amplitudes in the intermediate frequency range deviating f`rom the ?2 model, although the high and low frequency motions match the scaling. We improve the simulation algorithm so as not to make spectral sags, introducing self-similar distribution of subfaults with different sizes in the fault plane, so-called fractal composite faulting model. We show successful simulations for intermediate-sized earthquakes (MJMA = 5.0, 6.0 and 6.1, the large aftershocks of the 1983 Akita-Oki earthquake. using the records of smaller aftershocks (MJMA = 3.9 and 5.0 as an empirical Green's function. Further, we attempted to estimate strong ground motion for the 1946 Nankai earthquake with Mw 8.2, using the records of a MJMA 5.1 earthquake occurring near the source region of the mainshock. We found that strong ground motions simulated for the fractal composite faulting model with two asperities radiating significantly high frequency motions matched well the observed data such as the near-field displacement record, the source spectrum estimated from the teleseismic record, and the seismic intensity distribution during the 1946 Nankai earthquake.

  9. Seismic switch for strong motion measurement

    Science.gov (United States)

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  10. Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms, 1933-1994

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms is a database of over 15,000 digitized and processed accelerograph records from...

  11. Earthquake source model using strong motion displacement

    Indian Academy of Sciences (India)

    The strong motion displacement records available during an earthquake can be treated as the response of the earth as the a structural system to unknown forces acting at unknown locations. Thus, if the part of the earth participating in ground motion is modelled as a known finite elastic medium, one can attempt to model the ...

  12. Strong ground motion prediction using virtual earthquakes.

    Science.gov (United States)

    Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C

    2014-01-24

    Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.

  13. Strong motion duration and earthquake magnitude relationships

    International Nuclear Information System (INIS)

    Salmon, M.W.; Short, S.A.; Kennedy, R.P.

    1992-06-01

    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ''strong motion duration'' has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions

  14. Strong motion duration and earthquake magnitude relationships

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, M.W.; Short, S.A. [EQE International, Inc., San Francisco, CA (United States); Kennedy, R.P. [RPK Structural Mechanics Consulting, Yorba Linda, CA (United States)

    1992-06-01

    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ``strong motion duration`` has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions.

  15. The INGV Real Time Strong Motion Database

    Science.gov (United States)

    Massa, Marco; D'Alema, Ezio; Mascandola, Claudia; Lovati, Sara; Scafidi, Davide; Gomez, Antonio; Carannante, Simona; Franceschina, Gianlorenzo; Mirenna, Santi; Augliera, Paolo

    2017-04-01

    The INGV real time strong motion data sharing is assured by the INGV Strong Motion Database. ISMD (http://ismd.mi.ingv.it) was designed in the last months of 2011 in cooperation among different INGV departments, with the aim to organize the distribution of the INGV strong-motion data using standard procedures for data acquisition and processing. The first version of the web portal was published soon after the occurrence of the 2012 Emilia (Northern Italy), Mw 6.1, seismic sequence. At that time ISMD was the first European real time web portal devoted to the engineering seismology community. After four years of successfully operation, the thousands of accelerometric waveforms collected in the archive need necessary a technological improvement of the system in order to better organize the new data archiving and to make more efficient the answer to the user requests. ISMD 2.0 was based on PostgreSQL (www.postgresql.org), an open source object- relational database. The main purpose of the web portal is to distribute few minutes after the origin time the accelerometric waveforms and related metadata of the Italian earthquakes with ML≥3.0. Data are provided both in raw SAC (counts) and automatically corrected ASCII (gal) formats. The web portal also provide, for each event, a detailed description of the ground motion parameters (i.e. Peak Ground Acceleration, Velocity and Displacement, Arias and Housner Intensities) data converted in velocity and displacement, response spectra up to 10.0 s and general maps concerning the recent and the historical seismicity of the area together with information about its seismic hazard. The focal parameters of the events are provided by the INGV National Earthquake Center (CNT, http://cnt.rm.ingv.it). Moreover, the database provides a detailed site characterization section for each strong motion station, based on geological, geomorphological and geophysical information. At present (i.e. January 2017), ISMD includes 987 (121

  16. The Athens Acropolis Strong Motion Array

    Science.gov (United States)

    Kalogeras, I. S.; Evangelidis, C. P.; Melis, N. S.; Boukouras, K.

    2012-04-01

    During the last decades, extensive restoration works through a dedicated "Acropolis Restoration Service" (YSMA) take place in the Acropolis, the greatest sanctuary of ancient Athens. Since 2008, a permanent strong motion array was deployed by the Institute of Geodynamics, National Observatory of Athens (NOA-IG) in collaboration with YSMA. Free field installations were decided at sites showing various characteristics, aiming to investigate differences in geotechnical properties as well as the structure response of Parthenon itself. The installation phase is presented, with the techniques used to overcome difficulties (i.e. extreme weather conditions, power and communication limitations, restoration works and visitors) and the special care taken for the specific archaeological site. Furthermore, indicative examples of seismic events recorded by the array are analyzed and the complexity of the hill and the monument is made apparent. Among them, the long distance events of Tohoku, Japan 2010 and Van, Turkey 2011, some regional moderate earthquakes in Greece and some weak earthquakes from the vicinity. Continuous ambient noise monitoring using PQLX software gives some first indicative results, showing a variety of characteristics at installation sites. Finally, further developments and future steps are presented such as: the extension of the array, the integration of seismic data within the GIS platform of YSMA at the site and the use of strong motion records, in conjunction with data from other monitoring systems operating in Acropolis for the study of specific monuments.

  17. Towards Integrated Marmara Strong Motion Network

    Science.gov (United States)

    Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A.

    2009-04-01

    Istanbul has a 65% chance of having a magnitude 7 or above earthquake within the next 30 years. As part of the preparations for the future earthquake, strong motion networks have been installed in and around Istanbul. The Marmara Strong Motion Network, operated by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, encompasses permanent systems outlined below. It is envisaged that the networks will be run by a single entity responsible for technical management and maintanence, as well as for data management, archiving and dissemination through dedicated web-based interfaces. • Istanbul Earthquake Rapid Response and Early Warning System - IERREWS (one hundred 18-bit accelerometers for rapid response; ten 24-bit accelerometers for early warning) • IGDAŞ Gas Shutoff Network (100 accelerometers to be installed in 2010 and integrated with IERREWS) • Structural Monitoring Arrays - Fatih Sultan Mehmet Suspension Bridge (1200m-long suspension bridge across the Bosphorus, five 3-component accelerometers + GPS sensors) - Hagia Sophia Array (1500-year-old historical edifice, 9 accelerometers) - Süleymaniye Mosque Array (450-year-old historical edifice,9 accelerometers) - Fatih Mosque Array (237-year-old historical edifice, 9 accelerometers) - Kanyon Building Array (high-rise office building, 5 accelerometers) - Isbank Tower Array (high-rise office building, 5 accelerometers) - ENRON Array (power generation facility, 4 acelerometers) - Mihrimah Sultan Mosque Array (450-year-old historical edifice,9 accelerometers + tiltmeters, to be installed in 2009) - Sultanahmet Mosque Array, (390-year-old historical edifice, 9 accelerometers + tiltmeters, to be installed in 2009) • Special Arrays - Atakoy Vertical Array (four 3-component accelerometers at 25, 50, 75, and 150 m depths) - Marmara Tube Tunnel (1400 m long submerged tunnel, 128 ch. accelerometric data, 24 ch. strain data, to be installed in 2010) - Air-Force Academy

  18. Bodrum Strong Motion Network, Mugla, Turkey

    Science.gov (United States)

    Alcik, H. A.; Tanircan, G.; Korkmaz, A.

    2015-12-01

    The Gulf of Gökova is located in southwestern Turkey near the Aegean Sea and surrounded by Datça Peninsula to the south, the island of Kos to the west and Bodrum Peninsula to the north. The Bodrum peninsula with a population of one million in summer season is one of the most populated touristic centers of Turkey. This region is also surrounded by numerous active seismic entities such as Ula-Ören Fault Zone, Gökova Graben etc.. and demonstrates high seismic hazard. In the past, many destructive earthquakes have occurred in southwestern Turkey. One of the destructive historical earthquakes is 1493 Kos event (Mw=6.9) caused heavy damage in Bodrum. In the instrumental period seismic activity in the Gökova region includes the Ms>6.0 earthquakes of 23 April 1933 (Ms=6.4), 23 May 1941 (Ms=6.0), 13 December 1941 (Ms=6.5) events. Intense earthquake activity (Mw5+) occurred in Gulf of Gökova in August 2004 and January 2005. Considering the high seismicity and population of this region, a strong ground motion monitoring system stationed in dense settlements in the Bodrum Peninsula: Bodrum, Turgutreis, Yalıkavak, Çiftlik and Ortakent was deployed on June 2015. The network consists of 5 strong motion recorders, has been set up with the aim of monitoring of regional earthquakes, collecting accurate and reliable data for engineering and scientific research purposes, in particular to provide input for future earthquake rapid reporting and early warning implementation projects on urban environments in the Bodrum peninsula and the surrounding areas. In this poster presentation, we briefly introduce the Bodrum Network and discuss our future plans for further developments.

  19. Strong Motion Seismograph Based On MEMS Accelerometer

    Science.gov (United States)

    Teng, Y.; Hu, X.

    2013-12-01

    The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The

  20. Source rupture process of the 2016 Kaikoura, New Zealand earthquake estimated from the kinematic waveform inversion of strong-motion data

    Science.gov (United States)

    Zheng, Ao; Wang, Mingfeng; Yu, Xiangwei; Zhang, Wenbo

    2018-03-01

    On 2016 November 13, an Mw 7.8 earthquake occurred in the northeast of the South Island of New Zealand near Kaikoura. The earthquake caused severe damages and great impacts on local nature and society. Referring to the tectonic environment and defined active faults, the field investigation and geodetic evidence reveal that at least 12 fault sections ruptured in the earthquake, and the focal mechanism is one of the most complicated in historical earthquakes. On account of the complexity of the source rupture, we propose a multisegment fault model based on the distribution of surface ruptures and active tectonics. We derive the source rupture process of the earthquake using the kinematic waveform inversion method with the multisegment fault model from strong-motion data of 21 stations (0.05-0.35 Hz). The inversion result suggests the rupture initiates in the epicentral area near the Humps fault, and then propagates northeastward along several faults, until the offshore Needles fault. The Mw 7.8 event is a mixture of right-lateral strike and reverse slip, and the maximum slip is approximately 19 m. The synthetic waveforms reproduce the characteristics of the observed ones well. In addition, we synthesize the coseismic offsets distribution of the ruptured region from the slips of upper subfaults in the fault model, which is roughly consistent with the surface breaks observed in the field survey.

  1. Uniform risk spectra of strong earthquake ground motion: NEQRISK

    International Nuclear Information System (INIS)

    Lee, V.W.; Trifunac, M.D.

    1987-01-01

    The concept of uniform risk spectra of Anderson and Trifunac (1977) has been generalized to include (1) more refined description of earthquake source zones, (2) the uncertainties in estimating seismicity parameters a and b in log 10 N = a - bM, (3) to consider uncertainties in estimation of maximum earthquake size in each source zone, and to (4) include the most recent results on empirical scaling of strong motion amplitudes at a site. Examples of using to new NEQRISK program are presented and compared with the corresponding case studies of Anderson and Trifunac (1977). The organization of the computer program NEQRISK is also briefly described

  2. Modeling and synthesis of strong ground motion

    Indian Academy of Sciences (India)

    Success of earthquake resistant design practices critically depends on how accurately the future ground motion can be determined at a desired site. But very limited recorded data are available about ground motion in India for engineers to rely upon. To identify the needs of engineers, under such circumstances, in ...

  3. Strong ground motion spectra for layered media

    International Nuclear Information System (INIS)

    Askar, A.; Cakmak, A.S.; Engin, H.

    1977-01-01

    This article presents an analytic method and calculations of strong motion spectra for the energy, displacement, velocity and acceleration based on the physical and geometric ground properties at a site. Although earthquakes occur with large deformations and high stress intensities which necessarily lead to nonlinear phenomena, most analytical efforts to date have been based on linear analyses in engineering seismology and soil dynamics. There are, however, a wealth of problems such as the shifts in frequency, dispersion due to the amplitude, the generation of harmonics, removal of resonance infinities, which cannot be accounted for by a linear theory. In the study, the stress-strain law for soil is taken as tau=G 0 γ+G 1 γ 3 +etaγ where tau is the stress, γ is the strain, G 0 and G 1 are the elasticity coefficients and eta is the damping and are different in each layer. The above stress-strain law describes soils with hysterisis where the hysterisis loops for various amplitudes of the strain are no longer concentric ellipses as for linear relations but are oval shapes rotated with respect to each other similar to the materials with the Osgood-Ramberg law. It is observed that even slight nonlinearities may drastically alter the various response spectra from that given by linear analysis. In fact, primary waves cause resonance conditions such that secondary waves are generated. As a result, a weak energy transfer from the primary to the secondary waves takes place, thus altering the wave spectrum. The mathematical technique that is utilized for the solution of the nonlinear equation is a special perturbation method as an extension of Poincare's procedure. The method considers shifts in the frequencies which are determined by the boundedness of the energy

  4. Estimation of Motion Vector Fields

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1993-01-01

    This paper presents an approach to the estimation of 2-D motion vector fields from time varying image sequences. We use a piecewise smooth model based on coupled vector/binary Markov random fields. We find the maximum a posteriori solution by simulated annealing. The algorithm generate sample...

  5. Assessment of strong ground motion records

    Indian Academy of Sciences (India)

    2003-05-01

    May 1, 2003 ... tos Nor-teamericanosy Japoneses; Revista DEL IDIEM 8,. Chile. Kalkan E and Gülkan P 2004 Site-dependent spectra derived from ground motion records in Turkey; Earthq. Spectra. 20(4) 853–882. Newmark N M and Hall W J 1982 Earthquake spectra and design; EERI Monograph Series, Earthquake ...

  6. Modeling and synthesis of strong ground motion

    Indian Academy of Sciences (India)

    Numerical examples are shown for illustration by taking Kutch earthquake-2001 as a case study. 1. ... Ground motion; source mechanism models; empirical Green's functions; seismological models; Kutch earthquake. J. Earth Syst. Sci. 117 ..... hybrid global search method which is a combi- nation of simulated annealing and ...

  7. Smoothing Motion Estimates for Radar Motion Compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.

  8. Database for earthquake strong motion studies in Italy

    Science.gov (United States)

    Scasserra, G.; Stewart, J.P.; Kayen, R.E.; Lanzo, G.

    2009-01-01

    We describe an Italian database of strong ground motion recordings and databanks delineating conditions at the instrument sites and characteristics of the seismic sources. The strong motion database consists of 247 corrected recordings from 89 earthquakes and 101 recording stations. Uncorrected recordings were drawn from public web sites and processed on a record-by-record basis using a procedure utilized in the Next-Generation Attenuation (NGA) project to remove instrument resonances, minimize noise effects through low- and high-pass filtering, and baseline correction. The number of available uncorrected recordings was reduced by 52% (mostly because of s-triggers) to arrive at the 247 recordings in the database. The site databank includes for every recording site the surface geology, a measurement or estimate of average shear wave velocity in the upper 30 m (Vs30), and information on instrument housing. Of the 89 sites, 39 have on-site velocity measurements (17 of which were performed as part of this study using SASW techniques). For remaining sites, we estimate Vs30 based on measurements on similar geologic conditions where available. Where no local velocity measurements are available, correlations with surface geology are used. Source parameters are drawn from databanks maintained (and recently updated) by Istituto Nazionale di Geofisica e Vulcanologia and include hypocenter location and magnitude for small events (M< ??? 5.5) and finite source parameters for larger events. ?? 2009 A.S. Elnashai & N.N. Ambraseys.

  9. Variable anelastic attenuation and site effect in estimating source parameters of various major earthquakes including M w 7.8 Nepal and M w 7.5 Hindu kush earthquake by using far-field strong-motion data

    Science.gov (United States)

    Kumar, Naresh; Kumar, Parveen; Chauhan, Vishal; Hazarika, Devajit

    2017-10-01

    Strong-motion records of recent Gorkha Nepal earthquake ( M w 7.8), its strong aftershocks and seismic events of Hindu kush region have been analysed for estimation of source parameters. The M w 7.8 Gorkha Nepal earthquake of 25 April 2015 and its six aftershocks of magnitude range 5.3-7.3 are recorded at Multi-Parametric Geophysical Observatory, Ghuttu, Garhwal Himalaya (India) >600 km west from the epicentre of main shock of Gorkha earthquake. The acceleration data of eight earthquakes occurred in the Hindu kush region also recorded at this observatory which is located >1000 km east from the epicentre of M w 7.5 Hindu kush earthquake on 26 October 2015. The shear wave spectra of acceleration record are corrected for the possible effects of anelastic attenuation at both source and recording site as well as for site amplification. The strong-motion data of six local earthquakes are used to estimate the site amplification and the shear wave quality factor ( Q β) at recording site. The frequency-dependent Q β( f) = 124 f 0.98 is computed at Ghuttu station by using inversion technique. The corrected spectrum is compared with theoretical spectrum obtained from Brune's circular model for the horizontal components using grid search algorithm. Computed seismic moment, stress drop and source radius of the earthquakes used in this work range 8.20 × 1016-5.72 × 1020 Nm, 7.1-50.6 bars and 3.55-36.70 km, respectively. The results match with the available values obtained by other agencies.

  10. Earthquake source model using strong motion displacement as ...

    Indian Academy of Sciences (India)

    The strong motion displacement records available during an earthquake can be treated as the response of the earth as the a structural system to unknown forces acting at unknown locations. Thus, if the part of the earth participating in ground motion is modelled as a known finite elastic medium, one can attempt to model the ...

  11. Integration of strong motion networks and accelerometric data in Europe

    Science.gov (United States)

    Luzi, L.; Clinton, J. F.; Akkar, S.; Sleeman, R.; Van Eck, T.

    2014-12-01

    Efforts for an organized collection of strong motion data in Europe started during the Fourth Framework Program granted by the European Union, with the first release of the European Strong Motion database. Subsequently other attempts were made, but the initiatives were carried out within a project by a single or few institutions, often isolated from data providers. During the Seventh Framework Program, in the context of the project NERA, parallel to the establishment of infrastructures, major efforts were devoted on the improvement of networking among strong-motion data providers in the broader European countries. Two major infrastructures for storing and disseminating accelerometric data and metadata were built: a. The Rapid-Raw Strong Motion (RRSM) database that automatically delivers strong motion products in near-real time. The system collects and uses all relevant, unrestricted waveform data from the European Integrated waveform Data Archive (EIDA) within minutes after an earthquake (M>=3.5) in the European- Mediterranean region. The RRSM web interface is available at http://orfeusdev.knmi.nl:8080/opencms/rrsm b. A prototype of strong-motion database (Engineering Strong Motion database, ESM) that contains an initial core formed by the accelerograms recorded by Italian and Turkish strong-motion data providers. ESM is structured to contain not only the data available in EIDA but also off-line data; earthquake and strong-motion metadata contain more detailed information than the corresponding metadata in RRSM. A Working Group (WG5 - acceleration and strong motion data), operating under ORFEUS, has been created to build the basis for the sustainable integrated pan-European accelerometric data distribution. The responsibilities and duties of the WG5 are envisaged as follows: 1. Setting rules for data dissemination; 2. Establishing MoU's with data providers; 3. Collaborating with the European project EPOS for the preparation of projects; 4. Contacting similar

  12. Peak ground motions, effective duration of strong motions and frequency content of Iranian earthquakes

    International Nuclear Information System (INIS)

    Tehranizadeh, M.; Hamedi, F.

    2002-01-01

    The characteristics of earthquake ground motion have great influences on the response of structures to the earthquakes. Peak ground motions, duration of strong motions and frequency content are important characteristics of earthquakes, which are studied in this paper. The relation between peak ground acceleration, velocity and displacement have been taken into account and the effects of magnitude, epicentral distance and recorded duration of earthquakes on peak ground acceleration have been presented as graphs. The frequency content of ground motion can be examined by power spectral density of accel ero grams. In this study the power spectral density of the records have been determined and normalized power spectral densities are compared. There are different formulas for the smoothed power spectral density function such as Kanai-Tajimi's model. In this study, comparing with Kanai-Tajim's formula, the extreme value model is suggested for the spectral density function. This model is evaluated for accel ero grams on different soil conditions and the smoothed mean power spectral density function are determined for each soil groups. The central frequency and predominant period of earthquakes are also estimated

  13. Rrsm: The European Rapid Raw Strong-Motion Database

    Science.gov (United States)

    Cauzzi, C.; Clinton, J. F.; Sleeman, R.; Domingo Ballesta, J.; Kaestli, P.; Galanis, O.

    2014-12-01

    We introduce the European Rapid Raw Strong-Motion database (RRSM), a Europe-wide system that provides parameterised strong motion information, as well as access to waveform data, within minutes of the occurrence of strong earthquakes. The RRSM significantly differs from traditional earthquake strong motion dissemination in Europe, which has focused on providing reviewed, processed strong motion parameters, typically with significant delays. As the RRSM provides rapid open access to raw waveform data and metadata and does not rely on external manual waveform processing, RRSM information is tailored to seismologists and strong-motion data analysts, earthquake and geotechnical engineers, international earthquake response agencies and the educated general public. Access to the RRSM database is via a portal at http://www.orfeus-eu.org/rrsm/ that allows users to query earthquake information, peak ground motion parameters and amplitudes of spectral response; and to select and download earthquake waveforms. All information is available within minutes of any earthquake with magnitude ≥ 3.5 occurring in the Euro-Mediterranean region. Waveform processing and database population are performed using the waveform processing module scwfparam, which is integrated in SeisComP3 (SC3; http://www.seiscomp3.org/). Earthquake information is provided by the EMSC (http://www.emsc-csem.org/) and all the seismic waveform data is accessed at the European Integrated waveform Data Archive (EIDA) at ORFEUS (http://www.orfeus-eu.org/index.html), where all on-scale data is used in the fully automated processing. As the EIDA community is continually growing, the already significant number of strong motion stations is also increasing and the importance of this product is expected to also increase. Real-time RRSM processing started in June 2014, while past events have been processed in order to provide a complete database back to 2005.

  14. French network and acquired experience on record strong ground motion

    International Nuclear Information System (INIS)

    Ferrieux, H.; Mohammadioun, G.

    1988-03-01

    The network intended to record strong ground motion in continental France is composed for the most part of instrument packages incorporated into nuclear installations, which are supplemented by a certain number of accelerometers placed in the most highly seismic areas. In a country where the level of seismicity is relatively modest, such a network is not conductive to the acquisition of new data, which, instead, is obtained through spot studies of limited duration using more sensitive instruments or through the recording of strong ground motion in neighbouring countries [fr

  15. Earthquake Intensity and Strong Motion Analysis Within SEISCOMP3

    Science.gov (United States)

    Becker, J.; Weber, B.; Ghasemi, H.; Cummins, P. R.; Murjaya, J.; Rudyanto, A.; Rößler, D.

    2017-12-01

    Measuring and predicting ground motion parameters including seismic intensities for earthquakes is crucial and subject to recent research in engineering seismology.gempa has developed the new SIGMA module for Seismic Intensity and Ground Motion Analysis. The module is based on the SeisComP3 framework extending it in the field of seismic hazard assessment and engineering seismology. SIGMA may work with or independently of SeisComP3 by supporting FDSN Web services for importing earthquake or station information and waveforms. It provides a user-friendly and modern graphical interface for semi-automatic and interactive strong motion data processing. SIGMA provides intensity and (P)SA maps based on GMPE's or recorded data. It calculates the most common strong motion parameters, e.g. PGA/PGV/PGD, Arias intensity and duration, Tp, Tm, CAV, SED and Fourier-, power- and response spectra. GMPE's are configurable. Supporting C++ and Python plug-ins, standard and customized GMPE's including the OpenQuake Hazard Library can be easily integrated and compared. Originally tailored to specifications by Geoscience Australia and BMKG (Indonesia) SIGMA has become a popular tool among SeisComP3 users concerned with seismic hazard and strong motion seismology.

  16. Earthquake source model using strong motion displacement as ...

    Indian Academy of Sciences (India)

    Earthquake source model using strong motion displacement as response of finite elastic media. R N IYENGAR* and SHAILESH KR AGRAWAL**. *Department of Civil Engineering, Indian Institute of Science, Bangalore 560 012, India. e-mail: rni@civil.iisc.ernet.in. **Central Building Research Institute, Roorkee, India.

  17. Online wave estimation using vessel motion measurements

    DEFF Research Database (Denmark)

    H. Brodtkorb, Astrid; Nielsen, Ulrik D.; J. Sørensen, Asgeir

    2018-01-01

    In this paper, a computationally efficient online sea state estimation algorithm isproposed for estimation of the on site sea state. The algorithm finds the wave spectrum estimate from motion measurements in heave, roll and pitch by iteratively solving a set of linear equations. The main vessel p...

  18. Conditional shape models for cardiac motion estimation

    DEFF Research Database (Denmark)

    Metz, Coert; Baka, Nora; Kirisli, Hortense

    2010-01-01

    We propose a conditional statistical shape model to predict patient specific cardiac motion from the 3D end-diastolic CTA scan. The model is built from 4D CTA sequences by combining atlas based segmentation and 4D registration. Cardiac motion estimation is, for example, relevant in the dynamic...... alignment of pre-operative CTA data with intra-operative X-ray imaging. Due to a trend towards prospective electrocardiogram gating techniques, 4D imaging data, from which motion information could be extracted, is not commonly available. The prediction of motion from shape information is thus relevant...

  19. Adaptive vehicle motion estimation and prediction

    Science.gov (United States)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  20. Shear-wave velocity compilation for Northridge strong-motion recording sites

    Science.gov (United States)

    Borcherdt, Roger D.; Fumal, Thomas E.

    2002-01-01

    Borehole and other geotechnical information collected at the strong-motion recording sites of the Northridge earthquake of January 17, 1994 provide an important new basis for the characterization of local site conditions. These geotechnical data, when combined with analysis of strong-motion recordings, provide an empirical basis to evaluate site coefficients used in current versions of US building codes. Shear-wave-velocity estimates to a depth of 30 meters are derived for 176 strong-motion recording sites. The estimates are based on borehole shear-velocity logs, physical property logs, correlations with physical properties and digital geologic maps. Surface-wave velocity measurements and standard penetration data are compiled as additional constraints. These data as compiled from a variety of databases are presented via GIS maps and corresponding tables to facilitate use by other investigators.

  1. Establishment of Antakya Basin Strong Ground Motion Monitoring System

    Science.gov (United States)

    Durukal, E.; Özel, O.; Bikce, M.; Geneş, M. C.; Kacın, S.; Erdik, M.; Safak, E.; Över, S.

    2009-04-01

    Turkey is located in one of the most active earthquake zones of the world. The cities located along the North Anatolian Fault (NAF) and the East Anatolian Fault (EAF) are exposed to significant earthquake hazard. The Hatay province near the southern terminus of the EAF has always experienced a significant seismic activity, since it is on the intersection of the northernmost segment of Dead Sea Fault Zone coming from the south, with the Cyprean Arc approaching from south-west. Historical records extending over the last 2000 years indicate that Antakya, founded in the 3rd century B.C., is effected by intensity IX-X earthquakes every 150 years. In the region, the last destructive earthquake occurred in 1872. Destructive earthquakes should be expected in the region in the near future similar to the ones that occurred in the past. The strong response of sedimentary basins to seismic waves was largely responsible for the damage produced by the devastating earthquakes of 1985 Michoacan Earthquake which severely damaged parts of Mexico City, and the 1988 Spitak Earthquake which destroyed most of Leninakan, Armenia. Much of this devastating response was explained by the conversion of seismic body waves to surface waves at the sediment/rock contacts of sedimentary basins. "Antakya Basin Strong Ground Motion Monitoring System" is set up with the aim of monitoring the earthquake response of the Antakya Basin, contributing to our understanding of basin response, contributing to earthquake risk assessment of Antakya, monitoring of regional earthquakes and determining the effects of local and regional earthquakes on the urban environment of Antakya. The soil properties beneath the strong motion stations (S-Wave velocity structure and dominant soil frequency) are determined by array measurements that involve broad-band seismometers. The strong motion monitoring system consists of six instruments installed in small buildings. The stations form a straight line along the short axis

  2. Analysis of strong ground motions to evaluate regional attenuation relationships

    Directory of Open Access Journals (Sweden)

    V. Montaldo

    2002-06-01

    Full Text Available Italian attenuation relationships at regional scale have been refined using a data set of 322 horizontal components of strong ground motions recorded mainly during the 1997-1998 Umbria-Marche, Central Italy, earthquake sequence. The data set includes records generated by events with local magnitude (M L ranging between 4.5 and 5.9, recorded at rock or soil sites and epicentral distance smaller than 100 km. Through a multiple step regression analysis, we calculated empirical equations for the peak ground acceleration and velocity, the Arias Intensity and for the horizontal components of the 5% damped velocity pseudo response spectra, corresponding to 14 frequencies ranging from 0.25 to 25 Hz. We compared our results with well known predictive equations, widely used on the national territory for Probabilistic Seismic Hazard Analysis. The results obtained in this study show smaller values for all the analyzed ground motion indicators compared to other predictive equations.

  3. Estimation of visual motion in image sequences

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1994-01-01

    The problem of estimation of visual motion from sequences of images has been considered within a framework consisting of three stages of processing. First the extraction of motion invariants, secondly a local measurement of visual motion, and third integration of local measurements in conjunction...... with a priori knowledge. We have surveyed a series of attempts to extract motion invariants. Specifically we have illustrate the use of local Fourier phase. The Fourier phase is shown to define the local shape of the signal, thus accurately localizing an event. Different strategies for local measurement...... are given. In particular we have investigated the use of smoothness of the second order derivatives, and the use of edge model and prior destributions for the field that favor discontinuities to characterize the motion field. A succesful implementation of a temporal interpolation in a sequence of weather...

  4. Earthquake strong ground motion studies at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wong, Ivan; Silva, W.; Darragh, R.; Stark, C.; Wright, D.; Jackson, S.; Carpenter, G.; Smith, R.; Anderson, D.; Gilbert, H.; Scott, D.

    1989-01-01

    Site-specific strong earthquake ground motions have been estimated for the Idaho National Engineering Laboratory assuming that an event similar to the 1983 M s 7.3 Borah Peak earthquake occurs at epicentral distances of 10 to 28 km. The strong ground motion parameters have been estimated based on a methodology incorporating the Band-Limited-White-Noise ground motion model coupled with Random Vibration Theory. A 16-station seismic attenuation and site response survey utilizing three-component portable digital seismographs was also performed for a five-month period in 1989. Based on the recordings of regional earthquakes, the effects of seismic attenuation in the shallow crust and along the propagation path and local site response were evaluated. This data combined with a detailed geologic profile developed for each site based principally on borehole data, was used in the estimation of the strong ground motion parameters. The preliminary peak horizontal ground accelerations for individual sites range from approximately 0.15 to 0.35 g. Based on the authors analysis, the thick sedimentary interbeds (greater than 20 m) in the basalt section attenuate ground motions as speculated upon in a number of previous studies

  5. Estimating tropical vertical motion profile shapes from satellite observations

    Science.gov (United States)

    Back, L. E.; Handlos, Z.

    2013-12-01

    The vertical structure of tropical deep convection strongly influences interactions with larger scale circulations and climate. This research focuses on investigating this vertical structure and its relationship with mesoscale tropical weather states. We test the hypothesis that vertical motion shape varies in association with weather state type. We estimate mean state vertical motion profile shapes for six tropical weather states defined using cloud top pressure and optical depth properties from the International Satellite Cloud Climatology Project. The relationship between vertical motion and the dry static energy budget are utilized to set up a regression analysis that empirically determines two modes of variability in vertical motion from reanalysis data. We use these empirically determined modes, this relationship and surface convergence to estimate vertical motion profile shape from observations of satellite retrievals of rainfall and surface convergence. We find that vertical motion profile shapes vary systematically between different tropical weather states. The "isolated systems" regime exhibits a more ''bottom-heavy'' profile shape compared to the convective/thick cirrus and vigorous deep convective regimes, with maximum upward vertical motion occurring in the lower troposphere rather than the middle to upper troposphere. The variability we observe with our method does not coincide with that expected based on conventional ideas about how stratiform rain fraction and vertical motion are related.

  6. Moment tensor inversions using strong motion waveforms of Taiwan TSMIP data, 1993–2009

    Science.gov (United States)

    Chang, Kaiwen; Chi, Wu-Cheng; Gung, Yuancheng; Dreger, Douglas; Lee, William H K.; Chiu, Hung-Chie

    2011-01-01

    Earthquake source parameters are important for earthquake studies and seismic hazard assessment. Moment tensors are among the most important earthquake source parameters, and are now routinely derived using modern broadband seismic networks around the world. Similar waveform inversion techniques can also apply to other available data, including strong-motion seismograms. Strong-motion waveforms are also broadband, and recorded in many regions since the 1980s. Thus, strong-motion data can be used to augment moment tensor catalogs with a much larger dataset than that available from the high-gain, broadband seismic networks. However, a systematic comparison between the moment tensors derived from strong motion waveforms and high-gain broadband waveforms has not been available. In this study, we inverted the source mechanisms of Taiwan earthquakes between 1993 and 2009 by using the regional moment tensor inversion method using digital data from several hundred stations in the Taiwan Strong Motion Instrumentation Program (TSMIP). By testing different velocity models and filter passbands, we were able to successfully derive moment tensor solutions for 107 earthquakes of Mw >= 4.8. The solutions for large events agree well with other available moment tensor catalogs derived from local and global broadband networks. However, for Mw = 5.0 or smaller events, we consistently over estimated the moment magnitudes by 0.5 to 1.0. We have tested accelerograms, and velocity waveforms integrated from accelerograms for the inversions, and found the results are similar. In addition, we used part of the catalogs to study important seismogenic structures in the area near Meishan Taiwan which was the site of a very damaging earthquake a century ago, and found that the structures were dominated by events with complex right-lateral strike-slip faulting during the recent decade. The procedures developed from this study may be applied to other strong-motion datasets to compliment or fill

  7. Analysis of strong-motion data of the 1990 Eastern Sicily earthquake

    Directory of Open Access Journals (Sweden)

    E. Boschi

    1995-06-01

    Full Text Available The strong motion accelerograms recorded during the 1990 Eastern Sicily earthquake have been analyzed to investigate source and attenuation parameters. Peak ground motions (peak acceleration, velocity and displacement overestimate the values predicted by the empirical scaling law proposed for other Italian earthquakes, suggesting that local site response and propagation path effects play an important role in interpreting the observed time histories. The local magnitude, computed from the strong motion accelerograms by synthesizing the Wood-Anderson response, is ML = 5.9, that is sensibly larger than the local magnitude estimated at regional distances from broad-band seismograms (ML = 5.4. The standard omega-square source spectral model seems to be inadequate to describe the observed spectra over the entire frequency band from 0.2 to 20 Hz. The seismic moment estimated from the strong motion accelerogram recorded at the closest rock site (Sortino is Mo = 0.8 x 1024 dyne.cm, that is roughly 4.5 times lower than the value estimated at regional distances (Mo = 3.7 x 1024 dyne.cm from broad-band seismograms. The corner frequency estimated from the accelera- tion spectra i.5 J; = 1.3 Hz, that is close to the inverse of the dUl.ation of displacement pulses at the two closest recording sites. This value of corner tì.equency and the two values of seismic moment yield a Brune stress drop larger than 500 bars. However, a corner frequency value off; = 0.6 Hz and the seismic moment resulting from regional data allows the acceleration spectra to be reproduced on the entire available frequency band yielding to a Brune stress drop of 210 bars. The ambiguity on the corner frequency value associated to this earthquake is due to the limited frequency bandwidth available on the strong motion recordil1gs. Assuming the seismic moment estimated at regional distances from broad-band data, the moment magnitude for this earthquake is 5.7. The higher local magnitude (5

  8. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com [Geology Department, Yangon University (Myanmar); Pramumijoyo, Subagyo; Wilopo, Wahyu; Setianto, Agung [Geological Engineering Department, Gadjah Mada University (Indonesia); Brotopuspito, Kirbani Sri [Physics Department, Gadjah Mada University (Indonesia); Kiyono, Junji; Putra, Rusnardi Rahmat [Graduate School of Global Environmental Studies, Kyoto University (Japan)

    2015-04-24

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  9. Cerebral palsy characterization by estimating ocular motion

    Science.gov (United States)

    González, Jully; Atehortúa, Angélica; Moncayo, Ricardo; Romero, Eduardo

    2017-11-01

    Cerebral palsy (CP) is a large group of motion and posture disorders caused during the fetal or infant brain development. Sensorial impairment is commonly found in children with CP, i.e., between 40-75 percent presents some form of vision problems or disabilities. An automatic characterization of the cerebral palsy is herein presented by estimating the ocular motion during a gaze pursuing task. Specifically, After automatically detecting the eye location, an optical flow algorithm tracks the eye motion following a pre-established visual assignment. Subsequently, the optical flow trajectories are characterized in the velocity-acceleration phase plane. Differences are quantified in a small set of patients between four to ten years.

  10. Neuromorphic Configurable Architecture for Robust Motion Estimation

    Directory of Open Access Journals (Sweden)

    Guillermo Botella

    2008-01-01

    Full Text Available The robustness of the human visual system recovering motion estimation in almost any visual situation is enviable, performing enormous calculation tasks continuously, robustly, efficiently, and effortlessly. There is obviously a great deal we can learn from our own visual system. Currently, there are several optical flow algorithms, although none of them deals efficiently with noise, illumination changes, second-order motion, occlusions, and so on. The main contribution of this work is the efficient implementation of a biologically inspired motion algorithm that borrows nature templates as inspiration in the design of architectures and makes use of a specific model of human visual motion perception: Multichannel Gradient Model (McGM. This novel customizable architecture of a neuromorphic robust optical flow can be constructed with FPGA or ASIC device using properties of the cortical motion pathway, constituting a useful framework for building future complex bioinspired systems running in real time with high computational complexity. This work includes the resource usage and performance data, and the comparison with actual systems. This hardware has many application fields like object recognition, navigation, or tracking in difficult environments due to its bioinspired and robustness properties.

  11. Field Motion Estimation with a Geosensor Network

    Directory of Open Access Journals (Sweden)

    Daniel Fitzner

    2016-09-01

    Full Text Available Physical environmental processes, such as the evolution of precipitation or the diffusion of chemical clouds in the atmosphere, can be approximated by numerical models based on the underlying physics, e.g., for the purpose of prediction. As the modeling process is often very complex and resource demanding, such models are sometimes replaced by those that use historic and current data for calibration. For atmospheric (e.g., precipitation or oceanographic (e.g., sea surface temperature fields, the data-driven methods often concern the horizontal displacement driven by transport processes (called advection. These methods rely on flow fields estimated from images of the phenomenon by computer vision techniques, such as optical flow (OF. In this work, an algorithm is proposed for estimating the motion of spatio-temporal fields with the nodes of a geosensor network (GSN deployed in situ when images are not available. The approach adapts a well-known raster-based OF algorithm to the specifics of GSNs, especially to the spatial irregularity of data. In this paper, the previously introduced approach has been further developed by introducing an error model that derives probabilistic error measures based on spatial node configuration. Further, a more generic motion model is provided, as well as comprehensive simulations that illustrate the performance of the algorithm in different conditions (fields, motion behaviors, node densities and deployments for the two error measures of motion direction and motion speed. Finally, the algorithm is applied to data sampled from weather radar images, and the algorithm performance is compared to that of a state-of-the-art OF algorithm applied to the weather radar images directly, as often done in nowcasting.

  12. Ego-Motion Estimation of Drones

    OpenAIRE

    Ay, Emre

    2017-01-01

    To remove the dependency on external structure for drone positioning in GPS-denied environments, it is desirable to estimate the ego-motion of drones on-board. Visual positioning systems have been studied for quite some time and the literature on the area is diligent. The aim of this project is to investigate the currently available methods and implement a visual odometry system for drones which is capable of giving continuous estimates with a lightweight solution. In that manner, the state o...

  13. A Compatible Baseline Correction Algorithm for Strong-Motion Data

    Directory of Open Access Journals (Sweden)

    Hung-Chie Chiu

    2012-01-01

    Full Text Available In physics, acceleration, velocity, and displacement should be convertible with each other. However, many strong-motion data do not meet this requirement; the double integration of a disseminated acceleration might not be the same as the corresponding disseminated displacement. This data incompatibility influences not only on the waveform but also on the derived terms from acceleration, such as response spectra. This can become a serious problem in the calculation of a nonlinear response (Pecknold and Riddell 1978, 1979. We show that the non-zero initial value of waveforms is the direct source of the dada incompatibility, and propose a numerical algorithm to solve the problem by adding a prefix acceleration impulse. We suggest a polynomial function of order of three as the impulse function. The coefficients of this polynomial function can be determined by initial acceleration, velocity and displacement which can be obtained by routine data processing. Numerical tests show this added impulse can effectively remove the data incompatibility and cause negligible effects on waveforms and response spectra.

  14. High-frequency filtering of strong-motion records

    Science.gov (United States)

    Douglas, J.; Boore, D.M.

    2011-01-01

    The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high-frequency noise is only necessary in certain situations and that PSAs can often be used up to 100 Hz even if much lower high-cut corner frequencies are required to remove the noise. This apparent contradiction can be explained by the fact that PSAs are often controlled by ground accelerations associated with much lower frequencies than the natural frequency of the oscillator because path and site attenuation (often modelled by Q and κ, respectively) have removed the highest frequencies. We demonstrate that if high-cut filters are to be used, then their corner frequencies should be selected on an individual basis, as has been done in a few recent studies.

  15. Strong motion recordings of the 2008/12/23 earthquake in Northern Italy: another case of very weak motion?

    Science.gov (United States)

    Sabetta, F.; Zambonelli, E.

    2009-04-01

    On December 23 2008 an earthquake of magnitude ML=5.1 (INGV) Mw=5.4 (INGV-Harvard Global CMT) occurred in northern Italy close to the cities of Parma and Reggio Emilia. The earthquake, with a macroseismic intensity of VI MCS, caused a very slight damage (some tens of unusable buildings and some hundreds of damaged buildings), substantially lower than the damage estimated by the loss simulation scenario currently used by the Italian Civil Protection. Due to the recent upgrading of the Italian strong motion network (RAN), the event has been recorded by a great number of accelerometers (the largest ever obtained in Italy for a single shock): 21 digital and 8 analog instruments with epicentral distances ranging from 16 to 140 km. The comparison of recorded PGA, PGV, Arias intensity, and spectral values with several widely used Ground Motion Prediction Equations (GMPEs) showed much lower ground motion values respect to the empirical predictions (a factor ranging from 4 to 2). A first explanation of the strong differences, in damage and ground motion, between actual data and predictions could be, at a first sight, attributed to the rather high focal depth of 27 km. However, even the adoption of GMPEs accounting for depth of the source and using hypocentral distance (Berge et al 2003, Pousse et al 2005), does not predict large differences in motions, especially at distances larger than 30 km where most of the data are concentrated and where the effect of depth on source-to-site distance is small. At the same time the adoption of the most recent GMPEs (Ambraseys et al 2005, Akkar & bommer 2007) taking into account the different magnitude scaling and the faster attenuation of small magnitudes through magnitude-dependent attenuation, does not show a better agreement with the recorded data. The real reasons of the above mentioned discrepancies need to be further investigated, however a possible explanation could be a low source rupture velocity, likewise the 2002 Molise

  16. The effect of regional variation of seismic wave attenuation on the strong ground motion from earthquakes

    International Nuclear Information System (INIS)

    Chung, D.H.; Bernreuter, D.L.

    1981-10-01

    Attenuation is caused by geometric spreading and absorption. Geometric spreading is almost independent of crustal geology and physiographic region, but absorption depends strongly on crustal geology and the state of the earth's upper mantle. Except for very high frequency waves, absorption does not affect ground motion at distances less than about 25 to 50 km. Thus, in the near-field zone, the attenuation in the eastern United States is similar to that in the western United States. Beyond the near field, differences in ground motion can best be accounted for by differences in attenuation caused by differences in absorption. The stress drop of eastern earthquakes may be higher than for western earthquakes of the same seismic moment, which would affect the high-frequency spectral content. But we believe this factor is of much less significance than differences in absorption in explaining the differences in ground motion between the East and the West. The characteristics of strong ground motion in the conterminous United States are discussed in light of these considerations, and estimates are made of the epicentral ground motions in the central and eastern United States. (author)

  17. Validation of strong-motion stochastic model using observed ground motion records in north-east India

    Directory of Open Access Journals (Sweden)

    Dipok K. Bora

    2016-03-01

    Full Text Available We focused on validation of applicability of semi-empirical technique (spectral models and stochastic simulation for the estimation of ground-motion characteristics in the northeastern region (NER of India. In the present study, it is assumed that the point source approximation in far field is valid. The one-dimensional stochastic point source seismological model of Boore (1983 (Boore, DM. 1983. Stochastic simulation of high frequency ground motions based on seismological models of the radiated spectra. Bulletin of Seismological Society of America, 73, 1865–1894. is used for modelling the acceleration time histories. Total ground-motion records of 30 earthquakes of magnitudes lying between MW 4.2 and 6.2 in NER India from March 2008 to April 2013 are used for this study. We considered peak ground acceleration (PGA and pseudospectral acceleration (response spectrum amplitudes with 5% damping ratio at three fundamental natural periods, namely: 0.3, 1.0, and 3.0 s. The spectral models, which work well for PGA, overestimate the pseudospectral acceleration. It seems that there is a strong influence of local site amplification and crustal attenuation (kappa, which control spectral amplitudes at different frequencies. The results would allow analysing regional peculiarities of ground-motion excitation and propagation and updating seismic hazard assessment, both the probabilistic and deterministic approaches.

  18. Development of an Earthquake Early Warning System Using Real-Time Strong Motion Signals.

    Science.gov (United States)

    Wu, Yih-Min; Kanamori, Hiroo

    2008-01-09

    As urbanization progresses worldwide, earthquakes pose serious threat to livesand properties for urban areas near major active faults on land or subduction zonesoffshore. Earthquake Early Warning (EEW) can be a useful tool for reducing earthquakehazards, if the spatial relation between cities and earthquake sources is favorable for suchwarning and their citizens are properly trained to respond to earthquake warning messages.An EEW system forewarns an urban area of forthcoming strong shaking, normally with afew sec to a few tens of sec of warning time, i.e., before the arrival of the destructive Swavepart of the strong ground motion. Even a few second of advanced warning time willbe useful for pre-programmed emergency measures for various critical facilities, such asrapid-transit vehicles and high-speed trains to avoid potential derailment; it will be alsouseful for orderly shutoff of gas pipelines to minimize fire hazards, controlled shutdown ofhigh-technological manufacturing operations to reduce potential losses, and safe-guardingof computer facilities to avoid loss of vital databases. We explored a practical approach toEEW with the use of a ground-motion period parameter τc and a high-pass filtered verticaldisplacement amplitude parameter Pd from the initial 3 sec of the P waveforms. At a givensite, an earthquake magnitude could be determined from τ c and the peak ground-motionvelocity (PGV) could be estimated from Pd. In this method, incoming strong motion acceleration signals are recursively converted to ground velocity and displacement. A Pwavetrigger is constantly monitored. When a trigger occurs, τ c and Pd are computed. Theearthquake magnitude and the on-site ground-motion intensity could be estimated and thewarning could be issued. In an ideal situation, such warnings would be available within 10sec of the origin time of a large earthquake whose subsequent ground motion may last fortens of seconds.

  19. Development of an Earthquake Early Warning System Using Real-Time Strong Motion Signals

    Directory of Open Access Journals (Sweden)

    Hiroo Kanamori

    2008-01-01

    Full Text Available As urbanization progresses worldwide, earthquakes pose serious threat to livesand properties for urban areas near major active faults on land or subduction zonesoffshore. Earthquake Early Warning (EEW can be a useful tool for reducing earthquakehazards, if the spatial relation between cities and earthquake sources is favorable for suchwarning and their citizens are properly trained to respond to earthquake warning messages.An EEW system forewarns an urban area of forthcoming strong shaking, normally with afew sec to a few tens of sec of warning time, i.e., before the arrival of the destructive Swavepart of the strong ground motion. Even a few second of advanced warning time willbe useful for pre-programmed emergency measures for various critical facilities, such asrapid-transit vehicles and high-speed trains to avoid potential derailment; it will be alsouseful for orderly shutoff of gas pipelines to minimize fire hazards, controlled shutdown ofhigh-technological manufacturing operations to reduce potential losses, and safe-guardingof computer facilities to avoid loss of vital databases. We explored a practical approach toEEW with the use of a ground-motion period parameter τc and a high-pass filtered verticaldisplacement amplitude parameter Pd from the initial 3 sec of the P waveforms. At a givensite, an earthquake magnitude could be determined from τc and the peak ground-motionvelocity (PGV could be estimated from Pd. In this method, incoming strong motion acceleration signals are recursively converted to ground velocity and displacement. A Pwavetrigger is constantly monitored. When a trigger occurs, τc and Pd are computed. Theearthquake magnitude and the on-site ground-motion intensity could be estimated and thewarning could be issued. In an ideal situation, such warnings would be available within 10sec of the origin time of a large earthquake whose subsequent ground motion may last fortens of seconds.

  20. Perceptual Training Strongly Improves Visual Motion Perception in Schizophrenia

    Science.gov (United States)

    Norton, Daniel J.; McBain, Ryan K.; Ongur, Dost; Chen, Yue

    2011-01-01

    Schizophrenia patients exhibit perceptual and cognitive deficits, including in visual motion processing. Given that cognitive systems depend upon perceptual inputs, improving patients' perceptual abilities may be an effective means of cognitive intervention. In healthy people, motion perception can be enhanced through perceptual learning, but it…

  1. A Study on the Performance of Low Cost MEMS Sensors in Strong Motion Studies

    Science.gov (United States)

    Tanırcan, Gulum; Alçık, Hakan; Kaya, Yavuz; Beyen, Kemal

    2017-04-01

    -frequency dominant SM parameters PGV and CAV with high correlation. PGA and AI, the high frequency components of the ground motion, are underestimated. Such a difference, on the other hand, does not manifest itself on intensity estimations. PGV and CAV values from the reference and MEMS sensors converge to the same seismic intensity level. Hence a strong motion network with MEMS sensors could be a modest option to produce PGV-based damage impact of an urban area under large magnitude earthquake threats in the immediate vicinity.

  2. Motion estimation using point cluster method and Kalman filter.

    Science.gov (United States)

    Senesh, M; Wolf, A

    2009-05-01

    The most frequently used method in a three dimensional human gait analysis involves placing markers on the skin of the analyzed segment. This introduces a significant artifact, which strongly influences the bone position and orientation and joint kinematic estimates. In this study, we tested and evaluated the effect of adding a Kalman filter procedure to the previously reported point cluster technique (PCT) in the estimation of a rigid body motion. We demonstrated the procedures by motion analysis of a compound planar pendulum from indirect opto-electronic measurements of markers attached to an elastic appendage that is restrained to slide along the rigid body long axis. The elastic frequency is close to the pendulum frequency, as in the biomechanical problem, where the soft tissue frequency content is similar to the actual movement of the bones. Comparison of the real pendulum angle to that obtained by several estimation procedures--PCT, Kalman filter followed by PCT, and low pass filter followed by PCT--enables evaluation of the accuracy of the procedures. When comparing the maximal amplitude, no effect was noted by adding the Kalman filter; however, a closer look at the signal revealed that the estimated angle based only on the PCT method was very noisy with fluctuation, while the estimated angle based on the Kalman filter followed by the PCT was a smooth signal. It was also noted that the instantaneous frequencies obtained from the estimated angle based on the PCT method is more dispersed than those obtained from the estimated angle based on Kalman filter followed by the PCT method. Addition of a Kalman filter to the PCT method in the estimation procedure of rigid body motion results in a smoother signal that better represents the real motion, with less signal distortion than when using a digital low pass filter. Furthermore, it can be concluded that adding a Kalman filter to the PCT procedure substantially reduces the dispersion of the maximal and minimal

  3. PRISM software—Processing and review interface for strong-motion data

    Science.gov (United States)

    Jones, Jeanne M.; Kalkan, Erol; Stephens, Christopher D.; Ng, Peter

    2017-11-28

    Rapidly available and accurate ground-motion acceleration time series (seismic recordings) and derived data products are essential to quickly providing scientific and engineering analysis and advice after an earthquake. To meet this need, the U.S. Geological Survey National Strong Motion Project has developed a software package called PRISM (Processing and Review Interface for Strong-Motion data). PRISM automatically processes strong-motion acceleration records, producing compatible acceleration, velocity, and displacement time series; acceleration, velocity, and displacement response spectra; Fourier amplitude spectra; and standard earthquake-intensity measures. PRISM is intended to be used by strong-motion seismic networks, as well as by earthquake engineers and seismologists.

  4. A head motion estimation algorithm for motion artifact correction in dental CT imaging

    Science.gov (United States)

    Hernandez, Daniel; Elsayed Eldib, Mohamed; Hegazy, Mohamed A. A.; Hye Cho, Myung; Cho, Min Hyoung; Lee, Soo Yeol

    2018-03-01

    A small head motion of the patient can compromise the image quality in a dental CT, in which a slow cone-beam scan is adopted. We introduce a retrospective head motion estimation method by which we can estimate the motion waveform from the projection images without employing any external motion monitoring devices. We compute the cross-correlation between every two successive projection images, which results in a sinusoid-like displacement curve over the projection view when there is no patient motion. However, the displacement curve deviates from the sinusoid-like form when patient motion occurs. We develop a method to estimate the motion waveform with a single parameter derived from the displacement curve with aid of image entropy minimization. To verify the motion estimation method, we use a lab-built micro-CT that can emulate major head motions during dental CT scans, such as tilting and nodding, in a controlled way. We find that the estimated motion waveform conforms well to the actual motion waveform. To further verify the motion estimation method, we correct the motion artifacts with the estimated motion waveform. After motion artifact correction, the corrected images look almost identical to the reference images, with structural similarity index values greater than 0.81 in the phantom and rat imaging studies.

  5. Content Adaptive True Motion Estimator for H.264 Video Compression

    Directory of Open Access Journals (Sweden)

    P. Kulla

    2007-12-01

    Full Text Available Content adaptive true motion estimator for H.264 video coding is a fast block-based matching estimator with implemented multi-stage approach to estimate motion fields between two image frames. It considers the theory of 3D scene objects projection into 2D image plane for selection of motion vector candidates from the higher stages. The stages of the algorithm and its hierarchy are defined upon motion estimation reliability measurement (image blocks including two different directions of spatial gradient, blocks with one dominant spatial gradient and blocks including minimal spatial gradient. Parameters of the image classification into stages are set adaptively upon image structure. Due to search strategy are the estimated motion fields more corresponding to a true motion in an image sequence as in the case of conventional motion estimation algorithms that use fixed sets of motion vector candidates from tight neighborhood.

  6. Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Strong Ground Motion

    Science.gov (United States)

    Borcherdt, Roger D.

    1994-01-01

    Strong ground motion generated by the Loma Prieta, Calif., earthquake (MS~7.1) of October 17, 1989, resulted in at least 63 deaths, more than 3,757 injuries, and damage estimated to exceed $5.9 billion. Strong ground motion severely damaged critical lifelines (freeway overpasses, bridges, and pipelines), caused severe damage to poorly constructed buildings, and induced a significant number of ground failures associated with liquefaction and landsliding. It also caused a significant proportion of the damage and loss of life at distances as far as 100 km from the epicenter. Consequently, understanding the characteristics of the strong ground motion associated with the earthquake is fundamental to understanding the earthquake's devastating impact on society. The papers assembled in this chapter address this problem. Damage to vulnerable structures from the earthquake varied substantially with the distance from the causative fault and the type of underlying geologic deposits. Most of the damage and loss of life occurred in areas underlain by 'soft soil'. Quantifying these effects is important for understanding the tragic concentrations of damage in such areas as Santa Cruz and the Marina and Embarcadero Districts of San Francisco, and the failures of the San Francisco-Oakland Bay Bridge and the Interstate Highway 880 overpass. Most importantly, understanding these effects is a necessary prerequisite for improving mitigation measures for larger earthquakes likely to occur much closer to densely urbanized areas in the San Francisco Bay region. The earthquake generated an especially important data set for understanding variations in the severity of strong ground motion. Instrumental strong-motion recordings were obtained at 131 sites located from about 6 to 175 km from the rupture zone. This set of recordings, the largest yet collected for an event of this size, was obtained from sites on various geologic deposits, including a unique set on 'soft soil' deposits

  7. OPTICAL FLOW FOR GLACIER MOTION ESTIMATION

    Directory of Open Access Journals (Sweden)

    C. Vogel

    2012-07-01

    Full Text Available Quantitative measurements of glacier flow over time are an important ingredient for glaciological research, for example to determine the mass balances and the evolution of glaciers. Measuring glacier flow in multi-temporal images involves the estimation of a dense set of corresponding points, which in turn define the flow vectors. Furthermore glaciers exhibit rather difficult radiometry, since their surface usually contains homogeneous areas as well as weak texture and contrast. To date glacier flow is usually observed by manually measuring a sparse set of correspondences, which is labor-intensive and often yields rather irregular point distributions, with the associated problems of interpolating over large areas. In the present work we propose to densely compute motion vectors at every pixel, by using recent robust methods for optic flow computation. Determining the optic flow, i.e. the dense deformation field between two images of a dynamic scene, has been a classic, long-standing research problem in computer vision and image processing. Sophisticated methods exist to optimally balance data fidelity with smoothness of the motion field. Depending on the strength of the local image gradients these methods yield a smooth trade-off between matching and interpolation, thereby avoiding the somewhat arbitrary decision which discrete anchor points to measure, while at the same time mitigating the problem of gross matching errors. We evaluate our method by comparing with manually measured point wise ground truth.

  8. The Engineering Strong Ground Motion Network of the National Autonomous University of Mexico

    Science.gov (United States)

    Velasco Miranda, J. M.; Ramirez-Guzman, L.; Aguilar Calderon, L. A.; Almora Mata, D.; Ayala Hernandez, M.; Castro Parra, G.; Molina Avila, I.; Mora, A.; Torres Noguez, M.; Vazquez Larquet, R.

    2014-12-01

    The coverage, design, operation and monitoring capabilities of the strong ground motion program at the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM) is presented. Started in 1952, the seismic instrumentation intended initially to bolster earthquake engineering projects in Mexico City has evolved into the largest strong ground motion monitoring system in the region. Today, it provides information not only to engineering projects, but also to the near real-time risk mitigation systems of the country, and enhances the general understanding of the effects and causes of earthquakes in Mexico. The IE network includes more than 100 free-field stations and several buildings, covering the largest urban centers and zones of significant seismicity in Central Mexico. Of those stations, approximately one-fourth send the observed acceleration to a processing center in Mexico City continuously, and the rest require either periodic visits for the manual recovery of the data or remote interrogation, for later processing and cataloging. In this research, we document the procedures and telecommunications systems used systematically to recover information. Additionally, we analyze the spatial distribution of the free-field accelerographs, the quality of the instrumentation, and the recorded ground motions. The evaluation criteria are based on the: 1) uncertainty in the generation of ground motion parameter maps due to the spatial distribution of the stations, 2) potential of the array to provide localization and magnitude estimates for earthquakes with magnitudes greater than Mw 5, and 3) adequacy of the network for the development of Ground Motion Prediction Equations due to intra-plate and intra-slab earthquakes. We conclude that the monitoring system requires a new redistribution, additional stations, and a substantial improvement in the instrumentation and telecommunications. Finally, we present an integral plan to improve the current network

  9. SM-ROM-GL (Strong Motion Romania Ground Level Database

    Directory of Open Access Journals (Sweden)

    Ioan Sorin BORCIA

    2015-07-01

    Full Text Available The SM-ROM-GL database includes data obtained by the processing of records performed at ground level by the Romanian seismic networks, namely INCERC, NIEP, NCSRR and ISPH-GEOTEC, during recent seismic events with moment magnitude Mw ≥ 5 and epicenters located in Romania. All the available seismic records were re-processed using the same basic software and the same procedures and options (filtering and baseline correction, in order to obtain a consistent dataset. The database stores computed parameters of seismic motions, i.e. peak values: PGA, PGV, PGD, effective peak values: EPA, EPV, EPD, control periods, spectral values of absolute acceleration, relative velocity and relative displacement, as well as of instrumental intensity (as defined bz Sandi and Borcia in 2011. The fields in the database include: coding of seismic events, stations and records, a number of associated fields (seismic event source parameters, geographical coordinates of seismic stations, links to the corresponding ground motion records, charts of the response spectra of absolute acceleration, relative velocity, relative displacement and instrumental intensity, as well as some other representative parameters of seismic motions. The conception of the SM-ROM-GL database allows for an easy maintenance; such that elementary knowledge of Microsoft Access 2000 is sufficient for its operation.

