van Weerdenburg, J.J.A.; Antonio-Lopez, J.E.; Alvarado-Zacarias, J.; Molin, D.; Bigot-Astruc, M.; van Uden, R.; de Waardt, H.; Koonen, A.M.J.; Amezcua-Correa, R.; Sillard, P.; Okonkwo, C.M.
2016-01-01
By exploiting strong coupling in higher-order modes, we experimentally demonstrate reduced differential mode group delay by a factor of 3. Comparing LP02+LP21 with respect to LP01+LP11 3-mode transmission, a 27% reduction in equalizer length is shown after 53.4km MMF transmission.
Electromagnetic modes in cold magnetized strongly coupled plasmas
Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.
1999-01-01
The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.
Strongly coupled modes of M and H for perpendicular resonance
Sun, Chen; Saslow, Wayne M.
2018-05-01
We apply the equations for the magnetization M ⃗ and field H ⃗ to study their coupled modes for a semi-infinite ferromagnet, conductor, or insulator with magnetization M0 and field H0 normal to the plane (perpendicular resonance) and wave vector normal to the plane, which makes the modes doubly degenerate. With dimensionless damping constant α and dimensionless transverse susceptibility χ⊥=M0/He(He≡H0-M0) , we derive an analytic expression for the wave vector squared, showing that M ⃗ and H ⃗ are nearly decoupled only if α ≫χ⊥ . This is violated in the ferromagnetic regime, although a first correction is found to give good agreement away from resonance. Emphasizing the conductor permalloy as a function of H0 we study the eigenvalues and eigenmodes and the dissipation rate due to absorption both from the total effective field and from the Joule heating. (We include the contribution of the nonuniform exchange energy term, needed for energy conservation.) Using these modes we then apply, for a semi-infinite ferromagnet, a range of boundary conditions (i.e., surface anisotropies) on M⊥ to find the reflection coefficient R and the reflectivity |R| 2. As a function of H0, absorption is dominated by the the skin depth mode (primarily H ⃗) except near the resonance and at a higher-field Hd associated with a dip in the reflectivity, whose position above the main resonance varies quadratically with the surface anisotropy Ks. The dip is driven by the boundary condition on M ⃗; the coefficient of the (primarily) M ⃗ mode becomes very small at the dip, being compensated by an increase in the amplitude of the M ⃗ mode, which has a Lorentzian line shape of height ˜α-1 and width ˜α .
Optical Control of Mechanical Mode-Coupling within a MoS2 Resonator in the Strong-Coupling Regime.
Liu, Chang-Hua; Kim, In Soo; Lauhon, Lincoln J
2015-10-14
Two-dimensional (2-D) materials including graphene and transition metal dichalcogenides (TMDs) are an exciting platform for ultrasensitive force and displacement detection in which the strong light-matter coupling is exploited in the optical control of nanomechanical motion. Here we report the optical excitation and displacement detection of a ∼ 3 nm thick MoS2 resonator in the strong-coupling regime, which has not previously been achieved in 2-D materials. Mechanical mode frequencies can be tuned by more than 12% by optical heating, and they exhibit avoided crossings indicative of strong intermode coupling. When the membrane is optically excited at the frequency difference between vibrational modes, normal mode splitting is observed, and the intermode energy exchange rate exceeds the mode decay rate by a factor of 15. Finite element and analytical modeling quantifies the extent of mode softening necessary to control intermode energy exchange in the strong coupling regime.
The effect of dust charge inhomogeneity on low-frequency modes in a strongly coupled plasma
International Nuclear Information System (INIS)
Farid, T.; Mamun, A.A.; Shukla, P.K.
2000-01-01
An analysis of low-frequency modes accounting for dust grain charge fluctuation and equilibrium grain charge inhomogeneity in a strongly coupled dusty plasma is presented. The existence of an extremely low frequency mode, which is due to the inhomogeneity in the equilibrium dust grain charge, is reported. Besides, the equilibrium dust grain charge inhomogeneity makes the dust-acoustic mode unstable. The strong correlations in the dust fluid significantly drive a new mode as well as the existing dust-acoustic mode. The applications of these results to recent experimental and to some space and astrophysical situations are discussed
Strong asymmetry for surface modes in nonlinear lattices with long-range coupling
International Nuclear Information System (INIS)
Martinez, Alejandro J.; Vicencio, Rodrigo A.; Molina, Mario I.
2010-01-01
We analyze the formation of localized surface modes on a nonlinear cubic waveguide array in the presence of exponentially decreasing long-range interactions. We find that the long-range coupling induces a strong asymmetry between the focusing and defocusing cases for the topology of the surface modes and also for the minimum power needed to generate them. In particular, for the defocusing case, there is an upper power threshold for exciting staggered modes, which depends strongly on the long-range coupling strength. The power threshold for dynamical excitation of surface modes increases (decreases) with the strength of long-range coupling for the focusing (defocusing) cases. These effects seem to be generic for discrete lattices with long-range interactions.
Chen, Mo; Liu, Chao; Xian, Hao
2015-10-10
High-speed free-space optical communication systems using fiber-optic components can greatly improve the stability of the system and simplify the structure. However, propagation through atmospheric turbulence degrades the spatial coherence of the signal beam and limits the single-mode fiber (SMF) coupling efficiency. In this paper, we analyze the influence of the atmospheric turbulence on the SMF coupling efficiency over various turbulences. The results show that the SMF coupling efficiency drops from 81% without phase distortion to 10% when phase root mean square value equals 0.3λ. The simulations of SMF coupling with adaptive optics (AO) indicate that it is inevitable to compensate the high-order aberrations for SMF coupling over relatively strong turbulence. The SMF coupling efficiency experiments, using an AO system with a 137-element deformable mirror and a Hartmann-Shack wavefront sensor, obtain average coupling efficiency increasing from 1.3% in open loop to 46.1% in closed loop under a relatively strong turbulence, D/r0=15.1.
Strong diameter-dependence of nanowire emission coupled to waveguide modes
Energy Technology Data Exchange (ETDEWEB)
Dam, Dick van, E-mail: a.d.v.dam@tue.nl; Haverkort, Jos E. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Abujetas, Diego R.; Sánchez-Gil, José A. [Instituto de Estructura de la Materia (IEM-CSIC), Consejo Superior de Investigaciones Científicas Serrano, 121, 28006 Madrid (Spain); Bakkers, Erik P. A. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Gómez Rivas, Jaime, E-mail: j.gomezrivas@differ.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research DIFFER, P.O. Box 6336, 5600 HH Eindhoven (Netherlands)
2016-03-21
The emission from nanowires can couple to waveguide modes supported by the nanowire geometry, thus governing the far-field angular pattern. To investigate the geometry-induced coupling of the emission to waveguide modes, we acquire Fourier microscopy images of the photoluminescence of nanowires with diameters ranging from 143 to 208 nm. From the investigated diameter range, we conclude that a few nanometers difference in diameter can abruptly change the coupling of the emission to a specific mode. Moreover, we observe a diameter-dependent width of the Gaussian-shaped angular pattern in the far-field emission. This dependence is understood in terms of interference of the guided modes, which emit at the end facets of the nanowire. Our results are important for the design of quantum emitters, solid state lighting, and photovoltaic devices based on nanowires.
Delord, T.; Nicolas, L.; Chassagneux, Y.; Hétet, G.
2017-12-01
A scheme for strong coupling between a single atomic spin and the rotational mode of levitating nanoparticles is proposed. The idea is based on spin readout of nitrogen-vacancy centers embedded in aspherical nanodiamonds levitating in an ion trap. We show that the asymmetry of the diamond induces a rotational confinement in the ion trap. Using a weak homogeneous magnetic field and a strong microwave driving we then demonstrate that the spin of the nitrogen-vacancy center can be strongly coupled to the rotational mode of the diamond.
Quasinormal modes of a strongly coupled nonconformal plasma and approach to criticality
Betzios, Panagiotis; Gürsoy, Umut; Järvinen, Matti; Policastro, Giuseppe
2018-04-01
We study fluctuations around equilibrium in a class of strongly interacting nonconformal plasmas using holographic techniques. In particular, we calculate the quasinormal mode spectrum of black hole backgrounds that approach Chamblin-Reall plasmas in the IR. In a specific limit, related to the exact linear-dilaton background in string theory, we observe that the plasma approaches criticality and we obtain the quasinormal spectrum analytically. We regulate the critical limit by gluing the IR geometry that corresponds to the nonconformal plasma to a part of AdS space-time in the UV. Near criticality, the spectrum can still be computed analytically and we find two sets of quasinormal modes, related to the IR and UV parts of the geometry. In the critical limit, the quasinormal modes accumulate to form a branch cut in the correlators of the energy-momentum tensor on the real axis of the complex frequency plane.
DEFF Research Database (Denmark)
Asif, Rameez; Ye, Feihong; Morioka, Toshio
2015-01-01
12×12 multiple-input multiple-output (MIMO) adaptive digital signal processing (DSP). Time domain equalization (TDE) is realized to implement the linear adaptive MIMO module that is implemented in blind mode using conventional constant-modulusalgorithm (CMA) for finite impulse response (FIR) adaptive......We have quantified equalizer complexity for transmitting dual-polarized 6-LP modes (LP01, LP11a, LP11b, LP21a, LP21b and LP02) of 112 Gbit/s m-ary QAM (m=4, 16, 32, 64, 256) single carrier signals over 20 km step-index few-mode fiber. The transmitted signals are strongly coupled and recovered using...
Strong-coupling approximations
International Nuclear Information System (INIS)
Abbott, R.B.
1984-03-01
Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures
Dvali, Gia
2009-01-01
We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...
Stirring Strongly Coupled Plasma
Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim
2009-01-01
We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...
International Nuclear Information System (INIS)
Bouis, F.
1999-01-01
Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)
Directory of Open Access Journals (Sweden)
James Avery Sauls
2015-06-01
Full Text Available Recent theories of Sr2RuO4 based on the interplay of strong interactions, spin-orbit coupling and multi-band anisotropy predict chiral or helical ground states with strong anisotropy of the pairing states, with deep minima in the excitation gap, as well as strong phase anisotropy for the chiral ground state. We develop time-dependent mean field theory to calculate the Bosonic spectrum for the class of 2D chiral superconductors spanning 3He-A to chiral superconductors with strong anisotropy. Chiral superconductors support a pair of massive Bosonic excitations of the time-reversed pairs labeled by their parity under charge conjugation. These modes are degenerate for 2D 3He-A. Crystal field anisotropy lifts the degeneracy. Strong anisotropy also leads to low-lying Fermions, and thus to channels for the decay of the Bosonic modes. Selection rules and phase space considerations lead to large asymmetries in the lifetimes and hybridization of the Bosonic modes with the continuum of un-bound Fermion pairs. We also highlight results for the excitation of the Bosonic modes by microwave radiation that provide clear signatures of the Bosonic modes of an anisotropic chiral ground state.
Instabilities in strongly coupled plasmas
Kalman, G J
2003-01-01
The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the plasma is strongly coupled. In the strongly coupled liquid state, the strong correlations between the dust grains fundamentally affect the conditions for instability. In the crystalline state, the inherent anisotropy couples the longitudinal and transverse polarizations, and results in unstable excitations in both polarizations. We summarize analyses of resonant and non-resonant, as well as resistive instabilities. We consider both ion-dust streaming and dust beam-plasma instabilities. Strong coupling, in general, leads to an enhancement of the growth rates. In the crystalline phase, a resonant transverse instability can be excited.
Krimer, Dmitry O.; Hartl, Benedikt; Mintert, Florian; Rotter, Stefan
2017-10-01
Ensembles of quantum-mechanical spins offer a promising platform for quantum memories, but proper functionality requires accurate control of unavoidable system imperfections. We present an efficient control scheme for a spin ensemble strongly coupled to a single-mode cavity based on a set of Volterra equations relying solely on weak classical control pulses. The viability of our approach is demonstrated in terms of explicit storage and readout sequences that will serve as a starting point towards the realization of more demanding full quantum-mechanical optimal control schemes.
Strong Coupling between Plasmons and Organic Semiconductors
Directory of Open Access Journals (Sweden)
Joel Bellessa
2014-05-01
Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.
International Nuclear Information System (INIS)
Aoki, Ken-ichi
1988-01-01
Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)
String dynamics at strong coupling
International Nuclear Information System (INIS)
Hull, C.M.
1996-01-01
The dynamics of superstring, supergravity and M-theories and their compactifications are probed by studying the various perturbation theories that emerge in the strong and weak-coupling limits for various directions in coupling constant space. The results support the picture of an underlying non-perturbative theory that, when expanded perturbatively in different coupling constants, gives different perturbation theories, which can be perturbative superstring theories or superparticle theories. The p-brane spectrum is considered in detail and a criterion found to establish which p-branes govern the strong-coupling dynamics. In many cases there are competing conjectures in the literature, and this analysis decides between them. In other cases, new results are found. The chiral 6-dimensional theory resulting from compactifying the type IIB string on K 3 is studied in detail and it is found that certain strong-coupling limits appear to give new theories, some of which hint at the possibility of a 12-dimensional origin. (orig.)
Common mode and coupled failure
International Nuclear Information System (INIS)
Taylor, J.R.
1975-10-01
Based on examples and data from Abnormal Occurence Reports for nuclear reactors, a classification of common mode or coupled failures is given, and some simple statistical models are investigated. (author)
Strong coupling electroweak symmetry breaking
International Nuclear Information System (INIS)
Barklow, T.L.; Burdman, G.; Chivukula, R.S.
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models
Strong coupling electroweak symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.
Jeans instability of self-gravitating magnetized strongly coupled plasma
International Nuclear Information System (INIS)
Prajapati, R P; Sharma, P K; Sanghvi, R K; Chhajlani, R K
2012-01-01
We investigate the Jeans instability of self-gravitating magnetized strongly coupled plasma. The equations of the problem are formulated using the generalized hydrodynamic model and a general dispersion relation is obtained using the normal mode analysis. This dispersion relation is discussed for transverse and longitudinal mode of propagations. The modified condition of Jeans instability is obtained for magnetized strongly coupled plasma. We find that strong coupling of plasma particles modify the fundamental criterion of Jeans gravitational instability. In transverse mode it is found that Jeans instability criterion gets modified due to the presence of magnetic field, shear viscosity and fluid viscosity but in longitudinal mode it is unaffected due to the presence of magnetic field. From the curves we found that all these parameters have stabilizing influence on the growth rate of Jeans instability.
Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.
2014-01-01
Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.
Large N baryons, strong coupling theory, quarks
International Nuclear Information System (INIS)
Sakita, B.
1984-01-01
It is shown that in QCD the large N limit is the same as the static strong coupling limit. By using the static strong coupling techniques some of the results of large N baryons are derived. The results are consistent with the large N SU(6) static quark model. (author)
Strong Coupling Corrections in Quantum Thermodynamics
Perarnau-Llobet, M.; Wilming, H.; Riera, A.; Gallego, R.; Eisert, J.
2018-03-01
Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, we study the thermodynamics of systems strongly coupled to thermal baths. First, we provide strong-coupling corrections to the second law applicable to general systems in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. These corrections become relevant for small quantum systems and vanish in first order in the interaction strength. We then move to the question of power of heat engines, obtaining a bound on the power enhancement due to strong coupling. Our results are exemplified on the paradigmatic non-Markovian quantum Brownian motion.
Strong-coupling theory of superconductivity
International Nuclear Information System (INIS)
Rainer, D.; Sauls, J.A.
1995-01-01
The electronic properties of correlated metals with a strong electron-phonon coupling may be understood in terms of a combination of Landau''s Fermi liquid theory and the strong-coupling theory of Migdal and Eliashberg. In these lecture notes we discuss the microscopic foundations of this phenomenological Fermi-liquid model of correlated, strong-coupling metals. We formulate the basic equations of the model, which are quasiclassical transport equations that describe both equilibrium and non-equilibrium phenomena for the normal and superconducting states of a metal. Our emphasis is on superconductors close to equilibrium, for which we derive the general linear response theory. As an application we calculate the dynamical conductivity of strong-coupling superconductors. (author)
Nuclear physics from strong coupling QCD
Fromm, Michael
2009-01-01
The strong coupling limit (beta_gauge = 0) of QCD offers a number of remarkable research possibilities, of course at the price of large lattice artifacts. Here, we determine the complete phase diagram as a function of temperature T and baryon chemical potential mu_B, for one flavor of staggered fermions in the chiral limit, with emphasis on the determination of a tricritical point and on the T ~ 0 transition to nuclear matter. The latter is known to happen for mu_B substantially below the baryon mass, indicating strong nuclear interactions in QCD at infinite gauge coupling. This leads us to studying the properties of nuclear matter from first principles. We determine the nucleon-nucleon potential in the strong coupling limit, as well as masses m_A of nuclei as a function of their atomic number A. Finally, we clarify the origin of nuclear interactions at strong coupling, which turns out to be a steric effect.
Circuit electromechanics with single photon strong coupling
Energy Technology Data Exchange (ETDEWEB)
Xue, Zheng-Yuan, E-mail: zyxue@scnu.edu.cn; Yang, Li-Na [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Zhou, Jian, E-mail: jianzhou8627@163.com [Department of Electronic Communication Engineering, Anhui Xinhua University, Hefei 230088 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)
2015-07-13
In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.
Quasinormal Modes and Strong Cosmic Censorship
Cardoso, Vitor; Costa, João L.; Destounis, Kyriakos; Hintz, Peter; Jansen, Aron
2018-01-01
The fate of Cauchy horizons, such as those found inside charged black holes, is intrinsically connected to the decay of small perturbations exterior to the event horizon. As such, the validity of the strong cosmic censorship (SCC) conjecture is tied to how effectively the exterior damps fluctuations. Here, we study massless scalar fields in the exterior of Reissner-Nordström-de Sitter black holes. Their decay rates are governed by quasinormal modes of the black hole. We identify three families of modes in these spacetimes: one directly linked to the photon sphere, well described by standard WKB-type tools; another family whose existence and time scale is closely related to the de Sitter horizon; finally, a third family which dominates for near-extremally charged black holes and which is also present in asymptotically flat spacetimes. The last two families of modes seem to have gone unnoticed in the literature. We give a detailed description of linear scalar perturbations of such black holes, and conjecture that SCC is violated in the near extremal regime.
Near-field strong coupling of single quantum dots.
Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert
2018-03-01
Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.
Coherent Vortices in Strongly Coupled Liquids
International Nuclear Information System (INIS)
Ashwin, J.; Ganesh, R.
2011-01-01
Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using ''first principles'' molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.
Coherent Vortices in Strongly Coupled Liquids
Ashwin, J.; Ganesh, R.
2011-04-01
Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using “first principles” molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.
Phase transition from strong-coupling expansion
International Nuclear Information System (INIS)
Polonyi, J.; Szlachanyi, K.
1982-01-01
Starting with quarkless SU(2) lattice gauge theory and using the strong-coupling expansion we calculate the action of the effective field theory which corresponds to the thermal Wilson loop. This effective action makes evident that the quark liberating phase transition traces back to the spontaneous breaking of a global Z(2) symmetry group. It furthermore describes both phases qualitatively. (orig.)
Chaos desynchronization in strongly coupled systems
International Nuclear Information System (INIS)
Wu Ye; Liu Weiqing; Xiao, Jinghua; Zhan Meng
2007-01-01
The dynamics of chaos desynchronization in strongly coupled oscillator systems is studied. We find a new bifurcation from synchronous chaotic state, chaotic short wave bifurcation, i.e. a chaotic desynchronization attractor is new born in the systems due to chaos desynchronization. In comparison with the usual periodic short wave bifurcation, very rich but distinct phenomena are observed
Strong-coupling diffusion in relativistic systems
Indian Academy of Sciences (India)
hanced values needed to interpret the data at higher energies point towards the importance of strong-coupling effects. ... when all secondary particles have been created. For short times in the initial phase ... It is decisive for a proper representation of the available data for relativistic heavy-ion collisions at and beyond SPS.
Strongly coupled semidirect mediation of supersymmetry breaking
International Nuclear Information System (INIS)
Ibe, M.; Izawa, K.-I.; Nakai, Y.
2009-01-01
Strongly coupled semidirect gauge mediation models of supersymmetry breaking through massive mediators with standard-model charges are investigated by means of composite degrees of freedom. Sizable mediation is realized to generate the standard-model gaugino masses for a small mediator mass without breaking the standard-model symmetries.
Patterns of strong coupling for LHC searches
Energy Technology Data Exchange (ETDEWEB)
Liu, Da [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing, People’s Republic of (China); Theoretical Particle Physics Laboratory, Institute of Physics,EPFL, CH-1015 Lausanne (Switzerland); Pomarol, Alex [CERN, Theoretical Physics Department,1211 Geneva 23 (Switzerland); Dept. de Física and IFAE-BIST,Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Rattazzi, Riccardo [Theoretical Particle Physics Laboratory, Institute of Physics,EPFL, CH-1015 Lausanne (Switzerland); Riva, Francesco [CERN, Theoretical Physics Department,1211 Geneva 23 (Switzerland)
2016-11-23
Even though the Standard Model (SM) is weakly coupled at the Fermi scale, a new strong dynamics involving its degrees of freedom may conceivably lurk at slightly higher energies, in the multi TeV range. Approximate symmetries provide a structurally robust context where, within the low energy description, the dimensionless SM couplings are weak, while the new strong dynamics manifests itself exclusively through higher-derivative interactions. We present an exhaustive classification of such scenarios in the form of effective field theories, paying special attention to new classes of models where the strong dynamics involves, along with the Higgs boson, the SM gauge bosons and/or the fermions. The IR softness of the new dynamics suppresses its effects at LEP energies, but deviations are in principle detectable at the LHC, even at energies below the threshold for production of new states. We believe our construction provides the so far unique structurally robust context where to motivate several LHC searches in Higgs physics, diboson production, or WW scattering. Perhaps surprisingly, the interplay between weak coupling, strong coupling and derivatives, which is controlled by symmetries, can override the naive expansion in operator dimension, providing instances where dimension-8 dominates dimension-6, well within the domain of validity of the low energy effective theory. This result reveals the limitations of an analysis that is both ambitiously general and restricted to dimension-6 operators.
Qubit absorption refrigerator at strong coupling
Mu, Anqi; Agarwalla, Bijay Kumar; Schaller, Gernot; Segal, Dvira
2017-12-01
We demonstrate that a quantum absorption refrigerator (QAR) can be realized from the smallest quantum system, a qubit, by coupling it in a non-additive (strong) manner to three heat baths. This function is un-attainable for the qubit model under the weak system-bath coupling limit, when the dissipation is additive. In an optimal design, the reservoirs are engineered and characterized by a single frequency component. We then obtain closed expressions for the cooling window and refrigeration efficiency, as well as bounds for the maximal cooling efficiency and the efficiency at maximal power. Our results agree with macroscopic designs and with three-level models for QARs, which are based on the weak system-bath coupling assumption. Beyond the optimal limit, we show with analytical calculations and numerical simulations that the cooling efficiency varies in a non-universal manner with model parameters. Our work demonstrates that strongly-coupled quantum machines can exhibit function that is un-attainable under the weak system-bath coupling assumption.
Bright branes for strongly coupled plasmas
International Nuclear Information System (INIS)
Mateos, David; Patino, Leonardo
2007-01-01
We use holographic techniques to study photon production in a class of finite temperature, strongly coupled, large-N c SU(N c ) quark-gluon plasmas with N f c quark flavours. Our results are valid to leading order in the electromagnetic coupling constant but non-perturbatively in the SU(N c ) interactions. The spectral function of electromagnetic currents and other related observables exhibit an interesting structure as a function of the photon frequency and the quark mass. We discuss possible implications for heavy ion collision experiments
Coupled mode theory of periodic waveguides arrays
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Chigrin, Dmitry N.
We apply the scalar coupled mode theory to the case of waveguides array consisting om two periodic waveguides. One of the waveguides is arbitrary shifted along another. A longitudinal shift acts as a parameter in the coupled mode theory. The proposed theory explains peculiarities of modes dispers...... dispersion and transmission in coupled periodic waveguides systems. Analytical results are compared with the numerical ones obtained by the plane wave expansion and FDTD methods....
Strong spin-photon coupling in silicon
Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.
2018-03-01
Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.
Center vortices at strong couplings and all couplings
International Nuclear Information System (INIS)
Greensite, J.
2001-01-01
Motivations for the center vortex theory of confinement are discussed. In particular, it is noted that the abelian dual Meissner effect, which is the signature of dual superconductivity, cannot adequately describe the confining force at large distance scales. A long-range effective action is derived from strong-coupling lattice gauge theory in D=3 dimensions, and it is shown that center vortices emerge as the stable saddlepoints of this action. Thus, in the case of strong couplings, the vortex picture is arrived at analytically. I also respond briefly to a recent criticism regarding maximal center gauge. (author)
Strong coupling analogue of the Born series
International Nuclear Information System (INIS)
Dolinszky, T.
1989-10-01
In a given partial wave, the strength of the centrifugal term to be incorporated into the WKBA solutions in different spatial regions can be adjusted so as to make the first order wave functions everywhere smooth and, in strong coupling, exactly reproduce Quantum Mechanics throughout the space. The relevant higher order approximations supply an absolute convergent series expansion of the exact scattering state. (author) 4 refs.; 2 figs.; 2 tabs
Holographic gauge mediation via strongly coupled messengers
International Nuclear Information System (INIS)
McGuirk, Paul; Shiu, Gary; Sumitomo, Yoske
2010-01-01
We consider a relative of semidirect gauge mediation where the hidden sector exists at large 't Hooft coupling. Such scenarios can be difficult to describe using perturbative field theory methods but may fall into the class of holographic gauge mediation scenarios, meaning that they are amenable to the techniques of gauge/gravity duality. We use a recently found gravity solution to examine one such case, where the hidden sector is a cascading gauge theory resulting in a confinement scale not much smaller than the messenger mass. In the original construction of holographic gauge mediation, as in other examples of semidirect gauge mediation at strong coupling, the primary contributions to visible sector soft terms come from weakly coupled messenger mesons. In contrast to these examples, we describe the dual of a gauge theory where there are significant contributions from scales in which the strongly coupled messenger quarks are the effective degrees of freedom. In this regime, the visible sector gaugino mass can be calculated entirely from holography.
Strongly coupled models at the LHC
International Nuclear Information System (INIS)
Vries, Maikel de
2014-10-01
In this thesis strongly coupled models where the Higgs boson is composite are discussed. These models provide an explanation for the origin of electroweak symmetry breaking including a solution for the hierarchy problem. Strongly coupled models provide an alternative to the weakly coupled supersymmetric extensions of the Standard Model and lead to different and interesting phenomenology at the Large Hadron Collider (LHC). This thesis discusses two particular strongly coupled models, a composite Higgs model with partial compositeness and the Littlest Higgs model with T-parity - a composite model with collective symmetry breaking. The phenomenology relevant for the LHC is covered and the applicability of effective operators for these types of strongly coupled models is explored. First, a composite Higgs model with partial compositeness is discussed. In this model right-handed light quarks could be significantly composite, yet compatible with experimental searches at the LHC and precision tests on Standard Model couplings. In these scenarios, which are motivated by flavour physics, large cross sections for the production of new resonances coupling to light quarks are expected. Experimental signatures of right-handed compositeness at the LHC are studied, and constraints on the parameter space of these models are derived using recent results by ATLAS and CMS. Furthermore, dedicated searches for multi-jet signals at the LHC are proposed which could significantly improve the sensitivity to signatures of right-handed compositeness. The Littlest Higgs model with T-parity, providing an attractive solution to the fine-tuning problem, is discussed next. This solution is only natural if its intrinsic symmetry breaking scale f is relatively close to the electroweak scale. The constraints from the latest results of the 8 TeV run at the LHC are examined. The model's parameter space is being excluded based on a combination of electroweak precision observables, Higgs precision
Escuer, Albert; Vicente, Ramon; Kumar, Sujit B.; Solans, Xavier; Font-Bardía, Mercé; Caneschi, Andrea
1996-05-22
The trinuclear complex (&mgr;(3)-CO(3))[Ni(3)(Medpt)(3)(NCS)(4)] was obtained by reaction of basic solutions of nickel(II), Medpt (bis(3aminopropyl)methylamine) and thiocyanate ligand with atmospheric CO(2) or by simple reaction with carbonate anion. (&mgr;(3)-CO(3))[Ni(3)(Medpt)(3)(NCS)(4)] crystallizes in the triclinic system, space group P&onemacr;, with a = 12.107(5) Å, b = 12.535(7) Å, c = 16.169(9) Å, alpha = 102.69(5) degrees, beta = 92.91(5) degrees, gamma = 118.01(4) degrees, Z = 2, and R = 0.043. The three nickel atoms are asymmetrically bridged by one pentadentate carbonato ligand, which shows a novel coordination mode. The (&mgr;(3)-CO(3))[Ni(3)(Medpt)(3)(NCS)(4)] compound shows a very strong antiferromagnetic coupling. Fit as irregular triangular arrangement gave J(1) = -88.4, J(2) = -57.7, and J(3) = -9.6 cm(-)(1), which is the strongest AF coupling observed to date for Ni(3) compounds. The magnetic behavior of the carbonato bridge is discussed.
The Dark Side of Strongly Coupled Theories
DEFF Research Database (Denmark)
Kouvaris, Christoforos
2008-01-01
We investigate the constraints of dark matter search experiments on the different candidates emerging from the minimal quasi-conformal strong coupling theory with fermions in the adjoint representation. For one candidate, the current limits of CDMS exclude a tiny window of masses around 120 GeV. We...... also investigate under what circumstances the newly proposed candidate composed of a -2 negatively charged particle and a $^4He^{+2}$ can explain the discrepancy between the results of the CDMS and DAMA experiments. We found that this type of dark matter should give negative results in CDMS, while...
Strong coupling transmutation of Yukawa theory
International Nuclear Information System (INIS)
Chiang, C.C.; Chiu, C.B.; Sudarshan, E.C.G.
1981-01-01
In the strong coupling limit, it is shown that the Yukawa-type theory can be made to undergo a transmutation into an attractive separable potential theory, provided a single state is removed from the spectrum in the lowest nontrivial sector and the states at infinity which include a continuum in the next sector. If these states are not removed, the two theories are distinct. It is suggested that the full equivalence and the renormalization of four-fermion theories need further examination. (orig.)
Nonlinear coupling of kink modes in Tokamaks
International Nuclear Information System (INIS)
Dagazian, R.Y.
1975-07-01
The m = 2, n = 1 kink mode is shown to be capable of destabilizing the m = 1, n = 1 internal kink. A nonlinear Lagrangian theory is developed for the coupling of modes of different pitch, and it is applied to the interaction of these modes. The coupling to the m = 2 mode provides sufficient additional destabilization to the internal mode to permit it to account even quantitatively (where it had failed when considered by itself) for many of the features of the disruptive instability. (U.S.)
Measurement of nonlinear mode coupling of tearing fluctuations
International Nuclear Information System (INIS)
Assadi, S.; Prager, S.C.; Sidikman, K.L.
1992-03-01
Three-wave nonlinear coupling of spatial Fourier modes is measured in the MST reversed field pinch by applying bi-spectral analysis to magnetic fluctuations measured at the plasma edge at 64 toroidal locations and 16 poloidal locations, permitting observation of coupling over 8 polodial modes and 32 toroidal modes. Comparison to bi-spectra predicted by MHD computation indicates reasonably good agreement. However, during the crash phase of the sawtooth oscillation the nonlinear coupling is strongly enhanced, concomittant with a broadened (presumably nonlinearly generated) k-spectrum
Normal-Mode Splitting in a Weakly Coupled Optomechanical System
Rossi, Massimiliano; Kralj, Nenad; Zippilli, Stefano; Natali, Riccardo; Borrielli, Antonio; Pandraud, Gregory; Serra, Enrico; Di Giuseppe, Giovanni; Vitali, David
2018-02-01
Normal-mode splitting is the most evident signature of strong coupling between two interacting subsystems. It occurs when two subsystems exchange energy between themselves faster than they dissipate it to the environment. Here we experimentally show that a weakly coupled optomechanical system at room temperature can manifest normal-mode splitting when the pump field fluctuations are antisquashed by a phase-sensitive feedback loop operating close to its instability threshold. Under these conditions the optical cavity exhibits an effectively reduced decay rate, so that the system is effectively promoted to the strong coupling regime.
From strong to ultrastrong coupling in circuit QED architectures
International Nuclear Information System (INIS)
Niemczyk, Thomas
2011-01-01
The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)
Nonlinear growth of strongly unstable tearing modes
International Nuclear Information System (INIS)
Waelbroeck, F.L.
1993-11-01
Rutherford's theory of the tearing instability is extended to cases where current nonlinearities are important, such as long wavelength modes in current slabs and the m = 1 instability in tokamaks with moderately large aspect-ratios. Of particular interest is the possibility that the associated magnetic islands, as a result of secondary instabilities, have a singular response to the Ohmic diffusion of the current. A family of islands is used to test this possibility; it is found that the response remains bounded
Mode coupling in spin torque oscillators
International Nuclear Information System (INIS)
Zhang, Steven S.-L.; Zhou, Yan; Li, Dong; Heinonen, Olle
2016-01-01
A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Our results show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. The acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature. - Highlights: • Deriving equations for coupled modes in spin torque oscillators. • Including Hamiltonian formalism and elimination of three–magnon processes. • Thermal bath of magnons central to mode coupling. • Numerical examples of circular and elliptical devices.
Mode coupling in spin torque oscillators
Energy Technology Data Exchange (ETDEWEB)
Zhang, Steven S.-L., E-mail: ZhangShule@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Zhou, Yan, E-mail: yanzhou@hku.hk [Department of Physics, The University of Hong Kong, Hong Kong (China); Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong (China); Li, Dong, E-mail: geodesic.ld@gmail.com [Department of Physics, Centre for Nonlinear Studies, and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Heinonen, Olle, E-mail: heinonen@anl.gov [Material Science Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Northwestern-Argonne Institute of Science and Technology, 2145 Sheridan Road, Evanston, IL 60208 (United States); Computation Institute, The Unversity of Chicago, 5735 S Ellis Avenue, Chicago, IL 60637 (United States)
2016-09-15
A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Our results show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. The acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature. - Highlights: • Deriving equations for coupled modes in spin torque oscillators. • Including Hamiltonian formalism and elimination of three–magnon processes. • Thermal bath of magnons central to mode coupling. • Numerical examples of circular and elliptical devices.
Mode coupling trigger of neoclassical magnetohydrodynamic tearing modes in tokamaks
International Nuclear Information System (INIS)
Gianakon, T.A.; Hegna, C.C.; Callen, J.D.
1997-05-01
Numerical studies of the nonlinear evolution of coupled magnetohydrodynamic - type tearing modes in three-dimensional toroidal geometry with neoclassical effects are presented. The inclusion of neoclassical physics introduces an additional free-energy source for the nonlinear formation of magnetic islands through the effects of a bootstrap current in Ohm's law. The neoclassical tearing mode is demonstrated to be destabilized in plasmas which are otherwise Δ' stable, albeit once a threshold island width is exceeded. A possible mechanism for exceeding or eliminating this threshold condition is demonstrated based on mode coupling due to toroidicity with a pre-existing instability at the q = 1 surface
Baryon bags in strong coupling QCD
Gattringer, Christof
2018-04-01
We discuss lattice QCD with one flavor of staggered fermions and show that in the path integral the baryon contributions can be fully separated from quark and diquark contributions. The baryonic degrees of freedom (d.o.f.) are independent of the gauge field, and the corresponding free fermion action describes the baryons through the joint propagation of three quarks. The nonbaryonic dynamics is described by quark and diquark terms that couple to the gauge field. When evaluating the quark and diquark contributions in the strong coupling limit, the partition function completely factorizes into baryon bags and a complementary domain. Baryon bags are regions in space-time where the dynamics is described by a single free fermion made out of three quarks propagating coherently as a baryon. Outside the baryon bags, the relevant d.o.f. are monomers and dimers for quarks and diquarks. The partition sum is a sum over all baryon bag configurations, and for each bag, a free fermion determinant appears as a weight factor.
Evidence for trapping and collectivization of resonances at strong coupling
International Nuclear Information System (INIS)
Herzberg, R.D.; Brentano, P. von; Rotter, I.
1993-01-01
The behavior of 22 neutron resonances in 53 Cr is investigated as a function of the coupling-strength parameter μ and of the degree of overlapping. Starting from a doorway picture at small μ, the widths of 21 resonances increase with increasing μ at the cost of the width of the original 'single-particle doorway resonance'. At μ≅1, the widths of most states decrease again. At μ→10 the widths of these 'trapped' states vanish while 'collective' states are formed which gather the widths. Thus we again observe a doorway picture at strong coupling. At μ=1, the energies and widths of the resonances are fitted to the experimental data. At this coupling strength, most resonances investigated resemble trapped modes. (orig.)
Jets in a strongly coupled anisotropic plasma
Energy Technology Data Exchange (ETDEWEB)
Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Faculty of Physics, Shahrood (Iran, Islamic Republic of); University of Southampton, STAG Research Centre Physics and Astronomy, Southampton (United Kingdom); Morad, Razieh [University of Cape Town, Department of Physics, Rondebosch (South Africa)
2018-01-15
In this paper, we study the dynamics of the light quark jet moving through the static, strongly coupled N = 4, anisotropic plasma with and without charge. The light quark is presented by a 2-parameters point-like initial condition falling string in the context of the AdS/CFT. We calculate the stopping distance of the light quark in the anisotropic medium and compare it with its isotropic value. We study the dependency of the stopping distance to the both string initial conditions and background parameters such as anisotropy parameter or chemical potential. Although the typical behavior of the string in the anisotropic medium is similar to the one in the isotropic AdS-Sch background, the string falls faster to the horizon depending on the direction of moving. Particularly, the enhancement of quenching is larger in the beam direction. We find that the suppression of stopping distance is more prominent when the anisotropic plasma have the same temperature as the isotropic plasma. (orig.)
From strong to ultrastrong coupling in circuit QED architectures
Energy Technology Data Exchange (ETDEWEB)
Niemczyk, Thomas
2011-08-10
The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)
Kinetic theory for strongly coupled Coulomb systems
Dufty, James; Wrighton, Jeffrey
2018-01-01
The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.
Coupled plasmon modes and their localization in graded plasmonic chains
International Nuclear Information System (INIS)
Xiao, J.J.; Yakubo, K.; Yu, K.W.
2007-01-01
Plasmonic waves occur in the subwavelength scale with transverse confinement below the diffraction limit. In this work, we report results of longitudinal localization-delocalization transitions of coupled plasmon modes in graded chains of metallic nanodots. Two graded models are studied: graded index of refraction in the host medium and incremental spacing between the nanoparticles. The coupled plasmon modes in these graded systems exhibit strong localization, showing a tunable passband in finite size systems. These localized modes survive in presence of weak loss in the nanodots. To understand the localization mechanism, we construct equivalent systems of one-dimensional coupled harmonic oscillators, whose coupling strength or masses are gradually varied from one end to the other, with additional on-site potentials. Confining and transmitting electromagnetic energy in these structures may pave new way for many fruitful applications in plasmonics
Coupled seismoacoustic modes on the seafloor
Butler, Rhett; Lomnitz, Cinna
2002-05-01
Wave-to-wave coupling arises when an acoustic pulse selects a Rayleigh mode of the same speed and both travel together swapping energy across an interface [Ewing et al., 1957]. A distinctive signal is observed at the Hawaii-2 Observatory for purely oceanic paths from earthquakes on the Blanco and Mendocino Fracture Zones, off the coast of North America. The signal appears to be a composite of undispersed higher Rayleigh modes propagating along the ocean floor both in the sediments and in the water. The new coupled modes are identified by their frequency composition and their phase and group velocities. Seismoacoustic coupling at the seafloor is conditioned on (a) the presence of a low-velocity interface at the ocean floor, and (b) the wavelength of the Rayleigh component being shorter than the depth of the water layer.
Dispersion of strongly confined channel plasmon polariton modes
DEFF Research Database (Denmark)
Zenin, Vladimir; Volkov, Valentyn S.; Han, Zhanghua
2011-01-01
We report on experimental (by use of scanning near-field optical microscopy) and theoretical investigations of strongly confined (∼λ/5) channel plasmon polariton (CPP) modes propagating at telecom wavelengths (1425–1630 nm) along V-grooves cut in a gold film. The main CPP characteristics (mode in...
Resonant MHD modes with toroidal coupling
International Nuclear Information System (INIS)
Connor, J.W.; Hastie, R.J.; Taylor, J.B.
1990-07-01
This is part 2 of a study of resonant perturbations, such as resistive tearing and ballooning modes, in a torus. These are described by marginal ideal mhd equations in the regions between resonant surfaces; matching across these surfaces provides the dispersion relation. In part 1 we described how all the necessary information from the ideal mhd calculations could be represented by a so-called E-matrix. We also described the calculation of this E-matrix for tearing modes (even parity in perturbed magnetic field) in a large aspect ratio torus. There the toroidal modes comprise coupled cylinder tearing modes and the E-matrix is a generalization of the familiar Δ' quantity in a cylinder. In the present paper we discuss resistive ballooning, or twisting-modes, which have odd-parity in perturbed magnetic field. We show that, unlike the tearing modes, these odd-parity modes are instrinsically toroidal and are not directly related to the odd-parity modes in a cylinder. This is evident from the analysis of the high-n limit in ballooning-space, where a transition from a stable Δ' to an unstable Δ' occurs for the twisting mode when the ballooning effect exceeds the interchange effect, which can occur even at large aspect ratio (as in a tokamak). Analysis of the high-n limit in coordinate space, rather than ballooning space, clarifies this singular behaviour and indicates how one may define twisting-mode Δ'. It also yields a prescription for treating low-n twisting modes and a method for calculating an E-matrix for resistive ballooning modes in a large aspect ratio tokamak. The elements of this matrix are given in terms of cylindrical tearing mode solutions
Dynamics of levitated nanospheres: towards the strong coupling regime
International Nuclear Information System (INIS)
Monteiro, T S; Millen, J; Pender, G A T; Barker, P F; Marquardt, Florian; Chang, D
2013-01-01
The use of levitated nanospheres represents a new paradigm for the optomechanical cooling of a small mechanical oscillator, with the prospect of realizing quantum oscillators with unprecedentedly high quality factors. We investigate the dynamics of this system, especially in the so-called self-trapping regime, where one or more optical fields simultaneously trap and cool the mechanical oscillator. The determining characteristic of this regime is that both the mechanical frequency ω M and single-photon optomechanical coupling strength parameters g are a function of the optical field intensities, in contrast to usual set-ups where ω M and g are constant for the given system. We also measure the characteristic transverse and axial trapping frequencies of different sized silica nanospheres in a simple optical standing wave potential, for spheres of radii r = 20–500 nm, illustrating a protocol for loading single nanospheres into a standing wave optical trap that would be formed by an optical cavity. We use these data to confirm the dependence of the effective optomechanical coupling strength on sphere radius for levitated nanospheres in an optical cavity and discuss the prospects for reaching regimes of strong light–matter coupling. Theoretical semiclassical and quantum displacement noise spectra show that for larger nanospheres with r ∼> 100 nm a range of interesting and novel dynamical regimes can be accessed. These include simultaneous hybridization of the two optical modes with the mechanical modes and parameter regimes where the system is bistable. We show that here, in contrast to typical single-optical mode optomechanical systems, bistabilities are independent of intracavity intensity and can occur for very weak laser driving amplitudes. (paper)
Compensating strong coupling with large charge
Energy Technology Data Exchange (ETDEWEB)
Alvarez-Gaume, Luis [Theory Department - CERN,CH-1211 Geneva 23 (Switzerland); Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY-11794-3636 (United States); Loukas, Orestis; Orlando, Domenico; Reffert, Susanne [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2017-04-11
We study some (conformal) field theories with global symmetries in the sector where the value of the global charge Q is large. We find (as expected) that the low energy excitations of this sector are described by the general form of Goldstone’s theorem in the non-relativistic regime. We also derive the unexpected result, first presented in https://www.doi.org/10.1007/JHEP12(2015)071, that the effective field theory describing such sector of fixed Q contains effective couplings λ{sub eff}∼λ{sup b}/Q{sup a}, where λ is the original coupling. Hence, large charge leads to weak coupling. In the last section of the paper we present an outline of how to compute anomalous dimensions of the O(n) model in this limit.
Compensating strong coupling with large charge
Alvarez-Gaume, Luis; Orlando, Domenico; Reffert, Susanne
2017-04-11
We study (conformal) field theories with global symmetries in the sector where the value of the global charge $Q$ is large. We find (as expected) that the low energy excitations of this sector are described by the general form of Goldstone's theorem in the non-relativistic regime. We also derive the unexpected result, first presented in [Hellerman:2015], that the effective field theory describing such sector of fixed $Q$ contains effective couplings $\\lambda_{\\text{eff}}\\sim \\lambda^b /Q^{a}$, where $\\lambda$ is the original coupling. Hence, large charge leads to weak coupling. In the last section of the paper we present an outline of how to compute anomalous dimensions in this limit.
Dispersion of coupled mode-gap cavities
Lian, Jin; Sokolov, Sergei; Yuce, E.; Combrie, S.; de Rossi, A.; Mosk, Allard
2015-01-01
The dispersion of a coupled resonator optical waveguide made of photonic crystal mode-gap cavities is pronouncedly asymmetric. This asymmetry cannot be explained by the standard tight binding model. We show that the fundamental cause of the asymmetric dispersion is the inherent dispersive cavity
Process-independent strong running coupling
International Nuclear Information System (INIS)
Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis; Roberts, Craig D.; Rodriguez-Quintero, Jose
2017-01-01
Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, this reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.
Transfer coefficients in ultracold strongly coupled plasma
Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.
2018-03-01
We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.
Higher order modes of coupled optical fibres
International Nuclear Information System (INIS)
Alexeyev, C N; Yavorsky, M A; Boklag, N A
2010-01-01
The structure of hybrid higher order modes of two coupled weakly guiding identical optical fibres is studied. On the basis of perturbation theory with degeneracy for the vector wave equation expressions for modes with azimuthal angular number l ≥ 1 are obtained that allow for the spin–orbit interaction. The spectra of polarization corrections to the scalar propagation constants are calculated in a wide range of distances between the fibres. The limiting cases of widely and closely spaced fibres are studied. The obtained results can be used for studying the tunnelling of optical vortices in directional couplers and in matters concerned with information security
Seismic diagnosis from gravity modes strongly affected by rotation
Prat, Vincent; Mathis, Stéphane; Lignières, François; Ballot, Jérôme; Culpin, Pierre-Marie
2017-10-01
Most of the information we have about the internal rotation of stars comes from modes that are weakly affected by rotation, for example by using rotational splittings. In contrast, we present here a method, based on the asymptotic theory of Prat et al. (2016), which allows us to analyse the signature of rotation where its effect is the most important, that is in low-frequency gravity modes that are strongly affected by rotation. For such modes, we predict two spectral patterns that could be confronted to observed spectra and those computed using fully two-dimensional oscillation codes.
Coupling of tearing modes in tokamaks
International Nuclear Information System (INIS)
Finn, J.M.
1977-01-01
The simultaneous presence of tearing modes of different helical pitches leads to the destruction of magnetic surfaces, which has been suggested as the mechanism leading to the onset of the disruptive instability in tokamaks. For current profiles in which the m = 2 mode is unstable, but the m = 3 is stable, the coupling of the m = 3 to the m = 2 through the poloidal variation of the toroidal field can drive the m = 3 amplitude psi 3 to order psi 2 times the inverse aspect ratio. Detailed calculations, both analytical and numerical, have been performed for two models for the equilibrium and m = 2 mode structure. A slab model and incompressible m = 3 perturbations are assumed. The m = 3 amplitude increases with shear, up to a point, showing that as the current channel shrinks, overlap of resonances becomes more likely. The results also apply qualitatively to other m, m +- 1 interactions
Strongly coupled band in 140Gd
International Nuclear Information System (INIS)
Falla-Sotelo, F.; Oliveira, J.R.B.; Rao, M.N.
