WorldWideScience

Sample records for strong mass outflows

  1. The mass-metallicity relations for gas and stars in star-forming galaxies: strong outflow versus variable IMF

    Science.gov (United States)

    Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Comparat, Johan; Gonzalez-Perez, Violeta; Ventura, Paolo

    2018-02-01

    We investigate the mass-metallicity relations for the gaseous (MZRgas) and stellar components (MZRstar) of local star-forming galaxies based on a representative sample from Sloan Digital Sky Survey Data Release 12. The mass-weighted average stellar metallicities are systematically lower than the gas metallicities. This difference in metallicity increases towards galaxies with lower masses and reaches 0.4-0.8 dex at 109 M⊙ (depending on the gas metallicity calibration). As a result, the MZRstar is much steeper than the MZRgas. The much lower metallicities in stars compared to the gas in low-mass galaxies imply dramatic metallicity evolution with suppressed metal enrichment at early times. The aim of this paper is to explain the observed large difference in gas and stellar metallicity and to infer the origin of the mass-metallicity relations. To this end we develop a galactic chemical evolution model accounting for star formation, gas inflow and outflow. By combining the observed mass-metallicity relation for both gas and stellar components to constrain the models, we find that only two scenarios are able to reproduce the observations. Either strong metal outflow or a steep initial mass function (IMF) slope at early epochs of galaxy evolution is needed. Based on these two scenarios, for the first time we successfully reproduce the observed MZRgas and MZRstar simultaneously, together with other independent observational constraints in the local Universe. Our model also naturally reproduces the flattening of the MZRgas at the high-mass end leaving the MZRstar intact, as seen in observational data.

  2. Outflow forces of low-mass embedded objects in Ophiuchus : a quantitative comparison of analysis methods

    NARCIS (Netherlands)

    Marel, van der N.; Kristensen, L.; Visser, R.; Mottram, J.C.; Yildiz, U.; Dishoeck, van E.F.

    2013-01-01

    Context. The outflow force of molecular bipolar outflows is a key parameter in theories of young stellar feedback on their surroundings. The focus of many outflow studies is the correlation between the outflow force, bolometric luminosity, and envelope mass. However, it is difficult to combine the

  3. Strong Stellar-driven Outflows Shape the Evolution of Galaxies at Cosmic Dawn

    International Nuclear Information System (INIS)

    Fontanot, Fabio; De Lucia, Gabriella; Hirschmann, Michaela

    2017-01-01

    We study galaxy mass assembly and cosmic star formation rate (SFR) at high redshift (z ≳ 4), by comparing data from multiwavelength surveys with predictions from the GAlaxy Evolution and Assembly (gaea) model. gaea implements a stellar feedback scheme partially based on cosmological hydrodynamical simulations, which features strong stellar-driven outflows and mass-dependent timescales for the re-accretion of ejected gas. In previous work, we have shown that this scheme is able to correctly reproduce the evolution of the galaxy stellar mass function (GSMF) up to z ∼ 3. We contrast model predictions with both rest-frame ultraviolet (UV) and optical luminosity functions (LFs), which are mostly sensitive to the SFR and stellar mass, respectively. We show that gaea is able to reproduce the shape and redshift evolution of both sets of LFs. We study the impact of dust on the predicted LFs, and we find that the required level of dust attenuation is in qualitative agreement with recent estimates based on the UV continuum slope. The consistency between data and model predictions holds for the redshift evolution of the physical quantities well beyond the redshift range considered for the calibration of the original model. In particular, we show that gaea is able to recover the evolution of the GSMF up to z ∼ 7 and the cosmic SFR density up to z ∼ 10.

  4. ARE MOLECULAR OUTFLOWS AROUND HIGH-MASS STARS DRIVEN BY IONIZATION FEEDBACK?

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; Klessen, Ralf S. [Institut fuer Theoretische Astrophysik, Universitaet Heidelberg, Zentrum fuer Astronomie, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Klaassen, Pamela D. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Mac Low, Mordecai-Mark [Department of Astrophysics, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024-5192 (United States); Banerjee, Robi, E-mail: tpeters@physik.uzh.ch [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2012-11-20

    The formation of massive stars exceeding 10 M {sub Sun} usually results in large-scale molecular outflows. Numerical simulations, including ionization, of the formation of such stars show evidence for ionization-driven molecular outflows. Here we examine whether the outflows seen in these models reproduce the observations. We compute synthetic ALMA and CARMA maps of CO emission lines of the outflows, and compare their signatures to existing single-dish and interferometric data. We find that the ionization-driven models can only reproduce weak outflows around high-mass star-forming regions. We argue that expanding H II regions probably do not represent the dominant mechanism for driving observed outflows. We suggest instead that observed outflows are driven by the collective action of the outflows from the many lower-mass stars that inevitably form around young massive stars in a cluster.

  5. Feeding the fire: tracing the mass-loading of 107 K galactic outflows with O VI absorption

    Science.gov (United States)

    Chisholm, J.; Bordoloi, R.; Rigby, J. R.; Bayliss, M.

    2018-02-01

    Galactic outflows regulate the amount of gas galaxies convert into stars. However, it is difficult to measure the mass outflows remove because they span a large range of temperatures and phases. Here, we study the rest-frame ultraviolet spectrum of a lensed galaxy at z ˜ 2.9 with prominent interstellar absorption lines from O I, tracing neutral gas, up to O VI, tracing transitional phase gas. The O VI profile mimics weak low-ionization profiles at low velocities, and strong saturated profiles at high velocities. These trends indicate that O VI gas is co-spatial with the low-ionization gas. Further, at velocities blueward of -200 km s-1 the column density of the low-ionization outflow rapidly drops while the O VI column density rises, suggesting that O VI is created as the low-ionization gas is destroyed. Photoionization models do not reproduce the observed O VI, but adequately match the low-ionization gas, indicating that the phases have different formation mechanisms. Photoionized outflows are more massive than O VI outflows for most of the observed velocities, although the O VI mass outflow rate exceeds the photoionized outflow at velocities above the galaxy's escape velocity. Therefore, most gas capable of escaping the galaxy is in a hot outflow phase. We suggest that the O VI absorption is a temporary by-product of conduction transferring mass from the photoionized phase to an unobserved hot wind, and discuss how this mass-loading impacts the observed circum-galactic medium.

  6. Outflow structure of the quiet sun corona probed by spacecraft radio scintillations in strong scattering

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki; Nakamura, Masato [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Tokumaru, Munetoshi; Shiota, Daikou [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 484-8601 (Japan); Isobe, Hiroaki; Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471, Japan. (Japan); Miyamoto, Mayu [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Häusler, Bernd [Institut für Raumfahrttechnik, Universität der Bundeswehr München, D-85577 Neubiberg (Germany); Pätzold, Martin [Rheinisches Institut für Umweltforschung, Department Planetenforschung, Universität zu Köln, Aachener Strasse 209, D-50931 Köln (Germany); Nabatov, Alexander [The Institute of Radio Astronomy, National Academy of Science of Ukraine, Chervonoprapornaya, Strasse 4, Kharkov 61002 (Ukraine); Yaji, Kentaro [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Yamada, Manabu, E-mail: imamura.takeshi@jaxa.jp [Planetary Exploration Research Center, Chiba Institute of Technology, 2-17-1, Tsudanuma, Narashino, Chiba 275-0016 (Japan)

    2014-06-20

    Radio scintillation observations have been unable to probe flow speeds in the low corona where the scattering of radio waves is exceedingly strong. Here we estimate outflow speeds continuously from the vicinity of the Sun to the outer corona (heliocentric distances of 1.5-20.5 solar radii) by applying the strong scattering theory to radio scintillations for the first time, using the Akatsuki spacecraft as the radio source. Small, nonzero outflow speeds were observed over a wide latitudinal range in the quiet-Sun low corona, suggesting that the supply of plasma from closed loops to the solar wind occurs over an extended area. The existence of power-law density fluctuations down to the scale of 100 m was suggested, which is indicative of well-developed turbulence which can play a key role in heating the corona. At higher altitudes, a rapid acceleration typical of radial open fields is observed, and the temperatures derived from the speed profile show a distinct maximum in the outer corona. This study opened up a possibility of observing detailed flow structures near the Sun from a vast amount of existing interplanetary scintillation data.

  7. New Insights into AGN Mass Outflows: Detailed Study of the Spectral Properties of NGC 4151

    Science.gov (United States)

    Denes Couto, Jullianna

    2017-08-01

    Active Galactic Nuclei (AGNs) exist in a few percent of all massive galaxies. It is believed that AGNs are powered by accretion of matter onto a supermassive black hole (SMBH), generating in the process huge amounts of radiation that span the entire electromagnetic spectrum. In turn, this also triggers the so-called AGN Feedback phenomenon, by inducing the formation of accretion disk winds (or outflows) that accelerate highly ionized gas outwards and affect the intergalactic medium of the host galaxy, reducing star formation rates and preventing bulge growth. It has been suggested that a dominant component of mass outflows is observable in the X-rays, and there are a limited number of detailed studies of single objects for which the relation between outflows and power of the central engine can be determined directly. The Seyfert 1.5 galaxy NGC 4151 is a great study candidate, given its proximity (14.077 Mpc, z = 0.0033), X-ray brightness and orientation. Over the past decades, it has been the target of many single and multiwavelength observations, and its heavily absorbed X-ray spectrum and complex absorption features have been extensively stud- ied and characterized. I have investigated the relationship between the long term X-ray spectral variability in and its intrinsic absorption, by comparing our 2014 simultaneous ultraviolet/X-Ray observations taken with Hubble Space Telescope Imaging Spectrometer (STIS) Echelle and Chandra High Energy Transmission Grating Spectrometer (HETGS) with archival observations from Chandra, XMM-Newton and Suzaku. The observations were divided into "high" and "low" flux states, with the low states showing strong and unabsorbed extended emission at energies below 2 keV. The X-ray model consists of a broken powerlaw, neutral reflection and two dominant absorption components, a high and a low ionization component, which are present in all epochs. The model fittings suggest that the absorbers are very stable, with the principal changes

  8. Outflows, infall and evolution of a sample of embedded low-mass protostars. The William Herschel Line Legacy (WILL) survey

    Science.gov (United States)

    Mottram, J. C.; van Dishoeck, E. F.; Kristensen, L. E.; Karska, A.; San José-García, I.; Khanna, S.; Herczeg, G. J.; André, Ph.; Bontemps, S.; Cabrit, S.; Carney, M. T.; Drozdovskaya, M. N.; Dunham, M. M.; Evans, N. J.; Fedele, D.; Green, J. D.; Harsono, D.; Johnstone, D.; Jørgensen, J. K.; Könyves, V.; Nisini, B.; Persson, M. V.; Tafalla, M.; Visser, R.; Yıldız, U. A.

    2017-04-01

    of 6.3 km s-1, which in turn suggests an entrainment efficiency of between 30 and 60% if the wind is launched at 1 AU, or close to 100% if launched further out. L[O I] is strongly correlated with Lbol but not with Menv, in contrast to low-J CO, which is more closely correlated with the latter than the former. This suggests that [O I] traces the present-day accretion activity of the source while CO traces time-averaged accretion over the dynamical timescale of the outflow. H2O is more strongly correlated with Menv than Lbol, but the difference is smaller than low-J CO, consistent with water emission primarily tracing actively shocked material between the wind, traced by [O I], and the entrained molecular outflow, traced by low-J CO. L[O I] does not vary from Class 0 to Class I, unlike CO and H2O. This is likely due to the ratio of atomic to molecular gas in the wind increasing as the source evolves, balancing out the decrease in mass accretion rate. Infall signatures are detected in HCO+ and H2O in a few sources, but still remain surprisingly illusive in single-dish observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  9. The hidden mass and large spatial extent of a post-starburst galaxy outflow.

    Science.gov (United States)

    Tripp, Todd M; Meiring, Joseph D; Prochaska, J Xavier; Willmer, Christopher N A; Howk, J Christopher; Werk, Jessica K; Jenkins, Edward B; Bowen, David V; Lehner, Nicolas; Sembach, Kenneth R; Thom, Christopher; Tumlinson, Jason

    2011-11-18

    Outflowing winds of multiphase plasma have been proposed to regulate the buildup of galaxies, but key aspects of these outflows have not been probed with observations. By using ultraviolet absorption spectroscopy, we show that "warm-hot" plasma at 10(5.5) kelvin contains 10 to 150 times more mass than the cold gas in a post-starburst galaxy wind. This wind extends to distances > 68 kiloparsecs, and at least some portion of it will escape. Moreover, the kinematical correlation of the cold and warm-hot phases indicates that the warm-hot plasma is related to the interaction of the cold matter with a hotter (unseen) phase at >10(6) kelvin. Such multiphase winds can remove substantial masses and alter the evolution of post-starburst galaxies.

  10. THE DISCOVERY OF THE YOUNGEST MOLECULAR OUTFLOW ASSOCIATED WITH AN INTERMEDIATE-MASS PROTOSTELLAR CORE, MMS-6/OMC-3

    International Nuclear Information System (INIS)

    Takahashi, Satoko; Ho, Paul T. P.

    2012-01-01

    We present subarcsecond resolution HCN (4-3) and CO (3-2) observations made with the Submillimeter Array, toward an extremely young intermediate-mass protostellar core, MMS 6-main, located in the Orion Molecular Cloud 3 region (OMC-3). We have successfully imaged a compact molecular outflow lobe (≈1000 AU) associated with MMS 6-main, which is also the smallest molecular outflow ever found in the intermediate-mass protostellar cores. The dynamical timescale of this outflow is estimated to be ≤100 yr. The line width dramatically increases downstream at the end of the molecular outflow (Δv ∼ 25 km s –1 ) and clearly shows the bow-shock-type velocity structure. The estimated outflow mass (≈10 –4 M ☉ ) and outflow size are approximately two to four orders and one to three orders of magnitude smaller, respectively, while the outflow force (≈10 –4 M ☉ km s –1 yr –1 ) is similar, compared to the other molecular outflows studied in OMC-2/3. These results show that MMS 6-main is a protostellar core at the earliest evolutionary stage, most likely shortly after the second core formation.

  11. Evidence for Broad-Line Region Outflows and Their Impact on Black Hole Mass Measurements

    DEFF Research Database (Denmark)

    Denney, K. D.; Assef, R. J.; Horne, K.

    2012-01-01

    could not be fully and accurately interpreted from the 1D velocity-resolved reverberation signal. From the VDM, an outflow component to the emission remains possible but appears to be in addition to an underlying, disk-like BLR structure consistent in size with the measured reverberation lag. The black...... hole (BH) mass derived from this data is therefore secure from any uncertainties possibly derived from gravitationally unbound gas contributing to the emission. Additionally, we demonstrate that BLR emission from the C IV ¿1549 broad emission line can reliably be used as a virial BH mass estimator...

  12. Hot electromagnetic outflows. III. Displaced fireball in a strong magnetic field

    International Nuclear Information System (INIS)

    Thompson, Christopher; Gill, Ramandeep

    2014-01-01

    The evolution of a dilute electron-positron fireball is calculated in the regime of strong magnetization and high compactness (ℓ ∼ 10 3 -10 8 ). Heating is applied at a low effective temperature (<25 keV), appropriate to breakout from a confining medium, so that relaxation to a blackbody is inhibited by pair annihilation. The diffusion equation for Compton scattering by thermal pairs is coupled to a trans-relativistic cyclo-synchrotron source. We find that the photon spectrum develops a quasi-thermal peak at energy ∼0.1 m e c 2 in the comoving frame, with a power-law slope below it that is characteristic of gamma-ray bursts (GRBs; F ω ∼ const). The formation of a thermal high-energy spectrum is checked using the full kinetic equations. Calculations for a baryon-dominated photosphere reveal a lower spectral peak energy, and a harder low-energy spectrum, unless ion rest mass carries ≲ 10 –5 of the energy flux. We infer that (1) the GRB spectrum is inconsistent with the neutron-rich wind emitted by a young magnetar or neutron torus, and points to an event horizon in the engine; (2) neutrons play a negligible role in prompt gamma-ray emission; (3) the relation between observed peak frequency and burst energy is bounded below by the observed Amati relation if the Lorentz factor ∼(opening angle) –1 at breakout, and the jet is surrounded by a broader sheath that interacts with a collapsing stellar core; (4) X-ray flashes are consistent with magnetized jets with ion-dominated photospheres; (5) high-frequency Alfvén waves may become charge starved in the dilute pair gas; (6) limitations on magnetic reconnection from plasma collisionality have been overestimated.

  13. MOLECULAR OUTFLOWS IN THE SUBSTELLAR DOMAIN: MILLIMETER OBSERVATIONS OF YOUNG VERY LOW MASS OBJECTS IN TAURUS AND ρ OPHIUCHI

    International Nuclear Information System (INIS)

    Ngoc Phan-Bao; Lee, Chin-Fei; Ho, Paul T. P.; Tang, Ya-Wen

    2011-01-01

    We report here our search for molecular outflows from young very low mass stars and brown dwarfs in Taurus and ρ Ophiuchi. Using the Submillimeter Array and the Combined Array for Research in Millimeter-wave Astronomy, we have observed four targets at 1.3 mm wavelength (230 GHz) to search for CO J = 2 → 1 outflows. A young very low mass star MHO 5 (in Taurus) with an estimated mass of 90 M J , which is just above the hydrogen-burning limit, shows two gas lobes that are likely outflows. While the CO map of MHO 5 does not show a clear structure of outflow, possibly due to environment gas, its position-velocity diagram indicates two distinct blue- and redshifted components. We therefore conclude that they are components of a bipolar molecular outflow from MHO 5. We estimate an outflow mass of 7.0 x 10 -5 M sun and a mass-loss rate of 9.0 x 10 -10 M sun . These values are over two orders of magnitude smaller than the typical ones for T Tauri stars and somewhat weaker than those we have observed in the young brown dwarf ISO-Oph 102 of 60 M J in ρ Ophiuchi. This makes MHO 5 the first young very low mass star showing a bipolar molecular outflow in Taurus. The detection boosts the scenario that very low mass objects form like low-mass stars but in a version scaled down by a factor of over 100.

  14. INTERMEDIATE-MASS HOT CORES AT {approx}500 AU: DISKS OR OUTFLOWS?

    Energy Technology Data Exchange (ETDEWEB)

    Palau, Aina; Girart, Josep M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB-Facultat de Ciencies, Torre C5-parell 2, 08193 Bellaterra, Catalunya (Spain); Fuente, Asuncion; Alonso-Albi, Tomas [Observatorio Astronomico Nacional, P.O. Box 112, 28803 Alcala de Henares, Madrid (Spain); Fontani, Francesco; Sanchez-Monge, Alvaro [Osservatorio Astrofisico di Arcetri, INAF, Largo E. Fermi 5, 50125 Firenze (Italy); Boissier, Jeremie [Istituto di Radioastronomia, INAF, Via Gobetti 101, Bologna (Italy); Pietu, Vincent; Neri, Roberto [IRAM, 300 Rue de la piscine, 38406 Saint Martin d' Heres (France); Busquet, Gemma [Istituto di Fisica dello Spazio Interplanetario, INAF, Area di Recerca di Tor Vergata, Via Fosso Cavaliere 100, 00133 Roma (Italy); Estalella, Robert [Departament d' Astronomia i Meteorologia (IEEC-UB), Institut Ciencies Cosmos, Universitat Barcelona, Marti Franques 1, 08028 Barcelona (Spain); Zapata, Luis A. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, P.O. Box 3-72, 58090 Morelia, Michoacan (Mexico); Zhang, Qizhou; Ho, Paul T. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Audard, Marc, E-mail: palau@ieec.uab.es [Geneva Observatory, University of Geneva, Ch. des Maillettes 51, 1290 Versoix (Switzerland)

    2011-12-20

    Observations with the Plateau de Bure Interferometer in the most extended configuration toward two intermediate-mass star-forming regions, IRAS 22198+6336 and AFGL 5142, reveal the presence of several complex organic molecules at {approx}500 AU scales, confirming the presence of hot cores in both regions. The hot cores are not rich in CN-bearing molecules, as often seen in massive hot cores, and are mainly traced by CH{sub 3}CH{sub 2}OH, (CH{sub 2}OH){sub 2}, CH{sub 3}COCH{sub 3}, and CH{sub 3}OH, with, additionally, CH{sub 3}CHO, CH{sub 3}OD, and HCOOD for IRAS 22198+6336, and C{sub 6}H and O{sup 13}CS for AFGL 5142. The emission of complex molecules is resolved down to sizes of {approx}300 and {approx}600 AU, for IRAS 22198+6336 and AFGL 5142, respectively, and most likely is tracing protostellar disks rather than flattened envelopes or toroids as is usually found. This is especially clear for the case of IRAS 22198+6336, where we detect a velocity gradient for all the mapped molecules perpendicular to the most chemically rich outflow of the region, yielding a dynamic mass {approx}> 4 M{sub Sun }. As for AFGL 5142, the hot core emission is resolved into two elongated cores separated {approx}1800 AU. A detailed comparison of the complex molecule peaks to the new CO (2-1) data and H{sub 2}O maser data from the literature suggests also that for AFGL 5142 the complex molecules are mainly associated with disks, except for a faint and extended molecular emission found to the west, which is possibly produced in the interface between one of the outflows and the dense surrounding gas.