  10. Adaptive temporal compressive sensing for video with motion estimation

    Science.gov (United States)

    Wang, Yeru; Tang, Chaoying; Chen, Yueting; Feng, Huajun; Xu, Zhihai; Li, Qi

    2018-01-01

    In this paper, we present an adaptive reconstruction method for temporal compressive imaging with pixel-wise exposure. The motion of objects is first estimated from interpolated images with a designed coding mask. With the help of motion estimation, image blocks are classified according to the degree of motion and reconstructed with the corresponding dictionary, which was trained beforehand. Both the simulation and experiment results show that the proposed method can obtain accurate motion information before reconstruction and efficiently reconstruct compressive video.

  11. Source Characteristics of the Northern Longitudinal Valley, Taiwan Derived from Broadband Strong-Motion Simulation

    Science.gov (United States)

    Wen, Yi-Ying

    2018-02-01

    The 2014 M L 5.9 Fanglin earthquake occurred at the northern end of the aftershock distribution of the 2013 M L 6.4 Ruisui event and caused strong ground shaking and some damage in the northern part of the Longitudinal Valley. We carried out the strong-motion simulation of the 2014 Fanglin event in the broadband frequency range (0.4-10 Hz) using the empirical Green's function method and then integrated the source models to investigate the source characteristics of the 2013 Ruisui and 2014 Fanglin events. The results show that the dimension of strong motion generation area of the 2013 Ruisui event is smaller, whereas that of the 2014 Fanglin event is comparable with the empirical estimation of inland crustal earthquakes, which indicates the different faulting behaviors. Furthermore, the localized high PGV patch might be caused by the radiation energy amplified by the local low-velocity structure in the northern Longitudinal Valley. Additional study issues are required for building up the knowledge of the potential seismic hazard related to moderate-large events for various seismogenic areas in Taiwan.

  12. The Quake-Catcher Network: Improving Earthquake Strong Motion Observations Through Community Engagement

    Science.gov (United States)

    Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Chung, A. I.; Neighbors, C.; Saltzman, J.

    2010-12-01

    The Quake-Catcher Network (QCN) involves the community in strong motion data collection by utilizing volunteer computing techniques and low-cost MEMS accelerometers. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers can be attached to a desktop computer via USB and are internal to many laptops. Preliminary shake table tests show the MEMS accelerometers can record high-quality seismic data with instrument response similar to research-grade strong-motion sensors. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1500 stations worldwide. We also recently tested whether sensors could be quickly deployed as part of a Rapid Aftershock Mobilization Program (RAMP) following the 2010 M8.8 Maule, Chile earthquake. Volunteers are recruited through media reports, web-based sensor request forms, as well as social networking sites. Using data collected to date, we examine whether a distributed sensing network can provide valuable seismic data for earthquake detection and characterization while promoting community participation in earthquake science. We utilize client-side triggering algorithms to determine when significant ground shaking occurs and this metadata is sent to the main QCN server. On average, trigger metadata are received within 1-10 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. When triggers are detected, we determine if the triggers correlate to others in the network using spatial and temporal clustering of incoming trigger information. If a minimum number of triggers are detected then a QCN-event is declared and an initial earthquake location and magnitude is estimated. Initial analysis suggests that the estimated locations and magnitudes are

  13. Prediction of strong ground motion based on scaling law of earthquake

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro; Irikura, Kojiro; Fukuchi, Yasunaga.

    1991-01-01

    In order to predict more practically strong ground motion, it is important to study how to use a semi-empirical method in case of having no appropriate observation records for actual small-events as empirical Green's functions. We propose a prediction procedure using artificially simulated small ground motions as substitute for the actual motions. First, we simulate small-event motion by means of stochastic simulation method proposed by Boore (1983) in considering pass effects such as attenuation, and broadening of waveform envelope empirically in the objective region. Finally, we attempt to predict the strong ground motion due to a future large earthquake (M 7, Δ = 13 km) using the same summation procedure as the empirical Green's function method. We obtained the results that the characteristics of the synthetic motion using M 5 motion were in good agreement with those by the empirical Green's function method. (author)

  14. Simulation of Strong Ground Motion of the 2009 Bhutan Earthquake Using Modified Semi-Empirical Technique

    Science.gov (United States)

    Sandeep; Joshi, A.; Lal, Sohan; Kumar, Parveen; Sah, S. K.; Vandana; Kamal

    2017-12-01

    On 21st September 2009 an earthquake of magnitude ( M w 6.1) occurred in the East Bhutan. This earthquake caused serious damage to the residential area and was widely felt in the Bhutan Himalaya and its adjoining area. We estimated the source model of this earthquake using modified semi empirical technique. In the rupture plane, several locations of nucleation point have been considered and finalised based on the minimum root mean square error of waveform comparison. In the present work observed and simulated waveforms has been compared at all the eight stations. Comparison of horizontal components of actual and simulated records at these stations confirms the estimated parameters of final rupture model and efficacy of the modified semi-empirical technique (Joshi et al., Nat Hazards 64:1029-1054, 2012b) of strong ground motion simulation.

  15. SISMA (Site of Italian Strong Motion Accelerograms): a Web-Database of Ground Motion Recordings for Engineering Applications

    International Nuclear Information System (INIS)

    Scasserra, Giuseppe; Lanzo, Giuseppe; D'Elia, Beniamino; Stewart, Jonathan P.

    2008-01-01

    The paper describes a new website called SISMA, i.e. Site of Italian Strong Motion Accelerograms, which is an Internet portal intended to provide natural records for use in engineering applications for dynamic analyses of structural and geotechnical systems. SISMA contains 247 three-component corrected motions recorded at 101 stations from 89 earthquakes that occurred in Italy in the period 1972-2002. The database of strong motion accelerograms was developed in the framework of a joint project between Sapienza University of Rome and University of California at Los Angeles (USA) and is described elsewhere. Acceleration histories and pseudo-acceleration response spectra (5% damping) are available for download from the website. Recordings can be located using simple search parameters related to seismic source and the recording station (e.g., magnitude, V s30 , etc) as well as ground motion characteristics (e.g. peak ground acceleration, peak ground velocity, peak ground displacement, Arias intensity, etc.)

  16. Assessment of potential strong ground motions in the city of Rome

    Directory of Open Access Journals (Sweden)

    L. Malagnini

    1994-06-01

    Full Text Available A methodology is used which combines stochastic generation of random series with a finite-difference technique to estimate the expected horizontal ground motion for the city of Rome as induced by a large earthquake in the Central Apennines. In this approach, source properties and long-path propagation are modelled through observed spectra of ground motion in the region, while the effects of the near-surface geology in the city are simulated by means of a finite-difference technique applied to 2-D models including elastic and anelastic properties of geologic materials and topographic variations. The parameters commonly used for earthquake engineering purposes are estimated from the simulated time histories of horizontal ground motion. We focus our attention on peak ground acceleration and velocity, and on the integral of the squared acceleration and velocity (that are proportional to the Arias intensity and seismic energy flux, respectively. Response spectra are analyzed as well. Parameter variations along 2-D profiles visualize the effects of the small-scale geological heterogeneities and topography irregularities on ground motion in the case of a strong earthquake. Interestingly, the largest amplification of peak ground acceleration and Arias intensity does not necessarily occur at the same sites where peak ground velocity and flux of seismic energy reach their highest values, depending on the frequency band of amplification. A magnitude 7 earthquake at a distance of 100 km results in peak ground accelerations ranging from 30 to 70 gals while peak ground velocities are estimated to vary from 5 to 7 cm/s; moreover, simulated time histories of horizontal ground motion yield amplitudes of 5% damped pseudovelocity response spectra as large as 15-20 cm/s for frequencies from 1to 3 Hz. In this frequency band, the mean value is 7 cm/s for firm sites and ranges from 10 to 13 cm/s for soil sites. All these results are in good agreement with predictions

  17. Ion Motion in a Plasma Interacting with Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Weingarten, A.; Grabowski, C.; Chakrabarti, N.; Maron, Y.; Fruchtmant, A.

    1999-01-01

    The interaction of a plasma with strong magnetic fields takes place in many laboratory experiments and astrophysical plasmas. Applying a strong magnetic field to the plasma may result in plasma displacement, magnetization, or the formation of instabilities. Important phenomena in plasma, such as the energy transport and the momentum balance, take a different form in each case. We study this interaction in a plasma that carries a short-duration (80-ns) current pulse, generating a magnetic field of up to 17 kG. The evolution of the magnetic field, plasma density, ion velocities, and electric fields are determined before and during the current pulse. The dependence of the plasma limiting current on the plasma density and composition are studied and compared to theoretical models based on the different phenomena. When the plasma collisionality is low, three typical velocities should be taken into consideration: the proton and heavier-ion Alfven velocities (v A p and v A h , respectively) and the EMHD magnetic-field penetration velocity into the plasma (v EMHD ). If both Alfven velocities are larger than v EMHD the plasma is pushed ahead of the magnetic piston and the magnetic field energy is dissipated into ion kinetic energy. If v EMHD is the largest of three velocities, the plasma become magnetized and the ions acquire a small axial momentum only. Different ion species may drift in different directions along the current lines. In this case, the magnetic field energy is probably dissipated into electron thermal energy. When vs > V EMHD > vi, as in the case of one of our experiments, ion mass separation occurs. The protons are pushed ahead of the piston while the heavier-ions become magnetized. Since the plasma electrons are unmagnetized they cannot cross the piston, and the heavy ions are probably charge-neutralized by electrons originating from the cathode that are 'born' magnetized

  18. Earthquake Strong Ground Motion Scenario at the 2008 Olympic Games Sites, Beijing, China

    Science.gov (United States)

    Liu, L.; Rohrbach, E. A.; Chen, Q.; Chen, Y.

    2006-12-01

    Historic earthquake record indicates mediate to strong earthquakes have been frequently hit greater Beijing metropolitan area where is going to host the 2008 summer Olympic Games. For the readiness preparation of emergency response to the earthquake shaking for a mega event in a mega city like Beijing in summer 2008, this paper tries to construct the strong ground motion scenario at a number of gymnasium sites for the 2008 Olympic Games. During the last 500 years (the Ming and Qing Dynasties) in which the historic earthquake record are thorough and complete, there are at least 12 earthquake events with the maximum intensity of VI or greater occurred within 100 km radius centered at the Tiananmen Square, the center of Beijing City. Numerical simulation of the seismic wave propagation and surface strong ground motion is carried out by the pseudospectral time domain methods with viscoelastic material properties. To improve the modeling efficiency and accuracy, a multi-scale approach is adapted: the seismic wave propagation originated from an earthquake rupture source is first simulated by a model with larger physical domain with coarser grids. Then the wavefield at a given plane is taken as the source input for the small-scale, fine grid model for the strong ground motion study at the sites. The earthquake source rupture scenario is based on two particular historic earthquake events: One is the Great 1679 Sanhe-Pinggu Earthquake (M~8, Maximum Intensity XI at the epicenter and Intensity VIII in city center)) whose epicenter is about 60 km ENE of the city center. The other one is the 1730 Haidian Earthquake (M~6, Maximum Intensity IX at the epicenter and Intensity VIII in city center) with the epicentral distance less than 20 km away from the city center in the NW Haidian District. The exist of the thick Tertiary-Quaternary sediments (maximum thickness ~ 2 km) in Beijing area plays a critical role on estimating the surface ground motion at the Olympic Games sites, which

  19. Seismic Response of a Sedimentary Basin: Preliminary Results from Strong Motion Downhole Array in Taipei Basin

    Science.gov (United States)

    Young, B.; Chen, K.; Chiu, J.

    2013-12-01

    The Strong Motion Downhole Array (SMDA) is an array of 32 triggered strong motion broadband seismometers located at eight sites in Taipei Basin. Each site features three to five co-located three-component accelerometers--one at the surface and an additional two to four each down independent boreholes. Located in the center of Taipei Basin is Taipei City and the Taipei metropolitan area, the capital of Taiwan and home to more than 7 million residents. Taipei Basin is in a major seismic hazard area and is prone to frequent large earthquakes producing strong ground motion. This unique three-dimension seismic array presents new frontiers for seismic research in Taiwan and, along with it, new challenges. Frequency-dependent and site-specific amplification of seismic waves from depth to surface has been observed: preliminary results indicate that the top few tens of meters of sediment--not the entire thickness--are responsible for significant frequency-dependent amplification; amplitudes of seismic waves at the surface may be as much as seven times that at depth. Dominant amplification frequencies are interpreted as quarter-wavelength constructive interference between the surface and major interfaces in the sediments. Using surface stations with known orientation as a reference, borehole seismometer orientations in these data--which are unknown, and some of which vary considerably from event to event--have been determined using several methods. After low-pass filtering the strong motion data, iteratively rotating the two horizontal components from an individual borehole station and cross-correlating them with that from a co-located surface station has proven to be very effective. In cases where the iterative cross-correlation method does not provide a good fit, rotating both surface and borehole stations to a common axis of maximum seismic energy provides an alternative approach. The orientation-offset of a borehole station relative to the surface station may be

  20. Strong motion modeling at the Paducah Diffusion Facility for a large New Madrid earthquake

    International Nuclear Information System (INIS)

    Herrmann, R.B.

    1991-01-01

    The Paducah Diffusion Facility is within 80 kilometers of the location of the very large New Madrid earthquakes which occurred during the winter of 1811-1812. Because of their size, seismic moment of 2.0 x 10 27 dyne-cm or moment magnitude M w = 7.5, the possible recurrence of these earthquakes is a major element in the assessment of seismic hazard at the facility. Probabilistic hazard analysis can provide uniform hazard response spectra estimates for structure evaluation, but a deterministic modeling of a such a large earthquake can provide strong constraints on the expected duration of motion. The large earthquake is modeled by specifying the earthquake fault and its orientation with respect to the site, and by specifying the rupture process. Synthetic time histories, based on forward modeling of the wavefield, from each subelement are combined to yield a three component time history at the site. Various simulations are performed to sufficiently exercise possible spatial and temporal distributions of energy release on the fault. Preliminary results demonstrate the sensitivity of the method to various assumptions, and also indicate strongly that the total duration of ground motion at the site is controlled primarily by the length of the rupture process on the fault

  1. Synthetic strong ground motions for engineering design utilizing empirical Green`s functions

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L.J.; Jarpe, S.P.; Kasameyer, P.W.; Foxall, W.

    1996-04-11

    We present a methodology for developing realistic synthetic strong ground motions for specific sites from specific earthquakes. We analyzed the possible ground motion resulting from a M = 7.25 earthquake that ruptures 82 km of the Hayward fault for a site 1.4 km from the fault in the eastern San Francisco Bay area. We developed a suite of 100 rupture scenarios for the Hayward fault earthquake and computed the corresponding strong ground motion time histories. We synthesized strong ground motion with physics-based solutions of earthquake rupture and applied physical bounds on rupture parameters. By having a suite of rupture scenarios of hazardous earthquakes for a fixed magnitude and identifying the hazard to the site from the statistical distribution of engineering parameters, we introduce a probabilistic component into the deterministic hazard calculation. Engineering parameters of synthesized ground motions agree with those recorded from the 1995 Kobe, Japan and the 1992 Landers, California earthquakes at similar distances and site geologies.

  2. Learning Motion Features for Example-Based Finger Motion Estimation for Virtual Characters

    Science.gov (United States)

    Mousas, Christos; Anagnostopoulos, Christos-Nikolaos

    2017-09-01

    This paper presents a methodology for estimating the motion of a character's fingers based on the use of motion features provided by a virtual character's hand. In the presented methodology, firstly, the motion data is segmented into discrete phases. Then, a number of motion features are computed for each motion segment of a character's hand. The motion features are pre-processed using restricted Boltzmann machines, and by using the different variations of semantically similar finger gestures in a support vector machine learning mechanism, the optimal weights for each feature assigned to a metric are computed. The advantages of the presented methodology in comparison to previous solutions are the following: First, we automate the computation of optimal weights that are assigned to each motion feature counted in our metric. Second, the presented methodology achieves an increase (about 17%) in correctly estimated finger gestures in comparison to a previous method.

  3. Cooperating the BDS, GPS, GLONASS and strong-motion observations for real-time deformation monitoring

    Science.gov (United States)

    Tu, Rui

    2017-04-01

    An approach of cooperating the BDS, GPS, GLONASS and Strong-Motion (SM) records for real-time deformation monitoring was presented, and it was validated by an experiment data. For this approach, the GNSS data was processed by the RTK technology to retrieve the GNSS displacement, and the SM data was calibrated to get the raw acceleration, a Kalman filter was used to combine the GNSS displacement and the SM acceleration to obtain the integrated displacement, velocity and acceleration. The validation results show that the advantages of each sensors are completely complement; for the SM, the baseline shifts are estimated and corrected, high-precision velocity and displacement are recovered, and for the GNSS, the SM's high-resolution acceleration are used to reduce the GNSS noise, thus high-precision and broadband deformation information can be real-time obtained, it will be useful for the high-building, dam, bridge, landslide's deformation monitoring.

  4. Prediction of strong earthquake motions on rock surface using evolutionary process models

    International Nuclear Information System (INIS)

    Kameda, H.; Sugito, M.

    1984-01-01

    Stochastic process models are developed for prediction of strong earthquake motions for engineering design purposes. Earthquake motions with nonstationary frequency content are modeled by using the concept of evolutionary processes. Discussion is focused on the earthquake motions on bed rocks which are important for construction of nuclear power plants in seismic regions. On this basis, two earthquake motion prediction models are developed, one (EMP-IB Model) for prediction with given magnitude and epicentral distance, and the other (EMP-IIB Model) to account for the successive fault ruptures and the site location relative to the fault of great earthquakes. (Author) [pt

  5. Identification and simulation of strong earthquake ground motion by using pattern recognition technique

    International Nuclear Information System (INIS)

    Suzuki, K.

    1981-01-01

    This report deals with a schematic investigation concerning an identification of nonstationary characteristics of strong earthquake acceleration motions and those simulation technique for practical use. Pattern recognition technique is introduced in order to identify time and frequency dependent ground motion's characteristics. First the running power spectrum density (RPSD) function is estimated by dividing the whole earthquake duration into certain 'stationary' segments. This RPSD can be described as 2-dimensional pattern image onto time-frequency domain. Second thus obtained RPSD patterns are classified into several representative groups based on (1) number of dominant peaks, (2) peak shape and (3) spacial relation between the most intensive peak and the second one. Then RPSD pattern corresponding to a specific group is artificially simulated by using 'peak function' which determines evolutionary feature for an arbitrary point in time-frequency plane. Using this function 8 typical artificial standard RPSD patterns are finally proposed. Identification can be performed by Complex Threshold Method which is generally used in the field of radio graphic technology. (orig./WL)

  6. Update of Earthquake Strong-Motion Instrumentation at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robert C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-01

    Following the January 1980 earthquake that was felt at Lawrence Livermore National Laboratory (LLNL), a network of strong-motion accelerographs was installed at LLNL. Prior to the 1980 earthquake, there were no accelerographs installed. The ground motion from the 1980 earthquake was estimated from USGS instruments around the Laboratory to be between 0.2 – 0.3 g horizontal peak ground acceleration. These instruments were located at the Veterans Hospital, 5 miles southwest of LLNL, and in San Ramon, about 12 miles west of LLNL. In 2011, the Department of Energy (DOE) requested to know the status of our seismic instruments. We conducted a survey of our instrumentation systems and responded to DOE in a letter. During this survey, it was found that the recorders in Buildings 111 and 332 were not operational. The instruments on Nova had been removed, and only three of the 10 NIF instruments installed in 2005 were operational (two were damaged and five had been removed from operation at the request of the program). After the survey, it was clear that the site seismic instrumentation had degraded substantially and would benefit from an overhaul and more attention to ongoing maintenance. LLNL management decided to update the LLNL seismic instrumentation system. The updated system is documented in this report.

  7. Regional Characterization of the Crust in Metropolitan Areas for Prediction of Strong Ground Motion

    Science.gov (United States)

    Hirata, N.; Sato, H.; Koketsu, K.; Umeda, Y.; Iwata, T.; Kasahara, K.

    2003-12-01

    Introduction: After the 1995 Kobe earthquake, the Japanese government increased its focus and funding of earthquake hazards evaluation, studies of man-made structures integrity, and emergency response planning in the major urban centers. A new agency, the Ministry of Education, Science, Sports and Culture (MEXT) has started a five-year program titled as Special Project for Earthquake Disaster Mitigation in Urban Areas (abbreviated to Dai-dai-toku in Japanese) since 2002. The project includes four programs: I. Regional characterization of the crust in metropolitan areas for prediction of strong ground motion. II. Significant improvement of seismic performance of structure. III. Advanced disaster management system. IV. Investigation of earthquake disaster mitigation research results. We will present the results from the first program conducted in 2002 and 2003. Regional Characterization of the Crust in Metropolitan Areas for Prediction of Strong Ground Motion: A long-term goal is to produce map of reliable estimations of strong ground motion. This requires accurate determination of ground motion response, which includes a source process, an effect of propagation path, and near surface response. The new five-year project was aimed to characterize the "source" and "propagation path" in the Kanto (Tokyo) region and Kinki (Osaka) region. The 1923 Kanto Earthquake is one of the important targets to be addressed in the project. The proximity of the Pacific and Philippine Sea subducting plates requires study of the relationship between earthquakes and regional tectonics. This project focuses on identification and geometry of: 1) Source faults, 2) Subducting plates and mega-thrust faults, 3) Crustal structure, 4) Seismogenic zone, 5) Sedimentary basins, 6) 3D velocity properties We have conducted a series of seismic reflection and refraction experiment in the Kanto region. In 2002 we have completed to deploy seismic profiling lines in the Boso peninsula (112 km) and the

  8. The application of mean field theory to image motion estimation.

    Science.gov (United States)

    Zhang, J; Hanauer, G G

    1995-01-01

    Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates.

  9. Estimation of the global regularity of a multifractional Brownian motion

    DEFF Research Database (Denmark)

    Lebovits, Joachim; Podolskij, Mark

    This paper presents a new estimator of the global regularity index of a multifractional Brownian motion. Our estimation method is based upon a ratio statistic, which compares the realized global quadratic variation of a multifractional Brownian motion at two different frequencies. We show that a ...... that a logarithmic transformation of this statistic converges in probability to the minimum of the Hurst functional parameter, which is, under weak assumptions, identical to the global regularity index of the path....

  10. Estimation of the global regularity of a multifractional Brownian motion

    OpenAIRE

    Lebovits, Joachim; Podolskij, Mark

    2016-01-01

    This paper presents a new estimator of the global regularity index of a multifractional Brownian motion. Our estimation method is based upon a ratio statistic, which compares the realized global quadratic variation of a multifractional Brownian motion at two different frequencies. We show that a logarithmic transformation of this statistic converges in probability to the minimum of the Hurst functional parameter, which is, under weak assumptions, identical to the global regularity index of th...

  11. Kinematic description of the rupture from strong motion data: strategies for a robust inversion

    OpenAIRE

    Lucca, Ernestina

    2011-01-01

    We present a non linear technique to invert strong motion records with the aim of obtaining the final slip and rupture velocity distributions on the fault plane. In this thesis, the ground motion simulation is obtained evaluating the representation integral in the frequency. The Green’s tractions are computed using the discrete wave-number integration technique that provides the full wave-field in a 1D layered propagation medium. The representation integral is computed through a finite elemen...

  12. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  13. Super-resolution without explicit subpixel motion estimation.

    Science.gov (United States)

    Takeda, Hiroyuki; Milanfar, Peyman; Protter, Matan; Elad, Michael

    2009-09-01

    The need for precise (subpixel accuracy) motion estimates in conventional super-resolution has limited its applicability to only video sequences with relatively simple motions such as global translational or affine displacements. In this paper, we introduce a novel framework for adaptive enhancement and spatiotemporal upscaling of videos containing complex activities without explicit need for accurate motion estimation. Our approach is based on multidimensional kernel regression, where each pixel in the video sequence is approximated with a 3-D local (Taylor) series, capturing the essential local behavior of its spatiotemporal neighborhood. The coefficients of this series are estimated by solving a local weighted least-squares problem, where the weights are a function of the 3-D space-time orientation in the neighborhood. As this framework is fundamentally based upon the comparison of neighboring pixels in both space and time, it implicitly contains information about the local motion of the pixels across time, therefore rendering unnecessary an explicit computation of motions of modest size. The proposed approach not only significantly widens the applicability of super-resolution methods to a broad variety of video sequences containing complex motions, but also yields improved overall performance. Using several examples, we illustrate that the developed algorithm has super-resolution capabilities that provide improved optical resolution in the output, while being able to work on general input video with essentially arbitrary motion.

  14. Lagrangian speckle model and tissue-motion estimation--theory.

    Science.gov (United States)

    Maurice, R L; Bertrand, M

    1999-07-01

    It is known that when a tissue is subjected to movements such as rotation, shearing, scaling, etc., changes in speckle patterns that result act as a noise source, often responsible for most of the displacement-estimate variance. From a modeling point of view, these changes can be thought of as resulting from two mechanisms: one is the motion of the speckles and the other, the alterations of their morphology. In this paper, we propose a new tissue-motion estimator to counteract these speckle decorrelation effects. The estimator is based on a Lagrangian description of the speckle motion. This description allows us to follow local characteristics of the speckle field as if they were a material property. This method leads to an analytical description of the decorrelation in a way which enables the derivation of an appropriate inverse filter for speckle restoration. The filter is appropriate for linear geometrical transformation of the scattering function (LT), i.e., a constant-strain region of interest (ROI). As the LT itself is a parameter of the filter, a tissue-motion estimator can be formulated as a nonlinear minimization problem, seeking the best match between the pre-tissue-motion image and a restored-speckle post-motion image. The method is tested, using simulated radio-frequency (RF) images of tissue undergoing axial shear.

  15. Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography

    Science.gov (United States)

    Hahn, Bernadette N.

    2017-12-01

    A main challenge in computerized tomography consists in imaging moving objects. Temporal changes during the measuring process lead to inconsistent data sets, and applying standard reconstruction techniques causes motion artefacts which can severely impose a reliable diagnostics. Therefore, novel reconstruction techniques are required which compensate for the dynamic behavior. This article builds on recent results from a microlocal analysis of the dynamic setting, which enable us to formulate efficient analytic motion compensation algorithms for contour extraction. Since these methods require information about the dynamic behavior, we further introduce a motion estimation approach which determines parameters of affine and certain non-affine deformations directly from measured motion-corrupted Radon-data. Our methods are illustrated with numerical examples for both types of motion.

  16. Uniformly Processed Strong Motion Database for Himalaya and Northeast Region of India

    Science.gov (United States)

    Gupta, I. D.

    2018-03-01

    This paper presents the first uniformly processed comprehensive database on strong motion acceleration records for the extensive regions of western Himalaya, northeast India, and the alluvial plains juxtaposing the Himalaya. This includes 146 three components of old analog records corrected for the instrument response and baseline distortions and 471 three components of recent digital records corrected for baseline errors. The paper first provides a background of the evolution of strong motion data in India and the seismotectonics of the areas of recording, then describes the details of the recording stations and the contributing earthquakes, which is finally followed by the methodology used to obtain baseline corrected data in a uniform and consistent manner. Two different schemes in common use for baseline correction are based on the application of the Ormsby filter without zero pads (Trifunac 1971) and that on the Butterworth filter with zero pads at the start as well as at the end (Converse and Brady 1992). To integrate the advantages of both the schemes, Ormsby filter with zero pads at the start only is used in the present study. A large number of typical example results are presented to illustrate that the methodology adopted is able to provide realistic velocity and displacement records with much smaller number of zero pads. The present strong motion database of corrected acceleration records will be useful for analyzing the ground motion characteristics of engineering importance, developing prediction equations for various strong motion parameters, and calibrating the seismological source model approach for ground motion simulation for seismically active and risk prone areas of India.

  17. A comparative study of surface waves inversion techniques at strong motion recording sites in Greece

    Science.gov (United States)

    Panagiotis C. Pelekis,; Savvaidis, Alexandros; Kayen, Robert E.; Vlachakis, Vasileios S.; Athanasopoulos, George A.

    2015-01-01

    Surface wave method was used for the estimation of Vs vs depth profile at 10 strong motion stations in Greece. The dispersion data were obtained by SASW method, utilizing a pair of electromechanical harmonic-wave source (shakers) or a random source (drop weight). In this study, three inversion techniques were used a) a recently proposed Simplified Inversion Method (SIM), b) an inversion technique based on a neighborhood algorithm (NA) which allows the incorporation of a priori information regarding the subsurface structure parameters, and c) Occam's inversion algorithm. For each site constant value of Poisson's ratio was assumed (ν=0.4) since the objective of the current study is the comparison of the three inversion schemes regardless the uncertainties resulting due to the lack of geotechnical data. A penalty function was introduced to quantify the deviations of the derived Vs profiles. The Vs models are compared as of Vs(z), Vs30 and EC8 soil category, in order to show the insignificance of the existing variations. The comparison results showed that the average variation of SIM profiles is 9% and 4.9% comparing with NA and Occam's profiles respectively whilst the average difference of Vs30 values obtained from SIM is 7.4% and 5.0% compared with NA and Occam's.

  18. Cooperating the BDS, GPS, GLONASS and strong-motion observations for real-time deformation monitoring

    Science.gov (United States)

    Tu, Rui; Liu, Jinhai; Lu, Cuixian; Zhang, Rui; Zhang, Pengfei; Lu, Xiaochun

    2017-06-01

    An approach of cooperating the BDS, GPS, GLONASS and strong-motion (SM) records for real-time deformation monitoring was presented, which was validated by the experimental data. In this approach, the Global Navigation Satellite System (GNSS) data were processed with the real-time kinematic positioning technology to retrieve the GNSS displacement, and the SM data were calibrated to acquire the raw acceleration; a Kalman filter was then applied to combine the GNSS displacement and the SM acceleration to obtain the integrated displacement, velocity and acceleration. The validation results show that the advantages of each sensor are completely complementary. For the SM, the baseline shifts are estimated and corrected, and the high-precision velocity and displacement are recovered. While the noise of GNSS can be reduced by using the SM-derived high-resolution acceleration, thus the high-precision and broad-band deformation information can be obtained in real time. The proposed method indicates a promising potential and capability in deformation monitoring of the high-building, dam, bridge and landslide.

  19. New strong motion network in Georgia: basis for specifying seismic hazard

    Science.gov (United States)

    Kvavadze, N.; Tsereteli, N. S.

    2017-12-01

    Risk created by hazardous natural events is closely related to sustainable development of the society. Global observations have confirmed tendency of growing losses resulting from natural disasters, one of the most dangerous and destructive if which are earthquakes. Georgia is located in seismically active region. So, it is imperative to evaluate probabilistic seismic hazard and seismic risk with proper accuracy. National network of Georgia includes 35 station all of which are seismometers. There are significant gaps in strong motion recordings, which essential for seismic hazard assessment. To gather more accelerometer recordings, we have built a strong motion network distributed on the territory of Georgia. The network includes 6 stations for now, with Basalt 4x datalogger and strong motion sensor Episensor ES-T. For each site, Vs30 and soil resonance frequencies have been measured. Since all but one station (Tabakhmelam near Tbilisi), are located far from power and internet lines special system was created for instrument operation. Solar power is used to supply the system with electricity and GSM/LTE modems for internet access. VPN tunnel was set up using Raspberry pi, for two-way communication with stations. Tabakhmela station is located on grounds of Ionosphere Observatory, TSU and is used as a hub for the network. This location also includes a broadband seismometer and VLF electromagnetic waves observation antenna, for possible earthquake precursor studies. On server, located in Tabakhmela, the continues data is collected from all the stations, for later use. The recordings later will be used in different seismological and engineering problems, namely selecting and creating GMPE model for Caucasus, for probabilistic seismic hazard and seismic risk evaluation. These stations are a start and in the future expansion of strong motion network is planned. Along with this, electromagnetic wave observations will continue and additional antennas will be implemented

  20. A robust motion estimation system for minimal invasive laparoscopy

    Science.gov (United States)

    Marcinczak, Jan Marek; von Öhsen, Udo; Grigat, Rolf-Rainer

    2012-02-01

    Laparoscopy is a reliable imaging method to examine the liver. However, due to the limited field of view, a lot of experience is required from the surgeon to interpret the observed anatomy. Reconstruction of organ surfaces provide valuable additional information to the surgeon for a reliable diagnosis. Without an additional external tracking system the structure can be recovered from feature correspondences between different frames. In laparoscopic images blurred frames, specular reflections and inhomogeneous illumination make feature tracking a challenging task. We propose an ego-motion estimation system for minimal invasive laparoscopy that can cope with specular reflection, inhomogeneous illumination and blurred frames. To obtain robust feature correspondence, the approach combines SIFT and specular reflection segmentation with a multi-frame tracking scheme. The calibrated five-point algorithm is used with the MSAC robust estimator to compute the motion of the endoscope from multi-frame correspondence. The algorithm is evaluated using endoscopic videos of a phantom. The small incisions and the rigid endoscope limit the motion in minimal invasive laparoscopy. These limitations are considered in our evaluation and are used to analyze the accuracy of pose estimation that can be achieved by our approach. The endoscope is moved by a robotic system and the ground truth motion is recorded. The evaluation on typical endoscopic motion gives precise results and demonstrates the practicability of the proposed pose estimation system.

  1. Strong ground motion prediction applying dynamic rupture simulations for Beppu-Haneyama Active Fault Zone, southwestern Japan

    Science.gov (United States)

    Yoshimi, M.; Matsushima, S.; Ando, R.; Miyake, H.; Imanishi, K.; Hayashida, T.; Takenaka, H.; Suzuki, H.; Matsuyama, H.

    2017-12-01

    We conducted strong ground motion prediction for the active Beppu-Haneyama Fault zone (BHFZ), Kyushu island, southwestern Japan. Since the BHFZ runs through Oita and Beppy cities, strong ground motion as well as fault displacement may affect much to the cities.We constructed a 3-dimensional velocity structure of a sedimentary basin, Beppu bay basin, where the fault zone runs through and Oita and Beppu cities are located. Minimum shear wave velocity of the 3d model is 500 m/s. Additional 1-d structure is modeled for sites with softer sediment: holocene plain area. We observed, collected, and compiled data obtained from microtremor surveys, ground motion observations, boreholes etc. phase velocity and H/V ratio. Finer structure of the Oita Plain is modeled, as 250m-mesh model, with empirical relation among N-value, lithology, depth and Vs, using borehole data, then validated with the phase velocity data obtained by the dense microtremor array observation (Yoshimi et al., 2016).Synthetic ground motion has been calculated with a hybrid technique composed of a stochastic Green's function method (for HF wave), a 3D finite difference (LF wave) and 1D amplification calculation. Fault geometry has been determined based on reflection surveys and active fault map. The rake angles are calculated with a dynamic rupture simulation considering three fault segments under a stress filed estimated from source mechanism of earthquakes around the faults (Ando et al., JpGU-AGU2017). Fault parameters such as the average stress drop, a size of asperity etc. are determined based on an empirical relation proposed by Irikura and Miyake (2001). As a result, strong ground motion stronger than 100 cm/s is predicted in the hanging wall side of the Oita plain.This work is supported by the Comprehensive Research on the Beppu-Haneyama Fault Zone funded by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

  2. Source characteristics of moderate-to-strong earthquakes in the Nantou area, Taiwan: insight from strong ground motion simulations

    Science.gov (United States)

    Wen, Yi-Ying; Chao, Shen-Yu; Yen, Yin-Tung; Wen, Strong

    2017-09-01

    In Taiwan, the Nantou area is a seismically active region where several moderate events have occurred, causing some disasters during the past century. Here, we applied the strong ground motion simulation with the empirical Green's function method to investigate the source characteristics for the eight moderate blind-fault events that struck the Nantou area in 1999 and 2013. The results show that for these Nantou events, a high stress drop and focal depth dependence were noted, which might be related to the immature buried fault in this area. From the viewpoint of seismic hazard prevention and preparation, future earthquake scenarios that include high stress drop should be applied to more analyses, especially the moderate-to-large events originating from the immature blind faulting.[Figure not available: see fulltext.

  3. Orbital motion in strongly perturbed environments applications to asteroid, comet and planetary satellite orbiters

    CERN Document Server

    Scheeres, Daniel J

    2012-01-01

    The proposed book will provide a detailed, technical introduction to the analysis of orbital motion in strongly perturbed environments, focusing on motion about small Solar System bodies, such as comets and asteroids. The author shows why such small bodies are of interest and why they can be used as a motivation for the general analysis of orbital mechanics. He shows how it is possible to model the small body environment, including specialised cases such as those of binary asteroids, comets and ‘rubble piles’, and how the fundamental equations of motion are derived. The properties of the various solutions to the equations of motion are described and the methods of analysis and their application are discussed. Both ballistic motion and powered motion on and about small bodies are considered and case studies for different small body missions are presented. The author concludes his comprehensive treatment with a discussion of the mechanics of multi-body small body systems and a review of advanced topics and ...

  4. Three-dimensional motion and deformation estimation of deformable mesh

    Science.gov (United States)

    Deknuydt, Albert A.; Desmet, Stefaan; Cox, Kris; Van Eycken, Luc

    2000-04-01

    Recently real-time capture of dynamic 3D-objects has become feasible. The dynamic models obtained by various techniques, come in the form of separate highly detailed 3D-meshes with texture at video-rates. These represent such an amount of data, as to hamper manipulation, editing and rendering. Data- compression techniques can alleviate this problem. Independent decimation of the separate meshes, is an inferior solution for what is really time varying mesh. Firstly, it causes unnatural flickering, and secondly, it leaves the inter-mesh correlation unexploited. Therefore, a hybrid technique might be a better solution. It consists of an 'intra' compression scheme working on still mesh, a 3D motion estimator/predictor, and a coder for the prediction errors and side information (motion vectors and mesh segmentation). We describe a technique to segment a deforming mesh into regions with locally-uniform motion. We start by interpreting the motion as samples of a 3D vector field. In each point, we estimate the translation, rotation and divergence of the vector field. As human faces are rather incompressible, we ignore the divergence component. Then, we cluster the population with the criterion of similar translation and rotation. Results show that it allows to segment a deforming human face into approximately 200 regions of locally-uniform rigid motion, while keeping the motion prediction error under 5 percent. This is good enough for efficient compression.

  5. Motion estimation under location uncertainty for turbulent fluid flows

    Science.gov (United States)

    Cai, Shengze; Mémin, Etienne; Dérian, Pierre; Xu, Chao

    2018-01-01

    In this paper, we propose a novel optical flow formulation for estimating two-dimensional velocity fields from an image sequence depicting the evolution of a passive scalar transported by a fluid flow. This motion estimator relies on a stochastic representation of the flow allowing to incorporate naturally a notion of uncertainty in the flow measurement. In this context, the Eulerian fluid flow velocity field is decomposed into two components: a large-scale motion field and a small-scale uncertainty component. We define the small-scale component as a random field. Subsequently, the data term of the optical flow formulation is based on a stochastic transport equation, derived from the formalism under location uncertainty proposed in Mémin (Geophys Astrophys Fluid Dyn 108(2):119-146, 2014) and Resseguier et al. (Geophys Astrophys Fluid Dyn 111(3):149-176, 2017a). In addition, a specific regularization term built from the assumption of constant kinetic energy involves the very same diffusion tensor as the one appearing in the data transport term. Opposite to the classical motion estimators, this enables us to devise an optical flow method dedicated to fluid flows in which the regularization parameter has now a clear physical interpretation and can be easily estimated. Experimental evaluations are presented on both synthetic and real world image sequences. Results and comparisons indicate very good performance of the proposed formulation for turbulent flow motion estimation.

  6. Vision System for Relative Motion Estimation from Optical Flow

    Directory of Open Access Journals (Sweden)

    Sergey M. Sokolov

    2010-08-01

    Full Text Available For the recent years there was an increasing interest in different methods of motion analysis based on visual data acquisition. Vision systems, intended to obtain quantitative data regarding motion in real time are especially in demand. This paper talks about the vision systems that allow the receipt of information on relative object motion in real time. It is shown, that the algorithms solving a wide range of practical problems by definition of relative movement can be generated on the basis of the known algorithms of an optical flow calculation. One of the system's goals is the creation of economically efficient intellectual sensor prototype in order to estimate relative objects motion based on optic flow. The results of the experiments with a prototype system model are shown.

  7. The strong motion amplitudes from Himalayan earthquakes and a pilot study for the deterministic first order microzonation of Delhi City

    International Nuclear Information System (INIS)

    Parvez, Imtiyaz A.; Panza, G.F.; Gusev, A.A.; Vaccari, F.

    2001-09-01

    The interdependence among the strong-motion amplitude, earthquake magnitude and hypocentral distance has been established (Parvez et al. 2001) for the Himalayan region using the dataset of six earthquakes, two from Western and four from Eastern Himalayas (M w =5.2-7.2) recorded by strong-motion networks in the Himalayas. The level of the peak strong motion amplitudes in the Eastern Himalayas is three fold larger than that in the Western Himalayas, in terms of both peak acceleration and peak velocities. In the present study, we include the strong motion data of Chamoli earthquake (M w =6.5) of 1999 from the western sub-region to see whether this event supports the regional effects and we find that the new result fits well with our earlier prediction in the Western Himalayas. The minimum estimates of peak acceleration for the epicentral zone of M w =7.5-8.5 events is A peak =0.25-0.4 g for the Western Himalayas and as large as A peak =1.0-1.6 g for the Eastern Himalayas. Similarly, the expected minimum epicentral values of V peak for M w =8 are 35 cm/s for Western and 112 cm/s for Eastern Himalayas. The presence of unusually high levels of epicentral amplitudes for the eastern subregion also agrees well with the macroseismic evidence (Parvez et al. 2001). Therefore, these results represent systematic regional effects, and may be considered as a basis for future regionalized seismic hazard assessment in the Himalayan region. Many metropolitan and big cities of India are situated in the severe hazard zone just south of the Himalayas. A detailed microzonation study of these sprawling urban centres is therefore urgently required for gaining a better understanding of ground motion and site effects in these cities. An example of the study of site effects and microzonation of a part of metropolitan Delhi is presented based on a detailed modelling along a NS cross sections from the Inter State Bus Terminal (ISBT) to Sewanagar. Full synthetic strong motion waveforms have been

  8. Surface wave site characterization at 27 locations near Boston, Massachusetts, including 2 strong-motion stations

    Science.gov (United States)

    Thompson, Eric M.; Carkin, Bradley A.; Baise, Laurie G.; Kayen, Robert E.

    2014-01-01

    The geotechnical properties of the soils in and around Boston, Massachusetts, have been extensively studied. This is partly due to the importance of the Boston Blue Clay and the extent of landfill in the Boston area. Although New England is not a region that is typically associated with seismic hazards, there have been several historical earthquakes that have caused significant ground shaking (for example, see Street and Lacroix, 1979; Ebel, 1996; Ebel, 2006). The possibility of strong ground shaking, along with heightened vulnerability from unreinforced masonry buildings, motivates further investigation of seismic hazards throughout New England. Important studies that are pertinent to seismic hazards in New England include source-parameter studies (Somerville and others, 1987; Boore and others, 2010), wave-propagation studies (Frankel, 1991; Viegas and others, 2010), empirical ground-motion prediction equations (GMPE) for computing ground-motion intensity (Tavakoli and Pezeshk, 2005; Atkinson and Boore, 2006), site-response studies (Hayles and others, 2001; Ebel and Kim, 2006), and liquefaction studies (Brankman and Baise, 2008). The shear-wave velocity (VS) profiles collected for this report are pertinent to the GMPE, site response, and liquefaction aspects of seismic hazards in the greater Boston area. Besides the application of these data for the Boston region, the data may be applicable throughout New England, through correlations with geologic units (similar to Ebel and Kim, 2006) or correlations with topographic slope (Wald and Allen, 2007), because few VS measurements are available in stable tectonic regions.Ebel and Hart (2001) used felt earthquake reports to infer amplification patterns throughout the greater Boston region and noted spatial correspondence with the dominant period and amplification factors obtained from ambient noise (horizontal-to-vertical ratios) by Kummer (1998). Britton (2003) compiled geotechnical borings in the area and produced a

  9. An Adaptive Motion Estimation Scheme for Video Coding

    Directory of Open Access Journals (Sweden)

    Pengyu Liu

    2014-01-01

    Full Text Available The unsymmetrical-cross multihexagon-grid search (UMHexagonS is one of the best fast Motion Estimation (ME algorithms in video encoding software. It achieves an excellent coding performance by using hybrid block matching search pattern and multiple initial search point predictors at the cost of the computational complexity of ME increased. Reducing time consuming of ME is one of the key factors to improve video coding efficiency. In this paper, we propose an adaptive motion estimation scheme to further reduce the calculation redundancy of UMHexagonS. Firstly, new motion estimation search patterns have been designed according to the statistical results of motion vector (MV distribution information. Then, design a MV distribution prediction method, including prediction of the size of MV and the direction of MV. At last, according to the MV distribution prediction results, achieve self-adaptive subregional searching by the new estimation search patterns. Experimental results show that more than 50% of total search points are dramatically reduced compared to the UMHexagonS algorithm in JM 18.4 of H.264/AVC. As a result, the proposed algorithm scheme can save the ME time up to 20.86% while the rate-distortion performance is not compromised.

  10. Human motion estimation with multiple frequency modulated continuous wave radars

    NARCIS (Netherlands)

    Dorp, Ph. van; Groen, F.C.A.

    2010-01-01

    Human motion estimation is an important issue in automotive, security or home automation applications. Radar systems are well suited for this because they are robust, are independent of day or night conditions and have accurate range and speed domain. The human response in a radar range-speed-time

  11. ToF camera ego-motion estimation

    CSIR Research Space (South Africa)

    Ratshidaho, T

    2012-10-01

    Full Text Available sequences. Ego-motion facilitates the localisation of the robot. The ToF camera is characterised with a number of error models. Iterative Closest Point (ICP) is applied to consecutive range images of the ToF camera to estimate the relative pose transform...

  12. Strong-Motion Data From the Parkfield Earthquake of September 28, 2004

    Science.gov (United States)

    Shakal, A. F.; Borcherdt, R. D.; Graizer, V.; Haddadi, H.; Huang, M.; Lin, K.; Stephens, C.

    2004-12-01

    Very complex ground motion with high spatial variability was recorded in the near field of the M6 Parkfield earthquake of 9/28/04 by a strong motion array. The array provided the highest density of recording stations in the near field of any earthquake recorded to date. A total of 56 stations were located within 20 km of the fault; 48 were within 10 km of the fault, more than for many other earthquakes combined. Most (45) of the stations were part of a specialized array of classic analog instruments installed by CGS in the early 1980s, and 11 were digital high resolution instruments installed by the USGS. The set of recordings obtained provide a wealth of information on near field ground motion. Processing and analysis of the strong-motion data, available at www.cisn-edc.org, is underway. The spatial variation of the ground motion, even over relatively short distances, is great. For example, a peak acceleration of 0.30 g was recorded in the town of Parkfield, but several stations, within about 2 km, that surround this station recorded acceleration levels well over 1 g. The strong shaking at these stations, near the termination end of the rupture, is consistent with directivity focusing, as the rupture propagated from the epicenter near Gold Hill to the northwest. However, some of the strongest shaking occurs well south of the rupture, at stations near Hwy 46 at the south end of the Cholame Valley, incompatible with directivity focusing from a simple rupture. An additional aspect is that several near-fault stations have very low shaking, despite being directly over the rupturing fault. This may provide a quantitative basis to understand observed cases of low-strength buildings immediately near a fault being only slightly damaged.

  13. Procedure to predict the storey where plastic drift dominates in two-storey building under strong ground motion

    DEFF Research Database (Denmark)

    Hibino, Y.; Ichinose, T.; Costa, J.L.D.

    2009-01-01

    A procedure is presented to predict the storey where plastic drift dominates in two-storey buildings under strong ground motion. The procedure utilizes the yield strength and the mass of each storey as well as the peak ground acceleration. The procedure is based on two different assumptions: (1......) the seismic force distribution is of inverted triangular form and (2) the rigid-plastic model represents the system. The first and the second assumptions, respectively, lead to lower and upper estimates of the base shear coefficient under which the drift of the first storey exceeds that of the second storey...

  14. Center of Mass-Based Adaptive Fast Block Motion Estimation

    Directory of Open Access Journals (Sweden)

    Yeh Kuo-Liang

    2007-01-01

    Full Text Available This work presents an efficient adaptive algorithm based on center of mass (CEM for fast block motion estimation. Binary transform, subsampling, and horizontal/vertical projection techniques are also proposed. As the conventional CEM calculation is computationally intensive, binary transform and subsampling approaches are proposed to simplify CEM calculation; the binary transform center of mass (BITCEM is then derived. The BITCEM motion types are classified by percentage of (0,0 BITCEM motion vectors. Adaptive search patterns are allocated according to the BITCEM moving direction and the BITCEM motion type. Moreover, the BITCEM motion vector is utilized as the initial search point for near-still or slow BITCEM motion types. To support the variable block sizes, the horizontal/vertical projections of a binary transformed macroblock are utilized to determine whether the block requires segmentation. Experimental results indicate that the proposed algorithm is better than the five conventional algorithms, that is, three-step search (TSS, new three-step search (N3SS, four three-step search (4SS, block-based gradient decent search (BBGDS, and diamond search (DS, in terms of speed or picture quality for eight benchmark sequences.

  15. Site classification of Indian strong motion network using response spectra ratios

    Science.gov (United States)

    Chopra, Sumer; Kumar, Vikas; Choudhury, Pallabee; Yadav, R. B. S.

    2018-03-01

    In the present study, we tried to classify the Indian strong motion sites spread all over Himalaya and adjoining region, located on varied geological formations, based on response spectral ratio. A total of 90 sites were classified based on 395 strong motion records from 94 earthquakes recorded at these sites. The magnitude of these earthquakes are between 2.3 and 7.7 and the hypocentral distance for most of the cases is less than 50 km. The predominant period obtained from response spectral ratios is used to classify these sites. It was found that the shape and predominant peaks of the spectra at these sites match with those in Japan, Italy, Iran, and at some of the sites in Europe and the same classification scheme can be applied to Indian strong motion network. We found that the earlier schemes based on description of near-surface geology, geomorphology, and topography were not able to capture the effect of sediment thickness. The sites are classified into seven classes (CL-I to CL-VII) with varying predominant periods and ranges as proposed by Alessandro et al. (Bull Seismol Soc Am 102:680-695 2012). The effect of magnitudes and hypocentral distances on the shape and predominant peaks were also studied and found to be very small. The classification scheme is robust and cost-effective and can be used in region-specific attenuation relationships for accounting local site effect.

  16. On robust and reliable automated baseline corrections for strong motion seismology

    Science.gov (United States)

    Melgar, Diego; Bock, Yehuda; Sanchez, Dominga; Crowell, Brendan W.

    2013-03-01

    Computation of displacements from strong motion inertial sensors is to date an open problem. Two distinct methodologies have been proposed to solve it. One involves baseline corrections determined from the inertial data themselves and the other a combination with other geophysical sensors such as GPS. Here we analyze a proposed automated baseline correction algorithm using only accelerometer data and compare it to the results from the real-time combination of strong motion and GPS data. The analysis is performed on 48 collocated GPS and accelerometers in Japan that recorded the 2011 Mw 9.0 Tohoku-oki earthquake. We study the time and frequency domain behavior of both methodologies. We find that the error incurred from automated baseline corrections that rely on seismic data alone is complex and can be large in both the time and frequency domains of interest in seismological and engineering applications. The GPS/accelerometer combination has no such problems and can adequately recover broadband strong motion displacements for this event. The problems and ambiguities with baseline corrections and the success of the GPS/accelerometer combination lead us to advocate for instrument collocations as opposed to automated baseline correction algorithms for accelerometers.

  17. Improving visual estimates of cervical spine range of motion.

    Science.gov (United States)

    Hirsch, Brandon P; Webb, Matthew L; Bohl, Daniel D; Fu, Michael; Buerba, Rafael A; Gruskay, Jordan A; Grauer, Jonathan N

    2014-11-01

    Cervical spine range of motion (ROM) is a common measure of cervical conditions, surgical outcomes, and functional impairment. Although ROM is routinely assessed by visual estimation in clinical practice, visual estimates have been shown to be unreliable and inaccurate. Reliable goniometers can be used for assessments, but the associated costs and logistics generally limit their clinical acceptance. To investigate whether training can improve visual estimates of cervical spine ROM, we asked attending surgeons, residents, and medical students at our institution to visually estimate the cervical spine ROM of healthy subjects before and after a training session. This training session included review of normal cervical spine ROM in 3 planes and demonstration of partial and full motion in 3 planes by multiple subjects. Estimates before, immediately after, and 1 month after this training session were compared to assess reliability and accuracy. Immediately after training, errors decreased by 11.9° (flexion-extension), 3.8° (lateral bending), and 2.9° (axial rotation). These improvements were statistically significant. One month after training, visual estimates remained improved, by 9.5°, 1.6°, and 3.1°, respectively, but were statistically significant only in flexion-extension. Although the accuracy of visual estimates can be improved, clinicians should be aware of the limitations of visual estimates of cervical spine ROM. Our study results support scrutiny of visual assessment of ROM as a criterion for diagnosing permanent impairment or disability.

  18. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches

    International Nuclear Information System (INIS)

    Berge-Thierry, C.

    2007-05-01

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  19. Automated Motion Estimation for 2D Cine DENSE MRI

    Science.gov (United States)

    Gilliam, Andrew D.; Epstein, Frederick H.

    2013-01-01

    Cine displacement encoding with stimulated echoes (DENSE) is a magnetic resonance (MR) method that directly encodes tissue displacement into MR phase images. This technique has successfully interrogated many forms of tissue motion, but is most commonly used to evaluate cardiac mechanics. Currently, motion analysis from cine DENSE images requires manually delineated anatomical structures. An automated analysis would improve measurement throughput, simplify data interpretation, and potentially access important physiological information during the MR exam. In this article, we present the first fully automated solution for the estimation of tissue motion and strain from 2D cine DENSE data. Results using both simulated and human cardiac cine DENSE data indicate good agreement between the automated algorithm and the standard semi-manual analysis method. PMID:22575669

  20. The near-source strong-motion accelerograms recorded by an experimental array in Tangshan, China

    Science.gov (United States)

    Peng, K.; Xie, Lingtian; Li, S.; Boore, D.M.; Iwan, W.D.; Teng, T.L.

    1985-01-01

    A joint research project on strong-motion earthquake studies between the People's Republic of China and the United States is in progress. As a part of this project, an experimental strong-motion array, consisting of twelve Kinemetrics PDR-1 Digital Event Recorders, was deployed in the meizoseismal area of the Ms = 7.8 Tangshan earthquake of July 28, 1976. These instruments have automatic gain ranging, a specified dynamic range of 102 dB, a 2.5 s pre-event memory, programmable triggering, and are equipped with TCG-1B Time Code Generators with a stability of 3 parts in 107 over a range of 0-50??C. In 2 y of operation beginning July, 1982 a total of 603 near-source 3-component accelerograms were gathered from 243 earthquakes of magnitude ML = 1.2-5.3. Most of these accelerograms have recorded the initial P-wave. The configuration of the experimental array and a representative set of near-source strong-motion accelerograms are presented in this paper. The set of accelerograms exhibited were obtained during the ML = 5.3 Lulong earthquake of October 19, 1982, when digital event recorders were triggered. The epicentral distances ranged from 4 to 41 km and the corresponding range of peak horizontal accelerations was 0.232g to 0.009g. A preliminary analysis of the data indicates that compared to motions in the western United States, the peak acceleration attenuates much more rapidly in the Tangshan area. The scaling of peak acceleration with magnitude, however, is similar in the two regions. Data at more distant sites are needed to confirm the more rapid attenuation. ?? 1985.

  1. Estimation of object motion parameters from noisy images.

    Science.gov (United States)

    Broida, T J; Chellappa, R

    1986-01-01

    An approach is presented for the estimation of object motion parameters based on a sequence of noisy images. The problem considered is that of a rigid body undergoing unknown rotational and translational motion. The measurement data consists of a sequence of noisy image coordinates of two or more object correspondence points. By modeling the object dynamics as a function of time, estimates of the model parameters (including motion parameters) can be extracted from the data using recursive and/or batch techniques. This permits a desired degree of smoothing to be achieved through the use of an arbitrarily large number of images. Some assumptions regarding object structure are presently made. Results are presented for a recursive estimation procedure: the case considered here is that of a sequence of one dimensional images of a two dimensional object. Thus, the object moves in one transverse dimension, and in depth, preserving the fundamental ambiguity of the central projection image model (loss of depth information). An iterated extended Kalman filter is used for the recursive solution. Noise levels of 5-10 percent of the object image size are used. Approximate Cramer-Rao lower bounds are derived for the model parameter estimates as a function of object trajectory and noise level. This approach may be of use in situations where it is difficult to resolve large numbers of object match points, but relatively long sequences of images (10 to 20 or more) are available.

  2. Cellular neural networks for motion estimation and obstacle detection

    Science.gov (United States)

    Feiden, D.; Tetzlaff, R.

    2003-05-01

    Obstacle detection is an important part of Video Processing because it is indispensable for a collision prevention of autonomously navigating moving objects. For example, vehicles driving without human guidance need a robust prediction of potential obstacles, like other vehicles or pedestrians. Most of the common approaches of obstacle detection so far use analytical and statistical methods like motion estimation or generation of maps. In the first part of this contribution a statistical algorithm for obstacle detection in monocular video sequences is presented. The proposed procedure is based on a motion estimation and a planar world model which is appropriate to traffic scenes. The different processing steps of the statistical procedure are a feature extraction, a subsequent displacement vector estimation and a robust estimation of the motion parameters. Since the proposed procedure is composed of several processing steps, the error propagation of the successive steps often leads to inaccurate results. In the second part of this contribution it is demonstrated, that the above mentioned problems can be efficiently overcome by using Cellular Neural Networks (CNN). It will be shown, that a direct obstacle detection algorithm can be easily performed, based only on CNN processing of the input images. Beside the enormous computing power of programmable CNN based devices, the proposed method is also very robust in comparison to the statistical method, because is shows much less sensibility to noisy inputs. Using the proposed approach of obstacle detection in planar worlds, a real time processing of large input images has been made possible.

  3. Addressing earthquakes strong ground motion issues at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wong, I.G.; Silva, W.J.; Stark, C.L.; Jackson, S.; Smith, R.P.

    1991-01-01

    In the course of reassessing seismic hazards at the Idaho National Engineering Laboratory (INEL), several key issues have been raised concerning the effects of the earthquake source and site geology on potential strong ground motions that might be generated by a large earthquake. The design earthquake for the INEL is an approximate moment magnitude (M w ) 7 event that may occur on the southern portion of the Lemhi fault, a Basin and Range normal fault that is located on the northwestern boundary of the eastern Snake River Plain and the INEL, within 10 to 27 km of several major facilities. Because the locations of these facilities place them at close distances to a large earthquake and generally along strike of the causative fault, the effects of source rupture dynamics (e.g., directivity) could be critical in enhancing potential ground shaking at the INEL. An additional source issue that has been addressed is the value of stress drop to use in ground motion predictions. In terms of site geology, it has been questioned whether the interbedded volcanic stratigraphy beneath the ESRP and the INEL attenuates ground motions to a greater degree than a typical rock site in the western US. These three issues have been investigated employing a stochastic ground motion methodology which incorporates the Band-Limited-White-Noise source model for both a point source and finite fault, random vibration theory and an equivalent linear approach to model soil response

  4. A comparison of two methods for earthquake source inversion using strong motion seismograms

    Directory of Open Access Journals (Sweden)

    G. C. Beroza

    1994-06-01

    Full Text Available In this paper we compare two time-domain inversion methods that have been widely applied to the problem of modeling earthquake rupture using strong-motion seismograms. In the multi-window method, each point on the fault is allowed to rupture multiple times. This allows flexibility in the rupture time and hence the rupture velocity. Variations in the slip-velocity function are accommodated by variations in the slip amplitude in each time-window. The single-window method assumes that each point on the fault ruptures only once, when the rupture front passes. Variations in slip amplitude are allowed and variations in rupture velocity are accommodated by allowing the rupture time to vary. Because the multi-window method allows greater flexibility, it has the potential to describe a wider range of faulting behavior; however, with this increased flexibility comes an increase in the degrees of freedom and the solutions are comparatively less stable. We demonstrate this effect using synthetic data for a test model of the Mw 7.3 1992 Landers, California earthquake, and then apply both inversion methods to the actual recordings. The two approaches yield similar fits to the strong-motion data with different seismic moments indicating that the moment is not well constrained by strong-motion data alone. The slip amplitude distribution is similar using either approach, but important differences exist in the rupture propagation models. The single-window method does a better job of recovering the true seismic moment and the average rupture velocity. The multi-window method is preferable when rise time is strongly variable, but tends to overestimate the seismic moment. Both methods work well when the rise time is constant or short compared to the periods modeled. Neither approach can recover the temporal details of rupture propagation unless the distribution of slip amplitude is constrained by independent data.