2005-01-01
Several high-K states are known to exist in the mass 130-140 region. For the N=74 even-even isotopes, Kπ = 8 - isomers, with lifetimes ranging from ns to ms, are known in 128 Xe, 130 Ba, 132 Ce, 134 Nd, 136 Sm, and 138 Gd[. In 140 Gd, we have observed for the first time a band also based on an Iπ = 8 - state. This could be the first case of a Kπ = 8 - state observed in an N=76 even-even isotope. The systematics of the Kπ = 8 - isomeric states in N=74 isotopes has been studied by A.M. Bruce et al. These states decay towards the K = 0 ground state band, and the transitions are K-forbidden. The 140 Gd case presents strong similarities but also some significant differences with relation to the N=74 isotopes. We propose the same configuration but with larger deformation in 140 Gd
Designing asymmetric multiferroics with strong magnetoelectric coupling
Lu, Xuezeng; Xiang, Hongjun; Rondinelli, James; Materials Theory; Design Group Team
2015-03-01
Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the ``asymmetric multiferroic.'' In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.
Strongly coupled band in {sup 140}Gd
Energy Technology Data Exchange (ETDEWEB)
Falla-Sotelo, F.; Oliveira, J.R.B.; Rao, M.N. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil)] (and others)
2005-07-01
Several high-K states are known to exist in the mass 130-140 region. For the N=74 even-even isotopes, K{pi} = 8{sup -} isomers, with lifetimes ranging from ns to ms, are known in {sup 128}Xe, {sup 130}Ba, {sup 132}Ce, {sup 134}Nd, {sup 136}Sm, and {sup 138}Gd[. In {sup 140}Gd, we have observed for the first time a band also based on an I{pi} = 8{sup -} state. This could be the first case of a K{pi} = 8{sup -} state observed in an N=76 even-even isotope. The systematics of the K{pi} = 8{sup -} isomeric states in N=74 isotopes has been studied by A.M. Bruce et al. These states decay towards the K = 0 ground state band, and the transitions are K-forbidden. The {sup 140}Gd case presents strong similarities but also some significant differences with relation to the N=74 isotopes. We propose the same configuration but with larger deformation in {sup 140}Gd.
Phenomenology of strongly coupled chiral gauge theories
International Nuclear Information System (INIS)
Bai, Yang; Berger, Joshua; Osborne, James; Stefanek, Ben A.
2016-01-01
A sector with QCD-like strong dynamics is common in models of non-standard physics. Such a model could be accessible in LHC searches if both confinement and big-quarks charged under the confining group are at the TeV scale. Big-quark masses at this scale can be explained if the new fermions are chiral under a new U(1) ′ gauge symmetry such that their bare masses are related to the U(1) ′ -breaking and new confinement scales. Here we present a study of a minimal GUT-motivated and gauge anomaly-free model with implications for the LHC Run 2 searches. We find that the first signatures of such models could appear as two gauge boson resonances. The chiral nature of the model could be confirmed by observation of a Z ′ γ resonance, where the Z ′ naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson.
Strongly correlated electrons on two coupled chains
International Nuclear Information System (INIS)
Weihong, Z.; Oitmaa, J.; Hamer, C.J.
2000-01-01
Full text: The discovery of materials containing S = 1/2 ions which form a 2-leg ladder structure has led to much current research on ladder systems. Pure spin ladders show an unexpected difference between odd-legged ladders (including the single chain) which are gapless with long-range correlations and even-legged ladders which have a spin gap and short range correlations. Even more interesting behaviour occurs when these systems are doped, creating a system of strongly correlated mobile holes, as in the cuprate superconductors. The simplest models in this context are the Hubbard model and the t-J model. Considerable work has been reported on both of these models, using both numerical calculations and approximate analytic theories. We have used series expansion methods to study both of these systems. Our results, in some cases, confirm those of other approaches. In other cases we are able to probe regions of the phase diagram inaccessible to other methods, or to obtain results of increased precision. In this paper we focus on:- 1. The energy and dispersion relation of 1-hole states. 2.The existence of a 2-hole bound state and its energy and dispersion. 3. Spin and charge gaps and the question of phase separation
Dynamics of symmetry breaking in strongly coupled QED
International Nuclear Information System (INIS)
Bardeen, W.A.
1988-10-01
I review the dynamical structure of strong coupled QED in the quenched planar limit. The symmetry structure of this theory is examined with reference to the nature of both chiral and scale symmetry breaking. The renormalization structure of the strong coupled phase is analysed. The compatibility of spontaneous scale and chiral symmetry breaking is studied using effective lagrangian methods. 14 refs., 3 figs
Excited hexagon Wilson loops for strongly coupled N=4 SYM
Energy Technology Data Exchange (ETDEWEB)
Bartels, J.; Kotanski, J. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics and Astronomy
2010-10-15
This work is devoted to the six-gluon scattering amplitude in strongly coupled N=4 supersymmetric Yang-Mills theory. At weak coupling, an appropriate high energy limit of the so-called remainder function, i.e. of the deviation from the BDS formula, may be understood in terms of the lowest eigenvalue of the BFKL hamiltonian. According to Alday et al., amplitudes in the strongly coupled theory can be constructed through an auxiliary 1-dimensional quantum system. We argue that certain excitations of this quantum system determine the Regge limit of the remainder function at strong coupling and we compute its precise value. (orig.)
Elevator mode convection in flows with strong magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Liu, Li; Zikanov, Oleg, E-mail: zikanov@umich.edu [Department of Mechanical Engineering, University of Michigan-Dearborn, 48128-1491 Michigan (United States)
2015-04-15
Instability modes in the form of axially uniform vertical jets, also called “elevator modes,” are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.
Shear viscosities of photons in strongly coupled plasmas
Directory of Open Access Journals (Sweden)
Di-Lun Yang
2016-09-01
Full Text Available We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP at weak coupling and N=4 super Yang–Mills plasma (SYMP at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.
Mode coupling of electron plasma waves
International Nuclear Information System (INIS)
Harte, J.A.
1975-01-01
The driven coupled mode equations are derived for a two fluid, unequal temperature (T/sub e/ much greater than T/sub i/) plasma in the one-dimensional, electrostatic model and applied to the coupling of electron plasma waves. It is assumed that the electron to ion mass ratio identical with m/sub e/M/sub i// much less than 1 and eta 2 /sub ko/k lambda/sub De/ less than 1 where eta 2 /sub ko/ is the pump wave's power normalized to the plasma thermal energy, k the mode wave number and lambda/sub De/ the electron Debye length. Terms up to quadratic in pump power are retained. The equations describe the linear plasma modes oscillating at the wave number k and at ω/sub ek/, the Bohn Gross frequency, and at Ω/sub k/, the ion acoustic frequency, subject to the damping rates ν/sub ek/ and ν/sub ik/ for electrons and ions and their interactions due to intense high frequency waves E/sub k//sup l/. n/sub o/ is the background density, n/sub ik/ the fluctuating ion density, ω/sub pe/ the plasma frequency
Nonlinear charge reduction effect in strongly coupled plasmas
International Nuclear Information System (INIS)
Sarmah, D; Tessarotto, M; Salimullah, M
2006-01-01
The charge reduction effect, produced by the nonlinear Debye screening of high-Z charges occurring in strongly coupled plasmas, is investigated. An analytic asymptotic expression is obtained for the charge reduction factor (f c ) which determines the Debye-Hueckel potential generated by a charged test particle. Its relevant parametric dependencies are analysed and shown to predict a strong charge reduction effect in strongly coupled plasmas
Energy Technology Data Exchange (ETDEWEB)
Hensen, Matthias [Institut; Heilpern, Tal [Center; Gray, Stephen K. [Center; Pfeiffer, Walter [Fakultät
2017-10-12
Establishing strong coupling between spatially separated and thus selectively addressable quantum emitters is a key ingredient to complex quantum optical schemes in future technologies. Insofar as many plasmonic nanostructures are concerned, however, the energy transfer and mutual interaction strength between distant quantum emitters can fail to provide strong coupling. Here, based on mode hybridization, the longevity and waveguide character of an elliptical plasmon cavity are combined with intense and highly localized field modes of suitably designed nanoantennas. Based on FDTD simulations a quantum emitter-plasmon coupling strength hg = 16.7 meV is reached while simultaneously keeping a small plasmon resonance line width h gamma(s) = 33 meV. This facilitates strong coupling, and quantum dynamical simulations reveal an oscillatory exchange of excited state population arid a notable degree of entanglement between the quantum emitters spatially separated by 1.8 mu m, i.e., about twice the operating wavelength.
Mode coupling of Schwarzschild perturbations: Ringdown frequencies
International Nuclear Information System (INIS)
Pazos, Enrique; Brizuela, David; Martin-Garcia, Jose M.; Tiglio, Manuel
2010-01-01
Within linearized perturbation theory, black holes decay to their final stationary state through the well-known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order gravitational perturbations induced by self-coupling of linearized perturbations of Schwarzschild black holes. We do so through high-accuracy simulations in the time domain of first and second-order Regge-Wheeler-Zerilli type equations, for a variety of initial data sets. We consider first-order even-parity (l=2, m=±2) perturbations and odd-parity (l=2, m=0) ones, and all the multipoles that they generate through self-coupling. For all of them and all the initial data sets considered we find that--in contrast to previous predictions in the literature--the numerical decay frequencies of second-order perturbations are the same ones of linearized theory, and we explain the observed behavior. This would indicate, in particular, that when modeling or searching for ringdown gravitational waves, appropriately including the standard quasinormal modes already takes into account nonlinear effects.
Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator
DEFF Research Database (Denmark)
Pályi, András; Struck, P R; Rudner, Mark
2012-01-01
as a realization of the Jaynes-Cummings model of quantum electrodynamics in the strong-coupling regime. A quantized flexural mode of the suspended tube plays the role of the optical mode and we identify two distinct two-level subspaces, at small and large magnetic field, which can be used as qubits in this setup......We theoretically investigate the deflection-induced coupling of an electron spin to vibrational motion due to spin-orbit coupling in suspended carbon nanotube quantum dots. Our estimates indicate that, with current capabilities, a quantum dot with an odd number of electrons can serve...
Self-induced steps in a small Josephson junction strongly coupled to a multimode resonator
DEFF Research Database (Denmark)
Larsen, A.; Jensen, H. Dalsgaard; Mygind, Jesper
1991-01-01
An equally spaced series of very large and nearly constant-voltage self-induced singularities has been observed in the dc I-V characteristics of a small Josephson tunnel junction strongly coupled to a resonant section of a superconducting transmission line. The system allows extremely high values...... of the coupling parameter. The current steps are due to subharmonic parametric excitation of the fundamental mode of the resonator loaded by the junction admittance. Using an applied magnetic field to vary the coupling parameter, we traced out half-integer steps as well as the mode steps known from more weakly...
Mixed fermion-photon condensate in strongly coupled quantum electrodynamics
International Nuclear Information System (INIS)
Gusynin, V.P.; Kushnir, V.A.
1989-01-01
The existence of a new mixed fermion-photon condensate breaking chiral symmetry in strongly coupled phase of quantum electrodynamics is shown. An analytical expression for the renormalized condensate is obtained. 20 refs.; 2 figs
Strong toroidal effects on tokamak tearing mode stability in the hybrid and conventional scenarios
International Nuclear Information System (INIS)
Ham, C J; Connor, J W; Cowley, S C; Gimblett, C G; Hastie, R J; Hender, T C; Martin, T J
2012-01-01
The hybrid scenario is thought to be an important mode of operation for the ITER tokamak. Analytic and numerical calculations demonstrate that toroidal effects at finite β have a strong influence on tearing mode stability of hybrid modes. Indeed, they persist in the large aspect ratio limit, R/a → ∞. A similar strong coupling effect is found between the m = 1, n = 1 harmonic and the m = 2, n = 1 harmonic if the minimum safety factor is less than unity. In both cases the tearing stability index, Δ′ increases rapidly as β approaches ideal marginal stability, providing a potential explanation for the onset of linearly unstable tearing modes. The numerical calculations have used an improved version of the T7 code (Fitzpatrick et al 1993 Nucl. Fusion 33 1533), and complete agreement is obtained with the analytic theory for this demanding test of the code. (paper)
The Cornwall-Norton model in the strong coupling regime
International Nuclear Information System (INIS)
Natale, A.A.
1991-01-01
The Cornwall-Norton model is studied in the strong coupling regime. It is shown that the fermionic self-energy at large momenta behaves as Σ(p) ∼ (m 2 /p) ln (p/m). We verify that in the strong coupling phase the dynamically generated masses of gauge and scalar bosons are of the same order, and the essential features of the model remain intact. (author)
The strong coupling from tau decays without prejudice
International Nuclear Information System (INIS)
Boito, Diogo; Golterman, Maarten; Jamin, Matthias; Mahdavi, Andisheh; Maltman, Kim; Osborne, James; Peris, Santiago
2014-01-01
We review our recent determination of the strong coupling α s from the OPAL data for non-strange hadronic tau decays. We find that α s (m τ 2 )=0.325±0.018 using fixed-order perturbation theory, and α s (m τ 2 )=0.347±0.025 using contour-improved perturbation theory. At present, these values supersede any earlier determinations of the strong coupling from hadronic tau decays, including those from ALEPH data
Collisional Thermalization in Strongly Coupled Ultracold Neutral Plasmas
2017-01-25
calculated collisions rates in a strongly coupled plasma. From Bannasch et al., PRL 109, 185008 (2012). DISTRIBUTION A: Distribution approved for public...applicability to other plasmas.) We use a Green- Kubo relation to extract the diffusion constant from our measurements of the relaxation towards...strongly coupled systems. Our measurements (data symbols) agree with numerical calculations (solid lines) from J. Daligault, PRL 108, 225004 (2012
Equilibration and hydrodynamics at strong and weak coupling
Schee, Wilke van der
2017-01-01
We give an updated overview of both weak and strong coupling methods to describe the approach to a plasma described by viscous hydrodynamics, a process now called hydrodynamisation. At weak coupling the very first moments after a heavy ion collision is described by the colour-glass condensate
Bertolotti, M.; Symes, W.W.; Stoffer, Remco; Hiremath, K.R.; Driessen, A.; Michelotti, F; Hammer, Manfred
Analysis of integrated optical cylindrical microresonators involves the coupling between a straight waveguide and a bent waveguide. Our (2D) variant of coupled mode theory is based on analytically represented mode profiles. With the bend modes expressed in Cartesian coordinates, coupled mode
Transverse multibunch modes for non-rigid bunches, including mode coupling
Energy Technology Data Exchange (ETDEWEB)
Berg, J S; Ruth, R D [Stanford Linear Accelerator Center, Menlo Park, CA (United States)
1996-08-01
A method for computing transverse multibunch growth rates and frequency shifts in rings, which has been described previously, is applied to the PEP-II B factory. The method allows multibunch modes with different internal-bunch oscillation modes to couple to one another, similar to single-bunch mode coupling. Including coupling between the multibunch modes gives effects similar to those seen in single-bunch mode coupling. These effects occur at currents that are lower than the single-bunch mode coupling threshold. (author)
QCD and strongly coupled gauge theories: challenges and perspectives
Brambilla, N.; Eidelman, S.; Foka, P.; Gardner, S.; Kronfeld, A. S.; Alford, M. G.; Alkofer, R.; Butenschoen, M.; Cohen, T. D.; Erdmenger, J.; Fabbietti, L.; Faber, M.; Goity, J. L.; Ketzer, B.; Lin, H. W.; Llanes-Estrada, F. J.; Meyer, H.; Pakhlov, P.; Pallante, E.; Polikarpov, M. I.; Sazdjian, H.; Schmitt, A.; Snow, W. M.; Vairo, A.; Vogt, R.; Vuorinen, A.; Wittig, H.; Arnold, P.; Christakoglou, P.; Nezza, P. Di; Fodor, Z.; Tormo, X. Garcia i; Höllwieser, R.; Kalwait, A.; Keane, D.; Kiritsis, E.; Mischke, A.; Mizuk, R.; Odyniec, G.; Papadodimas, K.; Pich, A.; Pittau, R.; Qiu, Jian-Wei; Ricciardi, G.; Salgado, C. A.; Schwenzer, K.; Stefanis, N. G.; Hippel, G. M. von; Zakharov, V. I .
2014-01-01
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly-coupled, complex
Zhou, Ning; Yuan, Meng; Gao, Yuhan; Li, Dongsheng; Yang, Deren
2016-04-26
Strong coupling between semiconductor excitons and localized surface plasmons (LSPs) giving rise to hybridized plexciton states in which energy is coherently and reversibly exchanged between the components is vital, especially in the area of quantum information processing from fundamental and practical points of view. Here, in photoluminescence spectra, rather than from common extinction or reflection measurements, we report on the direct observation of Rabi splitting of approximately 160 meV as an indication of strong coupling between excited states of CdSe/ZnS quantum dots (QDs) and LSP modes of silver nanoshells under nonresonant nanosecond pulsed laser excitation at room temperature. The strong coupling manifests itself as an anticrossing-like behavior of the two newly formed polaritons when tuning the silver nanoshell plasmon energies across the exciton line of the QDs. Further analysis substantiates the essentiality of high pump energy and collective strong coupling of many QDs with the radiative dipole mode of the metallic nanoparticles for the realization of strong coupling. Our finding opens up interesting directions for the investigation of strong coupling between LSPs and excitons from the perspective of radiative recombination under easily accessible experimental conditions.
Directory of Open Access Journals (Sweden)
Jianfa Gu
2017-01-01
Full Text Available The low-mode shell asymmetry and high-mode hot spot mixing appear to be the main reasons for the performance degradation of the National Ignition Facility (NIF implosion experiments. The effects of the mode coupling between low-mode P2 radiation flux asymmetry and intermediate-mode L = 24 capsule roughness on the implosion performance of ignition capsule are investigated by two-dimensional radiation hydrodynamic simulations. It is shown that the amplitudes of new modes generated by the mode coupling are in good agreement with the second-order mode coupling equation during the acceleration phase. The later flow field not only shows large areal density P2 asymmetry in the main fuel, but also generates large-amplitude spikes and bubbles. In the deceleration phase, the increasing mode coupling generates more new modes, and the perturbation spectrum on the hot spot boundary is mainly from the strong mode interactions rather than the initial perturbation conditions. The combination of the low-mode and high-mode perturbations breaks up the capsule shell, resulting in a significant reduction of the hot spot temperature and implosion performance.
Integrating out resonances in strongly-coupled electroweak scenarios
Directory of Open Access Journals (Sweden)
Rosell Ignasi
2017-01-01
Full Text Available Accepting that there is a mass gap above the electroweak scale, the Electroweak Effective Theory (EWET is an appropriate tool to describe this situation. Since the EWET couplings contain information on the unknown high-energy dynamics, we consider a generic strongly-coupled scenario of electroweak symmetry breaking, where the known particle fields are coupled to heavier states. Then, and by integrating out these heavy fields, we study the tracks of the lightest resonances into the couplings. The determination of the low-energy couplings (LECs in terms of resonance parameters can be made more precise by considering a proper short-distance behaviour on the Lagrangian with heavy states, since the number of resonance couplings is then reduced. Notice that we adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs.
A Minimal Model to Explore the Influence of Distant Modes on Mode-Coupling Instabilities
Kruse, Sebastian; Hoffmann, Norbert
2010-09-01
The phenomenon of mode-coupling instability is one of the most frequently explored mechanisms to explain self-excited oscillation in sliding systems with friction. A mode coupling instability is usually due to the coupling of two modes. However, further modes can have an important influence on the coupling of two modes. This work extends a well-known minimal model to describe mode-coupling instabilities in order to explore the influence of a distant mode on the classical mode-coupling pattern. This work suggests a new minimal model. The model is explored and it is shown that a third mode can have significant influence on the classical mode-coupling instabilities where two modes are coupling. Different phenomena are analysed and it is pointed out that distant modes can only be ignored in very special cases and that the onset friction-induced oscillations can even be very sensitive to minimal variation of a distant mode. Due to the chosen academic minimal-model and the abandonment of a complex Finite-Element model the insight stays rather phenomenological but a better understanding of the mode-coupling mechnanism can be gained.
Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity
DEFF Research Database (Denmark)
Reick, Sebastian; Mølmer, Klaus; Alt, Wolfgang
2010-01-01
We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from ...
Spatiotemporal light-beam compression from nonlinear mode coupling
Krupa, Katarzyna; Tonello, Alessandro; Couderc, Vincent; Barthélémy, Alain; Millot, Guy; Modotto, Daniele; Wabnitz, Stefan
2018-04-01
We experimentally demonstrate simultaneous spatial and temporal compression in the propagation of light pulses in multimode nonlinear optical fibers. We reveal that the spatial beam self-cleaning recently discovered in graded-index multimode fibers is accompanied by significant temporal reshaping and up to fourfold shortening of the injected subnanosecond laser pulses. Since the nonlinear coupling among the modes strongly depends on the instantaneous power, we explore the entire range of the nonlinear dynamics with a single optical pulse, where the optical power is continuously varied across the pulse profile.
Strong coupling in a gauge invariant field theory
Energy Technology Data Exchange (ETDEWEB)
Johnson, K. [Physics Department, Massachusetts Institute of Technology, Cambridge, MA (United States)
1963-01-15
I would like to discuss some approximations which may be significant in the domain of strong coupling in a field system analogous to quantum electrodynamics. The motivation of this work is the idea that the strong couplings and elementary particle spectrum may be the consequence of the dynamics of a system whose underlying description is in terms of a set of Fermi fields gauge invariantly coupled to a single (''bare'') massless neutral vector field. The basis of this gauge invariance would of course be the exact conservation law of baryons or ''nucleonic charge''. It seems to me that a coupling scheme based on an invariance principle is most attractive if that invariance is an exact one. It would then be nice to try to account for the approximate invariance principles in the same way one would describe ''accidental degeneracies'' in any quantum system.
Ideal gas behavior of a strongly coupled complex (dusty) plasma.
Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry
2013-07-05
In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.
The strong coupling from tau decays without prejudice
Boito, Diogo; Golterman, Maarten; Jamin, Matthias; Mahdavi, Andisheh; Maltman, Kim; Osborne, James; Peris, Santiago
2014-08-01
We review our recent determination of the strong coupling αs from the OPAL data for non-strange hadronic tau decays. We find that αs (mτ2)= 0.325 ± 0.018 using fixed-order perturbation theory, and αs (mτ2)= 0.347 ± 0.025 using contour-improved perturbation theory. At present, these values supersede any earlier determinations of the strong coupling from hadronic tau decays, including those from ALEPH data.
The strong coupling from tau decays without prejudice
Energy Technology Data Exchange (ETDEWEB)
Boito, Diogo [Physik Department T31, Technische Universität München, James-Franck-Straße 1, D-85748 Garching (Germany); Golterman, Maarten [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States); Jamin, Matthias [Institució Catalana de Recerca i Estudis Avançats (ICREA), IFAE, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Mahdavi, Andisheh [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States); Maltman, Kim [Department of Mathematics and Statistics, York University, Toronto, ON Canada M3J 1P3 (Canada); CSSM, University of Adelaide, Adelaide, SA 5005 Australia (Australia); Osborne, James [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States); Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Peris, Santiago [Department of Physics, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)
2014-08-15
We review our recent determination of the strong coupling α{sub s} from the OPAL data for non-strange hadronic tau decays. We find that α{sub s}(m{sub τ}{sup 2})=0.325±0.018 using fixed-order perturbation theory, and α{sub s}(m{sub τ}{sup 2})=0.347±0.025 using contour-improved perturbation theory. At present, these values supersede any earlier determinations of the strong coupling from hadronic tau decays, including those from ALEPH data.
Strong environmental coupling in a Josephson parametric amplifier
International Nuclear Information System (INIS)
Mutus, J. Y.; White, T. C.; Barends, R.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, John M.; Megrant, A.; Sundqvist, K. M.
2014-01-01
We present a lumped-element Josephson parametric amplifier designed to operate with strong coupling to the environment. In this regime, we observe broadband frequency dependent amplification with multi-peaked gain profiles. We account for this behavior using the “pumpistor” model which allows for frequency dependent variation of the external impedance. Using this understanding, we demonstrate control over the complexity of gain profiles through added variation in the environment impedance at a given frequency. With strong coupling to a suitable external impedance, we observe a significant increase in dynamic range, and large amplification bandwidth up to 700 MHz giving near quantum-limited performance.
A scenario for inflationary magnetogenesis without strong coupling problem
Energy Technology Data Exchange (ETDEWEB)
Tasinato, Gianmassimo [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom); Institute of Cosmology and Gravitation, University of Portsmouth,Portsmouth, PO1 3FX (United Kingdom)
2015-03-23
Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.
A scenario for inflationary magnetogenesis without strong coupling problem
Energy Technology Data Exchange (ETDEWEB)
Tasinato, Gianmassimo, E-mail: gianmassimo.tasinato@port.ac.uk [Department of Physics, Swansea University, Swansea, SA2 8PP U.K. (United Kingdom)
2015-03-01
Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.
From strong to weak coupling in holographic models of thermalization
Energy Technology Data Exchange (ETDEWEB)
Grozdanov, Sašo; Kaplis, Nikolaos [Instituut-Lorentz for Theoretical Physics, Leiden University,Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Starinets, Andrei O. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)
2016-07-29
We investigate the analytic structure of thermal energy-momentum tensor correlators at large but finite coupling in quantum field theories with gravity duals. We compute corrections to the quasinormal spectra of black branes due to the presence of higher derivative R{sup 2} and R{sup 4} terms in the action, focusing on the dual to N=4 SYM theory and Gauss-Bonnet gravity. We observe the appearance of new poles in the complex frequency plane at finite coupling. The new poles interfere with hydrodynamic poles of the correlators leading to the breakdown of hydrodynamic description at a coupling-dependent critical value of the wave-vector. The dependence of the critical wave vector on the coupling implies that the range of validity of the hydrodynamic description increases monotonically with the coupling. The behavior of the quasinormal spectrum at large but finite coupling may be contrasted with the known properties of the hierarchy of relaxation times determined by the spectrum of a linearized kinetic operator at weak coupling. We find that the ratio of a transport coefficient such as viscosity to the relaxation time determined by the fundamental non-hydrodynamic quasinormal frequency changes rapidly in the vicinity of infinite coupling but flattens out for weaker coupling, suggesting an extrapolation from strong coupling to the kinetic theory result. We note that the behavior of the quasinormal spectrum is qualitatively different depending on whether the ratio of shear viscosity to entropy density is greater or less than the universal, infinite coupling value of ℏ/4πk{sub B}. In the former case, the density of poles increases, indicating a formation of branch cuts in the weak coupling limit, and the spectral function shows the appearance of narrow peaks. We also discuss the relation of the viscosity-entropy ratio to conjectured bounds on relaxation time in quantum systems.
Strong coupling of two interacting excitons confined in a nanocavity-quantum dot system
International Nuclear Information System (INIS)
Cardenas, Paulo C; RodrIguez, Boris A; Quesada, Nicolas; Vinck-Posada, Herbert
2011-01-01
We present a study of the strong coupling between radiation and matter, considering a system of two quantum dots, which are in mutual interaction and interact with a single mode of light confined in a semiconductor nanocavity. We take into account dissipative mechanisms such as the escape of the cavity photons, decay of the quantum dot excitons by spontaneous emission, and independent exciton pumping. It is shown that the mutual interaction between the dots can be measured off-resonance only if the strong coupling condition is reached. Using the quantum regression theorem, a reasonable definition of the dynamical coupling regimes is introduced in terms of the complex Rabi frequency. Finally, the emission spectrum for relevant conditions is presented and compared with the above definition, demonstrating that the interaction between the excitons does not affect the strong coupling.
Coupled tearing modes in plasmas with differential rotation
International Nuclear Information System (INIS)
Dewar, R.L.; Persson, M.
1993-08-01
The global asymptotic matching equations for multiple coupled resistive modes of arbitrary parity in a cylindrical plasma are derived. Three different variational principles are given for the outer region matching data, while the inner-region analysis features a careful treatment of the symmetry-breaking effect of a gradient in the equilibrium current for a zero-β slab model. It is concluded that the usual constant-ψ result remains valid and constrains the matrix matching formalism. The dispersion relation is compared with initial value calculations of a double tearing mode when there are small relative rotation velocities between the rational surfaces. In treating differential rotation within the asymptotic matching formalism, flow is ignored in the outer region and is assumed to affect the inner response solely through a Doppler shift. It is shown that the relative rotation can have a strong stabilizing effect by making all but one rational surface effectively ideal. 40 refs., 6 figs
Analog quantum simulation of the Rabi model in the ultra-strong coupling regime.
Braumüller, Jochen; Marthaler, Michael; Schneider, Andre; Stehli, Alexander; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V
2017-10-03
The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of g/ω ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.An analog quantum simulation scheme has been explored with a quantum hardware based on a superconducting circuit. Here the authors investigate the time evolution of the quantum Rabi model at ultra-strong coupling conditions, which is synthesized by slowing down the system dynamics in an effective frame.
Neoclassical tearing mode seeding by coupling with infernal modes in low-shear tokamaks
Kleiner, A.; Graves, J. P.; Brunetti, D.; Cooper, W. A.; Halpern, F. D.; Luciani, J.-F.; Lütjens, H.
2016-09-01
A numerical and an analytical study of the triggering of resistive MHD modes in tokamak plasmas with low magnetic shear core is presented. Flat q profiles give rise to fast growing pressure driven MHD modes, such as infernal modes. It has been shown that infernal modes drive fast growing islands on neighbouring rational surfaces. Numerical simulations of such instabilities in a MAST-like configuration are performed with the initial value stability code XTOR-2F in the resistive frame. The evolution of magnetic islands are computed from XTOR-2F simulations and an analytical model is developed based on Rutherford’s theory in combination with a model of resistive infernal modes. The parameter {{Δ }\\prime} is extended from the linear phase to the non-linear phase. Additionally, the destabilising contribution due to a helically perturbed bootstrap current is considered. Comparing the numerical XTOR-2F simulations to the model, we find that coupling has a strong destabilising effect on (neoclassical) tearing modes and is able to seed 2/1 magnetic islands in situations when the standard NTM theory predicts stability.
Analytical solutions of coupled-mode equations for microring ...
Indian Academy of Sciences (India)
equivalent to waveguide and single microring coupled system. The 3 × 3 coupled system is equivalent to waveguide and double microring coupled system. In this paper, we adopt a novel approach for obtaining coupled-mode equations for linearly distributed and circularly distributed multiwaveguide systems with different ...
Development of strongly coupled FSI technology involving thin walled structures
CSIR Research Space (South Africa)
Suliman, Ridhwaan
2011-01-01
Full Text Available A strongly coupled finite volume-finite element fluid-structure interaction (FSI) scheme is developed. Both an edge-based finite volume and Galerkin finite element scheme are implemented and evaluated for modelling the mechanics of solids...
Strong coupling QCD and the (π+,π-) reaction
International Nuclear Information System (INIS)
Miller, G.A.; Washington Univ., Seattle, WA
1989-01-01
Previous six-quark bag model calculations are in disagreement with new (π + , π - ) data, but conventional nucleonic calculations are generally successful. Six-quark bag models are related to perturbative QCD. I argue that the strong coupling limit of QCD (SCQCD) is a more appropriate starting point for nuclear physics. 15 refs., 3 figs
Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas
Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.
2017-10-01
We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.
Numerical experiments on 2D strongly coupled complex plasmas
International Nuclear Information System (INIS)
Hou Lujing; Ivlev, A V; Thomas, H M; Morfill, G E
2010-01-01
The Brownian Dynamics simulation method is briefly reviewed at first and then applied to study some non-equilibrium phenomena in strongly coupled complex plasmas, such as heat transfer processes, shock wave excitation/propagation and particle trapping, by directly mimicking the real experiments.
Quantum field model of strong-coupling binucleon
International Nuclear Information System (INIS)
Amirkhanov, I.V.; Puzynin, I.V.; Puzynina, T.P.; Strizh, T.A.; Zemlyanaya, E.V.; Lakhno, V.D.
1996-01-01
The quantum field binucleon model for the case of the nucleon spot interaction with the scalar and pseudoscalar meson fields is considered. It is shown that the nonrelativistic problem of the two nucleon interaction reduces to the one-particle problem. For the strong coupling limit the nonlinear equations describing two nucleons in the meson field are developed [ru
Electronic Maxwell demon in the coherent strong-coupling regime
Schaller, Gernot; Cerrillo, Javier; Engelhardt, Georg; Strasberg, Philipp
2018-05-01
We consider an external feedback control loop implementing the action of a Maxwell demon. Applying control actions that are conditioned on measurement outcomes, the demon may transport electrons against a bias voltage and thereby effectively converts information into electric power. While the underlying model—a feedback-controlled quantum dot that is coupled to two electronic leads—is well explored in the limit of small tunnel couplings, we can address the strong-coupling regime with a fermionic reaction-coordinate mapping. This exact mapping transforms the setup into a serial triple quantum dot coupled to two leads. We find that a continuous projective measurement of the central dot occupation would lead to a complete suppression of electronic transport due to the quantum Zeno effect. In contrast, by using a microscopic detector model we can implement a weak measurement, which allows for closure of the control loop without transport blockade. Then, in the weak-coupling regime, the energy flows associated with the feedback loop are negligible, and dominantly the information gained in the measurement induces a bound for the generated electric power. In the strong coupling limit, the protocol may require more energy for operating the control loop than electric power produced, such that the whole device is no longer information dominated and can thus not be interpreted as a Maxwell demon.
Weak and strong coupling equilibration in nonabelian gauge theories
International Nuclear Information System (INIS)
Keegan, Liam; Kurkela, Aleksi; Romatschke, Paul; Schee, Wilke van der; Zhu, Yan
2016-01-01
We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.
Weak and strong coupling equilibration in nonabelian gauge theories
Energy Technology Data Exchange (ETDEWEB)
Keegan, Liam [Physics Department, Theory Unit, CERN,CH-1211 Genève 23 (Switzerland); Kurkela, Aleksi [Physics Department, Theory Unit, CERN,CH-1211 Genève 23 (Switzerland); Faculty of Science and Technology, University of Stavanger,4036 Stavanger (Norway); Romatschke, Paul [Department of Physics, 390 UCB, University of Colorado at Boulder,Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado,Boulder, Colorado 80309 (United States); Schee, Wilke van der [Center for Theoretical Physics, MIT,Cambridge, MA 02139 (United States); Zhu, Yan [Department of Physics, University of Jyväskyla, P.O. Box 35, FI-40014 University of Jyväskylä (Finland); Helsinki Institute of Physics,P.O. Box 64, 00014 University of Helsinki (Finland)
2016-04-06
We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.
Energy Technology Data Exchange (ETDEWEB)
Bouis, F
1999-10-14
Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)
Equilibration and hydrodynamics at strong and weak coupling
van der Schee, Wilke
2017-11-01
We give an updated overview of both weak and strong coupling methods to describe the approach to a plasma described by viscous hydrodynamics, a process now called hydrodynamisation. At weak coupling the very first moments after a heavy ion collision is described by the colour-glass condensate framework, but quickly thereafter the mean free path is long enough for kinetic theory to become applicable. Recent simulations indicate thermalization in a time t ∼ 40(η / s) 4 / 3 / T [L. Keegan, A. Kurkela, P. Romatschke, W. van der Schee, Y. Zhu, Weak and strong coupling equilibration in nonabelian gauge theories, JHEP 04 (2016) 031. arxiv:arXiv:1512.05347, doi:10.1007/JHEP04(2016)031], with T the temperature at that time and η / s the shear viscosity divided by the entropy density. At (infinitely) strong coupling it is possible to mimic heavy ion collisions by using holography, which leads to a dual description of colliding gravitational shock waves. The plasma formed hydrodynamises within a time of 0.41/T recent extension found corrections to this result for finite values of the coupling, when η / s is bigger than the canonical value of 1/4π, which leads to t ∼ (0.41 + 1.6 (η / s - 1 / 4 π)) / T [S. Grozdanov, W. van der Schee, Coupling constant corrections in holographic heavy ion collisions, arxiv:arXiv:1610.08976]. Future improvements include the inclusion of the effects of the running coupling constant in QCD.
The strongly coupled quark-gluon plasma created at RHIC
Heinz, Ulrich W
2009-01-01
The Relativistic Heavy Ion Collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities -- a "quark-gluon plasma (QGP)". A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called "elliptic flow" in off-central collisions, with additional support from other observations. This article explains how we probe the strongly coupled QGP, describes the ideas and measurements whi...
Nonlinear mode coupling in rotating stars and the r-mode instability in neutron stars
International Nuclear Information System (INIS)
Schenk, A.K.; Arras, P.; Flanagan, E.E.; Teukolsky, S.A.; Wasserman, I.
2002-01-01
We develop the formalism required to study the nonlinear interaction of modes in rotating Newtonian stars, assuming that the mode amplitudes are only mildly nonlinear. The formalism is simpler than previous treatments of mode-mode interactions for spherical stars, and simplifies and corrects previous treatments for rotating stars. At linear order, we elucidate and extend slightly a formalism due to Schutz, show how to decompose a general motion of a rotating star into a sum over modes, and obtain uncoupled equations of motion for the mode amplitudes under the influence of an external force. Nonlinear effects are added perturbatively via three-mode couplings, which suffices for moderate amplitude modal excitations; the formalism is easy to extend to higher order couplings. We describe a new, efficient way to compute the modal coupling coefficients, to zeroth order in the stellar rotation rate, using spin-weighted spherical harmonics. The formalism is general enough to allow computation of the initial trends in the evolution of the spin frequency and differential rotation of the background star. We apply this formalism to derive some properties of the coupling coefficients relevant to the nonlinear interactions of unstable r modes in neutron stars, postponing numerical integrations of the coupled equations of motion to a later paper. First, we clarify some aspects of the expansion in stellar rotation frequency Ω that is often used to compute approximate mode functions. We show that, in zero-buoyancy stars, the rotational modes (those modes whose frequencies vanish as Ω→0) are orthogonal to zeroth order in Ω. From an astrophysical viewpoint, the most interesting result of this paper is that many couplings of r modes to other rotational modes are small: either they vanish altogether because of various selection rules, or they vanish to lowest order in Ω or in compressibility. In particular, in zero-buoyancy stars, the coupling of three r modes is forbidden
The strongly coupled quark-gluon plasma created at RHIC
International Nuclear Information System (INIS)
Heinz, Ulrich
2009-01-01
The relativistic heavy-ion collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities-a 'quark-gluon plasma (QGP)'. A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called 'elliptic flow' in off-central collisions, with additional support from other observations. This paper explains how we probe the strongly coupled QGP, describes the ideas and measurements which led to the conclusion that the QGP is an almost perfect liquid, and shows how they tie relativistic heavy-ion physics into other burgeoning fields of modern physics, such as strongly coupled Coulomb plasmas, ultracold systems of trapped atoms and superstring theory
Mode-coupling theory and bunch lengthening in SPEAR II
International Nuclear Information System (INIS)
Suzuki, T.; Chin, Y.; Satoh, K.
1983-01-01
A mode-coupling theory of bunched-beam instabilities is developed for a Gaussian bunch. The theory converts Sacherer's integral equation with mode coupling into a matrix eigenvalue problem. The present theory assumes well-defined azimuthal modes and takes into account radial modes which are expressed as superpositions of orthogonal functions. The theory is applied to bunch lengthening observed at SPEAR II. The theory explains qualitative features of the experimental results fairly well, but quantitative agreement is not too good. This is ascribed to insufficient knowledge of the coupling impedance of SPEAR II or to the possibility that such effects as radiation damping and quantum excitation should be included. (author)
Weakly and strongly coupled Belousov-Zhabotinsky patterns
Weiss, Stephan; Deegan, Robert D.
2017-02-01
We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.
QCD and strongly coupled gauge theories: challenges and perspectives
Brambilla, N.; Foka, P.; Gardner, S.; Kronfeld, A.S.; Alford, M.G.; Alkofer, R.; Butenschoen, M.; Cohen, T.D.; Erdmenger, J.; Fabbietti, L.; Faber, M.; Goity, J.L.; Ketzer, B.; Lin, H.W.; Llanes-Estrada, F.J.; Meyer, H.B.; Pakhlov, P.; Pallante, E.; Polikarpov, M.I.; Sazdjian, H.; Schmitt, A.; Snow, W.M.; Vairo, A.; Vogt, R.; Vuorinen, A.; Wittig, H.; Arnold, P.; Christakoglou, P.; Di Nezza, P.; Fodor, Z.; Garcia i Tormo, X.; Hollwieser, R.; Janik, M.A.; Kalweit, A.; Keane, D.; Kiritsis, E.; Mischke, A.; Mizuk, R.; Odyniec, G.; Papadodimas, K.; Pich, A.; Pittau, R.; Qiu, J.W.; Ricciardi, G.; Salgado, C.A.; Schwenzer, K.; Stefanis, N.G.; von Hippel, G.M.; Zakharov, V.I.
2014-10-21
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.
Solving the strongly coupled 2D gravity III. String suspectibility and topological N-point functions
International Nuclear Information System (INIS)
Gervais, J.-L.; Roussel, J.-F.
1996-01-01
For pt.II see ibid., vol 426, p.140-86, 1994. We spell out the derivation of novel features, put forward earlier in a letter, of two-dimensional gravity in the strong coupling regime, at C L =7, 13, 19. Within the operator approach previously developed, they neatly follow from the appearance of a new cosmological term/marginal operator, different from the standard weak-coupling one, that determines the world-sheet interaction. The corresponding string susceptibility is obtained and found real contrary to the continuation of the KPZ formula. Strongly coupled (topological like) models - only involving zero-mode degrees of freedom - are solved up to sixth order, using the Ward identities which follow from the dependence upon the new cosmological constant. They are technically similar to the weakly coupled ones, which reproduce the matrix model results, but gravity and matter quantum numbers are entangled differently. (orig.)
Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes
Zhu, Yifu
1992-05-01
We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.
General coupled mode theory in non-Hermitian waveguides.
Xu, Jing; Chen, Yuntian
2015-08-24
In the presence of loss and gain, the coupled mode equation on describing the mode hybridization of various waveguides or cavities, or cavities coupled to waveguides becomes intrinsically non-Hermitian. In such non-Hermitian waveguides, the standard coupled mode theory fails. We generalize the coupled mode theory with a properly defined inner product based on reaction conservation. We apply our theory to the non-Hermitian parity-time symmetric waveguides, and obtain excellent agreement with results obtained by finite element fullwave simulations. The theory presented here is typically formulated in space to study coupling between waveguides, which can be transformed into time domain by proper reformulation to study coupling between non-Hermitian resonators. Our theory has the strength of studying non-Hermitian optical systems with inclusion of the full vector fields, thus is useful to study and design non-Hermitian devices that support asymmetric and even nonreciprocal light propagations.
Strongly coupled gauge theories: What can lattice calculations teach us?
CERN. Geneva
2015-01-01
Electroweak symmetry breaking and the dynamical origin of the Higgs boson are central questions today. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction are candidates to describe beyond Standard Model physics. The phenomenologically viable models are strongly coupled, near the conformal boundary, requiring non-perturbative studies to reveal their properties. Lattice studies show that many of the beyond-Standard Model candidates have a relatively light isosinglet scalar state that is well separated from the rest of the spectrum. When the scale is set via the vev of electroweak symmetry breaking, a 2 TeV vector resonance appears to be a general feature of many of these models with several other resonances that are not much heavier.
A new class of strongly coupled plasmas inspired by sonoluminescence
Bataller, Alexander; Plateau, Guillaume; Kappus, Brian; Putterman, Seth
2014-10-01
Sonoluminescence originates in a strongly coupled plasma with a near liquid density and a temperature of ~10,000 K. This plasma is in LTE and therefore, it should be a general thermodynamic state. To test the universality of sonoluminescence, similar plasma conditions were generated using femtosecond laser breakdown in high pressure gases. Calibrated streak spectroscopy reveals both transport and thermodynamic properties of a strongly coupled plasma. A blackbody spectrum, which persists long after the exciting laser has turned off, indicates the presence of a highly ionized LTE microplasma. In parallel with sonoluminescence, this thermodynamic state is achieved via a considerable reduction in the ionization potential. We gratefully acknowledge support from DARPA MTO for research on microplasmas. We thank Brian Naranjo, Keith Weninger, Carlos Camara, Gary Williams, and John Koulakis for valuable discussions.
Measurement of the strong coupling constant using τ decays
Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Lan Wu, Sau; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration
1993-06-01
The strong coupling constant is determined from the leptonic branching ratios, the lifetime, and the invariant mass distribution of the hadronic final state of the τ lepton, using data accumulated at LEP with the ALEPH detector. The strong coupling constant measurement, αs( mτ2) = 0.330±0.046, evolved to the Z mass yields αs( MZ2) = 0.188±0.005. The error includes experimental and theoretical uncertainties, the latter evaluated in the framework of the Shifman, Vainshtein and Zakharov (SVZ) approach. The method allows the non-perturbative contribution to the hadronic decay rate to be determined to be 0.3±0.5%.
Jet quenching parameters in strongly coupled nonconformal gauge theories
International Nuclear Information System (INIS)
Buchel, Alex
2006-01-01
Recently Liu, Rajagopal, and Wiedemann (LRW) [H. Liu, K. Rajagopal, and U. A. Wiedemann, hep-ph/0605178.] proposed a first principle, nonperturbative quantum field theoretic definition of 'jet quenching parameter' q-circumflex used in models of medium-induced radiative parton energy loss in nucleus-nucleus collisions at RHIC. Relating q-circumflex to a short-distance behavior of a certain lightlike Wilson loop, they used gauge theory-string theory correspondence to evaluate q-circumflex for the strongly coupled N=4 SU(N c ) gauge theory plasma. We generalize analysis of LRW to strongly coupled nonconformal gauge theory plasma. We find that a jet quenching parameter is gauge theory specific (not universal). Furthermore, it appears its value increases as the number of effective adjoint degrees of freedom of a gauge theory plasma increases
Wave Propagation of Coupled Modes in the DNA Double Helix
International Nuclear Information System (INIS)
Tabi, Conrad B.; Mohamadou, Alidou; Kofane, Timoleon C.
2010-06-01
The dynamics of waves propagating along the DNA molecule is described by the coupled nonlinear Schroedinger equations. We consider both the single and the coupled nonlinear excitation modes, and we discuss their biological implications. Furthermore, the characteristics of the coupled mode solution are discussed and we show that such a solution can describe the local opening observed within the transcription and the replication phenomena. (author)
Equation of state of strongly coupled plasma mixtures
International Nuclear Information System (INIS)
DeWitt, H.E.
1984-01-01
Thermodynamic properties of strongly coupled (high density) plasmas of mixtures of light elements have been obtained by Monte Carlo simulations. For an assumed uniform charge background the equation of state of ionic mixtures is a simple extension of the one-component plasma EOS. More realistic electron screening effects are treated in linear response theory and with an appropriate electron dielectric function. Results have been obtained for the ionic pair distribution functions, and for the electric microfield distribution
Statics and thermodynamics of strongly coupled multicomponent plasmas
International Nuclear Information System (INIS)
Rosenfeld, Y.
1980-01-01
A description of strongly coupled plasmas, in which the direct correlation functions, c/sub i/j(r), are obtained by simple scaling from a universal function, is derived and found to be in full agreement with available computer simulation data, which it thus extends for arbitrary mixtures. It is thermodynamically consistent with the ''ion-sphere'' charge-averaging prediction for the enhancement factors for nuclear reaction rates, the results for which confirm the universality of the bridge functions for mixtures
Directory of Open Access Journals (Sweden)
Boucher Yann G.
2017-01-01
Full Text Available The formal identification between a two-mode waveguide and a system of two mutually coupled single-mode waveguides stems from the symmetries of the evolution operator. When the gap tends to zero, the super-modes of the coupled system merge continuously into the modes of the multimode waveguide. For modelling purposes, it is very tempting to extend the analogy to three-mode waveguides (and beyond. But not without some precautions…
Density matrix of strongly coupled quantum dot - microcavity system
International Nuclear Information System (INIS)
Nguyen Van Hop
2009-01-01
Any two-level quantum system can be used as a quantum bit (qubit) - the basic element of all devices and systems for quantum information and quantum computation. Recently it was proposed to study the strongly coupled system consisting of a two-level quantum dot and a monoenergetic photon gas in a microcavity-the strongly coupled quantum dot-microcavity (QD-MC) system for short, with the Jaynes-Cumming total Hamiltonian, for the application in the quantum information processing. Different approximations were applied in the theoretical study of this system. In this work, on the basis of the exact solution of the Schrodinger equation for this system without dissipation we derive the exact formulae for its density matrix. The realization of a qubit in this system is discussed. The solution of the system of rate equation for the strongly coupled QD-MC system in the presence of the interaction with the environment was also established in the first order approximation with respect to this interaction.