  15. Emission line diagnostics for accretion and outflows in young very low-mass stars and brown dwarfs

    Directory of Open Access Journals (Sweden)

    Stelzer B.

    2014-01-01

    Full Text Available We discuss accretion and outflow properties of three very low-mass young stellar objects based on broad-band mid-resolution X-Shooter/VLT spectra. Our targets (FU Tau A, 2M1207-39, and Par-Lup3-4 have spectral types between M5 and M8, ages between 1Myr and ~ 10Myr, and are known to be accreting from previous studies. The final objective of our project is the determination of mass outflow to accretion rate for objects near or within the substellar regime as a probe for the T Tauri phase of brown dwarfs and the investigation of variability in the accretion and outflow processes.

  16. MHOs toward HMOs: A Search for Molecular Hydrogen Emission-Line Objects toward High-mass Outflows

    Energy Technology Data Exchange (ETDEWEB)

    Wolf-Chase, Grace [Astronomy Department Adler Planetarium 1300 S. Lake Shore Drive Chicago, IL 60605 (United States); Arvidsson, Kim [Trull School of Sciences and Mathematics Schreiner University 2100 Memorial Blvd. Kerrville, TX 78028 (United States); Smutko, Michael, E-mail: gwolfchase@adlerplanetarium.org [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), and Dept. of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States)

    2017-07-20

    We present the results of a narrow-band near-infrared imaging survey for Molecular Hydrogen emission-line Objects (MHOs) toward 26 regions containing high-mass protostellar candidates and massive molecular outflows. We have detected a total of 236 MHOs, 156 of which are new detections, in 22 out of the 26 regions. We use H{sub 2} 2.12 μ m/H{sub 2} 2.25 μ m flux ratios, together with morphology, to separate the signatures of fluorescence associated with photo-dissociation regions (PDRs) from shocks associated with outflows in order to identify the MHOs. PDRs have typical low flux ratios of ∼1.5–3, while the vast majority of MHOs display flux ratios typical of C-type shocks (∼6–20). A few MHOs exhibit flux ratios consistent with expected values for J-type shocks (∼3–4), but these are located in regions that may be contaminated with fluorescent emission. Some previously reported MHOs have low flux ratios, and are likely parts of PDRs rather than shocks indicative of outflows. We identify a total of 36 outflows across the 22 target regions where MHOs were detected. In over half these regions, MHO arrangements and fluorescent structures trace features present in CO outflow maps, suggesting that the CO emission traces a combination of dynamical effects, which may include gas entrained in expanding PDRs as well as bipolar outflows. Where possible, we link MHO complexes to distinct outflows and identify candidate driving sources.

  17. Massive outflows driven by magnetic effects - II. Comparison with observations

    Science.gov (United States)

    Matsushita, Yuko; Sakurai, Yuya; Hosokawa, Takashi; Machida, Masahiro N.

    2018-03-01

    The driving mechanism of massive outflows observed in high-mass star-forming regions is investigated using three-dimensional magnetohydrodynamics (MHD) and protostellar evolution calculations. In our previous paper, we showed that the mass outflow rate depends strongly on the mass accretion rate on to the circumstellar disc around a high-mass protostar, and massive outflows may be driven by the magnetic effect in high-mass star-forming cores. In this study, in order to verify that the MHD disc wind is the primary driving mechanism of massive outflows, we quantitatively compare outflow properties obtained through simulations and observations. Since the outflows obtained through simulations are slightly younger than those obtained through observations, the time-integrated quantities of outflow mass, momentum, and kinetic energy are slightly smaller than those obtained through observations. On the other hand, time-derivative quantities of mass ejection rate, outflow momentum flux, and kinetic luminosity obtained through simulations are in very good agreement with those obtained through observations. This indicates that the MHD disc wind greatly contributes to the massive outflow driving from high-mass protostars, and the magnetic field might significantly control the high-mass star formation process.

  18. Complex Organic Molecules tracing shocks along the outflow cavity in the high-mass protostar IRAS 20126+4104

    Science.gov (United States)

    Palau, Aina; Walsh, Catherine; Sánchez-Monge, Álvaro; Girart, Josep M.; Cesaroni, Riccardo; Jiménez-Serra, Izaskun; Fuente, Asunción; Zapata, Luis A.; Neri, Roberto

    2017-01-01

    We report on subarcsecond observations of complex organic molecules (COMs) in the high-mass protostar IRAS 20126+4104 with the Plateau de Bure Interferometer in its most extended configurations. In addition to the simple molecules SO, HNCO and H213CO, we detect emission from CH3CN, CH3OH, HCOOH, HCOOCH3, CH3OCH3, CH3CH2CN, CH3COCH3, NH2CN, and (CH2OH)2. SO and HNCO present a X-shaped morphology consistent with tracing the outflow cavity walls. Most of the COMs have their peak emission at the putative position of the protostar, but also show an extension towards the south(east), coinciding with an H2 knot from the jet at about 800–1000 au from the protostar. This is especially clear in the case of H213CO and CH3OCH3. We fitted the spectra at representative positions for the disc and the outflow, and found that the abundances of most COMs are comparable at both positions, suggesting that COMs are enhanced in shocks as a result of the passage of the outflow. By coupling a parametric shock model to a large gas-grain chemical network including COMs, we find that the observed COMs should survive in the gas phase for ∼ 2000 yr, comparable to the shock lifetime estimated from the water masers at the outflow position. Overall, our data indicate that COMs in IRAS 20126+4104 may arise not only from the disc, but also from dense and hot regions associated with the outflow. PMID:28579644

  19. Systemic Embolization from an Unusual Intracardiac Mass in the Left Ventricular Outflow Tract

    Directory of Open Access Journals (Sweden)

    Kelechukwu U. Okoro

    2017-01-01

    Full Text Available Endocarditis can affect any endocardial surface; in the vast majority of cases, the cardiac valves are involved. It is exceedingly rare to develop infective endocarditis on the endocardium of the left ventricular outflow tract due to the high velocity of blood that traverses this area. Herein, we present a rare case of left ventricular outflow tract endocarditis that likely occurred secondary to damage to the aortic valve leaflets (from healed prior aortic valve endocarditis causing a high velocity aortic valve regurgitant jet that impinged upon the interventricular septum which damaged the endocardium and resulted in a fibrotic “jet lesion.” This fibrous jet lesion served as a nidus for bacterial proliferation and vegetation formation. The high shear stress (due to high blood flow velocity through the left ventricular outflow tract likely promoted the multiple embolic events observed in this case. Our patient was successfully treated with aortic valve replacement, vegetation resection, and antibiotics.

  20. Mediterranean outflow mixing and dynamics.

    Science.gov (United States)

    Price, J F; Baringer, M O; Lueck, R G; Johnson, G C; Ambar, I; Parrilla, G; Cantos, A; Kennelly, M A; Sanford, T B

    1993-02-26

    The Mediterranean Sea produces a salty, dense outflow that is strongly modified by entrainment as it first begins to descend the continental slope in the eastern Gulf of Cadiz. The current accelerates to 1.3 meters per second, which raises the internal Froude number above 1, and is intensely turbulent through its full thickness. The outflow loses about half of its density anomaly and roughly doubles its volume transport as it entrains less saline North Atlantic Central water. Within 100 kilometers downstream, the current is turned by the Coriolis force until it flows nearly parallel to topography in a damped geostrophic balance. The mixed Mediterranean outflow continues westward, slowly descending the continental slope until it becomes neutrally buoyant in the thermocline where it becomes an important water mass.

  1. Bipolar Molecular Outflows within 1pc of Sgr A*:Evidence for Low-mass Star Formation Activity

    Science.gov (United States)

    Yusef-Zadeh, Farhad; Wardle, Mark; Kunneriath, Devaky; Royster, Marc; Wootten, Al; Roberts, Douglas

    2018-01-01

    The 4 million solar mass black hole, Sgr A*, is expected to suppress star formation because the measured density of the cloud is insufficient for self-gravity to overcome tidal disruption by the black hole's gravitational field. Nevertheless, objects resembling dust-enshrouded young stars and photo-evaporative flows from their disks have been identified within 2pc of Sgr A*. Clear identification of the nature of these objects has been hampered by the Galactic center's distance, 30 magnitudes of foreground extinction, and stellar crowding. Here, we report the discovery of 11 bipolar molecular outflows using ALMA within a projected distance of one pc from Sgr A*. These unambiguous signatures of young protostars manifest as approaching and receding lobes of dense gas swept up by the jets created during the formation and early evolution of low-mass stars. The mean dynamical age of the outflow sources and the rate of star formation are estimated to be ~6500 years and ~5x10^{-4} solar mass per year, respectively. These measurements suggest that star formation could take place in the immediate vicinity of supermassive black holes in the nuclei of external galaxies.

  2. Large mass hierarchies from strongly-coupled dynamics

    Science.gov (United States)

    Athenodorou, Andreas; Bennett, Ed; Bergner, Georg; Elander, Daniel; Lin, C.-J. David; Lucini, Biagio; Piai, Maurizio

    2016-06-01

    Besides the Higgs particle discovered in 2012, with mass 125 GeV, recent LHC data show tentative signals for new resonances in diboson as well as diphoton searches at high center-of-mass energies (2 TeV and 750 GeV, respectively). If these signals are confirmed (or other new resonances are discovered at the TeV scale), the large hierarchies between masses of new bosons require a dynamical explanation. Motivated by these tentative signals of new physics, we investigate the theoretical possibility that large hierarchies in the masses of glueballs could arise dynamically in new strongly-coupled gauge theories extending the standard model of particle physics. We study lattice data on non-Abelian gauge theories in the (near-)conformal regime as well as a simple toy model in the context of gauge/gravity dualities. We focus our attention on the ratio R between the mass of the lightest spin-2 and spin-0 resonances, that for technical reasons is a particularly convenient and clean observable to study. For models in which (non-perturbative) large anomalous dimensions arise dynamically, we show indications that this mass ratio can be large, with R>5. Moreover,our results suggest that R might be related to universal properties of the IR fixed point. Our findings provide an interesting step towards understanding large mass ratios in the non-perturbative regime of quantum field theories with (near) IR conformal behaviour.

  3. Addressing the strong CP problem with quark mass ratios

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Cruz, J.L.; Saldana-Salazar, U.J. [Benemerita Univ. Autonoma de Puebla (Mexico). Facultad de Ciencias Fisico-Matematicas; Hollik, W.G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-05-15

    The strong CP problem is one of many puzzles in the theoretical description of elementary particles physics that still lacks an explanation. Solutions to that problem usually comprise new symmetries or fields or both. The main problem seems to be how to achieve small CP in the strong interactions despite large CP violation in weak interactions. Observation of CP violation is exclusively through the Higgs-Yukawa interactions. In this letter, we show that with minimal assumptions on the structure of mass (Yukawa) matrices the strong CP problem does not exist in the Standard Model and no extension to solve this is needed. However, to solve the flavor puzzle, models based on minimal SU(3) flavor groups leading to the proposed flavor matrices are favored.

  4. On the Theoretical Framework of Magnetized Outflows from Stellar-Mass Black Holes and Related Observations

    Science.gov (United States)

    Christodoulou, D. M.; Contopoulos, I.; Kazanas, D.; Steiner, J. F.; Papadopoulos, D. B.; Laycock, S. G. T.

    2016-01-01

    The spins of stellar-mass black holes (BHs) and the power outputs of their jets are measurable quantities. Unfortunately, the currently employed methods do not agree and the results are controversial. Two major issues concern the measurements of BH spin and beam (jet) power. The former issue can be resolved by future observations. But the latter issue can be resolved now, if we pay attention to what is expected from theoretical considerations. The question of whether a correlation has been found between the power outputs of few objects and the spins of their BHs is moot because BH beam power does not scale with the square of the spin of the BH. We show that the theoretical BH beam power is a strongly nonlinear function of spin that cannot be approximated by a quadratic relation, as is generally stated when the influence of the magnetic field is not accounted for in the Blandford & Znajek model. The BH beam power of ballistic jets should scale a lot more steeply with BH spin irrespective of the magnetic field assumed to thread the horizon and the spin range considered. This behavior may already be visible in the analyses of radio observations by Narayan & McClintock and Russell et al. In agreement with previous studies, we also find that the power output that originates in the inner regions of the surrounding accretion disks is higher than that from the BHs and it cannot be ignored in investigations of continuous compact jets from these systems.

  5. CSO CO (2–1) and Spitzer IRAC observations of a bipolar outflow in high-mass star-forming region IRAS 22506+5944

    Science.gov (United States)

    Xie, Ze-Qiang; Qiu, Ke-Ping

    2018-02-01

    We present Caltech Submillimeter Observatory CO (2–1) and Spitzer IRAC observations toward IRAS 22506+5944, which is a 104 L ⊙ massive star-forming region. The CO (2–1) maps show an east-west bipolar molecular outflow originating from the 3 mm dust continuum peak. The Spitzer IRAC color-composite image reveals a pair of bow-shaped tips which are prominent in excess 4.5μm emission and are located at the leading fronts of the bipolar outflow, providing compelling evidence for the existence of bow-shocks as the driving agents of the molecular outflow. By comparing our CO (2–1) observations with previously published CO (1–0) data, we find that the CO (2–1)/(1–0) line ratio increases from low (∼5 kms‑1) to moderate (∼8–12 kms‑1) velocities, and then decreases at higher velocities. This is qualitatively consistent with the scenario that the molecular outflow is driven by multiple bow-shocks. We also revisit the position-velocity diagram of the CO (1–0) data, and find two spur structures along the outflow axis, which are further evidence for the presence of multiple jet bowshocks. Finally, power-law fittings to the mass spectrum of the outflow gives power law indexes more consistent with the jet bow-shock model than the wide-angle wind model.

  6. The QCD mass gap and quark deconfinement scales as mass bounds in strong gravity

    Energy Technology Data Exchange (ETDEWEB)

    Burikham, Piyabut [Chulalongkorn University, High Energy Physics Theory Group, Department of Physics, Faculty of Science, Bangkok (Thailand); Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom); Lake, Matthew J. [Sun Yat-Sen University, School of Physics, Guangzhou (China); Nanyang Technological University, School of Physical and Mathematical Sciences, Singapore (Singapore); Naresuan University, The Institute for Fundamental Study, ' ' The Tah Poe Academia Institute' ' , Phitsanulok (Thailand); Thailand Center of Excellence in Physics, Ministry of Education, Bangkok (Thailand)

    2017-11-15

    Though not a part of mainstream physics, Salam's theory of strong gravity remains a viable effective model for the description of strong interactions in the gauge singlet sector of QCD, capable of producing particle confinement and asymptotic freedom, but not of reproducing interactions involving SU(3) color charge. It may therefore be used to explore the stability and confinement of gauge singlet hadrons, though not to describe scattering processes that require color interactions. It is a two-tensor theory of both strong interactions and gravity, in which the strong tensor field is governed by equations formally identical to the Einstein equations, apart from the coupling parameter, which is of order 1 GeV{sup -1}. We revisit the strong gravity theory and investigate the strong gravity field equations in the presence of a mixing term which induces an effective strong cosmological constant, Λ{sub f}. This introduces a strong de Sitter radius for strongly interacting fermions, producing a confining bubble, which allows us to identify Λ{sub f} with the 'bag constant' of the MIT bag model, B ≅ 2 x 10{sup 14} g cm{sup -3}. Assuming a static, spherically symmetric geometry, we derive the strong gravity TOV equation, which describes the equilibrium properties of compact hadronic objects. From this, we determine the generalized Buchdahl inequalities for a strong gravity 'particle', giving rise to upper and lower bounds on the mass/radius ratio of stable, compact, strongly interacting objects. We show, explicitly, that the existence of the lower mass bound is induced by the presence of Λ{sub f}, producing a mass gap, and that the upper bound corresponds to a deconfinement phase transition. The physical implications of our results for holographic duality in the context of the AdS/QCD and dS/QCD correspondences are also discussed. (orig.)

  7. The QCD mass gap and quark deconfinement scales as mass bounds in strong gravity

    International Nuclear Information System (INIS)

    Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.

    2017-01-01

    Though not a part of mainstream physics, Salam's theory of strong gravity remains a viable effective model for the description of strong interactions in the gauge singlet sector of QCD, capable of producing particle confinement and asymptotic freedom, but not of reproducing interactions involving SU(3) color charge. It may therefore be used to explore the stability and confinement of gauge singlet hadrons, though not to describe scattering processes that require color interactions. It is a two-tensor theory of both strong interactions and gravity, in which the strong tensor field is governed by equations formally identical to the Einstein equations, apart from the coupling parameter, which is of order 1 GeV -1 . We revisit the strong gravity theory and investigate the strong gravity field equations in the presence of a mixing term which induces an effective strong cosmological constant, Λ f . This introduces a strong de Sitter radius for strongly interacting fermions, producing a confining bubble, which allows us to identify Λ f with the 'bag constant' of the MIT bag model, B ≅ 2 x 10 14 g cm -3 . Assuming a static, spherically symmetric geometry, we derive the strong gravity TOV equation, which describes the equilibrium properties of compact hadronic objects. From this, we determine the generalized Buchdahl inequalities for a strong gravity 'particle', giving rise to upper and lower bounds on the mass/radius ratio of stable, compact, strongly interacting objects. We show, explicitly, that the existence of the lower mass bound is induced by the presence of Λ f , producing a mass gap, and that the upper bound corresponds to a deconfinement phase transition. The physical implications of our results for holographic duality in the context of the AdS/QCD and dS/QCD correspondences are also discussed. (orig.)

  8. Strong nuclear enhancement in intermediate mass Drell-Yan production

    CERN Document Server

    Jian Wei Qiu

    2002-01-01

    We calculate nuclear effect in Drell-Yan massive lepton-pair production in terms of parton multiple scattering in Quantum Chromodynamics (QCD). We present the nuclear modification to inclusive Drell-Yan cross sections d sigma /dQ/sup 2/ in terms of multiparton correlation functions. By extracting the size of the correlation functions from measured Drell-Yan transverse momentum broadening in nuclear media, we determine the nuclear modification at O( alpha /sub s//Q/sup 2/). We find that the nuclear modification strongly enhances the inclusive Drell-Yan cross section in the intermediate mass region (IMR): 1.5

  9. A substellar-mass protostar and its outflow of IRAS 15398–3359 revealed by subarcsecond-resolution observations of H2CO and CCH

    International Nuclear Information System (INIS)

    Oya, Yoko; Sakai, Nami; Watanabe, Yoshimasa; Yamamoto, Satoshi; Sakai, Takeshi; Hirota, Tomoya; Lindberg, Johan E.; Bisschop, Suzanne E.; Jørgensen, Jes K.; Van Dishoeck, Ewine F.