  5. Development of tipping-over analysis of cask subjected to earthquake strong motion

    International Nuclear Information System (INIS)

    Shirai, Koji; Ito, Chihiro; Ryu, Hiroshi

    1993-01-01

    Since a cask is vertically oriented during loading in cask-storage, it is necessary to investigate the integrity of the cask against tipping-over during strong earthquakes. The rocking and sliding behavior of the cask during strong earthquakes can be analyzed as a dynamic vibration problem for a rigid cylinder. In this paper, in order to clarify the tipping-over characteristics of a cask during strong earthquakes, the authors applied the Distinct Element Method (DEM) to the seismic response analysis of the cask. DEM was introduced by Cundall P.A. in 1971. It is based on the use of an explicit numerical scheme. The cask was considered to be a rigid polygonal element, which satisfied the equation of motion and the law of action and reaction. They examined the applicability of this code by comparison with experimental results obtained from shaking table tests using scale model casks considering the dimension of a 100 ton class full-scale cask

  6. Estimation of self-motion duration and distance in rodents

    Science.gov (United States)

    Kautzky, Magdalena

    2016-01-01

    Spatial orientation and navigation rely on information about landmarks and self-motion cues gained from multi-sensory sources. In this study, we focused on self-motion and examined the capability of rodents to extract and make use of information about own movement, i.e. path integration. Path integration has been investigated in depth in insects and humans. Demonstrations in rodents, however, mostly stem from experiments on heading direction; less is known about distance estimation. We introduce a novel behavioural paradigm that allows for probing temporal and spatial contributions to path integration. The paradigm is a bisection task comprising movement in a virtual reality environment in combination with either timing the duration ran or estimating the distance covered. We performed experiments with Mongolian gerbils and could show that the animals can keep track of time and distance during spatial navigation. PMID:27293792

  7. Multiresolution Motion Estimation for Low-Rate Video Frame Interpolation

    Directory of Open Access Journals (Sweden)

    Hezerul Abdul Karim

    2004-09-01

    Full Text Available Interpolation of video frames with the purpose of increasing the frame rate requires the estimation of motion in the image so as to interpolate pixels along the path of the objects. In this paper, the specific challenges of low-rate video frame interpolation are illustrated by choosing one well-performing algorithm for high-frame-rate interpolation (Castango 1996 and applying it to low frame rates. The degradation of performance is illustrated by comparing the original algorithm, the algorithm adapted to low frame rate, and simple averaging. To overcome the particular challenges of low-frame-rate interpolation, two algorithms based on multiresolution motion estimation are developed and compared on objective and subjective basis and shown to provide an elegant solution to the specific challenges of low-frame-rate video interpolation.

  8. An Alternative Estimate of the Motion of the Capricorn Plate

    Science.gov (United States)

    Burris, S. G.; Gordon, R. G.

    2013-12-01

    Diffuse plate boundaries cover ~15% of Earth's surface and can exceed 1000 km in across-strike width. Deforming oceanic lithosphere in the equatorial Indian Ocean accommodates the motion between the India and Capricorn plates and serves as their mutual diffuse plate boundary. This deforming lithosphere lies between the Central Indian Ridge to the west and the Sumatra trench to the east; the plates diverge to the west of ≈74°E and converge to the east of it. Many data have shown that the pole of rotation between the India and Capricorn plates lies within this diffuse plate boundary [1,2]. Surprisingly, however, the recently estimated angular velocity in the MORVEL global set of angular velocities [3] places this pole of rotation north of prior poles by several degrees, and north of the diffuse plate boundary. The motion between the India and Capricorn plates can only be estimated indirectly by differencing the motion of the India plate relative to the Somalia plate, on the one hand, and the motion of the Capricorn plate relative to Somalia plate, on the other. While the MORVEL India-Somalia angular velocity is similar to prior estimates, the MORVEL Capricorn-Somalia pole of rotation lies northwest of its predecessors. The difference is not caused by new transform azimuth data incorporated into MORVEL or by the new application of a correction to spreading rates for outward displacement. Instead the difference appears to be caused by a few anomalous spreading rates near the northern end of the Capricorn-Somalia plate boundary along the Central Indian Ridge. Rejecting these data leads to consistency with prior results. Implications for the motion of the Capricorn plate relative to Australia will be discussed. [1] DeMets, C., R. G. Gordon, and J.-Y. Royer, 2005. Motion between the Indian, Capricorn, and Somalian plates since 20 Ma: implications for the timing and magnitude of distributed deformation in the equatorial Indian ocean, Geophys. J. Int., 161, 445-468. [2

  9. Evaluation and Comparison of Motion Estimation Algorithms for Video Compression

    OpenAIRE

    Avinash Nayak; Bijayinee Biswal; S. K. Sabut

    2013-01-01

    Video compression has become an essential component of broadcast and entertainment media. Motion Estimation and compensation techniques, which can eliminate temporal redundancy between adjacent frames effectively, have been widely applied to popular video compression coding standards such as MPEG-2, MPEG-4. Traditional fast block matching algorithms are easily trapped into the local minima resulting in degradation on video quality to some extent after decoding. In this paper various computing...

  10. Seismic velocity site characterization of 10 Arizona strong-motion recording stations by spectral analysis of surface wave dispersion

    Science.gov (United States)

    Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.

    2017-10-19

    Vertical one-dimensional shear wave velocity (VS) profiles are presented for strong-motion sites in Arizona for a suite of stations surrounding the Palo Verde Nuclear Generating Station. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS30), the average velocity for the entire profile (VSZ), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The VS profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean-square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.

  11. On Drift Parameter Estimation in Models with Fractional Brownian Motion by Discrete Observations

    Directory of Open Access Journals (Sweden)

    Yuliya Mishura

    2014-06-01

    Full Text Available We study a problem of an unknown drift parameter estimation in a stochastic differen- tial equation driven by fractional Brownian motion. We represent the likelihood ratio as a function of the observable process. The form of this representation is in general rather complicated. However, in the simplest case it can be simplified and we can discretize it to establish the a. s. convergence of the discretized version of maximum likelihood estimator to the true value of parameter. We also investigate a non-standard estimator of the drift parameter showing further its strong consistency. 

  12. U.S. Geological Survey National Strong-Motion Project strategic plan, 2017–22

    Science.gov (United States)

    Aagaard, Brad T.; Celebi, Mehmet; Gee, Lind; Graves, Robert; Jaiswal, Kishor; Kalkan, Erol; Knudsen, Keith L.; Luco, Nicolas; Smith, James; Steidl, Jamison; Stephens, Christopher D.

    2017-12-11

    The mission of the National Strong-Motion Project is to provide measurements of how the ground and built environment behave during earthquake shaking to the earthquake engineering community, the scientific community, emergency managers, public agencies, industry, media, and other users for the following purposes: Improving engineering evaluations and design methods for facilities and systems;Providing timely information for earthquake early warning, damage assessment, and emergency response action; andContributing to a greater understanding of the mechanics of earthquake rupture, groundmotion characteristics, and earthquake effects.

  13. Wind speed and direction shears with associated vertical motion during strong surface winds

    Science.gov (United States)

    Alexander, M. B.; Camp, D. W.

    1984-01-01

    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds.

  14. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates.

  15. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    International Nuclear Information System (INIS)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates

  16. Strong ground motion in Port-au-Prince, Haiti, during the M7.0 12 January 2010 Haiti earthquake

    Science.gov (United States)

    Hough, Susan E; Given, Doug; Taniguchi, Tomoyo; Altidor, J.R.; Anglade, Dieuseul; Mildor, S-L.

    2011-01-01

    No strong motion records are available for the 12 January 2010 M7.0 Haiti earthquake. We use aftershock recordings as well as detailed considerations of damage to estimate the severity and distribution of mainshock shaking in Port-au-Prince. Relative to ground motions at a hard - rock reference site, peak accelerations are amplified by a factor of approximately 2 at sites on low-lying deposits in central Port-au-Prince and by a factor of 2.5 - 3.5 on a steep foothill ridge in the southern Port-au-Prince metropolitan region. The observed amplification along the ridge cannot be explained by sediment - induced amplification , but is consistent with predicted topographic amplification by a steep, narrow ridge. Although damage was largely a consequence of poor construction , the damage pattern inferred from analysis of remote sensing imagery provides evidence for a correspondence between small-scale (0.1 - 1.0 km) topographic relief and high damage. Mainshock shaking intensity can be estimated crudely from a consideration of macroseismic effects . We further present detailed, quantitative analysis of the marks left on a tile floor by an industrial battery rack displaced during the mainshock, at the location where we observed the highest weak motion amplifications. Results of this analysis indicate that mainshock shaking was significantly higher at this location (~0.5 g , MMI VIII) relative to the shaking in parts of Port-au-Prince that experienced light damage. Our results further illustrate how observations of rigid body horizontal displacement during earthquakes can be used to estimate peak ground accelerations in the absence of instrumental data .

  17. SU-G-BRA-09: Estimation of Motion Tracking Uncertainty for Real-Time Adaptive Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yan, H [Capital Medical University, Beijing, Beijing (China); Chen, Z [Yale New Haven Hospital, New Haven, CT (United States); Nath, R; Liu, W [Yale University School of Medicine, New Haven, CT (United States)

    2016-06-15

    Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertainty through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the

  18. SU-G-BRA-09: Estimation of Motion Tracking Uncertainty for Real-Time Adaptive Imaging

    International Nuclear Information System (INIS)

    Yan, H; Chen, Z; Nath, R; Liu, W

    2016-01-01

    Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertainty through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the

  19. Fault Structural Control on Earthquake Strong Ground Motions: The 2008 Wenchuan Earthquake as an Example

    Science.gov (United States)

    Zhang, Yan; Zhang, Dongli; Li, Xiaojun; Huang, Bei; Zheng, Wenjun; Wang, Yuejun

    2018-02-01

    Continental thrust faulting earthquakes pose severe threats to megacities across the world. Recent events show the possible control of fault structures on strong ground motions. The seismogenic structure of the 2008 Wenchuan earthquake is associated with high-angle listric reverse fault zones. Its peak ground accelerations (PGAs) show a prominent feature of fault zone amplification: the values within the 30- to 40-km-wide fault zone block are significantly larger than those on both the hanging wall and the footwall. The PGA values attenuate asymmetrically: they decay much more rapidly in the footwall than in the hanging wall. The hanging wall effects can be seen on both the vertical and horizontal components of the PGAs, with the former significantly more prominent than the latter. All these characteristics can be adequately interpreted by upward extrusion of the high-angle listric reverse fault zone block. Through comparison with a low-angle planar thrust fault associated with the 1999 Chi-Chi earthquake, we conclude that different fault structures might have controlled different patterns of strong ground motion, which should be taken into account in seismic design and construction.

  20. Preliminary analysis of strong-motion recordings from the 28 September 2004 Parkfield, California earthquake

    Science.gov (United States)

    Shakal, A.; Graizer, V.; Huang, M.; Borcherdt, R.; Haddadi, H.; Lin, K.-W.; Stephens, C.; Roffers, P.

    2005-01-01

    The Parkfield 2004 earthquake yielded the most extensive set of strong-motion data in the near-source region of a magnitude 6 earthquake yet obtained. The recordings of acceleration and volumetric strain provide an unprecedented document of the near-source seismic radiation for a moderate earthquake. The spatial density of the measurements alon g the fault zone and in the linear arrays perpendicular to the fault is expected to provide an exceptional opportunity to develop improved models of the rupture process. The closely spaced measurements should help infer the temporal and spatial distribution of the rupture process at much higher resolution than previously possible. Preliminary analyses of the peak a cceleration data presented herein shows that the motions vary significantly along the rupture zone, from 0.13 g to more than 2.5 g, with a map of the values showing that the larger values are concentrated in three areas. Particle motions at the near-fault stations are consistent with bilateral rupture. Fault-normal pulses similar to those observed in recent strike-slip earthquakes are apparent at several of the stations. The attenuation of peak ground acceleration with distance is more rapid than that indicated by some standard relationships but adequately fits others. Evidence for directivity in the peak acceleration data is not strong. Several stations very near, or over, the rupturing fault recorded relatively low accelerations. These recordings may provide a quantitative basis to understand observations of low near-fault shaking damage that has been reported in other large strike-slip earthquak.

  1. Ground motion modeling of the 1906 San Francisco earthquake II: Ground motion estimates for the 1906 earthquake and scenario events

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B; Brocher, T; Dreger, D; Frankel, A; Graves, R; Harmsen, S; Hartzell, S; Larsen, S; McCandless, K; Nilsson, S; Petersson, N A; Rodgers, A; Sjogreen, B; Tkalcic, H; Zoback, M L

    2007-02-09

    We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  2. Maximizing Memory Data Reuse for Lower Power Motion Estimation

    Directory of Open Access Journals (Sweden)

    Bo-Sung Kim

    2002-01-01

    Full Text Available This paper presents a new VLSI architecture of the Motion Estimation in MPEG-2. Previously, a number of full search block matching algorithms (BMA and architectures using systolic array have been proposed for motion estimation. However, the architectures have an inefficiently large number of external memory accesses. Recently, to reduce the number of accesses in one search block, a block matching method within a search area to reuse the search data is provided using systolic process arrays. To further reduce the data access and computation time during the block matching, we propose a new approach through the reuse of the previously-search data in two dimensions. Our new architecture in this paper is an extension from our previous work such that we reuse the previously-searches area not only between two consecutive columns but also between two consecutive rows, so as to entirely remove redundant memory accesses. Experimental results show that our architecture of increased area by 81% can reduce 98% of memory accesses. Total power reduction is 86% in power estimation by SPICE model.

  3. NetQuakes - A new approach to urban strong-motion seismology

    Science.gov (United States)

    Luetgert, J. H.; Evans, J. R.; Hamilton, J.; Hutt, C. R.; Jensen, E. G.; Oppenheimer, D. H.

    2009-12-01

    There is a recognized need for more densely sampled strong ground motion recordings in urban areas to provide more accurate ShakeMaps for post-earthquake disaster assessment and to provide data for structural engineers to improve design standards. Ideally, the San Francisco Bay area would have a strong ground motion recorder every 1-2 km to adequately sample the region’s varied geology and built environment. This would require the addition of thousands of instruments to the existing network. There are several fiscal and logistical constraints that prevent us from doing this with traditional strong motion instrumentation and telemetry. In addition to the initial expense of instruments and their installation, there are the continuing costs of telemetry and maintenance. To address these issues, the USGS implemented the NetQuakes project to deploy small, relatively inexpensive seismographs for installation in 1-2 story homes and businesses that utilize the host’s existing Internet connection. The recorder has 18 bit resolution with ±3g internal tri-axial MEMS accelerometers. Data is continuously recorded at 200 sps into a 1-2 week ringbuffer. When triggered, a miniSEED file is sent to USGS servers via the Internet. Data can also be recovered from the ringbuffer by a remote request through the servers. Following a power failure, the instrument can run for 36 hours using its internal battery. All client-server interactions are initiated by the instrument, so it safely resides behind a host’s firewall. Instrument and battery replacement can be performed by hosts to reduce maintenance costs. A connection to the host’s LAN, and thence to the public Internet, can be made using WiFi to minimize cabling. Although timing via a cable to an external GPS antenna is possible, it is simpler to use the Network Time Protocol (NTP) to synchronize the internal clock. NTP achieves timing accuracy generally better than a sample interval. Since February, 2009, we have installed

  4. Slip model and Synthetic Broad-band Strong Motions for the 2015 Mw 8.3 Illapel (Chile) Earthquake.

    Science.gov (United States)

    Aguirre, P.; Fortuno, C.; de la Llera, J. C.

    2017-12-01

    The MW 8.3 earthquake that occurred on September 16th 2015 west of Illapel, Chile, ruptured a 200 km section of the plate boundary between 29º S and 33º S. SAR data acquired by the Sentinel 1A satellite was used to obtain the interferogram of the earthquake, and from it, the component of the displacement field of the surface in the line of sight of the satellite. Based on this interferogram, the corresponding coseismic slip distribution for the earthquake was determined based on different plausible finite fault geometries. The model that best fits the data gathered is one whose rupture surface is consistent with the Slab 1.0 model, with a constant strike angle of 4º and variable dip angle ranging from 2.7º near the trench to 24.3º down dip. Using this geometry the maximum slip obtained is 7.52 m and the corresponding seismic moment is 3.78·1021 equivalent to a moment magnitude Mw 8.3. Calculation of the Coulomb failure stress change induced by this slip distribution evidences a strong correlation between regions where stress is increased as consequence of the earthquake, and the occurrence of the most relevant aftershocks, providing a consistency check for the inversion procedure applied and its results.The finite fault model for the Illapel earthquake is used to test a hybrid methodology for generation of synthetic ground motions that combines a deterministic calculation of the low frequency content, with stochastic modelling of the high frequency signal. Strong ground motions are estimated at the location of seismic stations recording the Illapel earthquake. Such simulations include the effect of local soil conditions, which are modelled empirically based on H/V ratios obtained from a large database of historical seismic records. Comparison of observed and synthetic records based on the 5%-damped response spectra yield satisfactory results for locations where the site response function is more robustly estimated.

  5. Final report on repair procedure of strong ground motion data from underground nuclear tests

    Energy Technology Data Exchange (ETDEWEB)

    Tunnell, T.W.

    1995-04-01

    Certain difficulties arise when recording close-in around motion from underground nuclear explosions. Data quality can be compromised by a variety of factors, including electromagnetic pulse, noise spikes, direct current effect, and gauge clipping and gauge tilt. From March 1988 through September 1994, EG&G Energy Measurements repaired strong round-motion data (acceleration data) from underground nuclear tests for the Los Alamos National Laboratory using, an automated repair procedure. The automated repair determined and implemented the required repairs based on user input and a consistent set of criteria. A log was kept of each repair so that the repair procedure could be duplicated. This relaxed the requirement to save the repaired data. Developed for the VAX system, the procedure allowed the user to stack up a large number of repairs, plot the repaired data, and obtain hard copies. The plotted data could then be reviewed for a given test to determine the consistency of repair for a given underground test. This feature released the user to perform other tasks while the data were being repaired.

  6. Main factors affecting strong ground motion calculations: Critical review and assessment

    International Nuclear Information System (INIS)

    Mohammadioun, B.; Pecker, A.

    1990-01-01

    In the interests of guarding lives and property against the effects of earthquakes, building codes are frequently enforced when erecting conventional structures, usually calling for simple, static calculations. Where more vulnerable facilities are involved, the failure of which, or of parts of which, could subject the environment to harmful substances, more sophisticated methods are used to compute or verify their design, often accompanied by safety margins intended to compensate for uncertainties encountered at various stages of the analysis that begins with input seismic data and culminates with an effective anti-seismic design. The forthcoming discussion will deal with what is known of the characteristics of strong ground motion, highly variable according to context, without entering into the problems raised by seismotectonic studies, which actually constitute the first aspect that must be addressed when performing such an analysis. Our conclusion will be devoted to cogent R and D work in this area

  7. Direct Visualization of Valence Electron Motion Using Strong-Field Photoelectron Holography

    Science.gov (United States)

    He, Mingrui; Li, Yang; Zhou, Yueming; Li, Min; Cao, Wei; Lu, Peixiang

    2018-03-01

    Watching the valence electron move in molecules on its intrinsic timescale has been one of the central goals of attosecond science and it requires measurements with subatomic spatial and attosecond temporal resolutions. The time-resolved photoelectron holography in strong-field tunneling ionization holds the promise to access this realm. However, it remains to be a challenging task hitherto. Here we reveal how the information of valence electron motion is encoded in the hologram of the photoelectron momentum distribution (PEMD) and develop a novel approach of retrieval. As a demonstration, applying it to the PEMDs obtained by solving the time-dependent Schrödinger equation for the prototypical molecule H2+ , the attosecond charge migration is directly visualized with picometer spatial and attosecond temporal resolutions. Our method represents a general approach for monitoring attosecond charge migration in more complex polyatomic and biological molecules, which is one of the central tasks in the newly emerging attosecond chemistry.

  8. Enhancement of Motion Estimation Robustness Against Noise and Brightness Variations in Digital Image Sequences

    Directory of Open Access Journals (Sweden)

    Homayoun Mahdavi-Nasab

    2010-07-01

    Full Text Available Motion estimation and compensation are main stages in hybrid video coding standards. Due to structural simplicity the block-matching motion estimation is the most used method in digital video technology. In recent years the mesh-based motion estimation is considered by the researchers because of its more complex motion models and lack of blocking artifacts. However, mesh-based motion estimation suffers from error propagation and weak performance in noisy and brightness varying conditions. In this paper motion adaptive interpolation functions are proposed for the mesh-based motion estimation to overcome these problems. The simulation results show the better robustness of the proposed scheme against noise and brightness variations, not only regarding to mesh-based but also block-matching motion estimation techniques.

  9. Probabilistic seismic assessment of base-isolated NPPs subjected to strong ground motions of Tohoku earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmer; Hayah, Nadin Abu; Kim, Doo Kie [Dept. of Civil and Environmental Engineering, Kunsan National University, Kunsan (Korea, Republic of); Cho, Sung Gook [R and D Center, JACE KOREA Company, Gyeonggido (Korea, Republic of)

    2014-10-15

    The probabilistic seismic performance of a standard Korean nuclear power plant (NPP) with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA) of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA) as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  10. PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    AHMER ALI

    2014-10-01

    Full Text Available The probabilistic seismic performance of a standard Korean nuclear power plant (NPP with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  11. Contributions to the European workshop on investigation of strong motion processing procedures

    International Nuclear Information System (INIS)

    Mohammadioun, B.; Goula, X.; Hamaide, D.

    1985-11-01

    The first paper is one contribution to a joint study program in the numerical processing of accelerograms from strong earthquakes. A method is proposed for generating an analytic signal having characteristics similar to those of an actual ground displacement. From this signal, a simulated accelerogram is obtained analytically. Various numerical processing techniques are to be tested using this signal: the ground displacements they yield will be compared with the original analytic signal. The second contribution deals with a high-performance digitization complex, custom-designed to stringent technical criteria by the CISI Petrole Services, which has recently been put into service at the Bureau d'Evaluation des Risques Sismiques pour la Surete des Installations Nucleaires. Specially tailored to cope with the problems raised by the sampling of Strong-Motion photographic recordings, it offers considerable flexibility, due to its self-teaching conception, constant monitoring of the work ongoing, and numerous preprocessing options. In the third contribution, a critical examination of several processing techniques applicable to photographic recordings of SMA-1 type accelerometers is conducted. The basis for comparison was a set of two accelerograms drawn from synthetic signals, the characteristics of which were already well known

  12. Density estimation in tiger populations: combining information for strong inference

    Science.gov (United States)

    Gopalaswamy, Arjun M.; Royle, J. Andrew; Delampady, Mohan; Nichols, James D.; Karanth, K. Ullas; Macdonald, David W.

    2012-01-01

    A productive way forward in studies of animal populations is to efficiently make use of all the information available, either as raw data or as published sources, on critical parameters of interest. In this study, we demonstrate two approaches to the use of multiple sources of information on a parameter of fundamental interest to ecologists: animal density. The first approach produces estimates simultaneously from two different sources of data. The second approach was developed for situations in which initial data collection and analysis are followed up by subsequent data collection and prior knowledge is updated with new data using a stepwise process. Both approaches are used to estimate density of a rare and elusive predator, the tiger, by combining photographic and fecal DNA spatial capture–recapture data. The model, which combined information, provided the most precise estimate of density (8.5 ± 1.95 tigers/100 km2 [posterior mean ± SD]) relative to a model that utilized only one data source (photographic, 12.02 ± 3.02 tigers/100 km2 and fecal DNA, 6.65 ± 2.37 tigers/100 km2). Our study demonstrates that, by accounting for multiple sources of available information, estimates of animal density can be significantly improved.

  13. The Quake-Catcher Network: A Community-Led, Strong-Motion Network with Implications for Earthquake Advanced Alert

    Science.gov (United States)

    Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Jakka, R. S.; Chung, A. I.

    2009-12-01

    The goal of the Quake-Catcher Network (QCN) is to dramatically increase the number of strong-motion observations by exploiting recent advances in sensing technologies and cyberinfrastructure. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers are very low cost (50-100), interface to any desktop computer via USB cable, and provide high-quality acceleration data. Preliminary shake table tests show the MEMS accelerometers can record high-fidelity seismic data and provide linear phase and amplitude response over a wide frequency range. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Volunteer computing also allows for rapid transfer of metadata, such as that used to rapidly determine the magnitude and location of an earthquake, from participating stations. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1000 stations. Initial analysis shows metadata are received within 1-14 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. Currently, we are testing a series of triggering algorithms to maximize the number of earthquakes captured while minimizing false triggers. We are also testing algorithms to automatically detect P- and S-wave arrivals in real time. Trigger times, wave amplitude, and station information are currently uploaded to the server for each trigger. Future work will identify additional metadata useful for quickly determining earthquake location and magnitude. The increased strong-motion observations made possible by QCN will greatly augment the capability of seismic networks to quickly estimate the location and magnitude of an earthquake for advanced alert to the public. In addition, the dense waveform observations will provide improved source imaging of a rupture in near-real-time. These

  14. Motion estimation and compensation in dynamic spiral CT reconstruction

    International Nuclear Information System (INIS)

    Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St.

    2004-01-01

    Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)

  15. Hardware Efficient Architecture with Variable Block Size for Motion Estimation

    Directory of Open Access Journals (Sweden)

    Nehal N. Shah

    2016-01-01

    Full Text Available Video coding standards such as MPEG-x and H.26x incorporate variable block size motion estimation (VBSME which is highly time consuming and extremely complex from hardware implementation perspective due to huge computation. In this paper, we have discussed basic aspects of video coding and studied and compared existing architectures for VBSME. Various architectures with different pixel scanning pattern give a variety of performance results for motion vector (MV generation, showing tradeoff between macroblock processed per second and resource requirement for computation. Aim of this paper is to design VBSME architecture which utilizes optimal resources to minimize chip area and offer adequate frame processing rate for real time implementation. Speed of computation can be improved by accessing 16 pixels of base macroblock of size 4 × 4 in single clock cycle using z scanning pattern. Widely adopted cost function for hardware implementation known as sum of absolute differences (SAD is used for VBSME architecture with multiplexer based absolute difference calculator and partial summation term reduction (PSTR based multioperand adders. Device utilization of proposed implementation is only 22k gates and it can process 179 HD (1920 × 1080 resolution frames in best case and 47 HD resolution frames in worst case per second. Due to such higher throughput design is well suitable for real time implementation.

  16. Flexible Triangle Search Algorithm for Block-Based Motion Estimation

    Directory of Open Access Journals (Sweden)

    Andreas Antoniou

    2007-01-01

    Full Text Available A new fast algorithm for block-based motion estimation, the flexible triangle search (FTS algorithm, is presented. The algorithm is based on the simplex method of optimization adapted to an integer grid. The proposed algorithm is highly flexible due to its ability to quickly change its search direction and to move towards the target of the search criterion. It is also capable of increasing or decreasing its search step size to allow coarser or finer search. Unlike other fast search algorithms, the FTS can escape from inferior local minima and thus converge to better solutions. The FTS was implemented as part of the H.264 encoder and was compared with several other block matching algorithms. The results obtained show that the FTS can reduce the number of block matching comparisons by around 30–60% with negligible effect on the image quality and compression ratio.

  17. Motion estimation for video coding efficient algorithms and architectures

    CERN Document Server

    Chakrabarti, Indrajit; Chatterjee, Sumit Kumar

    2015-01-01

    The need of video compression in the modern age of visual communication cannot be over-emphasized. This monograph will provide useful information to the postgraduate students and researchers who wish to work in the domain of VLSI design for video processing applications. In this book, one can find an in-depth discussion of several motion estimation algorithms and their VLSI implementation as conceived and developed by the authors. It records an account of research done involving fast three step search, successive elimination, one-bit transformation and its effective combination with diamond search and dynamic pixel truncation techniques. Two appendices provide a number of instances of proof of concept through Matlab and Verilog program segments. In this aspect, the book can be considered as first of its kind. The architectures have been developed with an eye to their applicability in everyday low-power handheld appliances including video camcorders and smartphones.

  18. Improved Motion Estimation Using Early Zero-Block Detection

    Directory of Open Access Journals (Sweden)

    Y. Lin

    2008-07-01

    Full Text Available We incorporate the early zero-block detection technique into the UMHexagonS algorithm, which has already been adopted in H.264/AVC JM reference software, to speed up the motion estimation process. A nearly sufficient condition is derived for early zero-block detection. Although the conventional early zero-block detection method can achieve significant improvement in computation reduction, the PSNR loss, to whatever extent, is not negligible especially for high quantization parameter (QP or low bit-rate coding. This paper modifies the UMHexagonS algorithm with the early zero-block detection technique to improve its coding performance. The experimental results reveal that the improved UMHexagonS algorithm greatly reduces computation while maintaining very high coding efficiency.

  19. Simulation of strong ground motion parameters of the 1 June 2013 Gulf of Suez earthquake, Egypt

    Science.gov (United States)

    Toni, Mostafa

    2017-06-01

    This article aims to simulate the ground motion parameters of the moderate magnitude (ML 5.1) June 1, 2013 Gulf of Suez earthquake, which represents the largest instrumental earthquake to be recorded in the middle part of the Gulf of Suez up to now. This event was felt in all cities located on both sides of the Gulf of Suez, with minor damage to property near the epicenter; however, no casualties were observed. The stochastic technique with the site-dependent spectral model is used to simulate the strong ground motion parameters of this earthquake in the cities located at the western side of the Gulf of Suez and north Red Sea namely: Suez, Ain Sokhna, Zafarana, Ras Gharib, and Hurghada. The presence of many tourist resorts and the increase in land use planning in the considered cities represent the motivation of the current study. The simulated parameters comprise the Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), and Peak Ground Displacement (PGD), in addition to Pseudo Spectral Acceleration (PSA). The model developed for ground motion simulation is validated by using the recordings of three accelerographs installed around the epicenter of the investigated earthquake. Depending on the site effect that has been determined in the investigated areas by using geotechnical data (e.g., shear wave velocities and microtremor recordings), the investigated areas are classified into two zones (A and B). Zone A is characterized by higher site amplification than Zone B. The ground motion parameters are simulated at each zone in the considered areas. The results reveal that the highest values of PGA, PGV, and PGD are observed at Ras Gharib city (epicentral distance ∼ 11 km) as 67 cm/s2, 2.53 cm/s, and 0.45 cm respectively for Zone A, and as 26.5 cm/s2, 1.0 cm/s, and 0.2 cm respectively for Zone B, while the lowest values of PGA, PGV, and PGD are observed at Suez city (epicentral distance ∼ 190 km) as 3.0 cm/s2, 0.2 cm/s, and 0.05 cm/s respectively for Zone A

  20. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.

    Science.gov (United States)

    Vallery, Heike; van Asseldonk, Edwin H F; Buss, Martin; van der Kooij, Herman

    2009-02-01

    For gait rehabilitation robots, an important question is how to ensure stable gait, while avoiding any interaction forces between robot and human in case the patient walks correctly. To achieve this, the definition of "correct" gait needs to adapted both to the individual patient and to the situation. Recently, we proposed a method for online trajectory generation that can be applied for hemiparetic subjects. Desired states for one (disabled) leg are generated online based on the movements of the other (sound) leg. An instantaneous mapping between legs is performed by exploiting physiological interjoint couplings. This way, the patient generates the reference motion for the affected leg autonomously. The approach, called Complementary Limb Motion Estimation (CLME), is implemented on the LOPES gait rehabilitation robot and evaluated with healthy subjects in two different experiments. In a previously described study, subjects walk only with one leg, while the robot's other leg acts as a fake prosthesis, to simulate complete loss of function in one leg. This study showed that CLME ensures stable gait. In a second study, to be presented in this paper, healthy subjects walk with both their own legs to assess the interference with self-determined walking. Evaluation criteria are: Power delivered to the joints by the robot, electromyography (EMG) distortions, and kinematic distortions, all compared to zero torque control, which is the baseline of minimum achievable interference. Results indicate that interference of the robot is lower with CLME than with a fixed reference trajectory, mainly in terms of lowered exchanged power and less alteration of EMG. This implies that subjects can walk more naturally with CLME, and they are assisted less by the robot when it is not needed. Future studies with patients are yet to show whether these properties of CLME transfer to the clinical domain.

  1. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (United States)

    1995-11-01

    Volume 2 of the ``Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems`` contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included.

  2. Methods for prediction of strong earthquake ground motion. Final technical report, October 1, 1976--September 30, 1977

    International Nuclear Information System (INIS)

    Trifunac, M.D.

    1977-09-01

    The purpose of this report is to summarize the results of the work on characterization of strong earthquake ground motion. The objective of this effort has been to initiate presentation of simple yet detailed methodology for characterization of strong earthquake ground motion for use in licensing and evaluation of operating Nuclear Power Plants. This report will emphasize the simplicity of the methodology by presenting only the end results in a format that may be useful for the development of the site specific criteria in seismic risk analysis, for work on the development of modern standards and regulatory guides, and for re-evaluation of the existing power plant sites

  3. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    Directory of Open Access Journals (Sweden)

    Sheng Bi

    2016-03-01

    Full Text Available Compressive sensing (CS theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%.

  4. A comparative study of a stochastic and deterministic simulation of strong ground motion applied to the Kozani-Grevena (NW Greece 1995 sequence

    Directory of Open Access Journals (Sweden)

    C. Papaioannou

    2000-06-01

    Full Text Available We present the results of a comparative study of two intrinsically different methodologies, a stochastic one and a deterministic one, performed to simulate strong ground motion in the Kozani area (NW Greece. Source parameters were calculated from empirical relations in order to check their reliability, in combination with the applied methodologies, to simulate future events. Strong ground motion from the Kozani mainshock (13 May, 1995, M w = 6.5 was synthesized by using both the stochastic method for finite-fault cases and the empirical Green’s function method. The latter method was also applied to simulate a Mw = 5.1 aftershock (19 May, 1995. The results of the two simulations computed for the mainshock are quite satisfactory for both methodologies at the frequencies of engineering interest (> ~ 2 Hz. This strengthens the idea of incorporating proper empirical relations for the estimation of source parameters in a priori simulations of strong ground motion from future earthquakes. Nevertheless, the results of the simulation of the smaller earthquake point out the need for further investigation of regional or local, if possible, relations for estimating source parameters at smaller magnitude ranges

  5. Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture

    Directory of Open Access Journals (Sweden)

    Angelos Karatsidis

    2016-12-01

    Full Text Available Ground reaction forces and moments (GRF&M are important measures used as input in biomechanical analysis to estimate joint kinetics, which often are used to infer information for many musculoskeletal diseases. Their assessment is conventionally achieved using laboratory-based equipment that cannot be applied in daily life monitoring. In this study, we propose a method to predict GRF&M during walking, using exclusively kinematic information from fully-ambulatory inertial motion capture (IMC. From the equations of motion, we derive the total external forces and moments. Then, we solve the indeterminacy problem during double stance using a distribution algorithm based on a smooth transition assumption. The agreement between the IMC-predicted and reference GRF&M was categorized over normal walking speed as excellent for the vertical (ρ = 0.992, rRMSE = 5.3%, anterior (ρ = 0.965, rRMSE = 9.4% and sagittal (ρ = 0.933, rRMSE = 12.4% GRF&M components and as strong for the lateral (ρ = 0.862, rRMSE = 13.1%, frontal (ρ = 0.710, rRMSE = 29.6%, and transverse GRF&M (ρ = 0.826, rRMSE = 18.2%. Sensitivity analysis was performed on the effect of the cut-off frequency used in the filtering of the input kinematics, as well as the threshold velocities for the gait event detection algorithm. This study was the first to use only inertial motion capture to estimate 3D GRF&M during gait, providing comparable accuracy with optical motion capture prediction. This approach enables applications that require estimation of the kinetics during walking outside the gait laboratory.

  6. Observing Structure and Motion in Molecules with Ultrafast Strong Field and Short Wavelength Laser Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bucksbaum, Philip H

    2011-04-13

    The term "molecular movie" has come to describe efforts to track and record Angstrom-scale coherent atomic and electronic motion in a molecule. The relevant time scales for this range cover several orders of magnitude, from sub-femtosecond motion associated with electron-electron correlations, to 100-fs internal vibrations, to multi-picosecond motion associated with the dispersion and quantum revivals of molecular reorientation. Conventional methods of cinematography do not work well in this ultrafast and ultrasmall regime, but stroboscopic "pump and probe" techniques can reveal this motion with high fidelity. This talk will describe some of the methods and recent progress in exciting and controlling this motion, using both laboratory lasers and the SLAC Linac Coherent Light Source x-ray free electron laser, and will further try to relate the date to the goal of molecular movies.

  7. Application of genetic algorithm to hexagon-based motion estimation.

    Science.gov (United States)

    Kung, Chih-Ming; Cheng, Wan-Shu; Jeng, Jyh-Horng

    2014-01-01

    With the improvement of science and technology, the development of the network, and the exploitation of the HDTV, the demands of audio and video become more and more important. Depending on the video coding technology would be the solution for achieving these requirements. Motion estimation, which removes the redundancy in video frames, plays an important role in the video coding. Therefore, many experts devote themselves to the issues. The existing fast algorithms rely on the assumption that the matching error decreases monotonically as the searched point moves closer to the global optimum. However, genetic algorithm is not fundamentally limited to this restriction. The character would help the proposed scheme to search the mean square error closer to the algorithm of full search than those fast algorithms. The aim of this paper is to propose a new technique which focuses on combing the hexagon-based search algorithm, which is faster than diamond search, and genetic algorithm. Experiments are performed to demonstrate the encoding speed and accuracy of hexagon-based search pattern method and proposed method.

  8. Tissue motion in blood velocity estimation and its simulation

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Torp-Pedersen, Søren; Jensen, Jørgen Arendt

    1998-01-01

    . The motion due to the heart, when the volunteer was asked to hold his breath, gave a peak velocity of 4.2±1.7 mm/s. The movement of the carotid artery wall due to changing blood pressure had a peak velocity of 8.9±3.7 mm/s over the cardiac cycle. The variations are due to differences in heart rhythm......Determination of blood velocities for color flow mapping systems involves both stationary echo cancelling and velocity estimation. Often the stationary echo cancelling filter is the limiting factor in color flow mapping and the optimization and further development of this filter is crucial...... to the improvement of color flow imaging. Optimization based on in-vivo data is difficult since the blood and tissue signals cannot be accurately distinguished and the correct extend of the vessel under investigation is often unknown. This study introduces a model for the simulation of blood velocity data in which...

  9. Self-noise models of five commercial strong-motion accelerometers

    Science.gov (United States)

    Ringler, Adam; Evans, John R.; Hutt, Charles R.

    2015-01-01

    Strong‐motion accelerometers provide onscale seismic recordings during moderate‐to‐large ground motions (e.g., up to tens of m/s2 peak). Such instruments have played a fundamental role in improving our understanding of earthquake source physics (Bocketal., 2011), earthquake engineering (Youdet al., 2004), and regional seismology (Zollo et al., 2010). Although strong‐motion accelerometers tend to have higher noise levels than high‐quality broadband velocity seismometers, their higher clip‐levels provide linear recordings at near‐field sites even for the largest of events where a collocated broadband sensor would no longer be able to provide onscale recordings (Clinton and Heaton, 2002).

  10. Strong motion simulation at Abu Zenima city, Gulf of Suez, Egypt

    Directory of Open Access Journals (Sweden)

    Amin Esmail Khalil

    2013-06-01

    The simulated ground motions are presented in terms of acceleration, velocity, and displacement time histories. In addition the response spectra are also presented that may be used for engineering purposes.

  11. Phase-Sensitive 2D Motion Estimators Using Frequency Spectra of Ultrasonic Echoes

    Directory of Open Access Journals (Sweden)

    Hideyuki Hasegawa

    2016-06-01

    Full Text Available Recently, high-frame-rate ultrasound has been extensively studied for measurement of tissue dynamics, such as pulsations of the carotid artery and heart. Motion estimators are very important for such measurements of tissue dynamics. In high-frame-rate ultrasound, the tissue displacement between frames becomes very small owing to the high temporal resolution. Under such conditions, the speckle tracking method requires high levels of interpolation to estimate such a small displacement. A phase-sensitive motion estimator is feasible because it does not suffer from the aliasing effect by such a small displacement and does not require interpolation to estimate a sub-sample displacement. In the present study, two phase-sensitive 2D motion estimators, namely, paired 1D motion estimators and 2D motion estimator with shifted cross spectra, were developed. Phase-sensitive motion estimators using frequency spectra of ultrasonic echoes have already been proposed in previous studies. However, such methods had not taken into account the ambiguity of the frequency of each component of the spectrum. We have proposed a method, which estimates the mean frequency of each component of the spectrum, and the proposed method was validated by a phantom experiment. The experimental results showed that the bias errors in the estimated motion velocities of the phantom were less than or equal to (11.5% in lateral, 2.0% in axial by the proposed 1D paired motion estimators and (3.0%, 2.0% by the proposed 2D motion estimators, both of which were significantly smaller than (14.0%, 3.0% of the conventional phase-sensitive 2D motion estimator.

  12. Clastic Pipes: Proxies of High Water Tables and Strong Ground Motion, Jurassic Carmel Formation, Southern Utah

    Science.gov (United States)

    Wheatley, David; Chan, Marjorie

    2015-04-01

    Multiple soft sediment deformation features from bed-scale to basin-scale are well preserved within the Jurassic Carmel Formation of Southern Utah. Field mapping reveals thousands of small-scale clastic injectite pipes (10 cm to 10 m diameter, up to 20 m tall) in extremely high densities (up to 500+ pipes per 0.075 square kilometers). The pipes weather out in positive relief from the surrounding host strata of massive sandstone (sabkha) and crossbedded sands with minor conglomerate and shale (fluvial) deposits. The host rock shows both brittle and ductile deformation. Reverse, normal, and antithetical faulting is common with increased frequency, including ring faults, surrounding the pipes. The pipes formed from liquefaction and subsequent fluidization induced by strong ground motion. Down-dropped, graben blocks and ring faults surrounding pipes indicate initial sediment volume increase during pipe emplacement followed by sediment volume decrease during dewatering. Complex crosscutting relationships indicate several injection events where some pipe events reached the surface as sand blows. Multiple ash layers provide excellent stratigraphic and temporal constraints for the pipe system with the host strata deposited between 166 and 164 Ma. Common volcanic fragments and rounded volcanic cobbles occur within sandstone and conglomerate beds, and pipes. Isolated volcanic clasts in massive sandstone indicate explosive volcanic events that could have been the exogenic trigger for earthquakes. The distribution of pipes are roughly parallel to the Middle Jurassic paleoshoreline located in marginal environments between the shallow epicontinental Sundance Sea and continental dryland. At the vertical stratigraphic facies change from dominantly fluvial sediments to dominantly massive sabkha sediments, there is a 1-2 m-thick floodplain mudstone that was a likely seal for underlying, overpressurized sediments. The combination of loose porous sediment at a critical depth of water

  13. Acceleration and volumetric strain generated by the Parkfield 2004 earthquake on the GEOS strong-motion array near Parkfield, California

    Science.gov (United States)

    Borcherdt, Rodger D.; Johnston, Malcolm J.S.; Dietel, Christopher; Glassmoyer, Gary; Myren, Doug; Stephens, Christopher

    2004-01-01

    An integrated array of 11 General Earthquake Observation System (GEOS) stations installed near Parkfield, CA provided on scale broad-band, wide-dynamic measurements of acceleration and volumetric strain of the Parkfield earthquake (M 6.0) of September 28, 2004. Three component measurements of acceleration were obtained at each of the stations. Measurements of collocated acceleration and volumetric strain were obtained at four of the stations. Measurements of velocity at most sites were on scale only for the initial P-wave arrival. When considered in the context of the extensive set of strong-motion recordings obtained on more than 40 analog stations by the California Strong-Motion Instrumentation Program (Shakal, et al., 2004 http://www.quake.ca.gov/cisn-edc) and those on the dense array of Spudich, et al, (1988), these recordings provide an unprecedented document of the nature of the near source strong motion generated by a M 6.0 earthquake. The data set reported herein provides the most extensive set of near field broad band wide dynamic range measurements of acceleration and volumetric strain for an earthquake as large as M 6 of which the authors are aware. As a result considerable interest has been expressed in these data. This report is intended to describe the data and facilitate its use to resolve a number of scientific and engineering questions concerning earthquake rupture processes and resultant near field motions and strains. This report provides a description of the array, its scientific objectives and the strong-motion recordings obtained of the main shock. The report provides copies of the uncorrected and corrected data. Copies of the inferred velocities, displacements, and Psuedo velocity response spectra are provided. Digital versions of these recordings are accessible with information available through the internet at several locations: the National Strong-Motion Program web site (http://agram.wr.usgs.gov/), the COSMOS Virtual Data Center Web site

  14. Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue

    OpenAIRE

    Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan

    2015-01-01

    Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The p...

  15. Using needle orientation sensing as surrogate signal for respiratory motion estimation in percutaneous interventions

    NARCIS (Netherlands)

    Abayazid, Momen; Kato, Takahisa; Silverman, Stuart G.; Hata, Nobuhiko

    Purpose To develop and evaluate an approach to estimate the respiratory-induced motion of lesions in the chest and abdomen. Materials and methods The proposed approach uses the motion of an initial reference needle inserted into a moving organ to estimate the lesion (target) displacement that is

  16. Uncertainty quantification of phase-based motion estimation on noisy sequence of images

    Science.gov (United States)

    Sarrafi, Aral; Mao, Zhu

    2017-04-01

    Optical measurement and motion estimation based on the acquired sequence of images is one of the most recent sensing techniques developed in the last decade or so. As a modern non-contact sensing technique, motion estimation and optical measurements provide a full-field awareness without any mass loading or change of stiffness in structures, which is unavoidable using other conventional transducers (e.g. accelerometers, strain gauges, and LVDTs). Among several motion estimation techniques prevalent in computer vision, phase-based motion estimation is one of the most reliable and accurate methods. However, contamination of the sequence of images with numerous sources of noise is inevitable, and the performance of the phase-based motion estimation could be affected due to the lighting changes, image acquisition noise, and the camera's intrinsic sensor noise. Within this context, the uncertainty quantification (UQ) of the phase-based motion estimation (PME) has been investigated in this paper. Based on a normality assumption, a framework has been provided in order to characterize the propagation of the uncertainty from the acquired images to the estimated motion. The established analytical solution is validated via Monte-Carlo simulations using a set of simulation data. The UQ model in the paper is able to predict the order statistics of the noise influence, in which the uncertainty bounds of the estimated motion are given, after processing the contaminated sequence of images.

  17. Strong Circular Dichroism in Photoelectron Diffraction from Nonchiral, Nonmagnetic Material—Direct Observation of Rotational Motion of Electrons

    Science.gov (United States)

    Daimon, Hiroshi; Nakatani, Takeshi; Imada, Shin; Suga, Shigemasa; Kagoshima, Yasushi; Miyahara, Tsuneaki

    1993-10-01

    Strong circular dichroism is found in 2-dimensional angular distribution patterns of the Si 2p photoelectrons from the Si(001) surface, which has no chirality and magnetism. The forward focusing peaks in the pattern rotate clockwise or counterclockwise when the helicity of the incident circularly polarized light is reversed. These rotations of the pattern are explained by rotational motion of photoelectrons around the nuclei. This is the first direct observation of the rotational motion of the electrons and clarifies the correspondence between the classical and the quantum mechanical ideas of angular momentum.

  18. The effect of PSF spatial-variance and nonlinear transducer geometry on motion estimation from echocardiography

    Science.gov (United States)

    Tavakoli, Vahid; Amini, Amir A.

    2011-03-01

    Two-dimensional echocardiography continues to be the most widely used modality for the assessment of cardiac function due to its effectiveness, ease of use, and low costs. Echocardiographic images are derived from the mechanical interaction between the ultrasound field and the contractile heart tissue. Previously, in [6], based on B-mode echocardiographic simulations, we showed that motion estimation errors are significantly higher in shift-varying simulations when compared to shift-invariant simulations. In order to ascertain the effect of the spatial variance of the Ultrasonic field point spread function (PSF) and the transducer geometry on motion estimation, in the current paper, several simple canonical cardiac motions such as translation in axial and horizontal direction, and out-of-plane motion were simulated and the motion estimation errors were calculated. For axial motions, the greatest angular errors occurred within the lateral regions of the image, irrespective of the motion estimation technique that was adopted. We hypothesize that the transducer geometry and the PSF spatial-variance were the underlying sources of error for the motion estimation methods. No similar conclusions could be made regarding motion estimation errors for azimuthal and out-of-plane ultrasound simulations.

  19. On development and improvement of evaluation techniques for strong ground motion

    International Nuclear Information System (INIS)

    Tsutsumi, Hideaki; Wu, Changjiang; Kobayashi, Genyu; Mamada, Yutaka

    2011-01-01

    The NSC regulatory guide for reviewing seismic design, revised in September 2006 requires revision of evaluation method for design seismic ground motion. The new design seismic ground motion must be evaluated based on not only response spectra method but also fault model method. In the case of evaluation method using fault model, factors which affect ground motion (heterogeneous fault rupture, frequency dependence of radiation pattern on seismic waves and high-frequency reduction on observed spectrum (fmax)) were studied in order to apply the models to actual phenomenon. In the case of response spectra, attenuation relationships for earthquake response spectra on seismic basement, considering the earthquake source types (e.g. inter-plate, intra-plate and crustal types), were developed. In addition, in coping with the problems on evaluating ground motion amplification and attenuation in deep underground, JNES drills 3000 m deep boring and acquires the data for verification of new evaluation methods at deep borehole locating on sedimentary rock site in the Niigata Institute of Technology. Moreover JNES develops borehole seismometer enduring high temperature and high pressure and enabling multi-depth seismic observation system to perform vertical seismic array observation. (author)

  20. Stochastic strong ground motion simulations for the intermediate-depth earthquakes of the south Aegean subduction zone

    Science.gov (United States)

    Kkallas, Harris; Papazachos, Konstantinos; Boore, David; Margaris, Vasilis

    2015-04-01

    We have employed the stochastic finite-fault modelling approach of Motazedian and Atkinson (2005), as described by Boore (2009), for the simulation of Fourier spectra of the Intermediate-depth earthquakes of the south Aegean subduction zone. The stochastic finite-fault method is a practical tool for simulating ground motions of future earthquakes which requires region-specific source, path and site characterizations as input model parameters. For this reason we have used data from both acceleration-sensor and broadband velocity-sensor instruments from intermediate-depth earthquakes with magnitude of M 4.5-6.7 that occurred in the south Aegean subduction zone. Source mechanisms for intermediate-depth events of north Aegean subduction zone are either collected from published information or are constrained using the main faulting types from Kkallas et al. (2013). The attenuation parameters for simulations were adopted from Skarladoudis et al. (2013) and are based on regression analysis of a response spectra database. The site amplification functions for each soil class were adopted from Klimis et al., (1999), while the kappa values were constrained from the analysis of the EGELADOS network data from Ventouzi et al., (2013). The investigation of stress-drop values was based on simulations performed with the EXSIM code for several ranges of stress drop values and by comparing the results with the available Fourier spectra of intermediate-depth earthquakes. Significant differences regarding the strong-motion duration, which is determined from Husid plots (Husid, 1969), have been identified between the for-arc and along-arc stations due to the effect of the low-velocity/low-Q mantle wedge on the seismic wave propagation. In order to estimate appropriate values for the duration of P-waves, we have automatically picked P-S durations on the available seismograms. For the S-wave durations we have used the part of the seismograms starting from the S-arrivals and ending at the

  1. Revelations from a single strong-motion record retreived during the 27 June 1998 Adana (Turkey) earthquake

    Science.gov (United States)

    Celebi, M.

    2000-01-01

    During the 27 June 1998 Adana (Turkey) earthquake, only one strong-motion record was retrieved in the region where the most damage occurred. This single record from the station in Ceyhan, approximately 15 km from the epicenter of that earthquake, exhibits characteristics that are related to the dominant frequencies of the ground and structures. The purpose of this paper is to explain the causes of the damage as inferred from both field observations and the characteristics of a single strong-motion record retrieved from the immediate epicentral area. In the town of Ceyhan there was considerable but selective damage to a significant number of mid-rise (7-12 stories high) buildings. The strong-motion record exhibits dominant frequencies that are typically similar for the mid-rise building structures. This is further supported by spectral ratios derived using Nakamura's method [QR of RTRI, 30 (1989) 25] that facilitates computation of a spectral ratio from a single tri-axial record as the ratio of amplitude spectrum of horizontal component to that of the vertical component [R = H(f)/V(f)]. The correlation between the damage and the characteristics exhibited from the single strong-motion record is remarkable. Although deficient construction practices played a significant role in the extent of damage to the mid-rise buildings, it is clear that site resonance also contributed to the detrimental fate of most of the mid-rise buildings. Therefore, even a single record can be useful to explain the effect of site resonance on building response and performance. Such information can be very useful for developing zonation criteria in similar alluvial valleys. Published by Elsevier Science Ltd.

  2. Prediction of strong acceleration motion depended on focal mechanism; Shingen mechanism wo koryoshita jishindo yosoku ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kaneda, Y.; Ejiri, J. [Obayashi Corp., Tokyo (Japan)

    1996-10-01

    This paper describes simulation results of strong acceleration motion with varying uncertain fault parameters mainly for a fault model of Hyogo-ken Nanbu earthquake. For the analysis, based on the fault parameters, the strong acceleration motion was simulated using the radiation patterns and the breaking time difference of composite faults as parameters. A statistic waveform composition method was used for the simulation. For the theoretical radiation patterns, directivity was emphasized which depended on the strike of faults, and the maximum acceleration was more than 220 gal. While, for the homogeneous radiation patterns, the maximum accelerations were isotopically distributed around the fault as a center. For variations in the maximum acceleration and the predominant frequency due to the breaking time difference of three faults, the response spectral value of maximum/minimum was about 1.7 times. From the viewpoint of seismic disaster prevention, underground structures including potential faults and non-arranging properties can be grasped using this simulation. Significance of the prediction of strong acceleration motion was also provided through this simulation using uncertain factors, such as breaking time of composite faults, as parameters. 4 refs., 4 figs., 1 tab.

  3. Estimating Vertical Land Motion in the Chesapeake Bay

    Science.gov (United States)

    Houttuijn Bloemendaal, L.; Hensel, P.

    2017-12-01

    This study aimed to provide a modern measurement of subsidence in the Chesapeake Bay region and establish a methodology for measuring vertical land motion using static GPS, a cheaper alternative to InSAR or classical leveling. Vertical land motion in this area is of particular concern because tide gages are showing up to 5 mm/yr of local, relative sea level rise. While a component of this rate is the actual eustatic sea level rise itself, part of the trend may also be vertical land motion, in which subsidence exacerbates the effects of actual changes in sea level. Parts of this region are already experiencing an increase in the frequency and magnitude of near-shore coastal flooding, but the last comprehensive study of vertical land motion in this area was conducted by NOAA in 1974 (Holdahl & Morrison) using repeat leveled lines. More recent measures of vertical land motion can help inform efforts on resilience to sea level rise, such as in the Hampton Roads area. This study used measured GPS-derived vertical heights in conjunction with legacy GPS data to calculate rates of vertical motion at several points in time for a selection of benchmarks scattered throughout the region. Seventeen marks in the stable Piedmont area and in the areas suspected of subsidence in the Coastal Plain were selected for the analysis. Results indicate a significant difference between the rates of vertical motion in the Piedmont and Coastal Plain, with a mean rate of -4.10 mm/yr in the Coastal Plain and 0.15 mm/yr in the Piedmont. The rates indicate particularly severe subsidence at the southern Delmarva Peninsula coast and the Hampton-Roads area, with a mean rate of -6.57 mm/yr in that region. By knowing local rates of subsidence as opposed to sea level change itself, coastal managers may make better informed decisions regarding natural resource use, such as deciding whether or not to reduce subsurface fluid withdrawals or to consider injecting treated water back into the aquifer to slow

  4. Strong ground motion data from the 1983 Borah Peak, Idaho earthquake recorded at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Jackson, S.M.; Boatwright, J.

    1985-01-01

    The 1983 Borah Peak, Idaho Earthquake was the largest normal faulting event to occur in the last 20 years. There were no near-field recordings of ground motion during the main shock, however, thirteen accelerographs in a permanent array at the Idaho National Engineering Laboratory (INEL) recorded the event at epicentral distances of 90-110 km. Peak horizontal accelerations (PGA) recorded at accelerographs above ground-floor level range from 0.037 to 0.187 g. Accelerographs at basement and free-field sites recorded as low as 0.022 g and as high as 0.078 g. Peak vertical accelerations range from 0.016 g ground level to 0.059 g above ground floor level. A temporary array of digital seismographs deployed by the US Geological Survey (USGS) in the epicentral area recorded ground motion from six large aftershocks at epicentral distances of 4-45 km; the largest of these aftershocks also triggered four accelerographs in the INEL array. Two separate analyses were used to estimate near-field ground motion. The first analysis uses the attenuation of the aftershock PGA measurements to extrapolate the INEL main shock PGA measurements into the near-field. This estimates an upper limit of 0.8 g for near-field ground motion. In the second analysis, a set of main shock accelerograms were synthesized. Wave propagation effects were determined from aftershock recordings at one of the USGS portable stations and an INEL seismograph station. These effects were removed from one of the INEL main shock acceleration traces. The synthetic accelerograms were derived for a hypothetical station southwest of Mackay, Idaho. The PGA measured from the synthetic accelerograms were 0.08, 0.14, 0.15, 0.23 g. These estimates correlate well with ground motion expected for an area of Intensity VII. 12 references, 8 figures, 1 table

  5. Tracking using motion estimation with physically motivated inter-region constraints

    KAUST Repository

    Arif, Omar

    2014-09-01

    We propose a method for tracking structures (e.g., ventricles and myocardium) in cardiac images (e.g., magnetic resonance) by propagating forward in time a previous estimate of the structures using a new physically motivated motion estimation scheme. Our method estimates motion by regularizing only within structures so that differing motions among different structures are not mixed. It simultaneously satisfies the physical constraints at the interface between a fluid and a medium that the normal component of the fluid\\'s motion must match the normal component of the medium\\'s motion and the No-Slip condition, which states that the tangential velocity approaches zero near the interface. We show that these conditions lead to partial differential equations with Robin boundary conditions at the interface, which couple the motion between structures. We show that propagating a segmentation across frames using our motion estimation scheme leads to more accurate segmentation than traditional motion estimation that does not use physical constraints. Our method is suited to interactive segmentation, prominently used in commercial applications for cardiac analysis, where segmentation propagation is used to predict a segmentation in the next frame. We show that our method leads to more accurate predictions than a popular and recent interactive method used in cardiac segmentation. © 2014 IEEE.

  6. Equation of motion for estimation fidelity of monitored oscillating qubits

    CSIR Research Space (South Africa)

    Bassa, H

    2017-08-01

    Full Text Available We study the convergence properties of state estimates of an oscillating qubit being monitored by a sequence of discrete, unsharp measurements. Our method derives a differential equation determining the evolution of the estimation fidelity from a...