Strongly coupled models with a Higgs-like boson
International Nuclear Information System (INIS)
Pich, A.; Rosell, I.; Sanz-Cillero, J. J.
2013-01-01
Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimental constraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale), the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule. (authors)
Strongly Coupled Models with a Higgs-like Boson
Pich, Antonio; Rosell, Ignasi; José Sanz-Cillero, Juan
2013-11-01
Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimentalconstraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale), the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule. We wish to thank the organizers of LHCP 2013 for the pleasant conference. This work has been supported in part by the Spanish Government and the European Commission [FPA2010-17747, FPA2011- 23778, AIC-D-2011-0818, SEV-2012-0249 (Severo Ochoa Program), CSD2007-00042 (Consolider Project CPAN)], the Generalitat Valenciana [PrometeoII/2013/007] and the Comunidad de Madrid [HEPHACOS S2009/ESP-1473].
Strong Local-Nonlocal Coupling for Integrated Fracture Modeling
Energy Technology Data Exchange (ETDEWEB)
Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)
2015-09-01
Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for
Deflecting modes of the side-coupled cavity structure
Energy Technology Data Exchange (ETDEWEB)
Inagaki, Shigemi.
1990-11-01
The deflecting modes of the 805 MHz side-coupled cavity structure with the relativistic factor 0.566 are studied. Our main concern is the dispersion properties among different configurations of side-coupling cells and their interpretations. It is shown that the ninety degree side-coupling cell configuration, so to speak, the Mickey Mouse configuration has a merit in reducing the HEM{sub 1} passband. Another concern is the magnitude of the transverse coupling impedance around the synchronization condition. It is shown that the existence of the coupling cell introduces the nonuniformity of the deflecting mode and gives different impedance relative to the beam axis and that the coupling impedance at {pi}/10 exceeds 50 M{Omega}/m if the quality value of the mode is around 12000.
Deflecting modes of the side-coupled cavity structure
International Nuclear Information System (INIS)
Inagaki, Shigemi.
1990-11-01
The deflecting modes of the 805 MHz side-coupled cavity structure with the relativistic factor 0.566 are studied. Our main concern is the dispersion properties among different configurations of side-coupling cells and their interpretations. It is shown that the ninety degree side-coupling cell configuration, so to speak, the Mickey Mouse configuration has a merit in reducing the HEM 1 passband. Another concern is the magnitude of the transverse coupling impedance around the synchronization condition. It is shown that the existence of the coupling cell introduces the nonuniformity of the deflecting mode and gives different impedance relative to the beam axis and that the coupling impedance at π/10 exceeds 50 MΩ/m if the quality value of the mode is around 12000
Collective dynamics of simple liquids: A mode-coupling description
Directory of Open Access Journals (Sweden)
W.Schirmacher
2008-03-01
Full Text Available We use the mode-coupling theory (MCT, which has been highly successful in accounting for the anomalous relaxation behaviour near the liquid-to-glass transition, for describing the dynamics of simple (i.e. monatomic liquids away from the glass formation regime. We find that the dynamical structure factor predicted by MCT compares well to experimental findings and results of computer simulations. The memory function exhibits a two-step decay as found frequently in experimental and simulation data. The long-time relaxation regime, in which the relaxation rate strongly depends on the density and is identified as the α relaxation. At high density this process leads the glass instability. The short-time relaxation rate is fairly independent of density.
Approximation scheme for strongly coupled plasmas: Dynamical theory
International Nuclear Information System (INIS)
Golden, K.I.; Kalman, G.
1979-01-01
The authors present a self-consistent approximation scheme for the calculation of the dynamical polarizability α (k, ω) at long wavelengths in strongly coupled one-component plasmas. Development of the scheme is carried out in two stages. The first stage follows the earlier Golden-Kalman-Silevitch (GKS) velocity-average approximation approach, but goes much further in its application of the nonlinear fluctuation-dissipation theorem to dynamical calculations. The result is the simple expression for α (k, ω), αatsub GKSat(k, ω) 4 moment sum rule. In the second stage, the above dynamical expression is made self-consistent at long wavelengths by postulating that a decomposition of the quadratic polarizabilities in terms of linear ones, which prevails in the k → 0 limit for weak coupling, can be relied upon as a paradigm for arbitrary coupling. The result is a relatively simple quadratic integral equation for α. Its evaluation in the weak-coupling limit and its comparison with known exact results in that limit reveal that almost all important correlational and long-time effects are reproduced by our theory with very good numerical accuracy over the entire frequency range; the only significant defect of the approximation seems to be the absence of the ''dominant'' γ ln γ -1 (γ is the plasma parameter) contribution to Im α
Strongly Coupled Chameleons and the Neutronic Quantum Bouncer
International Nuclear Information System (INIS)
Brax, Philippe; Pignol, Guillaume
2011-01-01
We consider the potential detection of chameleons using bouncing ultracold neutrons. We show that the presence of a chameleon field over a planar plate would alter the energy levels of ultracold neutrons in the terrestrial gravitational field. When chameleons are strongly coupled to nuclear matter, β > or approx. 10 8 , we find that the shift in energy levels would be detectable with the forthcoming GRANIT experiment, where a sensitivity of the order of 1% of a peV is expected. We also find that an extremely large coupling β > or approx. 10 11 would lead to new bound states at a distance of order 2 μm, which is already ruled out by previous Grenoble experiments. The resulting bound, β 11 , is already 3 orders of magnitude better than the upper bound, β 14 , from precision tests of atomic spectra.
New algorithms and new results for strong coupling LQCD
Unger, Wolfgang
2012-01-01
We present and compare new types of algorithms for lattice QCD with staggered fermions in the limit of infinite gauge coupling. These algorithms are formulated on a discrete spatial lattice but with continuous Euclidean time. They make use of the exact Hamiltonian, with the inverse temperature beta as the only input parameter. This formulation turns out to be analogous to that of a quantum spin system. The sign problem is completely absent, at zero and non-zero baryon density. We compare the performance of a continuous-time worm algorithm and of a Stochastic Series Expansion algorithm (SSE), which operates on equivalence classes of time-ordered interactions. Finally, we apply the SSE algorithm to a first exploratory study of two-flavor strong coupling lattice QCD, which is manageable in the Hamiltonian formulation because the sign problem can be controlled.
Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet
Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J.; Ares, Natalia; Thompson, Amber L.; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J.; Lancaster, Tom; Ardavan, Arzhang; Briggs, G. Andrew D.; Leek, Peter J.; Laird, Edward A.
2017-10-01
Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.
Experiment on dust acoustic solitons in strongly coupled dusty plasma
International Nuclear Information System (INIS)
Boruah, Abhijit; Sharma, Sumita Kumari; Bailung, Heremba
2015-01-01
Dusty plasma, which contains nanometer to micrometer sized dust particles along with electrons and ions, supports a low frequency wave called Dust Acoustic wave, analogous to ion acoustic wave in normal plasma. Due to high charge and low temperature of the dust particles, dusty plasma can easily transform into a strongly coupled state when the Coulomb interaction potential energy exceeds the dust kinetic energy. Dust acoustic perturbations are excited in such strongly coupled dusty plasma by applying a short negative pulse (100 ms) of amplitude 5 - 20 V to an exciter. The perturbation steepens due to nonlinear effect and forms a solitary structure by balancing dispersion present in the medium. For specific discharge conditions, excitation amplitude above a critical value, the perturbation is found to evolve into a number of solitons. The experimental results on the excitation of multiple dust acoustic solitons in the strongly coupled regime are presented in this work. The experiment is carried out in radio frequency discharged plasma produced in a glass chamber at a pressure 0.01 - 0.1 mbar. Few layers of dust particles (∼ 5 μm in diameter) are levitated above a grounded electrode inside the chamber. Wave evolution is observed with the help of green laser sheet and recorded in a high resolution camera at high frame rate. The high amplitude soliton propagates ahead followed by smaller amplitude solitons with lower velocity. The separation between the solitons increases as time passes by. The characteristics of the observed dust acoustic solitons such as amplitude-velocity and amplitude- Mach number relationship are compared with the solutions of Korteweg-de Vries (KdV) equation. (author)
Experimental verification of microbending theory using mode coupling to discrete cladding modes
DEFF Research Database (Denmark)
Probst, C. B.; Bjarklev, Anders Overgaard; Andreasen, S. B.
1989-01-01
a microbending theory in which coupling between the guided mode and a number of discrete cladding modes is considered. Very good agreement between theory and measurement is achieved. The consequences of the existence of discrete cladding modes with regard to the proper choice of artificial microbending spectrum...
MRI surface-coil pair with strong inductive coupling.
Mett, Richard R; Sidabras, Jason W; Hyde, James S
2016-12-01
A novel inductively coupled coil pair was used to obtain magnetic resonance phantom images. Rationale for using such a structure is described in R. R. Mett et al. [Rev. Sci. Instrum. 87, 084703 (2016)]. The original rationale was to increase the Q-value of a small diameter surface coil in order to achieve dominant loading by the sample. A significant improvement in the vector reception field (VRF) is also seen. The coil assembly consists of a 3-turn 10 mm tall meta-metallic self-resonant spiral (SRS) of inner diameter 10.4 mm and outer diameter 15.1 mm and a single-loop equalization coil of 25 mm diameter and 2 mm tall. The low-frequency parallel mode was used in which the rf currents on each coil produce magnetic fields that add constructively. The SRS coil assembly was fabricated and data were collected using a tissue-equivalent 30% polyacrylamide phantom. The large inductive coupling of the coils produces phase-coherency of the rf currents and magnetic fields. Finite-element simulations indicate that the VRF of the coil pair is about 4.4 times larger than for a single-loop coil of 15 mm diameter. The mutual coupling between coils influences the current ratio between the coils, which in turn influences the VRF and the signal-to-noise ratio (SNR). Data on a tissue-equivalent phantom at 9.4 T show a total SNR increase of 8.8 over the 15 mm loop averaged over a 25 mm depth and diameter. The experimental results are shown to be consistent with the magnetic resonance theory of the emf induced by spins in a coil, the theory of inductively coupled resonant circuits, and the superposition principle. The methods are general for magnetic resonance and other types of signal detection and can be used over a wide range of operating frequencies.
Wang, Wei; Sun, Jiafa; Li, Bin; He, Junqi
2017-09-01
First-principles pseudopotential calculations on phonon and electronic properties of β -pyrochlore superconductor KOs2O6 are performed. The imaginary soft-phonon modes with a special double-well potential for the lowest Eu(1) mode and the second lowest T1u(1) mode are reported, which indicates the dynamical instability in KOs2O6. However, the double wells are too small to induce a structural phase transformation in KOs2O6. The strong anharmonicity especially for K T2g(1) phonon mode is got, which is approved to be from the strong electron-phonon coupling that supports the superconductivity in KOs2O6.
Strong-coupling polaron effect in quantum dots
International Nuclear Information System (INIS)
Zhu Kadi; Gu Shiwei
1993-11-01
Strong-coupling polaron in a parabolic quantum dot is investigated by the Landau-Pekar variational treatment. The polaron binding energy and the average number of virtual phonons around the electron as a function of the effective confinement length of the quantum dot are obtained in Gaussian function approximation. It is shown that both the polaron binding energy and the average number of virtual phonons around the electron decrease by increasing the effective confinement length. The results indicate that the polaronic effects are more pronounced in quantum dots than those in two-dimensional and three-dimensional cases. (author). 15 refs, 4 figs
Strong coupling QCD at finite baryon-number density
International Nuclear Information System (INIS)
Karsch, F.; Muetter, K.H.
1989-01-01
We present a new representation of the partition function for strong-coupling QCD which is suitable also for finite baryon-number-density simulations. This enables us to study the phase structure in the canonical formulation (with fixed baryon number B) as well as the grand canonical one (with fixed chemical potential μ). We find a clear signal for a first-order chiral phase transition at μ c a=0.63. The critical baryon-number density n c a 3 =0.045 is only slightly higher than the density of nuclear matter. (orig.)
Transverse transport in coupled strongly correlated electronic chains
International Nuclear Information System (INIS)
Capponi, S.; Poilblanc, D.
1997-01-01
One-particle interchain hopping in a system of coupled Luttinger liquids is investigated by use of exact diagonalizations techniques. We give numerical evidence that inter-chain coherent hopping (defined by a non-vanishing splitting) can be totally suppressed for the Luttinger liquid exponent α ∝ 0.4 or even smaller α values. The transverse conductivity is shown to exhibit a strong incoherent part even when coherent inter-chain hopping is believed to occur. Implications for the optical experiments in quasi-1D organic or high-T c superconductors is outlined. (orig.)
Drag force in a strongly coupled anisotropic plasma
Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego
2012-08-01
We calculate the drag force experienced by an infinitely massive quark propagating at constant velocity through an anisotropic, strongly coupled {N} = 4 plasma by means of its gravity dual. We find that the gluon cloud trailing behind the quark is generally misaligned with the quark velocity, and that the latter is also misaligned with the force. The drag coefficient μ can be larger or smaller than the corresponding isotropic value depending on the velocity and the direction of motion. In the ultra-relativistic limit we find that generically μ ∝ p. We discuss the conditions under which this behaviour may extend to more general situations.
A strong coupling simulation of Euclidean quantum gravity
International Nuclear Information System (INIS)
Berg, B.; Hamburg Univ.
1984-12-01
Relying on Regge calculus a systematic numerical investigation of models of 4d Euclidean gravity is proposed. The scale a = 1 0 is set by fixing the expectation value of a length. Possible universality of such models is discussed. The strong coupling limit is defined by taking Planck mass msub(p) -> 0 (in units of 1 0 -1 ). The zero order approximation msub(p) = 0 is called 'fluctuating space' and investigated numerically in two 4d models. Canonical dimensions are realized and both models give a negative expectation value for the scalar curvature density. (orig.)
Strong-coupling approach to nematicity in the cuprates
Orth, Peter Philipp; Jeevanesan, Bhilahari; Schmalian, Joerg; Fernandes, Rafael
The underdoped cuprate superconductor YBa2Cu3O7-δ is known to exhibit an electronic nematic phase in proximity to antiferromagnetism. While nematicity sets in at large temperatures of T ~ 150 K, static spin density wave order only emerges at much lower temperatures. The magnetic response shows a strong in-plane anisotropy, displaying incommensurate Bragg peaks along one of the crystalline directions and a commensurate peak along the other one. Such an anisotropy persists even in the absence of long-range magnetic order at higher temperatures, marking the onset of nematic order. Here we theoretically investigate this situation using a strong-coupling method that takes into account both the localized Cu spins and the holes doped into the oxygen orbitals. We derive an effective spin Hamiltonian and show that charge fluctuations promote an enhancement of the nematic susceptibility near the antiferromagnetic transition temperature.
Double perovskites with strong spin-orbit coupling
Cook, Ashley M.
We first present theoretical analysis of powder inelastic neutron scattering experiments in Ba2FeReO6 performed by our experimental collaborators. Ba2FeReO6, a member of the double perovskite family of materials, exhibits half-metallic behavior and high Curie temperatures Tc, making it of interest for spintronics applications. To interpret the experimental data, we develop a local moment model, which incorporates the interaction of Fe spins with spin-orbital locked magnetic moments on Re, and show that it captures the experimental observations. We then develop a tight-binding model of the double perovskite Ba 2FeReO6, a room temperature ferrimagnet with correlated and spin-orbit coupled Re t2g electrons moving in the background of Fe moments stabilized by Hund's coupling. We show that for such 3d/5d double perovskites, strong correlations on the 5d-element (Re) are essential in driving a half-metallic ground state. Incorporating both strong spin-orbit coupling and the Hubbard repulsion on Re leads to a band structure consistent with ab initio calculations. The uncovered interplay of strong correlations and spin-orbit coupling lends partial support to our previous work, which used a local moment description to capture the spin wave dispersion found in neutron scattering measurements. We then adapt this tight-binding model to study {111}-grown bilayers of half-metallic double perovskites such as Sr2FeMoO6. The combination of spin-orbit coupling, inter-orbital hybridization and symmetry-allowed trigonal distortion leads to a rich phase diagram with tunable ferromagnetic order, topological C= +/-1, +/-2 Chern bands, and a C = +/-2 quantum anomalous Hall insulator regime. We have also performed theoretical analysis of inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites La2ZnIrO 6 and La2MgIrO6. Models with dominant Kitaev exchange seem to most naturally
International Nuclear Information System (INIS)
Angerer, Andreas; Astner, Thomas; Wirtitsch, Daniel; Majer, Johannes; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Putz, Stefan
2016-01-01
We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 10"1"7 nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.
Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation
Energy Technology Data Exchange (ETDEWEB)
Goto, Kaname [Department of Electronics, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yamashita, Kenichi, E-mail: yamasita@kit.ac.jp [Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yanagi, Hisao [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Yamao, Takeshi; Hotta, Shu [Faculty of Materials Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)
2016-08-08
Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.
Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation
Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu
2016-08-01
Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ˜100 meV even in the "half-vertical cavity surface emitting lasing" microcavity structure.
Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation
International Nuclear Information System (INIS)
Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu
2016-01-01
Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.
Using invisible decay modes as probes of Z' couplings
International Nuclear Information System (INIS)
Hewett, J.L.; Rizzo, T.G.
1993-08-01
We explore the possibility that Z' couplings can be probed using decay modes which involve neutrinos once Standard Model backgrounds are directly determined by the data itself. For some models, sufficient statistics are available at either the SSC or LHC to render these modes useful for coupling determinations, provided the mass of the Z' is not much large than 1 TeV, if we assume other new physics background sources are absent
Stability of longitudinal modes in a bunched beam with mode coupling
International Nuclear Information System (INIS)
Satoh, K.
1981-06-01
In this paper we study a longitudinal coherent bunch instability in which the growth time is comparable to or less than the period of synchrotron oscillations. Both longitudinal and transverse bunch instabilities have been studied. In most treatments, however, the coherent force is assumed to be small and is treated as a perturbation compared with the synchrotron force. This makes the problem simpler because an individual synchrotron mode is decoupled. As bunch current increases, the coherent force is no longer small and the mode frequency shift becomes significant compared with the synchrotron frequency. Therefore in this case it is necessary to include coupling of the synchrotron modes. Recently a fast blow-up instability which comes from mode coupling was studied. Their method is to derive a dispersion relation for a bunched beam using the Vlasov equation and to analyze it as in a coasting beam. They showed that if mode coupling is included the Vlasov equation predicts a fast microwave instability with a stability condition similar to that for a coasting beam. In this paper we will partly follow their method and present a formalism which includes coupling between higher-order radial modes as well as coupling between synchrotron modes. The formalism is considered to be generalization of the Sacherer formalism without mode coupling. This theory predicts that instability is induced not only by coupling between different synchrotron modes, but also by coupling between positive and negative modes, since negative synchrotron modes are included in the theory in a natural manner. This formalism is to be used for a Gaussian bunch and a parabolic bunch, and is also useful for transverse problems
Mode coupling in hybrid square-rectangular lasers for single mode operation
Energy Technology Data Exchange (ETDEWEB)
Ma, Xiu-Wen; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn; Yang, Yue-De; Xiao, Jin-Long; Weng, Hai-Zhong; Xiao, Zhi-Xiong [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100083 (China)
2016-08-15
Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practical applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.
Equilibrium statistical mechanics of strongly coupled plasmas by numerical simulation
International Nuclear Information System (INIS)
DeWitt, H.E.
1977-01-01
Numerical experiments using the Monte Carlo method have led to systematic and accurate results for the thermodynamic properties of strongly coupled one-component plasmas and mixtures of two nuclear components. These talks are intended to summarize the results of Monte Carlo simulations from Paris and from Livermore. Simple analytic expressions for the equation of state and other thermodynamic functions have been obtained in which there is a clear distinction between a lattice-like static portion and a thermal portion. The thermal energy for the one-component plasma has a simple power dependence on temperature, (kT)/sup 3 / 4 /, that is identical to Monte Carlo results obtained for strongly coupled fluids governed by repulsive l/r/sup n/ potentials. For two-component plasmas the ion-sphere model is shown to accurately represent the static portion of the energy. Electron screening is included in the Monte Carlo simulations using linear response theory and the Lindhard dielectric function. Free energy expressions have been constructed for one and two component plasmas that allow easy computation of all thermodynamic functions
Strongly Coupled Magnetic and Electronic Transitions in Multivalent Strontium Cobaltites.
Lee, J H; Choi, Woo Seok; Jeen, H; Lee, H-J; Seo, J H; Nam, J; Yeom, M S; Lee, H N
2017-11-22
The topotactic phase transition in SrCoO x (x = 2.5-3.0) makes it possible to reversibly transit between the two distinct phases, i.e. the brownmillerite SrCoO 2.5 that is a room-temperature antiferromagnetic insulator (AFM-I) and the perovskite SrCoO 3 that is a ferromagnetic metal (FM-M), owing to their multiple valence states. For the intermediate x values, the two distinct phases are expected to strongly compete with each other. With oxidation of SrCoO 2.5 , however, it has been conjectured that the magnetic transition is decoupled to the electronic phase transition, i.e., the AFM-to-FM transition occurs before the insulator-to-metal transition (IMT), which is still controversial. Here, we bridge the gap between the two-phase transitions by density-functional theory calculations combined with optical spectroscopy. We confirm that the IMT actually occurs concomitantly with the FM transition near the oxygen content x = 2.75. Strong charge-spin coupling drives the concurrent IMT and AFM-to-FM transition, which fosters the near room-T magnetic transition characteristic. Ultimately, our study demonstrates that SrCoO x is an intriguingly rare candidate for inducing coupled magnetic and electronic transition via fast and reversible redox reactions.
Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations
Directory of Open Access Journals (Sweden)
Jen-Tsung Hsiang
2018-05-01
Full Text Available Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of the thermodynamic functions, the viability of the thermodynamic relations and the validity of the thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials, the expectation values of which provide the familiar thermodynamic variables. Constructing the operator thermodynamic functions and verifying or modifying their relations is a necessary first step in the establishment of a viable thermodynamics theory for
Static and Dynamic Amplification Using Strong Mechanical Coupling
Ilyas, Saad
2016-07-28
Amplifying the signal-to-noise ratio of resonant sensors is vital toward the effort to miniaturize devices into the sub-micro and nano regimes. In this paper, we demonstrate theoretically and experimentally, amplification through mechanically coupled microbeams. The device is composed of two identical clamped-clamped beams, made of polyimide, connected at their middle through a third beam, which acts as a mechanical coupler. Each of the clamped-clamped microbeams and the coupler are designed to be actuated separately, hence providing various possibilities of actuation and sensing. The coupled resonator is driven into resonance near its first resonance mode and its dynamic behavior is explored via frequency sweeps. The results show significant amplification in the resonator amplitude when the signal is measured at the midpoint of the coupler compared with the response of the individual uncoupled beams. The static pull-in characteristics of the resonator are also studied. It is shown that the compliant mechanical coupler can serve as a low-power radio frequency switch actuated at low voltage loads. [2016-0100
Simple model with damping of the mode-coupling instability
Energy Technology Data Exchange (ETDEWEB)
Pestrikov, D V [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki
1996-08-01
In this paper we use a simple model to study the suppression of the transverse mode-coupling instability. Two possibilities are considered. One is due to the damping of particular synchrobetatron modes, and another - due to Landau damping, caused by the nonlinearity of betatron oscillations. (author)
Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis.
Liang, Yongye; Li, Yanguang; Wang, Hailiang; Dai, Hongjie
2013-02-13
Electrochemical systems, such as fuel cell and water splitting devices, represent some of the most efficient and environmentally friendly technologies for energy conversion and storage. Electrocatalysts play key roles in the chemical processes but often limit the performance of the entire systems due to insufficient activity, lifetime, or high cost. It has been a long-standing challenge to develop efficient and durable electrocatalysts at low cost. In this Perspective, we present our recent efforts in developing strongly coupled inorganic/nanocarbon hybrid materials to improve the electrocatalytic activities and stability of inorganic metal oxides, hydroxides, sulfides, and metal-nitrogen complexes. The hybrid materials are synthesized by direct nucleation, growth, and anchoring of inorganic nanomaterials on the functional groups of oxidized nanocarbon substrates including graphene and carbon nanotubes. This approach affords strong chemical attachment and electrical coupling between the electrocatalytic nanoparticles and nanocarbon, leading to nonprecious metal-based electrocatalysts with improved activity and durability for the oxygen reduction reaction for fuel cells and chlor-alkali catalysis, oxygen evolution reaction, and hydrogen evolution reaction. X-ray absorption near-edge structure and scanning transmission electron microscopy are employed to characterize the hybrids materials and reveal the coupling effects between inorganic nanomaterials and nanocarbon substrates. Z-contrast imaging and electron energy loss spectroscopy at single atom level are performed to investigate the nature of catalytic sites on ultrathin graphene sheets. Nanocarbon-based hybrid materials may present new opportunities for the development of electrocatalysts meeting the requirements of activity, durability, and cost for large-scale electrochemical applications.
The strong coupling constant of QCD with four flavors
International Nuclear Information System (INIS)
Tekin, Fatih
2010-01-01
In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c sw with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the Λ parameter is determined in units of a technical scale L max which is an unambiguously defined length in the hadronic regime. The coupling α SF of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)
The strong coupling constant of QCD with four flavors
Energy Technology Data Exchange (ETDEWEB)
Tekin, Fatih
2010-11-01
In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c{sub sw} with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the {lambda} parameter is determined in units of a technical scale L{sub max} which is an unambiguously defined length in the hadronic regime. The coupling {alpha}{sub SF} of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)
Toroidal coupling and frequency spectrum of tearing modes
International Nuclear Information System (INIS)
Edery, D.; Samain, A.
1989-05-01
The frequency spectrum of tearing modes is analyzed with the help of a mode coupling model including toroidal effects in the MHD regions and various non linear effects in the resonant layers. In particular it is shown that the sudden damping of the mode rotation and the simultaneous enhancement of the growth rate observed in tokamak, could be explained as a bifurcating solution of the dispersion equation
Energy Technology Data Exchange (ETDEWEB)
Maksymov, Ivan S., E-mail: ivan.maksymov@uwa.edu.au [School of Physics M013, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); ARC Centre of Excellence for Nanoscale BioPhotonics, School of Applied Sciences, RMIT University, Melbourne, VIC 3001 (Australia); Hutomo, Jessica; Nam, Donghee; Kostylev, Mikhail [School of Physics M013, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)
2015-05-21
We demonstrate theoretically a ∼350-fold local enhancement of the intensity of the in-plane microwave magnetic field in multilayered structures made from a magneto-insulating yttrium iron garnet (YIG) layer sandwiched between two non-magnetic layers with a high dielectric constant matching that of YIG. The enhancement is predicted for the excitation regime when the microwave magnetic field is induced inside the multilayer by the transducer of a stripline Broadband Ferromagnetic Resonance (BFMR) setup. By means of a rigorous numerical solution of the Landau-Lifshitz-Gilbert equation consistently with the Maxwell's equations, we investigate the magnetisation dynamics in the multilayer. We reveal a strong photon-magnon coupling, which manifests itself as anti-crossing of the ferromagnetic resonance magnon mode supported by the YIG layer and the electromagnetic resonance mode supported by the whole multilayered structure. The frequency of the magnon mode depends on the external static magnetic field, which in our case is applied tangentially to the multilayer in the direction perpendicular to the microwave magnetic field induced by the stripline of the BFMR setup. The frequency of the electromagnetic mode is independent of the static magnetic field. Consequently, the predicted photon-magnon coupling is sensitive to the applied magnetic field and thus can be used in magnetically tuneable metamaterials based on simultaneously negative permittivity and permeability achievable thanks to the YIG layer. We also suggest that the predicted photon-magnon coupling may find applications in microwave quantum information systems.
Inflationary magneto-(non)genesis, increasing kinetic couplings, and the strong coupling problem
Bazrafshan Moghaddam, Hossein; McDonough, Evan; Namba, Ryo; Brandenberger, Robert H.
2018-05-01
We study the generation of magnetic fields during inflation making use of a coupling of the inflaton and moduli fields to electromagnetism via the photon kinetic term, and assuming that the coupling is an increasing function of time. We demonstrate that the strong coupling problem of inflationary magnetogenesis can be avoided by incorporating the destabilization of moduli fields after inflation. The magnetic field always dominates over the electric one, and thus the severe constraints on the latter from backreaction, which are the demanding obstacles in the case of a decreasing coupling function, do not apply to the current scenario. However, we show that this loophole to the strong coupling problem comes at a price: the normalization of the amplitude of magnetic fields is determined by this coupling term and is therefore suppressed by a large factor after the moduli destabilization completes. From this we conclude that there is no self-consistent and generic realization of primordial magnetogenesis producing scale-invariant fields in the case of an increasing kinetic coupling.
On the flavor problem in strongly coupled theories
Energy Technology Data Exchange (ETDEWEB)
Bauer, Martin
2012-11-28
This thesis is on the flavor problem of Randall Sundrum models and their strongly coupled dual theories. These models are particularly well motivated extensions of the Standard Model, because they simultaneously address the gauge hierarchy problem and the hierarchies in the quark masses and mixings. In order to put this into context, special attention is given to concepts underlying the theories which can explain the hierarchy problem and the flavor structure of the Standard Model (SM). The AdS/CFT duality is introduced and its implications for the Randall Sundrum model with fermions in the bulk and general bulk gauge groups is investigated. It is shown that the different terms in the general 5D propagator of a bulk gauge field can be related to the corresponding diagrams of the strongly coupled dual, which allows for a deeper understanding of the origin of flavor changing neutral currents generated by the exchange of the Kaluza Klein excitations of these bulk fields. In the numerical analysis, different observables which are sensitive to corrections from the tree-level exchange of these resonances will be presented on the basis of updated experimental data from the Tevatron and LHC experiments. This includes electroweak precision observables, namely corrections to the S and T parameters followed by corrections to the Zb anti b vertex, flavor changing observables with flavor changes at one vertex, viz. B(B{sub d}{yields}{mu}{sup +}{mu}{sup -}) and B(B{sub s}{yields}{mu}{sup +}{mu}{sup -}), and two vertices, viz. S{sub {psi}{phi}} and vertical stroke {epsilon}{sub K} vertical stroke, as well as bounds from direct detection experiments. The analysis will show that all of these bounds can be brought in agreement with a new physics scale {Lambda}{sub NP} in the TeV range, except for the CP violating quantity vertical stroke {epsilon}{sub K} vertical stroke, which requires {Lambda}{sub NP}=O(10) TeV in the absence of fine-tuning. The numerous modifications of the
Mathematical structure of Rabi oscillations in the strong coupling regime
International Nuclear Information System (INIS)
Fujii, Kazuyuki
2003-01-01
In this paper, we generalize the Jaynes-Cummings Hamiltonian by making use of some operators based on Lie algebras su(1, 1) and su(2), and study a mathematical structure of Rabi floppings of these models in the strong coupling regime. We show that Rabi frequencies are given by matrix elements of generalized coherent operators (Fujii K 2002 Preprint quant-ph/0202081) under the rotating-wave approximation. In the first half, we make a general review of coherent operators and generalized coherent ones based on Lie algebras su(1, 1) and su(2). In the latter half, we carry out a detailed examination of Frasca (Frasca M 2001 Preprint quant-ph/0111134) and generalize his method, and moreover present some related problems. We also apply our results to the construction of controlled unitary gates in quantum computation. Lastly, we make a brief comment on application to holonomic quantum computation
Orbifolds and Exact Solutions of Strongly-Coupled Matrix Models
Córdova, Clay; Heidenreich, Ben; Popolitov, Alexandr; Shakirov, Shamil
2018-02-01
We find an exact solution to strongly-coupled matrix models with a single-trace monomial potential. Our solution yields closed form expressions for the partition function as well as averages of Schur functions. The results are fully factorized into a product of terms linear in the rank of the matrix and the parameters of the model. We extend our formulas to include both logarithmic and finite-difference deformations, thereby generalizing the celebrated Selberg and Kadell integrals. We conjecture a formula for correlators of two Schur functions in these models, and explain how our results follow from a general orbifold-like procedure that can be applied to any one-matrix model with a single-trace potential.
Novel Ion Trap Design for Strong Ion-Cavity Coupling
Directory of Open Access Journals (Sweden)
Alejandro Márquez Seco
2016-04-01
Full Text Available We present a novel ion trap design which facilitates the integration of an optical fiber cavity into the trap structure. The optical fibers are confined inside hollow electrodes in such a way that tight shielding and free movement of the fibers are simultaneously achievable. The latter enables in situ optimization of the overlap between the trapped ions and the cavity field. Through numerical simulations, we systematically analyze the effects of the electrode geometry on the trapping characteristics such as trap depths, secular frequencies and the optical access angle. Additionally, we simulate the effects of the presence of the fibers and confirm the robustness of the trapping potential. Based on these simulations and other technical considerations, we devise a practical trap configuration that isviable to achieve strong coupling of a single ion.
Strong-coupling effects in superfluid 3He in aerogel
International Nuclear Information System (INIS)
Aoyama, Kazushi; Ikeda, Ryusuke
2007-01-01
Effects of impurity scatterings on the strong-coupling (SC) contribution, stabilizing the ABM (axial) pairing state, to the quartic term of the Ginzburg-Landau free energy of superfluid 3 He are theoretically studied to examine recent observations suggestive of an anomalously small SC effect in superfluid 3 He in aerogels. To study the SC corrections, two approaches are used. One is based on a perturbation in the short-range repulsive interaction, and the other is a phenomenological approach used previously for the bulk liquid by Sauls and Serene [Phys. Rev. B 24, 183 (1981)]. It is found that the impurity scattering favors the BW pairing state and shrinks the region of the ABM pairing state in the T-P phase diagram. In the phenomenological approach, the resulting shrinkage of the ABM region is especially substantial and, if assuming an anisotropy over a large scale in aerogel, leads to justifying the phase diagrams determined experimentally
Jet quenching in a strongly coupled anisotropic plasma
Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego
2012-08-01
The jet quenching parameter of an anisotropic plasma depends on the relative orientation between the anisotropic direction, the direction of motion of the parton, and the direction along which the momentum broadening is measured. We calculate the jet quenching parameter of an anisotropic, strongly coupled {N} = 4 plasma by means of its gravity dual. We present the results for arbitrary orientations and arbitrary values of the anisotropy. The anisotropic value can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. We compare our results to analogous calculations for the real-world quark-gluon plasma and find agreement in some cases and disagreement in others.
On the flavor problem in strongly coupled theories
International Nuclear Information System (INIS)
Bauer, Martin
2012-01-01
This thesis is on the flavor problem of Randall Sundrum models and their strongly coupled dual theories. These models are particularly well motivated extensions of the Standard Model, because they simultaneously address the gauge hierarchy problem and the hierarchies in the quark masses and mixings. In order to put this into context, special attention is given to concepts underlying the theories which can explain the hierarchy problem and the flavor structure of the Standard Model (SM). The AdS/CFT duality is introduced and its implications for the Randall Sundrum model with fermions in the bulk and general bulk gauge groups is investigated. It is shown that the different terms in the general 5D propagator of a bulk gauge field can be related to the corresponding diagrams of the strongly coupled dual, which allows for a deeper understanding of the origin of flavor changing neutral currents generated by the exchange of the Kaluza Klein excitations of these bulk fields. In the numerical analysis, different observables which are sensitive to corrections from the tree-level exchange of these resonances will be presented on the basis of updated experimental data from the Tevatron and LHC experiments. This includes electroweak precision observables, namely corrections to the S and T parameters followed by corrections to the Zb anti b vertex, flavor changing observables with flavor changes at one vertex, viz. B(B d →μ + μ - ) and B(B s →μ + μ - ), and two vertices, viz. S ψφ and vertical stroke ε K vertical stroke, as well as bounds from direct detection experiments. The analysis will show that all of these bounds can be brought in agreement with a new physics scale Λ NP in the TeV range, except for the CP violating quantity vertical stroke ε K vertical stroke, which requires Λ NP =O(10) TeV in the absence of fine-tuning. The numerous modifications of the Randall Sundrum model in the literature, which try to attenuate this bound are reviewed and categorized
Effective potential kinetic theory for strongly coupled plasmas
Baalrud, Scott D.; Daligault, Jérôme
2016-11-01
The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.
Strongly coupled semiclassical plasma: interaction model and some properties
International Nuclear Information System (INIS)
Baimbetov, N.F.; Bekenov, N.A.
1999-01-01
In the report a fully ionized strongly coupled hydrogen plasma is considered. The density number is considered within range n=n e =n i ≅(10 21 -2·10 25 )sm -3 , and the temperature domian is T≅(5·10 4 -10 6 ) K. The coupling parameter Γ is defined by Γ=e 2 /αk B T, where k B is the Boltzmann constant and e is electrical charge, α=(3/4πn) 1/3 is the average distance between the particles (Wigner-Seitz radius). The dimensionless density parameter r s =α/α B is given in terms of the Bohr radius α B =ℎ 2 /me 2 ∼0.529·10 - 8 sm. The degeneracy parameter for the electron was defined by the ratio between the thermal energy k B T and the Fermi energy E F :Θ=k B T/E F ∼0.54·r s /Γ. The intermediate temperature-density region, where Γ≥1; Θ≅1; T>13.6 eV is examined. A semiclassical effective potential which account for the short-range, quantum diffraction and symmetry effects of charge carriers screening
Strong coupling effects between a meta-atom and MIM nanocavity
Directory of Open Access Journals (Sweden)
San Chen
2012-09-01
Full Text Available In this paper, we investigate the strong coupling effects between a meta-atom and a metal-insulator-metal (MIM nanocavity. By changing the meta-atom sizes, we achieve the meta-atomic electric dipole, quadrupole or multipole interaction with the plasmonic nanocavity, in which characteristic anticrossing behaviors demonstrate the occurrence of the strong coupling. The various interactions present obviously different splitting values and behaviors of dependence on the meta-atomic position. The largest Rabi-type splittings, about 360.0 meV and 306.1 meV, have been obtained for electric dipole and quadrupole interaction, respectively. We attribute the large splitting to the highly-confined cavity mode and the large transition dipole of the meta-atom. Also the Rabi-type oscillation in time domain is given.
Particularities of surface plasmon-exciton strong coupling with large Rabi splitting
International Nuclear Information System (INIS)
Symonds, C; Bonnand, C; Plenet, J C; Brehier, A; Parashkov, R; Lauret, J S; Deleporte, E; Bellessa, J
2008-01-01
This paper presents some of the particularities of the strong coupling regime occurring between surface plasmon (SP) modes and excitons. Two different active materials were deposited on a silver film: a cyanine dye J-aggregate, and a two-dimensional layered perovskite-type semiconductor. The dispersion relations, which are deduced from angular resolved reflectometry spectra, present an anticrossing characteristic of the strong coupling regime. The wavevector is a good parameter to determine the Rabi splitting. Due to the large interaction energies (several hundreds of milli-electron-volts), the calculations at constant angle can induce an overestimation of the Rabi splitting of more than a factor of two. Another property of polaritons based on SP is their nonradiative character. In order to observe the polaritonic emission, it is thus necessary to use particular extraction setups, such as gratings or prisms. Otherwise only the incoherent emission can be detected, very similar to the bare exciton emission
Thermalization and confinement in strongly coupled gauge theories
Directory of Open Access Journals (Sweden)
Ishii Takaaki
2016-01-01
Full Text Available Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which “real world” theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory’s confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the “abrupt quench” limit.
Energy exchange in strongly coupled plasmas with electron drift
International Nuclear Information System (INIS)
Akbari-Moghanjoughi, M.; Ghorbanalilu, M.
2015-01-01
In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam
Effective interactions in strongly-coupled quantum systems
International Nuclear Information System (INIS)
Chen, J.M.C.
1986-01-01
In this thesis, they study the role of effective interactions in strongly-coupled Fermi systems where the short-range correlations introduce difficulties requiring special treatment. The correlated basis function method provides the means to incorporate the short-range correlations and generate the matrix elements of the Hamiltonian and identity operators in a nonorthogonal basis of states which are so important to their studies. In the first half of the thesis, the particle-hole channel is examined to elucidate the effects of collective excitations. Proceeding from a least-action principle, a generalization of the random-phase approximation is developed capable of describing such strongly-interacting Fermi systems as nuclei, nuclear matter, neutron-star matter, and liquid 3 He. A linear response of dynamically correlated system to a weak external perturbation is also derived based on the same framework. In the second half of the thesis, the particle-particle channel is examined to elucidate the effects of pairing in nuclear and neutron-star matter
Kolmogorov flow in two dimensional strongly coupled dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Gupta, Akanksha; Ganesh, R., E-mail: ganesh@ipr.res.in; Joy, Ashwin [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 382 428 (India)
2014-07-15
Undriven, incompressible Kolmogorov flow in two dimensional doubly periodic strongly coupled dusty plasma is modelled using generalised hydrodynamics, both in linear and nonlinear regime. A complete stability diagram is obtained for low Reynolds numbers R and for a range of viscoelastic relaxation time τ{sub m} [0 < τ{sub m} < 10]. For the system size considered, using a linear stability analysis, similar to Navier Stokes fluid (τ{sub m} = 0), it is found that for Reynolds number beyond a critical R, say R{sub c}, the Kolmogorov flow becomes unstable. Importantly, it is found that R{sub c} is strongly reduced for increasing values of τ{sub m}. A critical τ{sub m}{sup c} is found above which Kolmogorov flow is unconditionally unstable and becomes independent of Reynolds number. For R < R{sub c}, the neutral stability regime found in Navier Stokes fluid (τ{sub m} = 0) is now found to be a damped regime in viscoelastic fluids, thus changing the fundamental nature of transition of Kolmogorov flow as function of Reynolds number R. A new parallelized nonlinear pseudo spectral code has been developed and is benchmarked against eigen values for Kolmogorov flow obtained from linear analysis. Nonlinear states obtained from the pseudo spectral code exhibit cyclicity and pattern formation in vorticity and viscoelastic oscillations in energy.
Holographic Floquet states I: a strongly coupled Weyl semimetal
International Nuclear Information System (INIS)
Hashimoto, Koji; Kinoshita, Shunichiro; Murata, Keiju; Oka, Takashi
2017-01-01
Floquet states can be realized in quantum systems driven by continuous time-periodic perturbations. It is known that a state known as the Floquet Weyl semimetal can be realized when free Dirac fermions are placed in a rotating electric field. What will happen if strong interaction is introduced to this system? Will the interaction wash out the characteristic features of Weyl semimetals such as the Hall response? Is there a steady state and what is its thermodynamic behavior? We answer these questions using AdS/CFT correspondence in the N=2 supersymmetric massless QCD in a rotating electric field in the large N c limit realizing the first example of a “holographic Floquet state”. In this limit, gluons not only mediate interaction, but also act as an energy reservoir and stabilize the nonequilibrium steady state (NESS). We obtain the electric current induced by a rotating electric field: in the high frequency region, the Ohm’s law is satisfied, while we recover the DC nonlinear conductivity at low frequency, which was obtained holographically in a previous work. The thermodynamic properties of the NESS, e.g., fluctuation-dissipation relation, is characterized by the effective Hawking temperature that is defined from the effective horizon giving a holographic meaning to the “periodic thermodynamic” concept. In addition to the strong (pump) rotating electric field, we apply an additional weak (probe) electric field in the spirit of the pump-probe experiments done in condensed matter experiments. Weak DC and AC probe analysis in the background rotating electric field shows Hall currents as a linear response, therefore the Hall response of Floquet Weyl semimetals survives at the strong coupling limit. We also find frequency mixed response currents, i.e., a heterodyning effect, characteristic to periodically driven Floquet systems.
Holographic Floquet states I: a strongly coupled Weyl semimetal
Energy Technology Data Exchange (ETDEWEB)
Hashimoto, Koji [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Kinoshita, Shunichiro [Department of Physics, Chuo University, Tokyo 112-8551 (Japan); Murata, Keiju [Keio University, 4-1-1 Hiyoshi, Yokohama 223-8521 (Japan); Oka, Takashi [Max-Planck-Institut für Physik komplexer Systeme (MPI-PKS), Nöthnitzer Straße 38, Dresden 01187 (Germany); Max-Planck-Institut für Chemische Physik fester Stoffe (MPI-CPfS),Nöthnitzer Straße 40, Dresden 01187 (Germany)
2017-05-23
Floquet states can be realized in quantum systems driven by continuous time-periodic perturbations. It is known that a state known as the Floquet Weyl semimetal can be realized when free Dirac fermions are placed in a rotating electric field. What will happen if strong interaction is introduced to this system? Will the interaction wash out the characteristic features of Weyl semimetals such as the Hall response? Is there a steady state and what is its thermodynamic behavior? We answer these questions using AdS/CFT correspondence in the N=2 supersymmetric massless QCD in a rotating electric field in the large N{sub c} limit realizing the first example of a “holographic Floquet state”. In this limit, gluons not only mediate interaction, but also act as an energy reservoir and stabilize the nonequilibrium steady state (NESS). We obtain the electric current induced by a rotating electric field: in the high frequency region, the Ohm’s law is satisfied, while we recover the DC nonlinear conductivity at low frequency, which was obtained holographically in a previous work. The thermodynamic properties of the NESS, e.g., fluctuation-dissipation relation, is characterized by the effective Hawking temperature that is defined from the effective horizon giving a holographic meaning to the “periodic thermodynamic” concept. In addition to the strong (pump) rotating electric field, we apply an additional weak (probe) electric field in the spirit of the pump-probe experiments done in condensed matter experiments. Weak DC and AC probe analysis in the background rotating electric field shows Hall currents as a linear response, therefore the Hall response of Floquet Weyl semimetals survives at the strong coupling limit. We also find frequency mixed response currents, i.e., a heterodyning effect, characteristic to periodically driven Floquet systems.
Holographic Floquet states I: a strongly coupled Weyl semimetal
Hashimoto, Koji; Kinoshita, Shunichiro; Murata, Keiju; Oka, Takashi
2017-05-01
Floquet states can be realized in quantum systems driven by continuous time-periodic perturbations. It is known that a state known as the Floquet Weyl semimetal can be realized when free Dirac fermions are placed in a rotating electric field. What will happen if strong interaction is introduced to this system? Will the interaction wash out the characteristic features of Weyl semimetals such as the Hall response? Is there a steady state and what is its thermodynamic behavior? We answer these questions using AdS/CFT correspondence in the N = 2 supersymmetric massless QCD in a rotating electric field in the large N c limit realizing the first example of a "holographic Floquet state". In this limit, gluons not only mediate interaction, but also act as an energy reservoir and stabilize the nonequilibrium steady state (NESS). We obtain the electric current induced by a rotating electric field: in the high frequency region, the Ohm's law is satisfied, while we recover the DC nonlinear conductivity at low frequency, which was obtained holographically in a previous work. The thermodynamic properties of the NESS, e.g., fluctuation-dissipation relation, is characterized by the effective Hawking temperature that is defined from the effective horizon giving a holographic meaning to the "periodic thermodynamic" concept. In addition to the strong (pump) rotating electric field, we apply an additional weak (probe) electric field in the spirit of the pump-probe experiments done in condensed matter experiments. Weak DC and AC probe analysis in the background rotating electric field shows Hall currents as a linear response, therefore the Hall response of Floquet Weyl semimetals survives at the strong coupling limit. We also find frequency mixed response currents, i.e., a heterodyning effect, characteristic to periodically driven Floquet systems.