    2014-01-01

    Subarcsecond (0.''5) images of H 2 CO and CCH line emission have been obtained in the 0.8 mm band toward the low-mass protostar IRAS 15398–3359 in the Lupus 1 cloud as one of the Cycle 0 projects of the Atacama Large Millimeter/Submillimeter Array. We have detected a compact component concentrated in the vicinity of the protostar and a well-collimated outflow cavity extending along the northeast-southwest axis. The inclination angle of the outflow is found to be about 20°, or almost edge-on, based on the kinematic structure of the outflow cavity. This is in contrast to previous suggestions of a more pole-on geometry. The centrally concentrated component is interpreted by use of a model of the infalling rotating envelope with the estimated inclination angle and the mass of the protostar is estimated to be less than 0.09 M ☉ . Higher spatial resolution data are needed to infer the presence of a rotationally supported disk for this source, hinted at by a weak high-velocity H 2 CO emission associated with the protostar.

  10. A substellar-mass protostar and its outflow of IRAS 15398–3359 revealed by subarcsecond-resolution observations of H{sub 2}CO and CCH

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Yoko; Sakai, Nami; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sakai, Takeshi [Department of Communication Engineering and Informatics, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Hirota, Tomoya [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Lindberg, Johan E.; Bisschop, Suzanne E.; Jørgensen, Jes K. [Center for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Østeer Voldgade 5-7, DK-1350 Copenhagen K. (Denmark); Van Dishoeck, Ewine F., E-mail: nami@taurus.phys.s.u-tokyo.ac.jp [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden, The Netherland (Netherlands)

    2014-11-10

    Subarcsecond (0.''5) images of H{sub 2}CO and CCH line emission have been obtained in the 0.8 mm band toward the low-mass protostar IRAS 15398–3359 in the Lupus 1 cloud as one of the Cycle 0 projects of the Atacama Large Millimeter/Submillimeter Array. We have detected a compact component concentrated in the vicinity of the protostar and a well-collimated outflow cavity extending along the northeast-southwest axis. The inclination angle of the outflow is found to be about 20°, or almost edge-on, based on the kinematic structure of the outflow cavity. This is in contrast to previous suggestions of a more pole-on geometry. The centrally concentrated component is interpreted by use of a model of the infalling rotating envelope with the estimated inclination angle and the mass of the protostar is estimated to be less than 0.09 M {sub ☉}. Higher spatial resolution data are needed to infer the presence of a rotationally supported disk for this source, hinted at by a weak high-velocity H{sub 2}CO emission associated with the protostar.

  11. Dynamical fermion mass generation by a strong Yukawa interaction

    Czech Academy of Sciences Publication Activity Database

    Brauner, Tomáš; Hošek, Jiří

    2005-01-01

    Roč. 72, č. 4 (2005), 045007 ISSN 0556-2821 R&D Projects: GA MŠk LA 080; GA ČR(CZ) GD202/05/H003 Institutional research plan: CEZ:AV0Z10480505 Keywords : dynamical mass generation * Yukawa interaction Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.852, year: 2005

  12. Optical and Radio Observations of the T Tauri Binary KH 15D (V582 Mon): Stellar Properties, Disk Mass Limit, and Discovery of a CO Outflow

    Science.gov (United States)

    Aronow, Rachel A.; Herbst, William; Hughes, A. Meredith; Wilner, David J.; Winn, Joshua N.

    2018-01-01

    We present VRIJHK photometry of the KH 15D T Tauri binary system for the 2015/2016 and 2016/2017 observing seasons. For the first time in the modern (CCD) era, we are seeing Star B fully emerge from behind the trailing edge of the precessing circumbinary ring during each apastron passage. We are, therefore, able to measure its luminosity and color. Decades of photometry on the system now allow us to infer the effective temperature, radius, mass, and age of each binary component. We find our values to be in good agreement with previous studies, including archival photographic photometry from the era when both stars were fully visible, and they set the stage for a full model of the system that can be constructed once radial velocity measurements are available. We also present the first high-sensitivity radio observations of the system, taken with the Atacama Large Millimeter/submillimeter Array and the Submillimeter Array. The respective 2.0 and 0.88 mm observations provide an upper limit on the circumbinary (gas and dust) disk mass of 1.7 M Jup and reveal an extended CO outflow, which overlaps with the position, systemic velocity, and orientation of the KH 15D system and is certainly associated with it. The low velocity, tight collimation, and extended nature of the emission suggest that the outflow is inclined nearly orthogonal to the line of sight, implying it is also orthogonal to the circumbinary ring. The position angle of the radio outflow also agrees precisely with the direction of polarization of the optical emission during the faint phase. A small offset between the optical image of the binary and the central line of the CO outflow remains a puzzle and possible clue to the jet launching mechanism.

  13. The dependence of galactic outflows on the properties and orientation of zCOSMOS galaxies at z ∼ 1

    International Nuclear Information System (INIS)

    Bordoloi, R.; Lilly, S. J.; Hardmeier, E.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Fevre, O. Le; Garilli, B.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Cucciati, O.; De la Torre, S.; De Ravel, L.; Iovino, A.

    2014-01-01

    We present an analysis of cool outflowing gas around galaxies, traced by Mg II absorption lines in the coadded spectra of a sample of 486 zCOSMOS galaxies at 1 ≤ z ≤ 1.5. These galaxies span a range of stellar masses (9.45 ≤ log 10 [M * /M ☉ ] ≤ 10.7) and star formation rates (0.14 ≤ log 10 [SFR/M ☉ yr –1 ] ≤ 2.35). We identify the cool outflowing component in the Mg II absorption and find that the equivalent width of the outflowing component increases with stellar mass. The outflow equivalent width also increases steadily with the increasing star formation rate of the galaxies. At similar stellar masses, the blue galaxies exhibit a significantly higher outflow equivalent width as compared to red galaxies. The outflow equivalent width shows strong correlation with the star formation surface density (Σ SFR ) of the sample. For the disk galaxies, the outflow equivalent width is higher for the face-on systems as compared to the edge-on ones, indicating that for the disk galaxies, the outflowing gas is primarily bipolar in geometry. Galaxies typically exhibit outflow velocities ranging from –150 km s –1 ∼–200 km s –1 and, on average, the face-on galaxies exhibit higher outflow velocity as compared to the edge-on ones. Galaxies with irregular morphologies exhibit outflow equivalent width as well as outflow velocities comparable to face on disk galaxies. These galaxies exhibit mass outflow rates >5-7 M ☉ yr –1 and a mass loading factor (η = M-dot out /SFR) comparable to the star formation rates of the galaxies.

  14. Massive Outflows Associated with ATLASGAL Clumps

    Science.gov (United States)

    Yang, A. Y.; Thompson, M. A.; Urquhart, J. S.; Tian, W. W.

    2018-03-01

    We have undertaken the largest survey for outflows within the Galactic plane using simultaneously observed {}13{CO} and {{{C}}}18{{O}} data. Out of a total of 919 ATLASGAL clumps, 325 have data suitable to identify outflows, and 225 (69% ± 3%) show high-velocity outflows. The clumps with detected outflows show significantly higher clump masses ({M}clump}), bolometric luminosities ({L}bol}), luminosity-to-mass ratios ({L}bol}/{M}clump}), and peak H2 column densities ({N}{{{H}}2}) compared to those without outflows. Outflow activity has been detected within the youngest quiescent clump (i.e., 70 μ {{m}} weak) in this sample, and we find that the outflow detection rate increases with {M}clump}, {L}bol}, {L}bol}/{M}clump}, and {N}{{{H}}2}, approaching 90% in some cases (UC H II regions = 93% ± 3%; masers = 86% ± 4%; HC H II regions = 100%). This high detection rate suggests that outflows are ubiquitous phenomena of massive star formation (MSF). The mean outflow mass entrainment rate implies a mean accretion rate of ∼ {10}-4 {M}ȯ {yr}}-1, in full agreement with the accretion rate predicted by theoretical models of MSF. Outflow properties are tightly correlated with {M}clump}, {L}bol}, and {L}bol}/{M}clump} and show the strongest relation with the bolometric clump luminosity. This suggests that outflows might be driven by the most massive and luminous source within the clump. The correlations are similar for both low-mass and high-mass outflows over 7 orders of magnitude, indicating that they may share a similar outflow mechanism. Outflow energy is comparable to the turbulent energy within the clump; however, we find no evidence that outflows increase the level of clump turbulence as the clumps evolve. This implies that the origin of turbulence within clumps is fixed before the onset of star formation.

  15. The Coldest Object in the Universe: Probing the Mass Distribution of the Ultra-Cold Outflow and Dusty Disk in the Boomerang Nebula

    Science.gov (United States)

    Sahai, R.; Vlemmings, W.; Nyman, L. A.

    2014-01-01

    Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the universe, with a massive high-speed outflow that has cooled significantly below the temperature of the cosmic background (CMB). The Boomerang's prodigious mass-loss rate (0.001 solar mass M yr (exp -1) and low-luminosity (300L ) make it a key object for understanding the remarkable transition of the circumstellar envelopes of AGB stars into bipolar planetary nebulae. We have obtained new ACA CO 1-0 data that recover much of the flux lost in the Cycle O data, and reveal heretofore unseen distant regions of the ultra-cold outflow reheated to temperatures above the CMB. Our CO J=3-2 data reveal the precise, highly collimated shape of an inner bipolar structure and its dense central waist, with unprecedented angular resolution (0.4 in). The waist shows a core-halo structure in the thermal dust emission at 0.88 millimeter, and its derived flux at this wavelength, compared with the 3.3, 2.6, and 1.3 millimeter fluxes support the presence of about 5 x 10 (exp -4) solar mass of very large (approximately millimeter-sized), cold (approximately 30K) grains. We also find the unexpected presence of weak SO emission, possibly resulting from the release of S from grains due to high-speed shocks.

  16. THE SINS/zC-SINF SURVEY of z {approx} 2 GALAXY KINEMATICS: OUTFLOW PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Sarah F.; Genzel, Reinhard [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Foerster-Schreiber, Natascha M.; Buschkamp, Peter; Davies, Ric; Eisenhauer, Frank; Kurk, Jaron; Lutz, Dieter [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr.1, D-85748 Garching (Germany); Griffin, Kristen Shapiro [Space Sciences Research Group, Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (United States); Mancini, Chiara; Renzini, Alvio [Osservatorio Astronomico di Padova, Vicolo dellOsservatorio 5, Padova, I-35122 (Italy); Lilly, Simon J.; Carollo, C. Marcella; Peng, Yingjie [Institute of Astronomy, Department of Physics, Eidgenoessische Technische Hochschule, ETH Zuerich, CH-8093 (Switzerland); Bouche, Nicolas [Institut de Recherche en Astrophysique et Planetologie (IRAP), Universite de Toulouse, UPS-OMP, IRAP, 14, avenue Edouard Berlin, F-31400 Toulouse (France); Burkert, Andreas [Department fuer Physik, Universitaets-Sternwarte Ludwig-Maximilians-Universitaet (USM), Scheinerstr. 1, Muenchen, D-81679 (Germany); Cresci, Giovanni [Istituto Nazionale di AstrofisicaOsservatorio Astronomico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Genel, Shy [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hicks, Erin K. S. [Department of Astronomy, University of Washington, Box 351580, U.W., Seattle, WA 98195-1580 (United States); Naab, Thorsten, E-mail: sfnewman@berkeley.edu [Max-Planck Institute for Astrophysics, Karl Schwarzschildstrasse 1, D-85748 Garching (Germany); and others

    2012-12-10

    Using SINFONI H{alpha}, [N II], and [S II] AO data of 27 z {approx} 2 star-forming galaxies (SFGs) from the SINS and zC-SINF surveys, we explore the dependence of outflow strength (via the broad flux fraction) on various galaxy parameters. For galaxies that have evidence for strong outflows, we find that the broad emission is spatially extended to at least the half-light radius ({approx}a few kpc). Decomposition of the [S II] doublet into broad and narrow components suggests that this outflowing gas probably has a density of {approx}10-100 cm{sup -3}, less than that of the star-forming gas (600 cm{sup -3}). There is a strong correlation of the H{alpha} broad flux fraction with the star formation surface density of the galaxy, with an apparent threshold for strong outflows occurring at 1 M{sub Sun} yr{sup -1} kpc{sup -2}. Above this threshold, we find that SFGs with log m{sub *} > 10 have similar or perhaps greater wind mass-loading factors ({eta} = M-dot{sub out}/SFR) and faster outflow velocities than lower mass SFGs, suggesting that the majority of outflowing gas at z {approx} 2 may derive from high-mass SFGs. The mass-loading factor is also correlated with the star formation rate (SFR), galaxy size, and inclination, such that smaller, more star-forming, and face-on galaxies launch more powerful outflows. We propose that the observed threshold for strong outflows and the observed mass loading of these winds can be explained by a simple model wherein break-out of winds is governed by pressure balance in the disk.

  17. ALMA Observations of the Galactic Center: SiO Outflows and High Mass Star Formation Near Sgr A

    Science.gov (United States)

    Yusef-Zadeh, F.; Royster, M.; Wardle, M.; Arendt, R.; Bushouse, H.; Gillessen, S.; Lis, D.; Pound, M. W.; Roberts, D. A.; Whitney, B.; hide

    2013-01-01

    Using ALMA observations of the Galactic center with a spatial resolution of 2.61" x 0.97 ", we detected 11 SiO (5-4) clumps of molecular gas in the within 0.6pc (15") of Sgr A*, interior of the 2-pc circumnuclear molecular ring. Three SiO (5-4) clumps closest to Sgr A* show the largest central velocities of approximately 150 kilometers per second and broadest asymmetric linewidths with total linewidths FWZI approximately 110-147 kilometers per second. Other clumps are distributed mainly to the NE of the ionized minispiral with narrow linewidths of FWHM approximately 11-27 kilometers per second. Using CARMA data, LVG modeling of the broad velocity clumps, the SiO (5-4) and (2-1) line ratios constrain the column density N(SiO) approximately 10(exp 14) per square centimeter, and the H2 gas density n(sub H2) = (3-9) x 10(exp 5) per cubic centimeter for an assumed kinetic temperature 100-200K. The SiO (5-4) clumps with broad and narrow linewidths are interpreted as highly embedded protostellar outflows, signifying an early stage of massive star formation near Sgr A* in the last 104 years. Additional support for the presence of YSO outflows is that the luminosities and velocity widths lie in the range detected from protostellar outflows in star forming regions in the Galaxy. Furthermore, SED modeling of stellar sources along the N arm show two YSO candidates near SiO clumps supporting in-situ star formation near Sgr A*. We discuss the nature of star formation where the gravitational potential of the black hole dominates. In particular, we suggest that external radiative pressure exerted on self-shielded molecular clouds enhance the gas density, before the gas cloud become gravitationally unstable near Sgr A*.

  18. THE IMPLICATIONS OF EXTREME OUTFLOWS FROM EXTREME STARBURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, Timothy M.; Borthakur, Sanchayeeta [Center for Astrophysical Sciences, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2016-05-01

    Interstellar ultraviolet absorption lines provide crucial information about the properties of galactic outflows. In this paper, we augment our previous analysis of the systematic properties of starburst-driven galactic outflows by expanding our sample to include a rare population of starbursts with exceptionally high outflow velocities. In principle, these could be a qualitatively different phenomenon from more typical outflows. However, we find that instead these starbursts lie on, or along the extrapolation of, the trends defined by the more typical systems studied previously by us. We exploit the wide dynamic range provided by this new sample to determine scaling relations of outflow velocity with galaxy stellar mass ( M {sub *}), circular velocity, star formation rate (SFR), SFR/ M {sub *}, and SFR/area. We argue that these results can be accommodated within the general interpretational framework we previously advocated, in which a population of ambient interstellar or circumgalactic clouds is accelerated by the combined forces of gravity and the momentum flux from the starburst. We show that this simple physical picture is consistent with both the strong cosmological evolution of galactic outflows in typical star-forming galaxies and the paucity of such galaxies with spectra showing inflows. We also present simple parameterizations of these results that can be implemented in theoretical models and numerical simulations of galaxy evolution.

  19. Properties of the molecular gas in the fast outflow in the Seyfert galaxy IC 5063

    Science.gov (United States)

    Oosterloo, Tom; Raymond Oonk, J. B.; Morganti, Raffaella; Combes, Françoise; Dasyra, Kalliopi; Salomé, Philippe; Vlahakis, Nektarios; Tadhunter, Clive

    2017-12-01

    We present a detailed study of the properties of the molecular gas in the fast outflow driven by the active galactic nucleus (AGN) in the nearby radio-loud Seyfert galaxy IC 5063. By using ALMA observations of a number of tracers of the molecular gas (12CO(1-0), 12CO(2-1), 12CO(3-2), 13CO(2-1) and HCO+(4-3)), we map the differences in excitation, density and temperature of the gas as function of position and kinematics. The results show that in the immediate vicinity of the radio jet, a fast outflow, with velocities up to 800 km s-1, is occurring of which the gas has high excitation with excitation temperatures in the range 30-55 K, demonstrating the direct impact of the jet on the ISM. The relative brightness of the 12CO lines, as well as that of 13CO(2-1) vs. 12CO(2-1), show that the outflow is optically thin. We estimate the mass of the molecular outflow to be at least 1.2 × 106 M⊙ and likely to be a factor between two and three larger than this value. This is similar to that of the outflow of atomic gas, but much larger than that of the ionised outflow, showing that the outflow in IC 5063 is dominated by cold gas. The total mass outflow rate we estimated to be 12 M⊙ yr-1. The mass of the outflow is much smaller than the total gas mass of the ISM of IC 5063. Therefore, although the influence of the AGN and its radio jet is very significant in the inner regions of IC 5063, globally speaking the impact will be very modest. We used RADEX non-LTE modelling to explore the physical conditions of the molecular gas in the outflow. Models with the outflowing gas being quite clumpy give the most consistent results and our preferred solutions have kinetic temperatures in the range 20-100 K and densities between 105 and 106 cm-3. The resulting pressures are 106-107.5 K cm-3, about two orders of magnitude higher than in the outer quiescent disk. The highest densities and temperatures are found in the regions with the fastest outflow. The results strongly suggest that

  20. UNRAVELLING THE COMPLEX STRUCTURE OF AGN-DRIVEN OUTFLOWS. II. PHOTOIONIZATION AND ENERGETICS

    International Nuclear Information System (INIS)

    Karouzos, Marios; Woo, Jong-Hak; Bae, Hyun-Jin

    2016-01-01

    Outflows have been shown to be prevalent in galaxies hosting luminous active galactic nuclei (AGNs); they present a physically plausible way to couple the AGN energy output with the interstellar medium of their hosts. Despite their prevalence, accurate characterization of these outflows has been challenging. In the second of a series of papers, we use Gemini Multi-Object Spectrograph integral field unit (IFU) data of six local ( z  < 0.1) and moderate-luminosity Type 2 AGNs to study the ionization properties and energetics of AGN-driven outflows. We find strong evidence connecting the extreme kinematics of the ionized gas to the AGN photoionization. The kinematic component related to the AGN-driven outflow is clearly separated from other kinematic components, such as virial motions or rotation, on the velocity and velocity dispersion diagram. Our spatially resolved kinematic analysis reveals that 30 to 90% of the total mass and kinetic energy of the outflow is contained within the central kpc of the galaxy. The spatially integrated mass and kinetic energy of the gas entrained in the outflow correlate well with the AGN bolometric luminosity and results in energy conversion efficiencies between 0.01% and 1%. Intriguingly, we detect ubiquitous signs of ongoing circumnuclear star formation. Their small size, the centrally contained mass and energy, and the universally detected circumnuclear star formation cast doubts on the potency of these AGN-driven outflows as agents of galaxy-scale negative feedback.