  7. Motion Vector Estimation Using Line-Square Search Block Matching Algorithm for Video Sequences

    Directory of Open Access Journals (Sweden)

    Guo Bao-long

    2004-09-01

    Full Text Available Motion estimation and compensation techniques are widely used for video coding applications but the real-time motion estimation is not easily achieved due to its enormous computations. In this paper, a new fast motion estimation algorithm based on line search is presented, in which computation complexity is greatly reduced by using the line search strategy and a parallel search pattern. Moreover, the accurate search is achieved because the small square search pattern is used. It has a best-case scenario of only 9 search points, which is 4 search points less than the diamond search algorithm. Simulation results show that, compared with the previous techniques, the LSPS algorithm significantly reduces the computational requirements for finding motion vectors, and also produces close performance in terms of motion compensation errors.

  8. Fetal motion estimation from noninvasive cardiac signal recordings.

    Science.gov (United States)

    Biglari, Hadis; Sameni, Reza

    2016-11-01

    Fetal motility is a widely accepted indicator of the well-being of a fetus. In previous research, it has be shown that fetal motion (FM) is coherent with fetal heart rate accelerations and an indicator for active/rest cycles of the fetus. The most common approach for FM and fetal heart rate (FHR) assessment is by Doppler ultrasound (DUS). While DUS is the most common approach for studying the mechanical activities of the heart, noninvasive fetal electrocardiogram (ECG) and magnetocardiogram (MCG) recording and processing techniques have been considered as a possible competitor (or complement) for the DUS. In this study, a fully automatic and robust framework is proposed for the extraction, ranking and alignment of fetal QRS-complexes from noninvasive fetal ECG/MCG. Using notions from subspace tracking, two measures, namely the actogram and rotatogram, are defined for fetal motion tracking. The method is applied to four fetal ECG/MCG databases, including twin MCG recordings. By defining a novel measure of causality, it is shown that there is significant coherency and causal relationship between the actogram/rotatogram and FHR accelerations/decelerations. Using this measure, it is shown that in many cases, the actogram and rotatogram precede the FHR variations, which supports the idea of motion-induced FHR accelerations/decelerations for these cases and raises attention for the non-motion-induced FHR variations, which can be associated to the fetal central nervous system developments. The results of this study can lead to novel perspectives of the fetal sympathetic and parasympathetic brain systems and future requirements of fetal cardiac monitoring.

  9. Simultaneous estimation of human and exoskeleton motion: A simplified protocol.

    Science.gov (United States)

    Alvarez, M T; Torricelli, D; Del-Ama, A J; Pinto, D; Gonzalez-Vargas, J; Moreno, J C; Gil-Agudo, A; Pons, J L

    2017-07-01

    Adequate benchmarking procedures in the area of wearable robots is gaining importance in order to compare different devices on a quantitative basis, improve them and support the standardization and regulation procedures. Performance assessment usually focuses on the execution of locomotion tasks, and is mostly based on kinematic-related measures. Typical drawbacks of marker-based motion capture systems, gold standard for measure of human limb motion, become challenging when measuring limb kinematics, due to the concomitant presence of the robot. This work answers the question of how to reliably assess the subject's body motion by placing markers over the exoskeleton. Focusing on the ankle joint, the proposed methodology showed that it is possible to reconstruct the trajectory of the subject's joint by placing markers on the exoskeleton, although foot flexibility during walking can impact the reconstruction accuracy. More experiments are needed to confirm this hypothesis, and more subjects and walking conditions are needed to better characterize the errors of the proposed methodology, although our results are promising, indicating small errors.

  10. Motion Detection in Diffusion MRI via Online ODF Estimation

    Directory of Open Access Journals (Sweden)

    Emmanuel Caruyer

    2013-01-01

    Full Text Available The acquisition of high angular resolution diffusion MRI is particularly long and subject motion can become an issue. The orientation distribution function (ODF can be reconstructed online incrementally from diffusion-weighted MRI with a Kalman filtering framework. This online reconstruction provides real-time feedback throughout the acquisition process. In this article, the Kalman filter is first adapted to the reconstruction of the ODF in constant solid angle. Then, a method called STAR (STatistical Analysis of Residuals is presented and applied to the online detection of motion in high angular resolution diffusion images. Compared to existing techniques, this method is image based and is built on top of a Kalman filter. Therefore, it introduces no additional scan time and does not require additional hardware. The performance of STAR is tested on simulated and real data and compared to the classical generalized likelihood ratio test. Successful detection of small motion is reported (rotation under 2° with no delay and robustness to noise.

  11. Analysis of Seed Sorting Process by Estimation of Seed Motion Trajectories

    DEFF Research Database (Denmark)

    Buus, Ole Thomsen; Jørgensen, Johannes Ravn; Carstensen, Jens Michael

    2011-01-01

    cylinder in action, sorting a batch of barley with both whole and broken kernels. The motion trajectories and angle of escape for each seed in each frame were estimated. Motion trajectories and frequency distributions for the angle of escape are shown for different velocities and pocket sizes. A possible...

  12. Ground characteristics at observation site of strong motion in Hachinohe Inst. Tech. Hachinohe, Aomori; Hachinohe Kodai konai ni secchishita kyoshin kansokuten no jiban tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sakajiri, N. [Hachinohe Institute of Technology, Aomori (Japan)

    1997-10-22

    Discussions were given on ground structures in the city of Hachinohe and vibration characteristics of the grounds during earthquakes. In order to identify ground structures and vibration characteristics thereof in the city of Hachinohe, strong motion seismographs were installed in five locations of the city and in the Tohoku University. At the Hachinohe Institute of Technology, strong motion seismographs were installed underground (-65 m) and on the ground, where S-wave logging experiments were performed using the plank hammering method. The records therefrom were used to estimate Q values, and the Q values were used to compare the computed ground amplification characteristics with the spectral ratio of seismic waves in and on the ground. The analysis has conducted the Q value estimation on each bed from a depth greater than 4 m, whereas relatively reasonable values were derived only from sections from 4 m to 13 m, and other sections showed no stable values. According to the result of observations derived from the seismographs installed in and on the ground, the maximum amplitude of the ground surface seismograph was found about five times greater than that of underground in the NS components, about eight times in the EW components, and about six times in vertical movements. The result indicates that the amplitude is obviously affected greatly by the characteristics of the ground. 4 refs., 8 figs., 1 tab.

  13. Effectiveness of external respiratory surrogates for in vivo liver motion estimation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kai-Hsiang; Ho, Ming-Chih; Yeh, Chi-Chuan; Chen, Yu-Chien; Lian, Feng-Li; Lin, Win-Li; Yen, Jia-Yush; Chen, Yung-Yaw [Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 10041, Taiwan (China); Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan (China); Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Institute of Biomedical Engineering, National Taiwan University, Taipei 10041, Taiwan (China); Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Department of Electrical Engineering and Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan (China)

    2012-08-15

    Purpose: Due to low frame rate of MRI and high radiation damage from fluoroscopy and CT, liver motion estimation using external respiratory surrogate signals seems to be a better approach to track liver motion in real-time for liver tumor treatments in radiotherapy and thermotherapy. This work proposes a liver motion estimation method based on external respiratory surrogate signals. Animal experiments are also conducted to investigate related issues, such as the sensor arrangement, multisensor fusion, and the effective time period. Methods: Liver motion and abdominal motion are both induced by respiration and are proved to be highly correlated. Contrary to the difficult direct measurement of the liver motion, the abdominal motion can be easily accessed. Based on this idea, our study is split into the model-fitting stage and the motion estimation stage. In the first stage, the correlation between the surrogates and the liver motion is studied and established via linear regression method. In the second stage, the liver motion is estimated by the surrogate signals with the correlation model. Animal experiments on cases of single surrogate signal, multisurrogate signals, and long-term surrogate signals are conducted and discussed to verify the practical use of this approach. Results: The results show that the best single sensor location is at the middle of the upper abdomen, while multisurrogate models are generally better than the single ones. The estimation error is reduced from 0.6 mm for the single surrogate models to 0.4 mm for the multisurrogate models. The long-term validity of the estimation models is quite satisfactory within the period of 10 min with the estimation error less than 1.4 mm. Conclusions: External respiratory surrogate signals from the abdomen motion produces good performance for liver motion estimation in real-time. Multisurrogate signals enhance estimation accuracy, and the estimation model can maintain its accuracy for at least 10 min. This

  14. Safe-Taipei a Program Project for Strong Motions, Active Faults, and Earthquakes in the Taipei Metropolitan Area

    Science.gov (United States)

    Wang, Jeen-Hwa

    Strong collision between the Eurasian and Philippine Sea Plates causes high seismicity in the Taiwan region, which is often attacked by large earthquakes. Several cities, including three mega-cities, i.e., Taipei, Taichung, and Kaoshung, have been constructed on western Taiwan, where is lying on thick sediments. These cities, with a high-population density, are usually a regional center of culture, economics, and politics. Historically, larger-sized earthquakes, e.g. the 1935 Hsingchu—Taichung earthquake and the 1999 Chi—Chi earthquake, often caused serious damage on the cities. Hence, urban seismology must be one of the main subjects of Taiwan's seismological community. Since 2005, a program project, sponsored by Academia Sinica, has been launched to investigate seismological problems in the Taipei Metropolitan Area. This program project is performed during the 2005—2007 period. The core research subjects are: (1) the deployment of the Taipei Down-hole Seismic Array; (2) the properties of earthquakes and active faults in the area; (3) the seismogenic-zone structures, including the 3-D velocity and Q structures, of the area; (4) the characteristics of strong-motions and sites affects; and (5) strong-motion prediction. In addition to academic goals, the results obtained from the program project will be useful for seismic hazard mitigation not only for the area but also for others.

  15. Probing strong-field electron-nuclear dynamics of polyatomic molecules using proton motion

    International Nuclear Information System (INIS)

    Markevitch, Alexei N.; Smith, Stanley M.; Levis, Robert J.; Romanov, Dmitri A.

    2007-01-01

    Proton ejection during Coulomb explosion is studied for several structure-related organic molecules (anthracene, anthraquinone, and octahydroanthracene) subjected to 800 nm, 60 fs laser pulses at intensities from 0.50 to 4.0x10 14 W cm -2 . The proton kinetic energy distributions are found to be markedly structure specific. The distributions are bimodal for anthracene and octahydroanthracene and trimodal for anthraquinone. Maximum (cutoff) energies of the distributions range from 50 eV for anthracene to 83 eV for anthraquinone. The low-energy mode (∼10 eV) is most pronounced in octahydroanthracene. The dependence of the characteristic features of the distributions on the laser intensity provides insights into molecular specificity of such strong-field phenomena as (i) nonadiabatic charge localization and (ii) field-mediated restructuring of polyatomic molecules polarized by a strong laser field

  16. Rupture history of the 2008 Mw 7.9 Wenchuan, China, earthquake: Evaluation of separate and joint inversions of geodetic, teleseismic, and strong-motion data

    Science.gov (United States)

    Hartzell, Stephen; Mendoza, Carlos; Ramírez-Guzmán, Leonardo; Zeng, Yuesha; Mooney, Walter

    2013-01-01

    An extensive data set of teleseismic and strong-motion waveforms and geodetic offsets is used to study the rupture history of the 2008 Wenchuan, China, earthquake. A linear multiple-time-window approach is used to parameterize the rupture. Because of the complexity of the Wenchuan faulting, three separate planes are used to represent the rupturing surfaces. This earthquake clearly demonstrates the strengths and limitations of geodetic, teleseismic, and strong-motion data sets. Geodetic data (static offsets) are valuable for determining the distribution of shallower slip but are insensitive to deeper faulting and reveal nothing about the timing of slip. Teleseismic data in the distance range 30°–90° generally involve no modeling difficulties because of simple ray paths and can distinguish shallow from deep slip. Teleseismic data, however, cannot distinguish between different slip scenarios when multiple fault planes are involved because steep takeoff angles lead to ambiguity in timing. Local strong-motion data, on the other hand, are ideal for determining the direction of rupture from directivity but can easily be over modeled with inaccurate Green’s functions, leading to misinterpretation of the slip distribution. We show that all three data sets are required to give an accurate description of the Wenchuan rupture. The moment is estimated to be approximately 1.0 × 1021 N · m with the slip characterized by multiple large patches with slips up to 10 m. Rupture initiates on the southern end of the Pengguan fault and proceeds unilaterally to the northeast. Upon reaching the cross-cutting Xiaoyudong fault, rupture of the adjacent Beichuan fault starts at this juncture and proceeds bilaterally to the northeast and southwest.

  17. Microtremor Array Measurement Survey and Strong Ground Motion observation activities of The SATREPS, MarDiM project -Part 3-

    Science.gov (United States)

    Citak, Seckin; Safa Arslan, Mehmet; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Behiye Aksahin, Bengi; Hatayama, Ken; Sahin, Abdurrahman; Ohori, Michihiro; Safak, Erdal; Hori, Muneo

    2017-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul, Tekirdag, Canakkale and Edirne provinces at about 140 sites on October 2013, September 2014, 2015 and 2016. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor

  18. Motion estimation using the firefly algorithm in ultrasonic image sequence of soft tissue.

    Science.gov (United States)

    Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan

    2015-01-01

    Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.

  19. Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue

    Directory of Open Access Journals (Sweden)

    Chih-Feng Chao

    2015-01-01

    Full Text Available Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.

  20. MuSeSe - A multisensor armchair for unobtrusive vital sign estimation and motion artifact analysis.

    Science.gov (United States)

    Antink, Christoph Hoog; Leonhardt, Steffen; Schulz, Florian; Walter, Marian

    2017-07-01

    Unobtrusive vital sign estimation with sensors integrated into objects of everyday living can substantially advance the field of remote monitoring. At the same time, motion artifacts cause severe problems and have to be dealt with. Here, the fusion of multimodal sensor data is a promising approach. In this paper, we present an armchair equipped with capacitively coupled electrocardiogram, two types of ballistocardiographic sensors, photoplethysmographic and two high-frequency impedance sensors. In addition, a video-based sensor for motion analysis is integrated. Using a defined motion protocol, the feasibility of the system is demonstrated in a self-experimentation. Moreover, the influence of different movements on different modalities is analyzed. Finally, robust beat-to-beat interval estimation demonstrates the benefits of multimodal sensor fusion for vital sign estimation in the presence of motion artifacts.

  1. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.

    Science.gov (United States)

    Joukov, Vladimir; Bonnet, Vincent; Karg, Michelle; Venture, Gentiane; Kulic, Dana

    2018-02-01

    This paper proposes a method to enable the use of non-intrusive, small, wearable, and wireless sensors to estimate the pose of the lower body during gait and other periodic motions and to extract objective performance measures useful for physiotherapy. The Rhythmic Extended Kalman Filter (Rhythmic-EKF) algorithm is developed to estimate the pose, learn an individualized model of periodic movement over time, and use the learned model to improve pose estimation. The proposed approach learns a canonical dynamical system model of the movement during online observation, which is used to accurately model the acceleration during pose estimation. The canonical dynamical system models the motion as a periodic signal. The estimated phase and frequency of the motion also allow the proposed approach to segment the motion into repetitions and extract useful features, such as gait symmetry, step length, and mean joint movement and variance. The algorithm is shown to outperform the extended Kalman filter in simulation, on healthy participant data, and stroke patient data. For the healthy participant marching dataset, the Rhythmic-EKF improves joint acceleration and velocity estimates over regular EKF by 40% and 37%, respectively, estimates joint angles with 2.4° root mean squared error, and segments the motion into repetitions with 96% accuracy.

  2. Different motion cues are used to estimate time-to-arrival for frontoparallel and looming trajectories.

    Science.gov (United States)

    Calabro, Finnegan J; Beardsley, Scott A; Vaina, Lucia M

    2011-12-08

    Estimation of time-to-arrival for moving objects is critical to obstacle interception and avoidance, as well as to timing actions such as reaching and grasping moving objects. The source of motion information that conveys arrival time varies with the trajectory of the object raising the question of whether multiple context-dependent mechanisms are involved in this computation. To address this question we conducted a series of psychophysical studies to measure observers' performance on time-to-arrival estimation when object trajectory was specified by angular motion ("gap closure" trajectories in the frontoparallel plane), looming (colliding trajectories, TTC) or both (passage courses, TTP). We measured performance of time-to-arrival judgments in the presence of irrelevant motion, in which a perpendicular motion vector was added to the object trajectory. Data were compared to models of expected performance based on the use of different components of optical information. Our results demonstrate that for gap closure, performance depended only on the angular motion, whereas for TTC and TTP, both angular and looming motion affected performance. This dissociation of inputs suggests that gap closures are mediated by a separate mechanism than that used for the detection of time-to-collision and time-to-passage. We show that existing models of TTC and TTP estimation make systematic errors in predicting subject performance, and suggest that a model which weights motion cues by their relative time-to-arrival provides a better account of performance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Efficient probabilistic planar robot motion estimation given pairs of images

    NARCIS (Netherlands)

    Booij, O.; Kröse, B.; Zivkovic, Z.

    2010-01-01

    Estimating the relative pose between two camera positions given image point correspondences is a vital task in most view based SLAM and robot navigation approaches. In order to improve the robustness to noise and false point correspondences it is common to incorporate the constraint that the robot

  4. Motion

    CERN Document Server

    Graybill, George

    2007-01-01

    Take the mystery out of motion. Our resource gives you everything you need to teach young scientists about motion. Students will learn about linear, accelerating, rotating and oscillating motion, and how these relate to everyday life - and even the solar system. Measuring and graphing motion is easy, and the concepts of speed, velocity and acceleration are clearly explained. Reading passages, comprehension questions, color mini posters and lots of hands-on activities all help teach and reinforce key concepts. Vocabulary and language are simplified in our resource to make them accessible to str

  5. Empirical equations for the prediction of PGA and pseudo spectral accelerations using Iranian strong-motion data

    Science.gov (United States)

    Zafarani, H.; Luzi, Lucia; Lanzano, Giovanni; Soghrat, M. R.

    2018-01-01

    A recently compiled, comprehensive, and good-quality strong-motion database of the Iranian earthquakes has been used to develop local empirical equations for the prediction of peak ground acceleration (PGA) and 5%-damped pseudo-spectral accelerations (PSA) up to 4.0 s. The equations account for style of faulting and four site classes and use the horizontal distance from the surface projection of the rupture plane as a distance measure. The model predicts the geometric mean of horizontal components and the vertical-to-horizontal ratio. A total of 1551 free-field acceleration time histories recorded at distances of up to 200 km from 200 shallow earthquakes (depth regression analysis using the random effects algorithm of Abrahamson and Youngs (Bull Seism Soc Am 82:505-510, 1992), which considers between-events as well as within-events errors. Due to the limited data used in the development of previous Iranian ground motion prediction equations (GMPEs) and strong trade-offs between different terms of GMPEs, it is likely that the previously determined models might have less precision on their coefficients in comparison to the current study. The richer database of the current study allows improving on prior works by considering additional variables that could not previously be adequately constrained. Here, a functional form used by Boore and Atkinson (Earthquake Spect 24:99-138, 2008) and Bindi et al. (Bull Seism Soc Am 9:1899-1920, 2011) has been adopted that allows accounting for the saturation of ground motions at close distances. A regression has been also performed for the V/H in order to retrieve vertical components by scaling horizontal spectra. In order to take into account epistemic uncertainty, the new model can be used along with other appropriate GMPEs through a logic tree framework for seismic hazard assessment in Iran and Middle East region.

  6. The limits of earthquake early warning: Timeliness of ground motion estimates

    OpenAIRE

    Minson, Sarah E.; Meier, Men-Andrin; Baltay, Annemarie S.; Hanks, Thomas C.; Cochran, Elizabeth S.

    2018-01-01

    The basic physics of earthquakes is such that strong ground motion cannot be expected from an earthquake unless the earthquake itself is very close or has grown to be very large. We use simple seismological relationships to calculate the minimum time that must elapse before such ground motion can be expected at a distance from the earthquake, assuming that the earthquake magnitude is not predictable. Earthquake early warning (EEW) systems are in operation or development for many regions aroun...

  7. Seismic Intensity Map Triggered by Observed Strong Motion Records Considering Site Amplification and its service based on Geo-spatial International Standard

    International Nuclear Information System (INIS)

    Matsuoka, Masashi

    2014-01-01

    Instrumental seismic intensity measurement is carried out at approximately 4,200 points in Japan, but the correct values at points without seismometers cannot always be provided because seismic motion depends on geologic and geomorphologic features. Quick provision of accurate information on seismic intensity distribution over wide areas is required for disaster mitigation. To estimate seismic intensity at specific points, it is important to prepare ground amplification characteristics for local areas beforehand and use an interpolation algorithm. The QuiQuake system (quick estimation system for earthquake maps triggered by using observation records from K-NET and KiK-net that have been released by the National Research Institute for Earth Science and Disaster Prevention), which uses these, was developed; it can be started up automatically using seismograms and can immediately display a seismic intensity distribution map. The calculation results are sent to IAEA and JNES in the form of strong motion evaluation maps with a mesh size of 250 x 250 m. These maps are also sent to the general public via social networking web sites. (author)

  8. Comparison of Point and Line Features and Their Combination for Rigid Body Motion Estimation

    DEFF Research Database (Denmark)

    Pilz, Florian; Pugeault, Nicolas; Krüger, Norbert

    2009-01-01

    This paper discusses the usage of dierent image features and their combination in the context of estimating the motion of rigid bodies (RBM estimation). From stereo image sequences, we extract line features at local edges (coded in so called multi-modal primitives) as well as point features (by...

  9. Kinematic inversion of strong motion data using a Gaussian parameterization of the slip: application to the Iwate-Miyagi earthquake.

    Science.gov (United States)

    Lucca, Ernestina; Festa, Gaetano; Emolo, Antonio

    2010-05-01

    We present a non linear technique to invert strong motion records with the aim of obtaining the final slip and the rupture velocity distributions on the fault plane. Kinematic inversion of strong motion data is an ill-conditioned inverse problem, with several solutions available also in the case of noise-free synthetic data (Blind test on earthquake source inversion,http://www.seismo.ethz.ch/staff/martin/BlindTest.html).On the other hand, complete dynamic inversion still looks impracticable, because of an unclear understanding of the physical mechanisms controlling the energy balance at the rupture tip and a strong correlation between the initial stress field and the parameters of the constitutive law. Hence a strong effort is demanded to increase the robustness of the inversion, looking at the details of the slip and rupture velocity parameterization, at the global exploration techniques, at the efficiency of the cost-function in selecting solutions, at the synthesis process in retrieving the stable features of the rupture. In this study, the forward problem, i.e. the ground motion simulation, is solved evaluating the representation integral in the frequency domain by allowing possible rake variation along the fault plane. The Green's tractions on the fault are computed using the discrete wave-number integration technique that provides the full wave-field in a 1D layered propagation medium. The representation integral is computed through a finite elements technique on a Delaunay triangulation of the fault plane. The rupture velocity is finally defined on a coarser regular grid and rupture times are computed by integration of the eikonal equation. For the inversion, the slip distribution is parameterized by 2D overlapping Gaussian functions, which can easily relate the spectrum of the possible solutions with the minimum resolvable wavelength, related to source-station distribution and data processing. The inverse problem is solved by a two-step procedure aimed at

  10. 4D modeling and estimation of respiratory motion for radiation therapy

    CERN Document Server

    Lorenz, Cristian

    2013-01-01

    Respiratory motion causes an important uncertainty in radiotherapy planning of the thorax and upper abdomen. The main objective of radiation therapy is to eradicate or shrink tumor cells without damaging the surrounding tissue by delivering a high radiation dose to the tumor region and a dose as low as possible to healthy organ tissues. Meeting this demand remains a challenge especially in case of lung tumors due to breathing-induced tumor and organ motion where motion amplitudes can measure up to several centimeters. Therefore, modeling of respiratory motion has become increasingly important in radiation therapy. With 4D imaging techniques spatiotemporal image sequences can be acquired to investigate dynamic processes in the patient’s body. Furthermore, image registration enables the estimation of the breathing-induced motion and the description of the temporal change in position and shape of the structures of interest by establishing the correspondence between images acquired at different phases of the br...

  11. EFFICIENT BLOCK MATCHING ALGORITHMS FOR MOTION ESTIMATION IN H.264/AVC

    Directory of Open Access Journals (Sweden)

    P. Muralidhar

    2015-02-01

    Full Text Available In Scalable Video Coding (SVC, motion estimation and inter-layer prediction play an important role in elimination of temporal and spatial redundancies between consecutive layers. This paper evaluates the performance of widely accepted block matching algorithms used in various video compression standards, with emphasis on the performance of the algorithms for a didactic scalable video codec. Many different implementations of Fast Motion Estimation Algorithms have been proposed to reduce motion estimation complexity. The block matching algorithms have been analyzed with emphasis on Peak Signal to Noise Ratio (PSNR and computations using MATLAB. In addition to the above comparisons, a survey has been done on Spiral Search Motion Estimation Algorithms for Video Coding. A New Modified Spiral Search (NMSS motion estimation algorithm has been proposed with lower computational complexity. The proposed algorithm achieves 72% reduction in computation with a minimal (<1dB reduction in PSNR. A brief introduction to the entire flow of video compression H.264/SVC is also presented in this paper.

  12. Re-estimation of motion and reconstruction for distributed video coding.

    Science.gov (United States)

    Van Luong, Huynh; Rakêt, Lars Lau; Forchhammer, Søren

    2014-07-01

    Transform domain Wyner-Ziv (TDWZ) video coding is an efficient approach to distributed video coding (DVC), which provides low complexity encoding by exploiting the source statistics at the decoder side. The DVC coding efficiency depends mainly on side information and noise modeling. This paper proposes a motion re-estimation technique based on optical flow to improve side information and noise residual frames by taking partially decoded information into account. To improve noise modeling, a noise residual motion re-estimation technique is proposed. Residual motion compensation with motion updating is used to estimate a current residue based on previously decoded frames and correlation between estimated side information frames. In addition, a generalized reconstruction algorithm to optimize a multihypothesis reconstruction is proposed. The proposed techniques using motion and reconstruction re-estimation (MORE) are integrated in the SING TDWZ codec, which uses side information and noise learning. For Wyner-Ziv frames using GOP size 2, the MORE codec significantly improves the TDWZ coding efficiency with an average (Bjøntegaard) PSNR improvement of 2.5 dB and up to 6 dB improvement compared with DISCOVER.

  13. A Novel Hexagonal Search Algorithm for Fast Block Matching Motion Estimation

    Directory of Open Access Journals (Sweden)

    Anastasios Hamosfakidis

    2002-06-01

    Full Text Available Based on real-world image sequence characteristics of center-biased motion vector distribution, a Hexagonal (HS algorithm with center-biased checking point pattern for fast block motion estimation is proposed. The HS is compared with full search (FS, four-step search (4SS, new three-step search (NTSS, and recently proposed diamond search (DS methods. Experimental results show that the proposed technique provides competitive performance with reduced computational complexity.

  14. Precise Image-Based Motion Estimation for Autonomous Small Body Exploration

    Science.gov (United States)

    Johnson, Andrew Edie; Matthies, Larry H.

    2000-01-01

    We have developed and tested a software algorithm that enables onboard autonomous motion estimation near small bodies using descent camera imagery and laser altimetry. Through simulation and testing, we have shown that visual feature tracking can decrease uncertainty in spacecraft motion to a level that makes landing on small, irregularly shaped, bodies feasible. Possible future work will include qualification of the algorithm as a flight experiment for the Deep Space 4/Champollion comet lander mission currently under study at the Jet Propulsion Laboratory.

  15. Metadata-Assisted Global Motion Estimation for Medium-Altitude Unmanned Aerial Vehicle Video Applications

    Directory of Open Access Journals (Sweden)

    Hongguang Li

    2015-09-01

    Full Text Available Global motion estimation (GME is a key technology in unmanned aerial vehicle remote sensing (UAVRS. However, when a UAV’s motion and behavior change significantly or the image information is not rich, traditional image-based methods for GME often perform poorly. Introducing bottom metadata can improve precision in a large-scale motion condition and reduce the dependence on unreliable image information. GME is divided into coarse and residual GME through coordinate transformation and based on the study hypotheses. In coarse GME, an auxiliary image is built to convert image matching from a wide baseline condition to a narrow baseline one. In residual GME, a novel information and contrast feature detection algorithm is proposed for big-block matching to maximize the use of reliable image information and ensure that the contents of interest are well estimated. Additionally, an image motion monitor is designed to select the appropriate processing strategy by monitoring the motion scales of translation, rotation, and zoom. A medium-altitude UAV is employed to collect three types of large-scale motion datasets. Peak signal to noise ratio (PSNR and motion scale are computed. This study’s result is encouraging and applicable to other medium- or high-altitude UAVs with a similar system structure.

  16. Strong Convergence Bound of the Pareto Index Estimator under Right Censoring

    Directory of Open Access Journals (Sweden)

    Peng Zuoxiang

    2010-01-01

    Full Text Available Let be a sequence of positive independent and identically distributed random variables with common Pareto-type distribution function as , where represents a slowly varying function at infinity. In this note we study the strong convergence bound of a kind of right censored Pareto index estimator under second-order regularly varying conditions.

  17. Reciprocal Estimation of Pedestrian Location and Motion State toward a Smartphone Geo-Context Computing Solution

    Directory of Open Access Journals (Sweden)

    Jingbin Liu

    2015-06-01

    Full Text Available The rapid advance in mobile communications has made information and services ubiquitously accessible. Location and context information have become essential for the effectiveness of services in the era of mobility. This paper proposes the concept of geo-context that is defined as an integral synthesis of geographical location, human motion state and mobility context. A geo-context computing solution consists of a positioning engine, a motion state recognition engine, and a context inference component. In the geo-context concept, the human motion states and mobility context are associated with the geographical location where they occur. A hybrid geo-context computing solution is implemented that runs on a smartphone, and it utilizes measurements of multiple sensors and signals of opportunity that are available within a smartphone. Pedestrian location and motion states are estimated jointly under the framework of hidden Markov models, and they are used in a reciprocal manner to improve their estimation performance of one another. It is demonstrated that pedestrian location estimation has better accuracy when its motion state is known, and in turn, the performance of motion state recognition can be improved with increasing reliability when the location is given. The geo-context inference is implemented simply with the expert system principle, and more sophisticated approaches will be developed.

  18. Estimating the 4D respiratory lung motion by spatiotemporal registration and super-resolution image reconstruction.

    Science.gov (United States)

    Wu, Guorong; Wang, Qian; Lian, Jun; Shen, Dinggang

    2013-03-01

    One of the main challenges in lung cancer radiation therapy is how to reduce the treatment margin but accommodate the geometric uncertainty of moving tumor. 4D-CT is able to provide the full range of motion information for the lung and tumor. However, accurate estimation of lung motion with respect to the respiratory phase is difficult due to various challenges in image registration, e.g., motion artifacts and large interslice thickness in 4D-CT. Meanwhile, the temporal coherence across respiration phases is usually not guaranteed in the conventional registration methods which consider each phase image in 4D-CT independently. To address these challenges, the authors present a unified approach to estimate the respiratory lung motion with two iterative steps. First, the authors propose a novel spatiotemporal registration algorithm to align all phase images of 4D-CT (in low-resolution) to a high-resolution group-mean image in the common space. The temporal coherence of registration is maintained by a set of temporal fibers that delineate temporal correspondences across different respiratory phases. Second, a super-resolution technique is utilized to build the high-resolution group-mean image with more anatomical details than any individual phase image, thus largely alleviating the registration uncertainty especially in correspondence detection. In particular, the authors use the concept of sparse representation to keep the group-mean image as sharp as possible. The performance of our 4D motion estimation method has been extensively evaluated on both the simulated datasets and real lung 4D-CT datasets. In all experiments, our method achieves more accurate and consistent results in lung motion estimation than all other state-of-the-art approaches under comparison. The authors have proposed a novel spatiotemporal registration method to estimate the lung motion in 4D-CT. Promising results have been obtained, which indicates the high applicability of our method in clinical

  19. A PHYSICAL MODEL OF THE EFFECT OF A SHALLOW WEAK LAYER ON STRONG GROUND MOTION FOR STRIKE-SLIP RUPTURES

    Energy Technology Data Exchange (ETDEWEB)

    JAMES N. BRUNE AND ABDOLRASOOL ANOOSHEHPOOR

    1998-02-23

    We report results of foam-rubber modeling of the effect of a shallow weak layer on ground motion from strike-slip ruptures. Computer modeling of strong ground motion from strike-slip earthquakes has involved somewhat arbitrary assumptions about the nature of slip along the shallow part of the fault (e.g., fixing the slip to be zero along the upper 2 kilometers of the fault plane) in order to match certain strong motion accelerograms. Most modeling studies of earthquake strong ground motion have used what is termed kinematic dislocation modeling. In kinematic modeling the time function for slip on the fault is prescribed, and the response of the layered medium is calculated. Unfortunately, there is no guarantee that the model and the prescribed slip are physically reasonable unless the true nature of the medium and its motions are known ahead of time. There is good reason to believe that in many cases faults are weak along the upper few kilometers of the fault zone and may not be able to maintain high levels of shear strain required for high dynamic energy release during earthquakes. Physical models of faulting, as distinct from numerical or mathematical models, are guaranteed to obey static and dynamic mechanical laws. Foam-rubber modeling studies have been reported in a number of publications. The object of this paper is to present results of physical modeling using a shallow weak layer, in order to verify the physical basis for assuming a long rise time and a reduced high frequency pulse for the slip on the shallow part of faults. It appears a 2-kilometer deep, weak zone along strike-slip faults could indeed reduce the high frequency energy radiated from shallow slip, and that this effect can best be represented by superimposing a small amplitude, short rise-time pulse at the onset of a much longer rise-time slip. A weak zone was modeled by inserting weak plastic layers of a few inches in thickness into the foam rubber model. For the 15 cm weak zone the average

  20. Implementation and optimization of sub-pixel motion estimation on BWDSP platform

    Science.gov (United States)

    Jia, Shangzhu; Lang, Wenhui; Zeng, Feiyang; Liu, Yufu

    2017-08-01

    Sub-pixel Motion estimation algorithm is a key technology in video coding inter-frame prediction algorithm, which has important influence on video coding performance. In the latest video coding standard H.265/HEVC, interpolation filters based on DCT are used to Sub-pixel motion estimation, but it has very high computation complexity. In order to ensure the real-time performance of hardware coding, we combine the characteristics of BWDSP architecture, using code level optimization techniques to realize the sub-pixel motion estimation algorithm. Experimental results demonstrate that In the BWDSP simulation environment, the proposed method significantly decreases the running clock cycle and thus improves the performance of the encoder.

  1. Fault location and source process of the 2003 Boumerdes, Algeria, earthquake inferred from geodetic and strong motion data.

    Science.gov (United States)

    Semmane, F.; Campillo, M.; Cotton, F.

    2004-12-01

    The Boumerdes earthquake occurred on a fault which precise location, offshore the algerian coast, was unknown. Geodetic data consist of GPS measurements, levelling points and coastal uplifts. They are first used to determine the absolute position of the fault. We performed a series of inversions assuming different positions and chose the model giving the smallest misfit. According to this analysis, the fault emerge at about 15 km offshore. Accelerograms are then used to infer the space-time history of rupture on the fault plane using a two-step inversion in the spectral domain. The observed strong motion records are in good agreement with the synthetics for the fault location inferred from geodetic data. The fault plane ruptured for about 16 seconds. The slip distribution on the fault indicates one asperity north-west of the hypocenter with a maximum slip amplitude larger than 2.5 m. Another asperity with slightly smaller slip amplitude is located south-east of the hypocenter. The rupture seems to stop its propagation westward when it encounters the Thenia fault, a structure almost perpendicular to the main fault. We computed the spatial distribution of ground motion predicted by this fault model and compared it with the observed damages.

  2. A Robust Subpixel Motion Estimation Algorithm Using HOS in the Parametric Domain

    Directory of Open Access Journals (Sweden)

    Ibn-Elhaj E

    2009-01-01

    Full Text Available Motion estimation techniques are widely used in todays video processing systems. The most frequently used techniques are the optical flow method and phase correlation method. The vast majority of these algorithms consider noise-free data. Thus, in the case of the image sequences are severely corrupted by additive Gaussian (perhaps non-Gaussian noises of unknown covariance, the classical techniques will fail to work because they will also estimate the noise spatial correlation. In this paper, we have studied this topic from a viewpoint different from the above to explore the fundamental limits in image motion estimation. Our scheme is based on subpixel motion estimation algorithm using bispectrum in the parametric domain. The motion vector of a moving object is estimated by solving linear equations involving third-order hologram and the matrix containing Dirac delta function. Simulation results are presented and compared to the optical flow and phase correlation algorithms; this approach provides more reliable displacement estimates particularly for complex noisy image sequences. In our simulation, we used the database freely available on the web.

  3. A Robust Subpixel Motion Estimation Algorithm Using HOS in the Parametric Domain

    Directory of Open Access Journals (Sweden)

    E. M. Ismaili Aalaoui

    2009-02-01

    Full Text Available Motion estimation techniques are widely used in todays video processing systems. The most frequently used techniques are the optical flow method and phase correlation method. The vast majority of these algorithms consider noise-free data. Thus, in the case of the image sequences are severely corrupted by additive Gaussian (perhaps non-Gaussian noises of unknown covariance, the classical techniques will fail to work because they will also estimate the noise spatial correlation. In this paper, we have studied this topic from a viewpoint different from the above to explore the fundamental limits in image motion estimation. Our scheme is based on subpixel motion estimation algorithm using bispectrum in the parametric domain. The motion vector of a moving object is estimated by solving linear equations involving third-order hologram and the matrix containing Dirac delta function. Simulation results are presented and compared to the optical flow and phase correlation algorithms; this approach provides more reliable displacement estimates particularly for complex noisy image sequences. In our simulation, we used the database freely available on the web.

  4. Motion

    CERN Document Server

    Rivera, Andrea

    2017-01-01

    Motion is all around us. Learn how it is used in art, technology, and engineering. Five easy-to-read chapters explain the science behind motion, as well as its real-world applications. Vibrant, full-color photos, bolded glossary words, and a key stats section let readers zoom in even deeper. Aligned to Common Core Standards and correlated to state standards. Abdo Zoom is a division of ABDO.

  5. Construction method and application of 3D velocity model for evaluation of strong seismic motion and its cost performance

    International Nuclear Information System (INIS)

    Matsuyama, Hisanori; Fujiwara, Hiroyuki

    2014-01-01

    Based on experiences of making subsurface structure models for seismic strong motion evaluation, the advantages and disadvantages in terms of convenience and cost for several methods used to make such models were reported. As for the details, gravity and micro-tremor surveys were considered to be highly valid in terms of convenience and cost. However, stratigraphy and seismic velocity structure are required to make accurate 3-D subsurface structures. To realize these, methods for directly examining subsurface ground or using controlled tremor sources (at high cost) are needed. As a result, it was summarized that in modeling subsurface structures, some sort of plan including both types of methods is desirable and that several methods must be combined to match one's intended purposes and budget. (authors)

  6. Fault location and source process of the Boumerdes, Algeria, earthquake inferred from geodetic and strong motion data

    Science.gov (United States)

    Semmane, Fethi; Campillo, Michel; Cotton, Fabrice

    2005-01-01

    The Boumerdes earthquake occurred on a fault whose precise location, offshore the Algerian coast, was unknown. Geodetic data are used to determine the absolute position of the fault. The fault might emerge at about 15 km offshore. Accelerograms are used to infer the space-time history of the rupture using a two-step inversion in the spectral domain. The observed strong motion records agree with the synthetics for the fault location inferred from geodetic data. The fault plane ruptured for about 18 seconds. The slip distribution on the fault indicates one asperity northwest of the hypocenter with maximum slip amplitude about 3 m. This asperity is probably responsible for most of the damage. Another asperity with slightly smaller slip amplitude is located southeast of the hypocenter. The rupture stops its westward propagation close to the Thenia fault, a structure almost perpendicular to the main fault.

  7. EEG-based learning system for online motion sickness level estimation in a dynamic vehicle environment.

    Science.gov (United States)

    Lin, Chin-Teng; Tsai, Shu-Fang; Ko, Li-Wei

    2013-10-01

    Motion sickness is a common experience for many people. Several previous researches indicated that motion sickness has a negative effect on driving performance and sometimes leads to serious traffic accidents because of a decline in a person's ability to maintain self-control. This safety issue has motivated us to find a way to prevent vehicle accidents. Our target was to determine a set of valid motion sickness indicators that would predict the occurrence of a person's motion sickness as soon as possible. A successful method for the early detection of motion sickness will help us to construct a cognitive monitoring system. Such a monitoring system can alert people before they become sick and prevent them from being distracted by various motion sickness symptoms while driving or riding in a car. In our past researches, we investigated the physiological changes that occur during the transition of a passenger's cognitive state using electroencephalography (EEG) power spectrum analysis, and we found that the EEG power responses in the left and right motors, parietal, lateral occipital, and occipital midline brain areas were more highly correlated to subjective sickness levels than other brain areas. In this paper, we propose the use of a self-organizing neural fuzzy inference network (SONFIN) to estimate a driver's/passenger's sickness level based on EEG features that have been extracted online from five motion sickness-related brain areas, while either in real or virtual vehicle environments. The results show that our proposed learning system is capable of extracting a set of valid motion sickness indicators that originated from EEG dynamics, and through SONFIN, a neuro-fuzzy prediction model, we successfully translated the set of motion sickness indicators into motion sickness levels. The overall performance of this proposed EEG-based learning system can achieve an average prediction accuracy of ~82%.

  8. Rapid estimation of left ventricular ejection fraction in acute myocardial infarction by echocardiographic wall motion analysis

    DEFF Research Database (Denmark)

    Berning, J; Rokkedal Nielsen, J; Launbjerg, J

    1992-01-01

    Echocardiographic estimates of left ventricular ejection fraction (ECHO-LVEF) in acute myocardial infarction (AMI) were obtained by a new approach, using visual analysis of left ventricular wall motion in a nine-segment model. The method was validated in 41 patients using radionuclide ventriculog......Echocardiographic estimates of left ventricular ejection fraction (ECHO-LVEF) in acute myocardial infarction (AMI) were obtained by a new approach, using visual analysis of left ventricular wall motion in a nine-segment model. The method was validated in 41 patients using radionuclide...

  9. SAD PROCESSOR FOR MULTIPLE MACROBLOCK MATCHING IN FAST SEARCH VIDEO MOTION ESTIMATION

    Directory of Open Access Journals (Sweden)

    Nehal N. Shah

    2015-02-01

    Full Text Available Motion estimation is a very important but computationally complex task in video coding. Process of determining motion vectors based on the temporal correlation of consecutive frame is used for video compression. In order to reduce the computational complexity of motion estimation and maintain the quality of encoding during motion compensation, different fast search techniques are available. These block based motion estimation algorithms use the sum of absolute difference (SAD between corresponding macroblock in current frame and all the candidate macroblocks in the reference frame to identify best match. Existing implementations can perform SAD between two blocks using sequential or pipeline approach but performing multi operand SAD in single clock cycle with optimized recourses is state of art. In this paper various parallel architectures for computation of the fixed block size SAD is evaluated and fast parallel SAD architecture is proposed with optimized resources. Further SAD processor is described with 9 processing elements which can be configured for any existing fast search block matching algorithm. Proposed SAD processor consumes 7% fewer adders compared to existing implementation for one processing elements. Using nine PE it can process 84 HD frames per second in worse case which is good outcome for real time implementation. In average case architecture process 325 HD frames per second.

  10. Mass estimates from stellar proper motions: the mass of ω Centauri

    Science.gov (United States)

    D'Souza, Richard; Rix, Hans-Walter

    2013-03-01

    We lay out and apply methods to use proper motions of individual kinematic tracers for estimating the dynamical mass of star clusters. We first describe a simple projected mass estimator and then develop an approach that evaluates directly the likelihood of the discrete kinematic data given the model predictions. Those predictions may come from any dynamical modelling approach, and we implement an analytic King model, a spherical isotropic Jeans equation model and an axisymmetric, anisotropic Jeans equation model. This maximum likelihood modelling (MLM) provides a framework for a model-data comparison, and a resulting mass estimate, which accounts explicitly for the discrete nature of the data for individual stars, the varying error bars for proper motions of differing signal-to-noise ratio, and for data incompleteness. Both of these two methods are evaluated for their practicality and are shown to provide an unbiased and robust estimate of the cluster mass. We apply these approaches to the enigmatic globular cluster ω Centauri, combining the proper motion from van Leeuwen et al. with improved photometric cluster membership probabilities. We show that all mass estimates based on spherical isotropic models yield (4.55 ± 0.1) × 106 M⊙[D/5.5 ± 0.2 kpc]3, where our modelling allows us to show how the statistical precision of this estimate improves as more proper motion data of lower signal-to-noise ratio are included. MLM predictions, based on an anisotropic axisymmetric Jeans model, indicate for ω Cen that the inclusion of anisotropies is not important for the mass estimates, but that accounting for the flattening is: flattened models imply (4.05 ± 0.1) × 106 M⊙[D/5.5 ± 0.2 kpc]3, 10 per cent lower than when restricting the analysis to a spherical model. The best current distance estimates imply an additional uncertainty in the mass estimate of 12 per cent.

  11. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models

    Science.gov (United States)

    Dhou, Salam; Hurwitz, Martina; Mishra, Pankaj; Cai, Weixing; Rottmann, Joerg; Li, Ruijiang; Williams, Christopher; Wagar, Matthew; Berbeco, Ross; Ionascu, Dan; Lewis, John H.

    2015-01-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we develop and perform initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and use these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparing to ground truth digital and physical phantom images. The performance of 4DCBCT- and 4DCT- based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms, and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. PMID:25905722

  12. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models

    International Nuclear Information System (INIS)

    Dhou, S; Hurwitz, M; Cai, W; Rottmann, J; Williams, C; Wagar, M; Berbeco, R; Lewis, J H; Mishra, P; Li, R; Ionascu, D

    2015-01-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we developed and performed initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and used these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparison to ground truth digital and physical phantom images. The performance of 4DCBCT-based and 4DCT-based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. (paper)

  13. Vibration-based damage detection in wind turbine blades using Phase-based Motion Estimation and motion magnification

    Science.gov (United States)

    Sarrafi, Aral; Mao, Zhu; Niezrecki, Christopher; Poozesh, Peyman

    2018-05-01

    Vibration-based Structural Health Monitoring (SHM) techniques are among the most common approaches for structural damage identification. The presence of damage in structures may be identified by monitoring the changes in dynamic behavior subject to external loading, and is typically performed by using experimental modal analysis (EMA) or operational modal analysis (OMA). These tools for SHM normally require a limited number of physically attached transducers (e.g. accelerometers) in order to record the response of the structure for further analysis. Signal conditioners, wires, wireless receivers and a data acquisition system (DAQ) are also typical components of traditional sensing systems used in vibration-based SHM. However, instrumentation of lightweight structures with contact sensors such as accelerometers may induce mass-loading effects, and for large-scale structures, the instrumentation is labor intensive and time consuming. Achieving high spatial measurement resolution for a large-scale structure is not always feasible while working with traditional contact sensors, and there is also the potential for a lack of reliability associated with fixed contact sensors in outliving the life-span of the host structure. Among the state-of-the-art non-contact measurements, digital video cameras are able to rapidly collect high-density spatial information from structures remotely. In this paper, the subtle motions from recorded video (i.e. a sequence of images) are extracted by means of Phase-based Motion Estimation (PME) and the extracted information is used to conduct damage identification on a 2.3-m long Skystream® wind turbine blade (WTB). The PME and phased-based motion magnification approach estimates the structural motion from the captured sequence of images for both a baseline and damaged test cases on a wind turbine blade. Operational deflection shapes of the test articles are also quantified and compared for the baseline and damaged states. In addition

  14. Strong Convergence Bound of the Pareto Index Estimator under Right Censoring

    Directory of Open Access Journals (Sweden)

    Bao Tao

    2010-01-01

    Full Text Available Let {Xn,n≥1} be a sequence of positive independent and identically distributed random variables with common Pareto-type distribution function F(x=1−x−1/γlF(x as γ>0, where lF(x represents a slowly varying function at infinity. In this note we study the strong convergence bound of a kind of right censored Pareto index estimator under second-order regularly varying conditions.

  15. A Refined Algorithm On The Estimation Of Residual Motion Errors In Airborne SAR Images

    Science.gov (United States)

    Zhong, Xuelian; Xiang, Maosheng; Yue, Huanyin; Guo, Huadong

    2010-10-01

    Due to the lack of accuracy in the navigation system, residual motion errors (RMEs) frequently appear in the airborne SAR image. For very high resolution SAR imaging and repeat-pass SAR interferometry, the residual motion errors must be estimated and compensated. We have proposed a new algorithm before to estimate the residual motion errors for an individual SAR image. It exploits point-like targets distributed along the azimuth direction, and not only corrects the phase, but also improves the azimuth focusing. But the required point targets are selected by hand, which is time- and labor-consuming. In addition, the algorithm is sensitive to noises. In this paper, a refined algorithm is proposed aiming at these two shortcomings. With real X-band airborne SAR data, the feasibility and accuracy of the refined algorithm are demonstrated.

  16. A brute-force spectral approach for wave estimation using measured vessel motions

    DEFF Research Database (Denmark)

    Nielsen, Ulrik D.; Brodtkorb, Astrid H.; Sørensen, Asgeir J.

    2018-01-01

    , and the procedure is simple in its mathematical formulation. The actual formulation is extending another recent work by including vessel advance speed and short-crested seas. Due to its simplicity, the procedure is computationally efficient, providing wave spectrum estimates in the order of a few seconds......The article introduces a spectral procedure for sea state estimation based on measurements of motion responses of a ship in a short-crested seaway. The procedure relies fundamentally on the wave buoy analogy, but the wave spectrum estimate is obtained in a direct - brute-force - approach......, and the estimation procedure will therefore be appealing to applications related to realtime, onboard control and decision support systems for safe and efficient marine operations. The procedure's performance is evaluated by use of numerical simulation of motion measurements, and it is shown that accurate wave...

  17. Estimation of Joint types and Joint Limits from Motion capture data

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Erleben, Kenny

    2009-01-01

    It is time-consuming for an animator to explicitly model joint types and joint limits of articulated figures. In this paper we describe a simple and fast approach to automated joint estimation from motion capture data of articulated figures. Our method will make the joint modeling more efficient ...

  18. Estimation of Joint types and Joint Limits from Motion capture data

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Erleben, Kenny

    2009-01-01

    It is time-consuming for an animator to explicitly model joint types and joint limits of articulated figures. In this paper we describe a simple and fast approach to automated joint estimation from motion capture data of articulated figures. Our method will make the joint modeling more efficient...

  19. Joint disparity and motion estimation using optical flow for multiview Distributed Video Coding

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Raket, Lars Lau; Brites, Catarina

    2014-01-01

    Distributed Video Coding (DVC) is a video coding paradigm where the source statistics are exploited at the decoder based on the availability of Side Information (SI). In a monoview video codec, the SI is generated by exploiting the temporal redundancy of the video, through motion estimation...

  20. Joint disparity and motion estimation using optical flow for multiview distributed video coding

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Raket, Lars Lau; Brites, Catarina

    2014-01-01

    Distributed Video Coding (DVC) is a video coding paradigm where the source statistics are exploited at the decoder based on the availability of Side Information (SI). In a monoview video codec, the SI is generated by exploiting the temporal redundancy of the video, through motion estimation...

  1. Extra-retinal signals support the estimation of 3D motion

    NARCIS (Netherlands)

    Welchman, A.E.; Harris, J.M.; Brenner, E.

    2009-01-01

    In natural settings, our eyes tend to track approaching objects. To estimate motion, the brain should thus take account of eye movements, perhaps using retinal cues (retinal slip of static objects) or extra-retinal signals (motor commands). Previous work suggests that extra-retinal ocular vergence

  2. A canonical process for estimation of convex functions : The "invelope" of integrated Brownian motion +t4

    NARCIS (Netherlands)

    Groeneboom, P.; Jongbloed, G.; Wellner, J.A.

    2001-01-01

    A process associated with integrated Brownian motion is introduced that characterizes the limit behavior of nonparametric least squares and maximum likelihood estimators of convex functions and convex densities, respectively. We call this process “the invelope” and show that it is an almost surely

  3. A phase field method for joint denoising, edge detection, and motion estimation in image sequence processing

    NARCIS (Netherlands)

    Preusser, T.; Droske, M.; Garbe, C. S.; Telea, A.; Rumpf, M.

    2007-01-01

    The estimation of optical flow fields from image sequences is incorporated in a Mumford-Shah approach for image denoising and edge detection. Possibly noisy image sequences are considered as input and a piecewise smooth image intensity, a piecewise smooth motion field, and a joint discontinuity set

  4. On the distribution of estimators of diffusion constants for Brownian motion

    International Nuclear Information System (INIS)

    Boyer, Denis; Dean, David S

    2011-01-01

    We discuss the distribution of various estimators for extracting the diffusion constant of single Brownian trajectories obtained by fitting the squared displacement of the trajectory. The analysis of the problem can be framed in terms of quadratic functionals of Brownian motion that correspond to the Euclidean path integral for simple Harmonic oscillators with time dependent frequencies. Explicit analytical results are given for the distribution of the diffusion constant estimator in a number of cases and our results are confirmed by numerical simulations.

  5. Multiple Moving Targets Detection and Parameters Estimation in Strong Reverberation Environments

    Directory of Open Access Journals (Sweden)

    Ge Yu

    2016-01-01

    Full Text Available This paper considers the problem of multiple moving targets detection and parameters estimation (direction of arrival and range in strong reverberation environments. As reverberation has a strong correlation with target echo, the performance of target detection and parameters estimation is significantly degraded in practical underwater environments. In this paper, we utilize two uniform circular arrays to receive plane wave of the linear frequency modulation signal reflected from far-field targets. On the basis of received signal, we build a variance matrix of multiple beams by using modal decomposition, conventional beamforming, and fractional Fourier transform (FrFT. We then propose a novel detection method and an estimation method of parameters based on the constructed image. A significant feature of the proposed methods is that our design does not involve any a priori knowledge about targets number and parameters of marine environments. Finally, we demonstrate via numerical simulation examples that the detection probability and the accuracy of estimated parameters of the proposed method are higher than the existing methods in both low signal-to-reverberation ratio and signal-to-noise ratio environment.

  6. Age Estimation Robust to Optical and Motion Blurring by Deep Residual CNN

    Directory of Open Access Journals (Sweden)

    Jeon Seong Kang

    2018-04-01

    Full Text Available Recently, real-time human age estimation based on facial images has been applied in various areas. Underneath this phenomenon lies an awareness that age estimation plays an important role in applying big data to target marketing for age groups, product demand surveys, consumer trend analysis, etc. However, in a real-world environment, various optical and motion blurring effects can occur. Such effects usually cause a problem in fully capturing facial features such as wrinkles, which are essential to age estimation, thereby degrading accuracy. Most of the previous studies on age estimation were conducted for input images almost free from blurring effect. To overcome this limitation, we propose the use of a deep ResNet-152 convolutional neural network for age estimation, which is robust to various optical and motion blurring effects of visible light camera sensors. We performed experiments with various optical and motion blurred images created from the park aging mind laboratory (PAL and craniofacial longitudinal morphological face database (MORPH databases, which are publicly available. According to the results, the proposed method exhibited better age estimation performance than the previous methods.

  7. Temporal regularization of ultrasound-based liver motion estimation for image-guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    O’Shea, Tuathan P., E-mail: tuathan.oshea@icr.ac.uk; Bamber, Jeffrey C.; Harris, Emma J. [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS foundation Trust, Sutton, London SM2 5PT (United Kingdom)

    2016-01-15

    Purpose: Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imaging sequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates. Methods: Liver ultrasound sequences (15–23 Hz imaging rate, 2.5–5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison with normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the α–β filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set). Results: Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively. Conclusions: Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking

  8. Position Estimation of an Epicardial Crawling Robot on the Beating Heart by Modeling of Physiological Motion

    Science.gov (United States)

    Wood, Nathan A.; del Agua, Diego Moral; Zenati, Marco A.; Riviere, Cameron N.

    2012-01-01

    HeartLander, a small mobile robot designed to provide treatments to the surface of the beating heart, overcomes a major difficulty of minimally invasive cardiac surgery, providing a stable operating platform. This is achieved inherently in the way the robot adheres to and crawls over the surface of the heart. This mode of operation does not require physiological motion compensation to provide this stable environment; however, modeling of physiological motion is advantageous in providing more accurate position estimation as well as synchronization of motion to the physiological cycles. The work presented uses an Extended Kalman Filter framework to estimate parameters of non-stationary Fourier series models of the motion of the heart due to the respiratory and cardiac cycles as well as the position of the robot as it moves over the surface of the heart. The proposed method is demonstrated in the laboratory with HeartLander operating on a physiological motion simulator. Improved performance is demonstrated in comparison to the filtering methods previously used with HeartLander. The use of detected physiological cycle phases to synchronize locomotion of HeartLander is also described. PMID:23066511

  9. Multivariate regression approaches for surrogate-based diffeomorphic estimation of respiratory motion in radiation therapy

    Science.gov (United States)

    Wilms, M.; Werner, R.; Ehrhardt, J.; Schmidt-Richberg, A.; Schlemmer, H.-P.; Handels, H.

    2014-03-01

    Breathing-induced location uncertainties of internal structures are still a relevant issue in the radiation therapy of thoracic and abdominal tumours. Motion compensation approaches like gating or tumour tracking are usually driven by low-dimensional breathing signals, which are acquired in real-time during the treatment. These signals are only surrogates of the internal motion of target structures and organs at risk, and, consequently, appropriate models are needed to establish correspondence between the acquired signals and the sought internal motion patterns. In this work, we present a diffeomorphic framework for correspondence modelling based on the Log-Euclidean framework and multivariate regression. Within the framework, we systematically compare standard and subspace regression approaches (principal component regression, partial least squares, canonical correlation analysis) for different types of common breathing signals (1D: spirometry, abdominal belt, diaphragm tracking; multi-dimensional: skin surface tracking). Experiments are based on 4D CT and 4D MRI data sets and cover intra- and inter-cycle as well as intra- and inter-session motion variations. Only small differences in internal motion estimation accuracy are observed between the 1D surrogates. Increasing the surrogate dimensionality, however, improved the accuracy significantly; this is shown for both 2D signals, which consist of a common 1D signal and its time derivative, and high-dimensional signals containing the motion of many skin surface points. Eventually, comparing the standard and subspace regression variants when applied to the high-dimensional breathing signals, only small differences in terms of motion estimation accuracy are found.

  10. A Review on Block Matching Motion Estimation and Automata Theory based Approaches for Fractal Coding

    Directory of Open Access Journals (Sweden)

    Shailesh Kamble

    2016-12-01

    Full Text Available Fractal compression is the lossy compression technique in the field of gray/color image and video compression. It gives high compression ratio, better image quality with fast decoding time but improvement in encoding time is a challenge. This review paper/article presents the analysis of most significant existing approaches in the field of fractal based gray/color images and video compression, different block matching motion estimation approaches for finding out the motion vectors in a frame based on inter-frame coding and intra-frame coding i.e. individual frame coding and automata theory based coding approaches to represent an image/sequence of images. Though different review papers exist related to fractal coding, this paper is different in many sense. One can develop the new shape pattern for motion estimation and modify the existing block matching motion estimation with automata coding to explore the fractal compression technique with specific focus on reducing the encoding time and achieving better image/video reconstruction quality. This paper is useful for the beginners in the domain of video compression.

  11. Accurate estimation of motion blur parameters in noisy remote sensing image

    Science.gov (United States)

    Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong

    2015-05-01

    The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.

  12. VIDEO DENOISING USING SWITCHING ADAPTIVE DECISION BASED ALGORITHM WITH ROBUST MOTION ESTIMATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    V. Jayaraj

    2010-08-01

    Full Text Available A Non-linear adaptive decision based algorithm with robust motion estimation technique is proposed for removal of impulse noise, Gaussian noise and mixed noise (impulse and Gaussian with edge and fine detail preservation in images and videos. The algorithm includes detection of corrupted pixels and the estimation of values for replacing the corrupted pixels. The main advantage of the proposed algorithm is that an appropriate filter is used for replacing the corrupted pixel based on the estimation of the noise variance present in the filtering window. This leads to reduced blurring and better fine detail preservation even at the high mixed noise density. It performs both spatial and temporal filtering for removal of the noises in the filter window of the videos. The Improved Cross Diamond Search Motion Estimation technique uses Least Median Square as a cost function, which shows improved performance than other motion estimation techniques with existing cost functions. The results show that the proposed algorithm outperforms the other algorithms in the visual point of view and in Peak Signal to Noise Ratio, Mean Square Error and Image Enhancement Factor.