Strongly coupled dispersed two-phase flows; Ecoulements diphasiques disperses fortement couples
Energy Technology Data Exchange (ETDEWEB)
Zun, I.; Lance, M.; Ekiel-Jezewska, M.L.; Petrosyan, A.; Lecoq, N.; Anthore, R.; Bostel, F.; Feuillebois, F.; Nott, P.; Zenit, R.; Hunt, M.L.; Brennen, C.E.; Campbell, C.S.; Tong, P.; Lei, X.; Ackerson, B.J.; Asmolov, E.S.; Abade, G.; da Cunha, F.R.; Lhuillier, D.; Cartellier, A.; Ruzicka, M.C.; Drahos, J.; Thomas, N.H.; Talini, L.; Leblond, J.; Leshansky, A.M.; Lavrenteva, O.M.; Nir, A.; Teshukov, V.; Risso, F.; Ellinsen, K.; Crispel, S.; Dahlkild, A.; Vynnycky, M.; Davila, J.; Matas, J.P.; Guazelli, L.; Morris, J.; Ooms, G.; Poelma, C.; van Wijngaarden, L.; de Vries, A.; Elghobashi, S.; Huilier, D.; Peirano, E.; Minier, J.P.; Gavrilyuk, S.; Saurel, R.; Kashinsky, O.; Randin, V.; Colin, C.; Larue de Tournemine, A.; Roig, V.; Suzanne, C.; Bounhoure, C.; Brunet, Y.; Tanaka, A.T.; Noma, K.; Tsuji, Y.; Pascal-Ribot, S.; Le Gall, F.; Aliseda, A.; Hainaux, F.; Lasheras, J.; Didwania, A.; Costa, A.; Vallerin, W.; Mudde, R.F.; Van Den Akker, H.E.A.; Jaumouillie, P.; Larrarte, F.; Burgisser, A.; Bergantz, G.; Necker, F.; Hartel, C.; Kleiser, L.; Meiburg, E.; Michallet, H.; Mory, M.; Hutter, M.; Markov, A.A.; Dumoulin, F.X.; Suard, S.; Borghi, R.; Hong, M.; Hopfinger, E.; Laforgia, A.; Lawrence, C.J.; Hewitt, G.F.; Osiptsov, A.N.; Tsirkunov, Yu. M.; Volkov, A.N.
2003-07-01
This document gathers the abstracts of the Euromech 421 colloquium about strongly coupled dispersed two-phase flows. Behaviors specifically due to the two-phase character of the flow have been categorized as: suspensions, particle-induced agitation, microstructure and screening mechanisms; hydrodynamic interactions, dispersion and phase distribution; turbulence modulation by particles, droplets or bubbles in dense systems; collective effects in dispersed two-phase flows, clustering and phase distribution; large-scale instabilities and gravity driven dispersed flows; strongly coupled two-phase flows involving reacting flows or phase change. Topic l: suspensions particle-induced agitation microstructure and screening mechanisms hydrodynamic interactions between two very close spheres; normal stresses in sheared suspensions; a critical look at the rheological experiments of R.A. Bagnold; non-equilibrium particle configuration in sedimentation; unsteady screening of the long-range hydrodynamic interactions of settling particles; computer simulations of hydrodynamic interactions among a large collection of sedimenting poly-disperse particles; velocity fluctuations in a dilute suspension of rigid spheres sedimenting between vertical plates: the role of boundaries; screening and induced-agitation in dilute uniform bubbly flows at small and moderate particle Reynolds numbers: some experimental results. Topic 2: hydrodynamic interactions, dispersion and phase distribution: hydrodynamic interactions in a bubble array; A 'NMR scattering technique' for the determination of the structure in a dispersion of non-brownian settling particles; segregation and clustering during thermo-capillary migration of bubbles; kinetic modelling of bubbly flows; velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles; an attempt to simulate screening effects at moderate particle Reynolds numbers using an hybrid formulation; modelling the two
Reduction of Bragg-grating-induced coupling to cladding modes
DEFF Research Database (Denmark)
Berendt, Martin Ole; Bjarklev, Anders Overgaard; Soccolich, C.E.
1999-01-01
gratings in a depressed-cladding fiber are compared with simulations. The model gives good agreement with the measured transmission spectrum and accounts for the pronounced coupling to asymmetrical cladding modes, even when the grating is written with the smallest possible blaze. The asymmetry causing...... this is accounted for by the unavoidable attenuation of the UV light. It is found for the considered fiber designs that a high numerical-aperture fiber increases the spectral separation between the Bragg resonance and the onset of cladding-mode losses. A depressed-cladding fiber reduces the coupling strength......We discuss fiber designs that have been suggested for the reduction of Bragg-grating induced coupling to cladding modes. The discussion is based on a theoretical approach that includes the effect of asymmetry in the UV-induced index grating, made by UV-side writing. Experimental results from...
Optimal and Miniaturized Strongly Coupled Magnetic Resonant Systems
Hu, Hao
Wireless power transfer (WPT) technologies for communication and recharging devices have recently attracted significant research attention. Conventional WPT systems based either on far-field or near-field coupling cannot provide simultaneously high efficiency and long transfer range. The Strongly Coupled Magnetic Resonance (SCMR) method was introduced recently, and it offers the possibility of transferring power with high efficiency over longer distances. Previous SCMR research has only focused on how to improve its efficiency and range through different methods. However, the study of optimal and miniaturized designs has been limited. In addition, no multiband and broadband SCMR WPT systems have been developed and traditional SCMR systems exhibit narrowband efficiency thereby imposing strict limitations on simultaneous wireless transmission of information and power, which is important for battery-less sensors. Therefore, new SCMR systems that are optimally designed and miniaturized in size will significantly enhance various technologies in many applications. The optimal and miniaturized SCMR systems are studied here. First, analytical models of the Conformal SCMR (CSCMR) system and thorough analysis and design methodology have been presented. This analysis specifically leads to the identification of the optimal design parameters, and predicts the performance of the designed CSCMR system. Second, optimal multiband and broadband CSCMR systems are designed. Two-band, three-band, and four-band CSCMR systems are designed and validated using simulations and measurements. Novel broadband CSCMR systems are also analyzed, designed, simulated and measured. The proposed broadband CSCMR system achieved more than 7 times larger bandwidth compared to the traditional SCMR system at the same frequency. Miniaturization methods of SCMR systems are also explored. Specifically, methods that use printable CSCMR with large capacitors, novel topologies including meandered, SRRs, and
High-flux cold rubidium atomic beam for strongly-coupled cavity QED
Energy Technology Data Exchange (ETDEWEB)
Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)
2012-08-15
This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.
Mode-mode coupling theory of itinerant electron antiferromagnetism in superconducting state
International Nuclear Information System (INIS)
Fujimoto, Yukinobu; Miyake, Kazumasa
2012-01-01
It has been considered since the first discovery of a high-T c cuprate that an antiferromagnetic (AF) state and a superconducting (SC) state are separated in it. However, it is very intriguing that the coexistence of the AF and SC states has recently been observed in HgBa 2 Ca 4 Cu 5 O 12+ (Hg-1245). Moreover, it is very novel that this coexistence of these two states appears if the SC-transition temperature T c is higher than the AF-transition temperature T N . The mode-mode coupling theory can provide a clear elucidation of this novel phenomenon. A key point of this theory is that the AF susceptibility consists of the random-phase-approximation (RPA) term and the mode-mode coupling one. The RPA term works to make a positive contribution to the emergence of the antiferromagnetic critical point (AF-CP). In contrast, the mode-mode coupling term works to make a negative contribution to the emergence of the AF-CP. However, the growth of the SC-gap function in the d x 2 -y 2 -wave SC state works to suppress the negative contribution of the mode-mode coupling term to the emergence of the AF-CP. Moreover, the effect of SC fluctuations near the SC-transition temperature T c suppresses the mode-mode coupling term of the AF susceptibility that works to hinder the AF ordering. For these two reasons, there is a possibility that the d x 2 -y 2 -wave SC state is likely to promote the emergence of the AF-CP. Namely, the appearance of the above-mentioned novel coexistence of the AF and SC states observed in Hg-1245 can be explained qualitatively on the basis of this idea.
Resonator modes and mode dynamics for an external cavity-coupled laser array
Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda
2015-03-01
Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.
International Nuclear Information System (INIS)
Waltz, R. E.; Candy, J.; Fahey, M.
2007-01-01
Electron temperature gradient (ETG) transport is conventionally defined as the electron energy transport at high wave number (high-k) where ions are adiabatic and there can be no ion energy or plasma transport. Previous gyrokinetic simulations have assumed adiabatic ions (ETG-ai) and work on the small electron gyroradius scale. However such ETG-ai simulations with trapped electrons often do not have well behaved nonlinear saturation unless fully kinetic ions (ki) and proper ion scale zonal flow modes are included. Electron energy transport is separated into ETG-ki at high-k and ion temperature gradient-trapped electron mode (ITG/TEM) at low-k. Expensive (more computer-intensive), high-resolution, large-ion-scale flux-tube simulations coupling ITG/TEM and ETG-ki turbulence are presented. These require a high effective Reynolds number R≡[k(max)/k(min)] 2 =μ 2 , where μ=[ρ si /ρ si ] is the ratio of ion to electron gyroradii. Compute times scale faster than μ 3 . By comparing the coupled expensive simulations with (1) much cheaper (less compute-intensive), uncoupled, high-resolution, small, flux-tube ETG-ki and with (2) uncoupled low-resolution, large, flux-tube ITG/TEM simulations, and also by artificially turning ''off'' the low-k or high-k drives, it appears that ITG/TEM and ETG-ki transport are not strongly coupled so long as ETG-ki can access some nonadiabatic ion scale zonal flows and both high-k and low-k are linearly unstable. However expensive coupled simulations are required for physically accurate k-spectra of the transport and turbulence. Simulations with μ≥30 appear to represent the physical range μ>40. ETG-ki transport measured in ion gyro-Bohm units is weakly dependent on μ. For the mid-radius core tokamak plasma parameters studied, ETG-ki is about 10% of the electron energy transport, which in turn is about 30% of the total energy transport (with negligible ExB shear). However at large ExB shear sufficient to quench the low-k ITG
Large mass hierarchies from strongly-coupled dynamics
Energy Technology Data Exchange (ETDEWEB)
Athenodorou, Andreas [Department of Physics, University of Cyprus,B.O. Box 20537, 1678 Nicosia (Cyprus); Bennett, Ed [Department of Physics, College of Science, Swansea University,Singleton Park, Swansea SA2 8PP (United Kingdom); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI),Nagoya University,Furo, Chikusa, Nagoya 464-8602 (Japan); Bergner, Georg [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland); Elander, Daniel [National Institute for Theoretical Physics, School of Physics andMandelstam Institute for Theoretical Physics, University of the Witwatersrand,1 Jan Smuts Avenue, Johannesburg, Wits 2050 (South Africa); Lin, C.-J. David [Institute of Physics, National Chiao-Tung University,1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan (China); CNRS, Aix Marseille Université, Université de Toulon, Centre de Physique Théorique,UMR 7332, F-13288 Marseille (France); Lucini, Biagio; Piai, Maurizio [Department of Physics, College of Science, Swansea University,Singleton Park, Swansea SA2 8PP (United Kingdom)
2016-06-20
Besides the Higgs particle discovered in 2012, with mass 125 GeV, recent LHC data show tentative signals for new resonances in diboson as well as diphoton searches at high center-of-mass energies (2 TeV and 750 GeV, respectively). If these signals are confirmed (or other new resonances are discovered at the TeV scale), the large hierarchies between masses of new bosons require a dynamical explanation. Motivated by these tentative signals of new physics, we investigate the theoretical possibility that large hierarchies in the masses of glueballs could arise dynamically in new strongly-coupled gauge theories extending the standard model of particle physics. We study lattice data on non-Abelian gauge theories in the (near-)conformal regime as well as a simple toy model in the context of gauge/gravity dualities. We focus our attention on the ratio R between the mass of the lightest spin-2 and spin-0 resonances, that for technical reasons is a particularly convenient and clean observable to study. For models in which (non-perturbative) large anomalous dimensions arise dynamically, we show indications that this mass ratio can be large, with R>5. Moreover, our results suggest that R might be related to universal properties of the IR fixed point. Our findings provide an interesting step towards understanding large mass ratios in the non-perturbative regime of quantum field theories with (near) IR conformal behaviour.
Study of Strongly Coupled Systems via Probe Brane Constructions
Chang, Han-Chih
In this thesis, we present our study towards better understanding of the strongly coupled systems with extra matter content in the fundamental representation of some prescribed global symmetry group in the quenched approximation, with the toolkit of holography via a probe brane construction. Specically, for the defect conformal systems, we unearth and quantify the phase trasition diagram, and novel supersymmetric vacua in the top-down model of the D3/D5 probe brane system. For further quantify various non-Fermi quantum liquid phases realized through the holographical probe brane construction, we then propose and verify the method to include the backreaction of entanglement entropy due to the probe branes at the leading order, which can potentially be used to detect topological phase transitions. We will recapitulate the main results of our works, in collaboration with Prof. Andreas Karch, published in the following journals: "Minimal Submanifolds asymptotic to AdS4 xS2 in AdS5xS5', JHEP, vol.1404, p.037, 2014; "The Novel Solutions of Finite-Density D3/D5 Probe Brane System and Their Implications for Stability'', JHEP, vol.1210, p.060, 2014; "Entanglement Entropy for Probe Branes'', JHEP, vol.1401, p.180, 2014.
Strongly coupled dark energy with warm dark matter vs. LCDM
Energy Technology Data Exchange (ETDEWEB)
Bonometto, S.A.; Mezzetti, M. [INAF, Osservatorio di Trieste and Trieste University, Physics Department, Astronomy Unit, Via Tiepolo 11, 34143 Trieste (Italy); Mainini, R., E-mail: bonometto@oats.inaf.it, E-mail: mezzetti@oats.inaf.it, E-mail: roberto.mainini@mib.infn.it [Physics Department G. Occhialini, Milano-Bicocca University, Piazza della Scienza 3, 20126 Milano (Italy)
2017-10-01
Cosmologies including strongly Coupled (SC) Dark Energy (DE) and Warm dark matter (SCDEW) are based on a conformally invariant (CI) attractor solution modifying the early radiative expansion. Then, aside of radiation, a kinetic field Φ and a DM component account for a stationary fraction, ∼ 1 %, of the total energy. Most SCDEW predictions are hardly distinguishable from LCDM, while SCDEW alleviates quite a few LCDM conceptual problems, as well as its difficulties to meet data below the average galaxy scale. The CI expansion begins at the end of inflation, when Φ (future DE) possibly plays a role in reheating, and ends at the Higgs scale. Afterwards, a number of viable options is open, allowing for the transition from the CI expansion to the present Universe. In this paper: (i) We show how the attractor is recovered when the spin degrees of freedom decreases. (ii) We perform a detailed comparison of CMB anisotropy and polarization spectra for SCDEW and LCDM, including tensor components, finding negligible discrepancies. (iii) Linear spectra exhibit a greater parameter dependence at large k 's, but are still consistent with data for suitable parameter choices. (iv) We also compare previous simulation results with fresh data on galaxy concentration. Finally, (v) we outline numerical difficulties at high k . This motivates a second related paper [1], where such problems are treated in a quantitative way.
Possible heavy solitons in the strongly coupled Higgs sector
International Nuclear Information System (INIS)
Gipson, J.M.; Tze, H.C.
1981-01-01
In a presumed dynamically broken, minimally coupled SU(2) model, a natural Higgs mass of order 1 TeV marks the onset of a strongly interacting Higgs sector probably rich in resonance structure and inaccessible to perturbation theory. In the spirit of the chiral dynamics approach to low-energy hadron physics, the heave Higgs sector is here assumed to be well described up to one-loop effects by an SO(4) non-linear sigma-model of the Skyrme type. Taken as an effective zeroth-order lagrangian, the latter is shown to admit two varieties of finite-energy, three-dimensional localized solitons which may exist in nature. They are given by the S 3 → S 3 Chern-Pontryagin maps and the S 3 → S 2 twisted toroid Hopf maps, respectively. Upper and lower bounds on the masses of the hedgehog and twisted ring with kik-number one are found to lie in the few TeV range. By a topological theorem of Finkelstein et al., both types of solitons provide classical analogues of superheavy fermion states. The connection between these solitons with other extended objects predicted by Nambu and Huang, and their possible experimental signatures are sketched. Finally, the extension of our results to the more realistic SU(2) x U(1) Weinberg-Salam model is discussed. (orig.)
Stochastic and Macroscopic Thermodynamics of Strongly Coupled Systems
Directory of Open Access Journals (Sweden)
Christopher Jarzynski
2017-01-01
Full Text Available We develop a thermodynamic framework that describes a classical system of interest S that is strongly coupled to its thermal environment E. Within this framework, seven key thermodynamic quantities—internal energy, entropy, volume, enthalpy, Gibbs free energy, heat, and work—are defined microscopically. These quantities obey thermodynamic relations including both the first and second law, and they satisfy nonequilibrium fluctuation theorems. We additionally impose a macroscopic consistency condition: When S is large, the quantities defined within our framework scale up to their macroscopic counterparts. By satisfying this condition, we demonstrate that a unifying framework can be developed, which encompasses both stochastic thermodynamics at one end, and macroscopic thermodynamics at the other. A central element in our approach is a thermodynamic definition of the volume of the system of interest, which converges to the usual geometric definition when S is large. We also sketch an alternative framework that satisfies the same consistency conditions. The dynamics of the system and environment are modeled using Hamilton’s equations in the full phase space.
The Mott transition in the strong coupling perturbation theory
International Nuclear Information System (INIS)
Sherman, A.
2015-01-01
Using the strong coupling diagram technique a self-consistent equation for the electron Green's function is derived for the repulsive Hubbard model. Terms of two lowest orders of the ratio of the bandwidth Δ to the Hubbard repulsion U are taken into account in the irreducible part of the Larkin equation. The obtained equation is shown to retain causality and reduces to Green's function of uncorrelated electrons in the limit U→0. Calculations were performed for the semi-elliptical initial band. It is shown that the approximation describes the Mott transition, which occurs at U c =√(3)Δ/2. This value coincides with that obtained in the Hubbard-III approximation. At half-filling, for 0U c the Mott gap disappears
The Mott transition in the strong coupling perturbation theory
Sherman, A.
2015-01-01
Using the strong coupling diagram technique a self-consistent equation for the electron Green's function is derived for the repulsive Hubbard model. Terms of two lowest orders of the ratio of the bandwidth Δ to the Hubbard repulsion U are taken into account in the irreducible part of the Larkin equation. The obtained equation is shown to retain causality and reduces to Green's function of uncorrelated electrons in the limit U → 0. Calculations were performed for the semi-elliptical initial band. It is shown that the approximation describes the Mott transition, which occurs at Uc =√{ 3 } Δ / 2. This value coincides with that obtained in the Hubbard-III approximation. At half-filling, for 0 self-energy is nonzero at the Fermi level, which indicates that the obtained solution is not a Fermi liquid. At small deviations from half-filling the density of states shifts along the frequency axis without perceptible changes in its shape. For larger deviations the density of states is modified: it is redistributed in favor of the subband, in which the Fermi level is located, and for U >Uc the Mott gap disappears.
Quantum Simulations of Strongly Coupled Quark-Gluon Plasma
International Nuclear Information System (INIS)
Filinov, V.S.; Bonitz, M.; Ivanov, Yu.B.
2013-01-01
particles. This method has been successfully applied to strongly coupled electrodynamic plasmas (EMP). A strongly correlated behavior of the QGP is expected to show up in long-ranged spatial correlations of quarks and gluons which, in fact, may give rise to liquid-like and, possibly, solid-like structures. This expectation is based on a very similar behavior observed in electrodynamic plasmas. We have done already the first calculation of the QGP equation of state, spatial and color pair distribution functions, diffusion coefficients and shear viscosity. The preliminary results has already been reported and discussed at the international conferences and meetings and are accepted for publications. (author)
Robust fiber optic flexure sensor exploiting mode coupling in few-mode fiber
Nelsen, Bryan; Rudek, Florian; Taudt, Christopher; Baselt, Tobias; Hartmann, Peter
2015-05-01
Few-mode fiber (FMF) has become very popular for use in multiplexing telecommunications data over fiber optics. The simplicity of producing FMF and the relative robustness of the optical modes, coupled with the simplicity of reading out the information make this fiber a natural choice for communications. However, little work has been done to take advantage of this type of fiber for sensors. Here, we demonstrate the feasibility of using FMF properties as a mechanism for detecting flexure by exploiting mode coupling between modes when the cylindrical symmetry of the fiber is perturbed. The theoretical calculations shown here are used to understand the coupling between the lowest order linearly polarized mode (LP01) and the next higher mode (LP11x or LP11y) under the action of bending. Twisting is also evaluated as a means to detect flexure and was determined to be the most reliable and effective method when observing the LP21 mode. Experimental results of twisted fiber and observations of the LP21 mode are presented here. These types of fiber flexure sensors are practical in high voltage, high magnetic field, or high temperature medical or industrial environments where typical electronic flexure sensors would normally fail. Other types of flexure measurement systems that utilize fiber, such as Rayleigh back-scattering [1], are complicated and expensive and often provide a higher-than necessary sensitivity for the task at hand.
Nonlinear drift tearing mode. Strong mode of excitation and stabilization mechanisms
International Nuclear Information System (INIS)
Galeev, A.A.; Zelenyj, L.M.; Kuznetsova, M.M.
1985-01-01
A nonlinear theory of magnetic disturbance development in collisionless configurations with magnetic field shear is considered. The instability evolution is investigated with account for the dynamics of ions and potential electric fields which determine the mode stabilization. It has been found that the drift tearing mode possesses metastable properties: in a nonlinear mode even the growth of linearly stable disturbances of the finite amplitude is possible
Ferro-paramagnetic coupled resonant modes in GdEuCuO4
International Nuclear Information System (INIS)
Fainstein, A.; Tovar, M.
1990-01-01
Two paramagnetic resonances were observed in compound GdEuCuO 4 : one was originated in trivalent gadolinium paramagnetism, while the other is associated to a weak ferromagnetic mode in Cu-O planes. In this work, experimental results are presented that show an anisotropy and a strongly anomalous temperature dependence of Gd 3+ . A theoretical model was introduced which explains the data in terms of coupled ferro-paramagnetic resonant modes originated in spin exchange coupling of Cu and Gd. (Author). 9 refs., 4 figs
Coupling of Higgs and Leggett modes in non-equilibrium superconductors.
Krull, H; Bittner, N; Uhrig, G S; Manske, D; Schnyder, A P
2016-06-21
In equilibrium systems amplitude and phase collective modes are decoupled, as they are mutually orthogonal excitations. The direct detection of these Higgs and Leggett collective modes by linear-response measurements is not possible, because they do not couple directly to the electromagnetic field. In this work, using numerical exact simulations we show for the case of two-gap superconductors, that optical pump-probe experiments excite both Higgs and Leggett modes out of equilibrium. We find that this non-adiabatic excitation process introduces a strong interaction between the collective modes, which is absent in equilibrium. Moreover, we propose a type of pump-probe experiment, which allows to probe and coherently control the Higgs and Leggett modes, and thus the order parameter directly. These findings go beyond two-band superconductors and apply to general collective modes in quantum materials.
Holograms for laser diode: Single mode optical fiber coupling
Fuhr, P. L.
1982-01-01
The low coupling efficiency of semiconductor laser emissions into a single mode optical fibers place a severe restriction on their use. Associated with these conventional optical coupling techniques are stringent alignment sensitivities. Using holographic elements, the coupling efficiency may be increased and the alignment sensitivity greatly reduced. Both conventional and computer methods used in the generation of the holographic couplers are described and diagrammed. The reconstruction geometries used are shown to be somewhat restrictive but substantially less rigid than their conventional optical counterparts. Single and double hologram techniques are examined concerning their respective ease of fabrication and relative merits.
International Nuclear Information System (INIS)
Prajapati, R. P.; Bhakta, S.; Chhajlani, R. K.
2016-01-01
The influence of dust-neutral collisions, polarization force, and electron radiative condensation is analysed on the Jeans (gravitational) instability of partially ionized strongly coupled dusty plasma (SCDP) using linear perturbation (normal mode) analysis. The Boltzmann distributed ions, dynamics of inertialess electrons, charged dust and neutral particles are considered. Using the plane wave solutions, a general dispersion relation is derived which is modified due to the presence of dust-neutral collisions, strong coupling effect, polarization force, electron radiative condensation, and Jeans dust/neutral frequencies. In the long wavelength perturbations, the Jeans instability criterion depends upon strong coupling effect, polarization interaction parameter, and thermal loss, but it is independent of dust-neutral collision frequency. The stability of the considered configuration is analysed using the Routh–Hurwitz criterion. The growth rates of Jeans instability are illustrated, and stabilizing influence of viscoelasticity and dust-neutral collision frequency while destabilizing effect of electron radiative condensation, polarization force, and Jeans dust-neutral frequency ratio is observed. This work is applied to understand the gravitational collapse of SCDP with dust-neutral collisions.
Periodic Forcing of a 555-IC Based Electronic Oscillator in the Strong Coupling Limit
Santillán, Moisés
We designed and developed a master-slave electronic oscillatory system (based on the 555-timer IC working in the astable mode), and investigated its dynamic behavior regarding synchronization. For that purpose, we measured the rotation numbers corresponding to the phase-locking rhythms achieved in a large set of values of the normalized forcing frequency (NFF) and of the coupling strength between the master and the slave oscillators. In particular, we were interested in the system behavior in the strong-coupling limit, because such problem has not been extensively studied from an experimental perspective. Our results indicate that, in such a limit, a degenerate codimension-2 bifurcation point at NFF = 2 exists, in which all the phase-locking regions converge. These findings were corroborated by means of a mathematical model developed to that end, as well as by ad hoc further experiments.
Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2
Qiao, Xiao-Fen; Wu, Jiang-Bin; Zhou, Linwei; Qiao, Jingsi; Shi, Wei; Chen, Tao; Zhang, Xin; Zhang, Jun; Ji, Wei; Tan, Ping-Heng
2016-04-01
Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders.Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and
Treating Sample Covariances for Use in Strongly Coupled Atmosphere-Ocean Data Assimilation
Smith, Polly J.; Lawless, Amos S.; Nichols, Nancy K.
2018-01-01
Strongly coupled data assimilation requires cross-domain forecast error covariances; information from ensembles can be used, but limited sampling means that ensemble derived error covariances are routinely rank deficient and/or ill-conditioned and marred by noise. Thus, they require modification before they can be incorporated into a standard assimilation framework. Here we compare methods for improving the rank and conditioning of multivariate sample error covariance matrices for coupled atmosphere-ocean data assimilation. The first method, reconditioning, alters the matrix eigenvalues directly; this preserves the correlation structures but does not remove sampling noise. We show that it is better to recondition the correlation matrix rather than the covariance matrix as this prevents small but dynamically important modes from being lost. The second method, model state-space localization via the Schur product, effectively removes sample noise but can dampen small cross-correlation signals. A combination that exploits the merits of each is found to offer an effective alternative.
Dynamics of coupled mode solitons in bursting neural networks
Nfor, N. Oma; Ghomsi, P. Guemkam; Moukam Kakmeni, F. M.
2018-02-01
Using an electrically coupled chain of Hindmarsh-Rose neural models, we analytically derived the nonlinearly coupled complex Ginzburg-Landau equations. This is realized by superimposing the lower and upper cutoff modes of wave propagation and by employing the multiple scale expansions in the semidiscrete approximation. We explore the modified Hirota method to analytically obtain the bright-bright pulse soliton solutions of our nonlinearly coupled equations. With these bright solitons as initial conditions of our numerical scheme, and knowing that electrical signals are the basis of information transfer in the nervous system, it is found that prior to collisions at the boundaries of the network, neural information is purely conveyed by bisolitons at lower cutoff mode. After collision, the bisolitons are completely annihilated and neural information is now relayed by the upper cutoff mode via the propagation of plane waves. It is also shown that the linear gain of the system is inextricably linked to the complex physiological mechanisms of ion mobility, since the speeds and spatial profiles of the coupled nerve impulses vary with the gain. A linear stability analysis performed on the coupled system mainly confirms the instability of plane waves in the neural network, with a glaring example of the transition of weak plane waves into a dark soliton and then static kinks. Numerical simulations have confirmed the annihilation phenomenon subsequent to collision in neural systems. They equally showed that the symmetry breaking of the pulse solution of the system leaves in the network static internal modes, sometime referred to as Goldstone modes.
Computation of expectation values from vibrational coupled-cluster at the two-mode coupling level
DEFF Research Database (Denmark)
Zoccante, Alberto; Seidler, Peter; Christiansen, Ove
2011-01-01
In this work we show how the vibrational coupled-cluster method at the two-mode coupling level can be used to calculate zero-point vibrational averages of properties. A technique is presented, where any expectation value can be calculated using a single set of Lagrangian multipliers computed...
Coherent coupling of two different semiconductor quantum dots via an optical cavity mode
Energy Technology Data Exchange (ETDEWEB)
Laucht, Arne; Villas-Boas, Jose M.; Hauke, Norman; Hofbauer, Felix; Boehm, Gerhard; Kaniber, Michael; Finley, Jonathan J. [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany)
2010-07-01
We present a combined experimental and theoretical study of a strongly coupled system consisting of two spatially separated self-assembled InGaAs quantum dots and a single optical nanocavity mode. Due to their different size and strain profile, the two dots exhibit markedly different electric field dependences due to the quantum confined Stark effect. This allows us to tune them into resonance simply by changing the applied bias voltage and to independently tune them into the photonic crystal nanocavity mode. Photoluminescence measurements show a characteristic triple peak during the double anticrossing, which is a clear signature of a coherently coupled system of three quantum states. We fit the emission spectra of the coupled system to theory and are able to investigate the coupling between the two quantum dots directly via the cavity mode. Furthermore, we investigate the coupling between the two quantum dots when they are detuned from the cavity mode in a V-system where dephasing due to incoherent losses from the cavity mode can be reduced.
Coherent coupling of two different semiconductor quantum dots via an optical cavity mode
Energy Technology Data Exchange (ETDEWEB)
Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica; Laucht, Arne; Hauke, Norman; Hofbauer, Felix; Boehm, Gerhard; Kaniber, Michael; Finley, Jonathan J. [Technische Universitaet Muenchen, Garching (Germany). Walter Schottky Inst.
2011-07-01
Full text. We present a combined experimental and theoretical study of a strongly coupled system consisting of two spatially separated self-assembled InGaAs quantum dots and a single optical nano cavity mode. Due to their different size and strain profile, the two dots exhibit markedly different electric field dependences due to the quantum confined Stark effect. This allows us to tune them into resonance simply by changing the applied bias voltage and to independently tune them into the photonic crystal nano cavity mode. Photoluminescence measurements show a characteristic triple peak during the double anti crossing, which is a clear signature of a coherently coupled system of three quantum states. We fit the emission spectra of the coupled system to theory and are able to investigate the coupling between the two quantum dots directly via the cavity mode. Furthermore, we investigate the coupling between the two quantum dots when they are detuned from the cavity mode in a V-system where dephasing due to incoherent losses from the cavity mode can be reduced
Coupling between core and cladding modes in a helical core fiber with large core offset
International Nuclear Information System (INIS)
Napiorkowski, Maciej; Urbanczyk, Waclaw
2016-01-01
We analyzed the effect of resonant coupling between core and cladding modes in a helical core fiber with large core offset using the fully vectorial method based on the transformation optics formalism. Our study revealed that the resonant couplings to lower order cladding modes predicted by perturbative methods and observed experimentally in fibers with small core offsets are in fact prohibited for larger core offsets. This effect is related to the lack of phase matching caused by elongation of the optical path of the fundamental modes in the helical core. Moreover, strong couplings to the cladding modes of the azimuthal modal number much higher than predicted by perturbative methods may be observed for large core offsets, as the core offset introduces higher order angular harmonics in the field distribution of the fundamental modes. Finally, in contrast to previous studies, we demonstrate the existence of spectrally broad polarization sensitive couplings to the cladding modes suggesting that helical core fibers with large core offsets may be used as broadband circular polarizers. (paper)
Suppressing turbulence of self-propelling rods by strongly coupled passive particles.
Su, Yen-Shuo; Wang, Hao-Chen; I, Lin
2015-03-01
The strong turbulence suppression, mainly for large-scale modes, of two-dimensional self-propelling rods, by increasing the long-range coupling strength Γ of low-concentration passive particles, is numerically demonstrated. It is found that large-scale collective rod motion in forms of swirls or jets is mainly contributed from well-aligned dense patches, which can push small poorly aligned rod patches and uncoupled passive particles. The more efficient momentum transfer and dissipation through increasing passive particle coupling leads to the formation of a more ordered and slowed down network of passive particles, which competes with coherent dense active rod clusters. The frustration of active rod alignment ordering and coherent motion by the passive particle network, which interrupt the inverse cascading of forming large-scale swirls, is the key for suppressing collective rod motion with scales beyond the interpassive distance, even in the liquid phase of passive particles. The loosely packed active rods are weakly affected by increasing passive particle coupling due to the weak rod-particle interaction. They mainly contribute to the small-scale modes and high-speed motion.
Linear coupling of electromagnetic and Jeans modes in self-gravitating plasma streams
International Nuclear Information System (INIS)
Yaroshenko, Victoria V.; Voitenko, Yuriy; Goossens, Marcel
2002-01-01
A new mechanism of linear coupling between electromagnetic (nonpotential) and gravitational disturbances is found for oblique propagation relatively to particle streams. The general dispersion law is derived and applied to the case of two countersteaming dust beams of equal strength and quiasiperpendicular propagation. It reveals a strong linear coupling between the low-frequency aperiodically unstable electromagnetic (AEM) and the Jeans (JM) modes. The coupling is of a mode conversion type, resulting in a frequency gap in the dispersion, and thus significantly modifies the instability criteria. It is shown that, in contrast to the electrostatic case, AEM and JM coupling in streaming self-gravitating plasmas can actually appear even if the plasma frequencies of the dust species greatly exceed the corresponding Jeans frequencies
D-brane physics. From weak to strong coupling
Energy Technology Data Exchange (ETDEWEB)
Vieira Lopes, Daniel Ordine
2013-01-10
In this thesis we discuss two aspects of branes relevant to high-energy phenomenology. First, we consider a single D6-brane wrapping a special Lagrangian cycle and the background space compactified in a Calabi-Yau orientifold the conditions needed to obtain a four-dimensional N=1 supersymmetric theory. We calculate the bosonic part of the effective action by performing a Kaluza-Klein reduction of the brane seven-dimensional action, and obtain the N=1 characteristic data. To discuss the moduli, we first fix the moduli from deformations of the background Calabi-Yau and study the D-brane deformation moduli space. We next allow for Calabi-Yau deformations, and show that the moduli space for complex structure deformations is corrected by the fields living on the D6-brane. We also calculate the scalar potential from D- and F-terms generated from brane and background configurations that would break the supersymmetry condition. We then, via Mirror Symmetry, relate the spectrum obtained in our work to the spectrum in Type IIB effective theory with D3- D5- and D7-branes, and we propose a Kaehler potential for the moduli space of brane deformations in Type IIB theories. In the second part of the thesis we discuss effects of brane intersections when the string coupling can become strong, and we work in the framework of F-theory. After reviewing the basics of F-theory constructions and a particular SU(5) model already discussed in the literature, we construct a model which contains a point of E{sub 8} singularity, and curves of E{sub 6} singularity. By explicitly resolving the space, we show that the resolution requires the introduction of higher dimensional fibers, and argue how we can circumvent this problem for the E{sub 6} curve, leading to the expected resolution that generate an E{sub 6} group, while at the E{sub 8} point we cannot make the resolution lead to an expected E{sub 8} structure.
Quiescent H-mode plasmas with strong edge rotation in the cocurrent direction.
Burrell, K H; Osborne, T H; Snyder, P B; West, W P; Fenstermacher, M E; Groebner, R J; Gohil, P; Leonard, A W; Solomon, W M
2009-04-17
For the first time in any tokamak, quiescent H-mode (QH-mode) plasmas have been created with strong edge rotation in the direction of the plasma current. This confirms the theoretical prediction that the QH mode should exist with either sign of the edge rotation provided the magnitude of the shear in the edge rotation is sufficiently large and demonstrates that counterinjection and counteredge rotation are not essential for the QH mode. Accordingly, the present work demonstrates a substantial broadening of the QH-mode operating space and represents a significant confirmation of the theory.
Strong coupling of collection of emitters on hyperbolic meta-material
Biehs, Svend-Age; Xu, Chenran; Agarwal, Girish S.
2018-04-01
Recently, considerable effort has been devoted to the realization of a strong coupling regime of the radiation matter interaction in the context of an emitter at a meta surface. The strong interaction is well realized in cavity quantum electrodynamics, which also show that strong coupling is much easier to realize using a collection of emitters. Keeping this in mind, we study if emitters on a hyperbolic meta materials can yield a strong coupling regime. We show that strong coupling can be realized for densities of emitters exceeding a critical value. A way to detect strong coupling between emitters and hyperbolic metamaterials is to use the Kretschman-Raether configuration. The strong coupling appears as the splitting of the reflectivity dip. In the weak coupling regime, the dip position shifts. The shift and splitting can be used to sense active molecules at surfaces.
Coupled seismic modes and earthquake hazard in Mexico City
Lomnitz, C.
2007-05-01
Wave-to-wave coupling can arise when an acoustic pulse selects a Rayleigh mode of the same speed and both travel together swapping energy across an interface. A similar effect may cause severe damage at distances of several hundred kilometers when an Lg wavetrain incides upon a soft remote sedimentary waveguide, as in Mexico City. Energy at a single dominant frequency is then trapped in the waveguide. When the input power exceeds the damping losses, the trapped mode reverberates in the layer for up to five minutes, causing severe resonant damage to structures.
Electron diamagnetism and toroidal coupling of tearing modes
International Nuclear Information System (INIS)
Cowley, S.C.; Hastie, R.J.
1987-10-01
Using a simple model for the layer of the tearing mode, we demonstrate that toroidally coupled tearing modes with two rational surfaces are most unstable when the ω*'s of the electrons at the rational surfaces are equal. The onset of instability may then occur because of the tuning of ω* rather than the passage of Δ'-like quantities through zero. This mechanism for the onset of instability is sharp since the resonance is narrow. The effect of toroidal rotation is also discussed. 7 refs., 2 figs
Non-linear coupling of drift modes in a quadrupole
International Nuclear Information System (INIS)
Elliott, J.A.; Sandeman, J.C.; Tessema, G.Y.
1990-01-01
We report continuing experimental studies of non-linear interactions of drift waves, with direct evidence of a growth saturation mechanism by transfer of energy to lower frequency modes. Wave launching experiments show that the decay rate of drift waves can be strongly amplitude dependent. (author) 9 refs., 5 figs
Effect of reactive feedback on the transverse mode coupling instability
International Nuclear Information System (INIS)
Myers, S.
1984-08-01
An important and realistic test to examine the effect of reactive feedback on the transverse mode coupling instability could be performed at PEP using the existing feedback system with some minor modifications. This test would of necessity take place at low energy and low synchrotron tune. Such an experiment is of great importance for the design of the LEP reactive feedback system and for the ultimate evaluation of LEP performance
Connection between strong and weak coupling in the mean spherical model in 1 + 1 dimensions
International Nuclear Information System (INIS)
Banks, J.L.
1980-01-01
I extend the strong-coupling expansion obtained by Srednicki, for the β-function of the mean spherical model in 1 + 1 dimensions, in the hamiltonian formulation. I use ordinary and two-point Pade approximants to extrapolate this result to weak coupling. I find a reasonably smooth connection between strong and weak coupling, and good numerical agreement with the exact solution. (orig.)
Nonlinear saturation of the trapped-ion mode by mode coupling in two dimensions
International Nuclear Information System (INIS)
Cohen, B.I.; Tang, W.M.
1977-01-01
A study of the nonlinear saturation by mode coupling of the dissipative trapped-ion mode is presented in which both radial and poloidal variations are considered. The saturation mechanism consists of the nonlinear coupling via E x B convection of energy from linearly unstable modes to stable modes. Stabilization is provided at short poloidal wavelengths by Landau damping from trapped and circulating ions, at short radial wavelengths by effects associated with the finite ion banana excursions and at long wavelengths by ion collisions. A one-dimensional, nonlinear partial differential equation for the electrostatic potential derived in earlier work is extended to two dimensions and to third order in amplitude. Included systematically are kinetic effects, e.g., Landau damping and its spatial dependence due to magnetic shear. The stability and accessibility of equilibria are considered in detail for cases far from as well as close to marginal stability. In the first case three-wave interactions are found to be important when the spectrum of unstable modes is sufficiently narrow. In the latter case, it is found that for a single unstable mode, a four-wave interaction can provide the dominant saturation mechanism. Cross-field transport is calculated, and the scaling of results is considered for tokamak parameters
Strong Carrier–Phonon Coupling in Lead Halide Perovskite Nanocrystals
2017-01-01
We highlight the importance of carrier–phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr3 has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL band have been identified as due to the Fröhlich interaction. The energy of longitudinal optical (LO) phonons has been determined from the separation of the zero phonon band and phonon replicas. We reason that the observed LO phonon coupling can only be related to an orthorhombically distorted crystal structure of the perovskite nanocrystals. Additionally, the strength of carrier–phonon coupling has been characterized using the ratio between the intensities of the first phonon replica and the zero-phonon band. PL emission from localized versus delocalized carriers has been identified as the source of the observed discrepancies between the LO phonon energy and phonon coupling strength under quasi-resonant and nonresonant excitation conditions, respectively. PMID:29019652
Strong Carrier-Phonon Coupling in Lead Halide Perovskite Nanocrystals
Iaru, Claudiu M; Geuchies, Jaco J|info:eu-repo/dai/nl/370526090; Koenraad, Paul M; Vanmaekelbergh, Daniël|info:eu-repo/dai/nl/304829137; Silov, Andrei Yu
2017-01-01
We highlight the importance of carrier-phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr3 has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL
Lasing by driven atoms-cavity system in collective strong coupling regime.
Sawant, Rahul; Rangwala, S A
2017-09-12
The interaction of laser cooled atoms with resonant light is determined by the natural linewidth of the excited state. An optical cavity is another optically resonant system where the loss from the cavity determines the resonant optical response of the system. The near resonant combination of an optical Fabry-Pérot cavity with laser cooled and trapped atoms couples two distinct optical resonators via light and has great potential for precision measurements and the creation of versatile quantum optics systems. Here we show how driven magneto-optically trapped atoms in collective strong coupling regime with the cavity leads to lasing at a frequency red detuned from the atomic transition. Lasing is demonstrated experimentally by the observation of a lasing threshold accompanied by polarization and spatial mode purity, and line-narrowing in the outcoupled light. Spontaneous emission into the cavity mode by the driven atoms stimulates lasing action, which is capable of operating as a continuous wave laser in steady state, without a seed laser. The system is modeled theoretically, and qualitative agreement with experimentally observed lasing is seen. Our result opens up a range of new measurement possibilities with this system.
Modeling bidirectionally coupled single-mode semiconductor lasers
International Nuclear Information System (INIS)
Mulet, Josep; Masoller, Cristina; Mirasso, Claudio R.
2002-01-01
We develop a dynamical model suitable for the description of two mutually coupled semiconductor lasers in a face-to-face configuration. Our study considers the propagation of the electric field along the compound system as well as the evolution of the carrier densities within each semiconductor laser. Mutual injection, passive optical feedback, and multiple reflections are accounted for in this framework, although under weak to moderate coupling conditions. We systematically describe the effect of the coupling strength on the spectrum of monochromatic solutions and on the respective dynamical behavior. By assuming single-longitudinal-mode operation, weak mutual coupling and slowly varying approximation, the dynamical model can be reduced to rate equations describing the mutual injection from one laser to its counterpart and vice versa. A good agreement between the complete and simplified models is found for small coupling. For larger coupling, higher-order terms lead to a smaller threshold reduction, reflected itself in the spectrum of the monochromatic solutions and in the dynamics of the optical power
Infrared equivalence of strongly and weakly coupled gauge theories
International Nuclear Information System (INIS)
Olesen, P.
1975-10-01
Using the decoupling theorem of Apelquist and Carazzone, it is shown that in terms of Feynman diagrams the pure Yang-Mills theory is equivalent in the infrared limit to a theory (zero-mass renormalized), where the vector mesons are coupled fo fermions, and where the fermions do not decouple. By taking enough fermions it is then shown that even though the pure Yang-Mills theory is characterized by the lack of applicability of perturbation theory, nevertheless the effective coupling in the equivalent fermion description is very weak. The effective mass in the zero-mass renormalization blows up. In the fermion description, diagrams involving only vector mesons are suppressed relative to diagrams containing at least one fermion loop. (Auth.)
Effect of strong coupling on interfacial electron transfer dynamics in ...
Indian Academy of Sciences (India)
Unknown
regarded as the best sensitizing dyes for solar energy conversion for their strong visible absorption bands, long-lived ... solar cells based on dye-sensitized nanocrystalline. TiO2. High affinity for the TiO2 surface, which is ... pump pulses at 400 nm, one part of 800 nm with. 200 µJ/pulse, is frequency doubled in BBO crystals.
Operator product expansion of the lowest weight CPOs in N=4 SYM4 at strong coupling
International Nuclear Information System (INIS)
Arutyunov, Gleb; Frolov, Sergey; Petkou, Anastasios C.
2000-01-01
We present a detailed analysis of the 4-point functions of the lowest weight chiral primary operators O I ∼tr(phi (i phi j) ) in N=4 SYM 4 at strong coupling and show that their structure is compatible with the predictions of AdS/CFT correspondence. In particular, all power-singular terms in the 4-point functions exactly coincide with the contributions coming from the conformal blocks of the CPOs, the R -symmetry current and the stress tensor. Operators dual to string modes decouple at strong coupling. We compute the anomalous dimensions and the leading 1/N 2 corrections to the normalization constants of the 2- and 3-point functions of scalar and vector double-trace operators with approximate dimensions 4 and 5, respectively. We also find that the conformal dimensions of certain towers of double-trace operators in the 105 , 84 and 175 irreps are non-renormalized. We show that, despite the absence of a non-renormalization theorem for the double-trace operator in the 20 irrep, its anomalous dimension vanishes. As by-products of our investigation, we derive explicit expressions for the conformal block of the stress tensor, and for the conformal partial wave amplitudes of a conserved current and of a stress tensor in d dimensions
International Nuclear Information System (INIS)
Senf, Fabian; Altrock, Philipp M; Behn, Ulrich
2009-01-01
A finite array of N globally coupled Stratonovich models exhibits a continuous nonequilibrium phase transition. In the limit of strong coupling, there is a clear separation of timescales of centre of mass and relative coordinates. The latter relax very fast to zero and the array behaves as a single entity described by the centre of mass coordinate. We compute analytically the stationary probability distribution and the moments of the centre of mass coordinate. The scaling behaviour of the moments near the critical value of the control parameter a c (N) is determined. We identify a crossover from linear to square root scaling with increasing distance from a c . The crossover point approaches a c in the limit N→∞ which reproduces previous results for infinite arrays. Our results are obtained in both the Fokker-Planck and the Langevin approach and are corroborated by numerical simulations. For a general class of models we show that the transition manifold in the parameter space depends on N and is determined by the scaling behaviour near a fixed point of the stochastic flow.
Energy Technology Data Exchange (ETDEWEB)
Abuki, Hiroaki; Hatsuda, Tetsuo [Tokyo Univ., Dept. of Physics, Tokyo (Japan); Itakura, Kazunori [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States)
2002-09-01
The two-flavor color superconductivity is studied over a wide range of baryon density with a single model. We pay a special attention to the spatial-momentum dependence of the gap and to the spatial-structure of Cooper pairs. At extremely high baryon density ({approx}O(10{sup 10} {rho}{sub 0}) with {rho}{sub 0} being the normal nuclear matter density), our model becomes equivalent to the usual perturbative QCD treatment and the gap is shown to have a sharp peak near the Fermi surface due to the weak-coupling nature of QCD. On the other hand, the gap is a smooth function of the momentum at lower densities ({approx}O(10{sup 10} {rho}{sub 0})) due to strong color magnetic and electric interactions. To study the structural change of Cooper pairs from high density to lower density, quark correlation in the color superconductor is studied both in the momentum space and in the coordinate space. The size of the Cooper pair is shown to become comparable to the averaged inter-quark distance at low densities. Also, effects of the momentum-dependent running coupling and the antiquark pairing, which are both small at high density, are shown to be non-negligible at low densities. These features are highly contrasted to the standard BCS superconductivity in metals. (author)
Evidence for strong electron-lattice coupling in La2-xSrxNiO4
International Nuclear Information System (INIS)
McQueeney, R.J.; Sarrao, J.L.