  1. ALMA OBSERVATIONS OF THE GALACTIC CENTER: SiO OUTFLOWS AND HIGH-MASS STAR FORMATION NEAR Sgr A*

    Energy Technology Data Exchange (ETDEWEB)

    Yusef-Zadeh, F.; Royster, M.; Roberts, D. A. [Department of Physics and Astronomy and Center for Interdisciplinary Research in Astronomy, Northwestern University, Evanston, IL 60208 (United States); Wardle, M. [Department of Physics and Astronomy, and Centre for Astronomy, Astrophysics, and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Arendt, R. [CREST/UMBC/NASA GSFC, Code 665, Greenbelt, MD 20771 (United States); Bushouse, H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lis, D. C. [California Institute of Technology, MC 320-47, Pasadena, CA 91125 (United States); Pound, M. W. [Department of Astronomy, University of Maryland, MD 20742 (United States); Whitney, B. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Wootten, A. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2013-04-20

    ALMA observations of the Galactic center with a spatial resolution of 2.''61 Multiplication-Sign 0.''97 resulted in the detection of 11 SiO (5-4) clumps of molecular gas within 0.6 pc (15'') of Sgr A*, interior to the 2 pc circumnuclear molecular ring. The three SiO (5-4) clumps closest to Sgr A* show the largest central velocities, {approx}150 km s{sup -1}, and the broadest asymmetric line widths with full width zero intensity (FWZI) {approx}110-147 km s{sup -1}. The remaining clumps, distributed mainly to the NE of the ionized mini-spiral, have narrow FWZI ({approx}18-56 km s{sup -1}). Using CARMA SiO (2-1) data, Large Velocity Gradient modeling of the SiO line ratios for the broad velocity clumps constrains the column density N(SiO) {approx}10{sup 14} cm{sup -2}, and the H{sub 2} gas density n{sub H{sub 2}} = (3-9) x 10{sup 5} cm{sup -3} for an assumed kinetic temperature 100-200 K. The SiO clumps are interpreted as highly embedded protostellar outflows, signifying an early stage of massive star formation near Sgr A* in the last 10{sup 4}-10{sup 5} yr. Support for this interpretation is provided by the SiO (5-4) line luminosities and velocity widths which lie in the range measured for protostellar outflows in star-forming regions in the Galaxy. Furthermore, spectral energy distribution modeling of stellar sources shows two young stellar object candidates near SiO clumps, supporting in situ star formation near Sgr A*. We discuss the nature of star formation where the gravitational potential of the black hole dominates. In particular, we suggest that external radiative pressure exerted on self-shielded molecular clouds enhances the gas density, before the gas cloud becomes gravitationally unstable near Sgr A*. Alternatively, collisions between clumps in the ring may trigger gravitational collapse.

  2. Two-Dimensional Study of Mass Outflow from Central Gravitational Astrophysical Object. Analytical 2-D solutions for thermo-radiatively driven stellar winds.

    Science.gov (United States)

    Kakouris, A.

    The present PhD Thesis deals with the two-dimensional description of the plasma outflow from central astrophysical objects. The concept of stellar winds was originated by Eugene Parker 1958, and has become a very hot area of research the last decade. Mass outflow from all types of stars, as well as AGNs, quasars or planetary nebulae are observed in all astrophysical scales indicating at least two-dimensional (2-D) features (e.g. Hughes (editor), 1991, Beams and jets in astrophysics, Cambridge University Press). In a first stage, the flows are modeled empirically but their origin has to be in accordance with the fluid mechanics and the conservation laws. So, self-consistent 2-D models are needed (i.e. full solutions of the total set of equations which conserve mass, momentum and energy). The main mechanisms of ejecting plasma from an astrophysical object are the thermal (similar to solar wind), the radiative and the magnetic. Self consistent analytical 2-D steady hydrodynamic (HD) solutions for stellar winds have been presented by Tsinganos & Vlastou 1988, Tsinganos & Trussoni 1990, Tsinganos & Sauty 1992 and Lima & Priest 1993. Following their description we derive a new set of solutions in the present work. Our main assumptions are steady state (\\partial/\\partial t = 0), axisymmetry to the rotational axis (\\partial/\\partial \\phi = 0) and helicoidal geometry for the streamlines (meridional velocity {\\vec u}_{\\theta} = {\\vec 0} ). Besides, the fluid is assumed to be a nonmagnetized fully ionized hydrogen. The model could be named as non polytropic since we do not follow the polytropic assumption with a constant polytropic exponent but we evaluate the total external energy needed by the 1st law of Thermodynamics. Also, the solutions are \\theta-self similar since the dependence to the colatitude is given from the beginning. The generalized differential rotation of the fluid is taken into account considering a dependence of the rotational velocity of (V

  3. Molecular Outflows: Explosive versus Protostellar

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina; Loinard, Laurent [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Schmid-Burgk, Johannes [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121, Bonn (Germany)

    2017-02-10

    With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion–ejection process in star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al., and using {sup 12}CO( J = 2-1) archival data from the Submillimeter Array, we contrast two well-known explosive objects, Orion KL and DR21, to HH 211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment, there are only two well-established cases of explosive outflows, but with the full availability of ALMA we expect that more examples will be found in the near future. The main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the redshifted with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very-well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum, and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position (i.e., the place where its “exciting source” was located), contrary to the bulk of the molecular material within the protostellar outflows.

  4. Heavy quark mass effects and improved tests of the flavor independence of strong interactions

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, P.N. [Univ. of Oxford (United Kingdom); SLD Collaboration

    1998-08-01

    A review is given of latest results on tests of the flavor independence of strong interactions. Heavy quark mass effects are evident in the data and are now taken into account at next-to-leading order in QCD perturbation theory. The strong-coupling ratios {alpha}{sub s}{sup b}/{alpha}{sub s}{sup uds} and {alpha}{sub s}{sup c}/{alpha}{sub s}{sup uds} are found to be consistent with unity. Determinations of the b-quark mass m{sub b} (M{sub Z}) are discussed.

  5. APEX-CHAMP(+) high-J CO observations of low-mass young stellar objects I. The HH 46 envelope and outflow

    NARCIS (Netherlands)

    van Kempen, T. A.; van Dishoeck, E. F.; Guesten, R.; Kristensen, L. E.; Schilke, P.; Hogerheijde, M. R.; Boland, W.; Nefs, B.; Menten, K. M.; Baryshev, A.; Wyrowski, F.

    Context. The spectacular outflow of HH 46/47 is driven by HH 46 IRS 1, an embedded Class I Young Stellar Object (YSO). Although much is known about this region from extensive optical and infrared observations, the properties of its protostellar envelope and molecular outflow are poorly constrained.

  6. Observation of strong oscillations of areal mass in an unsupported shock wave.

    Science.gov (United States)

    Aglitskiy, Y; Karasik, M; Velikovich, A L; Serlin, V; Weaver, J; Kessler, T J; Schmitt, A J; Obenschain, S P; Metzler, N; Oh, J

    2012-08-24

    An experimental study of hydrodynamic perturbation evolution in a strong unsupported shock wave, which is immediately followed by an expansion wave, is reported. A planar solid plastic target rippled on the front side is irradiated with a 350-450 ps long laser pulse. The perturbation evolution in the target is observed using face-on monochromatic x-ray radiography during and for up to 4 ns after the laser pulse. The theoretically predicted large oscillations of the areal mass in the target are observed for the first time. Multiple phase reversals of the areal mass modulation are detected.

  7. Mass density slope of elliptical galaxies from strong lensing and resolved stellar kinematics

    Science.gov (United States)

    Lyskova, N.; Churazov, E.; Naab, T.

    2018-04-01

    We discuss constraints on the mass density distribution (parametrized as ρ ∝ r-γ) in early-type galaxies provided by strong lensing and stellar kinematics data. The constraints come from mass measurements at two `pinch' radii. One `pinch' radius r1 = 2.2REinst is defined such that the Einstein (i.e. aperture) mass can be converted into the spherical mass almost independently of the mass-model. Another `pinch' radius r2 = Ropt is chosen so that the dynamical mass, derived from the line-of-sight velocity dispersion, is least sensitive to the anisotropy of stellar orbits. We verified the performance of this approach on a sample of simulated elliptical galaxies and on a sample of 15 SLACS lens galaxies at 0.01 ≤ z ≤ 0.35, which have already been analysed in Barnabè et al. by the self-consistent joint lensing and kinematic code. For massive simulated galaxies, the density slope γ is recovered with an accuracy of ˜13 per cent, unless r1 and r2 happen to be close to each other. For SLACS galaxies, we found good overall agreement with the results of Barnabè et al. with a sample-averaged slope γ = 2.1 ± 0.05. Although the two-pinch-radii approach has larger statistical uncertainties, it is much simpler and uses only few arithmetic operations with directly observable quantities.

  8. Star formation inside a galactic outflow.

    Science.gov (United States)

    Maiolino, R; Russell, H R; Fabian, A C; Carniani, S; Gallagher, R; Cazzoli, S; Arribas, S; Belfiore, F; Bellocchi, E; Colina, L; Cresci, G; Ishibashi, W; Marconi, A; Mannucci, F; Oliva, E; Sturm, E

    2017-04-13

    Recent observations have revealed massive galactic molecular outflows that may have the physical conditions (high gas densities) required to form stars. Indeed, several recent models predict that such massive outflows may ignite star formation within the outflow itself. This star-formation mode, in which stars form with high radial velocities, could contribute to the morphological evolution of galaxies, to the evolution in size and velocity dispersion of the spheroidal component of galaxies, and would contribute to the population of high-velocity stars, which could even escape the galaxy. Such star formation could provide in situ chemical enrichment of the circumgalactic and intergalactic medium (through supernova explosions of young stars on large orbits), and some models also predict it to contribute substantially to the star-formation rate observed in distant galaxies. Although there exists observational evidence for star formation triggered by outflows or jets into their host galaxy, as a consequence of gas compression, evidence for star formation occurring within galactic outflows is still missing. Here we report spectroscopic observations that unambiguously reveal star formation occurring in a galactic outflow at a redshift of 0.0448. The inferred star-formation rate in the outflow is larger than 15 solar masses per year. Star formation may also be occurring in other galactic outflows, but may have been missed by previous observations owing to the lack of adequate diagnostics.

  9. The Production of Cold Gas Within Galaxy Outflows

    Energy Technology Data Exchange (ETDEWEB)

    Scannapieco, Evan [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ, 85287-1404 (United States)

    2017-03-01

    I present a suite of three-dimensional simulations of the evolution of initially hot material ejected by starburst-driven galaxy outflows. The simulations are conducted in a comoving frame that moves with the material, tracking atomic/ionic cooling, Compton cooling, and dust cooling and destruction. Compton cooling is the most efficient of these processes, while the main role of atomic/ionic cooling is to enhance density inhomogeneities. Dust, on the other hand, has little effect on the outflow evolution, and is rapidly destroyed in all the simulations except for the case with the smallest mass flux. I use the results to construct a simple steady-state model of the observed UV/optical emission from each outflow. The velocity profiles in this case are dominated by geometric effects, and the overall luminosities are extremely strong functions of the properties of the host system, as observed in ultra-luminous infrared galaxies (ULIRGs). Furthermore the luminosities and maximum velocities in several models are consistent with emission-line observations of ULIRGs, although the velocities are significantly greater than observed in absorption-line studies. It may be that absorption line observations of galaxy outflows probe entrained cold material at small radii, while emission-line observations probe cold material condensing from the initially hot medium at larger distances.

  10. Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere: dependence on the effective ionospheric Pedersen conductivity and iogenic plasma mass outflow rate

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    2003-07-01

    Full Text Available The amplitude and spatial distribution of the coupling currents that flow between Jupiter’s ionosphere and middle magnetosphere, which enforce partial corotation on outward-flowing iogenic plasma, depend on the values of the effective Pedersen conductivity of the jovian ionosphere and the mass outflow rate of iogenic plasma. The values of these parameters are, however, very uncertain. Here we determine how the solutions for the plasma angular velocity and current components depend on these parameters over wide ranges. We consider two models of the poloidal magnetospheric magnetic field, namely the planetary dipole alone, and an empirical current sheet field based on Voyager data. Following work by Hill (2001, we obtain a complete normalized analytic solution for the dipole field, which shows in compact form how the plasma angular velocity and current components scale in space and in amplitude with the system parameters in this case. We then obtain an approximate analytic solution in similar form for a current sheet field in which the equatorial field strength varies with radial distance as a power law. A key feature of the model is that the current sheet field lines map to a narrow latitudinal strip in the ionosphere, at ≈ 15° co-latitude. The approximate current sheet solutions are compared with the results of numerical integrations using the full field model, for which a power law applies beyond ≈ 20 RJ, and are found to agree very well within their regime of applicability. A major distinction between the solutions for the dipole field and the current sheet concerns the behaviour of the field-aligned current. In the dipole model the direction of the current reverses at moderate equatorial distances, and the current system wholly closes if the model is extended to infinity in the equatorial plane and to the pole in the ionosphere. In the approximate current sheet model, however, the field-aligned current is unidirectional, flowing

  11. Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere: dependence on the effective ionospheric Pedersen conductivity and iogenic plasma mass outflow rate

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    Full Text Available The amplitude and spatial distribution of the coupling currents that flow between Jupiter’s ionosphere and middle magnetosphere, which enforce partial corotation on outward-flowing iogenic plasma, depend on the values of the effective Pedersen conductivity of the jovian ionosphere and the mass outflow rate of iogenic plasma. The values of these parameters are, however, very uncertain. Here we determine how the solutions for the plasma angular velocity and current components depend on these parameters over wide ranges. We consider two models of the poloidal magnetospheric magnetic field, namely the planetary dipole alone, and an empirical current sheet field based on Voyager data. Following work by Hill (2001, we obtain a complete normalized analytic solution for the dipole field, which shows in compact form how the plasma angular velocity and current components scale in space and in amplitude with the system parameters in this case. We then obtain an approximate analytic solution in similar form for a current sheet field in which the equatorial field strength varies with radial distance as a power law. A key feature of the model is that the current sheet field lines map to a narrow latitudinal strip in the ionosphere, at ≈ 15° co-latitude. The approximate current sheet solutions are compared with the results of numerical integrations using the full field model, for which a power law applies beyond ≈ 20 RJ, and are found to agree very well within their regime of applicability. A major distinction between the solutions for the dipole field and the current sheet concerns the behaviour of the field-aligned current. In the dipole model the direction of the current reverses at moderate equatorial distances, and the current system wholly closes if the model is extended to infinity in the equatorial plane and to the pole in the ionosphere. In the approximate current sheet model, however, the field-aligned current is unidirectional

  12. A Robust Mass Estimator for Dark Matter Subhalo Perturbations in Strong Gravitational Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Quinn E. [Department of Science, Borough of Manhattan Community College, City University of New York, New York, NY 10007 (United States); Kaplinghat, Manoj [Department of Physics and Astronomy, University of California, Irvine CA 92697 (United States); Li, Nan [Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2017-08-20

    A few dark matter substructures have recently been detected in strong gravitational lenses through their perturbations of highly magnified images. We derive a characteristic scale for lensing perturbations and show that they are significantly larger than the perturber’s Einstein radius. We show that the perturber’s projected mass enclosed within this radius, scaled by the log-slope of the host galaxy’s density profile, can be robustly inferred even if the inferred density profile and tidal radius of the perturber are biased. We demonstrate the validity of our analytic derivation using several gravitational lens simulations where the tidal radii and the inner log-slopes of the density profile of the perturbing subhalo are allowed to vary. By modeling these simulated data, we find that our mass estimator, which we call the effective subhalo lensing mass, is accurate to within about 10% or smaller in each case, whereas the inferred total subhalo mass can potentially be biased by nearly an order of magnitude. We therefore recommend that the effective subhalo lensing mass be reported in future lensing reconstructions, as this will allow for a more accurate comparison with the results of dark matter simulations.

  13. Mass evaporation rate of globular clusters in a strong tidal field

    Science.gov (United States)

    Madrid, Juan P.; Leigh, Nathan W. C.; Hurley, Jarrod R.; Giersz, Mirek

    2017-09-01

    The mass evaporation rate of globular clusters evolving in a strong Galactic tidal field is derived through the analysis of large, multimass N-body simulations. For comparison, we also study the same evaporation rates using mocca Monte Carlo models for globular cluster evolution. Our results show that the mass evaporation rate is a dynamical value, that is, far from a constant single number found in earlier analytical work and commonly used in the literature. Moreover, the evaporation rate derived with these simulations is higher than values previously published. These models also show that the value of the mass evaporation rate depends on the strength of the tidal field. We give an analytical estimate of the mass evaporation rate as a function of time and galactocentric distance ξ(RGC, t). Upon extrapolating this formula to smaller RGC values, our results provide tentative evidence for a very high ξ value at small RGC. Our results suggest that the corresponding mass-loss in the inner Galactic potential could be high and it should be accounted for when star clusters pass within it. This has direct relevance to nuclear cluster formation/growth via the infall of globular clusters through dynamical friction. As an illustrative example, we estimate how the evaporation rate increases for an ˜105 M⊙ globular cluster that decays through dynamical friction into the Galactic Centre. We discuss the findings of this work in relation to the formation of nuclear star clusters by inspiralling globular clusters.

  14. Measuring the total and baryonic mass profiles of the very massive CASSOWARY 31 strong lens

    DEFF Research Database (Denmark)

    Grillo, Claudio; Christensen, L.; Gallazzi, A.

    2013-01-01

    analysis and plasma modelling. We derive a total mass projected within the Einstein radius R-Ein = 70 kpc of (40 +/- 1) x 10(12) M-circle dot, and a central logarithmic slope of -1.7 +/- 0.2 for the total mass density. Despite a very high stellar mass and velocity dispersion of the central galaxy of (3......We investigate the total and baryonic mass distributions in deflector number 31 (CSWA 31) of the Cambridge And Sloan Survey Of Wide ARcs in the skY (CASSOWARY). We confirm spectroscopically a four-image lensing system at redshift 1.4870 with Very Large Telescope/X-shooter observations. The lensed...... images are distributed around a bright early-type galaxy at redshift 0.683, surrounded by several smaller galaxies at similar photometric redshifts. We use available optical and X-ray data to constrain the deflector total, stellar and hot gas mass through, respectively, strong lensing, stellar population...