  13. Quaternionic Spatiotemporal Filtering for Dense Motion Field Estimation in Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    Adrien Marion

    2010-01-01

    Full Text Available Blood motion estimation provides fundamental clinical information to prevent and detect pathologies such as cancer. Ultrasound imaging associated with Doppler methods is often used for blood flow evaluation. However, Doppler methods suffer from shortcomings such as limited spatial resolution and the inability to estimate lateral motion. Numerous methods such as block matching and decorrelation-based techniques have been proposed to overcome these limitations. In this paper, we propose an original method to estimate dense fields of vector velocity from ultrasound image sequences. Our proposal is based on a spatiotemporal approach and considers 2D+t data as a 3D volume. Orientation of the texture within this volume is related to velocity. Thus, we designed a bank of 3D quaternionic filters to estimate local orientation and then calculate local velocities. The method was applied to a large set of experimental and simulated flow sequences with low motion (≈1 mm/s within small vessels (≈1 mm. Evaluation was conducted with several quantitative criteria such as the normalized mean error or the estimated mean velocity. The results obtained show the good behaviour of our method, characterizing the flows studied.

  14. Quaternionic Spatiotemporal Filtering for Dense Motion Field Estimation in Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    Marion Adrien

    2010-01-01

    Full Text Available Abstract Blood motion estimation provides fundamental clinical information to prevent and detect pathologies such as cancer. Ultrasound imaging associated with Doppler methods is often used for blood flow evaluation. However, Doppler methods suffer from shortcomings such as limited spatial resolution and the inability to estimate lateral motion. Numerous methods such as block matching and decorrelation-based techniques have been proposed to overcome these limitations. In this paper, we propose an original method to estimate dense fields of vector velocity from ultrasound image sequences. Our proposal is based on a spatiotemporal approach and considers 2D+t data as a 3D volume. Orientation of the texture within this volume is related to velocity. Thus, we designed a bank of 3D quaternionic filters to estimate local orientation and then calculate local velocities. The method was applied to a large set of experimental and simulated flow sequences with low motion ( 1 mm/s within small vessels ( 1 mm. Evaluation was conducted with several quantitative criteria such as the normalized mean error or the estimated mean velocity. The results obtained show the good behaviour of our method, characterizing the flows studied.

  15. Estimating Shallow Vs-Profiles Using 6C Recordings of Ground Motion

    Science.gov (United States)

    Wassermann, J. M.; Igel, H.; Bernauer, F.; Braun, T.; Ripepe, M.; Bedoya, E. F.

    2017-12-01

    The combination of rotational and traditional translational motion sensors already proofed toform a new technique in measuring seismic wave field properties. While the estimation ofphase velocities of surface waves from regional to teleseismic earthquakes was done bothusing Love waves and also Rayleigh waves, it was shown just recently that using ambientnoise will facilitate the estimation of phase velocity of Love waves by directly relating verticalrotational motions to transverse acceleration using a simple plane wave assumption. Up tonow, however, in the advent of sensitive, broad band rotational motion sensor these ambientnoise based estimates were made only using arrays of traditional seismometers. These arrayderived rotation estimates on the other hand inherently show sever restrictions especially if theincoming wave field is not strictly planar. Having access to the first highly sensitive and broadbandfibre optic gyro based rotational sensor, we performed several experiments at an activevolcano as well as in an urban environment. We here present the result of a joint analysis ofphase velocities of Love and Rayleigh waves which than are further combined with a classicalH/V estimate in a velocity model for P- and S Waves. The application of this technique usingdata from a network of 6C sensor will help to increase the reliability of moment tensor inversionsat active volcanoes as well as forming an easier to use extension of microzonation indensely populated areas.

  16. Steel Moment-Resisting Frame Responses in Simulated Strong Ground Motions: or How I Learned to Stop Worrying and Love the Big One

    OpenAIRE

    Olsen, Anna

    2008-01-01

    This thesis studies the response of steel moment-resisting frame buildings in simulated strong ground motions. I collect 37 simulations of crustal earthquakes in California. These ground motions are applied to nonlinear finite element models of four types of steel moment frame buildings: six- or twenty-stories with either a stiffer, higherstrength design or a more flexible, lower-strength design. I also consider the presence of fracture-prone welds in each design. Since these b...

  17. EVIDENCE FOR QUASI-ADIABATIC MOTION OF CHARGED PARTICLES IN STRONG CURRENT SHEETS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Malova, H. V. [Scobeltsyn Nuclear Physics Institute of Lomonosov Moscow State University, Moscow (Russian Federation); Popov, V. Yu.; Grigorenko, E. E.; Petrukovich, A. A.; Zelenyi, L. M. [Space Research Institute of the Russian Academy of Sciences, Moscow (Russian Federation); Delcourt, D. [Laboratoire de Physique des Plasmas, Ecole Politechnique, CNRS (France); Sharma, A. S. [Department of Astronomy, University of Maryland, College Park, MD (United States); Khabarova, O. V. [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow (Russian Federation)

    2017-01-01

    We investigate quasi-adiabatic dynamics of charged particles in strong current sheets (SCSs) in the solar wind, including the heliospheric current sheet (HCS), both theoretically and observationally. A self-consistent hybrid model of an SCS is developed in which ion dynamics is described at the quasi-adiabatic approximation, while the electrons are assumed to be magnetized, and their motion is described in the guiding center approximation. The model shows that the SCS profile is determined by the relative contribution of two currents: (i) the current supported by demagnetized protons that move along open quasi-adiabatic orbits, and (ii) the electron drift current. The simplest modeled SCS is found to be a multi-layered structure that consists of a thin current sheet embedded into a much thicker analog of a plasma sheet. This result is in good agreement with observations of SCSs at ∼1 au. The analysis of fine structure of different SCSs, including the HCS, shows that an SCS represents a narrow current layer (with a thickness of ∼10{sup 4} km) embedded into a wider region of about 10{sup 5} km, independently of the SCS origin. Therefore, multi-scale structuring is very likely an intrinsic feature of SCSs in the solar wind.

  18. Shear Wave Velocity and Site Amplification Factors for 25 Strong-Motion Instrument Stations Affected by the M5.8 Mineral, Virginia, Earthquake of August 23, 2011

    Science.gov (United States)

    Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.; Zangwill, Aliza; Estevez, Ivan; Lai, Lena

    2015-01-01

    Vertical one-dimensional shear wave velocity (Vs) profiles are presented for 25 strong-motion instrument sites along the Mid-Atlantic eastern seaboard, Piedmont region, and Appalachian region, which surround the epicenter of the M5.8 Mineral, Virginia, Earthquake of August 23, 2011. Testing was performed at sites in Pennsylvania, Maryland, West Virginia, Virginia, the District of Columbia, North Carolina, and Tennessee. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS,30), the average velocity for the entire profile (VS,Z), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The Vs profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. A large trailer-mounted active source was used to shake the ground during the testing and produce the surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.

  19. Adaptive order search and tangent-weighted trade-off for motion estimation in H.264

    Directory of Open Access Journals (Sweden)

    Srinivas Bachu

    2018-04-01

    Full Text Available Motion estimation and compensation play a major role in video compression to reduce the temporal redundancies of the input videos. A variety of block search patterns have been developed for matching the blocks with reduced computational complexity, without affecting the visual quality. In this paper, block motion estimation is achieved through integrating the square as well as the hexagonal search patterns with adaptive order. The proposed algorithm is called, AOSH (Adaptive Order Square Hexagonal Search algorithm, and it finds the best matching block with a reduced number of search points. The searching function is formulated as a trade-off criterion here. Hence, the tangent-weighted function is newly developed to evaluate the matching point. The proposed AOSH search algorithm and the tangent-weighted trade-off criterion are effectively applied to the block estimation process to enhance the visual quality and the compression performance. The proposed method is validated using three videos namely, football, garden and tennis. The quantitative performance of the proposed method and the existing methods is analysed using the Structural SImilarity Index (SSIM and the Peak Signal to Noise Ratio (PSNR. The results prove that the proposed method offers good visual quality than the existing methods. Keywords: Block motion estimation, Square search, Hexagon search, H.264, Video coding

  20. Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit

    Directory of Open Access Journals (Sweden)

    Otmar Loffeld

    2012-04-01

    Full Text Available In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU. The GF-IMU is a special type inertial measurement unit (IMU that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements’ produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters.

  1. Rock mass response to strong ground motion generated by mining induced seismic events and blasting observed at the surface of the excavations in deep level gold mines in South Africa

    Science.gov (United States)

    Milev, Alexander; Durrheim, Ray; Ogasawara, Hiroshi

    2014-05-01

    The strong ground motion generated by mining induced seismic events was studied to characterize the rock mass response and to estimate the site effect on the surface of the underground excavations. A stand-alone instruments, especially designed for recording strong ground motions, were installed underground at a number of deep level gold mines in South Africa. The instruments were recording data at the surface of the stope hangingwalls. A maximum value of 3 m/s was measured. Therefore data were compared to the data recorded in the solid rock by the mine seismic networks to determine the site response. The site response was defined as the ratio of the peak ground velocity measured at the surface of the excavations to the peak ground velocity inferred from the mine seismic data measured in the solid rocks. The site response measured at all mines studied was found to be 9 ± 3 times larger on average. A number of simulated rockbursts were conducted underground in order to estimate the rock mass response when subjected to extreme ground motion and derive the attenuation factors in near field. The rockbursts were simulated by means of large blasts detonated in solid rock close to the sidewall of a tunnel. The numerical models used in the design of the simulated rockbursts were calibrated by small blasts taking place at each experimental site. A dense array of shock type accelerometers was installed along the blasting wall to monitor the attenuation of the strong ground motion as a function of the distance from the source. The attenuation of the ground motion was found to be proportional to the distance from the source following R^-1.1 & R^-1.7 for compact rock and R^-3.1 & R^-3.4 for more fractured rock close to the surface of the tunnel. In addition the ground motion was compared to the quasi-static deformations taking place around the underground excavations. The quasi-static deformations were measured by means of strain, tilt and closure. A good correspondence

  2. Recent developments in matter of strong motions data bank creation held by ENEA (Rome), Imperial College (London) and CEA/IPSN (Paris)

    International Nuclear Information System (INIS)

    Goula, X.; Mohammadioun, G.; Bommer, J.

    1988-03-01

    A pooling of strong motion data held by ENEA (Rome), Imperial College (London) and CEA/IPSN (Paris) will, in the future, give rise to a unified set of data, accessible from any one of the three centers, composed of a data bank of uncorrected accelerograms associated with an accessory data base containing as ample information as possible concerning the earthquake itself and the recording conditions. All three centers are equipped with VAX computer material, and a DECNET link is currently under consideration. The data thus structured is destined to form the basis of a European strong-motion data bank [fr

  3. Detecting and estimating head motion in brain PET acquisitions using raw time-of-flight PET data.

    Science.gov (United States)

    Schleyer, P J; Dunn, J T; Reeves, S; Brownings, S; Marsden, P K; Thielemans, K

    2015-08-21

    Head motion during brain PET imaging is not uncommon and can negatively affect image quality. Motion correction techniques typically either use hardware to prospectively measure head motion, or they divide the acquisition into short fixed-frames and then align and combine these to produce a motion free image. The aim of this work was to retrospectively detect when motion occurred in PET data without the use of motion detection hardware, and then align the frames defined by these motion occurrences. We describe two methods that use either principal component analysis or the motion induced spatial displacements over time to detect motion in raw time-of-flight PET data. The points in time of motion then define the temporal boundaries of frames which are reconstructed without attenuation correction, aligned and combined. Phantom and [18F]-Fallypride patient acquisitions were used to validate and evaluate these approaches, which were compared with motion estimation using 60 s fixed-frames. Both methods identified all motion occurrences in phantom data, and unlike the fixed-frame approach did not exhibit intra-frame motion. With patient acquisitions, images corrected with the motion detection methods increased the average image sharpness by the same amount as the fixed-frame approach, but reduced the number of reconstructions and registrations by a factor of 3.4 on average. Detecting head motion in raw PET data alone is possible, allowing retrospective motion estimation of any listmode brain PET acquisition without additional hardware, subsequently decreasing data processing and potentially reducing intra-frame motion.

  4. Estimation of heart rate variability using a compact radiofrequency motion sensor.

    Science.gov (United States)

    Sugita, Norihiro; Matsuoka, Narumi; Yoshizawa, Makoto; Abe, Makoto; Homma, Noriyasu; Otake, Hideharu; Kim, Junghyun; Ohtaki, Yukio

    2015-12-01

    Physiological indices that reflect autonomic nervous activity are considered useful for monitoring peoples' health on a daily basis. A number of such indices are derived from heart rate variability, which is obtained by a radiofrequency (RF) motion sensor without making physical contact with the user's body. However, the bulkiness of RF motion sensors used in previous studies makes them unsuitable for home use. In this study, a new method to measure heart rate variability using a compact RF motion sensor that is sufficiently small to fit in a user's shirt pocket is proposed. To extract a heart rate related component from the sensor signal, an algorithm that optimizes a digital filter based on the power spectral density of the signal is proposed. The signals of the RF motion sensor were measured for 29 subjects during the resting state and their heart rate variability was estimated from the measured signals using the proposed method and a conventional method. A correlation coefficient between true heart rate and heart rate estimated from the proposed method was 0.69. Further, the experimental results showed the viability of the RF sensor for monitoring autonomic nervous activity. However, some improvements such as controlling the direction of sensing were necessary for stable measurement. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Inter frame motion estimation and its application to image sequence compression: an introduction

    International Nuclear Information System (INIS)

    Cremy, C.

    1996-01-01

    With the constant development of new communication technologies like, digital TV, teleconference, and the development of image analysis applications, there is a growing volume of data to manage. Compression techniques are required for the transmission and storage of these data. Dealing with original images would require the use of expansive high bandwidth communication devices and huge storage media. Image sequence compression can be achieved by means of interframe estimation that consists in retrieving redundant information relative to zones where there is little motion between two frames. This paper is an introduction to some motion estimation techniques like gradient techniques, pel-recursive, block-matching, and its application to image sequence compression. (Author) 17 refs

  6. Strong Erosion-Driven Nongravitational Effects in Orbital Motions of the Kreutz Sungrazing System’s Dwarf Comets

    Science.gov (United States)

    Sekanina, Zdenek; Kracht, Rainer

    2015-03-01

    We investigate the relationships among the angular orbital elements—the longitude of the ascending node Ω, the inclination i, and the argument of perihelion ω—of the Kreutz system’s faint, dwarf sungrazers observed only with the Solar and Heliospheric Observatory/STEREO coronagraphs; their published orbits were derived using a parabolic, purely gravitational approximation. In a plot of i against Ω the bright Kreutz sungrazers (such as C/1843 D1, C/1882 R1, C/1963 R1, etc.) fit a curve of fixed apsidal orientation, whereas the dwarf members are distributed along a curve that makes with the apsidal curve an angle of 15°. The dwarf sungrazers’ perihelion longitude is statistically invariable, but their perihelion latitude increases systematically with Ω. We find that this trend can be explained by a strong erosion-driven nongravitational acceleration normal to the orbit plane, confirmed for several test dwarf Kreutz sungrazers by orbital solutions with nongravitational terms incorporated directly in the equations of motion on a condition of fixed apsidal orientation. Proceeding in three steps, we first apply Marsden et al.'s standard formalism, solving for the normal acceleration only, and eventually relax additional constraints on the nongravitational law and the acceleration’s radial and transverse components. The resulting nongravitational accelerations on the dwarf sungrazers exceed the maximum for cataloged comets in nearly parabolic orbits by up to three orders of magnitude, topping in exceptional cases the Sun’s gravitational acceleration! A mass-loss model suggests that the dwarf sungrazers’ nuclei fragment copiously and their dimensions diminish rapidly near the Sun, implying the objects’ imminent demise shortly before they reach perihelion.

  7. Estimation of stepwise crack propagation in ceramic laminates with strong interfaces

    Directory of Open Access Journals (Sweden)

    K. Štegnerová

    2015-10-01

    Full Text Available During the last years many researchers put so much effort to design layered structures combining different materials in order to improve low fracture toughness and mechanical reliability of the ceramics. It has been proven, that an effective way is to create layered ceramics with strongly bonded interfaces. After the cooling process from the sintering temperature, due to the different coefficients of thermal expansion of individual constituents of the composite, significant internal residual stresses are developed within the layers. These stresses can change the crack behaviour. This results to the higher value of so-called apparent fracture toughness, i.e. higher resistance of the ceramic laminate to the crack propagation. The contribution deals with a description of the specific crack behaviour in the layered alumina-zirconia ceramic laminate. The main aim is to clarify crack behaviour in the compressive layer and provide computational tools for estimation of crack behaviour in the field of strong residual stresses. The crack propagation was investigated on the basis of linear elastic fracture mechanics. Fracture parameters were computed numerically and by author’s routines. Finite element models were developed in order to obtain a stress distribution in the laminate containing a crack and to simulate crack propagation. The sharp change of the crack propagation direction was estimated using Sih’s criterion based on the strain energy density factor. Estimated crack behaviour is qualitatively in a good agreement with experimental observations. Presented approach contributes to the better understanding of the toughening mechanism of ceramic laminates and can be advantageously used for design of new layered ceramic composites and for better prediction of their failure.

  8. Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing

    Science.gov (United States)

    Perreault Levasseur, Laurence; Hezaveh, Yashar D.; Wechsler, Risa H.

    2017-11-01

    In Hezaveh et al. we showed that deep learning can be used for model parameter estimation and trained convolutional neural networks to determine the parameters of strong gravitational-lensing systems. Here we demonstrate a method for obtaining the uncertainties of these parameters. We review the framework of variational inference to obtain approximate posteriors of Bayesian neural networks and apply it to a network trained to estimate the parameters of the Singular Isothermal Ellipsoid plus external shear and total flux magnification. We show that the method can capture the uncertainties due to different levels of noise in the input data, as well as training and architecture-related errors made by the network. To evaluate the accuracy of the resulting uncertainties, we calculate the coverage probabilities of marginalized distributions for each lensing parameter. By tuning a single variational parameter, the dropout rate, we obtain coverage probabilities approximately equal to the confidence levels for which they were calculated, resulting in accurate and precise uncertainty estimates. Our results suggest that the application of approximate Bayesian neural networks to astrophysical modeling problems can be a fast alternative to Monte Carlo Markov Chains, allowing orders of magnitude improvement in speed.

  9. A Highly Parallel and Scalable Motion Estimation Algorithm with GPU for HEVC

    Directory of Open Access Journals (Sweden)

    Yun-gang Xue

    2017-01-01

    Full Text Available We propose a highly parallel and scalable motion estimation algorithm, named multilevel resolution motion estimation (MLRME for short, by combining the advantages of local full search and downsampling. By subsampling a video frame, a large amount of computation is saved. While using the local full-search method, it can exploit massive parallelism and make full use of the powerful modern many-core accelerators, such as GPU and Intel Xeon Phi. We implanted the proposed MLRME into HM12.0, and the experimental results showed that the encoding quality of the MLRME method is close to that of the fast motion estimation in HEVC, which declines by less than 1.5%. We also implemented the MLRME with CUDA, which obtained 30–60x speed-up compared to the serial algorithm on single CPU. Specifically, the parallel implementation of MLRME on a GTX 460 GPU can meet the real-time coding requirement with about 25 fps for the 2560×1600 video format, while, for 832×480, the performance is more than 100 fps.

  10. Modeling of Video Sequences by Gaussian Mixture: Application in Motion Estimation by Block Matching Method

    Directory of Open Access Journals (Sweden)

    Abdenaceur Boudlal

    2010-01-01

    Full Text Available This article investigates a new method of motion estimation based on block matching criterion through the modeling of image blocks by a mixture of two and three Gaussian distributions. Mixture parameters (weights, means vectors, and covariance matrices are estimated by the Expectation Maximization algorithm (EM which maximizes the log-likelihood criterion. The similarity between a block in the current image and the more resembling one in a search window on the reference image is measured by the minimization of Extended Mahalanobis distance between the clusters of mixture. Performed experiments on sequences of real images have given good results, and PSNR reached 3 dB.

  11. Micro-motion Parameter Estimation in Non-Gaussian Noise via Mutual Correntropy

    Directory of Open Access Journals (Sweden)

    Xiong Dingding

    2017-06-01

    Full Text Available This study considered parameter estimations for micro-motion targets embedded in non-Gaussian noise with a Single Input Multiple Output (SIMO radar. A novel estimation algorithm based on mutual correntropy was presented and used to derive the micro-perturbation parameters by exploiting the second and higher-order knowledge of the return signals among multiple channels. Compared with a conventional Fourier Transform (FT method, the method proposed herein had a much higher Signal to Noise Ratio (SNR gain. In addition, the location was derived by employing the Phase-Comparison Monopulse (PCM technique. Finally, several numerical results were provided and discussed.

  12. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 1, Main report

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-11-01

    Since 1982, there has been a major effort expended to evaluate the susceptibility of nuclear Power plant equipment to failure and significant damage during seismic events. This was done by making use of data on the performance of electrical and mechanical equipment in conventional power plants and other similar industrial facilities during strong motion earthquakes. This report is intended as an extension of the seismic experience data collection effort and a compilation of experience data specific to power plant piping and supports designed and constructed US power piping code requirements which have experienced strong motion earthquakes. Eight damaging (Richter Magnitude 7.7 to 5.5) California earthquakes and their effects on 8 power generating facilities in use natural gas and California were reviewed. All of these facilities were visited and evaluated. Seven fossel-fueled (dual use natural gas and oil) and one nuclear fueled plants consisting of a total of 36 individual boiler or reactor units were investigated. Peak horizontal ground accelerations that either had been recorded on site at these facilities or were considered applicable to these power plants on the basis of nearby recordings ranged between 0.20g and 0.5lg with strong motion durations which varied from 3.5 to 15 seconds. Most US nuclear power plants are designed for a safe shutdown earthquake peak ground acceleration equal to 0.20g or less with strong motion durations which vary from 10 to 15 seconds

  13. Visualization of strong around motion calculated from the numerical simulation of Hyogo-ken Nanbu earthquake; Suchi simulation de miru Hyogoken nanbu jishin no kyoshindo

    Energy Technology Data Exchange (ETDEWEB)

    Furumura, T. [Hokkaido Univ. of Education, Sapporo (Japan); Koketsu, K. [The University of Tokyo, Tokyo (Japan). Earthquake Research Institute

    1996-10-01

    Hyogo-ken Nanbu earthquake with a focus in the Akashi straits has given huge earthquake damages in and around Awaji Island and Kobe City in 1995. It is clear that the basement structure, which is steeply deepened at Kobe City from Rokko Mountains towards the coast, and the focus under this related closely to the local generation of strong ground motion. Generation process of the strong ground motion was discussed using 2D and 3D numerical simulation methods. The 3D pseudospectral method was used for the calculation. Space of 51.2km{times}25.6km{times}25.6km was selected for the calculation. This space was discretized with the lattice interval of 200m. Consequently, it was found that the basement structure with a steeply deepened basement, soft and weak geological structure thickly deposited on the basement, and earthquake faults running under the boundary of base rock and sediments related greatly to the generation of strong ground motion. Numerical simulation can be expected to predict the strong ground motion by shallow earthquakes. 9 refs., 7 figs.

  14. Phase-based block matching applied to motion estimation with unconventional beamforming strategies.

    Science.gov (United States)

    Basarab, Adrian; Gueth, Pierre; Liebgott, Hervé; Delachartre, Philippe

    2009-05-01

    A phase-based block matching method adapted to motion estimation with unconventional beamforming strategies is presented. The unconventional beamforming technique used allows us to obtain 2-D RF images with axial and lateral modulations. Based on these images, we propose a method that uses phase images instead of amplitude images. This way of proceeding allows us to provide an analytical solution to the local displacement estimation so that no minimization of a classical cost function is used for the local estimation. For this reason, the local estimator is directly applied to signals, without the need to process a complex cross-correlation function, as is done with most of the phase shift estimators. In this paper, the method is applied to elastography. Results with simulated data show that a downsampling of axial and lateral modulated signals leads to very little change in the accuracy and in the spatial resolution of the proposed method. For example, for decimation factors of 2 in the axial direction and of 4 in the lateral direction, the mean axial absolute error is 3 mum. The same estimation with original images provides a mean axial error of 0.7 microm. The accuracy of the lateral motion is unchanged in this case. The accuracy of our method with downsampled signals is an important issue in the purpose of a real-time implementation. With experimental data, for the same level of estimation error, classical block matching using the maximum of cross correlation as a local estimator requires images that are 36 times larger (in number of pixels) and consequently a computational time roughly 10 times longer. Our phase block matching is also shown to provide 10 percent less error than a motion estimation method based on seeking the zero of the complex correlation function phase. Finally, it is shown that given the separability of the local estimator that we propose, our method can be applied on both n-D signals and classical RF ultrasound images. The phase block

  15. Fully Pipelined Parallel Architecture for Candidate Block and Pixel-Subsampling-Based Motion Estimation

    Directory of Open Access Journals (Sweden)

    Reeba Korah

    2008-01-01

    Full Text Available This paper presents a low power and high speed architecture for motion estimation with Candidate Block and Pixel Subsampling (CBPS Algorithm. Coarse-to-fine search approach is employed to find the motion vector so that the local minima problem is totally eliminated. Pixel subsampling is performed in the selected candidate blocks which significantly reduces computational cost with low quality degradation. The architecture developed is a fully pipelined parallel design with 9 processing elements. Two different methods are deployed to reduce the power consumption, parallel and pipelined implementation and parallel accessing to memory. For processing 30 CIF frames per second our architecture requires a clock frequency of 4.5 MHz.

  16. Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice

    Science.gov (United States)

    Kaklamanos, James; Baise, Laurie G.; Boore, David M.

    2011-01-01

    The ground-motion prediction equations (GMPEs) developed as part of the Next Generation Attenuation of Ground Motions (NGA-West) project in 2008 are becoming widely used in seismic hazard analyses. However, these new models are considerably more complicated than previous GMPEs, and they require several more input parameters. When employing the NGA models, users routinely face situations in which some of the required input parameters are unknown. In this paper, we present a framework for estimating the unknown source, path, and site parameters when implementing the NGA models in engineering practice, and we derive geometrically-based equations relating the three distance measures found in the NGA models. Our intent is for the content of this paper not only to make the NGA models more accessible, but also to help with the implementation of other present or future GMPEs.

  17. Kernel density estimation-based real-time prediction for respiratory motion

    International Nuclear Information System (INIS)

    Ruan, Dan

    2010-01-01

    Effective delivery of adaptive radiotherapy requires locating the target with high precision in real time. System latency caused by data acquisition, streaming, processing and delivery control necessitates prediction. Prediction is particularly challenging for highly mobile targets such as thoracic and abdominal tumors undergoing respiration-induced motion. The complexity of the respiratory motion makes it difficult to build and justify explicit models. In this study, we honor the intrinsic uncertainties in respiratory motion and propose a statistical treatment of the prediction problem. Instead of asking for a deterministic covariate-response map and a unique estimate value for future target position, we aim to obtain a distribution of the future target position (response variable) conditioned on the observed historical sample values (covariate variable). The key idea is to estimate the joint probability distribution (pdf) of the covariate and response variables using an efficient kernel density estimation method. Then, the problem of identifying the distribution of the future target position reduces to identifying the section in the joint pdf based on the observed covariate. Subsequently, estimators are derived based on this estimated conditional distribution. This probabilistic perspective has some distinctive advantages over existing deterministic schemes: (1) it is compatible with potentially inconsistent training samples, i.e., when close covariate variables correspond to dramatically different response values; (2) it is not restricted by any prior structural assumption on the map between the covariate and the response; (3) the two-stage setup allows much freedom in choosing statistical estimates and provides a full nonparametric description of the uncertainty for the resulting estimate. We evaluated the prediction performance on ten patient RPM traces, using the root mean squared difference between the prediction and the observed value normalized by the

  18. Overview of the relations earthquake source parameters and the specification of strong ground motion for design purposes

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1977-08-01

    One of the most important steps in the seismic design process is the specification of the appropriate ground motion to be input into the design analysis. From the point-of-view of engineering design analysis, the important parameters are peak ground acceleration, spectral shape and peak spectral levels. In a few cases, ground displacement is a useful parameter. The earthquake is usually specified by giving its magnitude and either the epicentral distance or the distance of the closest point on the causitive fault to the site. Typically, the appropriate ground motion parameters are obtained using the specified magnitude and distance in equations obtained from regression analysis among the appropriate variables. Two major difficulties with such an approach are: magnitude is not the best parameter to use to define the strength of an earthquake, and little near-field data is available to establish the appropriate form for the attenuation of the ground motion with distance, source size and strength. These difficulties are important for designing a critical facility; i.e., one for which a very low risk of exceeding the design ground motion is required. Examples of such structures are nuclear power plants, schools and hospitals. for such facilities, a better understanding of the relation between the ground motion and the important earthquake source parameters could be very useful for several reasons

  19. Stochastic calculus analysis of optical time-of-flight range imaging and estimation of radial motion.

    Science.gov (United States)

    Streeter, Lee

    2017-07-01

    Time-of-flight range imaging is analyzed using stochastic calculus. Through a series of interpretations and simplifications, the stochastic model leads to two methods for estimating linear radial velocity: maximum likelihood estimation on the transition probability distribution between measurements, and a new method based on analyzing the measured correlation waveform and its first derivative. The methods are tested in a simulated motion experiment from (-40)-(+40)  m/s, with data from a camera imaging an object on a translation stage. In tests maximum likelihood is slow and unreliable, but when it works it estimates the linear velocity with standard deviation of 1 m/s or better. In comparison the new method is fast and reliable but works in a reduced velocity range of (-20)-(+20)  m/s with standard deviation ranging from 3.5 m/s to 10 m/s.

  20. Methodology for estimating realistic responses of buildings and components under earthquake motion and its application

    International Nuclear Information System (INIS)

    Ebisawa, Katsumi; Abe, Kiyoharu; Kohno, Kunihiko; Nakamura, Hidetaka; Itoh, Mamoru.

    1996-11-01

    Failure probabilities of buildings and components under earthquake motion are estimated as conditional probabilities that their realistic responses exceed their capacities. Two methods for estimating their failure probabilities have already been developed. One is a detailed method developed in the Seismic Safety margins Research Program of Lawrence Livermore National Laboratory in U.S.A., which is called 'SSMRP method'. The other is a simplified method proposed by Kennedy et al., which is called 'Zion method'. The Zion method is sometimes called 'response factor method'. The authors adopted the response factor method. In order to enhance the estimation accuracy of failure probabilities of buildings and components, however, a new methodology for improving the response factor method was proposed. Based on the improved method, response factors of buildings and components designed to seismic design standard in Japan were estimated, and their realistic responses were also calculated. By using their realistic responses and capacities, the failure probabilities of a reactor building and relays were estimated. In order to identify the difference between new method, SSMRP method and original response factor method, the failure probabilities were compared estimated by these three methods. A similar method of SSMRP was used instead of the original SSMRP for saving time and labor. The viewpoints for selecting the methods to estimate failure probabilities of buildings and components were also proposed. (author). 55 refs

  1. Real-time tumor motion estimation using respiratory surrogate via memory-based learning

    International Nuclear Information System (INIS)

    Li Ruijiang; Xing Lei; Lewis, John H; Berbeco, Ross I

    2012-01-01

    th percentile error of 3.4 mm on unseen test data. The average 3D error was further reduced to 1.4 mm when the model was tuned to its optimal setting for each respiratory trace. In one trace where a few outliers are present in the training data, the proposed method achieved an error reduction of as much as ∼50% compared with the best linear model (1.0 mm versus 2.1 mm). The memory-based learning technique is able to accurately capture the highly complex and nonlinear relations between tumor and surrogate motion in an efficient manner (a few milliseconds per estimate). Furthermore, the algorithm is particularly suitable to handle situations where the training data are contaminated by large errors or outliers. These desirable properties make it an ideal candidate for accurate and robust tumor gating/tracking using respiratory surrogates. (paper)

  2. Development of rapid methods for relaxation time mapping and motion estimation using magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gilani, Syed Irtiza Ali

    2008-09-15

    Recent technological developments in the field of magnetic resonance imaging have resulted in advanced techniques that can reduce the total time to acquire images. For applications such as relaxation time mapping, which enables improved visualisation of in vivo structures, rapid imaging techniques are highly desirable. TAPIR is a Look- Locker-based sequence for high-resolution, multislice T{sub 1} relaxation time mapping. Despite the high accuracy and precision of TAPIR, an improvement in the k-space sampling trajectory is desired to acquire data in clinically acceptable times. In this thesis, a new trajectory, termed line-sharing, is introduced for TAPIR that can potentially reduce the acquisition time by 40 %. Additionally, the line-sharing method was compared with the GRAPPA parallel imaging method. These methods were employed to reconstruct time-point images from the data acquired on a 4T high-field MR research scanner. Multislice, multipoint in vivo results obtained using these methods are presented. Despite improvement in acquisition speed, through line-sharing, for example, motion remains a problem and artefact-free data cannot always be obtained. Therefore, in this thesis, a rapid technique is introduced to estimate in-plane motion. The presented technique is based on calculating the in-plane motion parameters, i.e., translation and rotation, by registering the low-resolution MR images. The rotation estimation method is based on the pseudo-polar FFT, where the Fourier domain is composed of frequencies that reside in an oversampled set of non-angularly, equispaced points. The essence of the method is that unlike other Fourier-based registration schemes, the employed approach does not require any interpolation to calculate the pseudo-polar FFT grid coordinates. Translation parameters are estimated by the phase correlation method. However, instead of two-dimensional analysis of the phase correlation matrix, a low complexity subspace identification of the phase

  3. A Robust Mass Estimator for Dark Matter Subhalo Perturbations in Strong Gravitational Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Quinn E. [Department of Science, Borough of Manhattan Community College, City University of New York, New York, NY 10007 (United States); Kaplinghat, Manoj [Department of Physics and Astronomy, University of California, Irvine CA 92697 (United States); Li, Nan [Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2017-08-20

    A few dark matter substructures have recently been detected in strong gravitational lenses through their perturbations of highly magnified images. We derive a characteristic scale for lensing perturbations and show that they are significantly larger than the perturber’s Einstein radius. We show that the perturber’s projected mass enclosed within this radius, scaled by the log-slope of the host galaxy’s density profile, can be robustly inferred even if the inferred density profile and tidal radius of the perturber are biased. We demonstrate the validity of our analytic derivation using several gravitational lens simulations where the tidal radii and the inner log-slopes of the density profile of the perturbing subhalo are allowed to vary. By modeling these simulated data, we find that our mass estimator, which we call the effective subhalo lensing mass, is accurate to within about 10% or smaller in each case, whereas the inferred total subhalo mass can potentially be biased by nearly an order of magnitude. We therefore recommend that the effective subhalo lensing mass be reported in future lensing reconstructions, as this will allow for a more accurate comparison with the results of dark matter simulations.

  4. Force Tracking with Feed-Forward Motion Estimation for Beating Heart Surgery.

    Science.gov (United States)

    Yuen, Shelten G; Perrin, Douglas P; Vasilyev, Nikolay V; Del Nido, Pedro J; Howe, Robert D

    2010-08-16

    The manipulation of fast moving, delicate tissues in beating heart procedures presents a considerable challenge to the surgeon. A robotic force tracking system can assist the surgeon by applying precise contact forces to the beating heart during surgical manipulation. Standard force control approaches cannot safely attain the required bandwidth for this application due to vibratory modes within the robot structure. These vibrations are a limitation even for single degree of freedom systems driving long surgical instruments. These bandwidth limitations can be overcome by incorporating feed-forward motion terms in the control law. For intracardiac procedures, the required motion estimates can be derived from 3D ultrasound imaging. Dynamic analysis shows that a force controller with feed-forward motion terms can provide safe and accurate force tracking for contact with structures within the beating heart. In vivo validation confirms that this approach confers a 50% reduction in force fluctuations when compared to a standard force controller and a 75% reduction in fluctuations when compared to manual attempts to maintain the same force.

  5. Motion estimation and compensation in dynamic spiral CT reconstruction; Estimation et compensation de mouvement en reconstruction dynamique de tomodensitometrie helicoidale

    Energy Technology Data Exchange (ETDEWEB)

    Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St

    2004-07-01

    Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)

  6. A study of Guptkashi, Uttarakhand earthquake of 6 February 2017 (M w 5.3) in the Himalayan arc and implications for ground motion estimation

    Science.gov (United States)

    Srinagesh, Davuluri; Singh, Shri Krishna; Suresh, Gaddale; Srinivas, Dakuri; Pérez-Campos, Xyoli; Suresh, Gudapati

    2018-02-01

    The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake's location (30.546° N, 79.063° E), depth (H = 19 km), the seismic moment (M 0 = 1.12×1017 Nm, M w 5.3), the focal mechanism (φ = 280°, δ = 14°, λ = 84°), the source radius (a = 1.3 km), and the static stress drop (Δσ s 22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω -2 source model) by attenuation parameters Q(f) = 500f 0.9, κ = 0.04 s, and f max = infinite, and a stress drop of Δσ = 70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤ 200 km during five other earthquakes in the region (4.6 ≤ M w ≤ 6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.

  7. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (United States)

    1995-02-01

    This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems.

  8. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-02-01

    This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems

  9. Estimation of Spatial-Temporal Gait Parameters Using a Low-Cost Ultrasonic Motion Analysis System

    Directory of Open Access Journals (Sweden)

    Yongbin Qi

    2014-08-01

    Full Text Available In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications.

  10. Estimation of spatial-temporal gait parameters using a low-cost ultrasonic motion analysis system.

    Science.gov (United States)

    Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil

    2014-08-20

    In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications.

  11. A Mathematical Model to Estimate the Position of Mobile Robot by Sensing Caster Wheel Motion

    Directory of Open Access Journals (Sweden)

    Amarendra Jnana H.

    2018-01-01

    Full Text Available This paper describes the position estimation of mobile robot by sensing caster wheel motion. A mathematical model is developed to determine the position of mobile robot by sensing the angular velocity and heading angle of the caster wheel. Using the established equations, simulations were carried out using MATLAB version 8.6 to observe and verify the position coordinates of mobile robot and in turn obtain its trajectory. The simulation results show that the angular velocity of caster wheel and heading angle calculated from the sensor output readings with the help of inverse kinematics equations matches well with that of actual values given as input for simulation. Simulation result of tracking rectangular trajectory implies that the path traced by the mobile robot can also be determined from the sensor output readings. This concept can be implemented on a real mobile robot for estimation of its position.

  12. Estimation of Joint types and Joint Limits from Motion capture data

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Erleben, Kenny

    2009-01-01

    It is time-consuming for an animator to explicitly model joint types and joint limits of articulated figures. In this paper we describe a simple and fast approach to automated joint estimation from motion capture data of articulated figures. Our method will make the joint modeling more efficient...... and less time consuming for the animator by providing a good starting estimate that can be fine-tuned or extended by the animator if she wishes, without restricting her artistic freedom. Our method is simple, easy to implement and specific for the types of articulated figures used in interactive animation...... such as computer games. Other work for joint limit modeling consider more complex and general purpose models. However, these are not immediately suitable for inverse kinematics skeletons used in interactive applications....

  13. On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid

    Czech Academy of Sciences Publication Activity Database

    Nečasová, Šárka; Wolf, J.

    2016-01-01

    Roč. 36, č. 3 (2016), s. 1539-1562 ISSN 1078-0947 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : incompressible fluid * motion of rigid body * strong solutions Subject RIV: BA - General Mathematics Impact factor: 1.099, year: 2016 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11589

  14. Predictive fine granularity successive elimination for fast optimal block-matching motion estimation.

    Science.gov (United States)

    Zhu, Ce; Qi, Wei-Song; Ser, Wee

    2005-02-01

    Given the number of checking points, the speed of block motion estimation depends on how fast the block matching is. In this paper, a new framework, fine granularity successive elimination (FGSE), is proposed for fast optimal block matching in motion estimation. The FGSE features providing a sequence of nondecreasing fine-grained boundary levels to reject a checking point using as little computation as possible, where block complexity is utilized to determine the order of partitioning larger sub-blocks into smaller subblocks in the creation of the fine-grained boundary levels. It is shown that the well-known successive elimination algorithm (SEA) and multilevel successive elimination algorithm (MSEA) are just two special cases in the FGSE framework. Moreover, in view that two adjacent checking points (blocks) share most of the block pixels with just one pixel shifting horizontally or vertically, we develop a scheme to predict the rejection level for a candidate by exploiting the correlation of matching errors between two adjacent checking points. The resulting predictive FGSE algorithm can further reduce computation load by skipping some redundant boundary levels. Experimental results are presented to verify substantial computational savings of the proposed algorithm in comparison with the SEA/MSEA.

  15. HIERARCHICAL ADAPTIVE ROOD PATTERN SEARCH FOR MOTION ESTIMATION AT VIDEO SEQUENCE ANALYSIS

    Directory of Open Access Journals (Sweden)

    V. T. Nguyen

    2016-05-01

    Full Text Available Subject of Research.The paper deals with the motion estimation algorithms for the analysis of video sequences in compression standards MPEG-4 Visual and H.264. Anew algorithm has been offered based on the analysis of the advantages and disadvantages of existing algorithms. Method. Thealgorithm is called hierarchical adaptive rood pattern search (Hierarchical ARPS, HARPS. This new algorithm includes the classic adaptive rood pattern search ARPS and hierarchical search MP (Hierarchical search or Mean pyramid. All motion estimation algorithms have been implemented using MATLAB package and tested with several video sequences. Main Results. The criteria for evaluating the algorithms were: speed, peak signal to noise ratio, mean square error and mean absolute deviation. The proposed method showed a much better performance at a comparable error and deviation. The peak signal to noise ratio in different video sequences shows better and worse results than characteristics of known algorithms so it requires further investigation. Practical Relevance. Application of this algorithm in MPEG-4 and H.264 codecs instead of the standard can significantly reduce compression time. This feature enables to recommend it in telecommunication systems for multimedia data storing, transmission and processing.

  16. Motion and deformation estimation from medical imagery by modeling sub-structure interaction and constraints

    KAUST Repository

    Sundaramoorthi, Ganesh

    2012-09-13

    This paper presents a novel medical image registration algorithm that explicitly models the physical constraints imposed by objects or sub-structures of objects that have differing material composition and border each other, which is the case in most medical registration applications. Typical medical image registration algorithms ignore these constraints and therefore are not physically viable, and to incorporate these constraints would require prior segmentation of the image into regions of differing material composition, which is a difficult problem in itself. We present a mathematical model and algorithm for incorporating these physical constraints into registration / motion and deformation estimation that does not require a segmentation of different material regions. Our algorithm is a joint estimation of different material regions and the motion/deformation within these regions. Therefore, the segmentation of different material regions is automatically provided in addition to the image registration satisfying the physical constraints. The algorithm identifies differing material regions (sub-structures or objects) as regions where the deformation has different characteristics. We demonstrate the effectiveness of our method on the analysis of cardiac MRI which includes the detection of the left ventricle boundary and its deformation. The experimental results indicate the potential of the algorithm as an assistant tool for the quantitative analysis of cardiac functions in the diagnosis of heart disease.

  17. FPSoC-Based Architecture for a Fast Motion Estimation Algorithm in H.264/AVC

    Directory of Open Access Journals (Sweden)

    Obianuju Ndili

    2009-01-01

    Full Text Available There is an increasing need for high quality video on low power, portable devices. Possible target applications range from entertainment and personal communications to security and health care. While H.264/AVC answers the need for high quality video at lower bit rates, it is significantly more complex than previous coding standards and thus results in greater power consumption in practical implementations. In particular, motion estimation (ME, in H.264/AVC consumes the largest power in an H.264/AVC encoder. It is therefore critical to speed-up integer ME in H.264/AVC via fast motion estimation (FME algorithms and hardware acceleration. In this paper, we present our hardware oriented modifications to a hybrid FME algorithm, our architecture based on the modified algorithm, and our implementation and prototype on a PowerPC-based Field Programmable System on Chip (FPSoC. Our results show that the modified hybrid FME algorithm on average, outperforms previous state-of-the-art FME algorithms, while its losses when compared with FSME, in terms of PSNR performance and computation time, are insignificant. We show that although our implementation platform is FPGA-based, our implementation results compare favourably with previous architectures implemented on ASICs. Finally we also show an improvement over some existing architectures implemented on FPGAs.

  18. Quantitative estimation of the parameters for self-motion driven by difference in surface tension.

    Science.gov (United States)

    Suematsu, Nobuhiko J; Sasaki, Tomohiro; Nakata, Satoshi; Kitahata, Hiroyuki

    2014-07-15

    Quantitative information on the parameters associated with self-propelled objects would enhance the potential of this research field; for example, finding a realistic way to develop a functional self-propelled object and quantitative understanding of the mechanism of self-motion. We therefore estimated five main parameters, including the driving force, of a camphor boat as a simple self-propelled object that spontaneously moves on water due to difference in surface tension. The experimental results and mathematical model indicated that the camphor boat generated a driving force of 4.2 μN, which corresponds to a difference in surface tension of 1.1 mN m(-1). The methods used in this study are not restricted to evaluate the parameters of self-motion of a camphor boat, but can be applied to other self-propelled objects driven by difference in surface tension. Thus, our investigation provides a novel method to quantitatively estimate the parameters for self-propelled objects driven by the interfacial tension difference.

  19. Behavior of peak values and spectral ordinates of near-source strong ground motion over the smart 1 array

    Energy Technology Data Exchange (ETDEWEB)

    Niazi, M.

    1990-06-01

    The array recordings are used to investigate several important properties of the seismic ground motions themselves. The results reported here address the question of the variability of the peak vertical and horizontal accelerations, velocities and displacements. Statistical treatment of the variability is feasible when ground motions are recorded, as in SMART 1, at a group of stations within a limited distance. The three rings of the SMART 1 array have radii of 200 m, 1 km and 2 km. Since it became operational in September 1980, it has recorded accelerations up to 0.33g and 0.34g on the horizontal and vertical components, respectively. At present there are over 3,000 accelerograms from 53 local earthquakes available. From the set of observations, 12 earthquakes have been selected providing more than 700 accelerograms for analysis and statistical treatment. Nonlinear regression procedure are used to fit the peak values to an attenuation form which has as parameters, earthquake magnitude and source-to-site distance. Spectral information on ground motion is included; correlations are made between spectral ordinate values at 23 discrete frequencies in the range of engineering interest. Among the notable results is the finding that the ratio of the vertical to horizontal response spectral ordinates is less than the often used value of 2/3 for periods longer than about 0.2 second, and also for all frequencies at distances greater than 30 km from the source.

  20. Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map.

    Science.gov (United States)

    Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S

    2008-04-11

    A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker-Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes.

  1. Fault-tolerant feature-based estimation of space debris rotational motion during active removal missions

    Science.gov (United States)

    Biondi, Gabriele; Mauro, Stefano; Pastorelli, Stefano; Sorli, Massimo

    2018-05-01

    One of the key functionalities required by an Active Debris Removal mission is the assessment of the target kinematics and inertial properties. Passive sensors, such as stereo cameras, are often included in the onboard instrumentation of a chaser spacecraft for capturing sequential photographs and for tracking features of the target surface. A plenty of methods, based on Kalman filtering, are available for the estimation of the target's state from feature positions; however, to guarantee the filter convergence, they typically require continuity of measurements and the capability of tracking a fixed set of pre-defined features of the object. These requirements clash with the actual tracking conditions: failures in feature detection often occur and the assumption of having some a-priori knowledge about the shape of the target could be restrictive in certain cases. The aim of the presented work is to propose a fault-tolerant alternative method for estimating the angular velocity and the relative magnitudes of the principal moments of inertia of the target. Raw data regarding the positions of the tracked features are processed to evaluate corrupted values of a 3-dimentional parameter which entirely describes the finite screw motion of the debris and which primarily is invariant on the particular set of considered features of the object. Missing values of the parameter are completely restored exploiting the typical periodicity of the rotational motion of an uncontrolled satellite: compressed sensing techniques, typically adopted for recovering images or for prognostic applications, are herein used in a completely original fashion for retrieving a kinematic signal that appears sparse in the frequency domain. Due to its invariance about the features, no assumptions are needed about the target's shape and continuity of the tracking. The obtained signal is useful for the indirect evaluation of an attitude signal that feeds an unscented Kalman filter for the estimation of

  2. Relative Attitude Estimation for a Uniform Motion and Slowly Rotating Noncooperative Spacecraft

    Directory of Open Access Journals (Sweden)

    Liu Zhang

    2017-01-01

    Full Text Available This paper presents a novel relative attitude estimation approach for a uniform motion and slowly rotating noncooperative spacecraft. It is assumed that the uniform motion and slowly rotating noncooperative chief spacecraft is in failure or out of control and there is no a priori rotation rate information. We utilize a very fast binary descriptor based on binary robust independent elementary features (BRIEF to obtain the features of the target, which are rotational invariance and resistance to noise. And then, we propose a novel combination of single candidate random sample consensus (RANSAC with extended Kalman filter (EKF that makes use of the available prior probabilistic information from the EKF in the RANSAC model hypothesis stage. The advantage of this combination obviously reduces the sample size to only one, which results in large computational savings without the loss of accuracy. Experimental results from real image sequence of a real model target show that the relative angular error is about 3.5% and the mean angular velocity error is about 0.1 deg/s.

  3. Temporal estimation in prediction motion tasks is biased by a moving destination.

    Science.gov (United States)

    Flavell, Jonathan C; Barrett, Brendan T; Buckley, John G; Harris, Julie M; Scally, Andrew J; Beebe, Nathan B; Cruickshank, Alice G; Bennett, Simon J

    2018-02-01

    An ability to predict the time-to-contact (TTC) of moving objects that become momentarily hidden is advantageous in everyday life and could be particularly so in fast-ball sports. Prediction motion (PM) experiments have sought to test this ability using tasks where a disappearing target moves toward a stationary destination. Here, we developed two novel versions of the PM task in which the destination either moved away from (Chase) or toward (Attract) the moving target. The target and destination moved with different speeds such that collision occurred 750, 1,000 or 1,250 ms after target occlusion. To determine if domain-specific experience conveys an advantage in PM tasks, we compared the performance of different sporting groups ranging from internationally competing athletes to non-sporting controls. There was no difference in performance between sporting groups and non-sporting controls but there were significant and independent effects on response error by target speed, destination speed, and occlusion period. We simulated these findings using a revised version of the linear TTC model of response timing for PM tasks (Yakimoff, Bocheva, & Mitrania, 1987; Yakimoff, Mateeff, Ehrenstein, & Hohnsbein, 1993) in which retinal input from the moving destination biases the internal representation of the occluded target. This revision closely reproduced the observed patterns of response error and thus describes a means by which the brain might estimate TTC when the target and destination are in motion.

  4. Active Head Motion Compensation of TMS Robotic System Using Neuro-Fuzzy Estimation

    Directory of Open Access Journals (Sweden)

    Wan Zakaria W.N.

    2016-01-01

    Full Text Available Transcranial Magnetic Stimulation (TMS allows neuroscientist to study human brain behaviour and also become an important technique for changing the activity of brain neurons and the functions they sub serve. However, conventional manual procedure and robotized TMS are currently unable to precisely position the TMS coil because of unconstrained subject’s head movement and excessive contact force between the coil and subject’s head. This paper addressed this challenge by proposing an adaptive neuro-fuzzy force control to enable low contact force with a moving target surface. A learning and adaption mechanism is included in the control scheme to improve position disturbance estimation. The results show the ability of the proposed force control scheme to compensate subject’s head motions while maintaining desired contact force, thus allowing for more accurate and repeatable TMS procedures.

  5. Compilation, assessment and expansion of the strong earthquake ground motion data base. Seismic Safety Margins Research Program (SSMRP)

    International Nuclear Information System (INIS)

    Crouse, C.B.; Hileman, J.A.; Turner, B.E.; Martin, G.R.

    1980-09-01

    A catalog has been prepared which contains information for: (1) world-wide, ground-motion accelerograms (2) the accelerograph sites where these records were obtained, and (3) the seismological parameters of the causative earthquakes. The catalog is limited to data for those accelerograms which have been digitized and published. In addition, the quality and completeness of these data are assessed. This catalog is unique because it is the only publication which contains comprehensive information on the recording conditions of all known digitized accelerograms. However, information for many accelerograms is missing. Although some literature may have been overlooked, most of the missing data has not been published. Nevertheless, the catalog provides a convenient reference and useful tool for earthquake engineering research and applications. (author)

  6. Understanding the distribution of strong motions and the damage caused during the September 19th, 2017 earthquake

    Science.gov (United States)

    Aguirre, J.; Ramirez-Guzman, L.; Leonardo Suárez, M.; Quintanar, L.

    2017-12-01

    On September 19, 2017, a normal fault earthquake of magnitude Mw 7.1 occurred 120 km from Mexico City. The quake generated large accelerations, more than 200 cm/s*s at least in two stations in Mexico City, where there was extensive damage. The damage pattern, which includes more than 40 building collapses, differs from the one induced by the 1985 Michoacan earthquake. While the observed accelerations in stations located in the Hill and Transition zones are the largest ever recorded, in the Lake zone the intensities were lower than those recorded in 1985. Even though the proximity of the epicenter could partially explain the accelerations, other factors need to be explored to understand the nuances of the ground motion. Unlike 1985, there is a substantially larger number of acceleration records in Mexico City, operated and maintained by different institutions. In this paper, we present the analysis of acceleration records and 3D numerical simulations to understand if effects such as focusing and directionality participate in the amplified motion. Finally, transfer functions between Lake and Hill zones and response and design spectral values are analyzed in regions where the building code requirements were exceeded. Acknowledgments: Records used in this research are obtained, processed and maintained by the National Autonomous University of Mexico through the Seismic Instrumentation Unit of the Institute of Engineering and the National Seismological Service of the Institute of Geophysics. The Centro de Intrumentacion y Registro Sismico A.C. (CIRES) kindly provided their records. This Project was funded in part by the Secretaria de Ciencia, Tecnología e Innovación (SECITI) of Mexico City. Project SECITI/073/2016.

  7. Deep Borehole Instrumentation Along San Francisco Bay Bridges: 1996 - 2003 and Strong Ground Motion Systhesis Along the San Francisco/Oakland Bay Bridge

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L; Foxall, W; Kasameyer, P; larsen, S; Hayek, C; Tyler-Turpin, C; Aquilino, J; Long, L

    2005-04-22

    As a result of collaboration between the Berkeley Seismographic Station, Lawrence Livermore National Laboratory, and Caltrans, instrument packages have been placed in bedrock in six boreholes and two surface sites along the San Francisco/Oakland Bay Bridge. Since 1996 over 200 local earthquakes have been recorded. Prior to this study few seismic recording instruments existed in bed-rock in San Francisco Bay. We utilized the data to perform analysis of ground motion variability, wave passage, site response, and up-and down-hole wave propagation along the Bay Bridge. We also synthesized strong ground motion at nine locations along the Bay Bridge. Key to these studies is LLNL's effort to exploit the information available in weak ground motions (generally from earthquakes < M=4.0) to enhance predictions of seismic hazards. We found that Yerba Island has no apparent site response at the surface relative to a borehole site. The horizontal to vertical spectral ratio method best revealed no site response, while the complex signal spectral ratio method had the lowest variance for spectral ratios and best predicted surface recordings when the borehole recording was used as input. Both methods identified resonances at about the same frequencies. Regional attenuation results in a significant loss of high frequencies in both surface and borehole recordings. Records are band limited at near 3 Hz. Therefore a traditional rock outcrop site response, flat to high frequency in displacement, is not available. We applied a methodology to predict and synthesize strong ground motion along the San Francisco/Oakland Bay Bridge from a M=7.25 earthquake along the Hayward fault, about12 km distant. We synthesized for three-components and broad-band (0.0-25.0 Hz) ground motion accelerations, velocities, and displacements. We examined two different possible rupture scenarios, a ''mean'' and ''one standard deviation'' model. We combined the high

  8. High temporal resolution motion estimation using a self-navigated simultaneous multi-slice echo planar imaging acquisition.

    Science.gov (United States)

    Teruel, Jose R; Kuperman, Joshua M; Dale, Anders M; White, Nathan S

    2018-02-13

    Subject motion is known to produce spurious covariance among time-series in functional connectivity that has been reported to induce distance-dependent spurious correlations. To present a feasibility study for applying the extended Kalman filter (EKF) framework for high temporal resolution motion correction of resting state functional MRI (rs-fMRI) series using each simultaneous multi-slice (SMS) echo planar imaging (EPI) shot as its own navigator. Prospective feasibility study. Three human volunteers. 3T GE DISCOVERY MR750 scanner using a 32-channel head coil. Simultaneous multi-slice rs-fMRI sequence with repetition time (TR)/echo time (TE) = 800/30 ms, and SMS factor 6. Motion estimates were computed using two techniques: a conventional rigid-body volume-wise registration; and a high-temporal resolution motion estimation rigid-body approach. The reference image was resampled using the estimates obtained from both approaches and the difference between these predicted volumes and the original moving series was summarized using the normalized mean squared error (NMSE). Direct comparison of NMSE values. High-temporal motion estimation was always superior to volume-wise motion estimation for the sample presented. For staged continuous rotations, the NMSE using high-temporal resolution motion estimates ranged between [0.130, 0.150] for the first volunteer (in-plane rotations), between [0.060, 0.068] for the second volunteer (in-plane rotations), and between [0.063, 0.080] for the third volunteer (through-plane rotations). These values went up to [0.384, 0.464]; [0.136, 0.179]; and [0.080, 0.096], respectively, when using volume-wise motion estimates. Accurate high-temporal rigid-body motion estimates can be obtained for rs-fMRI taking advantage of simultaneous multi-slice EPI sub-TR shots. 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  9. Estimation of cardiac motion in cine-MRI sequences by correlation transform optical flow of monogenic features distance

    Science.gov (United States)

    Gao, Bin; Liu, Wanyu; Wang, Liang; Liu, Zhengjun; Croisille, Pierre; Delachartre, Philippe; Clarysse, Patrick

    2016-12-01

    Cine-MRI is widely used for the analysis of cardiac function in clinical routine, because of its high soft tissue contrast and relatively short acquisition time in comparison with other cardiac MRI techniques. The gray level distribution in cardiac cine-MRI is relatively homogenous within the myocardium, and can therefore make motion quantification difficult. To ensure that the motion estimation problem is well posed, more image features have to be considered. This work is inspired by a method previously developed for color image processing. The monogenic signal provides a framework to estimate the local phase, orientation, and amplitude, of an image, three features which locally characterize the 2D intensity profile. The independent monogenic features are combined into a 3D matrix for motion estimation. To improve motion estimation accuracy, we chose the zero-mean normalized cross-correlation as a matching measure, and implemented a bilateral filter for denoising and edge-preservation. The monogenic features distance is used in lieu of the color space distance in the bilateral filter. Results obtained from four realistic simulated sequences outperformed two other state of the art methods even in the presence of noise. The motion estimation errors (end point error) using our proposed method were reduced by about 20% in comparison with those obtained by the other tested methods. The new methodology was evaluated on four clinical sequences from patients presenting with cardiac motion dysfunctions and one healthy volunteer. The derived strain fields were analyzed favorably in their ability to identify myocardial regions with impaired motion.

  10. Joint Motion Estimation and Layer Segmentation in Transparent Image Sequences—Application to Noise Reduction in X-Ray Image Sequences

    Directory of Open Access Journals (Sweden)

    Jean Liénard

    2009-01-01

    Full Text Available This paper is concerned with the estimation of the motions and the segmentation of the spatial supports of the different layers involved in transparent X-ray image sequences. Classical motion estimation methods fail on sequences involving transparent effects since they do not explicitly model this phenomenon. We propose a method that comprises three main steps: initial block-matching for two-layer transparent motion estimation, motion clustering with 3D Hough transform, and joint transparent layer segmentation and parametric motion estimation. It is validated on synthetic and real clinical X-ray image sequences. Secondly, we derive an original transparent motion compensation method compatible with any spatiotemporal filtering technique. A direct transparent motion compensation method is proposed. To overcome its limitations, a novel hybrid filter is introduced which locally selects which type of motion compensation is to be carried out for optimal denoising. Convincing experiments on synthetic and real clinical images are also reported.