1999-01-01
The inelastic neutron scattering spectra were measured for several Sr concentrations of polycrystalline La 2-x Sr x NiO 4 . The authors find that the generalized phonon density-of-states is identical for x = 0 and x = 1/8. For x = 1/3 and x = 1/2, the band of phonons corresponding to the in-plane oxygen vibrations (> 65 meV) splits into two subbands centered at 75 meV and 85 meV. The lower frequency band increases in amplitude for the x = 1/2 sample, indicating that it is directly related to the hole concentration. These changes are associated with the coupling of oxygen vibrations to doped holes which reside in the NiO 2 planes and are a signature of strong electron-lattice coupling. Comparison of La 1.9 Sr 0.1 CuO 4 and La 1.875 Sr 0.125 NiO 4 demonstrates that much stronger electron-lattice coupling occurs for particular modes in the cuprate for modest doping and is likely related to the metallic nature of the cuprate
Coupled-cluster treatment of molecular strong-field ionization
Jagau, Thomas-C.
2018-05-01
Ionization rates and Stark shifts of H2, CO, O2, H2O, and CH4 in static electric fields have been computed with coupled-cluster methods in a basis set of atom-centered Gaussian functions with a complex-scaled exponent. Consideration of electron correlation is found to be of great importance even for a qualitatively correct description of the dependence of ionization rates and Stark shifts on the strength and orientation of the external field. The analysis of the second moments of the molecular charge distribution suggests a simple criterion for distinguishing tunnel and barrier suppression ionization in polyatomic molecules.
Skorobogatiy, Maksim; Jacobs, Steven; Johnson, Steven; Fink, Yoel
2002-10-21
Perturbation theory formulation of Maxwell's equations gives a theoretically elegant and computationally efficient way of describing small imperfections and weak interactions in electro-magnetic systems. It is generally appreciated that due to the discontinuous field boundary conditions in the systems employing high dielectric contrast profiles standard perturbation formulations fail when applied to the problem of shifted material boundaries. In this paper we developed a novel coupled mode and perturbation theory formulations for treating generic non-uniform (varying along the direction of propagation) perturbations of a waveguide cross-section based on Hamiltonian formulation of Maxwell equations in curvilinear coordinates. We show that our formulation is accurate and rapidly converges to an exact result when used in a coupled mode theory framework even for the high index-contrast discontinuous dielectric profiles. Among others, our formulation allows for an efficient numerical evaluation of induced PMD due to a generic distortion of a waveguide profile, analysis of mode filters, mode converters and other optical elements such as strong Bragg gratings, tapers, bends etc., and arbitrary combinations of thereof. To our knowledge, this is the first time perturbation and coupled mode theories are developed to deal with arbitrary non-uniform profile variations in high index-contrast waveguides.
Modelling of strongly coupled particle growth and aggregation
International Nuclear Information System (INIS)
Gruy, F; Touboul, E
2013-01-01
The mathematical modelling of the dynamics of particle suspension is based on the population balance equation (PBE). PBE is an integro-differential equation for the population density that is a function of time t, space coordinates and internal parameters. Usually, the particle is characterized by a unique parameter, e.g. the matter volume v. PBE consists of several terms: for instance, the growth rate and the aggregation rate. So, the growth rate is a function of v and t. In classical modelling, the growth and the aggregation are independently considered, i.e. they are not coupled. However, current applications occur where the growth and the aggregation are coupled, i.e. the change of the particle volume with time is depending on its initial value v 0 , that in turn is related to an aggregation event. As a consequence, the dynamics of the suspension does not obey the classical Von Smoluchowski equation. This paper revisits this problem by proposing a new modelling by using a bivariate PBE (with two internal variables: v and v 0 ) and by solving the PBE by means of a numerical method and Monte Carlo simulations. This is applied to a physicochemical system with a simple growth law and a constant aggregation kernel.
Strong coupling constant from Adler function in lattice QCD
Hudspith, Renwick J.; Lewis, Randy; Maltman, Kim; Shintani, Eigo
2016-09-01
We compute the QCD coupling constant, αs, from the Adler function with vector hadronic vacuum polarization (HVP) function. On the lattice, Adler function can be measured by the differential of HVP at two different momentum scales. HVP is measured from the conserved-local vector current correlator using nf = 2 + 1 flavor Domain Wall lattice data with three different lattice cutoffs, up to a-1 ≈ 3.14 GeV. To avoid the lattice artifact due to O(4) symmetry breaking, we set the cylinder cut on the lattice momentum with reflection projection onto vector current correlator, and it then provides smooth function of momentum scale for extracted HVP. We present a global fit of the lattice data at a justified momentum scale with three lattice cutoffs using continuum perturbation theory at 𝒪(αs4) to obtain the coupling in the continuum limit at arbitrary scale. We take the running to Z boson mass through the appropriate thresholds, and obtain αs(5)(MZ) = 0.1191(24)(37) where the first is statistical error and the second is systematic one.
Strong-coupling interaction in high-Tc superconductors
International Nuclear Information System (INIS)
Ray, D.K.
1991-01-01
Extensive experimental and theoretical work have been done to understand the mechanisms of superconductivity. Until 1986 when Bednorz and Muller discovered superconductivity in the copper oxide perovskite, the principal mechanism was found to be electron-phonon interaction and the characteristics of superconductivity vary depending on the strength of the electron-phonon interaction and the electronic structure. The essential characteristic of these conventional superconductors could be divided into two groups: wide band metals with low density of states N(E F ) at the Fermi energy E F and a rather weak electron-phonon coupling V obeying the universal characteristics of the BCS theory and narrow d band metals, compounds, and alloys with high values of N(E F ), electron-phonon coupling V and non negligible Coulomb interaction between the electrons. In this paper a short summary and the important results of these theories are discussed. The inherent limitations of these theories based on electron-phonon interaction will be discussed. The authors indicate the major characteristics of the new superconductors. These characteristics are difficult to explain on the basis of either the conventional electron-phonon theory or theories based on magnetic interactions alone
Nonlinear Excitations in Strongly-Coupled Fermi-Dirac Plasmas
Akbari-Moghanjoughi, M.
2012-01-01
In this paper we use the conventional quantum hydrodynamics (QHD) model in combination with the Sagdeev pseudopotential method to explore the effects of Thomas-Fermi nonuniform electron distribution, Coulomb interactions, electron exchange and ion correlation on the large-amplitude nonlinear soliton dynamics in Fermi-Dirac plasmas. It is found that in the presence of strong interactions significant differences in nonlinear wave dynamics of Fermi-Dirac plasmas in the two distinct regimes of no...
Energy loss, equilibration, and thermodynamics of a baryon rich strongly coupled quark-gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Rougemont, Romulo [Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, Butantã, CEP 05508-090, São Paulo, SP (Brazil); Ficnar, Andrej [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Finazzo, Stefano I. [Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, Butantã, CEP 05508-090, São Paulo, SP (Brazil); Instituto de Física Teórica, Universidade do Estado de São Paulo, Rua Dr. Bento T. Ferraz, 271, CEP 01140-070, São Paulo, SP (Brazil); Noronha, Jorge [Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, Butantã, CEP 05508-090, São Paulo, SP (Brazil); Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027 (United States)
2016-04-15
Lattice data for the QCD equation of state and the baryon susceptibility near the crossover phase transition (at zero baryon density) are used to determine the input parameters of a 5-dimensional Einstein-Maxwell-Dilaton holographic model that provides a consistent holographic framework to study both equilibrium and out-of-equilibrium properties of a hot and baryon rich strongly coupled quark-gluon plasma (QGP). We compare our holographic equation of state computed at nonzero baryon chemical potential, μ{sub B}, with recent lattice calculations and find quantitative agreement for the pressure and the speed of sound for μ{sub B}≤400 MeV. This holographic model is used to obtain holographic predictions for the temperature and μ{sub B} dependence of the drag force and the Langevin diffusion coefficients associated with heavy quark jet propagation as well as the jet quenching parameter q̂ and the shooting string energy loss of light quarks in the baryon dense plasma. We find that the energy loss of heavy and light quarks generally displays a nontrivial, fast-varying behavior as a function of the temperature near the crossover. Moreover, energy loss is also found to generally increase due to nonzero baryon density effects even though this strongly coupled liquid cannot be described in terms of well defined quasiparticle excitations. Furthermore, to get a glimpse of how thermalization occurs in a hot and baryon dense QGP, we study how the lowest quasinormal mode of an external massless scalar disturbance in the bulk is affected by a nonzero baryon charge. We find that the equilibration time associated with the lowest quasinormal mode decreases in a dense medium.
Collective oscillations and coupled modes in confined microfluidic droplet arrays
Schiller, Ulf D.; Fleury, Jean-Baptiste; Seemann, Ralf; Gompper, Gerhard
Microfluidic droplets have a wide range of applications ranging from analytic assays in cellular biology to controlled mixing in chemical engineering. Ensembles of microfluidic droplets are interesting model systems for non-equilibrium many-body phenomena. When flowing in a microchannel, trains of droplets can form microfluidic crystals whose dynamics are governed by long-range hydrodynamic interactions and boundary effects. In this contribution, excitation mechanisms for collective waves in dense and confined microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific `defect' patterns in flowing droplet trains. While longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets, transversely excited modes form propagating waves that behave like microfluidic phonons. We show that the confinement induces a coupling between longitudinal and transverse modes. We also investigate the life time of the collective oscillations and discuss possible mechanisms for the onset of instabilities. Our results demonstrate that microfluidic phonons can exhibit effects beyond the linear theory, which can be studied particularly well in dense and confined systems. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SE 1118/4.
Strongly Coupled Magnetic and Electronic Transitions in Multivalent Strontium Cobaltites
Lee, J. H.; Choi, Woo Seok; Jeen, H.; Lee, H.-J.; Seo, J. H.; Nam, J.; Yeom, M. S.; Lee, H. N.
2017-01-01
The topotactic phase transition in SrCoO x (x = 2.5–3.0) makes it possible to reversibly transit between the two distinct phases, i.e. the brownmillerite SrCoO2.5 that is a room-temperature antiferromagnetic insulator (AFM-I) and the perovskite SrCoO3 that is a ferromagnetic metal (FM-M), owing to their multiple valence states. For the intermediate x values, the two distinct phases are expected to strongly compete with each other. With oxidation of SrCoO2.5, however, it has been conjectured t...
Elementary modes of coupled oscillators as whispering-gallery microresonators
Banerjee, Rabin; Mukherjee, Pradip
2015-10-01
We obtain the elementary modes of a system of parity-time reversal (PT)-symmetric coupled oscillators with balanced loss and gain. These modes are used to give a physical picture of the phase transition recently reported [C. M. Bender, M. Gianfreda, B. Peng, S. K. Özdemir and L. Yang, Phys. Rev. A 88, 062111 (2013); L. Yang, S. K. Özdemir and B. Peng, 12th Int. Workshop and Conf. Pseudo-Hermitian Hamiltonians in Quantum Physics, Istanbul, Turkey, July 2013; B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender and L. Yang, Nat. Phys. 10, 394 (2014)] in experiments with whispering-gallery microresonators.
Hybrid Alfvén resonant mode generation in the magnetosphere-ionosphere coupling system
International Nuclear Information System (INIS)
Hiraki, Yasutaka; Watanabe, Tomo-Hiko
2012-01-01
Feedback unstable Alfvén waves involving global field-line oscillations and the ionospheric Alfvén resonator (IAR) were comprehensively studied to clarify their properties of frequency dispersion, growth rate, and eigenfunctions. It is discovered that a new mode called here the hybrid Alfvén resonant (HAR) mode can be destabilized in the magnetosphere-ionosphere coupling system with a realistic Alfvén velocity profile. The HAR mode found in a high frequency range over 0.3 Hz is caused by coupling of IAR modes with strong dispersion and magnetospheric cavity resonances. The harmonic relation of HAR eigenfrequencies is characterized by a constant frequency shift from those of IAR modes. The three modes are robustly found even if effects of two-fluid process and ionospheric collision are taken into account and thus are anticipated to be detected by magnetic field observations in a frequency range of 0.3–1 Hz in auroral and polar-cap regions.
Directional interacting whispering-gallery modes in coupled dielectric microdisks
International Nuclear Information System (INIS)
Ryu, Jung-Wan; Lee, Soo-Young; Kim, Chil-Min; Park, Young-Jai
2006-01-01
We study the optical interaction in a coupled dielectric microdisks by investigating the splitting of resonance positions of interacting whispering-gallery modes (WGM's) and their pattern change, depending on the distance between the microdisks. It is shown that the interaction between the WGM's with odd parity about the y axis becomes appreciable at a distance less than a wavelength and causes directional emissions of the resulting interacting WGM's. The directionality of the interacting WGM's can be understood in terms of an effective boundary deformation in ray dynamical analysis. We also discuss the oscillation of the splitting when the distance is greater than a wavelength
Second Order Sliding Mode Control of the Coupled Tanks System
Directory of Open Access Journals (Sweden)
Fayiz Abu Khadra
2015-01-01
Full Text Available Four classes of second order sliding mode controllers (2-SMC have been successfully applied to regulate the liquid level in the second tank of a coupled tanks system. The robustness of these classes of 2-SMC is investigated and their performances are compared with a first order controller to show the merits of these controllers. The effectiveness of these controllers is verified through computer simulations. Comparison between the controllers is based on the time domain performance measures such as rise time, settling time, and the integral absolute error. Results showed that controllers are able to regulate the liquid level with small differences in their performance.
Magnetohydrodynamic stability of tokamak plasmas with poloidal mode coupling
International Nuclear Information System (INIS)
Shigueoka, H.; Sakanaka, P.H.
1987-01-01
The stability behavior with respect to internal modes is examined for a class of tokamak equilibria with non-circular cross sections. The surfaces of the constant poloidal magnetic flux ψ (R,Z) are obtained numerically by solving the Grad-Shafranov's equation with a specified shape for the outmost plasma surface. The equation of motion for ideal MHD stability is written in a ortogonal coordinate system (ψ, χ, φ). Th e stability analysis is performance numerically in a truncated set of coupled m (poloidal wave number) equations. The calculations involve no approximations, and so all parameters of the equilibrium solution can be arbitrarily varied. (author) [pt
Analysis of magnetic damping problem by the coupled mode superposition method
International Nuclear Information System (INIS)
Horie, Tomoyoshi; Niho, Tomoya
1997-01-01
In this paper we describe the coupled mode superposition method for the magnetic damping problem, which is produced by the coupled effect between the deformation and the induced eddy current of the structures for future fusion reactors and magnetically levitated vehicles. The formulation of the coupled mode superposition method is based on the matrix equation for the eddy current and the structure using the coupled mode vectors. Symmetric form of the coupled matrix equation is obtained. Coupled problems of a thin plate are solved to verify the formulation and the computer code. These problems are solved efficiently by this method using only a few coupled modes. Consideration of the coupled mode vectors shows that the coupled effects are included completely in each coupled mode. (author)
Masood, W.; Mirza, Arshad M.; Nargis, Shahida
2010-08-01
The coupled Shukla-Varma (SV) and convective cell mode is revisited in classical and quantum dusty magnetoplasmas. It is shown that the inclusion of electron thermal effects modifies the original coupled SV and convective cell mode. It is also discussed how the quantum effects can be incorporated in the coupled SV and convective cell mode.
Inelastic electron scattering influence on the strong coupling oxide superconductors
International Nuclear Information System (INIS)
Gabovich, A.M.; Voitenko, A.I.
1995-01-01
The superconducting order parameters Δ and energy gap Δ g are calculated taking into account the pair-breaking inelastic quasiparticle scattering by thermal Bose-excitations, e.g., phonons. The treatment is self-consistent because the scattering amplitude depends on Δ. The superconducting transition for any strength of the inelastic scattering is the phase transition of the first kind and the dependences Δ (T) and Δ g (T) tend to rectangular curve that agrees well with the experiment for high-Tc oxides. On the basis of the developed theory the nuclear spin-lattice relaxation rate R s in the superconducting state is calculated. The Hebel-Slichter peak in R s (T) is shown to disappear for strong enough inelastic scattering
Unconventional geometric logic gate in a strong-driving-assisted multi-mode cavity
International Nuclear Information System (INIS)
Chang-Ning, Pan; Di-Wu, Yang; Xue-Hui, Zhao; Mao-Fa, Fang
2010-01-01
We propose a scheme to implement an unconventional geometric logic gate separately in a two-mode cavity and a multi-mode cavity assisted by a strong classical driving field. The effect of the cavity decay is included in the investigation. The numerical calculation is carried out, and the result shows that our scheme is more tolerant to cavity decay than the previous one because the time consumed for finishing the logic gate is doubly reduced. (general)
DEFF Research Database (Denmark)
Kutluyarov, Ruslan V.; Bagmanov, Valeriy Kh; Antonov, Vyacheslav V.
2017-01-01
This paper is focused on the analysis of linear and nonlinear mode coupling in space division multiplexed (SDM) optical communications over step-index fiber in few-mode regime. Linear mode coupling is caused by the fiber imperfections, while the nonlinear coupling is caused by the Kerr......-nonlinearities. Therefore, we use the system of generalized coupled nonlinear Schrödinger equations (GCNLSE) to describe the signal propagation. We analytically show that the presence of linear mode coupling may cause increasing of the nonlinear signal distortions. For the detailed study we solve GCNLSE numerically...... for the standard step index fiber at the wavelength of 850 nm in the basis of spatial modes with helical phase front (vortex modes) and for a special kind of few-mode fiber with enlarged core, providing propagation of five spatial modes at 1550 nm. Simulation results confirm that the linear mode coupling may lead...
Thermal DBI action for the D3-brane at weak and strong coupling
DEFF Research Database (Denmark)
Grignani, Gianluca; Harmark, Troels; Marini, Andrea
2014-01-01
We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading T4 correction for the thermal DBI action at weak and strong coupling we find that the 3/4 ...
Strong coupling constant extraction from high-multiplicity Z +jets observables
Johnson, Mark; Maître, Daniel
2018-03-01
We present a strong coupling constant extraction at next-to-leading order QCD accuracy using ATLAS Z +2 ,3,4 jets data. This is the first extraction using processes with a dependency on high powers of the coupling constant. We obtain values of the strong coupling constant at the Z mass compatible with the world average and with uncertainties commensurate with other next-to-leading order extractions at hadron colliders. Our most conservative result for the strong coupling constant is αS(MZ)=0.117 8-0.0043+0.0051 .
Split resonance modes of a AuBRC plasmonic nanosystem caused by the coupling effect
International Nuclear Information System (INIS)
Ni, Yuan; Kan, Caixia; Xu, Haiying; Wang, Changshun
2016-01-01
A plasmonic nanosystem can give rise to particular optical responses due to a coupling effect. In this work, we investigate the optical properties and field distributions of a novel ‘matrioska’ nanocavity structure composed of a Au nanorod (AuNR) within a nanobox (AuNB) via finite-difference time-domain (FDTD) simulation. This nanocavity can be fabricated by a two-step wet-chemical method. The multiple SPR modes of optical spectrum for nanocavity are caused by the strong interaction between the AuNR-core and AuNB-shell when the incident light is perpendicular or parallel to the long axis of the Au box/rod nanocavity (AuBRC). The SPR modes are known as the dipole–dipole bonding resonance mode in the lower-energy region and the antibonding resonance mode in the higher-energy region. It is proposed that AuBRC can escape the orientation confinement of AuNR because the multiple modes occur and provide a potential application for the enhancement of the photoluminescence signal. Additionally, the SPR modes red-shift with increasing the offset of the AuNR-core, whereas the SPR mode dramatically blue-shifts when the conductive coupling is formed. The intense ‘hot-spot’ could be induced within a small interaction region in the conductive coupled system. The SPR line-shape of high quality would also be promoted. The SPR is highly sensitive to the medium, which is promising in the sensing and detecting devices. (paper)
Strong Helioseismic Constraints on Weakly-Coupled Plasmas
Nayfonov, Alan
The extraordinary accuracy of helioseismic data allows detailed theoretical studies of solar plasmas. The necessity to produce solar models matching the experimental results in accuracy imposes strong constrains on the equations of state of solar plasmas. Several discrepancies between the experimental data and models have been successfully identified as the signatures of various non-ideal phenomena. Of a particular interest are questions of the position of the energy levels and the continuum edge and of the effect of the excited states in the solar plasma. Calculations of energy level and continuum shifts, based on the Green function formalism, appeared recently in the literature. These results have been used to examine effects of the shifts on the thermodynamic quantities. A comparison with helioseismic data has shown that the calculations based on lower-level approximations, such as the static screening in the effective two-particle wave equation, agree very well with the experimental data. However, the case of full dynamic screening produces thermodynamic quantities inconsistent with observations. The study of the effect of different internal partition functions on a complete set of thermodynamic quantities has revealed the signature of the excited states in the MHD (Mihalas, Hummer, Dappen) equation of state. The presence of exited states causes a characteristic 'wiggle' in the thermodynamic quantities due to the density-dependent occupation probabilities. This effect is absent if the ACTEX (ACTivity EXpansion) equation of state is used. The wiggle has been found to be most prominent in the quantities sensitive to density. The size of this excited states effect is well within the observational power of helioseismology, and very recent inversion analyses of helioseismic data seem to indicate the presence of the wiggle in the sun. This has a potential importance for the helioseismic determination of the helium abundance of the sun.
Effects of toroidal coupling on the stability of tearing modes
International Nuclear Information System (INIS)
Carreras, B.; Hicks, H.R.; Lee, D.K.
1980-06-01
The time evolution of tearing modes in toroidal geometry is studied in the low-β and large aspect ratio limit. An initial value three-dimensional computer code, which numerically advances the reduced set of resistive magnetohydrodynamic equations is employed. Toroidicity has, in general, a destabilizing effect on tearing modes in this limit. A generalization of the Δ' formalism can be used to study the linear regime. The results obtained in this way are in very good agreement with the results from the initial value code. The nonlinear phase of the evolution is also followed numerically. In the case of strong interaction of different helicities, a larger region of stochastic magnetic field lines results than in the cylindrical geometry case
International Nuclear Information System (INIS)
Golden, Kenneth I.
2002-01-01
The main research accomplishments/findings of the project were the following: (1) Publication of an in-depth review article in Physics of Plasmas on the quasilocalized charge approximation (QLCA) in strongly coupled plasma physics and its application to a variety of Coulomb systems: the model one-component plasma in three and two dimensions, binary ionic mixtures, charged particle bilayers, and laboratory dusty plasmas. (2) In the strongly coupled Coulomb liquid phase, the physical basis of the QLCA, namely, the caging of particles trapped in slowly fluctuating local potential minima, is supported by molecular dynamics simulation of the classical three-dimensional one-component plasma. (3) The QLCA theory, when applied to the analysis of the collective modes in strongly coupled charged particle bilayers, predicts the existence of a remarkable long-wavelength energy gap in the out-of-phase excitation spectrum. More recent theoretical calculations based on the three principal frequency-moment sum rules reveal that the gap persists for arbitrary coupling strengths and over the entire classical to quantum domain all the way down to zero temperature. The existence of the energy gap has now been confirmed in a molecular dynamics simulation of the charged particle bilayer. (4) New compressibility and third-frequency-moment sum rules for multilayer plasmas were formulated and applied to the analysis of the dynamical structure function of charged particle bilayers and superlattices. (5) An equivalent of the Debye-Huckel weak coupling equilibrium theory for classical charged particle bilayer and superlattice plasmas was formulated. (6) The quadratic fluctuation-dissipation theorem (QFDT) for layered classical plasmas was formulated. (7) The QFDT was applied to a powerful kinetic theory-based description of the density-density response function and long-wavelength plasma mode behavior in strongly coupled two-dimensional Coulomb fluids in the weakly degenerate quantum domain
Coulomb Impurity Problem of Graphene in Strong Coupling Regime in Magnetic Fields.
Kim, S C; Yang, S-R Eric
2015-10-01
We investigate the Coulomb impurity problem of graphene in strong coupling limit in the presence of magnetic fields. When the strength of the Coulomb potential is sufficiently strong the electron of the lowest energy boundstate of the n = 0 Landau level may fall to the center of the potential. To prevent this spurious effect the Coulomb potential must be regularized. The scaling function for the inverse probability density of this state at the center of the impurity potential is computed in the strong coupling regime. The dependence of the computed scaling function on the regularization parameter changes significantly as the strong coupling regime is approached.
Nonlinear coupling of low-n modes in PBX-M
International Nuclear Information System (INIS)
Sesnic, S.; Kaita, R.; Kaye, S.; Okabayashi, M.; Bell, R.E.; Kugel, H.W.; Leblanc, B.; Takahashi, H.; Gammel, G.M.; Holland, A.; Levinton, F.M.; Powers, E.J.; Im, S.
1994-03-01
In many of the medium and high beta discharges in PBX-M low-n modes with different n-numbers are observed. The probability of a low-n mode to be excited decreases with increasing n-number. If two modes of different frequency and n-number (ω 1 and ω 2 ; k 1 and k 2 ) are simultaneously present in the plasma, these modes interact nonlinearly and create sidebands in frequency (ω 2 ±ω 1 ) and wave-number (k 2 ±k 1 or n 2 ±n 1 and m 2 ±m 1 ). If these fundamental modes, ω 1 /k 1 and ω 2 /k 2 , contain strong harmonics, the harmonics also interact nonlinearly, creating more nonlinear products: kω 2 ±lω 1 and kk 2 ±lk 1 , where k and l are integers describing the harmonics. These modes, the products of nonlinear interaction between two fundamental modes, most probably have a kink character. During this three-wave coupling interaction, a decrease in neutron rate and an enhanced loss of medium energy ions are observed
The quantum Zeno and anti-Zeno effects with strong system-environment coupling.
Chaudhry, Adam Zaman
2017-05-11
To date, studies of the quantum Zeno and anti-Zeno effects focus on quantum systems that are weakly interacting with their environment. In this paper, we investigate what happens to a quantum system under the action of repeated measurements if the quantum system is strongly interacting with its environment. We consider as the quantum system a single two-level system coupled strongly to a collection of harmonic oscillators. A so-called polaron transformation is then used to make the problem in the strong system-environment coupling regime tractable. We find that the strong coupling case exhibits quantitative and qualitative differences as compared with the weak coupling case. In particular, the effective decay rate does not depend linearly on the spectral density of the environment. This then means that, in the strong coupling regime that we investigate, increasing the system-environment coupling strength can actually decrease the effective decay rate. We also consider a collection of two-level atoms coupled strongly with a common environment. In this case, we find that there are further differences between the weak and strong coupling cases since the two-level atoms can now indirectly interact with one another due to the common environment.
A terahertz study of taurine: Dispersion correction and mode couplings
Dai, Zelin; Xu, Xiangdong; Gu, Yu; Li, Xinrong; Wang, Fu; Lian, Yuxiang; Fan, Kai; Cheng, Xiaomeng; Chen, Zhegeng; Sun, Minghui; Jiang, Yadong; Yang, Chun; Xu, Jimmy
2017-03-01
The low-frequency characteristics of polycrystalline taurine were studied experimentally by terahertz (THz) absorption spectroscopy and theoretically by ab initio density-functional simulations. Full optimizations with semi-empirical dispersion correction were performed in spectral computations and vibrational mode assignments. For comparison, partial optimizations with pure density functional theory were conducted in parallel. Results indicate that adding long-range dispersion correction to the standard DFT better reproduces the measured THz spectra than the popular partial optimizations. The main origins of the observed absorption features were also identified. Moreover, a coupled-oscillators model was proposed to explain the experimental observation of the unusual spectral blue-shift with the increase of temperature. Such coupled-oscillators model not only provides insights into the temperature dynamics of non-bonded interactions but also offers an opportunity to better understand the physical mechanisms behind the unusual THz spectral behaviors in taurine. Particularly, the simulation approach and novel coupled-oscillators model presented in this work are applicable to analyze the THz spectra of other molecular systems.
Coupled fracture modes under anti-plane loading
Directory of Open Access Journals (Sweden)
Les P. Pook
2016-07-01
Full Text Available The linear elastic analysis of homogeneous, isotropic cracked bodies is a Twentieth Century development. It was recognised that the crack tip stress field is a singularity, but it was not until the introduction of the essentially two dimensional stress intensity factor concept in 1957 that widespread application to practical engineering problems became possible. The existence of three dimensional corner point effects in the vicinity of a corner point where a crack front intersects a free surface was investigated in the late 1970s: it was found that modes II and III cannot exist in isolation. The existence of one of these modes always induces the other. An approximate solution for corner point singularities by Bažant and Estenssoro explained some features of corner point effects but there were various paradoxes and inconsistencies. In an attempt to explain these a study was carried out on the coupled in-plane fracture mode induced by a nominal anti-plane (mode III loading applied to plates and discs weakened by a straight crack. The results derived from a large bulk of finite element models showed clearly that Bažant and Estenssoro’s analysis is incomplete. Some of the results of the study are summarised, together with some recent results for a disc under in-plane shear loading. On the basis of these results, and a mathematical argument, the results suggest that the stress field in the vicinity of a corner point is the sum of two singularities: one due to stress intensity factors and the other due to an as yet undetermined corner point singularity.
The non-resonant kink modes triggering strong sawtooth-like crashes in the EAST tokamak
Li, Erzhong; Igochine, V.; Dumbrajs, O.; Xu, L.; Chen, K.; Shi, T.; Hu, L.
2014-12-01
Evolution of the safety factor (q) profile during L-H transitions in the Experimental Advanced Superconducting Tokamak (EAST) was accompanied by strong core crashes prior to regular sawtooth behavior. These crashes appeared in the absence of q = 1 (q is the safety factor) rational surface inside the plasma. Analysis indicates that the m/n = 2/1 tearing mode is destabilized and phase-locked with the m/n = 1/1 non-resonant kink mode (the q = 1 rational surface is absent) due to the self-consistent evolution of plasma profiles as the L-H transition occurs (m and n are the poloidal and toroidal mode numbers, respectively). The growing m/n = 1/1 mode destabilizes the m/n = 2/2 kink mode which eventually triggers the strong crash due to an anomalous heat conductivity, as predicted by the transport model of stochastic magnetic fields using experimental parameters. It is also shown that the magnetic topology changes with the amplitude of m/n = 2/2 mode and the value of center safety factor in a reasonable range.
Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes
DEFF Research Database (Denmark)
Westerhof, E.; Nielsen, Stefan Kragh; Oosterbeek, J.W.
2009-01-01
In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power...
Elevator convection modes in vertical ducts with strong transverse magnetic fields
Zikanov, Oleg; Liu, Li
2014-11-01
Instability modes in the form of axially uniform vertical jets, also called ``elevator modes,'' are known to be solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to an actual flow state is limited, since they quickly break down to secondary instabilities. We consider a downward flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are likely to be not just relevant, but a dominant feature of the flow. Recent experiments indicate that counterparts of such modes may develop in vertically finite ducts leading to high-amplitude fluctuations of temperature. Potential implications for designs of liquid metal blankets for fusion reactors with poloidal ducts are discussed. Financial support was provided by the US NSF (Grant CBET 1232851).
Particle-Hole Character of the Higgs and Goldstone Modes in Strongly Interacting Lattice Bosons
Di Liberto, M.; Recati, A.; Trivedi, N.; Carusotto, I.; Menotti, C.
2018-02-01
We study the low-energy excitations of the Bose-Hubbard model in the strongly interacting superfluid phase using a Gutzwiller approach. We extract the single-particle and single-hole excitation amplitudes for each mode and report emergent mode-dependent particle-hole symmetry on specific arc-shaped lines in the phase diagram connecting the well-known Lorentz-invariant limits of the Bose-Hubbard model. By tracking the in-phase particle-hole symmetric oscillations of the order parameter, we provide an answer to the long-standing question about the fate of the pure amplitude Higgs mode away from the integer-density critical point. Furthermore, we point out that out-of-phase symmetric oscillations in the gapless Goldstone mode are responsible for a full suppression of the condensate density oscillations. Possible detection protocols are also discussed.
Strong Bulk-Edge Coupling in the Compressible Half-Filled Quantum Hall State
International Nuclear Information System (INIS)
Milovanovic, M.V.; Shimshoni, E.
1999-01-01
We studied analytically static correlators in the compressible half-filled quantum Hall state, which characterize the nature of charged excitations in the bulk and on the edge of the system. We employ a modified version of the plasma analogy - namely, a mapping to a classical two-dimensional system of interacting particles - similarly to what has been done in studies of the incompressible (Laughlin) states. However, the 'fake plasma' corresponding to the half-filled state is found to have anomalously weak screening properties. As a consequence, the correlations along the edge do not decay algebraically as in the incompressible case, thus indicating the breakdown of Wen's edge theory. On the other hand, the bulk correlator (which parallels the Girvin-MacDonald algebraic off-diagonal long range order) decays algebraically in a similar way as in the incompressible states, signifying the presence of some kind of bosonic order even in the compressible state. The above results suggest that due to the strong coupling between charged modes on the edge and the neutral Fermions (dipoles) in the bulk, the (attractive) correlation hole is not well defined on the edge. Hence, the system there can be modeled as a free Fermi gas of electrons (with an appropriate boundary condition). A possible experimental indication of a strong bulk-edge coupling at half-filling has been indeed observed in non-local resistance measurements [1]. We also suggest, that while our results contradict the validity of an effective one-dimensional description of the edge excitations on the static level, the dynamics may decouple the edge and bulk so as to recover the Laughlin-like behavior apparent in the experiment of Grayson et al
Redshift of A 1(longitudinal optical) mode for GaN crystals under strong electric field
Gu, Hong; Wu, Kaijie; Zheng, Shunan; Shi, Lin; Zhang, Min; Liu, Zhenghui; Liu, Xinke; Wang, Jianfeng; Zhou, Taofei; Xu, Ke
2018-01-01
We investigated the property of GaN crystals under a strong electric field. The Raman spectra of GaN were measured using an ultraviolet laser, and a remarkable redshift of the A 1(LO) mode was observed. The role of the surface depletion layer was discussed, and the interrelation between the electric field and phonons was revealed. First-principles calculations indicated that, in particular, the phonons that vibrate along the [0001] direction are strongly influenced by the electric field. This effect was confirmed by a surface photovoltage experiment. The results revealed the origin of the redshift and presented the phonon property of GaN under a strong electric field.
The Coupling Structure Features Between (2,1) NTM and (1,1) Internal Mode in EAST Tokamak
International Nuclear Information System (INIS)
Shi Tonghui; Wan Baonian; Sun Youwen; Shen Biao; Qian Jinping; Hu Liqun; Chen Kaiyun; Liu Yong
2015-01-01
In the discharge of EAST tokamak, it is observed that (2,1) neoclassical tearing mode (NTM) is triggered by mode coupling with a (1,1) internal mode. Using singular value decomposition (SVD) method for soft X-ray emission and for electron cyclotron emission (ECE), the coupling spatial structures and coupling process between these two modes are analyzed in detail. The results of SVD for ECE reveal that the phase difference between these two modes equals to zero. This is consistent with the perfect coupling condition. Finally, performing statistical analysis of r 1/1 , ξ 1/1 and w 2/1 , we find that r 1/1 more accurately represents the coupling strength than ξ 1/1 , and r 1/1 is also strongly related to the (2,1) NTM triggering, where r 1/1 is the width of (1,1) internal mode, ξ 1/1 is the perturbed amplitude of (1,1) internal mode, and w 2/1 denot es the magnetic island width of (2,1) NTM. (paper)
Asymmetric excitation of surface plasmons by dark mode coupling
Zhang, X.
2016-02-19
Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.
Asymmetric excitation of surface plasmons by dark mode coupling
Zhang, X.; Xu, Q.; Li, Q.; Xu, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Liu, Y.; Zhang, S.; Zhang, Xixiang; Han, J.; Zhang, W.
2016-01-01
Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.
International Nuclear Information System (INIS)
Tas, Murat; Tanatar, B.
2008-01-01
We calculate the collective excitation modes of strongly coupled bilayer charged Bose systems. We employ the dielectric matrix formulation to study the correlation effects within the random-phase approximation (RPA), the self consistent field approximation Singwi, Tosi, Land, and Sjoelander (STLS), and the quasilocalized charge approximation (QLCA), which satisfies the third-frequency-moment ( 3 >) sum rule. We find that the QLCA predicts a long-wavelength correlation-induced energy gap in the out-of-phase plasmon mode, similar to the situation in electronic bilayer systems. The energy gap and the plasmon density of states are studied as a function of interlayer separation and coupling parameter r s . The results should be helpful for experimental investigations
Linking density functional and mode coupling models for supercooled liquids
Energy Technology Data Exchange (ETDEWEB)
Premkumar, Leishangthem; Bidhoodi, Neeta; Das, Shankar P. [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)
2016-03-28
We compare predictions from two familiar models of the metastable supercooled liquid, respectively, constructed with thermodynamic and dynamic approaches. In the so called density functional theory the free energy F[ρ] of the liquid is a functional of the inhomogeneous density ρ(r). The metastable state is identified as a local minimum of F[ρ]. The sharp density profile characterizing ρ(r) is identified as a single particle oscillator, whose frequency is obtained from the parameters of the optimum density function. On the other hand, a dynamic approach to supercooled liquids is taken in the mode coupling theory (MCT) which predict a sharp ergodicity-non-ergodicity transition at a critical density. The single particle dynamics in the non-ergodic state, treated approximately, represents a propagating mode whose characteristic frequency is computed from the corresponding memory function of the MCT. The mass localization parameters in the above two models (treated in their simplest forms) are obtained, respectively, in terms of the corresponding natural frequencies depicted and are shown to have comparable magnitudes.
Linking density functional and mode coupling models for supercooled liquids.
Premkumar, Leishangthem; Bidhoodi, Neeta; Das, Shankar P
2016-03-28
We compare predictions from two familiar models of the metastable supercooled liquid, respectively, constructed with thermodynamic and dynamic approaches. In the so called density functional theory the free energy F[ρ] of the liquid is a functional of the inhomogeneous density ρ(r). The metastable state is identified as a local minimum of F[ρ]. The sharp density profile characterizing ρ(r) is identified as a single particle oscillator, whose frequency is obtained from the parameters of the optimum density function. On the other hand, a dynamic approach to supercooled liquids is taken in the mode coupling theory (MCT) which predict a sharp ergodicity-non-ergodicity transition at a critical density. The single particle dynamics in the non-ergodic state, treated approximately, represents a propagating mode whose characteristic frequency is computed from the corresponding memory function of the MCT. The mass localization parameters in the above two models (treated in their simplest forms) are obtained, respectively, in terms of the corresponding natural frequencies depicted and are shown to have comparable magnitudes.
Abler, M. C.; Mauel, M. E.; Saperstein, A.
2017-12-01
Plasmas confined by a strong dipole field exhibit interchange and entropy mode turbulence, which previous experiments have shown respond locally to active feedback [1]. On the Collisionless Terrella Experiment (CTX), this turbulence is characterized by low frequency, low order, quasi-coherent modes with complex spectral dynamics. We apply bicoherence analysis [2] to study nonlinear phase coupling in a variety of scenarios. First, we study the self-interaction of the naturally occurring interchange turbulence; this analysis is then expanded to include the effects of single or multiple driven modes in the frequency range of the background turbulent oscillations. Initial measurements of coupling coefficients are presented in both cases. Driven low frequency interchange modes are observed to generate multiple harmonics which persist throughout the plasma, becoming weaker as they propagate away from the actuator in the direction of the electron magnetic drift. Future work is also discussed, including application of wavelet bicoherence analysis and applications to planetary magnetospheres. [1] Roberts, Mauel, and Worstell, Phys Plasmas (2015). [2] Grierson, Worstell, and Mauel, Phys Plasmas (2009). Supported by NSF-DOE Partnership for Plasma Science Grants DOE-DE-FG02-00ER54585 and NSF-PHY-1201896.
Ratio of bulk to shear viscosity in a quasigluon plasma: from weak to strong coupling
Bluhm, M; Redlich, K
2012-01-01
The ratio of bulk to shear viscosity is expected to exhibit a different behaviour in weakly and in strongly coupled systems. This can be expressed by the dependence of the ratio on the squared sound velocity. In the high temperature QCD plasma at small running coupling, the viscosity ratio is uniquely determined by a quadratic dependence on the conformality measure, whereas in certain strongly coupled and nearly conformal theories this dependence is linear. Employing an effective kinetic theory of quasiparticle excitations with medium-modified dispersion relation, we analyze the ratio of bulk to shear viscosity of the gluon plasma. We show that in this approach the viscosity ratio comprises both dependencies found by means of weak coupling perturbative and strong coupling holographic techniques.
Electrically tunable single-dot nanocavities in the weak and strong coupling regimes
DEFF Research Database (Denmark)
Laucht, Arne; Hofbauer, Felix; Angele, Jacob
2008-01-01
We report the design, fabrication and optical investigation of electrically tunable single quantum dot - photonic crystal defect nanocavities [1] operating in both the weak and strong coupling regimes of the light matter interaction. Unlike previous studies, where the dot-cavity spectral detuning...... of the emitted photons from a single-dot nanocavity in the weak and strong coupling regimes. New information is obtained on the nature of the dot-cavity coupling in the weak coupling regime and electrical control of zero dimensional polaritons is demonstrated for the first time. Vacuum Rabi splittings up to 2g...... electrical readout of the strongly coupled dot-cavity system using photocurrent methods will be discussed. This work is financially supported by the DFG via SFB 631 and by the German Excellence Initiative via the “Nanosystems Initiative Munich (NIM)”....
Dovzhenko, D S; Ryabchuk, S V; Rakovich, Yu P; Nabiev, I R
2018-02-22
Resonance interaction between a molecular transition and a confined electromagnetic field can reach the coupling regime where coherent exchange of energy between light and matter becomes reversible. In this case, two new hybrid states separated in energy are formed instead of independent eigenstates, which is known as Rabi splitting. This modification of the energy spectra of the system offers new possibilities for controlled impact on various fundamental properties of coupled matter (such as the rate of chemical reactions and the conductivity of organic semiconductors). To date, the strong coupling regime has been demonstrated in many configurations under different ambient conditions. However, there is still no comprehensive approach to determining parameters for achieving the strong coupling regime for a wide range of practical applications. In this review, a detailed analysis of various systems and corresponding conditions for reaching strong coupling is carried out and their advantages and disadvantages, as well as the prospects for application, are considered. The review also summarizes recent experiments in which the strong coupling regime has led to new interesting results, such as the possibility of collective strong coupling between X-rays and matter excitation in a periodic array of Fe isotopes, which extends the applications of quantum optics; a strong amplification of the Raman scattering signal from a coupled system, which can be used in surface-enhanced and tip-enhanced Raman spectroscopy; and more efficient second-harmonic generation from the low polaritonic state, which is promising for nonlinear optics. The results reviewed demonstrate great potential for further practical applications of strong coupling in the fields of photonics (low-threshold lasers), quantum communications (switches), and biophysics (molecular fingerprinting).
Second order approximation for optical polaron in the strong coupling case
International Nuclear Information System (INIS)
Bogolubov, N.N. Jr.
1993-11-01
Here we propose a method of construction second order approximation for ground state energy for class of model Hamiltonian with linear type interaction on Bose operators in strong coupling case. For the application of the above method we have considered polaron model and propose construction set of nonlinear differential equations for definition ground state energy in strong coupling case. We have considered also radial symmetry case. (author). 10 refs
Electron screening and kinetic-energy oscillations in a strongly coupled plasma
International Nuclear Information System (INIS)
Chen, Y.C.; Simien, C.E.; Laha, S.; Gupta, P.; Martinez, Y.N.; Mickelson, P.G.; Nagel, S.B.; Killian, T.C.
2004-01-01
We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma
Storti, Mario A.; Nigro, Norberto M.; Paz, Rodrigo R.; Dalcín, Lisandro D.
2009-03-01
In this paper some results on the convergence of the Gauss-Seidel iteration when solving fluid/structure interaction problems with strong coupling via fixed point iteration are presented. The flow-induced vibration of a flat plate aligned with the flow direction at supersonic Mach number is studied. The precision of different predictor schemes and the influence of the partitioned strong coupling on stability is discussed.
Towards a hybrid strong/weak coupling approach to jet quenching
Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2014-01-01
We explore a novel hybrid model containing both strong and weak coupling physics for high energy jets traversing a deconfined medium. This model is based on supplementing a perturbative DGLAP shower with strongly coupled energy loss rate. We embed this system into a realistic hydrodynamic evolution of hot QCD plasma. We confront our results with LHC data, obtaining good agreement for jet RAARAA, dijet imbalance AJAJ and fragmentation functions.
Strong coupling and quasispinor representations of the SU(3) rotor model
International Nuclear Information System (INIS)
Rowe, D.J.; De Guise, H.
1992-01-01
We define a coupling scheme, in close parallel to the coupling scheme of Elliott and Wilsdon, in which nucleonic intrinsic spins are strongly coupled to SU(3) spatial wave functions. The scheme is proposed for shell-model calculations in strongly deformed nuclei and for semimicroscopic analyses of rotations in odd-mass nuclei and other nuclei for which the spin-orbit interaction is believed to play an important role. The coupling scheme extends the domain of utility of the SU(3) model, and the symplectic model, to heavy nuclei and odd-mass nuclei. It is based on the observation that the low angular-momentum states of an SU(3) irrep have properties that mimic those of a corresponding irrep of the rotor algebra. Thus, we show that strongly coupled spin-SU(3) bands behave like strongly coupled rotor bands with properties that approach those of irreducible representations of the rigid-rotor algebra in the limit of large SU(3) quantum numbers. Moreover, we determine that the low angular-momentum states of a strongly coupled band of states of half-odd integer angular momentum behave to a high degree of accuracy as if they belonged to an SU(3) irrep. These are the quasispinor SU(3) irreps referred to in the title. (orig.)
Extending the reach of strong-coupling: an iterative technique for Hamiltonian lattice models
International Nuclear Information System (INIS)
Alberty, J.; Greensite, J.; Patkos, A.
1983-12-01
The authors propose an iterative method for doing lattice strong-coupling-like calculations in a range of medium to weak couplings. The method is a modified Lanczos scheme, with greatly improved convergence properties. The technique is tested on the Mathieu equation and on a Hamiltonian finite-chain XY model, with excellent results. (Auth.)
Photon and spin dependence of the resonance line shape in the strong coupling regime
Miyashita, Seiji; Shirai, Tatsuhiko; Mori, Takashi; De Raedt, Hans; Bertaina, Sylvain; Chiorescu, Irinel
2012-01-01
We study the quantum dynamics of a spin ensemble coupled to cavity photons. Recently, related experimental results have been reported, showing the existence of the strong coupling regime in such systems. We study the eigenenergy distribution of the multi-spin system (following the Tavis-Cummings
Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity
International Nuclear Information System (INIS)
Nozieres, P.; Schmitt-Rink, S.
1985-01-01
We consider a gas of fermions interacting via an attractive potential. We study the ground state of that system and calculate the critical temperature for the onset of superconductivity as a function of the coupling strength. We compare the behavior of continuum and lattice models and show that the evolution from weak to strong coupling superconductivity is smooth
International Nuclear Information System (INIS)
Riedl, S.