  15. An aircraft gas chromatograph-mass spectrometer System for Organic Fast Identification Analysis (SOFIA): design, performance and a case study of Asian monsoon pollution outflow

    Science.gov (United States)

    Bourtsoukidis, Efstratios; Helleis, Frank; Tomsche, Laura; Fischer, Horst; Hofmann, Rolf; Lelieveld, Jos; Williams, Jonathan

    2017-12-01

    Volatile organic compounds (VOCs) are important for global air quality and oxidation processes in the troposphere. In addition to ground-based measurements, the chemical evolution of such species during transport can be studied by performing in situ airborne measurements. Generally, aircraft instrumentation needs to be sensitive, robust and sample at higher frequency than ground-based systems while their construction must comply with rigorous mechanical and electrical safety standards. Here, we present a new System for Organic Fast Identification Analysis (SOFIA), which is a custom-built fast gas chromatography-mass spectrometry (GC-MS) system with a time resolution of 2-3 min and the ability to quantify atmospheric mixing ratios of halocarbons (e.g. chloromethanes), hydrocarbons (e.g isoprene), oxygenated VOCs (acetone, propanal, butanone) and aromatics (e.g. benzene, toluene) from sub-ppt to ppb levels. The relatively high time resolution is the result of a novel cryogenic pre-concentration unit which rapidly cools (˜ 6 °C s-1) the sample enrichment traps to -140 °C, and a new chromatographic oven designed for rapid cooling rates (˜ 30 °C s-1) and subsequent thermal stabilization. SOFIA was installed in the High Altitude and Long Range Research Aircraft (HALO) for the Oxidation Mechanism Observations (OMO) campaign in August 2015, aimed at investigating the Asian monsoon pollution outflow in the tropical upper troposphere. In addition to a comprehensive instrument characterization we present an example monsoon plume crossing flight as a case study to demonstrate the instrument capability. Hydrocarbon, halocarbon and oxygenated VOC data from SOFIA are compared with mixing ratios of carbon monoxide (CO) and methane (CH4), used to define the pollution plume. By using excess (ExMR) and normalized excess mixing ratios (NEMRs) the pollution could be attributed to two air masses of distinctly different origin, identified by back-trajectory analysis. This work

  16. An aircraft gas chromatograph–mass spectrometer System for Organic Fast Identification Analysis (SOFIA: design, performance and a case study of Asian monsoon pollution outflow

    Directory of Open Access Journals (Sweden)

    E. Bourtsoukidis

    2017-12-01

    Full Text Available Volatile organic compounds (VOCs are important for global air quality and oxidation processes in the troposphere. In addition to ground-based measurements, the chemical evolution of such species during transport can be studied by performing in situ airborne measurements. Generally, aircraft instrumentation needs to be sensitive, robust and sample at higher frequency than ground-based systems while their construction must comply with rigorous mechanical and electrical safety standards. Here, we present a new System for Organic Fast Identification Analysis (SOFIA, which is a custom-built fast gas chromatography–mass spectrometry (GC-MS system with a time resolution of 2–3 min and the ability to quantify atmospheric mixing ratios of halocarbons (e.g. chloromethanes, hydrocarbons (e.g isoprene, oxygenated VOCs (acetone, propanal, butanone and aromatics (e.g. benzene, toluene from sub-ppt to ppb levels. The relatively high time resolution is the result of a novel cryogenic pre-concentration unit which rapidly cools (∼ 6 °C s−1 the sample enrichment traps to −140 °C, and a new chromatographic oven designed for rapid cooling rates (∼ 30 °C s−1 and subsequent thermal stabilization. SOFIA was installed in the High Altitude and Long Range Research Aircraft (HALO for the Oxidation Mechanism Observations (OMO campaign in August 2015, aimed at investigating the Asian monsoon pollution outflow in the tropical upper troposphere. In addition to a comprehensive instrument characterization we present an example monsoon plume crossing flight as a case study to demonstrate the instrument capability. Hydrocarbon, halocarbon and oxygenated VOC data from SOFIA are compared with mixing ratios of carbon monoxide (CO and methane (CH4, used to define the pollution plume. By using excess (ExMR and normalized excess mixing ratios (NEMRs the pollution could be attributed to two air masses of distinctly different origin, identified by back

  17. MAJOR CONTRIBUTOR TO AGN FEEDBACK: VLT X-SHOOTER OBSERVATIONS OF S IV BALQSO OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Borguet, Benoit C. J.; Arav, Nahum; Edmonds, Doug; Chamberlain, Carter [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Benn, Chris, E-mail: b.borguet@alumni.ulg.ac.be [Isaac Newton Group, Apartado 321, E-38700 Santa Cruz de La Palma (Spain)

    2013-01-01

    We present the most energetic BALQSO outflow measured to date, with a kinetic luminosity of at least 10{sup 46} erg s{sup -1}, which is 5% of the bolometric luminosity of this high Eddington ratio quasar. The associated mass-flow rate is 400 solar masses per year. Such kinetic luminosity and mass-flow rate should provide strong active galactic nucleus feedback effects. The outflow is located at about 300 pc from the quasar and has a velocity of roughly 8000 km s{sup -1}. Our distance and energetic measurements are based in large part on the identification and measurement of S IV and S IV* broad absorption lines (BALs). The use of this high-ionization species allows us to generalize the result to the majority of high-ionization BALQSOs that are identified by their C IV absorption. We also report the energetics of two other outflows seen in another object using the same technique. The distances of all three outflows from the central source (100-2000 pc) suggest that we observe BAL troughs much farther away from the central source than the assumed acceleration region of these outflows (0.01-0.1 pc).

  18. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation)

    2009-06-15

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh{sub 2}Si{sub 2}.

  19. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    International Nuclear Information System (INIS)

    Shaginyan, V.R.; Amusia, M.Ya.; Popov, K.G.

    2009-01-01

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh 2 Si 2 .

  20. A systematic study of mass spectra and strong decay of strange mesons

    Science.gov (United States)

    Pang, Cheng-Qun; Wang, Jun-Zhang; Liu, Xiang; Matsuki, Takayuki

    2017-12-01

    The mass spectrum of the kaon family is analyzed by the modified Godfrey-Isgur model with a color screening effect approximating the kaon as a heavy-light meson system. This analysis gives us the structure and possible assignments of the observed kaon candidates, which can be tested by comparing the theoretical results of their two-body strong decays with the experimental data. Additionally, prediction of some partial decay widths is made on the kaons still missing in experiment. This study is crucial to establishing the kaon family and searching for their higher excitations in the future.

  1. Water in star-forming regions with Herschel (WISH). V. The physical conditions in low-mass protostellar outflows revealed by multi-transition water observations

    NARCIS (Netherlands)

    Mottram, J. C.; Kristensen, L. E.; van Dishoeck, E. F.; Bruderer, S.; San José-García, I.; Karska, A.; Visser, R.; Santangelo, G.; Benz, A. O.; Bergin, E. A.; Caselli, P.; Herpin, F.; Hogerheijde, M. R.; Johnstone, D.; van Kempen, T. A.; Liseau, R.; Nisini, B.; Tafalla, M.; van der Tak, F. F. S.; Wyrowski, F.

    2014-01-01

    Context. Outflows are an important part of the star formation process as both the result of ongoing active accretion and one of the main sources of mechanical feedback on small scales. Water is the ideal tracer of these effects because it is present in high abundance for the conditions expected in

  2. Compact binary merger and kilonova: outflows from remnant disc

    Science.gov (United States)

    Yi, Tuan; Gu, Wei-Min; Liu, Tong; Kumar, Rajiv; Mu, Hui-Jun; Song, Cui-Ying

    2018-05-01

    Outflows launched from a remnant disc of compact binary merger may have essential contribution to the kilonova emission. Numerical calculations are conducted in this work to study the structure of accretion flows and outflows. By the incorporation of limited-energy advection in the hyper-accretion discs, outflows occur naturally from accretion flows due to imbalance between the viscous heating and the sum of the advective and radiative cooling. Following this spirit, we revisit the properties of the merger outflow ejecta. Our results show that around 10-3 ˜ 10-1 M⊙ of the disc mass can be launched as powerful outflows. The amount of unbound mass varies with the disc mass and the viscosity. The outflow-contributed peak luminosity is around 1040 ˜ 1041 erg s-1. Such a scenario can account for the observed kilonovae associated with short gamma-ray bursts, including the recent event AT2017gfo (GW170817).

  3. The mass limit of white dwarfs with strong magnetic fields in general relativity

    International Nuclear Information System (INIS)

    Wen De-Hua; Liu He-Lei; Zhang Xiang-Dong

    2014-01-01

    Recently, U. Das and B. Mukhopadhyay proposed that the Chandrasekhar limit of a white dwarf could reach a new high level (2.58M⊙) if a superstrong magnetic field were considered (Das U and Mukhopadhyay B 2013 Phys. Rev. Lett. 110 071102), where the structure of the strongly magnetized white dwarf (SMWD) is calculated in the framework of Newtonian theory (NT). As the SMWD has a far smaller size, in contrast with the usual expectation, we found that there is an obvious general relativistic effect (GRE) in the SMWD. For example, for the SMWD with a one Landau level system, the super-Chandrasekhar mass limit in general relativity (GR) is approximately 16.5% lower than that in NT. More interestingly, the maximal mass of the white dwarf will be first increased when the magnetic field strength keeps on increasing and reaches the maximal value M = 2.48M⊙ with B D = 391.5. Then if we further increase the magnetic fields, surprisingly, the maximal mass of the white dwarf will decrease when one takes the GRE into account. (geophysics, astronomy, and astrophysics)

  4. Separate Ways: The Mass-Metallicity Relation Does Not Strongly Correlate with Star Formation Rate in SDSS-IV MaNGA Galaxies

    Science.gov (United States)

    Barrera-Ballesteros, J. K.; Sánchez, S. F.; Heckman, T.; Blanc, G. A.; The MaNGA Team

    2017-07-01

    We present the integrated stellar mass-metallicity relation (MZR) for more than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey. The spatially resolved data allow us to determine the metallicity at the same physical scale (effective radius, R eff) using a heterogeneous set of 10 abundance calibrators. In addition to scale factors, the shape of the MZR is similar for all calibrators, consistent with those reported previously using single-fiber and integral field spectroscopy. We compare the residuals of this relation against the star formation rate (SFR) and specific SFR (sSFR). We do not find a strong secondary relation of the MZR with either SFR or sSFR for any of the calibrators, in contrast with previous single-fiber spectroscopic studies. Our results agree with a scenario in which metal enrichment happens at local scales, with global outflows playing a secondary role in shaping the chemistry of galaxies and cold-gas inflows regulating the stellar formation.

  5. Outflow Propagation in Collapsars: Collimated Jets And Expanding Outflows

    Energy Technology Data Exchange (ETDEWEB)

    Mizuta, A.; /Garching, Max Planck Inst.; Yamasaki, T.; /Kyoto U., Yukawa Inst., Kyoto; Nagataki, S.; Mineshige, S.; /Kyoto U., Yukawa Inst., Kyoto /KIPAC, Menlo Park

    2007-06-08

    We investigate the outflow propagation in the collapsar in the context of gamma-ray bursts (GRBs) with 2D relativistic hydrodynamic simulations. We vary the specific internal energy and bulk Lorentz factor of the injected outflow from non-relativistic regime to relativistic one, fixing the power of the outflow to be 10{sup 51}erg s{sup -1}. We observed the collimated outflow, when the Lorentz factor of the injected outflow is roughly greater than 2. To the contrary, when the velocity of the injected outflow is slower, the expanding outflow is observed. The transition from collimated jet to expanding outflow continuously occurs by decreasing the injected velocity. Different features of the dynamics of the outflows would cause the difference between the GRBs and similar phenomena, such as, X-ray flashes.

  6. Evolution of the outflow activity of protostars

    International Nuclear Information System (INIS)

    Bontemps, Sylvain

    1996-01-01

    After a first part describing the formation of low-mass stars (sites of stellar formation, protostellar evolution) and matter outflows from young objects (molecular flows and their origin, optical and radio jets, outflow mechanisms), this research thesis discusses the evolution of molecular flows by reprinting a published article (Evolution of outflow activity around low-mass embedded young stellar objects), and by outlining some remaining issues (differences between clouds of stellar formation, morphological evolution of molecular flows). The author then discusses the continuous radio centimetre emission: origin, systematic search for Class 0 objects by using the VLA (Very Large Array radio interferometer), presentation of a new Class 0 protostar (HH24MMS). The author reports the study of H 2 emission in the infrared: generalities on protostellar shocks, infrared jet by HH24MMS, H 2 emission at 10 microns by using the ISOCAM camera [fr

  7. Molecular Outflows In the R Coronae Australis Region

    Science.gov (United States)

    Knee, Lewis

    2017-06-01

    The low mass star forming region associated with the Corona Australis cloud hosts an embedded culture of young stellar objects (YSOs), many of which drive molecular outflows associated with shock-excited (HH-objct) emission-line objects. CO(1-0) mapping from the SEST and CO(3-2) mapping from JCMT are presented and analyzed in the context of identifying outflows and associating them with known YSOs and HH-objects. This region hosts far more molecular outflows than previously thought and resembles in some respects the "burst" of outflow activity associated with the star forming region NGC1333.

  8. Lean Mass Appears to Be More Strongly Associated with Bone Health than Fat Mass in Urban Black South African Women.

    Science.gov (United States)

    Sotunde, O F; Kruger, H S; Wright, H H; Havemann-Nel, L; Kruger, I M; Wentzel-Viljoen, E; Kruger, A; Tieland, M

    2015-06-01

    To examine the association between body composition (fat mass, lean mass and body mass index, BMI) and bone health (bone mineral density, BMD and fracture risk) in urban black South African women. A cross sectional study examining associations between body composition, dietary intake (food frequency questionnaire), habitual physical activity (Activity energy expenditure (AEE) measured using an accelerometer with combined heart rate monitor and physical activity questionnaire) and bone health (BMD using dual-energy X ray absorptiometry, DXA and fracture risk). Urban community dwellers from Ikageng in the North-West Province of South Africa. One hundred and eighty nine (189) healthy postmenopausal women aged ≥43 years. Fat mass and lean mass were significantly associated with BMD and fracture risk when adjusted for potential confounders. However, lean mass and not fat mass remained significantly associated with femoral neck BMD (β = 0.49, p South African women. Our finding suggests that increasing lean mass rather than fat mass is beneficial to bone health. Our study emphasises the importance of positive lifestyle changes, intake of calcium from dairy and adequate weight to maintain and improve bone health of postmenopausal women.

  9. Measuring the temporal evolution of aerosol composition in a remote marine environment influenced by Saharan dust outflow using a new single particle mass spectrometer.

    Science.gov (United States)

    Marsden, Nicholas; Williams, Paul; Flynn, Michael; Taylor, Jonathan; Liu, Dantong; Allan, James; Coe, Hugh

    2016-04-01

    Refractory material constitutes a significant fraction of the atmospheric aerosol burden and has a strong influence on climate through the direct radiative effect and aerosol-cloud interactions, particularly in cold and mixed phase clouds. Composition of refractory aerosols is traditionally measured using off-line analytical techniques such as filter analyses. However, when using off-line techniques the temporal evolution of the data set is lost, meaning the measurements are difficult to relate to atmospheric processes. Recently, single particle mass spectrometry (SPMS) has proven a useful tool for the on-line study of refractory aerosols with the ability to probe size resolved chemical composition with high temporal resolution on a particle by particle basis. A new Laser Ablation Aerosol Time-of-Flight (LAAP-TOF) SPMS instrument with a modified optical detection system was deployed for ground based measurements at Praia, Cape Verde during the Ice in Cloud - Dust (ICE-D) multi-platform campaign in August 2015. A primary aim of the project was to evaluate the impact of Saharan dust on ice nucleation in mixed phase clouds. The instrument was operated over a 16 day period in which several hundred thousand single particle mass spectra were obtained from air masses with back trajectories traversing the Mid-Atlantic, Sahara Desert and West Africa. The data presented indicate external mixtures of sea salt and silicate mineral dust internally mixed with secondary species that are consistent with long range transport to a remote marine environment. The composition and size distributions measured with the LAAP-TOF are compared with measurements from an aerodynamic particle sizer (APS), Single Particle Soot Photometer (SP2), and data from SEM-EDX analysis of filter samples. The particle number fraction identified as silicate mineral from the mass spectra correlates with a fraction of the incandescent particles measured with the SP2. We discuss the suitability of the modified

  10. The origin of fast molecular outflows in quasars: molecule formation in AGN-driven galactic winds

    Science.gov (United States)

    Richings, Alexander J.; Faucher-Giguère, Claude-André

    2018-03-01

    We explore the origin of fast molecular outflows that have been observed in active galactic nuclei (AGNs). Previous numerical studies have shown that it is difficult to create such an outflow by accelerating existing molecular clouds in the host galaxy, as the clouds will be destroyed before they can reach the high velocities that are observed. In this work, we consider an alternative scenario where molecules form in situ within the AGN outflow. We present a series of hydro-chemical simulations of an isotropic AGN wind interacting with a uniform medium. We follow the time-dependent chemistry of 157 species, including 20 molecules, to determine whether molecules can form rapidly enough to produce the observed molecular outflows. We find H2 outflow rates up to 140 M_{⊙} yr^{-1}, which is sensitive to density, AGN luminosity, and metallicity. We compute emission and absorption lines of CO, OH, and warm (a few hundred K) H2 from the simulations in post-processing. The CO-derived outflow rates and OH absorption strengths at solar metallicity agree with observations, although the maximum line-of-sight velocities from the model CO spectra are a factor ≈2 lower than is observed. We derive a CO (1-0) to H2 conversion factor of α _{CO (1-0)} = 0.13 M_{⊙} (K km s^{-1} pc2)^{-1}, 6 times lower than is commonly assumed in observations of such systems. We find strong emission from the mid-infrared lines of H2. The mass of H2 traced by this infrared emission is within a few per cent of the total H2 mass. This H2 emission may be observable by James Webb Space Telescope.

  11. Polytropic transonic galactic outflows in a dark matter halo with a central black hole

    Science.gov (United States)

    Igarashi, Asuka; Mori, Masao; Nitta, Shin-ya

    2017-09-01

    Polytropic transonic solutions of spherically symmetric and steady galactic winds in the gravitational potential of a dark matter halo (DMH) with a supermassive black hole (SMBH) are studied. The solutions are classified in terms of their topological features, and the gravitational potential of the SMBH adds a new branch to the transonic solutions generated by the gravity of the DMH. The topological types of the transonic solutions depend on the mass distribution, the amount of supplied energy, the polytropic index γ and the slope α of the DMH mass distribution. When α becomes larger than a critical value αc, the transonic solution types change dramatically. Further, our model predicts that it is possible for a slowly accelerating outflow to exist, even in quiescent galaxies with small γ. This slowly accelerating outflow differs from those considered in many of the previous studies focusing on supersonic outflows in active star-forming galaxies. In addition, our model indicates that outflows in active star-forming galaxies have only one transonic point in the inner region (˜0.01 kpc). The locus of this transonic point does not strongly depend on γ. We apply the polytropic model incorporating mass flux supplied by stellar components to the Sombrero galaxy, and conclude that it can reproduce the observed gas density and the temperature distribution well. This result differs significantly from the isothermal model, which requires an unrealistically large mass flux. Thus, we conclude that the polytropic model is more realistic than the isothermal model, and that the Sombrero galaxy can have a slowly accelerating outflow.

  12. Sub-arcsecond imaging of Arp 299-A at 150 MHz with LOFAR: Evidence for a starburst-driven outflow

    Science.gov (United States)

    Ramírez-Olivencia, N.; Varenius, E.; Pérez-Torres, M.; Alberdi, A.; Pérez, E.; Alonso-Herrero, A.; Deller, A.; Herrero-Illana, R.; Moldón, J.; Barcos-Muñoz, L.; Martí-Vidal, I.