  11. An Analog Processor Array Implementing Interconnect-Efficient Reference Data Shift and SAD/SSD Extraction for Motion Estimation

    Directory of Open Access Journals (Sweden)

    Jonne Poikonen

    2009-01-01

    Full Text Available A cellular analog processor array for use in variable block-size motion estimation with a new simple method for shifting reference image data is presented. The new shift method leads to a greatly reduced number of neighborhood connections for each cell of the array, and allows for all shifts within the [8,8] search area to be performed in a single step, with simple digital controls. The new shift circuitry, together with some other cell and system level optimizations, reduces silicon area and array layout complexity, enabling faster and more efficient parallel full search motion estimation hardware. A 32×32 cell parallel analog test array for reference-shift with a maximum block-size of 16×16, as well as absolute value/quadratic processing for variable block-size analog motion estimation (AME has been designed in a 0.13 μm CMOS technology.

  12. Strong consistency of nonparametric Bayes density estimation on compact metric spaces with applications to specific manifolds.

    Science.gov (United States)

    Bhattacharya, Abhishek; Dunson, David B

    2012-08-01

    This article considers a broad class of kernel mixture density models on compact metric spaces and manifolds. Following a Bayesian approach with a nonparametric prior on the location mixing distribution, sufficient conditions are obtained on the kernel, prior and the underlying space for strong posterior consistency at any continuous density. The prior is also allowed to depend on the sample size n and sufficient conditions are obtained for weak and strong consistency. These conditions are verified on compact Euclidean spaces using multivariate Gaussian kernels, on the hypersphere using a von Mises-Fisher kernel and on the planar shape space using complex Watson kernels.

  13. SU-E-J-01: 3D Fluoroscopic Image Estimation From Patient-Specific 4DCBCT-Based Motion Models

    International Nuclear Information System (INIS)

    Dhou, S; Hurwitz, M; Lewis, J; Mishra, P

    2014-01-01

    Purpose: 3D motion modeling derived from 4DCT images, taken days or weeks before treatment, cannot reliably represent patient anatomy on the day of treatment. We develop a method to generate motion models based on 4DCBCT acquired at the time of treatment, and apply the model to estimate 3D time-varying images (referred to as 3D fluoroscopic images). Methods: Motion models are derived through deformable registration between each 4DCBCT phase, and principal component analysis (PCA) on the resulting displacement vector fields. 3D fluoroscopic images are estimated based on cone-beam projections simulating kV treatment imaging. PCA coefficients are optimized iteratively through comparison of these cone-beam projections and projections estimated based on the motion model. Digital phantoms reproducing ten patient motion trajectories, and a physical phantom with regular and irregular motion derived from measured patient trajectories, are used to evaluate the method in terms of tumor localization, and the global voxel intensity difference compared to ground truth. Results: Experiments included: 1) assuming no anatomic or positioning changes between 4DCT and treatment time; and 2) simulating positioning and tumor baseline shifts at the time of treatment compared to 4DCT acquisition. 4DCBCT were reconstructed from the anatomy as seen at treatment time. In case 1) the tumor localization error and the intensity differences in ten patient were smaller using 4DCT-based motion model, possible due to superior image quality. In case 2) the tumor localization error and intensity differences were 2.85 and 0.15 respectively, using 4DCT-based motion models, and 1.17 and 0.10 using 4DCBCT-based models. 4DCBCT performed better due to its ability to reproduce daily anatomical changes. Conclusion: The study showed an advantage of 4DCBCT-based motion models in the context of 3D fluoroscopic images estimation. Positioning and tumor baseline shift uncertainties were mitigated by the 4DCBCT

  14. Stochastic strong motion generation using slip model of 21 and 22 May 1960 mega-thrust earthquakes in the main cities of Central-South Chile

    Science.gov (United States)

    Ruiz, S.; Ojeda, J.; DelCampo, F., Sr.; Pasten, C., Sr.; Otarola, C., Sr.; Silva, R., Sr.

    2017-12-01

    In May 1960 took place the most unusual seismic sequence registered instrumentally. The Mw 8.1, Concepción earthquake occurred May, 21, 1960. The aftershocks of this event apparently migrated to the south-east, and the Mw 9.5, Valdivia mega-earthquake occurred after 33 hours. The structural damage produced by both events is not larger than other earthquakes in Chile and lower than crustal earthquakes of smaller magnitude. The damage was located in the sites with shallow soil layers of low shear wave velocity (Vs). However, no seismological station recorded this sequence. For that reason, we generate synthetic acceleration times histories for strong motion in the main cities affected by these events. We use 155 points of vertical surface displacements recopiled by Plafker and Savage in 1968, and considering the observations of this authors and local residents we separated the uplift and subsidence information associated to the first earthquake Mw 8.1 and the second mega-earthquake Mw 9.5. We consider the elastic deformation propagation, assume realist lithosphere geometry, and compute a Bayesian method that maximizes the probability density a posteriori to obtain the slip distribution. Subsequently, we use a stochastic method of generation of strong motion considering the finite fault model obtained for both earthquakes. We considered the incidence angle of ray to the surface, free surface effect and energy partition for P, SV and SH waves, dynamic corner frequency and the influence of site effect. The results show that the earthquake Mw 8.1 occurred down-dip the slab, the strong motion records are similar to other Chilean earthquake like Tocopilla Mw 7.7 (2007). For the Mw 9.5 earthquake we obtain synthetic acceleration time histories with PGA values around 0.8 g in cities near to the maximum asperity or that have low velocity soil layers. This allows us to conclude that strong motion records have important influence of the shallow soil deposits. These records

  15. Pose and Motion Estimation Using Dual Quaternion-Based Extended Kalman Filtering

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, J.S.; Abidi, M.A.

    1998-06-01

    A solution to the remote three-dimensional (3-D) measurement problem is presented for a dynamic system given a sequence of two-dimensional (2-D) intensity images of a moving object. The 3-D transformation is modeled as a nonlinear stochastic system with the state estimate providing the six-degree-of-freedom motion and position values as well as structure. The stochastic model uses the iterated extended Kalman filter (IEKF) as a nonlinear estimator and a screw representation of the 3-D transformation based on dual quaternions. Dual quaternions, whose elements are dual numbers, provide a means to represent both rotation and translation in a unified notation. Linear object features, represented as dual vectors, are transformed using the dual quaternion transformation and are then projected to linear features in the image plane. The method has been implemented and tested with both simulated and actual experimental data. Simulation results are provided, along with comparisons to a point-based IEKF method using rotation and translation, to show the relative advantages of this method. Experimental results from testing using a camera mounted on the end effector of a robot arm are also given.

  16. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.

    Science.gov (United States)

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-07-16

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively.

  17. Body Image in Anorexia Nervosa: Body Size Estimation Utilising a Biological Motion Task and Eyetracking.

    Science.gov (United States)

    Phillipou, Andrea; Rossell, Susan Lee; Gurvich, Caroline; Castle, David Jonathan; Troje, Nikolaus Friedrich; Abel, Larry Allen

    2016-03-01

    Anorexia nervosa (AN) is a psychiatric condition characterised by a distortion of body image. However, whether individuals with AN can accurately perceive the size of other individuals' bodies is unclear. In the current study, 24 women with AN and 24 healthy control participants undertook two biological motion tasks while eyetracking was performed: to identify the gender and to indicate the walkers' body size. Anorexia nervosa participants tended to 'hyperscan' stimuli but did not demonstrate differences in how visual attention was directed to different body areas, relative to controls. Groups also did not differ in their estimation of body size. The hyperscanning behaviours suggest increased anxiety to disorder-relevant stimuli in AN. The lack of group difference in the estimation of body size suggests that the AN group was able to judge the body size of others accurately. The findings are discussed in terms of body image distortion specific to oneself in AN. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  18. Broadband Strong Ground Motion Simulation For a Potential Mw 7.1 Earthquake on The Enriquillo Fault in Haiti

    Science.gov (United States)

    Douilly, R.; Mavroeidis, G. P.; Calais, E.

    2015-12-01

    The devastating 2010 Haiti earthquake showed the need to be more vigilant toward mitigation for future earthquakes in the region. Previous studies have shown that this earthquake did not occur on the Enriquillo Fault, the main plate boundary fault running through the heavily populated Port-au-Prince region, but on the nearby and previously unknown Léogâne transpressional fault. Slip on that fault has increased stresses on the Enriquillo Fault mostly in the region closer to Port-au-Prince, the most populated city of the country. Here we investigate the ground shaking level in this region if a rupture similar to the Mw 7.0 2010 Haiti earthquake occurred on the Enriquillo fault. We use a finite element method and assumptions on regional stress to simulate low frequency dynamic rupture propagation for a 53 km long segment. We introduce some heterogeneity by creating two slip patches with shear traction 10% greater than the initial shear traction on the fault. The final slip distribution is similar in distribution and magnitude to previous finite fault inversions for the 2010 Haiti earthquake. The high-frequency ground motion components are calculated using the specific barrier model, and the hybrid synthetics are obtained by combining the low-frequencies (f 1Hz) from the stochastic simulation using matched filtering at a crossover frequency of 1 Hz. The average horizontal peak ground acceleration, computed at several sites of interest through Port-au-Prince, has a value of 0.35g. We also compute response spectra at those sites and compare them to the spectra from the microzonation study.

  19. Architecture design of motion estimation for ITU-T H.263

    Science.gov (United States)

    Ku, Chung-Wei; Lin, Gong-Sheng; Chen, Liang-Gee; Lee, Yung-Ping

    1997-01-01

    Digitalized video and audio system has become the trend of the progress in multimedia, because it provides great performance in quality and feasibility of processing. However, as the huge amount of information is needed while the bandwidth is limitted, data compression plays an important role in the system. Say, for a 176 x 144 monochromic sequence with 10 frames/sec frame rate, the bandwidth is about 2Mbps. This wastes much channel resource and limits the applications. MPEG (moving picttre ezpert groip) standardizes the video codec scheme, and it performs high compression ratio while providing good quality. MPEG-i is used for the frame size about 352 x 240 and 30 frames per second, and MPEG-2 provides scalibility and can be applied on scenes with higher definition, say HDTV (high definition television). On the other hand, some applications concerns the very low bit-rate, such as videophone and video-conferencing. Because the channel bandwidth is much limitted in telephone network, a very high compression ratio must be required. ITU-T announced the H.263 video coding standards to meet the above requirements.8 According to the simulation results of TMN-5,22 it outperforms 11.263 with little overhead of complexity. Since wireless communication is the trend in the near future, low power design of the video codec is an important issue for portable visual telephone. Motion estimation is the most computation consuming parts in the whole video codec. About 60% of the computation is spent on this parts for the encoder. Several architectures were proposed for efficient processing of block matching algorithms. In this paper, in order to meet the requirements of 11.263 and the expectation of low power consumption, a modified sandwich architecture in21 is proposed. Based on the parallel processing philosophy, low power is expected and the generation of either one motion vector or four motion vectors with half-pixel accuracy is achieved concurrently. In addition, we will

  20. Estimation of small-scale soil erosion in laboratory experiments with Structure from Motion photogrammetry

    Science.gov (United States)

    Balaguer-Puig, Matilde; Marqués-Mateu, Ángel; Lerma, José Luis; Ibáñez-Asensio, Sara

    2017-10-01

    The quantitative estimation of changes in terrain surfaces caused by water erosion can be carried out from precise descriptions of surfaces given by means of digital elevation models (DEMs). Some stages of water erosion research efforts are conducted in the laboratory using rainfall simulators and soil boxes with areas less than 1 m2. Under these conditions, erosive processes can lead to very small surface variations and high precision DEMs are needed to account for differences measured in millimetres. In this paper, we used a photogrammetric Structure from Motion (SfM) technique to build DEMs of a 0.5 m2 soil box to monitor several simulated rainfall episodes in the laboratory. The technique of DEM of difference (DoD) was then applied using GIS tools to compute estimates of volumetric changes between each pair of rainfall episodes. The aim was to classify the soil surface into three classes: erosion areas, deposition areas, and unchanged or neutral areas, and quantify the volume of soil that was eroded and deposited. We used a thresholding criterion of changes based on the estimated error of the difference of DEMs, which in turn was obtained from the root mean square error of the individual DEMs. Experimental tests showed that the choice of different threshold values in the DoD can lead to volume differences as large as 60% when compared to the direct volumetric difference. It turns out that the choice of that threshold was a key point in this method. In parallel to photogrammetric work, we collected sediments from each rain episode and obtained a series of corresponding measured sediment yields. The comparison between computed and measured sediment yields was significantly correlated, especially when considering the accumulated value of the five simulations. The computed sediment yield was 13% greater than the measured sediment yield. The procedure presented in this paper proved to be suitable for the determination of sediment yields in rainfall-driven soil

  1. A Fast Motion Parameters Estimation Method Based on Cross-Correlation of Adjacent Echoes for Wideband LFM Radars

    Directory of Open Access Journals (Sweden)

    Yi-Xiong Zhang

    2017-05-01

    Full Text Available In wideband radar systems, the performance of motion parameters estimation can significantly affect the performance of object detection and the quality of inverse synthetic aperture radar (ISAR imaging. Although the traditional motion parameters estimation methods can reduce the range migration (RM and Doppler frequency migration (DFM effects in ISAR imaging, the computational complexity is high. In this paper, we propose a new fast non-parameter-searching method for motion parameters estimation based on the cross-correlation of adjacent echoes (CCAE for wideband LFM signals. A cross-correlation operation is carried out for two adjacent echo signals, then the motion parameters can be calculated by estimating the frequency of the correlation result. The proposed CCAE method can be applied directly to the stretching system, which is commonly adopted in wideband radar systems. Simulation results demonstrate that the new method can achieve better estimation performances, with much lower computational cost, compared with existing methods. The experimental results on real radar datasets are also evaluated to verify the effectiveness and superiority of the proposed method compared to the state-of-the-art existing methods.

  2. Towards breaking the spatial resolution barriers: An optical flow and super-resolution approach for sea ice motion estimation

    Science.gov (United States)

    Petrou, Zisis I.; Xian, Yang; Tian, YingLi

    2018-04-01

    Estimation of sea ice motion at fine scales is important for a number of regional and local level applications, including modeling of sea ice distribution, ocean-atmosphere and climate dynamics, as well as safe navigation and sea operations. In this study, we propose an optical flow and super-resolution approach to accurately estimate motion from remote sensing images at a higher spatial resolution than the original data. First, an external example learning-based super-resolution method is applied on the original images to generate higher resolution versions. Then, an optical flow approach is applied on the higher resolution images, identifying sparse correspondences and interpolating them to extract a dense motion vector field with continuous values and subpixel accuracies. Our proposed approach is successfully evaluated on passive microwave, optical, and Synthetic Aperture Radar data, proving appropriate for multi-sensor applications and different spatial resolutions. The approach estimates motion with similar or higher accuracy than the original data, while increasing the spatial resolution of up to eight times. In addition, the adopted optical flow component outperforms a state-of-the-art pattern matching method. Overall, the proposed approach results in accurate motion vectors with unprecedented spatial resolutions of up to 1.5 km for passive microwave data covering the entire Arctic and 20 m for radar data, and proves promising for numerous scientific and operational applications.

  3. Parallel implementation and evaluation of motion estimation system algorithms on a distributed memory multiprocessor using knowledge based mappings

    Science.gov (United States)

    Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.

    1989-01-01

    Several techniques to perform static and dynamic load balancing techniques for vision systems are presented. These techniques are novel in the sense that they capture the computational requirements of a task by examining the data when it is produced. Furthermore, they can be applied to many vision systems because many algorithms in different systems are either the same, or have similar computational characteristics. These techniques are evaluated by applying them on a parallel implementation of the algorithms in a motion estimation system on a hypercube multiprocessor system. The motion estimation system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from different time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters. It is shown that the performance gains when these data decomposition and load balancing techniques are used are significant and the overhead of using these techniques is minimal.

  4. Motion as a perturbation: Measurement-guided dose estimates to moving patient voxels during modulated arc deliveries

    Energy Technology Data Exchange (ETDEWEB)

    Feygelman, Vladimir; Zhang, Geoffrey; Hunt, Dylan; Opp, Daniel [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States); Stambaugh, Cassandra [Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Wolf, Theresa K. [Live Oak Technologies LLC, Kirkwood, Missouri 63122 (United States); Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States)

    2013-02-15

    Purpose: To present a framework for measurement-guided VMAT dose reconstruction to moving patient voxels from a known motion kernel and the static phantom data, and to validate this perturbation-based approach with the proof-of-principle experiments. Methods: As described previously, the VMAT 3D dose to a static patient can be estimated by applying a phantom measurement-guided perturbation to the treatment planning system (TPS)-calculated dose grid. The fraction dose to any voxel in the presence of motion, assuming the motion kernel is known, can be derived in a similar fashion by applying a measurement-guided motion perturbation. The dose to the diodes in a helical phantom is recorded at 50 ms intervals and is transformed into a series of time-resolved high-density volumetric dose grids. A moving voxel is propagated through this 4D dose space and the fraction dose to that voxel in the phantom is accumulated. The ratio of this motion-perturbed, reconstructed dose to the TPS dose in the phantom serves as a perturbation factor, applied to the TPS fraction dose to the similarly situated voxel in the patient. This approach was validated by the ion chamber and film measurements on four phantoms of different shape and structure: homogeneous and inhomogeneous cylinders, a homogeneous cube, and an anthropomorphic thoracic phantom. A 2D motion stage was used to simulate the motion. The stage position was synchronized with the beam start time with the respiratory gating simulator. The motion patterns were designed such that the motion speed was in the upper range of the expected tumor motion (1-1.4 cm/s) and the range exceeded the normally observed limits (up to 5.7 cm). The conformal arc plans for X or Y motion (in the IEC 61217 coordinate system) consisted of manually created narrow (3 cm) rectangular strips moving in-phase (tracking) or phase-shifted by 90 Degree-Sign (crossing) with respect to the phantom motion. The XY motion was tested with the computer-derived VMAT

  5. Complexity Control of Fast Motion Estimation in H.264/MPEG-4 AVC with Rate-Distortion-Complexity optimization

    DEFF Research Database (Denmark)

    Wu, Mo; Forchhammer, Søren; Aghito, Shankar Manuel

    2007-01-01

    A complexity control algorithm for H.264 advanced video coding is proposed. The algorithm can control the complexity of integer inter motion estimation for a given target complexity. The Rate-Distortion-Complexity performance is improved by a complexity prediction model, simple analysis of the pa...

  6. Unmanned aerial vehicle-based structure from motion biomass inventory estimates

    Science.gov (United States)

    Bedell, Emily; Leslie, Monique; Fankhauser, Katie; Burnett, Jonathan; Wing, Michael G.; Thomas, Evan A.

    2017-04-01

    Riparian vegetation restoration efforts require cost-effective, accurate, and replicable impact assessments. We present a method to use an unmanned aerial vehicle (UAV) equipped with a GoPro digital camera to collect photogrammetric data of a 0.8-ha riparian restoration. A three-dimensional point cloud was created from the photos using "structure from motion" techniques. The point cloud was analyzed and compared to traditional, ground-based monitoring techniques. Ground-truth data were collected on 6.3% of the study site and averaged across the entire site to report stem heights in stems/ha in three height classes. The project site was divided into four analysis sections, one for derivation of parameters used in the UAV data analysis and the remaining three sections reserved for method validation. Comparing the ground-truth data to the UAV generated data produced an overall error of 21.6% and indicated an R2 value of 0.98. A Bland-Altman analysis indicated a 95% probability that the UAV stems/section result will be within 61 stems/section of the ground-truth data. The ground-truth data are reported with an 80% confidence interval of ±1032 stems/ha thus, the UAV was able to estimate stems well within this confidence interval.

  7. High-Performance Motion Estimation for Image Sensors with Video Compression

    Directory of Open Access Journals (Sweden)

    Weizhi Xu

    2015-08-01

    Full Text Available It is important to reduce the time cost of video compression for image sensors in video sensor network. Motion estimation (ME is the most time-consuming part in video compression. Previous work on ME exploited intra-frame data reuse in a reference frame to improve the time efficiency but neglected inter-frame data reuse. We propose a novel inter-frame data reuse scheme which can exploit both intra-frame and inter-frame data reuse for ME in video compression (VC-ME. Pixels of reconstructed frames are kept on-chip until they are used by the next current frame to avoid off-chip memory access. On-chip buffers with smart schedules of data access are designed to perform the new data reuse scheme. Three levels of the proposed inter-frame data reuse scheme are presented and analyzed. They give different choices with tradeoff between off-chip bandwidth requirement and on-chip memory size. All three levels have better data reuse efficiency than their intra-frame counterparts, so off-chip memory traffic is reduced effectively. Comparing the new inter-frame data reuse scheme with the traditional intra-frame data reuse scheme, the memory traffic can be reduced by 50% for VC-ME.

  8. GPS Vertical Land Motion Corrections to Sea-Level Rise Estimates in the Pacific Northwest

    Science.gov (United States)

    Montillet, J.-P.; Melbourne, T. I.; Szeliga, W. M.

    2018-02-01

    We construct coastal Pacific Northwest profiles of vertical land motion (VLM) known to bias long-term tide-gauge measurements of sea-level rise (SLR) and use them to estimate absolute sea-level rise with respect to Earth's center of mass. Multidecade GPS measurements at 47 coastal stations along the Cascadia subduction zone show VLM varies regionally but smoothly along the Pacific coast and inland Puget Sound with rates ranging from + 4.9 to -1.2 mm/yr. Puget Sound VLM is characterized by uniform subsidence at relatively slow rates of -0.1 to -0.3 mm/yr. Uplift rates of 4.5 mm/yr persist along the western Olympic Peninsula of northwestern Washington State and decrease southward becoming nearly 0 mm/yr south of central coastal Washington through Cape Blanco, Oregon. South of Cape Blanco, uplift increases to 1-2 mm/yr, peaks at 4 mm/yr near Crescent City, California, and returns to zero at Cape Mendocino, California. Using various stochastic noise models, we estimate long-term (˜50 -100 yr) relative sea-level rise rates at 18 coastal Cascadia tide gauges and correct them for VLM. Uncorrected SLR rates are scattered, ranging between -2 mm/yr and + 5 mm/yr with mean 0.52 ± 1.59 mm/yr, whereas correcting for VLM increases the mean value to 1.99 mm/yr and reduces the uncertainty to ± 1.18 mm/yr, commensurate with, but approximately 17% higher than, twentieth century global mean.

  9. Estimates of marine debris accumulation on beaches are strongly affected by the temporal scale of sampling.

    Science.gov (United States)

    Smith, Stephen D A; Markic, Ana

    2013-01-01

    Marine debris is a global issue with impacts on marine organisms, ecological processes, aesthetics and economies. Consequently, there is increasing interest in quantifying the scale of the problem. Accumulation rates of debris on beaches have been advocated as a useful proxy for at-sea debris loads. However, here we show that past studies may have vastly underestimated the quantity of available debris because sampling was too infrequent. Our study of debris on a small beach in eastern Australia indicates that estimated daily accumulation rates decrease rapidly with increasing intervals between surveys, and the quantity of available debris is underestimated by 50% after only 3 days and by an order of magnitude after 1 month. As few past studies report sampling frequencies of less than a month, estimates of the scale of the marine debris problem need to be critically re-examined and scaled-up accordingly. These results reinforce similar, recent work advocating daily sampling as a standard approach for accurate quantification of available debris in coastal habitats. We outline an alternative approach whereby site-specific accumulation models are generated to correct bias when daily sampling is impractical.

  10. Global well-posedness and decay estimates of strong solutions to a two-phase model with magnetic field

    Science.gov (United States)

    Wen, Huanyao; Zhu, Limei

    2018-02-01

    In this paper, we consider the Cauchy problem for a two-phase model with magnetic field in three dimensions. The global existence and uniqueness of strong solution as well as the time decay estimates in H2 (R3) are obtained by introducing a new linearized system with respect to (nγ -n˜γ , n - n ˜ , P - P ˜ , u , H) for constants n ˜ ≥ 0 and P ˜ > 0, and doing some new a priori estimates in Sobolev Spaces to get the uniform upper bound of (n - n ˜ ,nγ -n˜γ) in H2 (R3) norm.

  11. Exploration of deep S-wave velocity structure using microtremor array technique to estimate long-period ground motion

    International Nuclear Information System (INIS)

    Sato, Hiroaki; Higashi, Sadanori; Sato, Kiyotaka

    2007-01-01

    In this study, microtremor array measurements were conducted at 9 sites in the Niigata plain to explore deep S-wave velocity structures for estimation of long-period earthquake ground motion. The 1D S-wave velocity profiles in the Niigata plain are characterized by 5 layers with S-wave velocities of 0.4, 0.8, 1.5, 2.1 and 3.0 km/s, respectively. The depth to the basement layer is deeper in the Niigata port area located at the Japan sea side of the Niigata plain. In this area, the basement depth is about 4.8 km around the Seirou town and about 4.1 km around the Niigata city, respectively. These features about the basement depth in the Niigata plain are consistent with the previous surveys. In order to verify the profiles derived from microtremor array exploration, we estimate the group velocities of Love wave for four propagation paths of long-period earthquake ground motion during Niigata-ken tyuetsu earthquake by multiple filter technique, which were compared with the theoretical ones calculated from the derived profiles. As a result, it was confirmed that the group velocities from the derived profiles were in good agreement with the ones from long-period earthquake ground motion records during Niigata-ken tyuetsu earthquake. Furthermore, we applied the estimation method of design basis earthquake input for seismically isolated nuclear power facilities by using normal mode solution to estimate long-period earthquake ground motion during Niigata-ken tyuetsu earthquake. As a result, it was demonstrated that the applicability of the above method for the estimation of long-period earthquake ground motion were improved by using the derived 1D S-wave velocity profile. (author)

  12. Power estimation of martial arts movement with different physical, mood, and behavior using motion capture camera

    Science.gov (United States)

    Awang Soh, Ahmad Afiq Sabqi; Mat Jafri, Mohd Zubir; Azraai, Nur Zaidi

    2017-07-01

    In Malay world, there is a spirit traditional ritual where they use it as healing practices or for normal life. Malay martial arts (silat) also is not exceptional where some branch of silat have spirit traditional ritual where they said can help them in combat. In this paper, we will not use any ritual, instead we will use some medicinal and environment change when they are performing. There will be 2 performers (fighter) selected, one of them have an experience in martial arts training and another performer does not have experience. Motion Capture (MOCAP) camera will help observe and analyze this move. 8 cameras have been placed in the MOCAP room 2 on each side of the wall facing toward the center of the room from every angle. This will help prevent the loss detection of a marker that been stamped on the limb of a performer. Passive marker has been used where it will reflect the infrared to the camera sensor. Infrared is generated by the source around the camera lens. A 60 kg punching bag was hung on the iron bar function as the target for the performer when throws a punch. Markers also have been stamped on the punching bag so we can detect the movement how far can it swing when hit by the performer. 2 performers will perform 2 moves each with the same position and posture. For every 2 moves, we have made the environment change without the performer notice about it. The first 2 punch with normal environment, second part we have played a positive music to change the performer's mood and third part we have put a medicine (cream/oil) on the skin of the performer. This medicine will make the skin feel a little bit hot. This process repeated to another performer with no experience. The position of this marker analyzed by the Cortex Motion Analysis software where from this data, we can estimate the kinetics and kinematics of the performer. It shows that the increase of kinetics for every part because of the change in the environment, and different result for the 2

  13. Power estimation of martial arts movement using 3D motion capture camera

    Science.gov (United States)

    Azraai, Nur Zaidi; Awang Soh, Ahmad Afiq Sabqi; Mat Jafri, Mohd Zubir

    2017-06-01

    precision and improve the accuracy of the marker. Performer movement was recorded and analyzed using software Cortex motion analysis where velocity and acceleration of a performer movement can be measured. With classical mechanics approach we have estimated the power and force of impact and shows that an experienced performer produces more power and force of impact is higher than the inexperienced performer.

  14. Source process of the MW7.8 2016 Kaikoura earthquake in New Zealand and the characteristics of the near-fault strong ground motion

    Science.gov (United States)

    Meng, L.; Zang, Y.; Zhou, L.; Han, Y.

    2017-12-01

    The MW7.8 New Zealand earthquake of 2016 occurred near the Kaikoura area in the South Island, New Zealand with the epicenter of 173.13°E and 42.78°S. The MW7.8 Kaikoura earthquake occurred on the transform boundary faults between the Pacific plate and the Australian plate and with the thrust focal mechanism solution. The Kaikoura earthquake is a complex event because the significant difference, especially between the magnitude, seismic moment, radiated energy and the casualties. Only two people were killed, and twenty people injured and no more than twenty buildings are destroyed during this earthquake, the damage level is not so severe in consideration about the huge magnitude. We analyzed the rupture process according to the source parameters, it can be confirmed that the radiated energy and the apparent stress of the Kaikoura earthquake are small and minor. The results indicate a frictional overshoot behavior in the dynamic source process of Kaikoura earthquake, which is actually with sufficient rupture and more affluent moderate aftershocks. It is also found that the observed horizontal Peak Ground Acceleration of the strong ground motion is generally small comparing with the Next Generation Attenuation relationship. We further studied the characteristics of the observed horizontal PGAs at the 6 near fault stations, which are located in the area less than 10 km to the main fault. The relatively high level strong ground motion from the 6 stations may be produced by the higher slip around the asperity area rather than the initial rupture position on the main plane. Actually, the huge surface displacement at the northern of the rupture fault plane indicated why aftershocks are concentrated in the north. And there are more damage in Wellington than in Christchurch, even which is near the south of the epicenter. In conclusion, the less damage level of Kaikoura earthquake in New Zealand may probably because of the smaller strong ground motion and the rare

  15. Validation of a novel modified wall motion score for estimation of left ventricular ejection fraction in ischemic and non-ischemic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, David, E-mail: David.Scholl@utoronto.ca [Imaging Research Laboratories, Robarts Research Institute, London, Ontario (Canada); Kim, Han W., E-mail: hanwkim@gmail.com [Duke Cardiovascular Magnetic Resonance Center, Division of Cardiology, Duke University, NC (United States); Shah, Dipan, E-mail: djshah@tmhs.org [The Methodist DeBakey Heart Center, Houston, TX (United States); Fine, Nowell M., E-mail: nowellfine@gmail.com [Division of Cardiology, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario (Canada); Tandon, Shruti, E-mail: standon4@uwo.ca [Division of Cardiology, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario (Canada); Thompson, Terry, E-mail: thompson@lawsonimaging.ca [Lawson Health Research Institute, London, Ontario (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario (Canada); Drangova, Maria, E-mail: mdrangov@imaging.robarts.ca [Imaging Research Laboratories, Robarts Research Institute, London, Ontario (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario (Canada); White, James A., E-mail: jwhite@imaging.robarts.ca [Division of Cardiology, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario (Canada); Lawson Health Research Institute, London, Ontario (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario (Canada)

    2012-08-15

    Background: Visual determination of left ventricular ejection fraction (LVEF) by segmental scoring may be a practical alternative to volumetric analysis of cine magnetic resonance imaging (MRI). The accuracy and reproducibility of this approach for has not been described. The purpose of this study was to validate a novel segmental visual scoring method for LVEF estimation using cine MRI. Methods: 362 patients with known or suspected cardiomyopathy were studied. A modified wall motion score (mWMS) was used to blindly score the wall motion of all cardiac segments from cine MRI imaging. The same datasets were subjected to blinded volumetric analysis using endocardial contour tracing. The population was then separated into a model cohort (N = 181) and validation cohort (N = 181), with the former used to derive a regression equation of mWMS versus true volumetric LVEF. The validation cohort was then used to test the accuracy of this regression model to estimate the true LVEF from a visually determined mWMS. Reproducibility testing of mWMS scoring was performed upon a randomly selected sample of 20 cases. Results: The regression equation relating mWMS to true LVEF in the model cohort was: LVEF = 54.23 - 0.5761 Multiplication-Sign mWMS. In the validation cohort this equation produced a strong correlation between mWMS-derived LVEF and true volumetric LVEF (r = 0.89). Bland and Altman analysis showed no systematic bias in the LVEF estimated using the mWMS (-0.3231%, 95% limits of agreement -12.22% to 11.58%). Inter-observer and intra-observer reproducibility was excellent (r = 0.93 and 0.97, respectively). Conclusion: The mWMS is a practical tool for reporting regional wall motion and provides reproducible estimates of LVEF from cine MRI.

  16. DMPDS: A Fast Motion Estimation Algorithm Targeting High Resolution Videos and Its FPGA Implementation

    Directory of Open Access Journals (Sweden)

    Gustavo Sanchez

    2012-01-01

    Full Text Available This paper presents a new fast motion estimation (ME algorithm targeting high resolution digital videos and its efficient hardware architecture design. The new Dynamic Multipoint Diamond Search (DMPDS algorithm is a fast algorithm which increases the ME quality when compared with other fast ME algorithms. The DMPDS achieves a better digital video quality reducing the occurrence of local minima falls, especially in high definition videos. The quality results show that the DMPDS is able to reach an average PSNR gain of 1.85 dB when compared with the well-known Diamond Search (DS algorithm. When compared to the optimum results generated by the Full Search (FS algorithm the DMPDS shows a lose of only 1.03 dB in the PSNR. On the other hand, the DMPDS reached a complexity reduction higher than 45 times when compared to FS. The quality gains related to DS caused an expected increase in the DMPDS complexity which uses 6.4-times more calculations than DS. The DMPDS architecture was designed focused on high performance and low cost, targeting to process Quad Full High Definition (QFHD videos in real time (30 frames per second. The architecture was described in VHDL and synthesized to Altera Stratix 4 and Xilinx Virtex 5 FPGAs. The synthesis results show that the architecture is able to achieve processing rates higher than 53 QFHD fps, reaching the real-time requirements. The DMPDS architecture achieved the highest processing rate when compared to related works in the literature. This high processing rate was obtained designing an architecture with a high operation frequency and low numbers of cycles necessary to process each block.

  17. SU-D-BRA-01: Accurate Real-Time Tumor Motion Estimation from Respiratory Surrogates via Memory-Based Learning.

    Science.gov (United States)

    Li, R; Xing, L

    2012-06-01

    Respiratory tumor motion is a major challenge in radiation therapy. Effective beam gating or tracking approaches necessitate an accurate knowledge of the real-time tumor motion. Fluoroscopic tracking with implanted fiducial markers is invasive and exposes the patient to additional imaging dose. Respiratory surrogate signal measured by external noninvasive and non-ionizing devices provides an attractive approach, in which estimating the tumor motion from respiratory surrogates is crucial. We utilize a powerful memory-based learning approach to find the complex relations between tumor motion and respiratory surrogates. The learning method uses locally weighted functions to interpolate between and extrapolate from training data. Due to the local nature of the learning functions, it is inherently robust to outliers. Moreover, both training and adapting to new data is highly efficient and almost free, making it suitable for dynamically following possibly variable internal/external relations. We evaluated the method using respiratory motion data (3D tumor motion plus 1D surrogate) from six patients (three lung and three pancreas patients). Given only 5-sec (roughly one breath) pretreatment training data, the method achieved an average 3D error of 0.37 mm (range: 0.10 mm - 1.06 mm) and 95th percentile error of 0.86 mm (range: 0.24 mm - 2.47 mm) on 120-sec unseen test data. These errors are well below the average peak- to-peak amplitude (-10 mm). The errors decrease monotonically with an increasing amount of training data. Compared with the best linear model, the learning approach achieved a 21% reduction in error for an average patient (range: 10% - 42%). The memory-based learning technique is able to accurately capture the highly nonlinear and complex relations between tumor and surrogate motion in an efficient manner (∼1 ms per prediction). These desirable properties make it an ideal candidate for accurate and robust tumor gating/tracking using respiratory surrogates

  18. A hybrid method for the estimation of ground motion in sedimentary basins: Quantitative modelling for Mexico City

    International Nuclear Information System (INIS)

    Faeh, D.; Suhadolc, P.; Mueller, S.; Panza, G.F.

    1994-04-01

    To estimate the ground motion in two-dimensional, laterally heterogeneous, anelastic media, a hybrid technique has been developed which combines modal summation and the finite difference method. In the calculation of the local wavefield due to a seismic event, both for small and large epicentral distances, it is possible to take into account the sources, path and local soil effects. As practical application we have simulated the ground motion in Mexico City caused by the Michoacan earthquake of September 19, 1985. By studying the one-dimensional response of the two sedimentary layers present in Mexico City, it is possible to explain the difference in amplitudes observed between records for receivers inside and outside the lake-bed zone. These simple models show that the sedimentary cover produces the concentration of high-frequency waves (0.2-0.5 Hz) on the horizontal components of motion. The large amplitude coda of ground motion observed inside the lake-bed zone, and the spectral ratios between signals observed inside and outside the lake-bed zone, can only be explained by two-dimensional models of the sedimentary basin. In such models, the ground motion is mainly controlled by the response of the uppermost clay layer. The synthetic signals explain the major characteristics (relative amplitudes, spectral ratios, and frequency content) of the observed ground motion. The large amplitude coda of the ground motion observed in the lake-bed zone can be explained as resonance effects and the excitation of local surface waves in the laterally heterogeneous clay layer. Also, for the 1985 Michoacan event, the energy contributions of the three subevents are important to explain the observed durations. (author). 39 refs, 15 figs, 1 tab

  19. Comparison of ground motions estimated from prediction equations and from observed damage during the M = 4.6 1983 Liège earthquake (Belgium

    Directory of Open Access Journals (Sweden)

    D. García Moreno

    2013-08-01

    Full Text Available On 8 November 1983 an earthquake of magnitude 4.6 damaged more than 16 000 buildings in the region of Liège (Belgium. The extraordinary damage produced by this earthquake, considering its moderate magnitude, is extremely well documented, giving the opportunity to compare the consequences of a recent moderate earthquake in a typical old city of Western Europe with scenarios obtained by combining strong ground motions and vulnerability modelling. The present study compares 0.3 s spectral accelerations estimated from ground motion prediction equations typically used in Western Europe with those obtained locally by applying the statistical distribution of damaged masonry buildings to two fragility curves, one derived from the HAZUS programme of FEMA (FEMA, 1999 and another developed for high-vulnerability buildings by Lang and Bachmann (2004, and to a method proposed by Faccioli et al. (1999 relating the seismic vulnerability of buildings to the damage and ground motions. The results of this comparison reveal good agreement between maxima spectral accelerations calculated from these vulnerability and fragility curves and those predicted from attenuation law equations, suggesting peak ground accelerations for the epicentral area of the 1983 earthquake of 0.13–0.20 g (g: gravitational acceleration.

  20. A Comprehensive Motion Estimation Technique for the Improvement of EIS Methods Based on the SURF Algorithm and Kalman Filter.

    Science.gov (United States)

    Cheng, Xuemin; Hao, Qun; Xie, Mengdi

    2016-04-07

    Video stabilization is an important technology for removing undesired motion in videos. This paper presents a comprehensive motion estimation method for electronic image stabilization techniques, integrating the speeded up robust features (SURF) algorithm, modified random sample consensus (RANSAC), and the Kalman filter, and also taking camera scaling and conventional camera translation and rotation into full consideration. Using SURF in sub-pixel space, feature points were located and then matched. The false matched points were removed by modified RANSAC. Global motion was estimated by using the feature points and modified cascading parameters, which reduced the accumulated errors in a series of frames and improved the peak signal to noise ratio (PSNR) by 8.2 dB. A specific Kalman filter model was established by considering the movement and scaling of scenes. Finally, video stabilization was achieved with filtered motion parameters using the modified adjacent frame compensation. The experimental results proved that the target images were stabilized even when the vibrating amplitudes of the video become increasingly large.

  1. Direct migration motion estimation and mode decision to decoder for a low-complexity decoder Wyner-Ziv video coding

    Science.gov (United States)

    Lei, Ted Chih-Wei; Tseng, Fan-Shuo

    2017-07-01

    This paper addresses the problem of high-computational complexity decoding in traditional Wyner-Ziv video coding (WZVC). The key focus is the migration of two traditionally high-computationally complex encoder algorithms, namely motion estimation and mode decision. In order to reduce the computational burden in this process, the proposed architecture adopts the partial boundary matching algorithm and four flexible types of block mode decision at the decoder. This approach does away with the need for motion estimation and mode decision at the encoder. The experimental results show that the proposed padding block-based WZVC not only decreases decoder complexity to approximately one hundredth that of the state-of-the-art DISCOVER decoding but also outperforms DISCOVER codec by up to 3 to 4 dB.

  2. A Novel Framework for Motion-Tolerant Instantaneous Heart Rate Estimation by Phase-Domain Multiview Dynamic Time Warping.

    Science.gov (United States)

    Zhang, Qingxue; Zhou, Dian; Zeng, Xuan

    2017-11-01

    long-term wearable instantaneous heart rate (IHR) monitoring is essential to enable pervasive heart health and fitness management. In this paper, a novel framework is proposed to robustly estimate the IHR from electrocardiogram (ECG) signals corrupted by large amounts of daily motion artifacts, which are one of the major impediments against the long-term IHR monitoring. the corrupted ECG signals are first projected to a high-dimensional phase space, where the constructed phase portraits of heartbeats are of many new geometrical properties and are expected to be powerful patterns more immune to the motion artifacts. Afterwards, a multiview dynamic time warping approach is applied on the constructed phase portraits, to effectively capture motion artifacts-induced inconsistencies and reveal heartbeats-related consistencies from corrupted signals. Finally, the phase portraits of heartbeats in the multidimensional phase space can be identified, and then, the IHR estimates are achieved. the proposed framework is evaluated on a wrist-ECG dataset acquired by a semicustomized platform and also a public ECG dataset. With a signal-to-noise ratio as low as -9 dB, the mean absolute error and root mean square error of the estimated IHR are 2.5 beats per minute (BPM) and 7.0 BPM, respectively. these results demonstrate that our framework can effectively identify the heartbeats from ECG signals continuously corrupted by intense and random motion artifacts and estimate the IHR. the proposed framework greatly outperforms previously reported approaches and is expected to contribute to long-term IHR monitoring. long-term wearable instantaneous heart rate (IHR) monitoring is essential to enable pervasive heart health and fitness management. In this paper, a novel framework is proposed to robustly estimate the IHR from electrocardiogram (ECG) signals corrupted by large amounts of daily motion artifacts, which are one of the major impediments against the long-term IHR monitoring. the

  3. CAPTURE: Consistently Acquired Projections for Tuned and Robust Estimation: A Self-Navigated Respiratory Motion Correction Approach.

    Science.gov (United States)

    Eldeniz, Cihat; Fraum, Tyler; Salter, Amber; Chen, Yasheng; Gach, H Michael; Parikh, Parag J; Fowler, Kathryn J; An, Hongyu

    2018-05-01

    In this study, we present a fully automated and robust self-navigated approach to obtain 4-dimensional (4-D) motion-resolved images during free breathing. The proposed method, Consistently Acquired Projections for Tuned and Robust Estimation (CAPTURE), is a variant of the stack-of-stars gradient-echo sequence. A 1-D navigator was consistently acquired at a fixed azimuthal angle for all stacks of spokes to reduce nonphysiological signal contamination due to system imperfections. The resulting projections were then "tuned" using complex phase rotation to adapt to scan-to-scan variations, followed by the detection of the respiratory curve. Four-dimensional motion-corrected and uncorrected images were then reconstructed via respiratory and temporal binning, respectively.This Health Insurance Portability and Accountability Act-compliant study was performed with Institutional Review Board approval. A phantom experiment was performed using a custom-made deformable motion phantom with an adjustable frequency and amplitude. For in vivo experiments, 10 healthy participants and 12 liver tumor patients provided informed consent and were imaged with the CAPTURE sequence.Two radiologists, blinded to which images were motion-corrected and which were not, independently reviewed the images and scored the image quality using a 5-point Likert scale. In the respiratory motion phantom experiment, CAPTURE reversed the effects of motion blurring and restored edge sharpness from 36% to 78% of that observed in the images from the static scan.Despite large intra- and intersubject variability in respiration patterns, CAPTURE successfully detected the respiratory motion signal in all participants and significantly improved the image quality according to the subjective radiological assessments of 2 raters (P point improvement in the median Likert scores across the whole set of participants. Small lesions (<1 cm in size) which might otherwise be missed on uncorrected images because of motion

  4. Estimation of Pulmonary Motion in Healthy Subjects and Patients with Intrathoracic Tumors Using 3D-Dynamic MRI: Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Plathow, Christian; Schoebinger, Max; Meinzer, Heinz Peter [German Cancer Research Center, Heidelberg (Germany); Herth, Felix; Tuengerthal, Siegfried [Clinic of Thoracic Disease, Heidelberg (Germany); Kauczor, Hans Ulrich [University of Heidelberg, Heidelberg (Germany)

    2009-12-15

    To estimate a new technique for quantifying regional lung motion using 3D-MRI in healthy volunteers and to apply the technique in patients with intra- or extrapulmonary tumors. Intraparenchymal lung motion during a whole breathing cycle was quantified in 30 healthy volunteers using 3D-dynamic MRI (FLASH [fast low angle shot] 3D, TRICKS [time-resolved interpolated contrast kinetics]). Qualitative and quantitative vector color maps and cumulative histograms were performed using an introduced semiautomatic algorithm. An analysis of lung motion was performed and correlated with an established 2D-MRI technique for verification. As a proof of concept, the technique was applied in five patients with non-small cell lung cancer (NSCLC) and 5 patients with malignant pleural mesothelioma (MPM). The correlation between intraparenchymal lung motion of the basal lung parts and the 2D-MRI technique was significant (r = 0.89, p < 0.05). Also, the vector color maps quantitatively illustrated regional lung motion in all healthy volunteers. No differences were observed between both hemithoraces, which was verified by cumulative histograms. The patients with NSCLC showed a local lack of lung motion in the area of the tumor. In the patients with MPM, there was global diminished motion of the tumor bearing hemithorax, which improved significantly after chemotherapy (CHT) (assessed by the 2D- and 3D-techniques) (p < 0.01). Using global spirometry, an improvement could also be shown (vital capacity 2.9 {+-} 0.5 versus 3.4 L {+-} 0.6, FEV1 0.9 {+-} 0.2 versus 1.4 {+-} 0.2 L) after CHT, but this improvement was not significant. A 3D-dynamic MRI is able to quantify intraparenchymal lung motion. Local and global parenchymal pathologies can be precisely located and might be a new tool used to quantify even slight changes in lung motion (e.g. in therapy monitoring, follow-up studies or even benign lung diseases)

  5. A Memory Hierarchy Model Based on Data Reuse for Full-Search Motion Estimation on High-Definition Digital Videos

    Directory of Open Access Journals (Sweden)

    Alba Sandyra Bezerra Lopes

    2012-01-01

    Full Text Available The motion estimation is the most complex module in a video encoder requiring a high processing throughput and high memory bandwidth, mainly when the focus is high-definition videos. The throughput problem can be solved increasing the parallelism in the internal operations. The external memory bandwidth may be reduced using a memory hierarchy. This work presents a memory hierarchy model for a full-search motion estimation core. The proposed memory hierarchy model is based on a data reuse scheme considering the full search algorithm features. The proposed memory hierarchy expressively reduces the external memory bandwidth required for the motion estimation process, and it provides a very high data throughput for the ME core. This throughput is necessary to achieve real time when processing high-definition videos. When considering the worst bandwidth scenario, this memory hierarchy is able to reduce the external memory bandwidth in 578 times. A case study for the proposed hierarchy, using 32×32 search window and 8×8 block size, was implemented and prototyped on a Virtex 4 FPGA. The results show that it is possible to reach 38 frames per second when processing full HD frames (1920×1080 pixels using nearly 299 Mbytes per second of external memory bandwidth.

  6. A New Method for State of Charge Estimation of Lithium-Ion Battery Based on Strong Tracking Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Bizhong Xia

    2015-11-01

    Full Text Available The estimation of state of charge (SOC is a crucial evaluation index in a battery management system (BMS. The value of SOC indicates the remaining capacity of a battery, which provides a good guarantee of safety and reliability of battery operation. It is difficult to get an accurate value of the SOC, being one of the inner states. In this paper, a strong tracking cubature Kalman filter (STCKF based on the cubature Kalman filter is presented to perform accurate and reliable SOC estimation. The STCKF algorithm can adjust gain matrix online by introducing fading factor to the state estimation covariance matrix. The typical second-order resistor-capacitor model is used as the battery’s equivalent circuit model to dynamically simulate characteristics of the battery. The exponential-function fitting method accomplishes the task of relevant parameters identification. Then, the developed STCKF algorithm has been introduced in detail and verified under different operation current profiles such as Dynamic Stress Test (DST and New European Driving Cycle (NEDC. Making a comparison with extended Kalman filter (EKF and CKF algorithm, the experimental results show the merits of the STCKF algorithm in SOC estimation accuracy and robustness.

  7. Estimating unmeasured anions in critically ill patients: anion-gap, base-deficit, and strong-ion-gap.

    Science.gov (United States)

    Story, D A; Poustie, S; Bellomo, R

    2002-11-01

    We used 100 routine blood samples from critically ill patients to establish whether correcting the anion-gap and base-deficit for decreased plasma albumin improves agreement with the strong-ion-gap for estimating unmeasured anions and whether the modifications increase the proportion of samples with levels of anion-gap or base-deficit above the reference ranges. We used Bland-Altman analyses to compare the methods of estimating unmeasured ions. Compared with the strong-ion-gap, modification reduced the limits of agreement for both the anion-gap and the base-deficit. The bias for the base-deficit was also reduced but the bias for the anion-gap was increased. The proportion of samples with an anion-gap > 22 meq.l(-1) increased from 4 to 29% (p 5 meq.l(-1) increased from 8 to 42% (p < 0.001). Consequently, metabolic acidosis from unmeasured ions in critically ill patients maybe more frequent than often recognised.

  8. An Accurate Computational Tool for Performance Estimation of FSO Communication Links over Weak to Strong Atmospheric Turbulent Channels

    Directory of Open Access Journals (Sweden)

    Theodore D. Katsilieris

    2017-03-01

    Full Text Available The terrestrial optical wireless communication links have attracted significant research and commercial worldwide interest over the last few years due to the fact that they offer very high and secure data rate transmission with relatively low installation and operational costs, and without need of licensing. However, since the propagation path of the information signal, i.e., the laser beam, is the atmosphere, their effectivity affects the atmospheric conditions strongly in the specific area. Thus, system performance depends significantly on the rain, the fog, the hail, the atmospheric turbulence, etc. Due to the influence of these effects, it is necessary to study, theoretically and numerically, very carefully before the installation of such a communication system. In this work, we present exactly and accurately approximate mathematical expressions for the estimation of the average capacity and the outage probability performance metrics, as functions of the link’s parameters, the transmitted power, the attenuation due to the fog, the ambient noise and the atmospheric turbulence phenomenon. The latter causes the scintillation effect, which results in random and fast fluctuations of the irradiance at the receiver’s end. These fluctuations can be studied accurately with statistical methods. Thus, in this work, we use either the lognormal or the gamma–gamma distribution for weak or moderate to strong turbulence conditions, respectively. Moreover, using the derived mathematical expressions, we design, accomplish and present a computational tool for the estimation of these systems’ performances, while also taking into account the parameter of the link and the atmospheric conditions. Furthermore, in order to increase the accuracy of the presented tool, for the cases where the obtained analytical mathematical expressions are complex, the performance results are verified with the numerical estimation of the appropriate integrals. Finally, using

  9. Estimates of lower-tropospheric divergence and average vertical motion in the Southern Great Plains region

    Science.gov (United States)

    Muradyan, P.; Coulter, R.; Kotamarthi, V. R.; Wang, J.; Ghate, V. P.

    2016-12-01

    Large-scale mean vertical motion affects the atmospheric stability and is an important component in cloud formation. Thus, the analysis of temporal variations in the long-term averages of large-scale vertical motion would provide valuable insights into weather and climate patterns. 915-MHz radar wind profilers (RWP) provide virtually unattended and almost uninterrupted long-term wind speed measurements. We use five years of RWP wind data from the Atmospheric Boundary Layer Experiments (ABLE) located within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site from 1999 to 2004. Wind speed data from a triangular array of SGP A1, A2, and A5 ancillary sites are used to calculate the horizontal divergence field over the profiler network area using the line integral method. The distance between each vertex of this triangle is approximately 60km. Thus, the vertical motion profiles deduced from the divergence/convergence of horizontal winds over these spatial scales are of relevance to mesoscale dynamics. The wind data from RWPs are averaged over 1 hour time slice and divergence is calculated at each range gate from the lowest at 82 m to the highest at 2.3 km. An analysis of temporal variations in the long-term averages of the atmospheric divergence and vertical air motion for the months of August/September indicates an overall vertical velocity of -0.002 m/s with a standard deviation of 0.013 m/s, agreeing well with previous studies. Overall mean of the diurnal variation of vertical velocity for the study period from surface to 500 m height is 0.0018 m/s with a standard error of 0.00095 m/s. Seasonal mean daytime vertical winds suggest generally downward motion in Winter and upward motion in Summer. Validation of the derived divergence and vertical motion against a regional climate model (Weather Forecast and Research, WRF) at a spatial resolution of 12 km, as well as clear-sky vs. cloudy conditions comparisons will also be presented.

  10. Intrafraction Bladder Motion in Radiation Therapy Estimated From Pretreatment and Posttreatment Volumetric Imaging

    International Nuclear Information System (INIS)

    Foroudi, Farshad; Pham, Daniel; Bressel, Mathias; Gill, Suki; Kron, Tomas

    2013-01-01

    Purpose: The use of image guidance protocols using soft tissue anatomy identification before treatment can reduce interfractional variation. This makes intrafraction clinical target volume (CTV) to planning target volume (PTV) changes more important, including those resulting from intrafraction bladder filling and motion. The purpose of this study was to investigate the required intrafraction margins for soft tissue image guidance from pretreatment and posttreatment volumetric imaging. Methods and Materials: Fifty patients with muscle-invasive bladder cancer (T2-T4) underwent an adaptive radiation therapy protocol using daily pretreatment cone beam computed tomography (CBCT) with weekly posttreatment CBCT. A total of 235 pairs of pretreatment and posttreatment CBCT images were retrospectively contoured by a single radiation oncologist (CBCT-CTV). The maximum bladder displacement was measured according to the patient's bony pelvis movement during treatment, intrafraction bladder filling, and bladder centroid motion. Results: The mean time between pretreatment and posttreatment CBCT was 13 minutes, 52 seconds (range, 7 min 52 sec to 30 min 56 sec). Taking into account patient motion, bladder centroid motion, and bladder filling, the required margins to cover intrafraction changes from pretreatment to posttreatment in the superior, inferior, right, left, anterior, and posterior were 1.25 cm (range, 1.19-1.50 cm), 0.67 cm (range, 0.58-1.12 cm), 0.74 cm (range, 0.59-0.94 cm), 0.73 cm (range, 0.51-1.00 cm), 1.20 cm (range, 0.85-1.32 cm), and 0.86 cm (range, 0.73-0.99), respectively. Small bladders on pretreatment imaging had relatively the largest increase in pretreatment to posttreatment volume. Conclusion: Intrafraction motion of the bladder based on pretreatment and posttreatment bladder imaging can be significant particularly in the anterior and superior directions. Patient motion, bladder centroid motion, and bladder filling all contribute to changes between

  11. Intrafraction Bladder Motion in Radiation Therapy Estimated From Pretreatment and Posttreatment Volumetric Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Foroudi, Farshad, E-mail: farshad.foroudi@petermac.org [Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Pham, Daniel [Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Bressel, Mathias [Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Gill, Suki [Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Kron, Tomas [Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia)

    2013-05-01

    Purpose: The use of image guidance protocols using soft tissue anatomy identification before treatment can reduce interfractional variation. This makes intrafraction clinical target volume (CTV) to planning target volume (PTV) changes more important, including those resulting from intrafraction bladder filling and motion. The purpose of this study was to investigate the required intrafraction margins for soft tissue image guidance from pretreatment and posttreatment volumetric imaging. Methods and Materials: Fifty patients with muscle-invasive bladder cancer (T2-T4) underwent an adaptive radiation therapy protocol using daily pretreatment cone beam computed tomography (CBCT) with weekly posttreatment CBCT. A total of 235 pairs of pretreatment and posttreatment CBCT images were retrospectively contoured by a single radiation oncologist (CBCT-CTV). The maximum bladder displacement was measured according to the patient's bony pelvis movement during treatment, intrafraction bladder filling, and bladder centroid motion. Results: The mean time between pretreatment and posttreatment CBCT was 13 minutes, 52 seconds (range, 7 min 52 sec to 30 min 56 sec). Taking into account patient motion, bladder centroid motion, and bladder filling, the required margins to cover intrafraction changes from pretreatment to posttreatment in the superior, inferior, right, left, anterior, and posterior were 1.25 cm (range, 1.19-1.50 cm), 0.67 cm (range, 0.58-1.12 cm), 0.74 cm (range, 0.59-0.94 cm), 0.73 cm (range, 0.51-1.00 cm), 1.20 cm (range, 0.85-1.32 cm), and 0.86 cm (range, 0.73-0.99), respectively. Small bladders on pretreatment imaging had relatively the largest increase in pretreatment to posttreatment volume. Conclusion: Intrafraction motion of the bladder based on pretreatment and posttreatment bladder imaging can be significant particularly in the anterior and superior directions. Patient motion, bladder centroid motion, and bladder filling all contribute to changes between

  12. Near-source high-rate GPS, strong motion and InSAR observations to image the 2015 Lefkada (Greece) Earthquake rupture history.

    Science.gov (United States)

    Avallone, Antonio; Cirella, Antonella; Cheloni, Daniele; Tolomei, Cristiano; Theodoulidis, Nikos; Piatanesi, Alessio; Briole, Pierre; Ganas, Athanassios

    2017-09-04

    The 2015/11/17 Lefkada (Greece) earthquake ruptured a segment of the Cephalonia Transform Fault (CTF) where probably the penultimate major event was in 1948. Using near-source strong motion and high sampling rate GPS data and Sentinel-1A SAR images on two tracks, we performed the inversion for the geometry, slip distribution and rupture history of the causative fault with a three-step self-consistent procedure, in which every step provided input parameters for the next one. Our preferred model results in a ~70° ESE-dipping and ~13° N-striking fault plane, with a strike-slip mechanism (rake ~169°) in agreement with the CTF tectonic regime. This model shows a bilateral propagation spanning ~9 s with the activation of three main slip patches, characterized by rise time and peak slip velocity in the ranges 2.5-3.5 s and 1.4-2.4 m/s, respectively, corresponding to 1.2-1.8 m of slip which is mainly concentrated in the shallower ( 6) earthquakes to the northern and to the southern boundaries of the 2015 causative fault cannot be excluded.

  13. Frontally placed eyes versus laterally placed eyes: computational comparison of their functions for ego-motion estimation.

    Science.gov (United States)

    Gao, Zhi; Wang, Pengfei; Zhai, Ruifang; Tang, Yazhe

    2016-04-01

    Both frontally placed eyes and laterally placed eyes are popular in nature, and although which one is better could be one of the most intuitive questions to ask, it could also be the hardest question to answer. Their most obvious difference is that, at least as supposed in the computer vision community, stereopsis plays the central role in the visual system composed of frontally placed eyes (or cameras); however, it is not available in the lateral configuration due to the lack of overlap between the visual fields. As a result, researchers have adopted completely different approaches to model the two configurations and developed computational mimics of them to address various vision problems. Recently, the advent of novel quasi-parallax conception unifies the ego-motion estimation procedure of these two eye configurations into the same framework and makes systematic comparison feasible. In this paper, we intend to establish the computational superiority of eye topography from the perspective of ego-motion estimation. Specifically, quasi-parallax is applied to fuse motion cues from individual cameras at an early stage, at the pixel level, and to recover the translation and rotation separately with high accuracy and efficiency without the need of feature matching. Furthermore, its applicability on the extended sideways arrangements is studied successfully to make our comparison more general and insightful. Extensive experiments on both synthetic and real data have been done, and the computational superiority of the lateral configuration is verified.