2009-01-01
This thesis explores the dynamics in an ultracold strongly interacting Fermi gas. Therefore we perform measurements on collective excitation modes and rotational properties of the gas. The strongly interacting gas is realized using an optically trapped Fermi gas of 6 Li atoms, where the interactions can be tuned using a broad Feshbach resonance. Our measurements allow to test the equation of state of the gas, study the transition from hydrodynamic to collisionless behavior, reveal almost ideal hydrodynamic behavior in the nonsuperfluid phase, investigate the lifetime of angular momentum, and show superfluidity through the quenching of the moment of inertia. (author)
Different magnetospheric modes: solar wind driving and coupling efficiency
Directory of Open Access Journals (Sweden)
N. Partamies
2009-11-01
Full Text Available This study describes a systematic statistical comparison of isolated non-storm substorms, steady magnetospheric convection (SMC intervals and sawtooth events. The number of events is approximately the same in each group and the data are taken from about the same years to avoid biasing by different solar cycle phase. The very same superposed epoch analysis is performed for each event group to show the characteristics of ground-based indices (AL, PCN, PC potential, particle injection at the geostationary orbit and the solar wind and IMF parameters. We show that the monthly occurrence of sawtooth events and isolated non-stormtime substorms closely follows maxima of the geomagnetic activity at (or close to the equinoxes. The most strongly solar wind driven event type, sawtooth events, is the least efficient in coupling the solar wind energy to the auroral ionosphere, while SMC periods are associated with the highest coupling ratio (AL/EY. Furthermore, solar wind speed seems to play a key role in determining the type of activity in the magnetosphere. Slow solar wind is capable of maintaining steady convection. During fast solar wind streams the magnetosphere responds with loading–unloading cycles, represented by substorms during moderately active conditions and sawtooth events (or other storm-time activations during geomagnetically active conditions.
Strong coupling of a single electron in silicon to a microwave photon
Mi, X.; Cady, J. V.; Zajac, D. M.; Deelman, P. W.; Petta, J. R.
2017-01-01
Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots.
Strong coupling and polariton lasing in Te based microcavities embedding (Cd,Zn)Te quantum wells
Energy Technology Data Exchange (ETDEWEB)
Rousset, J.-G., E-mail: j-g.rousset@fuw.edu.pl; Piętka, B.; Król, M.; Mirek, R.; Lekenta, K.; Szczytko, J.; Borysiuk, J.; Suffczyński, J.; Kazimierczuk, T.; Goryca, M.; Smoleński, T.; Kossacki, P.; Nawrocki, M.; Pacuski, W. [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warszawa (Poland)
2015-11-16
We report on properties of an optical microcavity based on (Cd,Zn,Mg)Te layers and embedding (Cd,Zn)Te quantum wells. The key point of the structure design is the lattice matching of the whole structure to MgTe, which eliminates the internal strain and allows one to embed an arbitrary number of unstrained quantum wells in the microcavity. We evidence the strong light-matter coupling regime already for the structure containing a single quantum well. Embedding four unstrained quantum wells results in further enhancement of the exciton-photon coupling and the polariton lasing in the strong coupling regime.
Characterization of a Fiber-Coupled 36-Core 3-Mode Photonic Lantern Spatial Multiplexer
DEFF Research Database (Denmark)
Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner
2017-01-01
A fiber-coupled 108-port photonic lantern spatial-MUX is characterized with a spatially-diverse optical vector network analyzer. Insertion loss, mode-dependent losses, and time response are measured, showing significant mode mixing at a fiber splice.......A fiber-coupled 108-port photonic lantern spatial-MUX is characterized with a spatially-diverse optical vector network analyzer. Insertion loss, mode-dependent losses, and time response are measured, showing significant mode mixing at a fiber splice....
Liu, Yizhou; Cohen, Ryan D.; Martin, Gary E.; Williamson, R. Thomas
2018-06-01
Accurate measurement of residual dipolar couplings (RDCs) requires an appropriate degree of alignment in order to optimize data quality. An overly weak alignment yields very small anisotropic data that are susceptible to measurement errors, whereas an overly strong alignment introduces extensive anisotropic effects that severely degrade spectral quality. The ideal alignment amplitude also depends on the specific pulse sequence used for the coupling measurement. In this work, we introduce a practical strategy for the accurate measurement of one-bond 13C-1H RDCs up to a range of ca. -300 to +300 Hz, corresponding to an alignment that is an order of magnitude stronger than typically employed for small molecule structural elucidation. This strong alignment was generated in the mesophase of the commercially available poly-γ-(benzyl-L-glutamate) polymer. The total coupling was measured by the simple and well-studied heteronuclear two-dimensional J-resolved experiment, which performs well in the presence of strong anisotropic effects. In order to unequivocally determine the sign of the total coupling and resolve ambiguities in assigning total couplings in the CH2 group, coupling measurements were conducted at an isotropic condition plus two anisotropic conditions of different alignment amplitudes. Most RDCs could be readily extracted from these measurements whereas more complicated spectral effects resulting from strong homonuclear coupling could be interpreted either theoretically or by simulation. Importantly, measurement of these very large RDCs actually offers significantly improved data quality and utility for the structure determination of small organic molecules.
Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature.
Kleemann, Marie-Elena; Chikkaraddy, Rohit; Alexeev, Evgeny M; Kos, Dean; Carnegie, Cloudy; Deacon, Will; de Pury, Alex Casalis; Große, Christoph; de Nijs, Bart; Mertens, Jan; Tartakovskii, Alexander I; Baumberg, Jeremy J
2017-11-03
Strong coupling of monolayer metal dichalcogenide semiconductors with light offers encouraging prospects for realistic exciton devices at room temperature. However, the nature of this coupling depends extremely sensitively on the optical confinement and the orientation of electronic dipoles and fields. Here, we show how plasmon strong coupling can be achieved in compact, robust, and easily assembled gold nano-gap resonators at room temperature. We prove that strong-coupling is impossible with monolayers due to the large exciton coherence size, but resolve clear anti-crossings for greater than 7 layer devices with Rabi splittings exceeding 135 meV. We show that such structures improve on prospects for nonlinear exciton functionalities by at least 10 4 , while retaining quantum efficiencies above 50%, and demonstrate evidence for superlinear light emission.
Regge meets collinear in strongly-coupled N=4 super Yang-Mills
Energy Technology Data Exchange (ETDEWEB)
Sprenger, Martin [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)
2017-01-10
We revisit the calculation of the six-gluon remainder function in planar N=4 super Yang-Mills theory from the strong coupling TBA in the multi-Regge limit and identify an infinite set of kinematically subleading terms. These new terms can be compared to the strong coupling limit of the finite-coupling expressions for the impact factor and the BFKL eigenvalue proposed by Basso et al. in https://www.doi.org/10.1007/JHEP01(2015)027, which were obtained from an analytic continuation of the Wilson loop OPE. After comparing the results order by order in those subleading terms, we show that it is possible to precisely map both formalisms onto each other. A similar calculation can be carried out for the seven-gluon amplitude, the result of which shows that the central emission vertex does not become trivial at strong coupling.
Stability of higher-order longitudinal modes in a bunched beam without mode coupling
International Nuclear Information System (INIS)
Satoh, K.
1981-05-01
The theory of longitudinal instabilities of bunched beams was proposed by F. Sacherer. Starting from the Vlasov equation, he derived the integral equation for the perturbed distribution function. While the general method to solve the integral equation was given by Sacherer, a number of other papers discussing longitudinal bunched beam instability have also been published. Here we want to propose another formalism with which we can treat the integral equation without mode coupling for the case of a Gaussian bunch. We then generalize the formalism for the other bunch distributions, and derive a practical method to analyze the instability for the case of a parabolic bunch. While the solution of the Sacherer equation that we find is not new, we present another approach to solve it. Since the integral equation for the transverse instability is similar to that for the longitudinal instability, this formalism is also useful for the transverse case. 12 figs., 4 figs
Strong self-coupling expansion in the lattice-regularized standard SU(2) Higgs model
International Nuclear Information System (INIS)
Decker, K.; Weisz, P.; Montvay, I.
1985-11-01
Expectation values at an arbitrary point of the 3-dimensional coupling parameter space in the lattice-regularized SU(2) Higgs-model with a doublet scalar field are expressed by a series of expectation values at infinite self-coupling (lambda=infinite). Questions of convergence of this 'strong self-coupling expansion' (SSCE) are investigated. The SSCE is a potentially useful tool for the study of the lambda-dependence at any value (zero or non-zero) of the bare gauge coupling. (orig.)
Strong Interlayer Magnon-Magnon Coupling in Magnetic Metal-Insulator Hybrid Nanostructures
Chen, Jilei; Liu, Chuanpu; Liu, Tao; Xiao, Yang; Xia, Ke; Bauer, Gerrit E. W.; Wu, Mingzhong; Yu, Haiming
2018-05-01
We observe strong interlayer magnon-magnon coupling in an on-chip nanomagnonic device at room temperature. Ferromagnetic nanowire arrays are integrated on a 20-nm-thick yttrium iron garnet (YIG) thin film strip. Large anticrossing gaps up to 1.58 GHz are observed between the ferromagnetic resonance of the nanowires and the in-plane standing spin waves of the YIG film. Control experiments and simulations reveal that both the interlayer exchange coupling and the dynamical dipolar coupling contribute to the observed anticrossings. The coupling strength is tunable by the magnetic configuration, allowing the coherent control of magnonic devices.
Strong self-coupling expansion in the lattice-regularized standard SU(2) Higgs model
International Nuclear Information System (INIS)
Decker, K.; Weisz, P.
1986-01-01
Expectation values at an arbitrary point of the 3-dimensional coupling parameter space in the lattice-regularized SU(2) Higgs model with a doublet scalar field are expressed by a series of expectation values at infinite self-coupling (lambda=infinite). Questions of convergence of this ''strong self-coupling expansion'' (SSCE) are investigated. The SSCE is a potentially useful tool for the study of the lambda-dependence at any value (zero or non-zero) of the bare gauge coupling. (orig.)
Strongly coupled SU(2v boson and LEP1 versus LEP2
Directory of Open Access Journals (Sweden)
M. Bilenky
1993-10-01
Full Text Available If new strong interactions exist in the electroweak bosonic sector (e.g., strong Higgs sector, dynamical electroweak breaking, etc., it is natural to expect new resonances, with potentially strong couplings. We consider an additional vector-boson triplet, V+-, V0, associated with an SU(2v local symmetry under the specific (but rather natural assumption that ordinary fermions are SU(2v singlets. Mixing of the V triplet with the W+-, Z0 bosons effectively leads to an SU(2L×U(1Y violating vector-boson-fermion interaction which is strongly bounded by LEP1 data. In contrast, the potentially large deviation of the Z0W+W- coupling from its SU(2L×U(1Y value is hardly constrained by LEP1 data. Results from experiments with direct access to the trilinear Z0W+W− coupling (LEP200, NLC are urgently needed.
International Nuclear Information System (INIS)
Breger, M.; Montgomery, M. H.
2014-01-01
In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day –1 (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day –1 in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.
Energy Technology Data Exchange (ETDEWEB)
Breger, M.; Montgomery, M. H. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)
2014-03-10
In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day{sup –1} (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day{sup –1} in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.
DEFF Research Database (Denmark)
Berendt, Martin Ole; Grüne-Nielsen, Lars; Soccolich, C.F.
1998-01-01
to reduce this problem. None of these designs seems to give complete solutions. In particular, the otherwise promising depressed cladding design gives a pronounced coupling to one LP01 mode, this has been referred to as a Ghost grating. To find the modes of the fiber we have established a numerical mode......UV-written Bragg gratings find wide spread use as wavelength selective components. In reflection high extinction ratios are routinely obtained. However, coupling to cladding modes gives excess loss on the short wavelength side of the main reflection. Different fiber-designs have been proposed......-solver based on the staircase-approximation method. The Bragg grating causes coupling between the fundamental LP01 mode and higher order LP1p modes that satisfy phase-matching. The coupling strength is determined by the overlap integral of the LP01, the LP1p mode, and the UV-induced index perturbation. For LP0...
International Nuclear Information System (INIS)
Radtke, R.J.; Norman, M.R.
1994-01-01
Recent angle-resolved photoemission (ARPES) experiments have indicated that the electronic dispersion in some of the cuprates possesses an extended saddle point near the Fermi level which gives rise to a density of states that diverges like a power law instead of the weaker logarithmic divergence usually considered. We investigate whether this strong singularity can give rise to high transition temperatures by computing the critical temperature T c and isotope effect coefficient α within a strong-coupling Eliashberg theory which accounts for the full energy variation of the density of states. Using band structures extracted from ARPES measurements, we demonstrate that, while the weak-coupling solutions suggest a strong influence of the strength of the Van Hove singularity on T c and α, strong-coupling solutions show less sensitivity to the singularity strength and do not support the hypothesis that band-structure effects alone can account for either the large T c 's or the different T c 's within the copper oxide family. This conclusion is supported when our results are plotted as a function of the physically relevant self-consistent coupling constant, which shows universal behavior at very strong coupling
Strong 'Quantum' Chaos in the Global Ballooning Mode Spectrum of Three-dimensional Plasmas
International Nuclear Information System (INIS)
Dewar, R. L.; Cuthbert, P.; Ball, R.
2000-01-01
The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning) modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular nature of ideal MHD caused by lack of an inherent scale length. In this paper, ideal MHD is regularized by using a k-space cutoff, making the ray tracing for the WKB ballooning formalism a chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier spectrum needed for resolving toroidally localized ballooning modes with a global eigenvalue code is estimated from the Weyl formula. This phase-space-volume estimation method is applied to ballooning-unstable plasma equilibria in the H-1NF helical axis stellarator and the Large Helical Device (LHD)
Investigation of the coupling of the momentum distribution of a BEC with its collective of modes
Henn, Emanuel; Tavares, Pedro; Fritsch, Amilson; Vivanco, Franklin; Telles, Gustavo; Bagnato, Vanderlei
In our group we have a strong research line on quantum turbulence and the general investigation of Bose-Einstein condensates (BEC) subjected to oscillatory excitations. Inside this research line we investigate first the behavior of the normal modes of the BEC under this excitation and observe a non-linear behavior in the amplitude of the quadrupolar mode. Also, inside this same procedure of investigation we study the momentum distribution of a BEC to understand if it is possible to extract Kolmogorov like excitation spectra which would point to a turbulent state of matter. The condensate is perturbed, and we let it evolve in-trap after which we perform standard time-of- flight absorption imaging. The momentum distribution is extracted and analyzed as a function of the in-trap free evolution time for a 2D projected cloud. We show that the momentum distribution has its features varying periodically with the same frequency as the quadrupolar mode displayed by the atomic gas hinting at a strong coupling of both. The main consequence of that one cannot be assertive about the quantitative features of the extract spectrum of momentum and we can only rely on its qualitative features. Financial Support: FAPESP, CNPq.
Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials
International Nuclear Information System (INIS)
Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan
2015-01-01
Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials
Hyperpolarizabilities of one and two electron ions under strongly coupled plasma
International Nuclear Information System (INIS)
Sen, Subhrangsu; Mandal, Puspajit; Kumar Mukherjee, Prasanta; Fricke, Burkhard
2013-01-01
Systematic investigations on the hyperpolarizabilities of hydrogen and helium like ions up to nuclear charge Z = 7 under strongly coupled plasma environment have been performed. Variation perturbation theory has been adopted to evaluate such properties for the one and two electron systems. For the two electron systems coupled Hartree-Fock theory, which takes care of partial electron correlation effects, has been utilised. Ion sphere model of the strongly coupled plasma, valid for ionic systems only, has been adopted for estimating the effect of plasma environment on the hyperpolarizability. The calculated free ion hyperpolarizability for all the systems is in good agreement with the existing data. Under confinement hyperpolarizabilities of one and two electron ions show interesting trend with respect to plasma coupling strength.
The strong-weak coupling symmetry in 2D Φ4 field models
Directory of Open Access Journals (Sweden)
B.N.Shalaev
2005-01-01
Full Text Available It is found that the exact beta-function β(g of the continuous 2D gΦ4 model possesses two types of dual symmetries, these being the Kramers-Wannier (KW duality symmetry and the strong-weak (SW coupling symmetry f(g, or S-duality. All these transformations are explicitly constructed. The S-duality transformation f(g is shown to connect domains of weak and strong couplings, i.e. above and below g*. Basically it means that there is a tempting possibility to compute multiloop Feynman diagrams for the β-function using high-temperature lattice expansions. The regular scheme developed is found to be strongly unstable. Approximate values of the renormalized coupling constant g* found from duality symmetry equations are in an agreement with available numerical results.
The status of the strong coupling from tau decays in 2016
Boito, Diogo; Golterman, Maarten; Maltman, Kim; Peris, Santiago
2017-06-01
While the idea of using the operator product expansion (OPE) to extract the strong coupling from hadronic τ decay data is not new, there is an ongoing controversy over how to include quark-hadron ;duality violations; (i.e., resonance effects) which are not described by the OPE. One approach attempts to suppress duality violations enough that they might become negligible, but pays the price of an uncontrolled OPE truncation. We critically examine a recent analysis using this approach and show that it fails to properly account for non-perturbative effects, making the resulting determination of the strong coupling unreliable. In a different approach duality violations are taken into account with a model, avoiding the OPE truncation. This second approach provides a self-consistent determination of the strong coupling from τ decays.
The Bekenstein bound in strongly coupled O(N) scalar field theory
International Nuclear Information System (INIS)
Magalhaes, T. Santos; Svaiter, N.F.; Menezes, G.
2009-09-01
We discuss the O(N) self-interacting scalar field theory, in the strong-coupling regime and also in the limit of large N. Considering that the system is in thermal equilibrium with a reservoir at temperature β -1 , we assume the presence of macroscopic boundaries conning the field in a hypercube of side L. Using the strong-coupling perturbative expansion, we generalize previous results, i.e., we obtain the renormalized mean energy E and entropy S for the system in rst order of the strong-coupling perturbative expansion, presenting an analytical proof that the specific entropy also satisfies in some situations a quantum bound. When considering the low temperature behavior of the specific entropy, the sign of the renormalized zero-point energy can invalidate this quantum bound. If the renormalized zero point-energy is a positive quantity, at intermediate temperatures and in the low temperature limit, there is a quantum bound. (author)
Communication: A Jastrow factor coupled cluster theory for weak and strong electron correlation
International Nuclear Information System (INIS)
Neuscamman, Eric
2013-01-01
We present a Jastrow-factor-inspired variant of coupled cluster theory that accurately describes both weak and strong electron correlation. Compatibility with quantum Monte Carlo allows for variational energy evaluations and an antisymmetric geminal power reference, two features not present in traditional coupled cluster that facilitate a nearly exact description of the strong electron correlations in minimal-basis N 2 bond breaking. In double-ζ treatments of the HF and H 2 O bond dissociations, where both weak and strong correlations are important, this polynomial cost method proves more accurate than either traditional coupled cluster or complete active space perturbation theory. These preliminary successes suggest a deep connection between the ways in which cluster operators and Jastrow factors encode correlation
From Kondo model and strong coupling lattice QCD to the Isgur-Wise function
International Nuclear Information System (INIS)
Patel, Apoorva
1995-01-01
Isgur-Wise functions parametrise the leading behaviour of weak decay form factors of mesons and baryons containing a single heavy quark. The form factors for the quark mass operator are calculated in strong coupling lattice QCD, and Isgur-Wise functions extracted from them. Based on renormalisation group invariance of the operators involved, it is argued that the Isgur-Wise functions would be the same in the weak coupling continuum theory. (author)
Ideal gas behavior of a strongly-coupled complex (dusty) plasma
Oxtoby, Neil P.; Griffith, Elias J.; Durniak, Céline; Ralph, Jason F.; Samsonov, Dmitry
2012-01-01
In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly-coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.
Plexcitons: The Role of Oscillator Strengths and Spectral Widths in Determining Strong Coupling
Energy Technology Data Exchange (ETDEWEB)
Thomas, Reshmi [School; Thomas, Anoop [School; Pullanchery, Saranya [School; Joseph, Linta [School; Somasundaran, Sanoop Mambully [School; Swathi, Rotti Srinivasamurthy [School; Gray, Stephen K. [Center; Thomas, K. George [School
2018-01-05
Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths. These aspects are found to be consistent with experiments on two sets of free-standing plexcitonic systems obtained by (i) linking fluorescein isothiocyanate on Ag nanoparticles of varying sizes through silane coupling and (ii) electrostatic binding of cyanine dyes on polystyrenesulfonate-coated Au nanorods of varying aspect ratios. Being covalently linked on Ag nanoparticles, fluorescein isothiocyanate remains in monomeric state, and its high oscillator strength and narrow spectral width enable us to approach the strong coupling limit. In contrast, in the presence of polystyrenesulfonate, monomeric forms of cyanine dyes exist in equilibrium with their aggregates: Coupling is not observed for monomers and H-aggregates whose optical parameters are unfavorable. The large aggregation number, narrow spectral width, and extremely high oscillator strength of J-aggregates of cyanines permit effective delocalization of excitons along the linear assembly of chromophores, which in turn leads to efficient coupling with the plasmons. Further, the results obtained from experiments and theoretical models are jointly employed to describe the plexcitonic states, estimate the coupling strengths, and rationalize the dispersion curves. The experimental results and the theoretical analysis presented here portray a way forward to the rational design of plexcitonic systems attaining the strong coupling limits.
Three-dimensional photodissociation in strong laser fields: Memory-kernel effective-mode expansion
International Nuclear Information System (INIS)
Li Xuan; Thanopulos, Ioannis; Shapiro, Moshe
2011-01-01
We introduce a method for the efficient computation of non-Markovian quantum dynamics for strong (and time-dependent) system-bath interactions. The past history of the system dynamics is incorporated by expanding the memory kernel in exponential functions thereby transforming in an exact fashion the non-Markovian integrodifferential equations into a (larger) set of ''effective modes'' differential equations (EMDE). We have devised a method which easily diagonalizes the EMDE, thereby allowing for the efficient construction of an adiabatic basis and the fast propagation of the EMDE in time. We have applied this method to three-dimensional photodissociation of the H 2 + molecule by strong laser fields. Our calculations properly include resonance-Raman scattering via the continuum, resulting in extensive rotational and vibrational excitations. The calculated final kinetic and angular distribution of the photofragments are in overall excellent agreement with experiments, both when transform-limited pulses and when chirped pulses are used.
High-energy scattering in strongly coupled N=4 super Yang-Mills theory
International Nuclear Information System (INIS)
Sprenger, Martin
2014-11-01
This thesis concerns itself with the analytic structure of scattering amplitudes in strongly coupled N=4 super Yang-Mills theory (abbreviated N = 4 SYM) in the multi-Regge limit. Through the AdS/CFT-correspondence observables in strongly coupled N = 4 SYM are accessible via dual calculations in a weakly coupled string theory on an AdS 5 x S 5 -geometry, in which observables can be calculated using standard perturbation theory. In particular, the calculation of the leading order of the n-gluon amplitude in N = 4 SYM at strong coupling corresponds to the calculation of a minimal surface embedded into AdS 5 . This surface ends on the concatenation of the gluon momenta, which is a light-like curve. The calculation of the minimal surface area can be reduced to finding the solution of a set of non-linear, coupled integral equations, which have no analytic solution in arbitrary kinematics. In this thesis, we therefore specialise to the multi-Regge limit, the n-particle generalisation of the Regge limit. This limit is especially interesting as even in the description of scattering amplitudes in weakly coupled N = 4 SYM in this limit a certain set of Feynman diagrams has to be resummed. This description organises itself into orders of logarithms of the energy involved in the scattering process. In this expansion each order in logarithms includes terms from every order in the coupling constant and therefore contains information about the strong coupling sector of the theory, albeit in a very specific way. This raises the central question of this thesis, which is how much of the analytic structure of the scattering amplitudes in the multi-Regge limit is preserved as we go to the strong coupling regime. We show that the equations governing the area of the minimal surface simplify drastically in the multi-Regge limit, which allows us to obtain analytic results for the scattering amplitudes. We develop an algorithm for the calculation of scattering amplitudes in the multi
Strong/weak coupling duality relations for non-supersymmetric string theories
International Nuclear Information System (INIS)
Blum, J.D.; Dienes, K.R.
1998-01-01
Both the supersymmetric SO(32) and E 8 x E 8 heterotic strings in ten dimensions have known strong-coupling duals. However, it has not been known whether there also exist strong-coupling duals for the non-supersymmetric heterotic strings in ten dimensions. In this paper, we construct explicit open-string duals for the circle compactifications of several of these non-supersymmetric theories, among them the tachyon-free SO(16) x SO(16) string. Our method involves the construction of heterotic and open-string interpolating models that continuously connect non-supersymmetric strings to supersymmetric strings. We find that our non-supersymmetric dual theories have exactly the same massless spectra as their heterotic counterparts within a certain range of our interpolations. We also develop a novel method for analyzing the solitons of non-supersymmetric open-string theories, and find that the solitons of our dual theories also agree with their heterotic counterparts. These are therefore the first known examples of strong/weak coupling duality relations between non-supersymmetric, tachyon-free string theories. Finally, the existence of these strong-coupling duals allows us to examine the non-perturbative stability of these strings, and we propose a phase diagram for the behavior of these strings as a function of coupling and radius. (orig.)
Classical integrability for three-point functions: cognate structure at weak and strong couplings
Energy Technology Data Exchange (ETDEWEB)
Kazama, Yoichi [Research Center for Mathematical Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako 351-0198 (Japan); Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Nishimura, Takuya [Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)
2016-10-10
In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the N=4 super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical behaviors were not known before. In addition, the new analyticity argument applied to the strong coupling analysis leads to a modification of the integration contour, producing the results consistent with the recent hexagon bootstrap approach. This modification also makes the Frolov-Tseytlin limit perfectly agree with the weak coupling form.
Energy Technology Data Exchange (ETDEWEB)
Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: pintu@ipr.res.in; Prasad, G.; Sen, A.; Kaw, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2007-09-03
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO{sub 2} dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of {partial_derivative}{omega}/{partial_derivative}k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.
International Nuclear Information System (INIS)
Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P.K.
2007-01-01
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO 2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects
Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.
2007-09-01
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.
Three-loop Standard Model effective potential at leading order in strong and top Yukawa couplings
Energy Technology Data Exchange (ETDEWEB)
Martin, Stephen P. [Santa Barbara, KITP
2014-01-08
I find the three-loop contribution to the effective potential for the Standard Model Higgs field, in the approximation that the strong and top Yukawa couplings are large compared to all other couplings, using dimensional regularization with modified minimal subtraction. Checks follow from gauge invariance and renormalization group invariance. I also briefly comment on the special problems posed by Goldstone boson contributions to the effective potential, and on the numerical impact of the result on the relations between the Higgs vacuum expectation value, mass, and self-interaction coupling.
Thermal conductivity of magnetic insulators with strong spin-orbit coupling
Stamokostas, Georgios; Lapas, Panteleimon; Fiete, Gregory A.
We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.
Strong generalized synchronization with a particular relationship R between the coupled systems
Grácio, Clara; Fernandes, Sara; Mário Lopes, Luís
2018-03-01
The question of the chaotic synchronization of two coupled dynamical systems is an issue that interests researchers in many fields, from biology to psychology, through economics, chemistry, physics, and many others. The different forms of couplings and the different types of synchronization, give rise to many problems, most of them little studied. In this paper we deal with general couplings of two dynamical systems and we study strong generalized synchronization with a particular relationship R between them. Our results include the definition of a window in the domain of the coupling strength, where there is an exponentially stable solution, and the explicit determination of this window. In the case of unidirectional or symmetric couplings, this window is presented in terms of the maximum Lyapunov exponent of the systems. Examples of applications to chaotic systems of dimension one and two are presented.
Stability of coupled tearing and twisting modes in tokamaks
International Nuclear Information System (INIS)
Fitzpatrick, R.
1994-03-01
A dispersion relation is derived for resistive modes of arbitrary parity in a tokamak plasma. At low mode amplitude, tearing and twisting modes which have nonideal MHD behavior at only one rational surface at a time in the plasma are decoupled via sheared rotation and diamagnetic flows. At higher amplitude, more unstable open-quote compound close-quote modes develop which have nonideal behavior simultaneously at many surfaces. Such modes possess tearing parity layers at some of the nonideal surfaces, and twisting parity layers at others, but mixed parity layers are generally disallowed. At low mode number, open-quote compound close-quote modes are likely to have tearing parity layers at all of the nonideal surfaces in a very low-β plasma, but twisting parity layers become more probable as the plasma β is increased. At high mode number, unstable twisting modes which exceed a critical amplitude drive conventional magnetic island chains on alternate rational surfaces, to form an interlocking structure in which the O-points and X-points of neighboring chains line up
Coupling mode-destination accessibility with seismic risk assessment to identify at-risk communities
International Nuclear Information System (INIS)
Miller, Mahalia; Baker, Jack W.
2016-01-01
In this paper, we develop a framework for coupling mode-destination accessibility with quantitative seismic risk assessment to identify communities at high risk for travel disruptions after an earthquake. Mode-destination accessibility measures the ability of people to reach destinations they desire. We use a probabilistic seismic risk assessment procedure, including a stochastic set of earthquake events, ground-motion intensity maps, damage maps, and realizations of traffic and accessibility impacts. For a case study of the San Francisco Bay Area, we couple our seismic risk framework with a practical activity-based traffic model. As a result, we quantify accessibility risk probabilistically by community and household type. We find that accessibility varies more strongly as a function of travelers' geographic location than as a function of their income class, and we identify particularly at-risk communities. We also observe that communities more conducive to local trips by foot or bike are predicted to be less impacted by losses in accessibility. This work shows the potential to link quantitative risk assessment methodologies with high-resolution travel models used by transportation planners. Quantitative risk metrics of this type should have great utility for planners working to reduce risk to a region's infrastructure systems. - Highlights: • We couple mode-destination accessibility with probabilistic seismic risk assessment. • Results identify communities at high risk for post-earthquake travel disruptions. • Accessibility varies more as a function of home location than by income. • Our model predicts reduced accessibility risk for more walking-friendly communities.
ESR modes in a Strong-Leg Ladder in the Tomonaga-Luttinger Liquid Phase
Zvyagin, S.; Ozerov, M.; Maksymenko, M.; Wosnitza, J.; Honecker, A.; Landee, C. P.; Turnbull, M.; Furuya, S. C.; Giamarchi, T.
Magnetic excitations in the strong-leg quantum spin ladder compound (C7H10N)2CuBr4 (known as DIMPY) in the field-induced Tomonaga-Luttinger spin liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual non-linear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe its ESR observability to the uniform Dzyaloshinskii-Moriya interaction. This work was partially supported by the DFG and Helmholtz Gemeinschaft (Germany), Swiss SNF under Division II, and ERC synergy UQUAM project. We acknowledge the support of the HLD at HZDR, member of the European Magnetic Field Laboratory (EMFL).
Huang, M.; Bazurto, R.; Camparo, J.
2018-01-01
The ring-mode to red-mode transition in alkali metal inductively coupled plasmas (ICPs) (i.e., rf-discharge lamps) is perhaps the most important physical phenomenon affecting these devices as optical pumping light sources for atomic clocks and magnetometers. It sets the limit on useful ICP operating temperature, thereby setting a limit on ICP light output for atomic-clock/magnetometer signal generation, and it is a temperature region of ICP operation associated with discharge instability. Previous work has suggested that the mechanism driving the ring-mode to red-mode transition is associated with radiation trapping, but definitive experimental evidence validating that hypothesis has been lacking. Based on that hypothesis, one would predict that the introduction of an alkali-fluorescence quenching gas (i.e., N2) into the ICP would increase the ring-mode to red-mode transition temperature. Here, we test that prediction, finding direct evidence supporting the radiation-trapping hypothesis.
Asymptotic dependence of Gross–Tulub polaron ground-state energy in the strong coupling region
Directory of Open Access Journals (Sweden)
N.I. Kashirina
2017-12-01
Full Text Available The properties of translationally invariant polaron functional have been investigated in the region of strong and extremely strong coupling. It has been shown that the Gross–Tulub polaron functional obtained earlier using the methods of field theory was derived only for the region , where is the Fröhlich constant of the electron-phonon coupling. Various representations of exact and approximate polaron functionals have been considered. Asymptotic dependences of the polaron energy have been obtained using a functional extending the Gross–Tulub functional to the region of extremely strong coupling. The asymptotic dependence of polaron energies for an extremely strong coupling are (for the one-parameter variational function fk, and (for a two-parameter function . It has been shown that the virial theorem 1:3:4 holds for the two-parameter function . Minimization of the approximate functional obtained by expanding the exact Gross–Tulub functional in a series on leads to a quadratic dependence of the polaron energy. This approximation is justified for . For a two-parameter function , the corresponding dependence has the form . However, the use of approximate functionals, in contrast to the strict variational procedure, when the exact polaron functional varies, does not guarantee obtaining the upper limit for the polaron energy.
DEFF Research Database (Denmark)
Kuznetsov, A.M.; Ulstrup, Jens
2002-01-01
We present a new view and an analytical formalism of electron flow through a donor-acceptor molecule inserted between a pair of metal electrodes. The donor and acceptor levels are strongly coupled to an environmental nuclear continuum. The formalism applies to molecular donor-acceptor systems bot...
The one loop calculation of the strong coupling β function in the Toy Model
International Nuclear Information System (INIS)
Bai Zhiming; Jiang Yuanfang
1991-01-01
The background field quantization is used to calculate the one-loop β function in the Toy Model which has the strong coupling and the SU(3) symmetry. The function obtained is consistent with the Appalquist-Carrazone theorem in the low energy condition
Room temperature strong coupling effects from single ZnO nanowire microcavity
Das, Ayan; Heo, Junseok; Bayraktaroglu, Adrian; Guo, Wei; Ng, Tien Khee; Phillips, Jamie; Ooi, Boon S.; Bhattacharya, Pallab
2012-01-01
Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non
Next-to-next-to-leading order calculation of the strong coupling ...
Indian Academy of Sciences (India)
It is observed that the NNLO correction gives a better agreement between the theory and the experimental data. Also, by using the above observables, the strong coupling constant () is determined and how much its value is affected by the NNLO correction is demonstrated. By combining the results for all variables at ...
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Pankrashkin, K.
2014-01-01
Roč. 39, č. 2 (2014), s. 193-212 ISSN 0360-5302 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Eigenvalue * Schrödinger operator * singular interaction * strong coupling * 35Q40 * 35P15 * 35J10 Subject RIV: BE - Theoretical Physics Impact factor: 1.013, year: 2014
Precision determination of the strong coupling constant within a global PDF analysis
Ball, Richard D.; Carrazza, Stefano; Debbio, Luigi Del; Forte, Stefano; Kassabov, Zahari; Rojo, Juan; Slade, Emma; Ubiali, Maria
2018-01-01
We present a determination of the strong coupling constant $\\alpha_s(m_Z)$ based on the NNPDF3.1 determination of parton distributions, which for the first time includes constraints from jet production, top-quark pair differential distributions, and the $Z$ $p_T$ distributions using exact NNLO
Departures from predicted type II behavior in dirty strong-coupling superconductors
International Nuclear Information System (INIS)
Park, J.C.; Neighbor, J.E.; Shiffman, C.A.
1976-01-01
Calorimetric measurements of the Ginsburg-Landau parameters for Pb-Sn and Pb-Bi alloys show good agreement with the calculations of Rainer and Bergmann for kappa 1 (t)/kappa 1 (1). However, the calculations of Rainer and Usadel for kappa 2 (t)/kappa 2 (1) substantially underestimate the enhancements due to strong-coupling. (Auth.)
On the Theory of Coupled Modes in Optical Cavity-Waveguide Structures
DEFF Research Database (Denmark)
Kristensen, Philip Trøst; de Lasson, Jakob Rosenkrantz; Heuck, Mikkel
2017-01-01
Light propagation in systems of optical cavities coupled to waveguides can be conveniently described by a general rate equation model known as (temporal) coupled mode theory (CMT). We present an alternative derivation of the CMT for optical cavitywaveguide structures, which explicitly relies...... in the coupled systems. Practical application of the theory is illustrated using example calculations in one and two dimensions....
Linked cluster expansion in the SU(2) lattice Higgs model at strong gauge coupling
International Nuclear Information System (INIS)
Wagner, C.E.M.
1989-01-01
A linked cluster expansion is developed for the β=0 limit of the SU(2) Higgs model. This method, when combined with strong gauge coupling expansions, is used to obtain the phase transition surface and the behaviour of scalar and vector masses in the lattice regularized theory. The method, in spite of the low order of truncation of the series applied, gives a reasonable agreement with Monte Carlo data for the phase transition surface and a qualitatively good picture of the behaviour of Higgs, glueball and gauge vector boson masses, in the strong coupling limit. Some limitations of the method are discussed, and an intuitive picture of the different behaviour for small and large bare self-coupling λ is given. (orig.)
Strong light-matter coupling from atoms to solid-state systems
2014-01-01
The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptu...
Direct Observation of Strong Ion Coupling in Laser-Driven Shock-Compressed Targets
International Nuclear Information System (INIS)
Ravasio, A.; Benuzzi-Mounaix, A.; Loupias, B.; Ozaki, N.; Rabec le Gloahec, M.; Koenig, M.; Gregori, G.; Daligault, J.; Delserieys, A.; Riley, D.; Faenov, A. Ya.; Pikuz, T. A.
2007-01-01
In this Letter we report on a near collective x-ray scattering experiment on shock-compressed targets. A highly coupled Al plasma was generated and probed by spectrally resolving an x-ray source forward scattered by the sample. A significant reduction in the intensity of the elastic scatter was observed, which we attribute to the formation of an incipient long-range order. This speculation is confirmed by x-ray scattering calculations accounting for both electron degeneracy and strong coupling effects. Measurements from rear side visible diagnostics are consistent with the plasma parameters inferred from x-ray scattering data. These results give the experimental evidence of the strongly coupled ionic dynamics in dense plasmas
Strongly coupled radiation from moving mirrors and holography in the Karch-Randall model
International Nuclear Information System (INIS)
Pujolas, Oriol
2008-01-01
Motivated by the puzzles in understanding how Black Holes evaporate into a strongly coupled Conformal Field Theory, we study particle creation by an accelerating mirror. We model the mirror as a gravitating Domain Wall and consider a CFT coupled to it through gravity, in asymptotically Anti de Sitter space. This problem (backreaction included) can be solved exactly at one loop. At strong coupling, this is dual to a Domain Wall localized on the brane in the Karch-Randall model, which can be fully solved as well. Hence, in this case one can see how the particle production is affected by A) strong coupling and B) its own backreaction. We find that A) the amount of CFT radiation at strong coupling is not suppressed relative to the weak coupling result; and B) once the boundary conditions in the AdS 5 bulk are appropriately mapped to the conditions for the CFT on the boundary of AdS 4 , the Karch-Randall model and the CFT side agree to leading order in the backreaction. This agreement holds even for a new class of self-consistent solutions (the 'Bootstrap' Domain Wall spacetimes) that have no classical limit. This provides a quite precise check of the holographic interpretation of the Karch-Randall model. We also comment on the massive gravity interpretation. As a byproduct, we show that relativistic Cosmic Strings (pure tension codimension 2 branes) in Anti de Sitter are repulsive and generate long-range tidal forces even at classical level. This is the phenomenon dual to particle production by Domain Walls.
Vogt, Dominik Walter; Leonhardt, Rainer
2017-11-01
We report on Fano resonances in a high-quality (Q) whispering-gallery mode (WGM) spherical resonator coupled to a multi-mode waveguide in the terahertz (THz) frequency range. The asymmetric line shape and phase of the Fano resonances detected with coherent continuous-wave (CW) THz spectroscopy measurements are in excellent agreement with the analytical model. A very high Q factor of 1600, and a finesse of 22 at critical coupling is observed around 0.35 THz. To the best of our knowledge this is the highest Q factor ever reported for a THz WGM resonator.
Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators
International Nuclear Information System (INIS)
Qiao, Shen; Zhang, Yaxin; Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang; Liang, Shixiong
2015-01-01
We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices
Ren, Baiyang; Lissenden, Cliff J.
2018-04-01
Guided waves have been extensively studied and widely used for structural health monitoring because of their large volumetric coverage and good sensitivity to defects. Effectively and preferentially exciting a desired wave mode having good sensitivity to a certain defect is of great practical importance. Piezoelectric discs and plates are the most common types of surface-mounted transducers for guided wave excitation and reception. Their geometry strongly influences the proportioning between excited modes as well as the total power of the excited modes. It is highly desirable to predominantly excite the selected mode while the total transduction power is maximized. In this work, a fully coupled multi-physics finite element analysis, which incorporates the driving circuit, the piezoelectric element and the wave guide, is combined with the normal mode expansion method to study both the mode tuning and total wave power. The excitation of circular crested waves in an aluminum plate with circular piezoelectric discs is numerically studied for different disc and adhesive thicknesses. Additionally, the excitation of plane waves in an aluminum plate, using a stripe piezoelectric element is studied both numerically and experimentally. It is difficult to achieve predominant single mode excitation as well as maximum power transmission simultaneously, especially for higher order modes. However, guidelines for designing the geometry of piezoelectric elements for optimal mode excitation are recommended.
Mode coupling in nonlinear Rayleigh--Taylor instability
International Nuclear Information System (INIS)
Ofer, D.; Shvarts, D.; Zinamon, Z.; Orszag, S.A.
1992-01-01
This paper studies the interaction of a small number of modes in the two-fluid Rayleigh--Taylor instability at relatively late stages of development, i.e., the nonlinear regime, using a two-dimensional hydrodynamic code incorporating a front-tracking scheme. It is found that the interaction of modes can greatly affect the amount of mixing and may even reduce the width of the mixing region. This interaction is both relatively long range in wave-number space and also acts in both directions, i.e., short wavelengths affect long wavelengths and vice versa. Three distinct stages of interaction have been identified, including substantial interaction among modes some of which may still be in their classical (single mode) ''linear'' phase
Acousto-optic resonant coupling of three spatial modes in an optical fiber.
Park, Hee Su; Song, Kwang Yong
2014-01-27
A fiber-optic analogue to an externally driven three-level quantum state is demonstrated by acousto-optic coupling of the spatial modes in a few-mode fiber. Under the condition analogous to electromagnetically induced transparency, a narrow-bandwidth transmission within an absorption band for the fundamental mode is demonstrated. The presented structure is an efficient converter between the fundamental mode and the higher-order modes that cannot be easily addressed by previous techniques, therefore can play a significant role in the next-generation space-division multiplexing communications as an arbitrarily mode-selectable router.
Lin, Jian Hung; Tseng, Chun-Yen; Lee, Ching-Ting; Young, Jeff F; Kan, Hung-Chih; Hsu, Chia Chen
2014-02-10
Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm(2). Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.
Scaling properties of the pairing problem in the strong coupling limit
International Nuclear Information System (INIS)
Barbaro, M.B.; Cenni, R.; Molinari, A.; Quaglia, M.R.
2013-01-01
We study the excited states of the pairing Hamiltonian providing an expansion for their energy in the strong coupling limit. To assess the role of the pairing interaction we apply the formalism to the case of a heavy atomic nucleus. We show that only a few statistical moments of the level distribution are sufficient to yield an accurate estimate of the energy for not too small values of the coupling G and we give the analytic expressions of the first four terms of the series. Further, we discuss the convergence radius G sing of the expansion showing that it strongly depends upon the details of the level distribution. Furthermore G sing is not related to the critical values of the coupling G crit , which characterize the physics of the pairing Hamiltonian, since it can exist even in the absence of these critical points. -- Highlights: •We study the excitation spectrum of the pairing Hamiltonian. •We provide an analytic expansion around the strong coupling limit. •We discuss the convergence radius of the expansion. •We connect the radius with the critical points of H
Structure of large spin expansion of anomalous dimensions at strong coupling
Energy Technology Data Exchange (ETDEWEB)
Beccaria, M. [Physics Department, Salento University and INFN, 73100 Lecce (Italy)], E-mail: matteo.beccaria@le.infn.it; Forini, V. [Humboldt-Universitaet zu Berlin, Institut fuer Physik, D-12489 Berlin (Germany)], E-mail: forini@aei.mpg.de; Tirziu, A. [Department of Physics, Purdue University, W. Lafayette, IN 47907-2036 (United States)], E-mail: atirziu@purdue.edu; Tseytlin, A.A. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)], E-mail: tseytlin@imperial.ac.uk
2009-05-01
The anomalous dimensions of planar N=4 SYM theory operators like tr({phi}D{sub +}{sup S}{phi}) expanded in large spin S have the asymptotics {gamma}=flnS+f{sub c}+1/S (f{sub 11}lnS+f{sub 10})+..., where f (the universal scaling function or cusp anomaly), f{sub c} and f{sub mn} are given by power series in the 't Hooft coupling {lambda}. The subleading coefficients appear to be related by the so-called functional relation and parity (reciprocity) property of the function expressing {gamma} in terms of the conformal spin of the collinear group. Here we study the structure of such large spin expansion at strong coupling via AdS/CFT, i.e. by using the dual description in terms of folded spinning string in AdS{sub 5}. The large spin expansion of the classical string energy happens to have exactly the same structure as that of {gamma} in the perturbative gauge theory. Moreover, the functional relation and the reciprocity constraints on the coefficients are also satisfied. We compute the leading string 1-loop corrections to the coefficients f{sub c}, f{sub 11}, f{sub 10} and verify the functional/reciprocity relations at subleading 1/({radical}({lambda})) order. This provides a strong indication that these relations hold not only in weak coupling (gauge-theory) but also in strong coupling (string-theory) perturbative expansions.
Structure of large spin expansion of anomalous dimensions at strong coupling
International Nuclear Information System (INIS)
Beccaria, M.; Forini, V.; Tirziu, A.; Tseytlin, A.A.
2009-01-01
The anomalous dimensions of planar N=4 SYM theory operators like tr(ΦD + S Φ) expanded in large spin S have the asymptotics γ=flnS+f c +1/S (f 11 lnS+f 10 )+..., where f (the universal scaling function or cusp anomaly), f c and f mn are given by power series in the 't Hooft coupling λ. The subleading coefficients appear to be related by the so-called functional relation and parity (reciprocity) property of the function expressing γ in terms of the conformal spin of the collinear group. Here we study the structure of such large spin expansion at strong coupling via AdS/CFT, i.e. by using the dual description in terms of folded spinning string in AdS 5 . The large spin expansion of the classical string energy happens to have exactly the same structure as that of γ in the perturbative gauge theory. Moreover, the functional relation and the reciprocity constraints on the coefficients are also satisfied. We compute the leading string 1-loop corrections to the coefficients f c , f 11 , f 10 and verify the functional/reciprocity relations at subleading 1/(√(λ)) order. This provides a strong indication that these relations hold not only in weak coupling (gauge-theory) but also in strong coupling (string-theory) perturbative expansions
Cluster synchronization modes in an ensemble of coupled chaotic oscillators
DEFF Research Database (Denmark)
Belykh, Vladimir N.; Belykh, Igor V.; Mosekilde, Erik
2001-01-01
Considering systems of diffusively coupled identical chaotic oscillators, an effective method to determine the possible states of cluster synchronization and ensure their stability is presented. The method, which may find applications in communication engineering and other fields of science...
Study of the Higgs-Yukawa theory in the strong-Yukawa coupling regime
International Nuclear Information System (INIS)
Bulava, John; Gerhold, Philipp; Nagy, Attila; Deutsches Elektronen-Synchrotron; Hou, George W.S.; Smigielski, Brian; Jansen, Karl; Knippschild, Bastian; Univ. of Mainz; Lin, David C.J.; National Centre of Theoretical Sciences, Hsinchu; Nagai, Kei-Ichi; Ogawa, Kenji
2011-12-01
In this article, we present an ongoing lattice study of the Higgs-Yukawa model, in the regime of strong-Yukawa coupling, using overlap fermions. We investigated the phase structure in this regime by computing the Higgs vacuum expectation value, and by exploring the finite-size scaling behaviour of the susceptibility corresponding to the magnetisation. Our preliminary results indicate the existence of a second-order phase transition when the Yukawa coupling becomes large enough, at which the Higgs vacuum expectation value vanishes and the susceptibility diverges. (orig.)
International Nuclear Information System (INIS)
Nagano, Seido; Ichimaru, Setsuo
1980-01-01
The memory function for the velocity autocorrelation function in a strongly coupled, one-component plasma is analyzed in the short time and long time domains, respectively, with the aid of the frequency-moment sum rules and the hydrodynamic consideration evoking the idea of the generalized Stokes friction. A series of interpolation schemes with successively improved accuracies are then introduced. Numerical investigations of those interpolation schemes clarify the physical origin of the three different types of the velocity autocorrelation function observed in the molecular dynamics simulation at different regimes of the coupling constant. (author)
International Nuclear Information System (INIS)
Chaturvedi, D.K.; Senatore, G.; Tosi, M.P.