    2018-03-01

    We report on the first sub-arcsecond (0.44 × 0.41 arcsec2) angular resolution image at 150 MHz of the A-nucleus in the luminous infrared galaxy Arp 299, from International Low Frequency Array (LOFAR) Telescope observations. The most remarkable finding is that of an intriguing two-sided, filamentary structure emanating from the A-nucleus, which we interpret as an outflow that extends up to at least 14 arcsec from the A-nucleus in the N-S direction ( ≈5 kpc deprojected size) and accounts for almost 40% of the extended emission of the entire galaxy system. We also discuss HST/NICMOS [FeII] 1.64 μm and H2 2.12 μm images of Arp 299-A, which show similar features to those unveiled by our 150 MHz LOFAR observations, providing strong morphological support for the outflow scenario. Finally, we discuss unpublished Na I D spectra that confirm the outflow nature of this structure. From energetic arguments, we rule out the low-luminosity active galactic nucleus in Arp 299-A as a driver for the outflow. On the contrary, the powerful, compact starburst in the central regions of Arp 299-A provides plenty of mechanical energy to sustain an outflow, and we conclude that the intense supernova (SN) activity in the nuclear region of Arp 299-A is driving the observed outflow. We estimate that the starburst wind can support a mass-outflow rate in the range (11-63 M⊙ yr-1) at speeds of up to 370-890 km s-1, and is relatively young, with an estimated kinematic age of 3-7 Myr. Those results open an avenue to the use of low-frequency (150 MHz), sub-arcsecond imaging with LOFAR to detect outflows in the central regions of local luminous infrared galaxies.

  13. Active galactic nucleus outflows in galaxy discs

    Science.gov (United States)

    Hartwig, Tilman; Volonteri, Marta; Dashyan, Gohar

    2018-05-01

    Galactic outflows, driven by active galactic nuclei (AGNs), play a crucial role in galaxy formation and in the self-regulated growth of supermassive black holes (BHs). AGN feedback couples to and affects gas, rather than stars, and in many, if not most, gas-rich galaxies cold gas is rotationally supported and settles in a disc. We present a 2D analytical model for AGN-driven outflows in a gaseous disc and demonstrate the main improvements, compared to existing 1D solutions. We find significant differences for the outflow dynamics and wind efficiency. The outflow is energy-driven due to inefficient cooling up to a certain AGN luminosity (˜1043 erg s-1 in our fiducial model), above which the outflow remains momentum-driven in the disc up to galactic scales. We reproduce results of 3D simulations that gas is preferentially ejected perpendicular to the disc and find that the fraction of ejected interstellar medium is lower than in 1D models. The recovery time of gas in the disc, defined as the free-fall time from the radius to which the AGN pushes the ISM at most, is remarkably short, of the order 1 Myr. This indicates that AGN-driven winds cannot suppress BH growth for long. Without the inclusion of supernova feedback, we find a scaling of the BH mass with the halo velocity dispersion of MBH ∝ σ4.8.

  14. Histologically Measured Cardiomyocyte Hypertrophy Correlates with Body Height as Strongly as with Body Mass Index

    Directory of Open Access Journals (Sweden)

    Richard E. Tracy

    2011-01-01

    Full Text Available Cardiac myocytes are presumed to enlarge with left ventricular hypertrophy (LVH. This study correlates histologically measured myocytes with lean and fat body mass. Cases of LVH without coronary heart disease and normal controls came from forensic autopsies. The cross-sectional widths of myocytes in H&E-stained paraffin sections followed log normal distributions almost to perfection in all 104 specimens, with constant coefficient of variation across the full range of ventricular weight, as expected if myocytes of all sizes contribute proportionately to hypertrophy. Myocyte sizes increased with height. By regression analysis, height2.7 as a proxy for lean body mass and body mass index (BMI as a proxy for fat body mass, exerted equal effects in the multiple correlation with myocyte volume, and the equation rejected race and sex. In summary, myocyte sizes, as indexes of LVH, suggest that lean and fat body mass may contribute equally.

  15. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    International Nuclear Information System (INIS)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-01-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  16. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    Energy Technology Data Exchange (ETDEWEB)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei, E-mail: gbmou@ustc.edu.cn [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei 230026 (China)

    2017-07-20

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  17. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    Science.gov (United States)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-07-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  18. An algorithm for high order strong coupling expansions: The mass gap in 3d pure Z2 lattice gauge theory

    International Nuclear Information System (INIS)

    Decker, K.; Hamburg Univ.

    1985-12-01

    An efficient description of all clusters contributing to the strong coupling expansion of the mass gap in three-dimensional pure Z 2 lattice gauge theory is presented. This description is correct to all orders in the strong coupling expansion and is chosen in such a way that it remains valid in four dimensions for gauge group Z 2 . Relying on this description an algorithm has been constructed which generates and processes all the contributing graphs to the exact strong coupling expansion of the mass gap in the three-dimensional model in a fully automatic fashion. A major component of this algorithm can also be used to generate exact strong coupling expansions for the free energy logZ. The algorithm is correct to any order; thus the order of these expansions is only limited by the available computing power. The presentation of the algorithm is such that it can serve as a guide-line for the construction of a generalized one which would also generate exact strong coupling expansions for the masses of low-lying excited states of four-dimensional pure Yang-Mills theories. (orig.)

  19. MILLIMETER MULTIPLICITY IN DR21(OH): OUTFLOWS, MOLECULAR CORES, AND ENVELOPES

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Luis A.; Loinard, Laurent; Rodriguez, Luis F.; Galvan-Madrid, R. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Morelia 58090 (Mexico); Su, Y.-N. [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Menten, Karl M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Patel, Nimesh [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-01-10

    We present sensitive high angular resolution ({approx}1'') millimeter continuum and line observations from the massive star-forming region DR21(OH) located in the Cygnus X molecular cloud. Within the well-known dusty MM1-2 molecular cores, we report the detection of a new cluster of about 10 compact continuum millimeter sources with masses between 5 and 24 M{sub Sun }, and sizes of a few thousands of astronomical units. These objects are likely to be large dusty envelopes surrounding massive protostars, some of them most probably driving several of the outflows that emanate from this region. Additionally, we report the detection of strong millimeter emission of formaldehyde (H{sub 2}CO) and methanol (CH{sub 3}OH) near 218 GHz as well as compact emission from the typical outflow tracers carbon monoxide and silicon monoxide (CO and SiO) toward this massive star-forming region. The H{sub 2}CO and CH{sub 3}OH emission is luminous ({approx}10{sup -4} L{sub Sun }), well resolved, and found along the collimated methanol maser outflow first identified at centimeter wavelengths and in the sources SMA6 and SMA7. Our observations suggest that this maser outflow might be energized by a millimeter source called SMA4 located in the MM2 dusty core. The CO and SiO emission traces some other collimated outflows that emanate from MM1-2 cores, and are not related with the low-velocity maser outflow.

  20. Atmospheric pollutant outflow from southern Asia: a review

    Directory of Open Access Journals (Sweden)

    M. G. Lawrence

    2010-11-01

    Full Text Available Southern Asia, extending from Pakistan and Afghanistan to Indonesia and Papua New Guinea, is one of the most heavily populated regions of the world. Biofuel and biomass burning play a disproportionately large role in the emissions of most key pollutant gases and aerosols there, in contrast to much of the rest of the Northern Hemisphere, where fossil fuel burning and industrial processes tend to dominate. This results in polluted air masses which are enriched in carbon-containing aerosols, carbon monoxide, and hydrocarbons. The outflow and long-distance transport of these polluted air masses is characterized by three distinct seasonal circulation patterns: the winter monsoon, the summer monsoon, and the monsoon transition periods. During winter, the near-surface flow is mostly northeasterly, and the regional pollution forms a thick haze layer in the lower troposphere which spreads out over millions of square km between southern Asia and the Intertropical Convergence Zone (ITCZ, located several degrees south of the equator over the Indian Ocean during this period. During summer, the heavy monsoon rains effectively remove soluble gases and aerosols. Less soluble species, on the other hand, are lifted to the upper troposphere in deep convective clouds, and are then transported away from the region by strong upper tropospheric winds, particularly towards northern Africa and the Mediterranean in the tropical easterly jet. Part of the pollution can reach the tropical tropopause layer, the gateway to the stratosphere. During the monsoon transition periods, the flow across the Indian Ocean is primarily zonal, and strong pollution plumes originating from both southeastern Asia and from Africa spread across the central Indian Ocean. This paper provides a review of the current state of knowledge based on the many observational and modeling studies over the last decades that have examined the southern Asian atmospheric pollutant outflow and its large scale

  1. Atmospheric pollutant outflow from southern Asia: a review

    Science.gov (United States)

    Lawrence, M. G.; Lelieveld, J.

    2010-11-01

    Southern Asia, extending from Pakistan and Afghanistan to Indonesia and Papua New Guinea, is one of the most heavily populated regions of the world. Biofuel and biomass burning play a disproportionately large role in the emissions of most key pollutant gases and aerosols there, in contrast to much of the rest of the Northern Hemisphere, where fossil fuel burning and industrial processes tend to dominate. This results in polluted air masses which are enriched in carbon-containing aerosols, carbon monoxide, and hydrocarbons. The outflow and long-distance transport of these polluted air masses is characterized by three distinct seasonal circulation patterns: the winter monsoon, the summer monsoon, and the monsoon transition periods. During winter, the near-surface flow is mostly northeasterly, and the regional pollution forms a thick haze layer in the lower troposphere which spreads out over millions of square km between southern Asia and the Intertropical Convergence Zone (ITCZ), located several degrees south of the equator over the Indian Ocean during this period. During summer, the heavy monsoon rains effectively remove soluble gases and aerosols. Less soluble species, on the other hand, are lifted to the upper troposphere in deep convective clouds, and are then transported away from the region by strong upper tropospheric winds, particularly towards northern Africa and the Mediterranean in the tropical easterly jet. Part of the pollution can reach the tropical tropopause layer, the gateway to the stratosphere. During the monsoon transition periods, the flow across the Indian Ocean is primarily zonal, and strong pollution plumes originating from both southeastern Asia and from Africa spread across the central Indian Ocean. This paper provides a review of the current state of knowledge based on the many observational and modeling studies over the last decades that have examined the southern Asian atmospheric pollutant outflow and its large scale effects. An outlook

  2. Alignment between Protostellar Outflows and Filamentary Structure

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Ian W.; Dunham, Michael M.; Myers, Philip C.; Pokhrel, Riwaj; Sadavoy, Sarah I.; Lee, Katherine I.; Goodman, Alyssa A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Vorobyov, Eduard I. [Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna, A-1060 (Austria); Tobin, John J. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Pineda, Jaime E. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching (Germany); Offner, Stella S. R. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Kristensen, Lars E. [Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K (Denmark); Jørgensen, Jes K. [Niels Bohr Institute and Center for Star and Planet Formation, Copenhagen University, DK-1350 Copenhagen K. (Denmark); Bourke, Tyler L. [SKA Organization, Jodrell Bank Observatory, Lower Withington, Macclesfield, Cheshire SK11 9DL (United Kingdom); Arce, Héctor G. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Plunkett, Adele L., E-mail: ian.stephens@cfa.harvard.edu [European Southern Observatory, Av. Alonso de Cordova 3107, Vitacura, Santiago de Chile (Chile)

    2017-09-01

    We present new Submillimeter Array (SMA) observations of CO(2–1) outflows toward young, embedded protostars in the Perseus molecular cloud as part of the Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey. For 57 Perseus protostars, we characterize the orientation of the outflow angles and compare them with the orientation of the local filaments as derived from Herschel observations. We find that the relative angles between outflows and filaments are inconsistent with purely parallel or purely perpendicular distributions. Instead, the observed distribution of outflow-filament angles are more consistent with either randomly aligned angles or a mix of projected parallel and perpendicular angles. A mix of parallel and perpendicular angles requires perpendicular alignment to be more common by a factor of ∼3. Our results show that the observed distributions probably hold regardless of the protostar’s multiplicity, age, or the host core’s opacity. These observations indicate that the angular momentum axis of a protostar may be independent of the large-scale structure. We discuss the significance of independent protostellar rotation axes in the general picture of filament-based star formation.

  3. Hot Accretion onto Black Holes with Outflow

    Science.gov (United States)

    Park, Myeong-Gu; Han, Du-Hwan

    2018-01-01

    Classic Bondi accretion flow can be generalized to rotating viscous accretion flow. Study of hot accretion flow onto black holes show that its physical charateristics change from Bondi-like for small gas angular momentum to disk-like for Keperian gas angular momentum. Especially, the mass accretion rate divided by the Bondi accretion rate is proportional to the viscosity parameter alpha and inversely proportional to the gas angular momentum divided by the Keplerian angular momentum at the Bondi radius for gas angular momentum comparable to the Keplerian value. The possible presence of outflow will increase the mass inflow rate at the Bondi radius but decrease the mass accretion rate across the black hole horizon by many orders of magnitude. This implies that the growth history of supermassive black holes and their coevolution with host galaxies will be dramatically changed when the accreted gas has angular momentum or develops an outflow.

  4. Hot Accretion onto Black Holes with Outflow

    Directory of Open Access Journals (Sweden)

    Park Myeong-Gu

    2018-01-01

    Full Text Available Classic Bondi accretion flow can be generalized to rotating viscous accretion flow. Study of hot accretion flow onto black holes show that its physical charateristics change from Bondi-like for small gas angular momentum to disk-like for Keperian gas angular momentum. Especially, the mass accretion rate divided by the Bondi accretion rate is proportional to the viscosity parameter alpha and inversely proportional to the gas angular momentum divided by the Keplerian angular momentum at the Bondi radius for gas angular momentum comparable to the Keplerian value. The possible presence of outflow will increase the mass inflow rate at the Bondi radius but decrease the mass accretion rate across the black hole horizon by many orders of magnitude. This implies that the growth history of supermassive black holes and their coevolution with host galaxies will be dramatically changed when the accreted gas has angular momentum or develops an outflow.

  5. Ionospheric sources for molecular ion outflow

    Science.gov (United States)

    Zettergren, M. D.; Peterson, W. K.; Blelly, P. F.; Alcayde, D.; Semeter, J. L.

    2012-12-01

    Mass-resolved satellite observations have established the presence of molecular ions in the low-altitude magnetosphere, outer magnetosphere, and ring current. Associated molecular outflows originate from the auroral zone F-region ionosphere and, while normally several orders of magnitude less intense than the well-known O+ outflow, are perhaps more closely tied to intense geomagnetic disturbances. Molecular outflow is also fundamentally different from O+ outflow, since molecular ions must first be generated in large quantities in the F-region, and then are subject to very short recombination lifetimes as they escape. Owing to observational difficulties, very little detailed information exists on the generation, energization, and upward transport of molecular ions. Furthermore, the basic geographic and geomagnetic activity dependence of the ionospheric source and higher altitude outflow are only loosely constrained. This research synthesizes both observations and models to gain a better understanding of molecular ion generation and upflow, and the basic characteristics of the ionospheric molecular source during geomagnetic storms. To illustrate ionospheric dynamics associated with published satellite observations of molecular upflow, a 2D ionospheric model is driven by boundary conditions consistent with observed field-aligned currents. These simulations provide detailed information about expected species-dependent ion densities, temperatures, fluxes, and associated transients. Similar model results are also compared against PFISR radar estimates of molecular ions generated by auroral arc activity. A detailed case study of the 24-25 Sept. 1998 geomagnetic storm is presented in which the EISCAT ESR and Tromso radars suggested enhancements in F-region molecular ions and Polar satellite simultaneously observed moleculars in the magnetosphere. Finally, data from Sondrestrom and EISCAT radars during multiple storms are combined in an attempt to build a statistical

  6. Characterization of molecular outflows in the substellar domain

    International Nuclear Information System (INIS)

    Phan-Bao, Ngoc; Dang-Duc, Cuong; Lee, Chin-Fei; Ho, Paul T. P.; Li, Di

    2014-01-01

    We report here our latest search for molecular outflows from young brown dwarfs and very low-mass stars in nearby star-forming regions. We have observed three sources in Taurus with the Submillimeter Array and the Combined Array for Research in Millimeter-wave Astronomy at 230 GHz frequency to search for CO J = 2 → 1 outflows. We obtain a tentative detection of a redshifted and extended gas lobe at about 10 arcsec from the source GM Tau, a young brown dwarf in Taurus with an estimated mass of 73 M J , which is right below the hydrogen-burning limit. No blueshifted emission around the brown dwarf position is detected. The redshifted gas lobe that is elongated in the northeast direction suggests a possible bipolar outflow from the source with a position angle of about 36°. Assuming that the redshifted emission is outflow emission from GM Tau, we then estimate a molecular outflow mass in the range from 1.9 × 10 –6 M ☉ to 2.9 × 10 –5 M ☉ and an outflow mass-loss rate from 2.7 × 10 –9 M ☉ yr –1 to 4.1 × 10 –8 M ☉ yr –1 . These values are comparable to those we have observed in the young brown dwarf ISO-Oph 102 of 60 M J in ρ Ophiuchi and the very low-mass star MHO 5 of 90 M J in Taurus. Our results suggest that the outflow process in very low-mass objects is episodic with a duration of a few thousand years and the outflow rate of active episodes does not significantly change for different stages of the formation process of very low-mass objects. This may provide us with important implications that clarify the formation process of brown dwarfs.

  7. Characterization of molecular outflows in the substellar domain

    Energy Technology Data Exchange (ETDEWEB)

    Phan-Bao, Ngoc; Dang-Duc, Cuong [Department of Physics, International University-Vietnam National University HCM, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City (Viet Nam); Lee, Chin-Fei; Ho, Paul T. P. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Di, E-mail: pbngoc@hcmiu.edu.vn, E-mail: pbngoc@asiaa.sinica.edu.tw [National Astronomical Observatories, Chinese Academy of Science, Chaoyang District Datun Rd A20, Beijing (China)

    2014-11-01

    We report here our latest search for molecular outflows from young brown dwarfs and very low-mass stars in nearby star-forming regions. We have observed three sources in Taurus with the Submillimeter Array and the Combined Array for Research in Millimeter-wave Astronomy at 230 GHz frequency to search for CO J = 2 → 1 outflows. We obtain a tentative detection of a redshifted and extended gas lobe at about 10 arcsec from the source GM Tau, a young brown dwarf in Taurus with an estimated mass of 73 M {sub J}, which is right below the hydrogen-burning limit. No blueshifted emission around the brown dwarf position is detected. The redshifted gas lobe that is elongated in the northeast direction suggests a possible bipolar outflow from the source with a position angle of about 36°. Assuming that the redshifted emission is outflow emission from GM Tau, we then estimate a molecular outflow mass in the range from 1.9 × 10{sup –6} M {sub ☉} to 2.9 × 10{sup –5} M {sub ☉} and an outflow mass-loss rate from 2.7 × 10{sup –9} M {sub ☉} yr{sup –1} to 4.1 × 10{sup –8} M {sub ☉} yr{sup –1}. These values are comparable to those we have observed in the young brown dwarf ISO-Oph 102 of 60 M {sub J} in ρ Ophiuchi and the very low-mass star MHO 5 of 90 M {sub J} in Taurus. Our results suggest that the outflow process in very low-mass objects is episodic with a duration of a few thousand years and the outflow rate of active episodes does not significantly change for different stages of the formation process of very low-mass objects. This may provide us with important implications that clarify the formation process of brown dwarfs.

  8. Sakata Memorial KMI Workshop on Origin of Mass and Strong Coupling Gauge Theories

    CERN Document Server

    ‎Maskawa, Toshihide; Nojiri, Shin'ichi; Tanabashi, Masaharu; Yamawaki, Koichi

    2018-01-01

    This volume contains contributions to the workshop, which was largely focused on the strong coupling gauge theories in search for theories beyond the standard model, particularly, the LHC experiments and lattice studies of conformal fixed point. The main topics include walking technicolor and the role of conformality in view of the 125 GeV Higgs as a light composite Higgs (technidilaton, and other composite Higgs, etc.). Nonperturbative studies like lattice simulations and stringy/holographic approaches are extensively discussed in close relation to the phenomenological studies. After the discovery of 125 GeV Higgs at LHC, the central issue of particle physics is now to reveal the dynamical origin of the Higgs itself. One of the possibilities would be the composite Higgs based on the strong coupling gauge theory in the TeV region, such as the technidilaton predicted in walking technicolor with infrared conformality. The volume contains, among others, many of the latest important reports on walking technicolo...