  14. A Study on Parametric Wave Estimation Based on Measured Ship Motions

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Iseki, Toshio

    2011-01-01

    The paper studies parametric wave estimation based on the ‘wave buoy analogy’, and data and results obtained from the training ship Shioji-maru are compared with estimates of the sea states obtained from other measurements and observations. Furthermore, the estimating characteristics of the param......The paper studies parametric wave estimation based on the ‘wave buoy analogy’, and data and results obtained from the training ship Shioji-maru are compared with estimates of the sea states obtained from other measurements and observations. Furthermore, the estimating characteristics...... of the parametric model are discussed by considering the results of a similar estimation concept based on Bayesian modelling. The purpose of the latter comparison is not to favour the one estimation approach to the other but rather to highlight some of the advantages and disadvantages of the two approaches....

  15. Fuzzy-based motion estimation for video stabilization using SIFT interest points

    Science.gov (United States)

    Battiato, S.; Gallo, G.; Puglisi, G.; Scellato, S.

    2009-01-01

    In this paper we present a technique which infers interframe motion by tracking SIFT features through consecutive frames: feature points are detected and their stability is evaluated through a combination of geometric error measures and fuzzy logic modelling. Our algorithm does not depend on the point detector adopted prior to SIFT descriptor creation: therefore performance have been evaluated against a wide set of point detection algorithms, in order to investigate how to increase stabilization quality with an appropriate detector.

  16. Design and Voluntary Motion Intention Estimation of a Novel Wearable Full-Body Flexible Exoskeleton Robot

    Directory of Open Access Journals (Sweden)

    Chunjie Chen

    2017-01-01

    Full Text Available The wearable full-body exoskeleton robot developed in this study is one application of mobile cyberphysical system (CPS, which is a complex mobile system integrating mechanics, electronics, computer science, and artificial intelligence. Steel wire was used as the flexible transmission medium and a group of special wire-locking structures was designed. Additionally, we designed passive joints for partial joints of the exoskeleton. Finally, we proposed a novel gait phase recognition method for full-body exoskeletons using only joint angular sensors, plantar pressure sensors, and inclination sensors. The method consists of four procedures. Firstly, we classified the three types of main motion patterns: normal walking on the ground, stair-climbing and stair-descending, and sit-to-stand movement. Secondly, we segregated the experimental data into one gait cycle. Thirdly, we divided one gait cycle into eight gait phases. Finally, we built a gait phase recognition model based on k-Nearest Neighbor perception and trained it with the phase-labeled gait data. The experimental result shows that the model has a 98.52% average correct rate of classification of the main motion patterns on the testing set and a 95.32% average correct rate of phase recognition on the testing set. So the exoskeleton robot can achieve human motion intention in real time and coordinate its movement with the wearer.

  17. Rapid estimation of 4DCT motion-artifact severity based on 1D breathing-surrogate periodicity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guang, E-mail: lig2@mskcc.org; Caraveo, Marshall [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York 10031 (United States); Rimner, Andreas; Wu, Abraham J.; Goodman, Karyn A. [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Yorke, Ellen [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065 (United States)

    2014-11-01

    Purpose: Motion artifacts are common in patient four-dimensional computed tomography (4DCT) images, leading to an ill-defined tumor volume with large variations for radiotherapy treatment and a poor foundation with low imaging fidelity for studying respiratory motion. The authors developed a method to estimate 4DCT image quality by establishing a correlation between the severity of motion artifacts in 4DCT images and the periodicity of the corresponding 1D respiratory waveform (1DRW) used for phase binning in 4DCT reconstruction. Methods: Discrete Fourier transformation (DFT) was applied to analyze 1DRW periodicity. The breathing periodicity index (BPI) was defined as the sum of the largest five Fourier coefficients, ranging from 0 to 1. Distortional motion artifacts (excluding blurring) of cine-scan 4DCT at the junctions of adjacent couch positions around the diaphragm were classified in three categories: incomplete, overlapping, and duplicate anatomies. To quantify these artifacts, discontinuity of the diaphragm at the junctions was measured in distance and averaged along six directions in three orthogonal views. Artifacts per junction (APJ) across the entire diaphragm were calculated in each breathing phase and phase-averaged APJ{sup ¯}, defined as motion-artifact severity (MAS), was obtained for each patient. To make MAS independent of patient-specific motion amplitude, two new MAS quantities were defined: MAS{sup D} is normalized to the maximum diaphragmatic displacement and MAS{sup V} is normalized to the mean diaphragmatic velocity (the breathing period was obtained from DFT analysis of 1DRW). Twenty-six patients’ free-breathing 4DCT images and corresponding 1DRW data were studied. Results: Higher APJ values were found around midventilation and full inhalation while the lowest APJ values were around full exhalation. The distribution of MAS is close to Poisson distribution with a mean of 2.2 mm. The BPI among the 26 patients was calculated with a value

  18. Efficient Estimation of Extreme Non-linear Roll Motions using the First-order Reliability Method (FORM)

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2007-01-01

    frequency domain methods can be applied. To non-linear responses like the roll motion, standard methods like direct time domain simulations are not feasible due to the required computational time. However, the statistical distribution of non-linear ship responses can be estimated very accurately using......-specified specific maximum roll angles. The procedure is computationally very effective and can thus be applied to real-time determination of ship specific combinations of heading and speed to be avoided in the actual sea state....

  19. ARRA-funded VS30 measurements using multi-technique approach at strong-motion stations in California and central-eastern United States

    Science.gov (United States)

    Yong, Alan; Martin, Antony; Stokoe, Kenneth; Diehl, John

    2013-01-01

    Funded by the 2009 American Recovery and Reinvestment Act (ARRA), we conducted geophysical site characterizations at 191 strong-motion stations: 187 in California and 4 in the Central-Eastern United States (CEUS). The geophysical methods used at each site included passive and active surface-wave and body-wave techniques. Multiple techniques were used at most sites, with the goal of robustly determining VS (shear-wave velocity) profiles and VS30 (the time-averaged shear-wave velocity in the upper 30 meters depth). These techniques included: horizontal-to-vertical spectral ratio (HVSR), two-dimensional (2-D) array microtremor (AM), refraction microtremor (ReMi™), spectral analysis of surface wave (SASW), multi-channel analysis of surface waves (Rayleigh wave: MASRW; and Love wave: MASLW), and compressional- and shear-wave refraction. Of the selected sites, 47 percent have crystalline, volcanic, or sedimentary rock at the surface or at relatively shallow depth, and 53 percent are of Quaternary sediments located in either rural or urban environments. Calculated values of VS30 span almost the full range of the National Earthquake Hazards Reduction Program (NEHRP) Site Classes, from D (stiff soils) to B (rock). The NEHRP Site Classes based on VS30 range from being consistent with the Class expected from analysis of surficial geology, to being one or two Site Classes below expected. In a few cases where differences between the observed and expected Site Class occurred, it was the consequence of inaccurate or coarse geologic mapping, as well as considerable degradation of the near-surface rock. Additionally, several sites mapped as rock have Site Class D (stiff soil) velocities, which is due to the extensive weathering of the surficial rock.

  20. Fractional Low-Order Joint Moments in the Estimation of Fractional Motions

    Science.gov (United States)

    Carsteanu, Alin Andrei; Guzman Sanluis, Javier Allan; Delvia Borjas López, Ada

    2017-04-01

    Fractional motions arise naturally from the integration of fractional noises, signals that appear in a variety of geophysical processes. When the marginal limiting probability distributions of these processes are Gaussian, the scaling behaviour of integer moments, be they marginal or joint - such as linear autocorrelation - can be used to parameterize the process. When, however, those moments do not converge, due to the heavy tails of the distributions, fractional low-order moments offer an attractive alternative. An application thereof to hydrometeorological data is presented herein.

  1. OPTICAL FLOW APPLIED TO TIME-LAPSE IMAGE SERIES TO ESTIMATE GLACIER MOTION IN THE SOUTHERN PATAGONIA ICE FIELD

    Directory of Open Access Journals (Sweden)

    E. Lannutti

    2016-06-01

    Full Text Available In this work, we assessed the feasibility of using optical flow to obtain the motion estimation of a glacier. In general, former investigations used to detect glacier changes involve solutions that require repeated observations which are many times based on extensive field work. Taking into account glaciers are usually located in geographically complex and hard to access areas, deploying time-lapse imaging sensors, optical flow may provide an efficient solution at good spatial and temporal resolution to describe mass motion. Several studies in computer vision and image processing community have used this method to detect large displacements. Therefore, we carried out a test of the proposed Large Displacement Optical Flow method at the Viedma Glacier, located at South Patagonia Icefield, Argentina. We collected monoscopic terrestrial time-lapse imagery, acquired by a calibrated camera at every 24 hour from April 2014 until April 2015. A filter based on temporal correlation and RGB color discretization between the images was applied to minimize errors related to changes in lighting, shadows, clouds and snow. This selection allowed discarding images that do not follow a sequence of similarity. Our results show a flow field in the direction of the glacier movement with acceleration in the terminus. We analyzed the errors between image pairs, and the matching generally appears to be adequate, although some areas show random gross errors related to the presence of changes in lighting. The proposed technique allowed the determination of glacier motion during one year, providing accurate and reliable motion data for subsequent analysis.

  2. Report of the U.S. Nuclear Regulatory Commission Piping Review Committee. Summary and evaluation of historical strong-motion earthquake seismic response and damage to aboveground industrial piping

    International Nuclear Information System (INIS)

    1985-04-01

    The primary purpose of this report is to collect in one reference document the observation and experience that has been developed with regard to the seismic behavior of aboveground, building-supported, industrial-type process piping (similar to piping used in nuclear power plants) in strong-motion earthquakes. The report will also contain observations regarding the response of piping in strong-motion experimental tests and appropriate conclusions regarding the behavior of such piping in large earthquakes. Recommendations are included covering the future design of such piping to resist earthquake motion damage based on observed behavior in large earthquakes and simulated shake table testing. Since available detailed data on the behavior of aboveground (building-supported) piping are quite limited, this report will draw heavily on the observations and experiences of experts in the field. In Section 2 of this report, observed earthquake damage to aboveground piping in a number of large-motion earthquakes is summarized. In Section 3, the available experience from strong-motion testing of piping in experimental facilities is summarized. In Section 4 are presented some observations that attempt to explain the observed response of piping to strong-motion excitation from actual earthquakes and shake table testing. Section 5 contains the conclusions based on this study and recommendations regarding the future seismic design of piping based on the observed strong-motion behavior and material developed for the NPC Piping Review Committee. Finally, in Section 6 the references used in this study are presented. It should be understood that the use of the term piping in this report, in general, is limited to piping supported by building structures. It does not include behavior of piping buried in soil media. It is believed that the seismic behavior of buried piping is governed primarily by the deformation of the surrounding soil media and is not dependent on the inertial response

  3. Evaluation equivalent pulse of pulse-like ground motion to estimate the response of RC moment-resisting frames

    Directory of Open Access Journals (Sweden)

    Seyed Rohollah Hosseini Vaez

    2017-08-01

    Full Text Available In this study the ability of equivalent pulse extracted by a mathematical model from pulse-like ground motion is investigated in order to estimate the response of RC moment-resisting frames. By examining the mathematical model, it is obvious that the model-based elastic response spectra are compatible with the actual pulse-like record. Also, the model simulates the long-period portion of actual pulse-like records by a high level of precision. The results indicate that the model adequately simulates the components of time histories. In order to investigate the ability of equivalent pulse of pulse-like ground motion in estimating the response of RC moment-resisting frames, five frame models including 3, 6, 9, 12 and 15 stories analyzed under actual record and simulated one. The results of the base shear demand, the maximum value of the inter-story drift and the distribution of inter-story drift along the height of the structures in three levels of design ductility is investigated. According to the results of this study, the equivalent pulses can predict accurately the response of regular RC moment-resisting frames when the fundamental period of the structure is equal to or greater than the equivalent pulse of the record. For the ground motion with high-frequency content the difference is high; but with increasing the number of stories and approaching pulse period to the fundamental period of the structure and increasing the level of design ductility of structure, more accurately predict the structural response.

  4. Using smartphone as a motion detector to collect time-microenvironment data for estimating the inhalation dose

    International Nuclear Information System (INIS)

    Hoi, Tran Xuan; Phuong, Huynh Truc; Van Hung, Nguyen

    2016-01-01

    During the production of iodine-131 from neutron irradiated tellurium dioxide by the dry distillation, a considerable amount of 131 I vapor is dispersed to the indoor air. People who routinely work at the production area may result in a significant risk of exposure to chronic intake by inhaled 131 I. This study aims to estimate the inhalation dose for individuals manipulating the 131 I at a radioisotope production. By using an application installed on smartphones, we collected the time-microenvironment data spent by a radiation group during work days in 2015. Simultaneously, we used a portable air sampler combined with radioiodine cartridges for grabbing the indoor air samples and then the daily averaged 131 I concentration was calculated. Finally, the time-microenvironment data jointed with the concentration to estimate the inhalation dose for the workers. The result showed that most of the workers had the annual internal dose in 1÷6 mSv. We concluded that using smartphone as a motion detector is a possible and reliable way instead of the questionnaires, diary or GPS-based method. It is, however, only suitable for monitoring on fixed indoor environments and limited the targeted people. - Highlights: • We constructed the time-microenvironment patterns with 1-min resolution by using a smartphone application. • Exposure to 131 I at the dry distillation areas may lead to an acute inhalation dose significantly. • Using smartphone as a motion detector in indoor exposure monitoring is a reliable method.

  5. Surface Electromyographic Sensor for Human Motion Estimation Based on Arm Wrestling Robot

    Directory of Open Access Journals (Sweden)

    Zhen GAO

    2010-06-01

    Full Text Available In this paper, the surface electromyographic (EMG sensor is developed to acquire the EMG signals from the upper limb when the participants compete with the arm wrestling robot (AWR which is fabricated to play arm wrestling game with human on a table with pegs for entertainment and human motion modeling of upper limbs muscle. As the EMG signal is a measurement of the anatomical and physiological characteristic of the specific muscle, the macroscopical movement patterns of the human body can be classified and recognized. The high-frequency noises are eliminated effectively and the characteristics of EMG signals can be extracted through wavelet packet transformation. Auto-regressive model of EMG is conducted to effectively simulate the stochastic time sequences with a series of auto-regressive coefficients. The win/lose pattern is recognized by neural network based on extracted characteristics of surface EMG signal.

  6. Compilation of Published Estimates of Annual Geocenter Motions Using Space Geodesy

    Science.gov (United States)

    Elosegui, P.

    2005-01-01

    The definition of the term "geocenter motion" depends on the adopted origin of the reference frame. Common reference frames used in Space Geodesy include: the center of mass of the whole Earth (CM), the center of mass of the Solid Earth without mass load (CE), and the center of figure of the outer surface of the Solid Earth (CF). There are two established definitions of the term geocenter: one, the vector offset of CF relative to CM and, two, the reverse, the vector offset of CM relative to CF. Obviously, their amplitude is the same and their phase differs by 180 deg. Following Dong et al. [2003], we label the first X(sub CF, sup CM) and the second X(sup CF, sup CM) (i.e., the superscript represents the frame, the subscript represents any point in the frame).

  7. Feasibility study of a nation-wide Early Warning System: the application of the EEW software PRESTo on the Italian Strong Motion Network (RAN)

    Science.gov (United States)

    Zollo, Aldo; Picozzi, Matteo; Elia, Luca; Martino, Claudio; Brondi, Piero; Colombelli, Simona; Emolo, Antonio; Festa, Gaetano; Marcucci, Sandro

    2014-05-01

    shaking prediction at the regional scale. Alarm messages containing those parameters can reach target sites before the destructive waves, enabling automatic safety procedures. The earthquake location is obtained by an evolutionary, probabilistic approach that uses information from both triggered and not-yet-triggered stations at each time step. Magnitude estimation is based on a Bayesian approach that uses the peak displacement measured on short 2-4 second windows of P- and S-waves signal. Peak ground motion is estimated at target sites by GMPEs using location and magnitude. The performance of the potential EW system at the national scale has been investigated through simulated earthquake scenarios using real-data from several M 5-6 earthquakes recorded by the network RAN. Furthermore, a statistical approach has been implemented considering a nation-wide grid of synthetic sources, the same grid which is used to derive the seismic hazard map in Italy. By considering a virtual testing period of 50 years, each grid's node is considered as a seismic source capable of generating a sequence of earthquakes with magnitude varying according the seismogenic zones properties to which it belongs. Then, the EW algorithm, PRESTo, is run on the sequences of synthetic data created for each of the grid's points considering the present-day RAN configuration, and network performance in terms of lead-time, errors in event location and magnitude determination is computed for the tested sources.

  8. Re-estimation of Motion and Reconstruction for Distributed Video Coding

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Raket, Lars Lau; Forchhammer, Søren

    2014-01-01

    re-estimation (MORE) are integrated in the SING TDWZ codec, which uses side information and noise learning. For Wyner-Ziv frames using GOP size 2, the MORE codec significantly improves the TDWZ coding efficiency with an average (Bjøntegaard) PSNR improvement of 2.5 dB and up to 6 dB improvement...

  9. Estimation of ground reaction forces and moments during gait using only inertial motion capture

    NARCIS (Netherlands)

    Karatsidis, Angelos; Bellusci, Giovanni; Schepers, H. Martin; de Zee, Mark; Andersen, Michael S.; Veltink, Petrus H.

    Ground reaction forces and moments (GRF&M) are important measures used as input in biomechanical analysis to estimate joint kinetics, which often are used to infer information for many musculoskeletal diseases. Their assessment is conventionally achieved using laboratory-based equipment that cannot

  10. Non-invasive Player Experience Estimation from Body Motion and Game Context

    DEFF Research Database (Denmark)

    Burelli, Paolo; Triantafyllidis, George; Patras, Ioannis

    2014-01-01

    %). Moreover, taking into account the playing context, the accuracy can be raised up to 86%. Following such a multi-modal approach, it is possible to estimate the player experience in a non-invasive fashion during the game and, based on this information, the game content could be adapted accordingly....

  11. An interdimensional correlation framework for real-time estimation of six degree of freedom target motion using a single x-ray imager during radiotherapy

    Science.gov (United States)

    Nguyen, D. T.; Bertholet, J.; Kim, J.-H.; O'Brien, R.; Booth, J. T.; Poulsen, P. R.; Keall, P. J.

    2018-01-01

    Increasing evidence suggests that intrafraction tumour motion monitoring needs to include both 3D translations and 3D rotations. Presently, methods to estimate the rotation motion require the 3D translation of the target to be known first. However, ideally, translation and rotation should be estimated concurrently. We present the first method to directly estimate six-degree-of-freedom (6DoF) motion from the target’s projection on a single rotating x-ray imager in real-time. This novel method is based on the linear correlations between the superior-inferior translations and the motion in the other five degrees-of-freedom. The accuracy of the method was evaluated in silico with 81 liver tumour motion traces from 19 patients with three implanted markers. The ground-truth motion was estimated using the current gold standard method where each marker’s 3D position was first estimated using a Gaussian probability method, and the 6DoF motion was then estimated from the 3D positions using an iterative method. The 3D position of each marker was projected onto a gantry-mounted imager with an imaging rate of 11 Hz. After an initial 110° gantry rotation (200 images), a correlation model between the superior-inferior translations and the five other DoFs was built using a least square method. The correlation model was then updated after each subsequent frame to estimate 6DoF motion in real-time. The proposed algorithm had an accuracy (±precision) of  -0.03  ±  0.32 mm, -0.01  ±  0.13 mm and 0.03  ±  0.52 mm for translations in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions respectively; and, 0.07  ±  1.18°, 0.07  ±  1.00° and 0.06  ±  1.32° for rotations around the LR, SI and AP axes respectively on the dataset. The first method to directly estimate real-time 6DoF target motion from segmented marker positions on a 2D imager was devised. The algorithm was evaluated using 81

  12. Estimating Transient Water Storage from Hurricane Harvey Using GPS Observations of Vertical Land Motion

    Science.gov (United States)

    Milliner, C. W. D.; Materna, K.; Burgmann, R.; Fu, Y.; Bekaert, D. P.; Moore, A. W.; Adhikari, S.

    2017-12-01

    The Global Positioning System (GPS) measures elastic ground motions due to variations in terrestrial water mass. Such measurements have been used to successfully study variations of hydrological loading over monthly-to-yearly timescales; e.g., seasonal changes in water storage in California (Argus et al., 2014), 3-year drought of Western US (Borsa et al., 2014) and monthly water storage change in the Pacific Northwest (Fu et al., 2015). However, inferring water storage variations from single loading events over daily-to-weekly timescales presents a major challenge, due to the relatively higher level of noise and systematic errors, such as common mode errors (CME). This makes geodetic investigations of transient hydrologic events, such as major hurricanes, particularly difficult. By using daily vertical GPS timeseries we resolve the spatial and temporal evolution of water loading from Hurricane Harvey across the Gulf coast by applying multiple network correction methods, which helps to isolate the hydrological loading signal. Using 340 GPS stations distributed across the southern US, we mitigate for the effects of spatially correlated CME by firstly removing vertical contributions from atmospheric and non-ocean tidal loading, and secondly correcting the residual positions for changes in translation, rotation and scaling using a Helmert transformation. Our results show a maximum subsidence of 1.8 cm occurring around Houston, and a clear migration of land subsidence from Corpus Christi to western Louisiana over a 7-day period, consistent with the movement of Harvey itself. We also present preliminary results using the Network Inversion Filter (Bekaert et al., 2016), in which we use a Kalman filter approach to describe the time-varying water mass in a stochastic sense. Although our results are preliminary, we find removal of systematic sources of noise can help reveal hydrological loading signals due to extreme, transient events, that would typically go missed by other

  13. Estimation of interplate coupling along Nankai trough considering the block motion model based on onland GNSS and seafloor GPS/A observation data using MCMC method

    Science.gov (United States)

    Kimura, H.; Ito, T.; Tadokoro, K.

    2017-12-01

    Introduction In southwest Japan, Philippine sea plate is subducting under the overriding plate such as Amurian plate, and mega interplate earthquakes has occurred at about 100 years interval. There is no occurrence of mega interplate earthquakes in southwest Japan, although it has passed about 70 years since the last mega interplate earthquakes: 1944 and 1946 along Nankai trough, meaning that the strain has been accumulated at plate interface. Therefore, it is essential to reveal the interplate coupling more precisely for predicting or understanding the mechanism of next occurring mega interplate earthquake. Recently, seafloor geodetic observation revealed the detailed interplate coupling distribution in expected source region of Nankai trough earthquake (e.g., Yokota et al. [2016]). In this study, we estimated interplate coupling in southwest Japan, considering block motion model and using seafloor geodetic observation data as well as onland GNSS observation data, based on Markov Chain Monte Carlo (MCMC) method. Method Observed crustal deformation is assumed that sum of rigid block motion and elastic deformation due to coupling at block boundaries. We modeled this relationship as a non-linear inverse problem that the unknown parameters are Euler pole of each block and coupling at each subfault, and solved them simultaneously based on MCMC method. Input data we used in this study are 863 onland GNSS observation data and 24 seafloor GPS/A observation data. We made some block division models based on the map of active fault tracing and selected the best model based on Akaike's Information Criterion (AIC): that is consist of 12 blocks. Result We find that the interplate coupling along Nankai trough has heterogeneous spatial distribution, strong at the depth of 0 to 20km at off Tokai region, and 0 to 30km at off Shikoku region. Moreover, we find that observed crustal deformation at off Tokai region is well explained by elastic deformation due to subducting Izu Micro

  14. Evaluating the Benefit of Elevated Acoustic Output in Harmonic Motion Estimation in Ultrasonic Shear Wave Elasticity Imaging.

    Science.gov (United States)

    Deng, Yufeng; Palmeri, Mark L; Rouze, Ned C; Haystead, Clare M; Nightingale, Kathryn R

    2018-02-01

    Harmonic imaging techniques have been applied in ultrasonic elasticity imaging to obtain higher-quality tissue motion tracking data. However, harmonic tracking can be signal-to-noise ratio and penetration depth limited during clinical imaging, resulting in decreased yield of successful shear wave speed measurements. A logical approach is to increase the source pressure, but the in situ pressures used in diagnostic ultrasound have been subject to a de facto upper limit based on the Food and Drug Administration guideline for the mechanical index (MI estimation yield by 27% at a focal depth of 5 cm, with larger yield increase in more difficult-to-image patients. High-MI tracking improved harmonic tracking data quality by increasing the signal-to-noise ratio and decreasing jitter in the tissue motion data. We conclude that there is clinical benefit to use of elevated acoustic output in shear wave tracking, particularly in difficult-to-image patients. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  15. Estimates of vertical land motion along the southwestern coasts of Turkey from coastal altimetry and tide gauge data

    DEFF Research Database (Denmark)

    Yildiz, Hasan; Andersen, Ole Baltazar; Simav, Mehmet

    2013-01-01

    The differences between coastal altimetry and sea level time series of tide gauges in between March 1993 and December 2009 are used to estimate the rates of vertical land motion at three tide gauge locations along the southwestern coasts of Turkey. The CTOH/LEGOS along-track coastal altimetry...... retrieves altimetric sea level anomalies closer to the coast than the standard along-track altimetry products. However, the use of altimetry very close to the coast is not found to improve the results. On the contrary, the gridded and interpolated AVISO merged product exhibits the best agreement with tide...... gauge data as it provides the smoothest variability both in space and time compared with along track altimetry data. The Antalya gauge to the south (in the Mediterranean Sea) and the Mentes/Izmir gauge to the west (in the Aegean Sea) both show subsidence while the Bodrum tide gauge to the south (in...

  16. Road-Aided Ground Slowly Moving Target 2D Motion Estimation for Single-Channel Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Zhirui Wang

    2016-03-01

    Full Text Available To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR, a road-aided ground moving target indication (GMTI algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target’s position on the road as well as its radial velocity can be determined according to the target’s offset distance and traffic rules. Furthermore, the target’s azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm.

  17. An evaluation of data-driven motion estimation in comparison to the usage of external-surrogates in cardiac SPECT imaging

    International Nuclear Information System (INIS)

    Mukherjee, Joyeeta Mitra; Johnson, Karen L; Pretorius, P Hendrik; King, Michael A; Hutton, Brian F

    2013-01-01

    Motion estimation methods in single photon emission computed tomography (SPECT) can be classified into methods which depend on just the emission data (data-driven), or those that use some other source of information such as an external surrogate. The surrogate-based methods estimate the motion exhibited externally which may not correlate exactly with the movement of organs inside the body. The accuracy of data-driven strategies on the other hand is affected by the type and timing of motion occurrence during acquisition, the source distribution, and various degrading factors such as attenuation, scatter, and system spatial resolution. The goal of this paper is to investigate the performance of two data-driven motion estimation schemes based on the rigid-body registration of projections of motion-transformed source distributions to the acquired projection data for cardiac SPECT studies. Comparison is also made of six intensity based registration metrics to an external surrogate-based method. In the data-driven schemes, a partially reconstructed heart is used as the initial source distribution. The partially-reconstructed heart has inaccuracies due to limited angle artifacts resulting from using only a part of the SPECT projections acquired while the patient maintained the same pose. The performance of different cost functions in quantifying consistency with the SPECT projection data in the data-driven schemes was compared for clinically realistic patient motion occurring as discrete pose changes, one or two times during acquisition. The six intensity-based metrics studied were mean-squared difference, mutual information, normalized mutual information (NMI), pattern intensity (PI), normalized cross-correlation and entropy of the difference. Quantitative and qualitative analysis of the performance is reported using Monte-Carlo simulations of a realistic heart phantom including degradation factors such as attenuation, scatter and system spatial resolution. Further the

  18. Marine and Lacustrine Turbidite Records: Testing Linkages and Estimating Ground Motions, Central Cascadia Margin, USA

    Science.gov (United States)

    Hausmann, R. B.; Goldfinger, C.; Black, B.; Collins, T.; Romsos, C. G.; Medeiros, L.; Mutschler, M.; Galer, S.; Raymond, R.; Morey, A. E.

    2015-12-01

    measurements. Initial slope stability models suggest that slopes less than ~ 25 degrees are statically stable. We are investigating the levels of ground motion required to destabilize surface sediments around the lake, and radiocarbon dating the disturbance events for comparison to other paleoseismic records, including new offshore cores at a similar latitude.

  19. Estimation of Seismic Ground Motions and Attendant Potential Human Fatalities from Scenario Earthquakes on the Chishan Fault in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Kun-Sung Liu

    2017-01-01

    Full Text Available The purpose of this study is to estimate maximum ground motions in southern Taiwan as well as to assess potential human fatalities from scenario earthquakes on the Chishan active faults in this area. The resultant Shake Map patterns of maximum ground motion in a case of Mw 7.2 show the areas of PGA above 400 gals are located in the northeastern, central and northern parts of southwestern Kaohsiung as well as the southern part of central Tainan, as shown in the regions inside the yellow lines in the corresponding figure. Comparing cities with similar distances located in Tainan, Kaohsiung, and Pingtung to the Chishan fault, the cities in Tainan area have relatively greater PGA and PGV, due to large site response factors in Tainan area. Furthermore, seismic hazards in terms of PGA and PGV in the vicinity of the Chishan fault are not completely dominated by the Chishan fault. The main reason is that some areas located in the vicinity of the Chishan fault are marked with low site response amplification values from 0.55 - 1.1 and 0.67 - 1.22 for PGA and PGV, respectively. Finally, from estimation of potential human fatalities from scenario earthquakes on the Chishan active fault, it is noted that potential fatalities increase rapidly in people above age 45. Total fatalities reach a high peak in age groups of 55 - 64. Another to pay special attention is Kaohsiung City has more than 540 thousand households whose residences over 50 years old. In light of the results of this study, I urge both the municipal and central governments to take effective seismic hazard mitigation measures in the highly urbanized areas with a large number of old buildings in southern Taiwan.

  20. Modified Three-Step Search Block Matching Motion Estimation and Weighted Finite Automata based Fractal Video Compression

    Directory of Open Access Journals (Sweden)

    Shailesh Kamble

    2017-08-01

    Full Text Available The major challenge with fractal image/video coding technique is that, it requires more encoding time. Therefore, how to reduce the encoding time is the research component remains in the fractal coding. Block matching motion estimation algorithms are used, to reduce the computations performed in the process of encoding. The objective of the proposed work is to develop an approach for video coding using modified three step search (MTSS block matching algorithm and weighted finite automata (WFA coding with a specific focus on reducing the encoding time. The MTSS block matching algorithm are used for computing motion vectors between the two frames i.e. displacement of pixels and WFA is used for the coding as it behaves like the Fractal Coding (FC. WFA represents an image (frame or motion compensated prediction error based on the idea of fractal that the image has self-similarity in itself. The self-similarity is sought from the symmetry of an image, so the encoding algorithm divides an image into multi-levels of quad-tree segmentations and creates an automaton from the sub-images. The proposed MTSS block matching algorithm is based on the combination of rectangular and hexagonal search pattern and compared with the existing New Three-Step Search (NTSS, Three-Step Search (TSS, and Efficient Three-Step Search (ETSS block matching estimation algorithm. The performance of the proposed MTSS block matching algorithm is evaluated on the basis of performance evaluation parameters i.e. mean absolute difference (MAD and average search points required per frame. Mean of absolute difference (MAD distortion function is used as the block distortion measure (BDM. Finally, developed approaches namely, MTSS and WFA, MTSS and FC, and Plane FC (applied on every frame are compared with each other. The experimentations are carried out on the standard uncompressed video databases, namely, akiyo, bus, mobile, suzie, traffic, football, soccer, ice etc. Developed

  1. A comparison of methods to estimate vertical land motion trends from GNSS and altimetry at tide gauge stations

    Science.gov (United States)

    Kleinherenbrink, Marcel; Riva, Riccardo; Frederikse, Thomas

    2018-03-01

    Tide gauge (TG) records are affected by vertical land motion (VLM), causing them to observe relative instead of geocentric sea level. VLM can be estimated from global navigation satellite system (GNSS) time series, but only a few TGs are equipped with a GNSS receiver. Hence, (multiple) neighboring GNSS stations can be used to estimate VLM at the TG. This study compares eight approaches to estimate VLM trends at 570 TG stations using GNSS by taking into account all GNSS trends with an uncertainty smaller than 1 mm yr-1 within 50 km. The range between the methods is comparable with the formal uncertainties of the GNSS trends. Taking the median of the surrounding GNSS trends shows the best agreement with differenced altimetry-tide gauge (ALT-TG) trends. An attempt is also made to improve VLM trends from ALT-TG time series. Only using highly correlated along-track altimetry and TG time series reduces the SD of ALT-TG time series by up to 10 %. As a result, there are spatially coherent changes in the trends, but the reduction in the root mean square (RMS) of differences between ALT-TG and GNSS trends is insignificant. However, setting correlation thresholds also acts like a filter to remove problematic TG time series. This results in sets of ALT-TG VLM trends at 344-663 TG locations, depending on the correlation threshold. Compared to other studies, we decrease the RMS of differences between GNSS and ALT-TG trends (from 1.47 to 1.22 mm yr-1), while we increase the number of locations (from 109 to 155), Depending on the methods the mean of differences between ALT-TG and GNSS trends vary between 0.1 and 0.2 mm yr-1. We reduce the mean of the differences by taking into account the effect of elastic deformation due to present-day mass redistribution. At varying ALT-TG correlation thresholds, we provide new sets of trends for 759 to 939 different TG stations. If both GNSS and ALT-TG trend estimates are available, we recommend using the GNSS trend estimates because residual

  2. Motion of the Lambert Glacier estimated by using differential Interferometric Synthetic Aperture Radar

    International Nuclear Information System (INIS)

    Liu, Shuang; Tong, Xiaohua; Xie, Huan; Liu, Xiangfeng; Liu, Jun

    2014-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is one of the most promising remote sensing technologies and has been widely applied in constructing topographic information and estimating the deformation of the Earth's surface. Ice velocity is an important parameter for calculating the mass balance and modelling ice shelve dynamics. Ice velocity is also an important indicator for climate changes. Therefore, it plays an important role in studying the global climate change and global sea level rise. In this paper, the ERS-1/2 tandem data and the ASTER GDEM are combined together to obtained the deformation in line of sight by using the differential Interferometric SAR for the Lambert Amery glacier in Antarctica. Then the surface parallel assumption is adopted in order to achieve the ice flow velocity. The results showed that ice velocity would be increased along the Lambert glacier; the maximum ice velocity would be reach about 450m/year in the study area

  3. ESTADIUS: A High Motion "One Arcsec" Daytime Attitude Estimation System for Stratospheric Applications

    Science.gov (United States)

    Montel, J.; Andre, Y.; Mirc, F.; Etcheto, P.; Evrard, J.; Bray, N.; Saccoccio, M.; Tomasini, L.; Perot, E.

    2015-09-01

    ESTADIUS is an autonomous, accurate and daytime attitude estimation system, for stratospheric balloons that require a high level of attitude measurement and stability. The system has been developed by CNES. ESTADIUS is based on star sensor an pyrometer data fusion within an extended Kalman filter. The star sensor is composed of a 16 MPixels visible-CCD camera and a large aperture camera lens (focal length of 135mm, aperture f/1.8, 10ºx15º field of view or FOV) which provides very accurate stars measurements due to very low pixel angular size. This also allows detecting stars against a bright sky background. The pyrometer is a 0.01º/h performance class Fiber Optic Gyroscope (FOG). The system is adapted to work down to an altitude of ~25km, even under high cinematic conditions. Key elements of ESTADIUS are: daytime conditions use (as well as night time), autonomy (automatic recognition of constellations), high angular rate robustness (a few deg/s thanks to the high performance of attitude propagation), stray-light robustness (thanks to a high performance baffle), high accuracy (<1", 1σ). Four stratospheric qualification flights were very successfully performed in 2010/2011 and 2013/2014 in Kiruna (Sweden) and Timmins (Canada). ESTADIUS will allow long stratospheric flights with a unique attitude estimation system avoiding the restriction of night/day conditions at launch. The first operational flight of ESTADIUS will be in 2015 for the PILOT scientific missions (led by IRAP and CNES in France). Further balloon missions such as CIDRE will use the system ESTADIUS is probably the first autonomous, large FOV, daytime stellar attitude measurement system. This paper details the technical features and in-flight results.

  4. Elastic image registration versus speckle tracking for 2-D myocardial motion estimation: a direct comparison in vivo.

    Science.gov (United States)

    Heyde, Brecht; Jasaityte, Ruta; Barbosa, Daniel; Robesyn, Valérie; Bouchez, Stefaan; Wouters, Patrick; Maes, Frederik; Claus, Piet; D'hooge, Jan

    2013-02-01

    Despite the availability of multiple solutions for assessing myocardial strain by ultrasound, little is currently known about the relative performance of the different methods. In this study, we sought to contrast two strain estimation techniques directly (speckle tracking and elastic registration) in an in vivo setting by comparing both to a gold standard reference measurement. In five open-chest sheep instrumented with ultrasonic microcrystals, 2-D images were acquired with a GE Vivid7 ultrasound system. Radial (ε(RR)), longitudinal (ε(LL)), and circumferential strain (ε(CC)) were estimated during four inotropic stages: at rest, during esmolol and dobutamine infusion, and during acute ischemia. The correlation of the end-systolic strain values of a well-validated speckle tracking approach and an elastic registration method against sonomicrometry were comparable for ε(LL) ( r=0.70 versus r=0.61, respectively; p=0.32) and ε(CC) ( r=0.73 versus r=0.80 respectively; p=0.31). However, the elastic registration method performed considerably better for ε(RR) ( r=0.64 versus r=0.85 respectively; p=0.09). Moreover, the bias and limits of agreement with respect to the reference strain estimates were statistically significantly smaller in this direction . This could be related to regularization which is imposed during the motion estimation process as opposed to an a posteriori regularization step in the speckle tracking method. Whether one method outperforms the other in detecting dysfunctional regions remains the topic of future research.

  5. Earth modeling and estimation of the local seismic ground motion due to site geology in complex volcanoclastic areas

    Directory of Open Access Journals (Sweden)

    V. Di Fiore

    2002-06-01

    Full Text Available Volcanic areas often show complex behaviour as far as seismic waves propagation and seismic motion at surface are concerned. In fact, the finite lateral extent of surface layers such as lava flows, blocks, differential welding and/or zeolitization within pyroclastic deposits, introduces in the propagation of seismic waves effects such as the generation of surface waves at the edge, resonance in lateral direction, diffractions and scattering of energy, which tend to modify the amplitude as well as the duration of the ground motion. The irregular topographic surface, typical of volcanic areas, also strongly influences the seismic site response. Despite this heterogeneity, it is unfortunately a common geophysical and engineering practice to evaluate even in volcanic environments the subsurface velocity field with monodimensional investigation method (i.e. geognostic soundings, refraction survey, down-hole, etc. prior to the seismic site response computation which in a such cases is obviously also made with 1D algorithms. This approach often leads to highly inaccurate results. In this paper we use a different approach, i.e. a fully 2D P-wave Çturning rayÈ tomographic survey followed by 2D seismic site response modeling. We report here the results of this approach in three sites located at short distance from Mt. Vesuvius and Campi Flegrei and characterized by overburdens constituted by volcanoclastic deposits with large lateral and vertical variations of their elastic properties. Comparison between 1D and 2D Dynamic Amplification Factor shows in all reported cases entirely different results, both in terms of peak period and spectral contents, as expected from the clear bidimensionality of the geological section. Therefore, these studies suggest evaluating carefully the subsoil geological structures in areas characterized by possible large lateral and vertical variations of the elastic properties in order to reach correct seismic site response

  6. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches; Modelisation de la rupture sismique, prediction du mouvement fort, et evaluation de l'alea sismique: approches fondamentale et appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Berge-Thierry, C

    2007-05-15

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  7. Ground motion input in seismic evaluation studies

    International Nuclear Information System (INIS)

    Sewell, R.T.; Wu, S.C.

    1996-07-01

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants

  8. A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    Science.gov (United States)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2018-02-01

    Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model. However, the accuracy of the intensity-driven motion model is limited in regions with fine details whose quality is degraded due to insufficient projection number, which consequently degrades the reconstructed image quality in corresponding regions. In this study, we developed a new 4D-CBCT reconstruction algorithm by introducing biomechanical modeling into SMEIR (SMEIR-Bio) to boost the accuracy of the motion model in regions with small fine structures. The biomechanical modeling uses tetrahedral meshes to model organs of interest and solves internal organ motion using tissue elasticity parameters and mesh boundary conditions. This physics-driven approach enhances the accuracy of solved motion in the organ’s fine structures regions. This study used 11 lung patient cases to evaluate the performance of SMEIR-Bio, making both qualitative and quantitative comparisons between SMEIR-Bio, SMEIR, and the algebraic reconstruction technique with total variation regularization (ART-TV). The reconstruction results suggest that SMEIR-Bio improves the motion model’s accuracy in regions containing small fine details, which consequently enhances the accuracy and quality of the reconstructed 4D-CBCT images.

  9. Ankle joint range of motion measurements in spastic cerebral palsy children: intraobserver and interobserver reliability and reproducibility of goniometry and visual estimation.

    Science.gov (United States)

    Allington, Nanni J; Leroy, Nathalie; Doneux, Carole

    2002-07-01

    The aim of this study was to assess the intra- and interobserver reliability and reproducibility of goniometry and visual estimation of ankle joint range of motion measurements in children with spastic cerebral palsy. Forty-six ankles of 24 spastic cerebral palsy children were measured under a strict protocol. The global mean measurement error was 5 degrees (SD, 5 degrees) for intra- and interobserver measurements and 3 degrees (SD, 3 degrees) for goniometry versus visual estimation. Statistical analysis showed a high reliability for intra- and interobserver measurements (r>0.75), between visual estimation and goniometry (correlation coefficient, r>0.967; concordance coefficient, r>0.957). Both visual estimation and goniometry ankle range-of-motion measurements are reliable and reproducible in spastic cerebral palsy children if a strict but simple protocol is applied.

  10. An interdimensional correlation framework for real-time estimation of six degree of freedom target motion using a single x-ray imager during radiotherapy

    DEFF Research Database (Denmark)

    Nguyen, Doan Trang; Bertholet, Jenny; Kim, Jungha

    2018-01-01

    ), a correlation model between superior-inferior translations and the five other DoFs was built using a least square method. The correlation model was then updated after each subsequent frame to estimate 6DoF motion in real-time. Results: The proposed algorithm had an accuracy (±precision) of -0.03±0.32mm, -0...

  11. Study of a Terrain-Based Motion Estimation Model to Predict the Position of a Moving Target to Enhance Weapon Probability of Kill

    Science.gov (United States)

    2017-09-01

    the operational level. The goal of this thesis is to develop a realistic model characterizing the most probable paths 2 of interest for specific...TERRAIN-BASED MOTION ESTIMATION MODEL TO PREDICT THE POSITION OF A MOVING TARGET TO ENHANCE WEAPON PROBABILITY OF KILL by Chin Beng Ang...ESTIMATION MODEL TO PREDICT THE POSITION OF A MOVING TARGET TO ENHANCE WEAPON PROBABILITY OF KILL 5. FUNDING NUMBERS 6. AUTHOR(S) Chin Beng Ang 7

  12. Simulation of broad-band strong ground motion for a hypothetical Mw 7.1 earthquake on the Enriquillo Fault in Haiti

    Science.gov (United States)

    Douilly, Roby; Mavroeidis, George P.; Calais, Eric

    2017-10-01

    The devastating 2010 Mw 7.0 Haiti earthquake demonstrated the need to improve mitigation and preparedness for future seismic events in the region. Previous studies have shown that the earthquake did not occur on the Enriquillo Fault, the main plate boundary fault running through the heavily populated Port-au-Prince region, but on the nearby and previously unknown transpressional Léogâne Fault. Slip on that fault has increased stresses on the segment of Enriquillo Fault to the east of Léogâne, which terminates in the ˜3-million-inhabitant capital city of Port-au-Prince. In this study, we investigate ground shaking in the vicinity of Port-au-Prince, if a hypothetical rupture similar to the 2010 Haiti earthquake occurred on that segment of the Enriquillo Fault. We use a finite element method and assumptions on regional tectonic stress to simulate the low-frequency ground motion components using dynamic rupture propagation for a 52-km-long segment. We consider eight scenarios by varying parameters such as hypocentre location, initial shear stress and fault dip. The high-frequency ground motion components are simulated using the specific barrier model in the context of the stochastic modeling approach. The broad-band ground motion synthetics are subsequently obtained by combining the low-frequency components from the dynamic rupture simulation with the high-frequency components from the stochastic simulation using matched filtering at a crossover frequency of 1 Hz. Results show that rupture on a vertical Enriquillo Fault generates larger horizontal permanent displacements in Léogâne and Port-au-Prince than rupture on a south-dipping Enriquillo Fault. The mean horizontal peak ground acceleration (PGA), computed at several sites of interest throughout Port-au-Prince, has a value of ˜0.45 g, whereas the maximum horizontal PGA in Port-au-Prince is ˜0.60 g. Even though we only consider a limited number of rupture scenarios, our results suggest more intense ground

  13. A computational framework for simultaneous estimation of muscle and joint contact forces and body motion using optimization and surrogate modeling.

    Science.gov (United States)

    Eskinazi, Ilan; Fregly, Benjamin J

    2018-04-01

    Concurrent estimation of muscle activations, joint contact forces, and joint kinematics by means of gradient-based optimization of musculoskeletal models is hindered by computationally expensive and non-smooth joint contact and muscle wrapping algorithms. We present a framework that simultaneously speeds up computation and removes sources of non-smoothness from muscle force optimizations using a combination of parallelization and surrogate modeling, with special emphasis on a novel method for modeling joint contact as a surrogate model of a static analysis. The approach allows one to efficiently introduce elastic joint contact models within static and dynamic optimizations of human motion. We demonstrate the approach by performing two optimizations, one static and one dynamic, using a pelvis-leg musculoskeletal model undergoing a gait cycle. We observed convergence on the order of seconds for a static optimization time frame and on the order of minutes for an entire dynamic optimization. The presented framework may facilitate model-based efforts to predict how planned surgical or rehabilitation interventions will affect post-treatment joint and muscle function. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Seismic Safety Margins Research Program, Phase I. Project II: seismic input. Compilation, assessment and expansion of the strong earthquake ground motion data base

    Energy Technology Data Exchange (ETDEWEB)

    Crouse, C B; Hileman, J A; Turner, B E; Martin, G R

    1980-04-01

    A catalog has been prepared which contains information for: (1) world-wide, ground-motion accelerograms, (2) the accelerograph sites where these records were obtained, and (3) the seismological parameters of the causative earthquakes. The catalog is limited to data for those accelerograms which have been digitized and published. In addition, the quality and completeness of these data are assessed. This catalog is unique because it is the only publication which contains comprehensive information on the recording conditions of all known digitized accelerograms. However, information for many accelerograms is missing. Although some literature may have been overlooked, most of the missing data has not been published. Nevertheless, the catalog provides a convenient reference and useful tool for earthquake engineering research and applications.

  15. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  16. Visual information and expert’s idea in Hurst index estimation of the fractional Brownian motion using a diffusion type approximation

    Science.gov (United States)

    Taheriyoun, Ali R.; Moghimbeygi, Meisam

    2017-02-01

    An approximation of the fractional Brownian motion based on the Ornstein-Uhlenbeck process is used to obtain an asymptotic likelihood function. Two estimators of the Hurst index are then presented in the likelihood approach. The first estimator is produced according to the observed values of the sample path; while the second one employs the likelihood function of the incremental process. We also employ visual roughness of realization to restrict the parameter space and to obtain prior information in Bayesian approach. The methods are then compared with three contemporary estimators and an experimental data set is studied.

  17. Carotid Artery Wall Motion Estimation from Consecutive Ultrasonic Images: Comparison between Block-Matching and Maximum-Gradient Algorithms.

    Science.gov (United States)

    Soleimani, Effat; Dizaji, Manijhe Mokhtari; Saberi, Hajir

    2011-01-01

    Radial movement of the arterial wall is a well-known indicator of the mechanical properties of arteries in arterial disease examinations. In the present study, two different motion estimation methods, based on the block-matching and maximum-gradient algorithms, were examined to extract the radial displacement of the carotid artery wall. Each program was separately implemented to the same axial consecutive ultrasound images of the carotid artery of 10 healthy men, and the radial displacement waveform of this artery was extracted during two cardiac cycles. The results of the two methods were compared using the linear regression and Bland-Altman statistical analyses. The maximum and mean displacements traced by the block-matching algorithm were compared with the same parameters traced by the maximum-gradient algorithm. The frame numbers in which the maximum displacement of the wall occurred were compared too. There were no significant differences between the maximum and the mean displacements traced by the block-matching algorithm and the same parameters traced by the maximum-gradient algorithm according to the pair t-test analysis (p value > 0.05). There was a significant correlation between the radial movement of the common carotid artery measured with the block-matching and maximum-gradient methods (with a correlation coefficient of 0.89 and p value block-matching and maximum-gradient algorithms can be used to extract the radial displacement of the carotid artery wall and in addition, with respect to the pixel size as error, the same results can be obtained.

  18. Characterizing sub-arctic peatland vegeation using height estimates from structure from motion and an unmanned aerial system (UAS)

    Science.gov (United States)

    Palace, M. W.; DelGreco, J.; Herrick, C.; Sullivan, F.; Varner, R. K.

    2017-12-01

    The collapse of permafrost, due to thawing, changes landscape topography, hydrology and vegetation. Changes in plant species composition influence methane production pathways and methane emission rates. The complex spatial heterogeneity of vegetation composition across peatlands proves important in quantifying methane emissions. Effort to characterize vegetation across these permafrost peatlands has been conducted with varied success, with difficulty seen in estimating some cover types that are at opposite ends of the permafrost collapse transition, ie palsa/tall shrub and tall graminoid. This is because some of the species are the same (horsetail) and some of the species have similar structure (horsetail/Carex spp.). High resolution digital elevation maps, developed with airborne LIght Detection And Ranging (lidar) have provided insight into some wetland attributes, but lidar collection is costly and requires extensive data processing effort. Lidar information also lacks the spectral information that optical sensors provide. We used an inexpensive Unmanned Aerial Vehicle (UAV) with an optical sensor to image a mire in northern Sweden (Stordalen Mire) in 2015. We collected 700 overlapping images that were stitched together using Structure from Motion (SfM). SfM analysis also provided, due to parallax, the ability to develop a height map of vegetation. This height map was used, along with textural analysis, to develop an artificial neural network to predict five vegetation cover types. Using 200 training points, we found improvements in our prediction of these cover types. We suggest that using the digital height model from SfM provides useful information in remotely sensing vegetation across a permafrost collapsing region that exhibit resulting changes in vegetation composition. The ability to rapidly and inexpensively deploy such a UAV system provides the opportunity to examine multiple sites with limited personnel effort in remote areas.

  19. Geotechnical and Surface Wave Investigation of Liquefaction and Strong Motion Instrumentation sites of the Denali Fault, Mw 7.9, Earthquake

    Science.gov (United States)

    Kayen, R.; Thompson, E.; Minasian, D.; Collins, B.; Moss, R.; Sitar, N.; Carver, G.

    2003-12-01

    Following the Mw 7.9 earthquake on the Denali and Totschunda faults on 3 November 2002, we conducted two investigations to map the regional extent and severity of liquefaction ground failures and assess the geotechnical properties of these sites, as well as profile the soil properties beneath three seismometers located at Alyeska Pump Stations 9, 10, and 11. The most noteworthy observations are that liquefaction damage was focused towards the eastern end of the rupture area. For example, liquefaction features in the river bars of the Tanana River, north of the fault-break, are sparsely located from Fairbanks to Delta, but are pervasive throughout the eastern area of the break to Northway Junction, the eastern limit of our survey. Likewise, for the four glacier-proximal rivers draining toward the north, little or no liquefaction was observed on the western Delta and Johnson Rivers, whereas the eastern Robertson River and non-glacial Tok River, and especially the Nabesna River, had observable-to-abundant fissures and sand vents. Several rivers systems were studied in detail. The Nabesna River emerges from its glacier, and drains and fines northward as it crosses the fault zone resulting in an asymmetrical liquefaction pattern. South of the fault, falling liquefaction resistance of soil (fining from sandy gravel to gravely sand) and rising loads from ground motions (approaching the fault) abruptly intersect such that there is a well defined, narrow, soil transition from undisturbed-to-fully liquefied approximately 5 kilometers from the fault. North of the fault, both liquefaction resistance (continued fining) and ground motions fall in tandem, leaving a much broader zone of liquefaction. The Delta River liquefaction occurrence is more complex, where side-entering glacial rivers form non-liquefiable gravel fans and alter the composition and compactness of the main-stem deposits. Immediately upstream of the gravelly Canwell glacier tributary, and immediately at the

  20. A Pilot Evaluation of a 4-Dimensional Cone-Beam Computed Tomographic Scheme Based on Simultaneous Motion Estimation and Image Reconstruction

    International Nuclear Information System (INIS)

    Dang, Jun; Gu, Xuejun; Pan, Tinsu; Wang, Jing

    2015-01-01

    Purpose: To evaluate the performance of a 4-dimensional (4-D) cone-beam computed tomographic (CBCT) reconstruction scheme based on simultaneous motion estimation and image reconstruction (SMEIR) through patient studies. Methods and Materials: The SMEIR algorithm contains 2 alternating steps: (1) motion-compensated CBCT reconstruction using projections from all phases to reconstruct a reference phase 4D-CBCT by explicitly considering the motion models between each different phase and (2) estimation of motion models directly from projections by matching the measured projections to the forward projection of the deformed reference phase 4D-CBCT. Four lung cancer patients were scanned for 4 to 6 minutes to obtain approximately 2000 projections for each patient. To evaluate the performance of the SMEIR algorithm on a conventional 1-minute CBCT scan, the number of projections at each phase was reduced by a factor of 5, 8, or 10 for each patient. Then, 4D-CBCTs were reconstructed from the down-sampled projections using Feldkamp-Davis-Kress, total variation (TV) minimization, prior image constrained compressive sensing (PICCS), and SMEIR. Using the 4D-CBCT reconstructed from the fully sampled projections as a reference, the relative error (RE) of reconstructed images, root mean square error (RMSE), and maximum error (MaxE) of estimated tumor positions were analyzed to quantify the performance of the SMEIR algorithm. Results: The SMEIR algorithm can achieve results consistent with the reference 4D-CBCT reconstructed with many more projections per phase. With an average of 30 to 40 projections per phase, the MaxE in tumor position detection is less than 1 mm in SMEIR for all 4 patients. Conclusion: The results from a limited number of patients show that SMEIR is a promising tool for high-quality 4D-CBCT reconstruction and tumor motion modeling

  1. Joint Encoding of Object Motion and Motion Direction in the Salamander Retina.

    Science.gov (United States)

    Kühn, Norma Krystyna; Gollisch, Tim

    2016-11-30

    The processing of motion in visual scenes is important for detecting and tracking moving objects as well as for monitoring self-motion through the induced optic flow. Specialized neural circuits have been identified in the vertebrate retina for detecting motion direction or for distinguishing between object motion and self-motion, although little is known about how information about these distinct features of visual motion is combined. The salamander retina, which is a widely used model system for analyzing retinal function, contains object-motion-sensitive (OMS) ganglion cells, which strongly respond to local motion signals but are suppressed by global image motion. Yet, direction-selective (DS) ganglion cells have been conspicuously absent from characterizations of the salamander retina, despite their ubiquity in other model systems. We here show that the retina of axolotl salamanders contains at least two distinct classes of DS ganglion cells. For one of these classes, the cells display a strong preference for local over global motion in addition to their direction selectivity (OMS-DS cells) and thereby combine sensitivity to two distinct motion features. The OMS-DS cells are further distinct from standard (non-OMS) DS cells by their smaller receptive fields and different organization of preferred motion directions. Our results suggest that the two classes of DS cells specialize to encode motion direction of local and global motion stimuli, respectively, even for complex composite motion scenes. Furthermore, although the salamander DS cells are OFF-type, there is a strong analogy to the systems of ON and ON-OFF DS cells in the mammalian retina. The retina contains specialized cells for motion processing. Among the retinal ganglion cells, which form the output neurons of the retina, some are known to report the direction of a moving stimulus (direction-selective cells), and others distinguish the motion of an object from a moving background. But little is known

  2. Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models

    Science.gov (United States)

    Sun, Yu; Riva, Riccardo; Ditmar, Pavel

    2016-11-01

    The focus of the study is optimizing the technique for estimating geocenter motion and variations in J2 by combining data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission with output from an Ocean Bottom Pressure model and a Glacial Isostatic Adjustment (GIA) model. First, we conduct an end-to-end numerical simulation study. We generate input time-variable gravity field observations by perturbing a synthetic Earth model with realistically simulated errors. We show that it is important to avoid large errors at short wavelengths and signal leakage from land to ocean, as well as to account for self-attraction and loading effects. Second, the optimal implementation strategy is applied to real GRACE data. We show that the estimates of annual amplitude in geocenter motion are in line with estimates from other techniques, such as satellite laser ranging (SLR) and global GPS inversion. At the same time, annual amplitudes of C10 and C11 are increased by about 50% and 20%, respectively, compared to estimates based on Swenson et al. (2008). Estimates of J2 variations are by about 15% larger than SLR results in terms of annual amplitude. Linear trend estimates are dependent on the adopted GIA model but still comparable to some SLR results.

  3. Estimation of the displacement of cardiac substructures and the motion of the coronary arteries using electrocardiographic gating

    Directory of Open Access Journals (Sweden)

    Tan W

    2013-09-01

    differ significantly between men and women. Conclusion: Most average displacements of the cardiac substructures and coronary arteries were 3–8 mm in three dimensions. These findings will be useful to accurately estimate the radiation dose to cardiac substructures during thoracic radiation and to evaluate the risk of radiation-related heart disease. Keywords: coronary artery, organ motion/displacement, radiotherapy, heart disease

  4. A new method for the realistic estimation of seismic ground motion in megacities: The case of Rome

    International Nuclear Information System (INIS)

    Faeh, D.; Iodice, C.; Suhadole, P.; Panza, G.F.

    1994-04-01

    A hybrid technique, based on mode summation and finite differences, is used to simulate the ground motion induced in the city of Rome by the January 13, 1915, Fucino (Italy) earthquake (M=6.9). The technique allows us to take into consideration source, path, and local soil effects. The results of the numerical simulations are used for a comparison between the observed distribution of damage in Rome, and certain quantities related to the computed ground motion. These quantities are those commonly used for engineering purposes, e.g. the peak ground acceleration, the maximum response of a simple oscillator, and the so-called ''total energy of ground motion'' which is related to the Arias Intensity. Integral quantities of the computed time-series, such as the total energy of ground motion, are in good agreement with the observed distribution of damage and turn out to give a good representation of the ground motion. From the computation of spectral ratios, it has been recognised that the presence of a near-surface layer of rigid material is not sufficient to classify a location as a ''hard-rock site'' when the rigid material has a sedimentary complex below it. This is because the underlying sedimentary complex causes amplifications due to resonances. Within sedimentary basins, incident energy in certain frequency bands can also be shifted from the vertical, into the radial component of motion. This phenomenon is very localized, both in frequency and space, and closely neighboring sites can be characterized by very large differences in the seismic response, even if the lateral variations of local soil conditions are relatively smooth. (author). Refs, 12 figs, 1 tab

  5. Joint surface reconstruction and 4D deformation estimation from sparse data and prior knowledge for marker-less Respiratory motion tracking.

    Science.gov (United States)

    Berkels, Benjamin; Bauer, Sebastian; Ettl, Svenja; Arold, Oliver; Hornegger, Joachim; Rumpf, Martin

    2013-09-01

    The intraprocedural tracking of respiratory motion has the potential to substantially improve image-guided diagnosis and interventions. The authors have developed a sparse-to-dense registration approach that is capable of recovering the patient's external 3D body surface and estimating a 4D (3D + time) surface motion field from sparse sampling data and patient-specific prior shape knowledge. The system utilizes an emerging marker-less and laser-based active triangulation (AT) sensor that delivers sparse but highly accurate 3D measurements in real-time. These sparse position measurements are registered with a dense reference surface extracted from planning data. Thereby a dense displacement field is recovered, which describes the spatio-temporal 4D deformation of the complete patient body surface, depending on the type and state of respiration. It yields both a reconstruction of the instantaneous patient shape and a high-dimensional respiratory surrogate for respiratory motion tracking. The method is validated on a 4D CT respiration phantom and evaluated on both real data from an AT prototype and synthetic data sampled from dense surface scans acquired with a structured-light scanner. In the experiments, the authors estimated surface motion fields with the proposed algorithm on 256 datasets from 16 subjects and in different respiration states, achieving a mean surface reconstruction accuracy of ± 0.23 mm with respect to ground truth data-down from a mean initial surface mismatch of 5.66 mm. The 95th percentile of the local residual mesh-to-mesh distance after registration did not exceed 1.17 mm for any subject. On average, the total runtime of our proof of concept CPU implementation is 2.3 s per frame, outperforming related work substantially. In external beam radiation therapy, the approach holds potential for patient monitoring during treatment using the reconstructed surface, and for motion-compensated dose delivery using the estimated 4D surface motion field in

  6. Comparison of Energy-based Seismic Structural Response Estimated Based on Simulated Ground Motions with Empirical Relationships

    Science.gov (United States)

    Askan, A.; karimzadeh Naghshineh, S.; Erberik, M. A.