1980-10-01
An analytic theory is presented for the static structure factor of the one-component classical plasma at strong couplings. The theory combines the hard-core model of Gillan for short-range correlations in the Coulomb fluid with a semiempirical representation of intermediate-range correlations, through which the requirement of thermodynamic consistency on the ''compressibility'' and the known equation of state of the system are satisfied. Excellent agreement is found with the available computer simulation data on the structure of the fluid. The approach becomes inapplicable at intermediate and weak couplings where effects of penetration in the Coulomb hole of each particle become important. (author)
Hybrid plasmonic systems: from optical transparencies to strong coupling and entanglement
Gray, Stephen K.
2018-02-01
Classical electrodynamics and quantum mechanical models of quantum dots and molecules interacting with plasmonic systems are discussed. Calculations show that just one quantum dot interacting with a plasmonic system can lead to interesting optical effects, including optical transparencies and more general Fano resonance features that can be tailored with ultrafast laser pulses. Such effects can occur in the limit of moderate coupling between quantum dot and plasmonic system. The approach to the strong coupling regime is also discussed. In cases with two or more quantum dots within a plasmonic system, the possibility of quantum entanglement mediated through the dissipative plasmonic structure arises.
Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine
Xu, Y. Y.; Chen, B.; Liu, J.
2018-02-01
Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model—a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.
Microscopic theory of photon-correlation spectroscopy in strong-coupling semiconductors
Energy Technology Data Exchange (ETDEWEB)
Schneebeli, Lukas
2009-11-27
While many quantum-optical phenomena are already well established in the atomic systems, like the photon antibunching, squeezing, Bose-Einstein condensation, teleportation, the quantum-optical investigations in semiconductors are still at their beginning. The fascinating results observed in the atomic systems inspire physicists to demonstrate similar quantum-optical effects also in the semiconductor systems. In contrast to quantum optics with dilute atomic gases, the semiconductors exhibit a complicated many-body problem which is dominated by the Coulomb interaction between the electrons and holes and by coupling with the semiconductor environment. This makes the experimental observation of similar quantum-optical effects in semiconductors demanding. However, there are already experiments which have verified nonclassical effects in semiconductors. In particular, experiments have demonstrated that semiconductor quantum dots (QDs) can exhibit the single-photon emission and generation of polarization-entangled photon pairs. In fact, both atom and QD systems, embedded within a microcavity, have become versatile platforms where one can perform systematic quantum-optics investigations as well as development work toward quantum-information applications. Another interesting field is the strong-coupling regime in which the light-matter coupling exceeds both the decoherence rate of the atom or QD and the cavity resulting in a reversible dynamics between light and matter excitations. In the strong-coupling regime, the Jaynes-Cummings ladder is predicted and shows a photon-number dependent splitting of the new dressed strong-coupling states which are the polariton states of the coupled light-matter system. Although the semiclassical effect of the vacuum Rabi splitting has already been observed in QDs, the verification of the quantum-mechanical Jaynes-Cummings splitting is still missing mainly due to the dephasing. Clearly, the observation of the Jaynes-Cummings ladder in QDs
Generic strong coupling behavior of Cooper pairs in the surface of superfluid nuclei
Energy Technology Data Exchange (ETDEWEB)
Pillet, N. [DPTA/Service de Physique nucleaire, CEA/DAM Ile de France, BP12, F-91680 Bruyeres-le-Chatel (France); Sandulescu, N. [DPTA/Service de Physique nucleaire, CEA/DAM Ile de France, BP12, F-91680 Bruyeres-le-Chatel (France)]|[Institute of Physics and Nuclear Engineering, 76900 Bucharest (Romania)]|[Institut de Physique Nucleaire, CNRS, UMR 8608, Orsay, F-91406 (France); Schuck, P. [Institut de Physique Nucleaire, CNRS, UMR 8608, Orsay, F-91406 (France)]|[Universite Paris-Sud, Orsay, F-91505 (France)
2007-01-15
With realistic HFB calculations, using the D1S Gogny force, we reveal a generic behavior of concentration of small sized Cooper pairs (2-3 fm) in the surface of superfluid nuclei. This study confirms and extends previous results given in the literature that use more schematic approaches. It is shown that the strong concentration of pair probability of small Cooper pairs in the nuclear surface is a quite general and generic feature and that nuclear pairing is much closer to the strong coupling regime than previously assumed.
Generic strong coupling behavior of Cooper pairs in the surface of superfluid nuclei
International Nuclear Information System (INIS)
Pillet, N.; Sandulescu, N.; Schuck, P.
2007-01-01
With realistic HFB calculations, using the D1S Gogny force, we reveal a generic behavior of concentration of small sized Cooper pairs (2-3 fm) in the surface of superfluid nuclei. This study confirms and extends previous results given in the literature that use more schematic approaches. It is shown that the strong concentration of pair probability of small Cooper pairs in the nuclear surface is a quite general and generic feature and that nuclear pairing is much closer to the strong coupling regime than previously assumed
Self-organization observed in either fusion or strongly coupled plasmas
International Nuclear Information System (INIS)
Himura, Haruhiko; Sanpei, Akio
2011-01-01
If self-organization happens in the fusion plasma, the plasma alters its shape by weakening the confining magnetic field. The self-organized plasma is stable and robust, so its configuration is conserved even during transport in asymmetric magnetic fields. The self-organization of the plasma is driven by an electrostatic potential. Examples of the plasma that has such strong potential are non-neutral plasmas of pure ions or electrons and dusty plasmas. In the present paper, characteristic phenomena of strongly coupled plasmas such as particle aggregation and formation of the ordered structure are discussed. (T.I.)
Sensitive detection of individual neutral atoms in a strong coupling cavity QED system
International Nuclear Information System (INIS)
Zhang Pengfei; Zhang Yuchi; Li Gang; Du Jinjin; Zhang Yanfeng; Guo Yanqiang; Wang Junmin; Zhang Tiancai; Li Weidong
2011-01-01
We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime. A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5 mm above the micro-cavity center. The atoms fall down freely in gravitation after shutting off the magneto-optical trap and pass through the cavity. The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually. We detect the single atom transits either in the resonance or various detunings. The single atom vacuum-Rabi splitting is directly measured to be Ω = 2π × 23.9 MHz. The average duration of atom-cavity coupling of about 110 μs is obtained according to the probability distribution of the atom transits. (authors)
Sakata Memorial KMI Workshop on Origin of Mass and Strong Coupling Gauge Theories
Maskawa, Toshihide; Nojiri, Shin'ichi; Tanabashi, Masaharu; Yamawaki, Koichi
2018-01-01
This volume contains contributions to the workshop, which was largely focused on the strong coupling gauge theories in search for theories beyond the standard model, particularly, the LHC experiments and lattice studies of conformal fixed point. The main topics include walking technicolor and the role of conformality in view of the 125 GeV Higgs as a light composite Higgs (technidilaton, and other composite Higgs, etc.). Nonperturbative studies like lattice simulations and stringy/holographic approaches are extensively discussed in close relation to the phenomenological studies. After the discovery of 125 GeV Higgs at LHC, the central issue of particle physics is now to reveal the dynamical origin of the Higgs itself. One of the possibilities would be the composite Higgs based on the strong coupling gauge theory in the TeV region, such as the technidilaton predicted in walking technicolor with infrared conformality. The volume contains, among others, many of the latest important reports on walking technicolo...
Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory
Directory of Open Access Journals (Sweden)
Adi Armoni
2018-03-01
Full Text Available We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.
Field-theoretic methods in strongly-coupled models of general gauge mediation
International Nuclear Information System (INIS)
Fortin, Jean-François; Stergiou, Andreas
2013-01-01
An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current–current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry breaking arises both from a hidden sector and dynamically. Our results suggest that strongly-coupled models of supersymmetry breaking are naturally split
Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory
Armoni, Adi; Ireson, Edwin; Vadacchino, Davide
2018-03-01
We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement) the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.
Towards a non-perturbative study of the strongly coupled standard model
International Nuclear Information System (INIS)
Dagotto, E.; Kogut, J.
1988-01-01
The strongly coupled standard model of Abbott and Farhi can be a good alternative to the standard model if it has a phase where chiral symmetry is not broken, the SU(2) sector confines and the scalar field is in the symmetric regime. To look for such a phase we did a numerical analysis in the context of lattice gauge theory. To simplify the model we studied a U(1) gauge theory with Higgs fields and four species of dynamical fermions. In this toy model we did not find a phase with the correct properties required by the strongly coupled standard model. We also speculate about a possible solution to this problem using a new phase of the SU(2) gauge theory with a large number of flavors. (orig.)
Hu, Xue-Rong; Zheng, Ji-Ming; Ren, Zhao-Yu
2018-04-01
Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.
Yukawa couplings and the nature of zero modes in the Skyrme model
International Nuclear Information System (INIS)
Kawarabayashi, K.
1989-01-01
Several issues related, directly or indirectly, to the Yukawa coupling in the Skyrme model are discussed. The authors try to shed a new light on the physical nature of the zero modes associated with translation (rotation) invariance of the model
Coupled Kelvin-Helmholtz and Tearing Mode Instabilities at the Mercury's Magnetopause
Ivanovski, S. L.; Milillo, A.; Kartalev, M.; Massetti, S.
2018-05-01
A MHD approach for numerical simulations of coupled Kelvin-Helmholtz and tearing mode instabilities has been applied to Mercury’s magnetopause and used to perform a physical parameters study constrained by the MESSENGER data.
Strong-coupling behaviour of two t - J chains with interchain single-electron hopping
International Nuclear Information System (INIS)
Zhang Guangming; Feng Shiping; Yu Lu.
1994-01-01
Using the fermion-spin transformation to implement spin-charge separation of constrained electrons, a model of two t - J chains with interchain single-electron hopping is studied by abelian bosonization. After spin-charge decoupling the charge dynamics can be trivially solved, while the spin dynamics is determined by a strong-coupling fixed point where the correlation functions can be calculated explicitly. This is a generalization of the Luther-Emery line for two-coupled t - J chains. The interchain single-electron hopping changes the asymptotic behaviour of the interchain spin-spin correlation functions and the electron Green function, but their exponents are independent of the coupling strength. (author). 25 refs
Strongly coupled chameleon fields: Possible test with a neutron Lloyd's mirror interferometer
International Nuclear Information System (INIS)
Pokotilovski, Yu.N.
2013-01-01
The consideration of possible neutron Lloyd's mirror interferometer experiment to search for strongly coupled chameleon fields is presented. The chameleon scalar fields were proposed to explain the acceleration of expansion of the Universe. The presence of a chameleon field results in a change of a particle's potential energy in vicinity of a massive body. This interaction causes a phase shift of neutron waves in the interferometer. The sensitivity of the method is estimated
Strongly coupled chameleon fields: Possible test with a neutron Lloyd's mirror interferometer
Energy Technology Data Exchange (ETDEWEB)
Pokotilovski, Yu.N., E-mail: pokot@nf.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)
2013-02-26
The consideration of possible neutron Lloyd's mirror interferometer experiment to search for strongly coupled chameleon fields is presented. The chameleon scalar fields were proposed to explain the acceleration of expansion of the Universe. The presence of a chameleon field results in a change of a particle's potential energy in vicinity of a massive body. This interaction causes a phase shift of neutron waves in the interferometer. The sensitivity of the method is estimated.
Breakdown of the 1/N expansion in the continuum limit of strong coupling lattice QCD
International Nuclear Information System (INIS)
Bralic, N.; Pontificia Universidade Catolica de Chile, Santiago. Facultad de Fisica); Loewe, M.
1983-08-01
The restoration of lorentz covariance in the continuum limit of strong coupling lattice QCD is shown to require the breakdown of the 1/N expansion. With the leading 1/N appoximation becoming irrelevant in that limit. To leading order in 1/N lorentz convariance can be restored only as an approximate long distance symmetry a non conventional continuum limit with a non hermitian hamiltonian. (Author) [pt
International Nuclear Information System (INIS)
Harada, Masayasu; Kikukawa, Yoshio; Yamawaki, Koichi
2003-01-01
This issue presents the important recent progress in both theoretical and phenomenological issues of strong coupling gauge theories, with/without supersymmetry and extra dimensions, etc. Emphasis in a placed on dynamical symmetry breaking with large anomalous dimensions governed by the dynamics near the nontrivial fixed point. Also presented are recent developments of the corresponding effective field theories. The 43 of the presented papers are indexed individually. (J.P.N)
Electrical control of spontaneous emission and strong coupling for a single quantum dot
DEFF Research Database (Denmark)
Laucht, A.; Hofbauer, F.; Hauke, N.
2009-01-01
We report the design, fabrication and optical investigation of electrically tunable single quantum dots—photonic crystal defect nanocavities operating in both the weak and strong coupling regimes of the light–matter interaction. Unlike previous studies where the dot–cavity spectral detuning...... switchable optical nonlinearity at the single photon level, paving the way towards on-chip dot-based nano-photonic devices that can be integrated with passive optical components....
Can Lorentz-breaking fermionic condensates form in large N strongly-coupled Lattice Gauge Theories?
Tomboulis, E. T.
2010-01-01
The possibility of Lorentz symmetry breaking (LSB) has attracted considerable attention in recent years for a variety of reasons, including the attractive prospect of the graviton as a Goldstone boson. Though a number of effective field theory analyses of such phenomena have recently been given it remains an open question whether they can take place in an underlying UV complete theory. Here we consider the question of LSB in large N lattice gauge theories in the strong coupling limit. We appl...
Fermion bag approach to the sign problem in strongly coupled lattice QED with Wilson fermions
Chandrasekharan, Shailesh; Li, Anyi
2010-01-01
We explore the sign problem in strongly coupled lattice QED with one flavor of Wilson fermions in four dimensions using the fermion bag formulation. We construct rules to compute the weight of a fermion bag and show that even though the fermions are confined into bosons, fermion bags with negative weights do exist. By classifying fermion bags as either simple or complex, we find numerical evidence that complex bags with positive and negative weights come with almost equal probabilities and th...
Comments on gluon 6-point scattering amplitudes in N = 4 SYM at strong coupling
International Nuclear Information System (INIS)
Astefanesei, Dumitru; Dobashi, Suguru; Ito, Katsushi; Nastase, Horatiu
2007-01-01
We use the AdS-CFT prescription of Alday and Maldacena [1] to analyze gluon 6-point scattering amplitudes at strong coupling in N = 4 SYM. By cutting and gluing we obtain AdS 6-point amplitudes that contain extra boundary conditions and come close to matching the field theory results. We interpret them as parts of the field theory amplitudes, containing only certain diagrams. We also analyze the collinear limits of 6- and 5-point amplitudes and discuss the results
Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer
Directory of Open Access Journals (Sweden)
Matjaz Rozman
2017-04-01
Full Text Available This paper proposes a hybrid circuit between a conformal strongly-coupled magnetic resonance (CSCMR and a strongly-coupled magnetic resonance (SCMR, for better wireless power transmission (WPT. This combination promises to enhance the flexibility of the proposed four-loop WPT system. The maximum efficiency at various distances is achieved by combining coupling-matching between the source and transmitting coils along with the coupling factor between the transmitting and receiving coils. Furthermore, the distance between transmitting and receiving coils is investigated along with the distance relationship between the source loop and transmission coil, in order to achieve the maximum efficiency of the proposed hybrid WPT system. The results indicate that the proposed approach can be effectively employed at distances comparatively smaller than the maximum distance without frequency matching. The achievable efficiency can be as high as 84% for the whole working range of the transmitter. In addition, the proposed hybrid system allows more spatial freedom compared to existing chargers.
Effect of parameter mismatch on the dynamics of strongly coupled self sustained oscillators.
Chakrabarty, Nilaj; Jain, Aditya; Lal, Nijil; Das Gupta, Kantimay; Parmananda, Punit
2017-01-01
In this paper, we present an experimental setup and an associated mathematical model to study the synchronization of two self-sustained, strongly coupled, mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, namely, damping and frequency, have been studied. Our experimental system is a pair of spring wound mechanical metronomes; coupled by placing them on a common base, free to move along a horizontal direction. We designed a photodiode array based non-contact, non-magnetic position detection system driven by a microcontroller to record the instantaneous angular displacement of each oscillator and the small linear displacement of the base, coupling the two. In our system, the mass of the oscillating pendula forms a significant fraction of the total mass of the system, leading to strong coupling of the oscillators. We modified the internal mechanism of the spring-wound "clockwork" slightly, such that the natural frequency and the internal damping could be independently tuned. Stable synchronized and anti-synchronized states were observed as the difference in the parameters was varied in the experiments. The simulation results showed a rapid increase in the phase difference between the two oscillators beyond a certain threshold of parameter mismatch. Our simple model of the escapement mechanism did not reproduce a complete 180° out of phase state. However, the numerical simulations show that increased mismatch in parameters leads to a synchronized state with a large phase difference.
Composite Sliding Mode Control for a Free-Floating Space Rigid-Flexible Coupling Manipulator System
Congqing, Wang; Pengfei, Wu; Xin, Zhou; Xiwu, Pei
2013-01-01
The flexible space manipulator is a highly nonlinear and coupled dynamic system. This paper proposes a novel composite sliding mode control to deal with the vibration suppression and trajectory tracking of a free-floating space rigid-flexible coupling manipulator with a rigid payload. First, the dynamic equations of this system are established by using Lagrange and assumed mode methods and in the meantime this dynamic modelling allows consideration of the modelling errors, the external distur...
Optical-domain Compensation for Coupling between Optical Fiber Conjugate Vortex Modes
DEFF Research Database (Denmark)
Lyubopytov, Vladimir S.; Tatarczak, Anna; Lu, Xiaofeng
2016-01-01
We demonstrate for the first time optical-domain compensation for coupling between conjugate vortex modes in optical fibers. We introduce a novel method for reconstructing the complex propagation matrix of the optical fiber with straightforward implementation.......We demonstrate for the first time optical-domain compensation for coupling between conjugate vortex modes in optical fibers. We introduce a novel method for reconstructing the complex propagation matrix of the optical fiber with straightforward implementation....
Directory of Open Access Journals (Sweden)
A. Stockklauser
2017-03-01
Full Text Available The strong coupling limit of cavity quantum electrodynamics (QED implies the capability of a matterlike quantum system to coherently transform an individual excitation into a single photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work, we demonstrate strong coupling between the charge degree of freedom in a gate-defined GaAs double quantum dot (DQD and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices. In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=238 MHz at a resonator linewidth κ/2π=12 MHz and a DQD charge qubit decoherence rate of γ_{2}/2π=40 MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit-based cavity QED for quantum information processing in semiconductor nanostructures.
Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities
Graf, Arko; Tropf, Laura; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C.
2016-10-01
Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths.
Derivation of Path Independent Coupled Mix Mode Cohesive Laws from Fracture Resistance Curves
DEFF Research Database (Denmark)
Goutianos, Stergios
2016-01-01
A generalised approach is presented to derive coupled mixed mode cohesive laws described with physical parameters such as peak traction, critical opening, fracture energy and cohesive shape. The approach is based on deriving mix mode fracture resistance curves from an effective mix mode cohesive...... law at different mode mixities. From the fracture resistance curves, the normal and shear stresses of the cohesive laws can be obtained by differentiation. Since, the mixed mode cohesive laws are obtained from a fracture resistance curve (potential function), path independence is automatically...
Parametric resonance of intrinsic localized modes in coupled cantilever arrays
Energy Technology Data Exchange (ETDEWEB)
Kimura, Masayuki, E-mail: kimura.masayuki.8c@kyoto-u.ac.jp [Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Matsushita, Yasuo [Advanced Mathematical Institute, Osaka City University, 3-3-138 Sughimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Hikihara, Takashi [Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)
2016-08-19
In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein–Gordon, Fermi–Pasta–Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation. - Highlights: • Destabilization of intrinsic localized modes (ILMs) by parametric excitation is investigated for FPU, NKG, and mixed lattices. • Frequency and amplitude of parametric excitation is determined based on characteristic multipliers of ILMs. • Unstable regions for the mixed lattice case show very similar shape to those of the Mathieu equation. • ILMs become unstable by causing parametric resonance.
Parametric resonance of intrinsic localized modes in coupled cantilever arrays
International Nuclear Information System (INIS)
Kimura, Masayuki; Matsushita, Yasuo; Hikihara, Takashi
2016-01-01
In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein–Gordon, Fermi–Pasta–Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation. - Highlights: • Destabilization of intrinsic localized modes (ILMs) by parametric excitation is investigated for FPU, NKG, and mixed lattices. • Frequency and amplitude of parametric excitation is determined based on characteristic multipliers of ILMs. • Unstable regions for the mixed lattice case show very similar shape to those of the Mathieu equation. • ILMs become unstable by causing parametric resonance.
International Nuclear Information System (INIS)
Passamonti, Andrea; Stergioulas, Nikolaos; Nagar, Alessandro
2007-01-01
The postbounce oscillations of newly-born relativistic stars are expected to lead to gravitational-wave emission through the excitation of nonradial oscillation modes. At the same time, the star is oscillating in its radial modes, with a central density variation that can reach several percent. Nonlinear couplings between radial oscillations and polar nonradial modes lead to the appearance of combination frequencies (sums and differences of the linear mode frequencies). We study such combination frequencies using a gauge-invariant perturbative formalism, which includes bilinear coupling terms between different oscillation modes. For typical values of the energy stored in each mode we find that gravitational waves emitted at combination frequencies could become detectable in galactic core-collapse supernovae with advanced interferometric or wideband resonant detectors
Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Victor A
2017-01-23
We study resonances of guided-mode resonant gratings in conical mounting. By developing 2D time-dependent coupled-mode theory we obtain simple approximations of the transmission and reflection coefficients. Being functions of the incident light's frequency and in-plane wave vector components, the obtained approximations can be considered as multi-variable generalizations of the Fano line shape. We show that the approximations are in good agreement with the rigorously calculated transmission and reflection spectra. We use the developed theory to investigate angular tolerances of the considered structures and to obtain mode excitation conditions. In particular, we obtain the cross-polarization mode excitation conditions in the case of conical mounting.
International Nuclear Information System (INIS)
Wang, Wei; Sommer, Ephraim; De Sio, Antonietta; Gross, Petra; Vogelgesang, Ralf; Lienau, Christoph; Vasa, Parinda
2014-01-01
We analyze the linear optical reflectivity spectra of a prototypical, strongly coupled metal/molecular hybrid nanostructure by means of a new experimental approach, linear two-dimensional optical spectroscopy. White-light, broadband spectral interferometry is used to measure amplitude and spectral phase of the sample reflectivity or transmission with high precision and to reconstruct the time structure of the electric field emitted by the sample upon impulsive excitation. A numerical analysis of this time-domain signal provides a two-dimensional representation of the coherent optical response of the sample as a function of excitation and detection frequency. The approach is used to study a nanostructure formed by depositing a thin J-aggregated dye layer on a gold grating. In this structure, strong coupling between excitons and surface plasmon polaritons results in the formation of hybrid polariton modes. In the strong coupling regime, Lorentzian lineshape profiles of different polariton modes are observed at room temperature. This is taken as an indication that the investigated strongly coupled polariton excitations are predominantly homogeneously broadened at room temperature. This new approach presents a versatile, simple and highly precise addition to nonlinear optical spectroscopic techniques for the analysis of line broadening phenomena. (paper)
Efficient coupling of a single diamond color center to propagating plasmonic gap modes
DEFF Research Database (Denmark)
Kumar, Shailesh; Huck, Alexander; Andersen, Ulrik L
2013-01-01
We report on coupling of a single nitrogen-vacancy (NV) center in a nanodiamond to the propagating gap mode of two parallel placed chemically grown silver nanowires. The coupled NV-center nanowire system is made by manipulating nanodiamonds and nanowires with the tip of an atomic force microscope...
Mode cross coupling observations with a rotation sensor
Nader-Nieto, M. F.; Igel, H.; Ferreira, A. M.; Al-Attar, D.
2013-12-01
The Earth's free oscillations induced by large earthquakes have been one of the most important ways to measure the Earth's internal structure and processes. They provide important large scale constraints on a variety of elastic parameters, attenuation and density of the Earth's deep interior. The potential of rotational seismic records for long period seismology was proven useful as a complement to traditional measurements in the study of the Earth's free oscillations. Thanks to the high resolution of the G-ring laser located at Geodetic Observatory Wettzell, Germany, we are now able to study the spectral energy generated by rotations in the low frequency range. On a SNREI Earth, a vertical component rotational sensor is primarily excited by horizontally polarised shear motions (SH waves, Love waves) with theoretically no sensitivity to compressional waves and conversions (P-SV) and Rayleigh waves. Consequently, in the context of the Earth's normal modes, this instrument detects mostly toroidal modes. Here, we present observations of spectral energy of both toroidal and spheroidal normal modes in the G-ring Laser records of one of the largest magnitude events recently recorded: Tohoku-Oki, Japan, 2011. In an attempt to determine the mechanisms responsible for spheroidal energy in the vertical axes rotational spectra, we first rule out instrumental effects as well as the effect of local heterogeneity. Second, we carry out a simulation of an ideal rotational sensor taking into account the effects of the Earth's daily rotation, its hydrostatic ellipticity and structural heterogeneity, finding a good fit to the data. Simulations considering each effect separately are performed in order to evaluate the sensitivity of rotational motions to global effects with respect to traditional translation measurements.
Modeling of mode-locked coupled-resonator optical waveguide lasers
DEFF Research Database (Denmark)
Agger, Christian; Skovgård, Troels Suhr; Gregersen, Niels
2010-01-01
Coupled-resonator optical waveguides made from coupled high-Q photonic crystal nanocavities are investigated for use as cavities in mode-locked lasers. Such devices show great potential in slowing down light and can serve to reduce the cavity length of a mode-locked laser. An explicit expression...... of the emerging pulse train. A range of tuning around this frequency allows for effective mode locking. Finally, noise is added to the generalized single-cavity eigenfrequencies in order to evaluate the effects of fabrication imperfections on the cold-cavity transmission properties and consequently on the locking...
An investigation of coupling of the internal kink mode to error field correction coils in tokamaks
International Nuclear Information System (INIS)
Lazarus, E.A.
2013-01-01
The coupling of the internal kink to an external m/n = 1/1 perturbation is studied for profiles that are known to result in a saturated internal kink in the limit of a cylindrical tokamak. It is found from three-dimensional equilibrium calculations that, for A ≈ 30 circular plasmas and A ≈ 3 elliptical shapes, this coupling of the boundary perturbation to the internal kink is strong; i.e., the amplitude of the m/n = 1/1 structure at q = 1 is large compared with the amplitude applied at the plasma boundary. Evidence suggests that this saturated internal kink, resulting from small field errors, is an explanation for the TEXTOR and JET measurements of q 0 remaining well below unity throughout the sawtooth cycle, as well as the distinction between sawtooth effects on the q-profile observed in TEXTOR and DIII-D. It is proposed that this excitation, which could readily be applied with error field correction coils, be explored as a mechanism for controlling sawtooth amplitudes in high-performance tokamak discharges. This result is then combined with other recent tokamak results to propose an L-mode approach to fusion in tokamaks. (paper)
Gross–Tulub polaron functional in the region of intermediate and strong coupling
Directory of Open Access Journals (Sweden)
N.I. Kashirina
2017-10-01
Full Text Available Properties of the polaron functional obtained as a result of averaging the Fröhlich Hamiltonian on the translation-invariant function have been investigated. The polaron functional can be represented in two different forms. It has been shown that the functional of translationally invariant Gross–Tulub polaron cannot be applied in the strong coupling region, where the real part of the complex quantity takes negative values. The function coincides in its structure with the dynamic susceptibility of degenerate electron gas. The necessary condition for obtaining correct results is investigation of the region of admissible values of the Gross–Tulub functional depending on properties of the function , variational parameters, and the electron-phonon interaction parameter α (Fröhlich coupling constant. A simple and exact formula for the recoil energy of the translationally invariant polaron has been derived, which makes it possible to extend the range of admissible values of the parameters of the electron-phonon interaction to the region of extremely strong coupling (α > 10, where . Numerical investigation of different forms of polaron functionals obtained using the field theory methods has been carried out.
Strong-coupling analysis of large bipolarons in two and three dimensions
International Nuclear Information System (INIS)
Verbist, G.; Smondyrev, M.A.; Peeters, F.M.; Devreese, J.T.
1992-01-01
In the limit of strong electron-phonon coupling, we use either a Pekar-type or an oscillator wave function for the center-of-mass coordinate and either a Coulomb or an oscillator wave function for the relative coordinate, and are able to reproduce all the results from the literature for the large-bipolaron binding energy. Lower bounds are constructed for the critical ratio η c of dielectric constants below which bipolarons can exist. It is found that, in the strong-coupling limit, the stability region for bipolaron formation is much larger in two dimensions (2D) than in 3D. We introduce a model that combines the averaging of the relative coordinate over the asymptotically best wave function with a path-integral treatment of the center-of-mass motion. The stability region for bipolaron formation is increased compared with the full path-integral treatment at large values of the coupling constant α. The critical values are α c ∼9.3 in 3D and α c ∼4.5 in 2D. Phase diagrams for the presented models are also obtained in both 2D and 3D
Oblique S and T constraints on electroweak strongly-coupled models with a light Higgs
Energy Technology Data Exchange (ETDEWEB)
Pich, A. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Rosell, I. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Departamento de Ciencias Físicas, Matemáticas y de la Computación,Universidad CEU Cardenal Herrera,c/ Sant Bartomeu 55, E-46115 Alfara del Patriarca, València (Spain); Sanz-Ciller, J.J. [Departamento de Física Teórica, Instituto de Física Teórica,Universidad Autónoma de Madrid - CSIC,c/ Nicolás Cabrera 13-15, E-28049 Cantoblanco, Madrid (Spain)
2014-01-28
Using a general effective Lagrangian implementing the chiral symmetry breaking SU(2){sub L}⊗SU(2){sub R}→SU(2){sub L+R}, we present a one-loop calculation of the oblique S and T parameters within electroweak strongly-coupled models with a light scalar. Imposing a proper ultraviolet behaviour, we determine S and T at next-to-leading order in terms of a few resonance parameters. The constraints from the global fit to electroweak precision data force the massive vector and axial-vector states to be heavy, with masses above the TeV scale, and suggest that the W{sup +}W{sup −} and ZZ couplings of the Higgs-like scalar should be close to the Standard Model value. Our findings are generic, since they only rely on soft requirements on the short-distance properties of the underlying strongly-coupled theory, which are widely satisfied in more specific scenarios.
International Nuclear Information System (INIS)
Levi, A.R.; Lubicz, V.; Rebbi, C.
1997-01-01
We discuss a general strategy to compute the coefficients of the QCD chiral Lagrangian using lattice QCD with Wilson fermions. This procedure requires the introduction of a lattice chiral Lagrangian as an intermediate step in the calculation. The QCD chiral Lagrangian is then obtained by expanding the lattice effective theory in increasing powers of the lattice spacing and the external momenta. In order to investigate the general structure of the lattice effective Lagrangian, we perform an analytical calculation at the leading order of the strong-coupling and large-N expansion. We find that the explicit chiral symmetry breaking, introduced on the lattice by the Wilson term, is reproduced in the effective theory by a set of additional terms, which do not have direct correspondence in the continuum chiral Lagrangian. We argue that these terms can be conveniently reabsorbed by a suitable renormalization procedure. This is shown explicitly at the leading order of the strong-coupling and large-N expansion. In fact, we find that at this order, as is known to be the case in the opposite weak-coupling limit, the vector and axial Ward identities of the continuum theory are reproduced on the lattice provided that the bare quark mass and the lattice operators are properly renormalized. copyright 1997 The American Physical Society
Chuang, Shun-Lien
1987-01-01
Two sets of coupled-mode equations for multiwaveguide systems are derived using a generalized reciprocity relation; one set for a lossless system, and the other for a general lossy or lossless system. The second set of equations also reduces to those of the first set in the lossless case under the condition that the transverse field components are chosen to be real. Analytical relations between the coupling coefficients are shown and applied to the coupling of mode equations. It is shown analytically that these results satisfy exactly both the reciprocity theorem and power conservation. New orthogonal relations between the supermodes are derived in matrix form, with the overlap integrals taken into account.
Effect of surface modes on coupling to fast waves in the LHRF
International Nuclear Information System (INIS)
Pinsker, R.I.; Colestock, P.L.
1990-01-01
The effect of surface modes of propagation on coupling to fast waves in the LHRF is studied theoretically and experimentally. The previously reported 'up-down' poloidal phasing asymmetry for coupling to a uniform plasma is shown to be due to the properties of a mode which carries energy along the plasma-conducting wall interface. Comparison of the theory with coupling experiments performed on the PLT tokamak with a phased array of twelve dielectric-loaded waveguides at 800 MHz shows that the observed dependence of the net reflection coefficient on toroidal phase angle can be explained only if the surface wave is taken into account. 43 refs., 10 figs
International Nuclear Information System (INIS)
Weinberg, Nevin N.; Arras, Phil; Burkart, Joshua
2013-01-01
A weakly nonlinear fluid wave propagating within a star can be unstable to three-wave interactions. The resonant parametric instability is a well-known form of three-wave interaction in which a primary wave of frequency ω a excites a pair of secondary waves of frequency ω b + ω c ≅ ω a . Here we consider a nonresonant form of three-wave interaction in which a low-frequency primary wave excites a high-frequency p-mode and a low-frequency g-mode such that ω b + ω c >> ω a . We show that a p-mode can couple so strongly to a g-mode of similar radial wavelength that this type of nonresonant interaction is unstable even if the primary wave amplitude is small. As an application, we analyze the stability of the tide in coalescing neutron star binaries to p-g mode coupling. We find that the equilibrium tide and dynamical tide are both p-g unstable at gravitational wave frequencies f gw ≳ 20 Hz and drive short wavelength p-g mode pairs to significant energies on very short timescales (much less than the orbital decay time due to gravitational radiation). Resonant parametric coupling to the tide is, by contrast, either stable or drives modes at a much smaller rate. We do not solve for the saturation of the p-g instability and therefore we cannot say precisely how it influences the evolution of neutron star binaries. However, we show that if even a single daughter mode saturates near its wave breaking amplitude, the p-g instability of the equilibrium tide will (1) induce significant orbital phase errors (Δφ ≳ 1 radian) that accumulate primarily at low frequencies (f gw ≲ 50 Hz) and (2) heat the neutron star core to a temperature of T ∼ 10 10 K. Since there are at least ∼100 unstable p-g daughter pairs, Δφ and T are potentially much larger than these values. Tides might therefore significantly influence the gravitational wave signal and electromagnetic emission from coalescing neutron star binaries at much larger orbital separations than previously
Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf
2015-05-07
We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to
Coupled-Mode Theory for Complex-Index, Corrugated Multilayer Stacks
DEFF Research Database (Denmark)
Lüder, Hannes; Gerken, Martina; Adam, Jost
, and by choosing a bi-orthogonal basis, obtained by solving the corresponding adjoint problem. With the once found modal solutions of the unperturbed waveguide, we can calculate the coupling coefficients, which describe the mode coupling caused by the introduced periodic corrugation. [1] C. Kluge et al., Opt......We present a coupled-mode theory (CMT) approach for modelling the modal behaviour of multi- layer thinfilm devices with complex material parameters and periodic corrugations. Our method provides fast computation and extended physical insight as compared to standard numerical methods...... to be non-Hermitian, introducing two major consequences. First, the eigenvalues (i. e. the mode neff) have to be found in the complex plane (Fig. 2). Second, the classical mode orthogonality is no longer valid. We address both challenges by a combination of three complex-root solving algorithms...
Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal
Energy Technology Data Exchange (ETDEWEB)
Gao, Zhen; Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Zhang, Baile, E-mail: blzhang@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore 637371 (Singapore)
2016-01-25
We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk.
Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal
International Nuclear Information System (INIS)
Gao, Zhen; Gao, Fei; Zhang, Baile
2016-01-01
We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk
Strong coupling in F-theory and geometrically non-Higgsable seven-branes
Directory of Open Access Journals (Sweden)
James Halverson
2017-06-01
Full Text Available Geometrically non-Higgsable seven-branes carry gauge sectors that cannot be broken by complex structure deformation, and there is growing evidence that such configurations are typical in F-theory. We study strongly coupled physics associated with these branes. Axiodilaton profiles are computed using Ramanujan's theories of elliptic functions to alternative bases, showing explicitly that the string coupling is O(1 in the vicinity of the brane; that it sources nilpotent SL(2,Z monodromy and therefore the associated brane charges are modular; and that essentially all F-theory compactifications have regions with order one string coupling. It is shown that non-perturbative SU(3 and SU(2 seven-branes are related to weakly coupled counterparts with D7-branes via deformation-induced Hanany–Witten moves on (p,q string junctions that turn them into fundamental open strings; only the former may exist for generic complex structure. D3-brane near these and the Kodaira type II seven-branes probe Argyres–Douglas theories. The BPS states of slightly deformed theories are shown to be dyonic string junctions.
Charging-delay effect on longitudinal dust acoustic shock wave in strongly coupled dusty plasma
International Nuclear Information System (INIS)
Ghosh, Samiran; Gupta, M.R.
2005-01-01
Taking into account the charging-delay effect, the nonlinear propagation characteristics of longitudinal dust acoustic wave in strongly coupled collisional dusty plasma described by generalized hydrodynamic model have been investigated. In the 'hydrodynamic limit', a Korteweg-de Vries Burger (KdVB) equation with a damping term arising due to dust-neutral collision is derived in which the Burger term is proportional to the dissipation due to dust viscosity through dust-dust correlation and charging-delay-induced anomalous dissipation. On the other hand, in the 'kinetic limit', a KdVB equation with a damping term and a nonlocal nonlinear forcing term arising due to memory-dependent strong correlation effect of dust fluid is derived in which the Burger term depends only on the charging-delay-induced dissipation. Numerical solution of integrodifferential equations reveals that (i) dissipation due to dust viscosity and principally due to charging delay causes excitation of the longitudinal dust acoustic shock wave in strongly coupled dusty plasma and (ii) dust-neutral collision does not appear to play any direct role in shock formation. The condition for the generation of shock is also discussed briefly
The strong coupling from a nonperturbative determination of the Λ parameter in three-flavor QCD
Energy Technology Data Exchange (ETDEWEB)
Bruno, Mattia [Brookhaven National Laboratory, Upton, NY (United States). Physics Dept.; Dalla Brida, Mattia [Univ. di Milano-Bicocca (Italy). Dipt. di Fisica; INFN, Sezione di Milano-Bicocca (Italy); Fritzsch, Patrick; Ramos, Alberto [CERN, Geneva (Switzerland). Theoretical Physics Dept.; Korzec, Tomasz [Wuppertal Univ. (Germany). Dept. of Physics; Schaefer, Stefan; Simma, Hubert [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics and Hamilton Mathematics Inst.; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Collaboration: ALPHA Collaboration
2017-07-15
We present a lattice determination of the Λ parameter in three-flavor QCD and the strong coupling at the Z pole mass. Computing the nonperturbative running of the coupling in the range from 0.2 GeV to 70 GeV, and using experimental input values for the masses and decay constants of the pion and the kaon, we obtain Λ{sup (3)}{sub MS}=341(12) MeV. The nonperturbative running up to very high energies guarantees that systematic effects associated with perturbation theory are well under control. Using the four-loop prediction for Λ{sup (5)}{sub MS}/Λ{sup (3)}{sub MS} yields α{sup (5)}{sub MS}(m{sub Z})=0.11852(84).
Realization of collective strong coupling with ion Coulomb crystals in an optical cavity
DEFF Research Database (Denmark)
Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan
2009-01-01
Cavity quantum electrodynamics (CQED) focuses on understanding the interactions between matter and the electromagnetic field in cavities at the quantum level 1, 2 . In the past years, CQED has attracted attention 3, 4, 5, 6, 7, 8, 9 especially owing to its importance for the field of quantum...... information 10 . At present, photons are the best carriers of quantum information between physically separated sites 11, 12 and quantum-information processing using stationary qubits 10 is most promising, with the furthest advances having been made with trapped ions 13, 14, 15 . The implementation of complex...... quantum-information-processing networks 11, 12 hence requires devices to efficiently couple photons and stationary qubits. Here, we present the first CQED experiments demonstrating that the collective strong-coupling regime 2 can be reached in the interaction between a solid in the form of an ion Coulomb...
Strong-coupling constant at three loops in momentum subtraction scheme
International Nuclear Information System (INIS)
Chetyrkin, K.G.; Russian Academy of Sciences, Moscow; Kniehl, B.A.; Steinhauser, M.
2008-12-01
In this paper we compute the three-loop corrections to the β function in a momentum subtraction (MOM) scheme with a massive quark. The calculation is performed in the background field formalism applying asymptotic expansions for small and large momenta. Special emphasis is devoted to the relation between the coupling constant in the MOM and MS schemes as well as their ability to describe the phenomenon of decoupling. It is demonstrated by an explicit comparison that the MS scheme can be consistently used to relate the values of the MOM-scheme strong-coupling constant in the energy regions higher and lower than the massive-quark production threshold. This procedure obviates the necessity to know the full mass dependence of the MOM β function and clearly demonstrates the equivalence of both schemes for the description of physics outside the threshold region. (orig.)
Strong-coupling constant at three loops in momentum subtraction scheme
Energy Technology Data Exchange (ETDEWEB)
Chetyrkin, K.G. [Karlsruhe Univ. (T.H.), Karlsruhe Inst. of Technology (KIT) (Germany). Inst. fuer Theoretische Teilchenphysik]|[Russian Academy of Sciences, Moscow (Russian Federation). Inst. for Nuclear Research; Kniehl, B.A. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Steinhauser, M. [Karlsruhe Univ. (T.H.), Karlsruhe Inst. of Technology (KIT) (Germany). Inst. fuer Theoretische Teilchenphysik
2008-12-15
In this paper we compute the three-loop corrections to the {beta} function in a momentum subtraction (MOM) scheme with a massive quark. The calculation is performed in the background field formalism applying asymptotic expansions for small and large momenta. Special emphasis is devoted to the relation between the coupling constant in the MOM and MS schemes as well as their ability to describe the phenomenon of decoupling. It is demonstrated by an explicit comparison that the MS scheme can be consistently used to relate the values of the MOM-scheme strong-coupling constant in the energy regions higher and lower than the massive-quark production threshold. This procedure obviates the necessity to know the full mass dependence of the MOM {beta} function and clearly demonstrates the equivalence of both schemes for the description of physics outside the threshold region. (orig.)
Hanle Magnetoresistance in Thin Metal Films with Strong Spin-Orbit Coupling.
Vélez, Saül; Golovach, Vitaly N; Bedoya-Pinto, Amilcar; Isasa, Miren; Sagasta, Edurne; Abadia, Mikel; Rogero, Celia; Hueso, Luis E; Bergeret, F Sebastian; Casanova, Fèlix
2016-01-08
We report measurements of a new type of magnetoresistance in Pt and Ta thin films. The spin accumulation created at the surfaces of the film by the spin Hall effect decreases in a magnetic field because of the Hanle effect, resulting in an increase of the electrical resistance as predicted by Dyakonov [Phys. Rev. Lett. 99, 126601 (2007)]. The angular dependence of this magnetoresistance resembles the recently discovered spin Hall magnetoresistance in Pt/Y(3)Fe(5)O(12) bilayers, although the presence of a ferromagnetic insulator is not required. We show that this Hanle magnetoresistance is an alternative simple way to quantitatively study the coupling between charge and spin currents in metals with strong spin-orbit coupling.
Boundary perturbations coupled to core 3/2 tearing modes on the DIII-D tokamak
International Nuclear Information System (INIS)
Tobias, B; Yu, L; Domier, C W; Luhmann, N C Jr; Austin, M E; Paz-Soldan, C; Turnbull, A D; Classen, I G J
2013-01-01
High confinement (H-mode) discharges on the DIII-D tokamak are routinely subject to the formation of long-lived, non-disruptive magnetic islands that degrade confinement and limit fusion performance. Simultaneous, 2D measurement of electron temperature fluctuations in the core and edge regions allows for reconstruction of the radially resolved poloidal mode number spectrum and phase of the global plasma response associated with these modes. Coherent, n = 2 excursions of the plasma boundary are found to be the result of coupling to an n = 2, kink-like mode which arises locked in phase to the 3/2 island chain. This coupling dictates the relative phase of the displacement at the boundary with respect to the tearing mode. This unambiguous phase relationship, for which no counter-examples are observed, is presented as a test for modeling of the perturbed fields to be expected outside the confined plasma. (paper)
Cavity mode control in side-coupled periodic waveguides: theory and experiment
DEFF Research Database (Denmark)
Ha, Sangwoo; Sukhorukov, A.; Lavrinenko, Andrei
2010-01-01
We demonstrate that the modes of coupled cavities created in periodic waveguides can depend critically on the longitudinal shift between the cavities. In the absence of such shift, the modes feature symmetric or antisymmetric profiles, and their frequency splitting generally increases...... as the cavities are brought closer. We show that the longitudinal shift enables flexible control over the fundamental modes, whose frequency detuning can be reduced down to zero. Our coupled-mode theory analysis reveals an intrinsic link between the mode tuning and the transformation of slow-light dispersion...... at the photonic band-edge.We illustrate our approach through numerical modeling of cavities created in arrays of dielectric rods, and confirm our predictions with experimental observations....
Yahiaoui, R.; Burrow, J. A.; Mekonen, S. M.; Sarangan, A.; Mathews, J.; Agha, I.; Searles, T. A.
2018-04-01
We demonstrate a classical analog of electromagnetically induced transparency (EIT) in a highly flexible planar terahertz metamaterial (MM) comprised of three-gap split-ring resonators. The keys to achieve EIT in this system are the frequency detuning and hybridization processes between two bright modes coexisting in the same unit cell as opposed to bright-dark modes. We present experimental verification of two bright modes coupling for a terahertz EIT-MM in the context of numerical results and theoretical analysis based on a coupled Lorentz oscillator model. In addition, a hybrid variation of the EIT-MM is proposed and implemented numerically to dynamically tune the EIT window by incorporating photosensitive silicon pads in the split gap region of the resonators. As a result, this hybrid MM enables the active optical control of a transition from the on state (EIT mode) to the off state (dipole mode).
International Nuclear Information System (INIS)
Munson, C.P.; Benage, J.F. Jr.; Taylor, A.J.; Trainor, R.J. Jr.; Wood, B.P.; Wysocki, F.J.
1999-01-01
Atlas is a high current (approximately 30 MA peak, with a current risetime approximately 4.5 microsec), high energy (E stored = 24 MJ, E load = 3--6 MJ), pulsed power facility which is being constructed at Los Alamos National Laboratory with a scheduled completion date in the year 2000. When operational, this facility will provide a platform for experiments in high pressure shocks (> 20 Mbar), adiabatic compression (ρ/ρ 0 > 5, P > 10 Mbar), high magnetic fields (approximately 2,000 T), high strain and strain rates (var e psilon > 200%, dvar e psilon/dt approximately 10 4 to 10 6 s -1 ), hydrodynamic instabilities of materials in turbulent regimes, magnetized target fusion, equation of state, and strongly coupled plasmas. For the strongly coupled plasma experiments, an auxiliary capacitor bank will be used to generate a moderate density (< 0.1 solid), relatively cold (approximately 1 eV) plasma by ohmic heating of a conducting material of interest such as titanium. This stargate plasma will be compressed against a central column containing diagnostic instrumentation by a cylindrical conducting liner that is driven radially inward by current from the main Atlas capacitor bank. The plasma is predicted to reach densities of approximately 1.1 times solid, achieve ion and electron temperatures of approximately 10 eV, and pressures of approximately 4--5 Mbar. This is a density/temperature regime which is expected to experience strong coupling, but only partial degeneracy. X-ray radiography is planned for measurements of the material density at discrete times during the experiments; diamond Raman measurements are anticipated for determination of the pressure. In addition, a neutron resonance spectroscopic technique is being evaluated for possible determination of the temperature (through low percentage doping of the titanium with a suitable resonant material). Initial target plasma formation experiments are being planned on an existing pulsed power facility at LANL and
Strong-coupling Bose polarons out of equilibrium: Dynamical renormalization-group approach
Grusdt, Fabian; Seetharam, Kushal; Shchadilova, Yulia; Demler, Eugene
2018-03-01
When a mobile impurity interacts with a surrounding bath of bosons, it forms a polaron. Numerous methods have been developed to calculate how the energy and the effective mass of the polaron are renormalized by the medium for equilibrium situations. Here, we address the much less studied nonequilibrium regime and investigate how polarons form dynamically in time. To this end, we develop a time-dependent renormalization-group approach which allows calculations of all dynamical properties of the system and takes into account the effects of quantum fluctuations in the polaron cloud. We apply this method to calculate trajectories of polarons following a sudden quench of the impurity-boson interaction strength, revealing how the polaronic cloud around the impurity forms in time. Such trajectories provide additional information about the polaron's properties which are challenging to extract directly from the spectral function measured experimentally using ultracold atoms. At strong couplings, our calculations predict the appearance of trajectories where the impurity wavers back at intermediate times as a result of quantum fluctuations. Our method is applicable to a broader class of nonequilibrium problems. As a check, we also apply it to calculate the spectral function and find good agreement with experimental results. At very strong couplings, we predict that quantum fluctuations lead to the appearance of a dark continuum with strongly suppressed spectral weight at low energies. While our calculations start from an effective Fröhlich Hamiltonian describing impurities in a three-dimensional Bose-Einstein condensate, we also calculate the effects of additional terms in the Hamiltonian beyond the Fröhlich paradigm. We demonstrate that the main effect of these additional terms on the attractive side of a Feshbach resonance is to renormalize the coupling strength of the effective Fröhlich model.