  9. Strong Coupling and Bounds on the Spin-2 Mass in Massive Gravity

    Science.gov (United States)

    Burrage, Clare; Kaloper, Nemanja; Padilla, Antonio

    2013-07-01

    The de Rham-Gabadadze-Tolley theory of a single massive spin-2 field has a cutoff much below its Planck scale because the extra modes from the massive spin-2 multiplet involve higher derivative self-interactions, controlled by a scale convoluted from its mass. Generically, these correct the propagator by environmental effects. The resulting effective cutoff depends on the environmental parameters and the spin-2 “graviton” mass. Requiring the theory to be perturbative down to O(1)mm, we derive bounds on the mass, corresponding to ≳O(1)meV for the generic case, assuming the coupling to be given by the standard Newton’s constant, and somewhat weaker bounds in cases with fine-tuning. Thus, the theory of a single massive spin-2 can really only be viewed as a theory describing the full nonlinear propagation of a massive spin-2 field on a fixed background and not as an approximation to general relativity.

  10. Total molecular gas masses of Planck - Herschel selected strongly lensed hyper luminous infrared galaxies

    Science.gov (United States)

    Harrington, K. C.; Yun, M. S.; Magnelli, B.; Frayer, D. T.; Karim, A.; Weiß, A.; Riechers, D.; Jiménez-Andrade, E. F.; Berman, D.; Lowenthal, J.; Bertoldi, F.

    2018-03-01

    We report the detection of CO(1-0) line emission from seven Planck and Herschel selected hyper luminous ({L_{IR (8-1000{μ m})} > 10^{13} L_{⊙}) infrared galaxies with the Green Bank Telescope (GBT). CO(1-0) measurements are a vital tool to trace the bulk molecular gas mass across all redshifts. Our results place tight constraints on the total gas content of these most apparently luminous high-z star-forming galaxies (apparent IR luminosities of LIR > 1013 - 14 L⊙), while we confirm their predetermined redshifts measured using the Large Millimeter Telescope, LMT (zCO = 1.33-3.26). The CO(1-0) lines show similar profiles as compared to Jup = 2-4 transitions previously observed with the LMT. We report enhanced infrared to CO line luminosity ratios of = 110 ± 22 L_{⊙} (K km s^{-1} pc^{-2})^{-1} compared to normal star-forming galaxies, yet similar to those of well-studied IR-luminous galaxies at high-z. We find average brightness temperature ratios of 〈 r21〉 = 0.93 (2 sources), 〈 r31〉 = 0.34 (5 sources), and 〈 r41〉 = 0.18 (1 source). The r31 and r41 values are roughly half the average values for SMGs. We estimate the total gas mass content as {μ M_{H2} = (0.9-27.2) × 10^{11} (α _CO/0.8) M_{⊙}, where μ is the magnification factor and αCO is the CO line luminosity to molecular hydrogen gas mass conversion factor. The rapid gas depletion times, = 80} Myr, reveal vigorous starburst activity, and contrast the Gyr depletion time-scales observed in local, normal star-forming galaxies.

  11. Computation with Inverse States in a Finite Field FPα: The Muon Neutrino Mass, the Unified Strong-Electroweak Coupling Constant, and the Higgs Mass

    International Nuclear Information System (INIS)

    Dai, Yang; Borisov, Alexey B.; Boyer, Keith; Rhodes, Charles K.

    2000-01-01

    The construction of inverse states in a finite field F P α enables the organization of the mass scale with fundamental octets in an eight-dimensional index space that identifies particle states with residue class designations. Conformance with both CPT invariance and the concept of supersymmetry follows as a direct consequence of this formulation. Based on two parameters (P α and g α ) that are anchored on a concordance of physical data, this treatment leads to (1) a prospective mass for the muon neutrino of approximately27.68 meV, (2) a value of the unified strong-electroweak coupling constant α* = (34.26) -1 that is physically defined by the ratio of the electron neutrino and muon neutrino masses, and (3) a see-saw congruence connecting the Higgs, the electron neutrino, and the muon neutrino masses. Specific evaluation of the masses of the corresponding supersymmetric Higgs pair reveals that both particles are superheavy (> 10 18 GeV). No renormalization of the Higgs masses is introduced, since the calculational procedure yielding their magnitudes is intrinsically divergence-free. Further, the Higgs fulfills its conjectured role through the see-saw relation as the particle defining the origin of all particle masses, since the electron and muon neutrino systems, together with their supersymmetric partners, are the generators of the mass scale and establish the corresponding index space. Finally, since the computation of the Higgs masses is entirely determined by the modulus of the field P α , which is fully defined by the large-scale parameters of the universe through the value of the universal gravitational constant G and the requirement for perfect flatness (Omega = 1.0), the see-saw congruence fuses the concepts of mass and space and creates a new unified archetype

  12. Limits on cosmological variation of strong interaction and quark masses from big bang nucleosynthesis, cosmic, laboratory and Oklo data

    International Nuclear Information System (INIS)

    Flambaum, V.V.; Shuryak, E.V.

    2002-01-01

    Recent data on the cosmological variation of the electromagnetic fine structure constant from distant quasar (QSO) absorption spectra have inspired a more general discussion of the possible variation of other constants. We discuss the variation of strong scale and quark masses. We derive limits on their relative change from (i) primordial big bang nucleosynthesis, (ii) the Oklo natural nuclear reactor, (iii) quasar absorption spectra, and (iv) laboratory measurements of hyperfine intervals

  13. The inner mass power spectrum of galaxies using strong gravitational lensing: beyond linear approximation

    Science.gov (United States)

    Chatterjee, Saikat; Koopmans, Léon V. E.

    2018-02-01

    In the last decade, the detection of individual massive dark matter sub-haloes has been possible using potential correction formalism in strong gravitational lens imaging. Here, we propose a statistical formalism to relate strong gravitational lens surface brightness anomalies to the lens potential fluctuations arising from dark matter distribution in the lens galaxy. We consider these fluctuations as a Gaussian random field in addition to the unperturbed smooth lens model. This is very similar to weak lensing formalism and we show that in this way we can measure the power spectrum of these perturbations to the potential. We test the method by applying it to simulated mock lenses of different geometries and by performing an MCMC analysis of the theoretical power spectra. This method can measure density fluctuations in early type galaxies on scales of 1-10 kpc at typical rms levels of a per cent, using a single lens system observed with the Hubble Space Telescope with typical signal-to-noise ratios obtained in a single orbit.

  14. PROTOSTELLAR OUTFLOW EVOLUTION IN TURBULENT ENVIRONMENTS

    International Nuclear Information System (INIS)

    Cunningham, Andrew J.; Frank, Adam; Carroll, Jonathan; Blackman, Eric G.; Quillen, Alice C.

    2009-01-01

    The link between turbulence in star-forming environments and protostellar jets remains controversial. To explore issues of turbulence and fossil cavities driven by young stellar outflows, we present a series of numerical simulations tracking the evolution of transient protostellar jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. We demonstrate how turbulence will lead to strong modifications in jet morphology. More importantly, we demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Our simulations support a scenario in which the directed energy/momentum associated with cavities is randomized as the cavities are disrupted by dynamical instabilities seeded by the ambient turbulence. Consideration of the energy power spectra of the simulations reveals that the disruption of the cavities powers an energy cascade consistent with Burgers'-type turbulence and produces a driving scale length associated with the cavity propagation length. We conclude that fossil cavities interacting either with a turbulent medium or with other cavities have the capacity to sustain or create turbulent flows in star-forming environments. In the last section, we contrast our work and its conclusions with previous studies which claim that jets cannot be the source of turbulence.

  15. NO EVIDENCE FOR INTERMEDIATE-MASS BLACK HOLES IN GLOBULAR CLUSTERS: STRONG CONSTRAINTS FROM THE JVLA

    International Nuclear Information System (INIS)

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J.; Miller-Jones, James C. A.; Seth, Anil C.; Heinke, Craig O.; Sivakoff, Gregory R.

    2012-01-01

    With a goal of searching for accreting intermediate-mass black holes (IMBHs), we report the results of ultra-deep Jansky Very Large Array radio continuum observations of the cores of three Galactic globular clusters: M15, M19, and M22. We reach rms noise levels of 1.5-2.1 μJy beam –1 at an average frequency of 6 GHz. No sources are observed at the center of any of the clusters. For a conservative set of assumptions about the properties of the accretion, we set 3σ upper limits on IMBHs from 360 to 980 M ☉ . These limits are among the most stringent obtained for any globular cluster. They add to a growing body of work that suggests either (1) IMBHs ∼> 1000 M ☉ are rare in globular clusters or (2) when present, IMBHs accrete in an extraordinarily inefficient manner.

  16. No Evidence for Intermediate-mass Black Holes in Globular Clusters: Strong Constraints from the JVLA

    Science.gov (United States)

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J.; Miller-Jones, James C. A.; Seth, Anil C.; Heinke, Craig O.; Sivakoff, Gregory R.

    2012-05-01

    With a goal of searching for accreting intermediate-mass black holes (IMBHs), we report the results of ultra-deep Jansky Very Large Array radio continuum observations of the cores of three Galactic globular clusters: M15, M19, and M22. We reach rms noise levels of 1.5-2.1 μJy beam-1 at an average frequency of 6 GHz. No sources are observed at the center of any of the clusters. For a conservative set of assumptions about the properties of the accretion, we set 3σ upper limits on IMBHs from 360 to 980 M ⊙. These limits are among the most stringent obtained for any globular cluster. They add to a growing body of work that suggests either (1) IMBHs >~ 1000 M ⊙ are rare in globular clusters or (2) when present, IMBHs accrete in an extraordinarily inefficient manner.

  17. A substellar-mass protostar and its outflow of IRAS 15398-3359 revealed by subarcsecond-resolution observations of H2CO and CCH

    DEFF Research Database (Denmark)

    Oya, Yoko; Sakai, Nami; Sakai, Takeshi

    2014-01-01

    Subarcsecond (0.''5) images of H2CO and CCH line emission have been obtained in the 0.8 mm band toward the low-mass protostar IRAS 15398–3359 in the Lupus 1 cloud as one of the Cycle 0 projects of the Atacama Large Millimeter/Submillimeter Array. We have detected a compact component concentrated...

  18. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A. Y.; Umemura, M. [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Bicknell, G. V., E-mail: ayw@ccs.tsukuba.ac.jp [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

    2013-01-20

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  19. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    International Nuclear Information System (INIS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  20. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    Science.gov (United States)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  1. Carbohydrate-rich high-molecular-mass antigens are strongly recognized during experimental Histoplasma capsulatum infection

    Directory of Open Access Journals (Sweden)

    Fabrine Sales Massafera Tristão

    2012-04-01

    Full Text Available INTRODUCTION: During histoplasmosis, Histoplasma capsulatum soluble antigens (CFAg can be naturally released by yeast cells. Because CFAg can be specifically targeted during infection, in the present study we investigated CFAg release in experimental murine histoplasmosis, and evaluated the host humoral immune response against high-molecular-mass antigens (hMMAg. >150 kDa, the more immunogenic CFAg fraction. METHODS: Mice were infected with 2.2x10(4 H. capsulatum IMT/HC128 yeast cells. The soluble CFAg, IgG anti-CFAg, IgG anti-hMMAg, and IgG-hMMAg circulating immune complexes (CIC levels were determined by enzymelinked immunosorbent assay, at days 0, 7, 14, and 28 post-infection. RESULTS: We observed a progressive increase in circulating levels of CFAg, IgG anti-CFAg, IgG anti-hMMAg, and IgG-hMMAg CIC after H. capsulatum infection. The hMMAg showed a high percentage of carbohydrates and at least two main immunogenic components. CONCLUSIONS: We verified for the first time that hMMAg from H. capsulatum IMT/HC128 strain induce humoral immune response and lead to CIC formation during experimental histoplasmosis.

  2. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    OpenAIRE

    Cappi, M.; Tombesi, F.; Giustini, M.

    2013-01-01

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  3. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    Science.gov (United States)

    Cappi, M.; Tombesi, F.; Giustini, M.

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  4. The Resolved Outflow from 3C 48

    Science.gov (United States)

    Shih, Hsin-Yi; Stockton, Alan

    2014-10-01

    We investigate the properties of the high-velocity outflow driven by the young radio jet of 3C 48, a compact-steep-spectrum source. We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telecope to obtain (1) low-resolution UV and optical spectra and (2) multi-slit medium-resolution spectra of the ionized outflow. With supporting data from ground-based spectrographs, we are able to accurately measure the ratios of diagnostic emission lines such as [O III] λ5007, [O III] λ3727, [N II] λ6548, Hα, Hβ, [Ne V] λ3425, and [Ne III] λ3869. We fit the observed emission-line ratios using a range of ionization models, powered by active galactic nucleus (AGN) radiation and shocks, produced by the MAPPINGS code. We have determined that AGN radiation is likely the dominant ionization source. The outflow's density is estimated to be in the range n = 103-104 cm-3, the mass is ~6 × 106 M ⊙, and the metallicity is likely equal to or higher than solar. Compared with the typical outflows associated with more evolved radio jets, this young outflow is denser, less massive, and more metal rich. Multi-slit observations allow us to construct a two-dimensional velocity map of the outflow that shows a wide range of velocities with distinct velocity components, suggesting a wide-angle clumpy outflow. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-11574. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Some of the

  5. Particle Acceleration in Relativistic Outflows

    Science.gov (United States)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  6. Energetic molecular outflow near AFGL 961: millimeter-wave and infrared observations

    International Nuclear Information System (INIS)

    Lada, C.J.; Gautier, T.N. III

    1982-01-01

    We report detailed millimeter-wave and near-infrared spectroscopy of the dynamically active region around the infrared source AFGL 961, near the Rosette nebula. Millimeter-wave 12 CO observations are used to study the high-velocity molecular flow around AFGL 961. These observations show that the high-velocity flow has a maximum extent of at least 6' or 2.9 pc at the distance of AFGL 961. The flow is found to be anisotropic, with redshifted high-velocity emission considerably more extended than blueshifted high-velocity emission. However, the flow does not appear to be as highly collimated as some other sources of high-velocity bipolar outflow. We also find the emission profiles to be asymmetric in velocity such that the integrated intensity of the redshifted high-velocity emission is on average 2.5 times greater than that of the blueshifted emission. The mass of the gas involved in the flow is determined to be approximately 19 M/sub sun/, and the kinetic energy of this gas is estimated to be about 8 x 10 46 ergs. These observations are interpreted as evidence that an energetic bipolar outflow of molecular gas is occurring near AFGL 961. The momentum of the outflowing molecular gas is large, and it is shown that this places strong constraints on possible physical mechanisms which may be driving the outflow. The near-infrared spectrum of AFGL 961 from 1.4-2.4 μm was obtained in order to study the conditions immediately around the infrared source which may be driving the molecular outflow

  7. Extraction of the strong neutron-proton mass difference from the charge symmetry breaking in pn->dpi{sup 0}

    Energy Technology Data Exchange (ETDEWEB)

    Filin, A.; Baru, V. [Institut fuer Kernphysik (Theorie) and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Theoretical and Experimental Physics, 117218, B. Cheremushkinskaya 25, Moscow (Russian Federation); Epelbaum, E. [Institut fuer Kernphysik (Theorie) and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Haidenbauer, J., E-mail: j.haidenbauer@fz-juelich.d [Institut fuer Kernphysik (Theorie) and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Hanhart, C. [Institut fuer Kernphysik (Theorie) and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Kudryavtsev, A. [Institute for Theoretical and Experimental Physics, 117218, B. Cheremushkinskaya 25, Moscow (Russian Federation); Meissner, U.-G. [Institut fuer Kernphysik (Theorie) and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2009-11-16

    We perform a complete calculation of charge symmetry breaking effects for the reaction pn->dpi{sup 0} at leading order in chiral perturbation theory. A new leading-order operator is included. From our analysis we extract deltam{sub N}{sup str}, the strong contribution to the neutron-proton mass difference. The value obtained, deltam{sub N}{sup str}=(1.5+-0.8 (exp.)+-0.5 (th.)) MeV, is consistent with the result based on the Cottingham sum rule. This agreement provides a non-trivial test of our current understanding of the chiral structure of QCD.

  8. Ultra-Fast Outflows in Radio-Loud AGN: New Constraints on Jet-Disk Connection

    Science.gov (United States)

    Sambruna, Rita

    There is strong observational and theoretical evidence that outflows/jets are coupled to accretion disks in black hole accreting systems, from Galactic to extragalactic sizes. While in radio-quiet AGN there is ample evidence for the presence of Ultra-Fast Outflows (UFOs) from the presence of blue-shifted absorption features in their 4-10~keV spectra, sub-relativistic winds are expected on theoretical basis in radio-loud AGN but have not been observed until now. Our recent Suzaku observations of 5 bright Broad- Line Radio Galaxies (BLRGs, the radio-loud counterparts of Seyferts) has started to change this picture. We found strong evidence for UFOs in 3 out of 5 BLRGs, with ionization parameters, column densities, and velocities of the absorber similar to Seyferts. Moreover, the outflows in BLRGs are likely to be energetically very significant: from the Suzaku data of the three sources, outflow masses similar to the accretion masses and kinetic energies of the wind similar to the X-ray luminosity and radio power of the jet are inferred. Clearly, UFOs in radio-loud AGN represent a new key ingredient to understand their central engines and in particular, the jet-disk linkage. Our discovery of UFOs in a handful of BLRGs raises the questions of how common disk winds are in radio-loud AGN, what the absorber physical and dynamical characteristics are, and what is the outflow role in broader picture of galaxy-black hole connection for radio sources, i.e., for large-scale feedback models. To address these and other issues, we propose to use archival XMM-Newton and Suzaku spectra to search for Ultra-Fast Outflows in a large number of radio sources. Over a period of two years, we will conduct a systematic, uniform analysis of the archival X-ray data, building on our extensive experience with a similar previous project for Seyferts, and using robust analysis and statistical methodologies. As an important side product, we will also obtain accurate, self- consistent measurements

  9. The combined effect of AGN and supernovae feedback in launching massive molecular outflows in high-redshift galaxies

    Science.gov (United States)

    Biernacki, Pawel; Teyssier, Romain

    2018-04-01

    We have recently improved our model of active galactic nucleus (AGN) by attaching the supermassive black hole (SMBH) to a massive nuclear star cluster (NSC). Here, we study the effects of this new model in massive, gas-rich galaxies with several simulations of different feedback recipes with the hydrodynamics code RAMSES. These simulations are compared to a reference simulation without any feedback, in which the cooling halo gas is quickly consumed in a burst of star formation. In the presence of strong supernovae (SN) feedback, we observe the formation of a galactic fountain that regulates star formation over a longer period, but without halting it. If only AGN feedback is considered, as soon as the SMBH reaches a critical mass, strong outflows of hot gas are launched and prevent the cooling halo gas from reaching the disc, thus efficiently halting star formation, leading to the so-called `quenching'. If both feedback mechanisms act in tandem, we observe a non-linear coupling, in the sense that the dense gas in the supernovae-powered galactic fountain is propelled by the hot outflow powered by the AGN at much larger radii than without AGN. We argue that these particular outflows are able to unbind dense gas from the galactic halo, thanks to the combined effect of SN and AGN feedback. We speculate that this mechanism occurs at the end of the fast growing phase of SMBH, and is at the origin of the dense molecular outflows observed in many massive high-redshift galaxies.

  10. Modeling jet and outflow feedback during star cluster formation

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, VIC 3800 (Australia); Schrön, Martin [Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, D-04318 Leipzig (Germany); Banerjee, Robi [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Klessen, Ralf S., E-mail: christoph.federrath@monash.edu [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany)

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ∼1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ∼1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ∼ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  11. The JCMT Gould Belt Survey: Understanding the influence of outflows on Gould Belt clouds

    Science.gov (United States)

    Drabek-Maunder, E.; Hatchell, J.; Buckle, J. V.; Di Francesco, J.; Richer, J.