    2017-12-01

    Energy-based approaches for seismic design of structural systems have advanced within earthquake engineering community. In these approaches, seismic design is considered to be satisfactory when there is higher structural capacity for absorbing or dissipation of the input energy compared to the energy demand of an earthquake.Previous studies have utilized existing real ground motion sets for energy-based seismic response evaluation. However, in regions where there is lack of real records from potential events with large magnitudes, simulated motions could be employed alternatively. Since these records provide a controlled variability in seismic demand, it is significant to assess them in terms of energy responses. In this study, stochastic finite-fault methodology is used for simulation of a wide range of scenario events using regional input parameters for two different seismically active areas: Duzce and Erzincan (Turkey). Then, the energy-based response of simple structural systems are assessed with time history analyses using the generated simulated ground motion sets. Results are compared with the existing empirical relationships in between seismic demand and capacity responses based on real ground motion datasets. Our numerical results show that simulated records yield realistic results in terms of energy demand.

  7. Estimating geocenter motion and changes in the Earth’s dynamic oblateness from GRACE and geophysical models

    NARCIS (Netherlands)

    Sun, Y.

    2017-01-01

    Geocenter motion and changes in the Earth’s dynamic oblateness (J2) are of great importance in many applications. Among others, they are critical indicators of largescale mass redistributions, which is invaluable to understand ongoing global climate change. The revolutionary Gravity Recovery and

  8. Novel techniques for data decomposition and load balancing for parallel processing of vision systems: Implementation and evaluation using a motion estimation system

    Science.gov (United States)

    Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.

    1989-01-01

    Computer vision systems employ a sequence of vision algorithms in which the output of an algorithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit vastly different computational characteristics, and therefore, require different data decomposition techniques and efficient load balancing techniques for parallel implementation. However, since the input data for a task is produced as the output data of the previous task, this information can be exploited to perform knowledge based data decomposition and load balancing. Presented here are algorithms for a motion estimation system. The motion estimation is based on the point correspondence between the involved images which are a sequence of stereo image pairs. Researchers propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures, which results in saving considerable amounts of computation time. The system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from consecutive time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters.

  9. Improved estimation of geocenter motion and changes in the Earth's dynamic oblateness from GRACE data and an ocean bottom pressure model

    Science.gov (United States)

    Sun, Y.; Ditmar, P.; Riva, R.

    2015-12-01

    The Gravity Recovery and Climate Experiment (GRACE) satellite mission, since the launch in 2002, has enabled the monitoring of mass transport in the Earth's system on a monthly basis. In spite of continuous improvements in data processing techniques, an estimation of very low-degree spherical harmonic coefficients remains problematic. GRACE is insensitive to variations in the degree-1 coefficients (ΔC11, ΔS11 and ΔC10), which reflect the motion of the geocenter. The variations of C20 coefficients, which characterize changes in the Earth's dynamic oblateness (Δ J2) are corrupted by ocean tide aliases and usually replaced with estimates from other techniques.In this study, the methodology proposed by Swenson et al. (2008) to estimate geocenter motion is updated and extended to co-estimate changes in the Earth's dynamic oblateness. The algorithm uses monthly GRACE gravity solutions (in the form of spherical harmonic coefficients), an ocean bottom pressure model (over the oceans), and a glacial isostatic adjustment (GIA) model (globally). GRACE solutions over coastal areas may suffer from signal leakage due to their limited spectral content and to filtering. We effectively avoid the influence of this effect by introducing a carefully chosen buffer zone. We also take into account self-attraction and loading effects when dealing with water redistribution in the oceans. The estimated annual amplitude of ΔC10 , i.e. the Z component of the geocenter motion, is significantly amplified compared to the original estimations of Swenson et al. (2008) and it is in line with estimates from other techniques, such as the global GPS inversion. The resulting ΔC20 time-series agree remarkably well with a solution based on satellite laser ranging data, which is currently believed to be one of the most accurate sources of information on changes in the Earth's dynamic oblateness. Trends in both geocenter position and the Earth's oblateness are estimated as well. The results show a

  10. Using an Empirical Model of Human Turning Motion to Aid Heading Estimation in a Personal Navigation System

    Science.gov (United States)

    Jakel, Thomas

    With the adoption of Global Navigation Satellite Systems in smart phones, soldier equipment, and emergency responder navigation systems users have realized the usefulness of low cost Personal Navigation Systems. The state-of-the-art Personal Navigation System is a unit that fuses information based on external references with a low cost IMU. Due to the size, weight, power, and cost constraints imposed on a pedestrian navigation systems as well as current IMU performance limitations, the gyroscopes used to determine heading exhibit significant drift limiting the performance of the navigation system. In this thesis biomechanical signals are used to predict the onset of pedestrian turning motion. Experimental data from eight subjects captured in a gait laboratory using a Vicon motion tracking unit is used for validation. The analysis of experimental data shows the heading computed by turn prediction augmented integration is more accurate than open loop gyro integration alone.

  11. Comparison of Total Variation with a Motion Estimation Based Compressed Sensing Approach for Self-Gated Cardiac Cine MRI in Small Animal Studies

    Science.gov (United States)

    Marinetto, Eugenio; Pascau, Javier; Desco, Manuel

    2014-01-01

    Purpose Compressed sensing (CS) has been widely applied to prospective cardiac cine MRI. The aim of this work is to study the benefits obtained by including motion estimation in the CS framework for small-animal retrospective cardiac cine. Methods We propose a novel B-spline-based compressed sensing method (SPLICS) that includes motion estimation and generalizes previous spatiotemporal total variation (ST-TV) methods by taking into account motion between frames. In addition, we assess the effect of an optimum weighting between spatial and temporal sparsity to further improve results. Both methods were implemented using the efficient Split Bregman methodology and were evaluated on rat data comparing animals with myocardial infarction with controls for several acceleration factors. Results ST-TV with optimum selection of the weighting sparsity parameter led to results similar to those of SPLICS; ST-TV with large relative temporal sparsity led to temporal blurring effects. However, SPLICS always properly corrected temporal blurring, independently of the weighting parameter. At acceleration factors of 15, SPLICS did not distort temporal intensity information but led to some artefacts and slight over-smoothing. At an acceleration factor of 7, images were reconstructed without significant loss of quality. Conclusion We have validated SPLICS for retrospective cardiac cine in small animal, achieving high acceleration factors. In addition, we have shown that motion modelling may not be essential for retrospective cine and that similar results can be obtained by using ST-TV provided that an optimum selection of the spatiotemporal sparsity weighting parameter is performed. PMID:25350290

  12. Strong-motion fluid rotation seismograph

    Czech Academy of Sciences Publication Activity Database

    Jedlička, Petr; Buben, Jiří; Kozák, Jan

    2009-01-01

    Roč. 99, 2B (2009), s. 1443-1448 ISSN 0037-1106 Institutional research plan: CEZ:AV0Z30120515; CEZ:AV0Z30130516 Keywords : rotation seismograph * seismic waves * fluid seismometer Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.860, year: 2009

  13. Low-dimensional representation of cardiac motion using Barycentric Subspaces: A new group-wise paradigm for estimation, analysis, and reconstruction.

    Science.gov (United States)

    Rohé, Marc-Michel; Sermesant, Maxime; Pennec, Xavier

    2018-04-01

    One major challenge when trying to build low-dimensional representation of the cardiac motion is its natural circular pattern during a cycle, therefore making the mean image a poor descriptor of the whole sequence. Therefore, traditional approaches for the analysis of the cardiac deformation use one specific frame of the sequence - the end-diastolic (ED) frame - as a reference to study the whole motion. Consequently, this methodology is biased by this empirical choice. Moreover, the ED image might be a poor reference when looking at large deformation for example at the end-systolic (ES) frame. In this paper, we propose a novel approach to study cardiac motion in 4D image sequences using low-dimensional subspace analysis. Instead of building subspaces relying on a mean value we use a novel type of subspaces called Barycentric Subspaces which are implicitly defined as the weighted Karcher means of k+1 reference images instead of being defined with respect to one reference image. In the first part of this article, we introduce the methodological framework and the algorithms used to manipulate images within these new subspaces: how to compute the projection of a given image on the Barycentric Subspace with its coordinates, and the opposite operation of computing an image from a set of references and coordinates. Then we show how this framework can be applied to cardiac motion problems and lead to significant improvements over the single reference method. Firstly, by computing the low-dimensional representation of two populations we show that the parameters extracted correspond to relevant cardiac motion features leading to an efficient representation and discrimination of both groups. Secondly, in motion estimation, we use the projection on this low-dimensional subspace as an additional prior on the regularization in cardiac motion tracking, efficiently reducing the error of the registration between the ED and ES by almost 30%. We also derive a symmetric and transitive

  14. Comparison of 2D and 3D modeled tumor motion estimation/prediction for dynamic tumor tracking during arc radiotherapy

    Science.gov (United States)

    Liu, Wu; Ma, Xiangyu; Yan, Huagang; Chen, Zhe; Nath, Ravinder; Li, Haiyun

    2017-05-01

    Many real-time imaging techniques have been developed to localize a target in 3D space or in a 2D beam’s eye view (BEV) plane for intrafraction motion tracking in radiation therapy. With tracking system latency, the 3D-modeled method is expected to be more accurate even in terms of 2D BEV tracking error. No quantitative analysis, however, has been reported. In this study, we simulated co-planar arc deliveries using respiratory motion data acquired from 42 patients to quantitatively compare the accuracy between 2D BEV and 3D-modeled tracking in arc therapy and to determine whether 3D information is needed for motion tracking. We used our previously developed low kV dose adaptive MV-kV imaging and motion compensation framework as a representative of 3D-modeled methods. It optimizes the balance between additional kV imaging dose and 3D tracking accuracy and solves the MLC blockage issue. With simulated Gaussian marker detection errors (zero mean and 0.39 mm standard deviation) and ~155/310/460 ms tracking system latencies, the mean percentage of time that the target moved  >2 mm from the predicted 2D BEV position are 1.1%/4.0%/7.8% and 1.3%/5.8%/11.6% for the 3D-modeled and 2D-only tracking, respectively. The corresponding average BEV RMS errors are 0.67/0.90/1.13 mm and 0.79/1.10/1.37 mm. Compared to the 2D method, the 3D method reduced the average RMS unresolved motion along the beam direction from ~3 mm to ~1 mm, resulting in on average only  <1% dosimetric advantage in the depth direction. Only for a small fraction of the patients, when tracking latency is long, the 3D-modeled method showed significant improvement of BEV tracking accuracy, indicating potential dosimetric advantage. However, if the tracking latency is short (~150 ms or less), those improvements are limited. Therefore, 2D BEV tracking has sufficient targeting accuracy for most clinical cases. The 3D technique is, however, still important in solving the MLC blockage problem

  15. A Prototyping Virtual Socket System-On-Platform Architecture with a Novel ACQPPS Motion Estimator for H.264 Video Encoding Applications

    Directory of Open Access Journals (Sweden)

    Qiu Yifeng

    2009-01-01

    Full Text Available H.264 delivers the streaming video in high quality for various applications. The coding tools involved in H.264, however, make its video codec implementation very complicated, raising the need for algorithm optimization, and hardware acceleration. In this paper, a novel adaptive crossed quarter polar pattern search (ACQPPS algorithm is proposed to realize an enhanced inter prediction for H.264. Moreover, an efficient prototyping system-on-platform architecture is also presented, which can be utilized for a realization of H.264 baseline profile encoder with the support of integrated ACQPPS motion estimator and related video IP accelerators. The implementation results show that ACQPPS motion estimator can achieve very high estimated image quality comparable to that from the full search method, in terms of peak signal-to-noise ratio (PSNR, while keeping the complexity at an extremely low level. With the integrated IP accelerators and optimized techniques, the proposed system-on-platform architecture sufficiently supports the H.264 real-time encoding with the low cost.

  16. A High-Throughput Hardware Architecture for the H.264/AVC Half-Pixel Motion Estimation Targeting High-Definition Videos

    Directory of Open Access Journals (Sweden)

    Marcel M. Corrêa

    2011-01-01

    Full Text Available This paper presents a high-performance hardware architecture for the H.264/AVC Half-Pixel Motion Estimation that targets high-definition videos. This design can process very high-definition videos like QHDTV (3840×2048 in real time (30 frames per second. It also presents an optimized arrangement of interpolated samples, which is the main key to achieve an efficient search. The interpolation process is interleaved with the SAD calculation and comparison, allowing the high throughput. The architecture was fully described in VHDL, synthesized for two different Xilinx FPGA devices, and it achieved very good results when compared to related works.

  17. A method of surface marker location optimization for tumor motion estimation in lung stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Lu, Bo; Park, Justin C.; Fan, Qiyong; Kahler, Darren; Liu, Chihray; Chen, Yunmei

    2015-01-01

    Purpose: Accurately localizing lung tumor localization is essential for high-precision radiation therapy techniques such as stereotactic body radiation therapy (SBRT). Since direct monitoring of tumor motion is not always achievable due to the limitation of imaging modalities for treatment guidance, placement of fiducial markers on the patient’s body surface to act as a surrogate for tumor position prediction is a practical alternative for tracking lung tumor motion during SBRT treatments. In this work, the authors propose an innovative and robust model to solve the multimarker position optimization problem. The model is able to overcome the major drawbacks of the sparse optimization approach (SOA) model. Methods: The principle-component-analysis (PCA) method was employed as the framework to build the authors’ statistical prediction model. The method can be divided into two stages. The first stage is to build the surrogate tumor matrix and calculate its eigenvalues and associated eigenvectors. The second stage is to determine the “best represented” columns of the eigenvector matrix obtained from stage one and subsequently acquire the optimal marker positions as well as numbers. Using 4-dimensional CT (4DCT) and breath hold CT imaging data, the PCA method was compared to the SOA method with respect to calculation time, average prediction accuracy, prediction stability, noise resistance, marker position consistency, and marker distribution. Results: The PCA and SOA methods which were both tested were on all 11 patients for a total of 130 cases including 4DCT and breath-hold CT scenarios. The maximum calculation time for the PCA method was less than 1 s with 64 752 surface points, whereas the average calculation time for the SOA method was over 12 min with 400 surface points. Overall, the tumor center position prediction errors were comparable between the two methods, and all were less than 1.5 mm. However, for the extreme scenarios (breath hold), the

  18. Near-Field Ground Motion Modal versus Wave Propagation Analysis

    Directory of Open Access Journals (Sweden)

    Artur Cichowicz

    2010-01-01

    Full Text Available The response spectrum generally provides a good estimate of the global displacement and acceleration demand of far-field ground motion on a structure. However, it does not provide accurate information on the local shape or internal deformation of the response of the structure. Near-field pulse-like ground motion will propagate through the structure as waves, causing large, localized deformation. Therefore, the response spectrum alone is not a sufficient representation of near-field ground motion features. Results show that the drift-response technique based on a continuous shear-beam model has to be employed here to estimate structure-demand parameters when structure is exposed to the pulse like ground motion. Conduced modeling shows limited applicability of the drift spectrum based on the SDOF approximation. The SDOF drift spectrum approximation can only be applied to structures with smaller natural periods than the dominant period of the ground motion. For periods larger than the dominant period of ground motion the SDOF drift spectra model significantly underestimates maximum deformation. Strong pulse-type motions are observed in the near-source region of large earthquakes; however, there is a lack of waveforms collected from small earthquakes at very close distances that were recorded underground in mines. The results presented in this paper are relevant for structures with a height of a few meters, placed in an underground excavation. The strong ground motion sensors recorded mine-induced earthquakes in a deep gold mine, South Africa. The strongest monitored horizontal ground motion was caused by an event of magnitude 2 at a distance of 90 m with PGA 123 m/s2, causing drifts of 0.25%–0.35%. The weak underground motion has spectral characteristics similar to the strong ground motion observed on the earth's surface; the drift spectrum has a maximum value less than 0.02%.

  19. Simultaneous estimation of a binary mixture of a weak acid and a strong acid by volumetric titration and pH measurement

    International Nuclear Information System (INIS)

    Karmakar, Sanat; Mallika, C.; Kamachi Mudali, U.

    2012-01-01

    High level liquid waste (HLLW) generated in the aqueous reprocessing of spent nuclear fuels for the separation of uranium and plutonium by PUREX process, comprises the fission and corrosion products in 4 M nitric acid. Reduction in waste volume is accomplished by destroying the acidity of the waste solution from 4 to less than 2 M by treating it with formaldehyde and subsequent concentration by evaporation. In the denitration by HCHO, nitric acid in the waste solution is reduced to NOx and water via nitrous acid as the intermediate product: whereas formaldehyde is oxidized to formic acid which is converted to CO 2 and H 2 O subsequently. The reaction is highly exothermic and the release of all gaseous products may lead to uncontrollable process conditions. Hence, for the safe operation, it is desirable to estimate the concentration of residual formic acid as well as nitric acid in the product stream as a function of time. The acidity in the feed solution is 4 M and the concentration of HNO 3 in the product solution is in the range 1- 4 M. Since the formic acid generated during the reaction will be consumed immediately, the concentration of residual acid will be in the range 0.05-0.5 M. A simultaneous titration method based on pH measurement and volumetric analysis has been developed in the present work for the quantitative determination of the weak acid (HCOOH)with known pKa value and the strong acid (HNO 3 ) in the binary mixture

  20. Estimation of the Centre of Mass From Motion Capture and Force Plate Recordings: A Study on the Elderly

    Directory of Open Access Journals (Sweden)

    S. Cotton

    2011-01-01

    Full Text Available The estimation of the centre of mass position in humans is usually based on biomechanical models developed from anthropometric tables. This method can potentially introduce errors in studies involving elderly people, since the ageing process is typically associated with a modification of the distribution of the body mass. In this paper, an alternative technique is proposed, and evaluated with an experimental study on 9 elderly volunteers. The technique is based on a virtual chain, identified from experimental data and locating the subject's centre of mass. Its configuration defines the location of the centre of mass, and is a function of the anatomical joint angles measured on the subject. This method is a valuable investigation tool in the field of geronto-technology, since it overcomes some of the problems encountered with other CoM estimation methods.

  1. ITRF2014 plate motion model

    Science.gov (United States)

    Altamimi, Zuheir; Métivier, Laurent; Rebischung, Paul; Rouby, Hélène; Collilieux, Xavier

    2017-06-01

    For various geodetic and geophysical applications, users need to have access to a plate motion model (PMM) that is consistent with the ITRF2014 frame. This paper describes the approach used for determining a PMM from the horizontal velocities of a subset of the ITRF2014 sites away from plate boundaries, Glacial Isostatic Adjustment regions and other deforming zones. In theory it would be necessary to include in the inversion model a translational motion vector (called in this paper origin rate bias, ORB) that would represent the relative motion between the ITRF2014 origin (long-term averaged centre of mass of the Earth as sensed by SLR) and the centre of tectonic plate motion. We show that in practice, the magnitude of the estimated ORB is strongly dependent on the selection of ITRF2014 sites used for the PMM adjustment. Its Z-component can in particular range between 0 and more than 1 mm yr-1 depending on the station network used, preventing any geophysical interpretation of the estimated value. Relying on rigorous statistical criteria, the site selection finally adopted for the ITRF2014-PMM adjustment leads to a relatively small ORB (0.30 ± 0.18 mm yr-1 in the Z-component), which is statistically insignificant at the 2-sigma level, but also according to an F-ratio test. Therefore we opted for an ITRF2014-PMM without estimating the ORB, which in turn accommodates geodetic applications that require access to the ITRF2014 frame through pure plate rotation poles.

  2. Estimating the accuracy of the technique of reconstructing the rotational motion of a satellite based on the measurements of its angular velocity and the magnetic field of the Earth

    Science.gov (United States)

    Belyaev, M. Yu.; Volkov, O. N.; Monakhov, M. I.; Sazonov, V. V.

    2017-09-01

    The paper has studied the accuracy of the technique that allows the rotational motion of the Earth artificial satellites (AES) to be reconstructed based on the data of onboard measurements of angular velocity vectors and the strength of the Earth magnetic field (EMF). The technique is based on kinematic equations of the rotational motion of a rigid body. Both types of measurement data collected over some time interval have been processed jointly. The angular velocity measurements have been approximated using convenient formulas, which are substituted into the kinematic differential equations for the quaternion that specifies the transition from the body-fixed coordinate system of a satellite to the inertial coordinate system. Thus obtained equations represent a kinematic model of the rotational motion of a satellite. The solution of these equations, which approximate real motion, has been found by the least-square method from the condition of best fitting between the data of measurements of the EMF strength vector and its calculated values. The accuracy of the technique has been estimated by processing the data obtained from the board of the service module of the International Space Station ( ISS). The reconstruction of station motion using the aforementioned technique has been compared with the telemetry data on the actual motion of the station. The technique has allowed us to reconstruct the station motion in the orbital orientation mode with a maximum error less than 0.6° and the turns with a maximal error of less than 1.2°.

  3. White Dwarf Cosmochronometry. I. Monte Carlo Simulations of Proper-Motion- and Magnitude-Limited Samples using Schmidt's 1/Vmax Estimator

    Science.gov (United States)

    Wood, Matt A.; Oswalt, Terry D.

    1998-04-01

    Observationally, white dwarf stars are a remarkably homogeneous class with a minimum observed Teff ~ 4000 K. Theoretically, the physics that determines their cooling timescales is relatively more straightforward than that which determines main-sequence evolutionary timescales. As a result, the white dwarf luminosity function has for the last decade been used as a probe of the age and star formation rate of the Galactic disk, providing an estimated local disk age of ~10 Gyr with estimated total uncertainties of roughly 20%. A long-standing criticism of the technique is that the reality of the reported downturn in the luminosity function (LF) hinges on just a handful of stars and on statistical arguments that fainter (older) objects would have been observed were they present. Indeed, the likely statistical variations of these small-number samples represent one of the primary uncertainties in the derived Galactic age, and the behavior of Schmidt's 1/Vmax estimator in this limit is not well understood. In this work, we explore these uncertainties numerically by means of a Monte Carlo population synthesis code that simulates the kinematics and relative numbers of cooling white dwarfs. The ``observationally selected'' subsamples are drawn using typical proper motion and V-magnitude limits. The corresponding 1/Vmax LFs are then computed and compared to the input-integrated LFs. The results from our (noise-free) data suggest that (1) Schmidt's 1/Vmax technique is a reliable and well-behaved estimator of the true space density with typical uncertainties of ~50% for 50 point samples and 25% for 200 point samples; (2) the age uncertainties quoted in previously published observational studies of the LF are consistent with uncertainties in the Monte Carlo results--specifically, there is a ~15% and <~10% observational uncertainty in the ages inferred from 50 point and 200 point samples, respectively; and (3) the large statistical variations in the bright end of these LFs

  4. DCT-Based Motion Estimation

    National Research Council Canada - National Science Library

    Koc, Ut-Va; Liu, K. J

    1995-01-01

    ...(N4) complexity of Full Search Block Matching Approach (BMA-ME). In addition, the DXT-ME algorithm has solely highly parallel local operations and this property makes parallel implementation feasible...

  5. Motion sickness

    NARCIS (Netherlands)

    Bles, Willem; Bos, Jelte E.; Kruit, Hans

    2000-01-01

    The number of recently published papers on motion sickness may convey the impression that motion sickness is far from being understood. The current review focusses on a concept which tends to unify the different manifestations and theories of motion sickness. The paper highlights the relations

  6. Potential bias in estimates of abundance and distribution of North Sea cod (Gadus morhua) due to strong winds prevailing prior or during a survey

    DEFF Research Database (Denmark)

    Wieland, Kai; Olesen, Hans Jakob; Pedersen, Eva Maria

    2011-01-01

    The impact of strong winds on catches of cod (Gadus morhua) was studied using different fishing methods during small-scale surveys with commercial fishing vessels in the north-eastern central North Sea. Catch per unit effort of a flyshooter and a trawler were considerably lower in the shallower...

  7. Model and parametric uncertainty in source-based kinematic models of earthquake ground motion

    Science.gov (United States)

    Hartzell, Stephen; Frankel, Arthur; Liu, Pengcheng; Zeng, Yuehua; Rahman, Shariftur

    2011-01-01

    Four independent ground-motion simulation codes are used to model the strong ground motion for three earthquakes: 1994 Mw 6.7 Northridge, 1989 Mw 6.9 Loma Prieta, and 1999 Mw 7.5 Izmit. These 12 sets of synthetics are used to make estimates of the variability in ground-motion predictions. In addition, ground-motion predictions over a grid of sites are used to estimate parametric uncertainty for changes in rupture velocity. We find that the combined model uncertainty and random variability of the simulations is in the same range as the variability of regional empirical ground-motion data sets. The majority of the standard deviations lie between 0.5 and 0.7 natural-log units for response spectra and 0.5 and 0.8 for Fourier spectra. The estimate of model epistemic uncertainty, based on the different model predictions, lies between 0.2 and 0.4, which is about one-half of the estimates for the standard deviation of the combined model uncertainty and random variability. Parametric uncertainty, based on variation of just the average rupture velocity, is shown to be consistent in amplitude with previous estimates, showing percentage changes in ground motion from 50% to 300% when rupture velocity changes from 2.5 to 2.9 km/s. In addition, there is some evidence that mean biases can be reduced by averaging ground-motion estimates from different methods.

  8. Visual motion influences the contingent auditory motion aftereffect

    NARCIS (Netherlands)

    Vroomen, J.; de Gelder, B.

    2003-01-01

    In this study, we show that the contingent auditory motion aftereffect is strongly influenced by visual motion information. During an induction phase, participants listened to rightward-moving sounds with falling pitch alternated with leftward-moving sounds with rising pitch (or vice versa).

  9. Inter frame motion estimation and its application to image sequence compression: an introduction; Estimacion del movimiento Interframe y su aplicacion a la compresion de secuencias de imagenes: una introduccion

    Energy Technology Data Exchange (ETDEWEB)

    Cremy, C.

    1996-12-01

    With the constant development of new communication technologies like, digital TV, teleconference, and the development of image analysis applications, there is a growing volume of data to manage. Compression techniques are required for the transmission and storage of these data. Dealing with original images would require the use of expansive high bandwidth communication devices and huge storage media. Image sequence compression can be achieved by means of inter frame estimation that consists in retrieving redundant information relative to zones where there is little motion between two frames. This paper is an introduction to some motion estimation techniques like gradient techniques, pel-recursive, block-matching, and its application to image sequence compression. (Author)

  10. Inter frame motion estimation and its application to image sequence compression: an introduction; Estimacion del movimiento interframe y su aplicacion en la compresion de secuencias de imagenes: una introduccion

    Energy Technology Data Exchange (ETDEWEB)

    Cremy, C.

    1996-07-01

    With the constant development of new communication technologies like, digital TV, teleconference, and the development of image analysis applications, there is a growing volume of data to manage. Compression techniques are required for the transmission and storage of these data. Dealing with original images would require the use of expansive high bandwidth communication devices and huge storage media. Image sequence compression can be achieved by means of interframe estimation that consists in retrieving redundant information relative to zones where there is little motion between two frames. This paper is an introduction to some motion estimation techniques like gradient techniques, pel-recursive, block-matching, and its application to image sequence compression. (Author) 17 refs.

  11. Does IQ predict total and cardiovascular disease mortality as strongly as other risk factors? Comparison of effect estimates using the Vietnam Experience Study.

    Science.gov (United States)

    Batty, G D; Shipley, M J; Gale, C R; Mortensen, L H; Deary, I J

    2008-12-01

    To compare the strength of the relation of two measurements of IQ and 11 established risk factors with total and cardiovascular disease (CVD) mortality. Cohort study of 4166 US male former army personnel with data on IQ test scores (in early adulthood and middle age), a range of established risk factors and 15-year mortality surveillance. When CVD mortality (n = 61) was the outcome of interest, the relative index of inequality (RII: hazard ratio; 95% CI) for the most disadvantaged relative to the advantaged (in descending order of magnitude of the first six based on age-adjusted analyses) was: 6.58 (2.54 to 17.1) for family income; 5.55 (2.16 to 14.2) for total cholesterol; 5.12 (2.01 to 13.0) for body mass index; 4.70 (1.89 to 11.7) for IQ in middle age; 4.29 (1.70 to 10.8) for blood glucose and 4.08 (1.63 to 10.2) for high-density lipoprotein cholesterol (the RII for IQ in early adulthood was ranked tenth: 2.88; 1.19 to 6.97). In analyses featuring all deaths (n = 233), the RII for risk factors most strongly related to this outcome was 7.46 (4.54 to 12.3) for family income; 4.41 (2.77 to 7.03) for IQ in middle age; 4.02 (2.37 to 6.83) for smoking; 3.81 (2.35 to 6.17) for educational attainment; 3.40 (2.14 to 5.41) for pulse rate and 3.26 (2.06 to 5.15) for IQ in early adulthood. Multivariable adjustment led to marked attenuation of these relations, particularly those for IQ. Lower scores on measures of IQ at two time points were associated with CVD and, particularly, total mortality, at a level of magnitude greater than several other established risk factors.

  12. Designing a compact MRI motion phantom

    Directory of Open Access Journals (Sweden)

    Schmiedel Max

    2016-09-01

    Full Text Available Even today, dealing with motion artifacts in magnetic resonance imaging (MRI is a challenging task. Image corruption due to spontaneous body motion complicates diagnosis. In this work, an MRI phantom for rigid motion is presented. It is used to generate motion-corrupted data, which can serve for evaluation of blind motion compensation algorithms. In contrast to commercially available MRI motion phantoms, the presented setup works on small animal MRI systems. Furthermore, retrospective gating is performed on the data, which can be used as a reference for novel motion compensation approaches. The motion of the signal source can be reconstructed using motor trigger signals and be utilized as the ground truth for motion estimation. The proposed setup results in motion corrected images. Moreover, the importance of preprocessing the MRI raw data, e.g. phase-drift correction, is demonstrated. The gained knowledge can be used to design an MRI phantom for elastic motion.

  13. Motion Analysis Based on Invertible Rapid Transform

    Directory of Open Access Journals (Sweden)

    J. Turan

    1999-06-01

    Full Text Available This paper presents the results of a study on the use of invertible rapid transform (IRT for the motion estimation in a sequence of images. Motion estimation algorithms based on the analysis of the matrix of states (produced in the IRT calculation are described. The new method was used experimentally to estimate crowd and traffic motion from the image data sequences captured at railway stations and at high ways in large cities. The motion vectors may be used to devise a polar plot (showing velocity magnitude and direction for moving objects where the dominant motion tendency can be seen. The experimental results of comparison of the new motion estimation methods with other well known block matching methods (full search, 2D-log, method based on conventional (cross correlation (CC function or phase correlation (PC function for application of crowd motion estimation are also presented.

  14. Simulated earthquake ground motions

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.; Gasparini, D.A.

    1977-01-01

    The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra

  15. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  16. Motion correction in thoracic positron emission tomography

    CERN Document Server

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P

    2015-01-01

    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  17. Strongly coupled dust coulomb clusters

    International Nuclear Information System (INIS)

    Juan Wentau; Lai Yingju; Chen Mingheng; I Lin

    1999-01-01

    The structures and motions of quasi-2-dimensional strongly coupled dust Coulomb clusters with particle number N from few to hundreds in a cylindrical rf plasma trap are studied and compared with the results from the molecular dynamic simulation using more ideal models. Shell structures with periodic packing in different shells and intershell rotational motion dominated excitations are observed at small N. As N increases, the boundary has less effect, the system recovers to the triangular lattice with isotropic vortex type cooperative excitations similar to an infinite N system except the outer shell region. The above generic behaviors are mainly determined by the system symmetry and agree with the simulation results. The detailed interaction form causes minor effect such as the fine structure of packing

  18. Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator

    DEFF Research Database (Denmark)

    Pályi, András; Struck, P R; Rudner, Mark

    2012-01-01

    We theoretically investigate the deflection-induced coupling of an electron spin to vibrational motion due to spin-orbit coupling in suspended carbon nanotube quantum dots. Our estimates indicate that, with current capabilities, a quantum dot with an odd number of electrons can serve....... The strong intrinsic spin-mechanical coupling allows for detection, as well as manipulation of the spin qubit, and may yield enhanced performance of nanotubes in sensing applications....

  19. Scalar strong interaction hadron theory

    CERN Document Server

    Hoh, Fang Chao

    2015-01-01

    The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

  20. Subject-Motion Correction in HARDI Acquisitions: Choices and Consequences.

    Science.gov (United States)

    Elhabian, Shireen; Gur, Yaniv; Vachet, Clement; Piven, Joseph; Styner, Martin; Leppert, Ilana R; Pike, G Bruce; Gerig, Guido

    2014-01-01

    Diffusion-weighted imaging (DWI) is known to be prone to artifacts related to motion originating from subject movement, cardiac pulsation, and breathing, but also to mechanical issues such as table vibrations. Given the necessity for rigorous quality control and motion correction, users are often left to use simple heuristics to select correction schemes, which involves simple qualitative viewing of the set of DWI data, or the selection of transformation parameter thresholds for detection of motion outliers. The scientific community offers strong theoretical and experimental work on noise reduction and orientation distribution function (ODF) reconstruction techniques for HARDI data, where post-acquisition motion correction is widely performed, e.g., using the open-source DTIprep software (1), FSL (the FMRIB Software Library) (2), or TORTOISE (3). Nonetheless, effects and consequences of the selection of motion correction schemes on the final analysis, and the eventual risk of introducing confounding factors when comparing populations, are much less known and far beyond simple intuitive guessing. Hence, standard users lack clear guidelines and recommendations in practical settings. This paper reports a comprehensive evaluation framework to systematically assess the outcome of different motion correction choices commonly used by the scientific community on different DWI-derived measures. We make use of human brain HARDI data from a well-controlled motion experiment to simulate various degrees of motion corruption and noise contamination. Choices for correction include exclusion/scrubbing or registration of motion corrupted directions with different choices of interpolation, as well as the option of interpolation of all directions. The comparative evaluation is based on a study of the impact of motion correction using four metrics that quantify (1) similarity of fiber orientation distribution functions (fODFs), (2) deviation of local fiber orientations, (3) global

  1. Effect of pressure and padding on motion artifact of textile electrodes.

    Science.gov (United States)

    Cömert, Alper; Honkala, Markku; Hyttinen, Jari

    2013-04-08

    With the aging population and rising healthcare costs, wearable monitoring is gaining importance. The motion artifact affecting dry electrodes is one of the main challenges preventing the widespread use of wearable monitoring systems. In this paper we investigate the motion artifact and ways of making a textile electrode more resilient against motion artifact. Our aim is to study the effects of the pressure exerted onto the electrode, and the effects of inserting padding between the applied pressure and the electrode. We measure real time electrode-skin interface impedance, ECG from two channels, the motion artifact related surface potential, and exerted pressure during controlled motion by a measurement setup designed to estimate the relation of motion artifact to the signals. We use different foam padding materials with various mechanical properties and apply electrode pressures between 5 and 25 mmHg to understand their effect. A QRS and noise detection algorithm based on a modified Pan-Tompkins QRS detection algorithm estimates the electrode behaviour in respect to the motion artifact from two channels; one dominated by the motion artifact and one containing both the motion artifact and the ECG. This procedure enables us to quantify a given setup's susceptibility to the motion artifact. Pressure is found to strongly affect signal quality as is the use of padding. In general, the paddings reduce the motion artifact. However the shape and frequency components of the motion artifact vary for different paddings, and their material and physical properties. Electrode impedance at 100 kHz correlates in some cases with the motion artifact but it is not a good predictor of the motion artifact. From the results of this study, guidelines for improving electrode design regarding padding and pressure can be formulated as paddings are a necessary part of the system for reducing the motion artifact, and further, their effect maximises between 15 mmHg and 20 mmHg of

  2. Strongly nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2014-01-01

    This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...

  3. TH-EF-BRA-08: A Novel Technique for Estimating Volumetric Cine MRI (VC-MRI) From Multi-Slice Sparsely Sampled Cine Images Using Motion Modeling and Free Form Deformation

    International Nuclear Information System (INIS)

    Harris, W; Yin, F; Wang, C; Chang, Z; Cai, J; Zhang, Y; Ren, L

    2016-01-01

    Purpose: To develop a technique to estimate on-board VC-MRI using multi-slice sparsely-sampled cine images, patient prior 4D-MRI, motion-modeling and free-form deformation for real-time 3D target verification of lung radiotherapy. Methods: A previous method has been developed to generate on-board VC-MRI by deforming prior MRI images based on a motion model(MM) extracted from prior 4D-MRI and a single-slice on-board 2D-cine image. In this study, free-form deformation(FD) was introduced to correct for errors in the MM when large anatomical changes exist. Multiple-slice sparsely-sampled on-board 2D-cine images located within the target are used to improve both the estimation accuracy and temporal resolution of VC-MRI. The on-board 2D-cine MRIs are acquired at 20–30frames/s by sampling only 10% of the k-space on Cartesian grid, with 85% of that taken at the central k-space. The method was evaluated using XCAT(computerized patient model) simulation of lung cancer patients with various anatomical and respirational changes from prior 4D-MRI to onboard volume. The accuracy was evaluated using Volume-Percent-Difference(VPD) and Center-of-Mass-Shift(COMS) of the estimated tumor volume. Effects of region-of-interest(ROI) selection, 2D-cine slice orientation, slice number and slice location on the estimation accuracy were evaluated. Results: VCMRI estimated using 10 sparsely-sampled sagittal 2D-cine MRIs achieved VPD/COMS of 9.07±3.54%/0.45±0.53mm among all scenarios based on estimation with ROI_MM-ROI_FD. The FD optimization improved estimation significantly for scenarios with anatomical changes. Using ROI-FD achieved better estimation than global-FD. Changing the multi-slice orientation to axial, coronal, and axial/sagittal orthogonal reduced the accuracy of VCMRI to VPD/COMS of 19.47±15.74%/1.57±2.54mm, 20.70±9.97%/2.34±0.92mm, and 16.02±13.79%/0.60±0.82mm, respectively. Reducing the number of cines to 8 enhanced temporal resolution of VC-MRI by 25% while

  4. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion.

    Science.gov (United States)

    Filippeschi, Alessandro; Schmitz, Norbert; Miezal, Markus; Bleser, Gabriele; Ruffaldi, Emanuele; Stricker, Didier

    2017-06-01

    Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error).

  5. Simulation of RF data with tissue motion for optimizing stationary echo canceling filters

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Torp-Pedersen, S.; Jensen, Jørgen Arendt

    2003-01-01

    Blood velocity estimation is complicated by the strong echoes received from tissue surrounding the vessel under investigation. Proper blood velocity estimation necessitates use of a filter for separation of the different signal components. Development of these filters and new estimators requires RF...... developed models for the motions and incorporated them into the RF simulation program Field II, thereby obtaining realistic simulated data. A powerful tool for evaluation of different filters and estimators is then available. The model parameters can be varied according to the physical situation...

  6. A Miniature Pneumatic Bending Rubber Actuator Controlled by Using the PSO-SVR-Based Motion Estimation Method with the Generalized Gaussian Kernel

    Directory of Open Access Journals (Sweden)

    Kou Fujita

    2017-02-01

    Full Text Available Soft actuators have been employed in various fields recently. A miniature pneumatic bending rubber actuator is one of the soft actuators. This actuator will be used for medical and biological fields. Its flexibility and high safety are suitable for fragile objects. However, its modeling is difficult due to its nonlinearity. There are no suitable sensors to measure the output of this actuator. In this paper, the particle swarm optimization-support vector regression (PSO-SVR-based estimation method with the generalized Gaussian kernel is proposed. An experimental result with the operator-based robust nonlinear control system is employed to verify the effectiveness of the proposed method.

  7. Application and API for Real-time Visualization of Ground-motions and Tsunami

    Science.gov (United States)

    Aoi, S.; Kunugi, T.; Suzuki, W.; Kubo, T.; Nakamura, H.; Azuma, H.; Fujiwara, H.

    2015-12-01

    Due to the recent progress of seismograph and communication environment, real-time and continuous ground-motion observation becomes technically and economically feasible. K-NET and KiK-net, which are nationwide strong motion networks operated by NIED, cover all Japan by about 1750 stations in total. More than half of the stations transmit the ground-motion indexes and/or waveform data in every second. Traditionally, strong-motion data were recorded by event-triggering based instruments with non-continues telephone line which is connected only after an earthquake. Though the data from such networks mainly contribute to preparations for future earthquakes, huge amount of real-time data from dense network are expected to directly contribute to the mitigation of ongoing earthquake disasters through, e.g., automatic shutdown plants and helping decision-making for initial response. By generating the distribution map of these indexes and uploading them to the website, we implemented the real-time ground motion monitoring system, Kyoshin (strong-motion in Japanese) monitor. This web service (www.kyoshin.bosai.go.jp) started in 2008 and anyone can grasp the current ground motions of Japan. Though this service provides only ground-motion map in GIF format, to take full advantage of real-time strong-motion data to mitigate the ongoing disasters, digital data are important. We have developed a WebAPI to provide real-time data and related information such as ground motions (5 km-mesh) and arrival times estimated from EEW (earthquake early warning). All response data from this WebAPI are in JSON format and are easy to parse. We also developed Kyoshin monitor application for smartphone, 'Kmoni view' using the API. In this application, ground motions estimated from EEW are overlapped on the map with the observed one-second-interval indexes. The application can playback previous earthquakes for demonstration or disaster drill. In mobile environment, data traffic and battery are

  8. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  9. Realistic modelling of observed seismic motion in complex sedimentary basins

    International Nuclear Information System (INIS)

    Faeh, D.; Panza, G.F.

    1994-03-01

    Three applications of a numerical technique are illustrated to model realistically the seismic ground motion for complex two-dimensional structures. First we consider a sedimentary basin in the Friuli region, and we model strong motion records from an aftershock of the 1976 earthquake. Then we simulate the ground motion caused in Rome by the 1915, Fucino (Italy) earthquake, and we compare our modelling with the damage distribution observed in the town. Finally we deal with the interpretation of ground motion recorded in Mexico City, as a consequence of earthquakes in the Mexican subduction zone. The synthetic signals explain the major characteristics (relative amplitudes, spectral amplification, frequency content) of the considered seismograms, and the space distribution of the available macroseismic data. For the sedimentary basin in the Friuli area, parametric studies demonstrate the relevant sensitivity of the computed ground motion to small changes in the subsurface topography of the sedimentary basin, and in the velocity and quality factor of the sediments. The total energy of ground motion, determined from our numerical simulation in Rome, is in very good agreement with the distribution of damage observed during the Fucino earthquake. For epicentral distances in the range 50km-100km, the source location and not only the local soil conditions control the local effects. For Mexico City, the observed ground motion can be explained as resonance effects and as excitation of local surface waves, and the theoretical and the observed maximum spectral amplifications are very similar. In general, our numerical simulations permit the estimate of the maximum and average spectral amplification for specific sites, i.e. are a very powerful tool for accurate micro-zonation. (author). 38 refs, 19 figs, 1 tab

  10. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.

  11. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical ampersand Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties

  12. Motion control report

    CERN Document Server

    2013-01-01

    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  13. 40Ar/39Ar geochronology and volume estimates of the Tasmantid Seamounts: Support for a change in the motion of the Australian plate

    Science.gov (United States)

    Crossingham, Tracey J.; Vasconcelos, Paulo M.; Cunningham, Toby; Knesel, Kurt M.

    2017-09-01

    New volume estimates and 40Ar/39Ar ages for the Tasmantid Seamounts are reported to investigate the origin of volcanism and potential links between volcanism and changes in the speed and direction of migration of the Australian plate during the Cenozoic. The results show that the average extrusive volume of individual volcanoes along the seamount chain is 2587 ± 3078 km3 (1 s), and that volumes generally increase towards the south. An exception, the Britannia Guyot, located in the middle of the seamount chain, is the most voluminous (11,374 km3). Nineteen new 40Ar/39Ar ages, from Wreck to Gascoyne, show that the emplacement of the Tasmantid Seamounts occurred between 33.2 ± 1.5 and 6.5 ± 0.6 Ma. A single linear regression applied to the age versus latitude data, assuming volcanism to be caused by plate migration over a stationary hotspot, reveals a plate migration rate of 62 ± 2 kmMa- 1 (R2 = 0.97; n = 27) between 33 and 6 Ma. However, the bend in the seamount track, corresponding with the period of largest eruptive volumes, suggests three distinct segments in the Tasmantid age versus latitude data. The northern segment is consistent with a plate migration rate of 75 ± 10 kmMa- 1 (R2 = 0.88; n = 10) and the southern segment reveals a plate migration rate of 64 ± 4 kmMa- 1 (R2 = 0.94; n = 17). The period between these two segments, from 25 to 19 Ma, overlaps with the period of slow migration and change in the direction of the Australian plate derived from the age versus latitude distribution of continental central volcanoes. The new Tasmantid Seamount results support the interpretation that there were changes in the velocity and direction to Australia's northward trajectory, possibly resulting from a series of collisional events.

  14. Motion Compensation on DCT Domain

    Directory of Open Access Journals (Sweden)

    K. J. Ray Liu

    2001-10-01

    Full Text Available Alternative fully DCT-based video codec architectures have been proposed in the past to address the shortcomings of the conventional hybrid motion compensated DCT video codec structures traditionally chosen as the basis of implementation of standard-compliant codecs. However, no prior effort has been made to ensure interoperability of these two drastically different architectures so that fully DCT-based video codecs are fully compatible with the existing video coding standards. In this paper, we establish the criteria for matching conventional codecs with fully DCT-based codecs. We find that the key to this interoperability lies in the heart of the implementation of motion compensation modules performed in the spatial and transform domains at both the encoder and the decoder. Specifically, if the spatial-domain motion compensation is compatiable with the transform-domain motion compensation, then the states in both the coder and the decoder will keep track of each other even after a long series of P-frames. Otherwise, the states will diverge in proportion to the number of P-frames between two I-frames. This sets an important criterion for the development of any DCT-based motion compensation schemes. We also discuss and develop some DCT-based motion compensation schemes as important building blocks of fully DCT-based codecs. For the case of subpixel motion compensation, DCT-based approaches allow more accurate interpolation without any increase in computation. Furthermore, a scare number of DCT coefficients after quantization significantly decreases the number of calculations required for motion compensation. Coupled with the DCT-based motion estimation algorithms, it is possible to realize fully DCT-based codecs to overcome the disadvantages of conventional hybrid codecs.

  15. Methods for Structure from Motion

    DEFF Research Database (Denmark)

    Aanæs, Henrik

    2003-01-01

    .g. within entertainment, reverse engineering and architecture. This thesis is a study within this area of structure from motion. The result of the work, which this thesis represents is the development of new methods for addressing some of the problems within the field. Mainly in robustifying......Structure from motion, the problem of estimating 3D structure from 2D images hereof, is one of the most popular and well studied problems within computer vision. In part because it is academically interesting, but also because it holds a wealth of commercially very interesting prospects, e...... the factorization approach, relaxing the rigidity constrains, and in considering alternative ways of solving the surface estimation problem. In Danish: Structure from motion problematikken beskæftiger sig med at estimere 3D struktur fra 2D afbildninger heraf. Denne problemstilling er en af de mest populære og...

  16. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  17. Dizziness and Motion Sickness

    Science.gov (United States)

    ... You Dizziness and Motion Sickness Dizziness and Motion Sickness Patient Health Information News media interested in covering the latest ... medications Remember: Most cases of dizziness and motion sickness are ... Health Home Copyright © 2018 American Academy of Otolaryngology–Head ...

  18. Biological motion cues aid identification of self-motion from optic flow but not heading detection.

    Science.gov (United States)

    Riddell, Hugh; Lappe, Markus

    2017-10-01

    When we move through the world, a pattern of expanding optic flow is generated on the retina. In completely rigid environments, this pattern signals one's direction of heading and is an important source of information for navigation. When we walk towards an oncoming person, the optic environment is not rigid, as the motion vectors generated by the other person represent a composite of that person's movement, his or her limb motion, and the observer's self-motion. Though this biological motion obfuscates the optic flow pattern, it also provides cues about the movement of other actors in the environment. It may be the case that the visual system takes advantage of these cues to simplify the decomposition of optic flow in the presence of other moving people. The current study sought to probe this possibility. In four experiments self-motion was simulated through an environment that was empty except for a single, walking point-light biological motion stimulus. We found that by using biological motion cues, observers were able to identify the presence of self-motion despite the lack of stable scene information. However, when estimating heading based on these stimuli, the pattern of observer heading estimates could be approximately reproduced by computing the vector sum of the walker's translation and the stimulated self-motion. This suggests that though biological motion can be used to disentangle self-motion in ambiguous situations, optic flow analysis does not use this information to derive heading estimates.

  19. Perceptually Uniform Motion Space.

    Science.gov (United States)

    Birkeland, Asmund; Turkay, Cagatay; Viola, Ivan

    2014-11-01

    Flow data is often visualized by animated particles inserted into a flow field. The velocity of a particle on the screen is typically linearly scaled by the velocities in the data. However, the perception of velocity magnitude in animated particles is not necessarily linear. We present a study on how different parameters affect relative motion perception. We have investigated the impact of four parameters. The parameters consist of speed multiplier, direction, contrast type and the global velocity scale. In addition, we investigated if multiple motion cues, and point distribution, affect the speed estimation. Several studies were executed to investigate the impact of each parameter. In the initial results, we noticed trends in scale and multiplier. Using the trends for the significant parameters, we designed a compensation model, which adjusts the particle speed to compensate for the effect of the parameters. We then performed a second study to investigate the performance of the compensation model. From the second study we detected a constant estimation error, which we adjusted for in the last study. In addition, we connect our work to established theories in psychophysics by comparing our model to a model based on Stevens' Power Law.

  20. Real Time MRI Motion Correction with Markerless Tracking

    DEFF Research Database (Denmark)

    Benjaminsen, Claus; Jensen, Rasmus Ramsbøl; Wighton, Paul

    Prospective motion correction for MRI neuroimaging has been demonstrated using MR navigators and external tracking systems using markers. The drawbacks of these two motion estimation methods include prolonged scan time plus lack of compatibility with all image acquisitions, and difficulties...... validating marker attachment resulting in uncertain estimation of the brain motion respectively. We have developed a markerless tracking system, and in this work we demonstrate the use of our system for prospective motion correction, and show that despite being computationally demanding, markerless tracking...

  1. Stochastic finite-fault modelling of strong earthquakes in Narmada ...

    Indian Academy of Sciences (India)

    Stochastic finite fault modelling of strong earthquakes. 839. 1983). It has been widely used to predict the ground motion around the globe where earthquake recordings are scanty. The conventional point source approximation is unable to characterize key features of ground motions from large earthquakes, such as their ...

  2. Motion coherence and direction discrimination in healthy aging.

    Science.gov (United States)

    Pilz, Karin S; Miller, Louisa; Agnew, Hannah C

    2017-01-01

    Perceptual functions change with age, particularly motion perception. With regard to healthy aging, previous studies mostly measured motion coherence thresholds for coarse motion direction discrimination along cardinal axes of motion. Here, we investigated age-related changes in the ability to discriminate between small angular differences in motion directions, which allows for a more specific assessment of age-related decline and its underlying mechanisms. We first assessed older (>60 years) and younger (direction discrimination. In a third step, we used the individually determined motion coherence thresholds and tested fine motion direction discrimination for motion clockwise away from horizontal and vertical motion. Older adults performed as well as younger adults for discriminating motion away from vertical. Surprisingly, performance for discriminating motion away from horizontal was strongly decreased. Further analyses, however, showed a relationship between motion coherence thresholds for horizontal coarse motion direction discrimination and fine motion direction discrimination performance in older adults. In a control experiment, using motion coherence above threshold for all conditions, the difference in performance for horizontal and vertical fine motion direction discrimination for older adults disappeared. These results clearly contradict the notion of an overall age-related decline in motion perception, and, most importantly, highlight the importance of taking into account individual differences when assessing age-related changes in perceptual functions.

  3. Haptically Induced Illusory Self-motion and the Influence of Context of Motion

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Nordahl, Rolf; Sikström, Erik

    2012-01-01

    of movement was assessed by means of existing measures of illusory self-motion, namely, reported self-motion illusion per stimulus type, illusion compellingness, intensity and onset time. Finally the participants were also asked to estimate the experienced direction of movement. While the data obtained from...... all measures did not yield significant differences, the experiment did provide interesting indications. If motion is simulated through implicit motion cues, then the perceived context does influence the magnitude of displacement and the direction of movement of self-motion illusions as well as whether...

  4. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz.

  5. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz

  6. Electromagnetic modes in cold magnetized strongly coupled plasmas

    OpenAIRE

    Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.

    1999-01-01

    The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.

  7. Motion of rectangular prismatic bodies

    International Nuclear Information System (INIS)

    Poreh, M.; Wray, R.N.

    1979-01-01

    Rectangular prismatic bodies can assume either a translatory or an auto-rotating mode of motion during free motion in the atmosphere. The translatory mode is stable only when the dimensionless moment of inertia of the bodies is large, however, large perturbations will always start auto-rotation. The characteristics of the auto-rotational mode are shown to depend primarily on the aspect ratio of the bodies which determines the dimensionless rotational speed and the lift coefficient. Both the average drag and lift-coefficients of auto-rotating bodies are estimated, but it is shown that secondary effects make it impossible to determine their exact trajectories in atmospheric flows

  8. Motion in radiotherapy

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia

    2012-01-01

    This review considers the management of motion in photon radiation therapy. An overview is given of magnitudes and variability of motion of various structures and organs, and how the motion affects images by producing artifacts and blurring. Imaging of motion is described, including 4DCT and 4DPE...

  9. Smooth Pursuit of Flicker-Defined Motion

    Science.gov (United States)

    Mulligan, Jeffrey B.; Stevenson, Scott B.

    2014-01-01

    We examined the pursuit response to stimuli defined by space-variant flicker of a dense random dot carrier pattern. On each frame, every element of the pattern could change polarity, with a probability given by a two-dimensional Gaussian distribution. A normal distribution produces a circular region of twinkle, while inverting the distribution results in a spot of static texture in a twinkling surround. In this latter case, the carrier texture could be stationary, or could move with the twinkle modulator, thereby producing first-order motion in the region of the spot. While the twinkle-defined spot produces a strong sensation of motion, the complementary stimulus defined by the absence of twinkle does not, when viewed peripherally, it appears to move in steps even when the generating distribution moves smoothly. We examined pursuit responses to these stimuli using two techniques: 1) the eye movement correlogram, obtained by cross-correlating eye velocity with the velocity of a randomly-moving stimulus; and 2) delayed visual feedback, where transient stabilization of a target can produce spontaneous oscillations of the eye, with a period empirically observed to vary linearly with the applied delay. Both techniques provide an estimate of the internal processing time, which can be as short as 100 milliseconds for a first-order target. Assessed by the correlogram method, the response to flicker-defined motion is delayed by more than 100 milliseconds, and significantly weaker (especially in the vertical dimension). When initially presented in the delayed feedback condition, purely saccadic oscillation is observed. One subject eventually developed smooth oscillations (albeit with significant saccadic intrusions), showing a period-versus-delay slope similar to that observed for first-order targets. This result is somewhat surprising, given that we interpret the slope of the period-versus-delay-function as reflecting the balance between position- and velocity

  10. 3D motion analysis via energy minimization

    Energy Technology Data Exchange (ETDEWEB)

    Wedel, Andreas

    2009-10-16

    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to

  11. Predicting articulated human motion from spatial processes

    DEFF Research Database (Denmark)

    Hauberg, Søren; Pedersen, Kim Steenstrup

    2011-01-01

    coordinates, the approach allows us to construct high quality application specific motion models with little effort. Thirdly, the state space is a real vector space, which allows us to use off-the-shelf stochastic processes as motion models, which is rarely possible when working with joint angles. Fourthly...... recent work where prior models are derived in terms of joint angles. This approach has several advantages. First of all, it allows us to construct motion models in low dimensional spaces, which makes motion estimation more robust. Secondly, as many types of motion are easily expressed in spatial......, we avoid the problem of accumulated variance, where noise in one joint affects all joints further down the kinematic chains. All this combined allows us to more easily construct high quality motion models. In the evaluation, we show that an activity independent version of our model is superior...

  12. Visualization system of swirl motion

    International Nuclear Information System (INIS)

    Nakayama, K.; Umeda, K.; Ichikawa, T.; Nagano, T.; Sakata, H.

    2004-01-01

    The instrumentation of a system composed of an experimental device and numerical analysis is presented to visualize flow and identify swirling motion. Experiment is performed with transparent material and PIV (Particle Image Velocimetry) instrumentation, by which velocity vector field is obtained. This vector field is then analyzed numerically by 'swirling flow analysis', which estimates its velocity gradient tensor and the corresponding eigenvalue (swirling function). Since an instantaneous flow field in steady/unsteady states is captured by PIV, the flow field is analyzed, and existence of vortices or swirling motions and their locations are identified in spite of their size. In addition, intensity of swirling is evaluated. The analysis enables swirling motion to emerge, even though it is hidden in uniform flow and velocity filed does not indicate any swirling. This visualization system can be applied to investigate condition to control flow or design flow. (authors)

  13. Strongly Correlated Topological Insulators

    Science.gov (United States)

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  14. Strong Cosmic Censorship

    Science.gov (United States)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  15. Full-matrix least-squares refinement of lysozymes and analysis of anisotropic thermal motion.

    Science.gov (United States)

    Harata, K; Abe, Y; Muraki, M

    1998-02-15

    Crystal structures of turkey egg lysozyme (TEL) and human lysozyme (HL) were refined by full-matrix least-squares method using anisotropic temperature factors. The refinement converged at the conventional R-values of 0.104 (TEL) and 0.115 (HL) for reflections with Fo > 0 to the resolution of 1.12 A and 1.15 A, respectively. The estimated r.m.s. coordinate errors for protein atoms were 0.031 A (TEL) and 0.034 A (HL). The introduction of anisotropic temperature factors markedly reduced the R-value but did not significantly affect the main chain coordinates. The degree of anisotropy of atomic thermal motion has strong positive correlation with the square of distance from the molecular centroid. The ratio of the radial component of thermal ellipsoid to the r.m.s. magnitude of three principal components has negative correlation with the distance from the molecular centroid, suggesting the domination of libration rather than breathing motion. The TLS model was applied to elucidate the characteristics of the rigid-body motion. The TLS tensors were determined by the least-squares fit to observed temperature factors. The profile of the magnitude of reproduced temperature factors by the TLS method well fitted to that of observed B(eqv). However, considerable disagreement was observed in the shape and orientation of thermal ellipsoid for atoms with large temperature factors, indicating the large contribution of local motion. The upper estimate of the external motion, 67% (TEL) and 61% (HL) of B(eqv), was deduced from the plot of the magnitude of TLS tensors determined for main chain atoms which were grouped into shells according to the distance from the center of libration. In the external motion, the translational portion is predominant and the contribution of libration and screw motion is relatively small. The internal motion, estimated by subtracting the upper estimate of the external motion from the observed temperature factor, is very similar between TEL and HL in spite

  16. Simulating intrafraction prostate motion with a random walk model

    Directory of Open Access Journals (Sweden)

    Tobias Pommer, PhD

    2017-07-01

    Conclusions: Random walk modeling is feasible and recreated the characteristics of the observed prostate motion. Introducing artificial transient motion did not improve the overall agreement, although the first 30 seconds of the traces were better reproduced. The model provides a simple estimate of prostate motion during delivery of radiation therapy.

  17. Strong Coupling Corrections in Quantum Thermodynamics

    Science.gov (United States)

    Perarnau-Llobet, M.; Wilming, H.; Riera, A.; Gallego, R.; Eisert, J.

    2018-03-01

    Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, we study the thermodynamics of systems strongly coupled to thermal baths. First, we provide strong-coupling corrections to the second law applicable to general systems in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. These corrections b