Higher Order Modes HOM___s in Coupled Cavities of the Flash Module ACC39
Energy Technology Data Exchange (ETDEWEB)
Shinton, I.R.R.; /Manchester U. /Cockcroft Inst. Accel. Sci. Tech.; Jones, R.M.; /Manchester U. /DESY; Li, Z.; /SLAC; Zhang, P.; /Manchester U. /Cockcroft Inst. Accel. Sci. Tech. /DESY
2012-09-14
We analyse the higher order modes (HOM's) in the 3.9GHz bunch shaping cavities installed in the FLASH facility at DESY. A suite of finite element computer codes (including HFSS and ACE3P) and globalised scattering matrix calculations (GSM) are used to investigate the modes in these cavities. This study is primarily focused on the dipole component of the multiband expansion of the wakefield, with the emphasis being on the development of a HOM-based BPM system for ACC39. Coupled inter-cavity modes are simulated together with a limited band of trapped modes.
Observation of inverse hysteresis in the E to H mode transitions in inductively coupled plasmas
International Nuclear Information System (INIS)
Lee, Min-Hyong; Chung, Chin-Wook
2010-01-01
An inverse hysteresis is observed during the E mode to H mode transition in low pressure argon inductively coupled plasmas. The transition is accompanied by an evolution of electron energy distribution from the bi-Maxwellian to the Maxwellian distribution. The mechanism of this inversion is not clear. However, we think that the bi-Maxwellian electron energy distribution in E mode, where the proportion of high energy electron is much higher than the Maxwellian distribution, would be one of the reasons for the observed inverse hysteresis. As the gas pressure increases, the inverse hysteresis disappears and the E to H mode transition follows the scenario of usual hysteresis.
Higher Order Modes HOM's in Coupled Cavities of the Flash Module ACC39
International Nuclear Information System (INIS)
Shinton, I.R.R.
2012-01-01
We analyse the higher order modes (HOM's) in the 3.9GHz bunch shaping cavities installed in the FLASH facility at DESY. A suite of finite element computer codes (including HFSS and ACE3P) and globalised scattering matrix calculations (GSM) are used to investigate the modes in these cavities. This study is primarily focused on the dipole component of the multiband expansion of the wakefield, with the emphasis being on the development of a HOM-based BPM system for ACC39. Coupled inter-cavity modes are simulated together with a limited band of trapped modes.
Higher order modes HOMs in coupled cavities of the FLASH module ACC39
Shinton, I R R; Li, Z; Zhang, P
2011-01-01
We analyse the higher order modes (HOM’s) in the 3.9GHz bunch shaping cavities installed in the FLASH facility at DESY. A suite of finite element computer codes (including HFSS and ACE3P) and globalised scattering matrix calculations (GSM) are used to investigate the modes in these cavities. This study is primarily focused on the dipole component of the multiband expansion of the wakefield, with the emphasis being on the development of a HOM-based BPM system for ACC39. Coupled inter-cavity modes are simulated together with a limited band of trapped modes.
The Bethe roots of Regge cuts in strongly coupled N=4 SYM theory
International Nuclear Information System (INIS)
Bartels, J.; Schomerus, V.; Sprenger, M.
2015-01-01
We describe a general algorithm for the computation of the remainder function for n-gluon scattering in multi-Regge kinematics for strongly coupled planar N=4 super Yang-Mills theory. This regime is accessible through the infrared physics of an auxiliary quantum integrable system describing strings in AdS 5 ×S 5 . Explicit formulas are presented for n=6 and n=7 external gluons. Our results are consistent with expectations from perturbative gauge theory. This paper comprises the technical details for the results announced in http://dx.doi.org/10.1007/JHEP10(2014)067.
Characteristics of dust voids in a strongly coupled laboratory dusty plasma
Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.
2018-05-01
A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.
Analytic properties of the OCP and ionic mixtures in the strongly coupled fluid state
International Nuclear Information System (INIS)
DeWitt, H.E.
1993-01-01
Exact results for the Madelung constants and first order anharmonic energies are given for the inverse power potentials with the Coulomb potential as the softest example. Similar exact results are obtained using the analysis of Rosenfeld on the Γ → ∞ limit for the OCP internal energy, direct correlation function, screening function, and bridge functions. Knowing these exact limits for the fluid phase of the OCP allows one to determine the nature of the thermal corrections to the strongly coupled results. Solutions of the HNC equation modified with the hard sphere bridge function give an example
Liu, Bin; Goree, J.
2014-06-01
The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.
Strong-coupling study of the Gribov ambiguity in lattice Landau gauge
International Nuclear Information System (INIS)
Maas, Axel; Pawlowski, Jan M.; Spielmann, Daniel; Sternbeck, Andre; Smekal, Lorenz von
2010-01-01
We study the strong-coupling limit β=0 of lattice SU(2) Landau gauge Yang-Mills theory. In this limit the lattice spacing is infinite, and thus all momenta in physical units are infinitesimally small. Hence, the infrared behavior can be assessed at sufficiently large lattice momenta. Our results show that at the lattice volumes used here, the Gribov ambiguity has an enormous effect on the ghost propagator in all dimensions. This underlines the severity of the Gribov problem and calls for refined studies also at finite β. In turn, the gluon propagator only mildly depends on the Gribov ambiguity. (orig.)
Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction
International Nuclear Information System (INIS)
Feng Yan; Goree, J.; Liu Bin
2011-01-01
A two-dimensional strongly coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity η and the wave-number-dependent viscosity η(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity η(k) is validated by comparing the results of η(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity η in the presence of a modest level of friction as in dusty plasma experiments.
A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances
Directory of Open Access Journals (Sweden)
Xuezhe Wei
2014-07-01
Full Text Available Strongly coupled magnetic resonance (SCMR, proposed by researchers at MIT in 2007, attracted the world’s attention by virtue of its mid-range, non-radiative and high-efficiency power transfer. In this paper, current developments and research progress in the SCMR area are presented. Advantages of SCMR are analyzed by comparing it with the other wireless power transfer (WPT technologies, and different analytic principles of SCMR are elaborated in depth and further compared. The hot research spots, including system architectures, frequency splitting phenomena, impedance matching and optimization designs are classified and elaborated. Finally, current research directions and development trends of SCMR are discussed.
Energy Technology Data Exchange (ETDEWEB)
El-Labany, S. K., E-mail: skellabany@hotmail.com; Zedan, N. A., E-mail: nesreenplasma@yahoo.com [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); El-Taibany, W. F., E-mail: eltaibany@hotmail.com, E-mail: eltaibany@du.edu.eg [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); Department of Physics, College of Science for Girls in Abha, King Khalid University, P.O. 960 Abha (Saudi Arabia)
2015-07-15
Cylindrical and spherical amplitude modulations of dust acoustic (DA) solitary wave envelopes in a strongly coupled dusty plasma containing nonthermal distributed ions are studied. Employing a reductive perturbation technique, a modified nonlinear Schrödinger equation including the geometrical effect is derived. The influences of nonthermal ions, polarization force, and the geometries on the modulational instability conditions are analyzed and the possible rogue wave structures are discussed in detail. It is found that the spherical DA waves are more structurally stable to perturbations than the cylindrical ones. Possible applications of these theoretical findings are briefly discussed.
Radiation Damping in a Non-Abelian Strongly-Coupled Gauge Theory
International Nuclear Information System (INIS)
Chernicoff, Mariano; Garcia, J. Antonio; Gueijosa, Alberto
2011-01-01
We study the dynamics of a 'composite' or 'dressed' quark in strongly-coupled large-N c N=4 super-Yang-Mills (SYM), making use of the AdS/CFT correspondence. We show that the standard string dynamics nicely captures the physics of the quark and its surrounding non-Abelian field configuration, making it possible to derive a relativistic equation of motion that incorporates the effects of radiation damping. From this equation one can deduce a non-standard dispersion relation for the composite quark, as well as a Lorentz covariant formula for its rate of radiation.
Acceleration, Energy Loss and Screening in Strongly-Coupled Gauge Theories
Chernicoff, Mariano; Guijosa, Alberto
2008-01-01
We explore various aspects of the motion of heavy quarks in strongly-coupled gauge theories, employing the AdS/CFT correspondence. Building on earlier work by Mikhailov, we study the dispersion relation and energy loss of an accelerating finite-mass quark in N=4 super-Yang-Mills, both in vacuum and in the presence of a thermal plasma. In the former case, we notice that the application of an external force modifies the dispersion relation. In the latter case, we find in particular that when a ...
Radiation Damping in a Non-Abelian Strongly-Coupled Gauge Theory
Chernicoff, Mariano; Garcia, J. Antonio; Guijosa, Alberto
2010-01-01
We study a `dressed' or `composite' quark in strongly-coupled N=4 super-Yang-Mills (SYM), making use of the AdS/CFT correspondence. We show that the standard string dynamics nicely captures the physics of the quark and its surrounding quantum non-Abelian field configuration, making it possible to derive a relativistic equation of motion that incorporates the effects of radiation damping. From this equation one can deduce a non-standard dispersion relation for the composite quark, as well as a...
Radiation Damping in a Non-Abelian Strongly-Coupled Gauge Theory
Chernicoff, Mariano; García, J. Antonio; Güijosa, Alberto
2011-09-01
We study the dynamics of a 'composite` or 'dressed` quark in strongly-coupled large-Nc N=4 super-Yang-Mills (SYM), making use of the AdS/CFT correspondence. We show that the standard string dynamics nicely captures the physics of the quark and its surrounding non-Abelian field configuration, making it possible to derive a relativistic equation of motion that incorporates the effects of radiation damping. From this equation one can deduce a non-standard dispersion relation for the composite quark, as well as a Lorentz covariant formula for its rate of radiation.
Generalized Lorentz-Dirac Equation for a Strongly Coupled Gauge Theory
Chernicoff, Mariano; García, J. Antonio; Güijosa, Alberto
2009-06-01
We derive a semiclassical equation of motion for a “composite” quark in strongly coupled large-Nc N=4 super Yang-Mills theory, making use of the anti-de Sitter space/conformal field theory correspondence. The resulting nonlinear equation incorporates radiation damping, and reduces to the standard Lorentz-Dirac equation for external forces that are small on the scale of the quark Compton wavelength, but has no self-accelerating or preaccelerating solutions. From this equation one can read off a nonstandard dispersion relation for the quark, as well as a Lorentz-covariant formula for its radiation rate.
Generalized Lorentz-Dirac Equation for a Strongly Coupled Gauge Theory
International Nuclear Information System (INIS)
Chernicoff, Mariano; Garcia, J. Antonio; Gueijosa, Alberto
2009-01-01
We derive a semiclassical equation of motion for a 'composite' quark in strongly coupled large-N c N=4 super Yang-Mills theory, making use of the anti-de Sitter space/conformal field theory correspondence. The resulting nonlinear equation incorporates radiation damping, and reduces to the standard Lorentz-Dirac equation for external forces that are small on the scale of the quark Compton wavelength, but has no self-accelerating or preaccelerating solutions. From this equation one can read off a nonstandard dispersion relation for the quark, as well as a Lorentz-covariant formula for its radiation rate.
A strongly conservative finite element method for the coupling of Stokes and Darcy flow
Kanschat, G.
2010-08-01
We consider a model of coupled free and porous media flow governed by Stokes and Darcy equations with the Beavers-Joseph-Saffman interface condition. This model is discretized using divergence-conforming finite elements for the velocities in the whole domain. Discontinuous Galerkin techniques and mixed methods are used in the Stokes and Darcy subdomains, respectively. This discretization is strongly conservative in Hdiv(Ω) and we show convergence. Numerical results validate our findings and indicate optimal convergence orders. © 2010 Elsevier Inc.
Drag force in strongly coupled, anisotropic plasma at finite chemical potential
Energy Technology Data Exchange (ETDEWEB)
Chakraborty, Somdeb; Haque, Najmul [Theory Division, Saha Institute of Nuclear Physics,1/AF Bidhannagar, Kolkata-700 064 (India)
2014-12-30
We employ methods of gauge/string duality to analyze the drag force on a heavy quark moving through a strongly coupled, anisotropic N=4,SU(N) super Yang-Mills plasma in the presence of a finite U(1) chemical potential. We present numerical results valid for any value of the anisotropy parameter and the U(1) charge density and arbitrary direction of the quark velocity with respect to the direction of anisotropy. In the small anisotropy limit we are also able to furnish analytical results.
International Nuclear Information System (INIS)
Szyniszewski, Marcin; Manchester Univ.; Cichy, Krzysztof; Poznan Univ.; Kujawa-Cichy, Agnieszka
2014-10-01
We employ exact diagonalization with strong coupling expansion to the massless and massive Schwinger model. New results are presented for the ground state energy and scalar mass gap in the massless model, which improve the precision to nearly 10 -9 %. We also investigate the chiral condensate and compare our calculations to previous results available in the literature. Oscillations of the chiral condensate which are present while increasing the expansion order are also studied and are shown to be directly linked to the presence of flux loops in the system.
Global Behavior for a Strongly Coupled Predator-Prey Model with One Resource and Two Consumers
Directory of Open Access Journals (Sweden)
Yujuan Jiao
2012-01-01
Full Text Available We consider a strongly coupled predator-prey model with one resource and two consumers, in which the first consumer species feeds on the resource according to the Holling II functional response, while the second consumer species feeds on the resource following the Beddington-DeAngelis functional response, and they compete for the common resource. Using the energy estimates and Gagliardo-Nirenberg-type inequalities, the existence and uniform boundedness of global solutions for the model are proved. Meanwhile, the sufficient conditions for global asymptotic stability of the positive equilibrium for this model are given by constructing a Lyapunov function.
Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.
2016-01-01
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of du...
Strongly correlated photons generated by coupling a three- or four-level system to a waveguide
Zheng, Huaixiu; Gauthier, Daniel J.; Baranger, Harold U.
2012-04-01
We study the generation of strongly correlated photons by coupling an atom to photonic quantum fields in a one-dimensional waveguide. Specifically, we consider a three-level or four-level system for the atom. Photon-photon bound states emerge as a manifestation of the strong photon-photon correlation mediated by the atom. Effective repulsive or attractive interaction between photons can be produced, causing either suppressed multiphoton transmission (photon blockade) or enhanced multiphoton transmission (photon-induced tunneling). As a result, nonclassical light sources can be generated on demand by sending coherent states into the proposed system. We calculate the second-order correlation function of the transmitted field and observe bunching and antibunching caused by the bound states. Furthermore, we demonstrate that the proposed system can produce photon pairs with a high degree of spectral entanglement, which have a large capacity for carrying information and are important for large-alphabet quantum communication.
Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity
Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena
2016-04-01
Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.
Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity.
Dory, Constantin; Fischer, Kevin A; Müller, Kai; Lagoudakis, Konstantinos G; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L; Kelaita, Yousif; Vučković, Jelena
2016-04-26
Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.
Feng, Yan; Lin, Wei; Murillo, M. S.
2017-11-01
Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.
Enhanced magneto-plasmonic effect in Au/Co/Au multilayers caused by exciton–plasmon strong coupling
Energy Technology Data Exchange (ETDEWEB)
Hamidi, S.M., E-mail: m_hamidi@sbu.ac.ir; Ghaebi, O.
2016-09-15
In this paper, we have investigated magneto optical Kerr rotation using the strong coupling of exciton–plasmon. For this purpose, we have demonstrated strong coupling phenomenon using reflectometry measurements. These measurements revealed the formation of two split polaritonic extrema in reflectometry as a function of wavelength. Then we have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. To assure the readers of strong coupling, we have shown an enhanced magneto-optical Kerr rotation by comparing the reflectometry results of strong coupling of surface Plasmon polariton of Au/Co/Au multilayer and R6G excitons with surface Plasmon polariton magneto-optical kerr effect experimental setup. - Highlights: • The magneto optical Kerr rotation has been investigated by using the strong coupling of exciton–plasmon. • We have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. • Strong coupling of surface plasmon polariton and exciton have been yielded to the enhanced magneto-optical Kerr effect. • Plasmons in Au/Co/Au multilayer and exciton in R6G have been coupled to enhance magneto-optical activity.
On Yang--Mills Theories with Chiral Matter at Strong Coupling
Energy Technology Data Exchange (ETDEWEB)
Shifman, M.; /Minnesota U., Theor. Phys. Inst. /Saclay, SPhT; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept.
2008-08-20
Strong coupling dynamics of Yang-Mills theories with chiral fermion content remained largely elusive despite much effort over the years. In this work, we propose a dynamical framework in which we can address non-perturbative properties of chiral, non-supersymmetric gauge theories, in particular, chiral quiver theories on S{sub 1} x R{sub 3}. Double-trace deformations are used to stabilize the center-symmetric vacuum. This allows one to smoothly connect smaller(S{sub 1}) to larger(S{sub 1}) physics (R{sub 4} is the limiting case) where the double-trace deformations are switched off. In particular, occurrence of the mass gap in the gauge sector and linear confinement due to bions are analytically demonstrated. We find the pattern of the chiral symmetry realization which depends on the structure of the ring operators, a novel class of topological excitations. The deformed chiral theory, unlike the undeformed one, satisfies volume independence down to arbitrarily small volumes (a working Eguchi-Kawai reduction) in the large N limit. This equivalence, may open new perspectives on strong coupling chiral gauge theories on R{sub 4}.
Quantum Wronskian approach to six-point gluon scattering amplitudes at strong coupling
International Nuclear Information System (INIS)
Hatsuda, Yasuyuki; Ito, Katsushi; Satoh, Yuji; Suzuki, Junji
2014-06-01
We study the six-point gluon scattering amplitudes in N=4 super Yang-Mills theory at strong coupling based on the twisted Z 4 -symmetric integrable model. The lattice regularization allows us to derive the associated thermodynamic Bethe ansatz (TBA) equations as well as the functional relations among the Q-/T-/Y-functions. The quantum Wronskian relation for the Q-/T-functions plays an important role in determining a series of the expansion coefficients of the T-/Y-functions around the UV limit, including the dependence on the twist parameter. Studying the CFT limit of the TBA equations, we derive the leading analytic expansion of the remainder function for the general kinematics around the limit where the dual Wilson loops become regular-polygonal. We also compare the rescaled remainder functions at strong coupling with those at two, three and four loops, and find that they are close to each other along the trajectories parameterized by the scale parameter of the integrable model.
Effective action for superfluid Fermi systems in the strong-coupling limit
International Nuclear Information System (INIS)
Dupuis, N.
2005-01-01
We derive the low-energy effective action for three-dimensional superfluid Fermi systems in the strong-coupling limit, where superfluidity originates from Bose-Einstein condensation of composite bosons. Taking into account density and pairing fluctuations on the same footing, we show that the effective action involves only the fermion density ρ r and its conjugate variable, the phase θ r of the pairing order parameter Δ r . We recover the standard action of a Bose superfluid of density ρ r /2, where the bosons have a mass m B =2m and interact via a repulsive contact potential with amplitude g B =4πa B /m B ,a B =2a (a the s-wave scattering length associated to the fermion-fermion interaction in vacuum). For lattice models, the derivation of the effective action is based on the mapping of the attractive Hubbard model onto the Heisenberg model in a uniform magnetic field, and a coherent state path integral representation of the partition function. The effective description of the Fermi superfluid in the strong-coupling limit is a Bose-Hubbard model with an intersite hopping amplitude t B =J/2 and an on-site repulsive interaction U B =2Jz, where J=4t 2 /U (t and -U are the intersite hopping amplitude and the on-site attraction in the (fermionic) Hubbard model, z the number of nearest-neighbor sites)
Effective action for superfluid Fermi systems in the strong-coupling limit
Dupuis, N.
2005-07-01
We derive the low-energy effective action for three-dimensional superfluid Fermi systems in the strong-coupling limit, where superfluidity originates from Bose-Einstein condensation of composite bosons. Taking into account density and pairing fluctuations on the same footing, we show that the effective action involves only the fermion density ρr and its conjugate variable, the phase θr of the pairing order parameter Δr . We recover the standard action of a Bose superfluid of density ρr/2 , where the bosons have a mass mB=2m and interact via a repulsive contact potential with amplitude gB=4πaB/mB,aB=2a ( a the s -wave scattering length associated to the fermion-fermion interaction in vacuum). For lattice models, the derivation of the effective action is based on the mapping of the attractive Hubbard model onto the Heisenberg model in a uniform magnetic field, and a coherent state path integral representation of the partition function. The effective description of the Fermi superfluid in the strong-coupling limit is a Bose-Hubbard model with an intersite hopping amplitude tB=J/2 and an on-site repulsive interaction UB=2Jz , where J=4t2/U ( t and -U are the intersite hopping amplitude and the on-site attraction in the (fermionic) Hubbard model, z the number of nearest-neighbor sites).
Measurement of the strong coupling constant αs with hadronic jets in deep inelastic scattering
International Nuclear Information System (INIS)
Gouzevitch, Maxime
2008-12-01
In this analysis we have used the production of hard jets in neutral-current DIS for the extraction of the strong coupling constant α s . The jets have been selected in the NC DIS events at large momentum transvers 150 2 2 within the limits of the detector acceptance -0.8 Lab T B >5. Three jet observables normalized to the total NC DIS cross section have been used: Inclusive jet multiplicity as well as the production rates of 2-jet and 3-jet events. The prediction of the renormalization-group equation for the evolution of the strong coupling constant has been successfully tested for two orders of magnitude between Q=2 QeV to Q=122 GeV. The better precision on α s (m Z ) has been obtained with the combination ob the three observables at Q 2 >150 GeV 2 : α s (m Z )=0.1180±0.0007(exp.) -0.0034 +0.0050 (th.)±0.0017 (pdf.).
Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons
El-Labany, S. K.; El-Taibany, W. F.; Atteya, A.
2018-02-01
The nonlinear ion acoustic wave propagation in a strongly coupled plasma composed of ions and trapped electrons has been investigated. The reductive perturbation method is employed to derive a modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation. To solve this equation in case of dissipative system, the tangent hyperbolic method is used, and a shock wave solution is obtained. Numerical investigations show that, the ion acoustic waves are significantly modified by the effect of polarization force, the trapped electrons and the viscosity coefficients. Applying the bifurcation theory to the dynamical system of the derived mKdV-Burgers equation, the phase portraits of the traveling wave solutions of both of dissipative and non-dissipative systems are analyzed. The present results could be helpful for a better understanding of the waves nonlinear propagation in a strongly coupled plasma, which can be produced by photoionizing laser-cooled and trapped electrons [1], and also in neutron stars or white dwarfs interior.
Munson, C P; Taylor, A J; Trainor, R J; Wood, B P; Wysocki, F J
1999-01-01
Summary form only given. Atlas is a high current (~30 MA peak, with a current risetime ~4.5 mu sec), high energy (E/sub stored/=24 MJ, E /sub load/=3-6 MJ), pulsed power facility which is being constructed at Los Alamos National Laboratory with a scheduled completion date in the year 2000. When operational, this facility will provide a platform for experiments in high pressure shocks (>20 Mbar), adiabatic compression ( rho / rho /sub 0/>5, P>10 Mbar), high magnetic fields (~2000 T), high strain and strain rates ( epsilon >200, d epsilon /dt~10/sup 4/ to 10/sup 6/ s/sup -1/), hydrodynamic instabilities of materials in turbulent regimes, magnetized target fusion, equation of state, and strongly coupled plasmas. For the strongly coupled plasma experiments, an auxiliary capacitor bank will be used to generate a moderate density (<0.1 solid), relatively cold (~1 eV) plasma by ohmic heating of a conducting material of interest such as titanium. This target plasma will be compressed against a central column conta...
Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas
International Nuclear Information System (INIS)
Hu, S. X.
2017-01-01
Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations based on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.
Energy Technology Data Exchange (ETDEWEB)
Satoh, K; Koizumi, D; Narahashi, S [Research Laboratories, NTT DoCoMo, Inc., 3-5 Hikari-no-oka, Yokosuka, Kanagwa, 239-8536 (Japan)], E-mail: satokei@nttdocomo.co.jp
2008-02-01
This paper presents a novel compact high temperature superconducting (HTS) bandpass filter (BPF) that employs a newly developed miniaturized coplanar-waveguide (CPW) quarter-wavelength resonators with strongly-coupled open stubs. The proposed resonator has a structure in which the open stubs are aligned close to the center conductor of the resonator. This is because strongly-coupled resonators have widely-split resonant frequencies, and the lowest resonant frequency is employed as the fundamental resonant frequency of the resonator in order to achieve miniaturization. The proposed resonator is 1.7 mm or less in length for use in the 5-GHz band, whereas the conventional straight resonator is approximately 6.4 mm long. A four-pole Chebyshev HTS BPF is designed and fabricated using the proposed CPW resonators. The entire length of the proposed four-pole filter is 15 mm. The frequency response of the fabricated filter agrees well with the electromagnetic simulation results. The proposed filter achieves a size reduction of at least 50% compared to previously reported filters without any degradation in the frequency characteristics.
Heavy quark energy loss far from equilibrium in a strongly coupled collision
Chesler, Paul M; Rajagopal, Krishna
2013-01-01
We compute and study the drag force acting on a heavy quark propagating through the matter produced in the collision of two sheets of energy in a strongly coupled gauge theory that can be analyzed holographically. Although this matter is initially far from equilibrium, we find that the equilibrium expression for heavy quark energy loss in a homogeneous strongly coupled plasma with the same instantaneous energy density or pressure as that at the location of the quark describes many qualitative features of our results. One interesting exception is that there is a time delay after the initial collision before the heavy quark energy loss becomes significant. At later times, once a liquid plasma described by viscous hydrodynamics has formed, expressions based upon assuming instantaneous homogeneity and equilibrium provide a semi-quantitative description of our results - as long as the rapidity of the heavy quark is not too large. For a heavy quark with large rapidity, the gradients in the velocity of the hydrodyna...
Infrared exponents and the strong-coupling limit in lattice Landau gauge
International Nuclear Information System (INIS)
Sternbeck, Andre; Smekal, Lorenz von
2010-01-01
We study the gluon and ghost propagators of lattice Landau gauge in the strong-coupling limit β=0 in pure SU(2) lattice gauge theory to find evidence of the conformal infrared behavior of these propagators as predicted by a variety of functional continuum methods for asymptotically small momenta q 2 QCD 2 . In the strong-coupling limit, this same behavior is obtained for the larger values of a 2 q 2 (in units of the lattice spacing a), where it is otherwise swamped by the gauge-field dynamics. Deviations for a 2 q 2 <1 are well parameterized by a transverse gluon mass ∝1/a. Perhaps unexpectedly, these deviations are thus no finite-volume effect but persist in the infinite-volume limit. They furthermore depend on the definition of gauge fields on the lattice, while the asymptotic conformal behavior does not. We also comment on a misinterpretation of our results by Cucchieri and Mendes (Phys. Rev. D 81:016005, 2010). (orig.)
Singular-perturbation--strong-coupling field theory and the moments problem
International Nuclear Information System (INIS)
Handy, C.R.
1981-01-01
Motivated by recent work of Bender, Cooper, Guralnik, Mjolsness, Rose, and Sharp, a new technique is presented for solving field equations in terms of singular-perturbation--strong-coupling expansions. Two traditional mathematical tools are combined into one effective procedure. Firstly, high-temperature lattice expansions are obtained for the corresponding power moments of the field solution. The approximate continuum-limit power moments are subsequently obtained through the application of Pade techniques. Secondly, in order to reconstruct the corresponding approximate global field solution, one must use function-moments reconstruction techniques. The latter involves reconsidering the traditional ''moments problem'' of interest to pure and applied mathematicians. The above marriage between lattice methods and moments reconstruction procedures for functions yields good results for the phi 4 field-theory kink, and the sine-Gordon kink solutions. It is argued that the power moments are the most efficient dynamical variables for the generation of strong-coupling expansions. Indeed, a momentum-space formulation is being advocated in which the long-range behavior of the space-dependent fields are determined by the small-momentum, infrared, domain
Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime
International Nuclear Information System (INIS)
Lehmann, G.; Spatschek, K. H.
2013-01-01
Parametric plasma processes received renewed interest in the context of generating ultra-intense and ultra-short laser pulses up to the exawatt-zetawatt regime. Both Raman as well as Brillouin amplifications of seed pulses were proposed. Here, we investigate Brillouin processes in the one-dimensional (1D) backscattering geometry with the help of numerical simulations. For optimal seed amplification, Brillouin scattering is considered in the so called strong coupling (sc) regime. Special emphasis lies on the dependence of the amplification process on the finite duration of the initial seed pulses. First, the standard plane-wave instability predictions are generalized to pulse models, and the changes of initial seed pulse forms due to parametric instabilities are investigated. Three-wave-interaction results are compared to predictions by a new (kinetic) Vlasov code. The calculations are then extended to the nonlinear region with pump depletion. Generation of different seed layers is interpreted by self-similar solutions of the three-wave interaction model. Similar to Raman amplification, shadowing of the rear layers by the leading layers of the seed occurs. The shadowing is more pronounced for initially broad seed pulses. The effect is quantified for Brillouin amplification. Kinetic Vlasov simulations agree with the three-wave interaction predictions and thereby affirm the universal validity of self-similar layer formation during Brillouin seed amplification in the strong coupling regime
International Nuclear Information System (INIS)
Gelis, Francois; Venugopalan, Raju
2006-01-01
We develop a formalism for particle production in a field theory coupled to a strong time-dependent external source. An example of such a theory is the color glass condensate. We derive a formula, in terms of cut vacuum-vacuum Feynman graphs, for the probability of producing a given number of particles. This formula is valid to all orders in the coupling constant. The distribution of multiplicities is non-Poissonian, even in the classical approximation. We investigate an alternative method of calculating the mean multiplicity. At leading order, the average multiplicity can be expressed in terms of retarded solutions of classical equations of motion. We demonstrate that the average multiplicity at next-to-leading order can be formulated as an initial value problem by solving equations of motion for small fluctuation fields with retarded boundary conditions. The variance of the distribution can be calculated in a similar fashion. Our formalism therefore provides a framework to compute from first principles particle production in proton-nucleus and nucleus-nucleus collisions beyond leading order in the coupling constant and to all orders in the source density. We also provide a transparent interpretation (in conventional field theory language) of the well-known Abramovsky-Gribov-Kancheli (AGK) cancellations. Explicit connections are made between the framework for multi-particle production developed here and the framework of reggeon field theory
Zhang, Wen; Liu, Yi; Wang, Xiaoying; Zhang, Yun; Xie, Donghua
2018-03-01
The heavy fermion physics arises from the complex interplay of nearly localized 4f/5f electrons and itinerant band-like ones, yielding heavy quasiparticles with an effective mass about 100 times (or more) of the bare electrons. Recently, experimental and theoretical investigations point out a localized and delocalized dual nature in actinide compounds, where itinerant quasiparticles account for the unconventional superconductivity in the vicinity of a magnetic instability. Here we report the strong coupling between localized 5f moments and itinerant quasiparticles in the ferromagnetic superconductor UGe2. The coupling is nearly antiferromagnetic. As embedded in the ferromagnetic matrix of localized 5f moments below {T}{{C}}≈ 52 {{K}}, this coupling leads to short-range dynamic correlations of heavy quasiparticles, characterized by fluctuations of magnetic clusters. Those cluster-like spins of itinerant quasiparticles show a broad hump of magnetization at {T}X≈ 28 {{K}}, which is typical for the spin-glass freezing. Thus, our results present the direct observation of itinerant quasiparticles coexisting with localized 5f moments by conventional magnetic measurements, providing a new route into the coexistence between ferromagnetism and superconductivity in heavy fermion systems. Project supported by the National Natural Science Foundation of China (Grant No. 11404297), the Science Challenge Project (Grant No. TZ2016004), and the Science and Technology Foundation of China Academy of Engineering Physics (Grant Nos. 2013B0301050 and 2014A0301013).
An effective strong-coupling theory of composite particles in UV-domain
Xue, She-Sheng
2017-05-01
We briefly review the effective field theory of massive composite particles, their gauge couplings and characteristic energy scale in the UV-domain of UV-stable fixed point of strong four-fermion coupling, then mainly focus the discussions on the decay channels of composite particles into the final states of the SM gauge bosons, leptons and quarks. We calculate the rates of composite bosons decaying into two gauge bosons γγ, γZ 0, W + W -, Z 0 Z 0 and give the ratios of decay rates of different channels depending on gauge couplings only. It is shown that a composite fermion decays into an elementary fermion and a composite boson, the latter being an intermediate state decays into two gauge bosons, leading to a peculiar kinematics of final states of a quark (or a lepton) and two gauge bosons. These provide experimental implications of such an effective theory of composite particles beyond the SM. We also present some speculative discussions on the channels of composite fermions decaying into W W , W Z and ZZ two boson-tagged jets with quark jets, or to four-quark jets. Moreover, at the same energy scale of composite particles produced in high-energy experiments, composite particles are also produced by high-energy sterile neutrino (dark matter) collisions, their decays lead to excesses of cosmic ray particles in space and signals of SM particles in underground laboratories.
An effective strong-coupling theory of composite particles in UV-domain
Energy Technology Data Exchange (ETDEWEB)
Xue, She-Sheng [ICRANet,Piazzale della Repubblica 10, 10-65122, Pescara (Italy); Physics Department, Sapienza University of Rome,Piazzale Aldo Moro 5, 00185 Roma (Italy)
2017-05-29
We briefly review the effective field theory of massive composite particles, their gauge couplings and characteristic energy scale in the UV-domain of UV-stable fixed point of strong four-fermion coupling, then mainly focus the discussions on the decay channels of composite particles into the final states of the SM gauge bosons, leptons and quarks. We calculate the rates of composite bosons decaying into two gauge bosons γγ, γZ{sup 0}, W{sup +}W{sup −}, Z{sup 0}Z{sup 0} and give the ratios of decay rates of different channels depending on gauge couplings only. It is shown that a composite fermion decays into an elementary fermion and a composite boson, the latter being an intermediate state decays into two gauge bosons, leading to a peculiar kinematics of final states of a quark (or a lepton) and two gauge bosons. These provide experimental implications of such an effective theory of composite particles beyond the SM. We also present some speculative discussions on the channels of composite fermions decaying into WW, WZ and ZZ two boson-tagged jets with quark jets, or to four-quark jets. Moreover, at the same energy scale of composite particles produced in high-energy experiments, composite particles are also produced by high-energy sterile neutrino (dark matter) collisions, their decays lead to excesses of cosmic ray particles in space and signals of SM particles in underground laboratories.
Recirculating beam-breakup thresholds for polarized higher-order modes with optical coupling
Directory of Open Access Journals (Sweden)
Georg H. Hoffstaetter
2007-04-01
Full Text Available Here we will derive the general theory of the beam-breakup (BBU instability in recirculating linear accelerators with coupled beam optics and with polarized higher-order dipole modes. The bunches do not have to be at the same radio-frequency phase during each recirculation turn. This is important for the description of energy recovery linacs (ERLs where beam currents become very large and coupled optics are used on purpose to increase the threshold current. This theory can be used for the analysis of phase errors of recirculated bunches, and of errors in the optical coupling arrangement. It is shown how the threshold current for a given linac can be computed and a remarkable agreement with tracking data is demonstrated. General formulas are then analyzed for several analytically solvable problems: (a Why can different higher order modes (HOM in one cavity couple and why can they then not be considered individually, even when their frequencies are separated by much more than the resonance widths of the HOMs? For the Cornell ERL as an example, it is noted that optimum advantage is taken of coupled optics when the cavities are designed with an x-y HOM frequency splitting of above 50 MHz. The simulated threshold current is then far above the design current of this accelerator. To justify that the simulation can represent an actual accelerator, we simulate cavities with 1 to 8 modes and show that using a limited number of modes is reasonable. (b How does the x-y coupling in the particle optics determine when modes can be considered separately? (c How much of an increase in threshold current can be obtained by coupled optics and why does the threshold current for polarized modes diminish roughly with the square root of the HOMs’ quality factors. Because of this square root scaling, polarized modes with coupled optics increase the threshold current more effectively for cavities that have rather large HOM quality factors, e.g. those without very
Thomas, Jens; Jovanovic, Nemanja; Becker, Ria G; Marshall, Graham D; Withford, Michael J; Tünnermann, Andreas; Nolte, Stefan; Steel, M J
2011-01-03
The spectral characteristics of a fiber Bragg grating (FBG) with a transversely inhomogeneous refractive index profile, differs considerably from that of a transversely uniform one. Transmission spectra of inhomogeneous and asymmetric FBGs that have been inscribed with focused ultrashort pulses with the so-called point-by-point technique are investigated. The cladding mode resonances of such FBGs can span a full octave in the spectrum and are very pronounced (deeper than 20dB). Using a coupled-mode approach, we compute the strength of resonant coupling and find that coupling into cladding modes of higher azimuthal order is very sensitive to the position of the modification in the core. Exploiting these properties allows precise control of such reflections and may lead to many new sensing applications.
Du, Huarong; Wang, Zheng-Xiong; Dong, J. Q.; Liu, S. F.
2014-05-01
The coupling of ion temperature gradient (ITG or ηi) mode and trapped electron mode (TEM) in the presence of impurity ions is numerically investigated in toroidal collisionless plasmas, using the gyrokinetic integral eigenmode equation. A framework for excitations of the ITG modes and TEMs with respect to their driving sources is formulated first, and then the roles of impurity ions played in are analyzed comprehensively. In particular, the characteristics of the ITG and TEM instabilities in the presence of impurity ions are emphasized for both strong and weak coupling (hybrid and coexistent) cases. It is found that the impurity ions with inwardly (outwardly) peaked density profiles have stabilizing (destabilizing) effects on the hybrid (namely the TE-ITG) modes in consistence with previous works. A new finding of this work is that the impurity ions have stabilizing effects on TEMs in small ηi (ηi≤1) regime regardless of peaking directions of their density profiles whereas the impurity ions with density gradient Lez=Lne/Lnz>1 (LezTEMs in large ηi (ηi≥1) regime. In addition, the dependences of the growth rate, real frequency, eigenmode structure, and wave spectrum on charge concentration, charge number, and mass of impurity ions are analyzed in detail. The necessity for taking impurity ion effects on the features of turbulence into account in future transport experimental data analyses is also discussed.
Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion
International Nuclear Information System (INIS)
Borg, G.G.
1994-01-01
Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs
Energy Technology Data Exchange (ETDEWEB)
Amann, Christian P., E-mail: Christian.2.Amann@uni-konstanz.de; Fuchs, Matthias, E-mail: Matthias.Fuchs@uni-konstanz.de [Fachbereich Physik, Universität Konstanz, 78457 Konstanz (Germany); Denisov, Dmitry; Dang, Minh Triet; Schall, Peter [Van der Waals-Zeeman Institute, University of Amsterdam, Amsterdam (Netherlands); Struth, Bernd [Deutsches Elektronen-Synchrotron, Hamburg (Germany)
2015-07-21
We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.
International Nuclear Information System (INIS)
Amann, Christian P.; Fuchs, Matthias; Denisov, Dmitry; Dang, Minh Triet; Schall, Peter; Struth, Bernd
2015-01-01
We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses
Amann, Christian P; Denisov, Dmitry; Dang, Minh Triet; Struth, Bernd; Schall, Peter; Fuchs, Matthias
2015-07-21
We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.
Alrasheed, Salma; Di Fabrizio, Enzo M.
2017-01-01
with the resonant modes of a Fabry-Perot (FP) cavity. The strong coupling is demonstrated by the large anticrossing in the reflection spectra and a Rabi splitting of 76 meV. Up to 2-fold enhancement increase can be achieved compared to that without using the cavity
Salience and Default Mode Network Coupling Predicts Cognition in Aging and Parkinson's Disease.
Putcha, Deepti; Ross, Robert S; Cronin-Golomb, Alice; Janes, Amy C; Stern, Chantal E
2016-02-01
Cognitive impairment is common in Parkinson's disease (PD). Three neurocognitive networks support efficient cognition: the salience network, the default mode network, and the central executive network. The salience network is thought to switch between activating and deactivating the default mode and central executive networks. Anti-correlated interactions between the salience and default mode networks in particular are necessary for efficient cognition. Our previous work demonstrated altered functional coupling between the neurocognitive networks in non-demented individuals with PD compared to age-matched control participants. Here, we aim to identify associations between cognition and functional coupling between these neurocognitive networks in the same group of participants. We investigated the extent to which intrinsic functional coupling among these neurocognitive networks is related to cognitive performance across three neuropsychological domains: executive functioning, psychomotor speed, and verbal memory. Twenty-four non-demented individuals with mild to moderate PD and 20 control participants were scanned at rest and evaluated on three neuropsychological domains. PD participants were impaired on tests from all three domains compared to control participants. Our imaging results demonstrated that successful cognition across healthy aging and Parkinson's disease participants was related to anti-correlated coupling between the salience and default mode networks. Individuals with poorer performance scores across groups demonstrated more positive salience network/default-mode network coupling. Successful cognition relies on healthy coupling between the salience and default mode networks, which may become dysfunctional in PD. These results can help inform non-pharmacological interventions (repetitive transcranial magnetic stimulation) targeting these specific networks before they become vulnerable in early stages of Parkinson's disease.
The non-resonant kink modes triggering strong sawtooth-like crashes in the EAST tokamak
International Nuclear Information System (INIS)
Li, Erzhong; Xu, L; Chen, K; Shi, T; Hu, L; Igochine, V; Dumbrajs, O
2014-01-01
Evolution of the safety factor (q) profile during L–H transitions in the Experimental Advanced Superconducting Tokamak (EAST) was accompanied by strong core crashes prior to regular sawtooth behavior. These crashes appeared in the absence of q = 1 (q is the safety factor) rational surface inside the plasma. Analysis indicates that the m/n = 2/1 tearing mode is destabilized and phase-locked with the m/n = 1/1 non-resonant kink mode (the q = 1 rational surface is absent) due to the self-consistent evolution of plasma profiles as the L–H transition occurs (m and n are the poloidal and toroidal mode numbers, respectively). The growing m/n = 1/1 mode destabilizes the m/n = 2/2 kink mode which eventually triggers the strong crash due to an anomalous heat conductivity, as predicted by the transport model of stochastic magnetic fields using experimental parameters. It is also shown that the magnetic topology changes with the amplitude of m/n = 2/2 mode and the value of center safety factor in a reasonable range. (paper)
International Nuclear Information System (INIS)
Recami, E.; Tonin-Zanchin, V.
1991-01-01
Since more than a decade, a bi-scale, unified approach to strong and gravitational interactions has been proposed, that uses the geometrical methods of general relativity, and yielded results similar to strong gravity theory's. We fix our attention, in this note, on hadron structure, and show that also the strong interaction strength α s, ordinarily called the (perturbative) coupling-constant square, can be evaluated within our theory, and found to decrease (increase) as the distance r decreases (increases). This yields both the confinement of the hadron constituents for large values of r, and their asymptotic freedom [for small values of r inside the hadron]: in qualitative agreement with the experimental evidence. In other words, our approach leads us, on a purely theoretical ground, to a dependence of α s on r which had been previously found only on phenomenological and heuristical grounds. We expect the above agreement to be also quantitative, on the basis of a few checks performed in this paper, and of further work of ours about calculating meson mass-spectra. (author)
Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide-Plasmon Polaritons.
Zeng, Peng; Cadusch, Jasper; Chakraborty, Debadi; Smith, Trevor A; Roberts, Ann; Sader, John E; Davis, Timothy J; Gómez, Daniel E
2016-04-13
Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light-matter states where material properties such as the work function [ Hutchison et al. Adv. Mater. 2013 , 25 , 2481 - 2485 ], chemical reactivity [ Hutchison et al. Angew. Chem., Int. Ed. 2012 , 51 , 1592 - 1596 ], ultrafast energy relaxation [ Salomon et al. Angew. Chem., Int. Ed. 2009 , 48 , 8748 - 8751 ; Gomez et al. J. Phys. Chem. B 2013 , 117 , 4340 - 4346 ], and electrical conductivity [ Orgiu et al. Nat. Mater. 2015 , 14 , 1123 - 1129 ] of matter differ significantly to those of the same material in the absence of strong interactions with the electromagnetic fields. Here we show that strong light-matter coupling between confined photons on a semiconductor waveguide and localized plasmon resonances on metal nanowires modifies the efficiency of the photoinduced charge-transfer rate of plasmonic derived (hot) electrons into accepting states in the semiconductor material. Ultrafast spectroscopy measurements reveal a strong correlation between the amplitude of the transient signals, attributed to electrons residing in the semiconductor and the hybridization of waveguide and plasmon excitations.
Time evolution of coupled-bunch modes from beta function variation in storage rings
Directory of Open Access Journals (Sweden)
Kai Meng Hock
2007-08-01
Full Text Available We present an analytical and numerical study of the equations of motion for bunches coupled by transverse wakefields. We base our study on a recent lattice design for the damping rings in the baseline configuration of the International Linear Collider. Using the macroparticle model, and assuming resistive wall wakefield coupling, we present numerical results on the time evolution of the multibunch modes. Decay modes display growth after initial decay, and mode amplitudes exhibit high-frequency oscillations. These phenomena are not expected if the beta function is assumed to have a constant, averaged value. We show analytically that they can come from coupling between modes caused by variation of the beta function in a real lattice. The effect is shown to be comparable to the effect of a nonuniform fill pattern and significantly larger than that of the higher-order mode wakefield localized in the rf cavities. Turning to the case of constant beta function, we develop a more complete treatment of the equations of motion. We derive general formulas for the bunch trajectories, and show that such formulas can only be valid in the limit of small wakefield coupling.
More efficient second harmonic generation of whispering gallery modes by selective out-coupling
Trainor, Luke S.; Sedlmeir, Florian; Peuntinger, Christian; Schwefel, Harald G. L.
2017-01-01
We demonstrate second harmonic generation (SHG) in an $x$-cut congruent lithium niobate (LN) whispering gallery mode resonator. We first show theoretically that independent control of the coupling of the pump and signal modes is optimal for high conversion rates. A scheme based on our earlier work in Ref. [1] is then implemented experimentally to verify this. Thereby we are able to improve on the efficiency of SHG by more than an order of magnitude by selectively out-coupling using a LN prism...
Elimination of mode coupling in multimode continuous-variable key distribution
International Nuclear Information System (INIS)
Filip, Radim; Mista, Ladislav; Marek, Petr
2005-01-01
A multimode channel can be utilized to substantially increase the capacity of quantum continuous-variable key distribution. Beyond losses in the channel, an uncontrollable coupling between the modes of the channel typically degrades the capacity of multimode channels. For the key distribution protocol with simultaneous measurement of both complementary quadratures we propose a feasible method to eliminate any undesirable mode coupling by only the receiver's appropriate measurement and data manipulation. It can be used to substantially increase the capacity of the channel, which has an important application in practical continuous-variable quantum cryptography