    2016-03-01

    Using James Clerk Maxwell Telescope (JCMT) Gould Belt Survey data from CO J = 3 → 2 isotopologues, we present a meta-analysis of the outflows and energetics of star-forming regions in several Gould Belt clouds. The majority of the regions are strongly gravitationally bound. There is evidence that molecular outflows transport large quantities of momentum and energy. Outflow energies are at least 20 per cent of the total turbulent kinetic energies in all of the regions studied and greater than the turbulent energy in half of the regions. However, we find no evidence that outflows increase levels of turbulence, and there is no correlation between the outflow and turbulent energies. Even though outflows in some regions contribute significantly to maintaining turbulence levels against dissipation, this relies on outflows efficiently coupling to bulk motions. Other mechanisms (e.g. supernovae) must be the main drivers of turbulence in most if not all of these regions.

  12. The Initial Mass Function in the Nearest Strong Lenses from SNELLS: Assessing the Consistency of Lensing, Dynamical, and Spectroscopic Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Andrew B. [The Observatories of the Carnegie Institution for Science, Pasadena, CA (United States); Smith, Russell J. [Centre for Extragalactic Astronomy, University of Durham, South Road, Durham (United Kingdom); Conroy, Charlie [Department of Astronomy, Harvard University, Cambridge, MA (United States); Villaume, Alexa [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States); Van Dokkum, Pieter, E-mail: anewman@obs.carnegiescience.edu [Department of Astrophysical Sciences, Yale University, New Haven, CT (United States)

    2017-08-20

    We present new observations of the three nearest early-type galaxy (ETG) strong lenses discovered in the SINFONI Nearby Elliptical Lens Locator Survey (SNELLS). Based on their lensing masses, these ETGs were inferred to have a stellar initial mass function (IMF) consistent with that of the Milky Way, not the bottom-heavy IMF that has been reported as typical for high- σ ETGs based on lensing, dynamical, and stellar population synthesis techniques. We use these unique systems to test the consistency of IMF estimates derived from different methods. We first estimate the stellar M {sub *}/ L using lensing and stellar dynamics. We then fit high-quality optical spectra of the lenses using an updated version of the stellar population synthesis models developed by Conroy and van Dokkum. When examined individually, we find good agreement among these methods for one galaxy. The other two galaxies show 2–3 σ tension with lensing estimates, depending on the dark matter contribution, when considering IMFs that extend to 0.08 M {sub ⊙}. Allowing a variable low-mass cutoff or a nonparametric form of the IMF reduces the tension among the IMF estimates to <2 σ . There is moderate evidence for a reduced number of low-mass stars in the SNELLS spectra, but no such evidence in a composite spectrum of matched- σ ETGs drawn from the SDSS. Such variation in the form of the IMF at low stellar masses ( m ≲ 0.3 M {sub ⊙}), if present, could reconcile lensing/dynamical and spectroscopic IMF estimates for the SNELLS lenses and account for their lighter M {sub *}/ L relative to the mean matched- σ ETG. We provide the spectra used in this study to facilitate future comparisons.

  13. MISALIGNMENT OF MAGNETIC FIELDS AND OUTFLOWS IN PROTOSTELLAR CORES

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Charles L. H.; Plambeck, Richard L.; Bower, Geoffrey C.; Heiles, Carl; Meredith Hughes, A. [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411 (United States); Bolatto, Alberto D.; Jameson, Katherine; Mundy, Lee; Pound, Marc W. [Astronomy Department and Laboratory for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742 (United States); Carpenter, John M.; Lamb, James W.; Pillai, Thushara [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., MC 249-17, Pasadena, CA 91125 (United States); Crutcher, Richard M.; Hakobian, Nicholas S.; Kwon, Woojin; Looney, Leslie W. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W Green Street, Urbana, IL 61801 (United States); Fiege, Jason D.; Franzmann, Erica [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Houde, Martin [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Matthews, Brenda C., E-mail: chat@astro.berkeley.edu [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2 (Canada); and others

    2013-05-10

    We present results of {lambda}1.3 mm dust-polarization observations toward 16 nearby, low-mass protostars, mapped with {approx}2.''5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of {approx}1000 AU are not tightly aligned with outflows from the protostars. Rather, the data are consistent with scenarios where outflows and magnetic fields are preferentially misaligned (perpendicular), or where they are randomly aligned. If one assumes that outflows emerge along the rotation axes of circumstellar disks, and that the outflows have not disrupted the fields in the surrounding material, then our results imply that the disks are not aligned with the fields in the cores from which they formed.

  14. A New Look at Speeding Outflows

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    The compact centers of active galaxies known as active galactic nuclei, or AGN are known for the dynamic behavior they exhibit as the supermassive black holes at their centers accrete matter. New observations of outflows from a nearby AGN provide a more detailed look at what happens in these extreme environments.Outflows from GiantsThe powerful radio jets of Cygnus A, which extend far beyond the galaxy. [NRAO/AUI]AGN consist of a supermassive black hole of millions to tens of billions of solar masses surrounded by an accretion disk of in-falling matter. But not all the material falling toward the black hole accretes! Some of it is flung from the AGN via various types of outflows.The most well-known of these outflows are powerful radio jets collimated and incredibly fast-moving streams of particles that blast their way out of the host galaxy and into space. Only around 10% of AGN are observed to host such jets, however and theres another outflow thats more ubiquitous.Fast-Moving AbsorbersPerhaps 30% of AGN both those with and without observed radio jets host wider-angle, highly ionized gaseous outflows known as ultra-fast outflows (UFOs). Ultraviolet and X-ray radiation emitted from the AGN is absorbed by the UFO, revealing the outflows presence: absorption lines appear in the ultraviolet and X-ray spectra of the AGN, blue-shifted due to the high speeds of the absorbing gas in the outflow.Quasar PG 1211+143, indicated by the crosshairs at the center of the image, in the color context of its surroundings. [SDSS/S. Karge]But what is the nature of UFOs? Are they disk winds? Or are they somehow related to the radio jets? And what impact do they have on the AGNs host galaxy?X-ray and Ultraviolet CooperationNew observations are now providing fresh information about one particular UFO. A team of scientists led by Ashkbiz Danehkar (Harvard-Smithsonian Center for Astrophysics) recently used the Chandra and Hubble space telescopes to make the first simultaneous observations

  15. Probing Sub-GeV Mass Strongly Interacting Dark Matter with a Low-Threshold Surface Experiment.

    Science.gov (United States)

    Davis, Jonathan H

    2017-11-24

    Using data from the ν-cleus detector, based on the surface of Earth, we place constraints on dark matter in the form of strongly interacting massive particles (SIMPs) which interact with nucleons via nuclear-scale cross sections. For large SIMP-nucleon cross sections, the sensitivity of traditional direct dark matter searches using underground experiments is limited by the energy loss experienced by SIMPs, due to scattering with the rock overburden and experimental shielding on their way to the detector apparatus. Hence, a surface-based experiment is ideal for a SIMP search, despite the much larger background resulting from the lack of shielding. We show using data from a recent surface run of a low-threshold cryogenic detector that values of the SIMP-nucleon cross section up to approximately 10^{-27}  cm^{2} can be excluded for SIMPs with masses above 100 MeV.

  16. [Sulfonation modification-assisted enrichment and identification of histidine-containing peptides by strong cation exchange chromatography and mass spectrometry].

    Science.gov (United States)

    Cao, Dong; Zhou, Chunxi; Zhang, Yangjun; Han, Chunguang; Deng, Yulin; Qian, Xiaohong

    2009-03-01

    By the sulfonation at the N-terminal of peptides, the charge state of histidine-containing peptides is different from that of other peptides in pH sulfonated histidine-containing peptides from tryptic digest of proteins by strong cation exchange (SCX) chromatography and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF MS/MS). Using the standard proteins containing histidines as the model, the methodology was evaluated. The results show that sulfonated histidine-containing peptides were efficiently enriched by SCX, and the N-terminal sulfonation of the peptides simplifies the interpretation of the acquired mass spectra and facilitates the sequencing of histidine-containing peptides by producing consecutive and predominant ions in positive mode MS2 spectra, which is thought to be the result of the charge neutralization of b ions by the N-terminal sulfonic acid group. The discrimination of b ions and y ions can greatly enhance the confidence in peptide and subsequent protein identification. It is feasible to isolate and enrich the histidine-containing peptides by using this method which has the potential applications in proteomics.

  17. Characterizing the Cep E protostellar outflow: the oxygen chemistry

    Science.gov (United States)

    Gusdorf, Antoine

    2015-10-01

    With this proposal we aim at observing two positions in the Cep E protostellar outflow in OI and OH emission lines with the GREAT receiver. It is associated with another proposal by the same team to map the CII emission in this outflow associated to an intermediate mass protostar. These observations will be combined with Herschel observations of water line emission, and with previous CO data from various telescopes (IRAM 30m, PdBI, JCMT, Herschel, and most importantly, SOFIA). Their analysis will benefit from the important work initiated since the Cycle 0 of SOFIA, which has enabled our team to accurately link spatial structures (the jet, the outflow cavity, the terminal bowshock in the southern outflow lobe) to spectral components seen in the CO line profiles, and to precisely constrain the associated physical conditions by means of LVG methods or shock models. The goal is to precisely understand the water chemistry and to characterize the energetic impacts of the outflow based on a self-consistent and unique dataset that will allow us to fully characterize the associated shocks. Such a work is necessary also to understand the processes of formation of stars of intermediate mass with respect to their low-mass counterparts.

  18. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra.

    Science.gov (United States)

    Christiansen, Casper T; Haugwitz, Merian S; Priemé, Anders; Nielsen, Cecilie S; Elberling, Bo; Michelsen, Anders; Grogan, Paul; Blok, Daan

    2017-01-01

    Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface-incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open-top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by

  19. Two separate outflows in the dual supermassive black hole system NGC 6240.

    Science.gov (United States)

    Müller-Sánchez, F; Nevin, R; Comerford, J M; Davies, R I; Privon, G C; Treister, E

    2018-04-01

    Theoretical models and numerical simulations have established a framework of galaxy evolution in which galaxies merge and create dual supermassive black holes (with separations of one to ten kiloparsecs), which eventually sink into the centre of the merger remnant, emit gravitational waves and coalesce. The merger also triggers star formation and supermassive black hole growth, and gas outflows regulate the stellar content 1-3 . Although this theoretical picture is supported by recent observations of starburst-driven and supermassive black hole-driven outflows 4-6 , it remains unclear how these outflows interact with the interstellar medium. Furthermore, the relative contributions of star formation and black hole activity to galactic feedback remain unknown 7-9 . Here we report observations of dual outflows in the central region of the prototypical merger NGC 6240. We find a black-hole-driven outflow of [O III] to the northeast and a starburst-driven outflow of Hα to the northwest. The orientations and positions of the outflows allow us to isolate them spatially and study their properties independently. We estimate mass outflow rates of 10 and 75 solar masses per year for the Hα bubble and the [O III] cone, respectively. Their combined mass outflow is comparable to the star formation rate 10 , suggesting that negative feedback on star formation is occurring.

  20. The origin of ultrafast outflows in AGN: Monte Carlo simulations of the wind in PDS 456

    Science.gov (United States)

    Hagino, Kouichi; Odaka, Hirokazu; Done, Chris; Gandhi, Poshak; Watanabe, Shin; Sako, Masao; Takahashi, Tadayuki

    2015-01-01

    Ultrafast outflows (UFOs) are seen in many AGN, giving a possible mode for AGN feedback on to the host galaxy. However, the mechanism(s) for the launch and acceleration of these outflows are currently unknown, with UV line driving apparently strongly disfavoured as the material along the line of sight is so highly ionized that it has no UV transitions. We revisit this issue using the Suzaku X-ray data from PDS 456, an AGN with the most powerful UFO seen in the local Universe. We explore conditions in the wind by developing a new 3D Monte Carlo code for radiation transport. The code only handles highly ionized ions, but the data show the ionization state of the wind is high enough that this is appropriate, and this restriction makes it fast enough to explore parameter space. We reproduce the results of earlier work, confirming that the mass-loss rate in the wind is around 30 per cent of the inferred inflow rate through the outer disc. We show for the first time that UV line driving is likely to be a major contribution to the wind acceleration. The mass-loss rate in the wind matches that predicted from a purely line driven system, and this UV absorption can take place out of the line of sight. Continuum driving should also play a role as the source is close to Eddington. This predicts that the most extreme outflows will be produced from the highest mass accretion rate flows on to high-mass black holes, as observed.

  1. Constraints on a possible evolution of mass density power-law index in strong gravitational lensing from cosmological data

    Science.gov (United States)

    Holanda, R. F. L.; Pereira, S. H.; Jain, Deepak

    2017-11-01

    In this work, by using strong gravitational lensing (SGL) observations along with Type Ia Supernovae (Union2.1) and gamma-ray burst data (GRBs), we propose a new method to study a possible redshift evolution of γ(z), the mass density power-law index of strong gravitational lensing systems. In this analysis, we assume the validity of cosmic distance duality relation and the flat universe. In order to explore the γ(z) behaviour, three different parametrizations are considered, namely: (P1) γ(zl) = γ0 + γ1zl; (P2) γ(zl) = γ0 + γ1zl/(1 + zl); and (P3) γ(zl) = γ0 + γ1ln (1 + zl), where zl corresponds to lens redshift. If γ0 = 2 and γ1 = 0, the singular isothermal sphere model is recovered. Our method is performed on SGL sub-samples defined by different lens redshifts and velocity dispersions. For the former case, the results are in full agreement with each other, while a 1σ tension between the sub-samples with low (≤250 km s-1) and high (>250 km s-1) velocity dispersions was obtained on the (γ0-γ1) plane. By considering the complete SGL sample, we obtain γ0 ≈ 2 and γ1 ≈ 0 within 1σ c.l. for all γ(z) parametrizations. However, we find the following best-fitting values of γ1: -0.085; -0.16; and -0.12 for P1, P2 and P3 parametrizations, respectively, suggesting a mild evolution for γ(z). By repeating the analysis with Type Ia Supernovae from Joint Light Analysis compilation, GRBs and SGL systems this mild evolution is reinforced.

  2. Nature of shocks revealed by SOFIA OI observations in the Cepheus e protostellar outflow

    DEFF Research Database (Denmark)

    Gusdorf, A.; Anderl, S.; Lefloch, B.

    2017-01-01

    Context. Protostellar jets and outflows are key features of the star-formation process, and primary processes of the feedback of young stars on the interstellar medium. Understanding the underlying shocks is necessary to explain how jet and outflow systems are launched, and to quantify their chem......Context. Protostellar jets and outflows are key features of the star-formation process, and primary processes of the feedback of young stars on the interstellar medium. Understanding the underlying shocks is necessary to explain how jet and outflow systems are launched, and to quantify...... their chemical and energetic impacts on the surrounding medium. Aims. We performed a high-spectral resolution study of the [OI]63μm emission in the outflow of the intermediate-mass Class 0 protostar Cep E-mm. The goal is to determine the structure of the outflow, to constrain the chemical conditions...

  3. Quantification of genetically modified soya using strong anion exchange chromatography and time-of-flight mass spectrometry.

    Science.gov (United States)

    Chang, Po-Chih; Reddy, P Muralidhar; Ho, Yen-Peng

    2014-09-01

    Stable-isotope dimethyl labeling was applied to the quantification of genetically modified (GM) soya. The herbicide-resistant gene-related protein 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) was labeled using a dimethyl labeling reagent, formaldehyde-H2 or -D2. The identification and quantification of CP4 EPSPS was performed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The CP4 EPSPS protein was separated from high abundance proteins using strong anion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Then, the tryptic peptides from the samples and reference were labeled with formaldehyde-H2 and formaldehyde-D2, respectively. The two labeled pools were mixed and analyzed using MALDI-MS. The data showed a good correlation between the peak ratio of the H- and D-labeled peptides and the GM soya percentages at 0.5, 1, 3, and 5 %, with R (2) of 0.99. The labeling reagents are readily available. The labeling experiments and the detection procedures are simple. The approach is useful for the quantification of GM soya at a level as low as 0.5 %.

  4. Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy.

    Science.gov (United States)

    Geach, J E; Hickox, R C; Diamond-Stanic, A M; Krips, M; Rudnick, G H; Tremonti, C A; Sell, P H; Coil, A L; Moustakas, J

    2014-12-04

    Recent observations have revealed that starburst galaxies can drive molecular gas outflows through stellar radiation pressure. Molecular gas is the phase of the interstellar medium from which stars form, so these outflows curtail stellar mass growth in galaxies. Previously known outflows, however, involve small fractions of the total molecular gas content and have typical scales of less than a kiloparsec. In at least some cases, input from active galactic nuclei is dynamically important, so pure stellar feedback (the momentum return into the interstellar medium) has been considered incapable of rapidly terminating star formation on galactic scales. Molecular gas has been detected outside the galactic plane of the archetypal starburst galaxy M82 (refs 4 and 5), but so far there has been no evidence that starbursts can propel substantial quantities of cold molecular gas to the same galactocentric radius (about 10 kiloparsecs) as the warmer gas that has been traced by metal ion absorbers in the circumgalactic medium. Here we report observations of molecular gas in a compact (effective radius 100 parsecs) massive starburst galaxy at redshift 0.7, which is known to drive a fast outflow of ionized gas. We find that 35 per cent of the total molecular gas extends approximately 10 kiloparsecs, and one-third of this extended gas has a velocity of up to 1,000 kilometres per second. The kinetic energy associated with this high-velocity component is consistent with the momentum flux available from stellar radiation pressure. This demonstrates that nuclear bursts of star formation are capable of ejecting large amounts of cold gas from the central regions of galaxies, thereby strongly affecting their evolution by truncating star formation and redistributing matter.

  5. Comparison of ejection events in the jet and accretion disc outflows in 3C 111

    Science.gov (United States)

    Tombesi, F.; Sambruna, R. M.; Marscher, A. P.; Jorstad, S. G.; Reynolds, C. S.; Markowitz, A.

    2012-07-01

    We present a comparison of the parameters of accretion disc outflows and the jet of the broad-line radio galaxy 3C 111 on subparsec (sub-pc) scales. We make use of published X-ray observations of ultra-fast outflows (UFOs) and new 43-GHz Very Long Baseline Array images to track the jet knot ejection. We find that the superluminal jet coexists with the mildly relativistic outflows on sub-pc scales, possibly indicating a transverse stratification of a global flow. The two are roughly in pressure equilibrium, with the UFOs potentially providing additional support for the initial jet collimation. The UFOs are much more massive than the jet, but their kinetic power is probably about an order of magnitude lower, at least for the observations considered here. However, their momentum flux is equivalent and both of them are powerful enough to exert a concurrent feedback impact on the surrounding environment. A link between these components is naturally predicted in the context of magnetohydrodynamic models for jet/outflow formation. However, given the high radiation throughput of active galactic nuclei, radiation pressure should also be taken into account. From the comparison with the long-term 2-10 keV Rossi X-ray Timing Explorer light curve, we find that the UFOs are preferentially detected during periods of increasing flux. We also find the possibility to place the UFOs within the known X-ray dips-jet ejection cycles, which has been shown to be a strong proof of the disc-jet connection, in analogue with stellar mass black holes. However, given the limited number of observations presently available, these relations are only tentative and additional spectral monitoring is needed to test them conclusively.

  6. Analytical and numerical study of outflows around young stars

    International Nuclear Information System (INIS)

    Combet, Celine

    2006-01-01

    This thesis is built in two distinct parts, treating of two different astrophysical topics: i) in the first (and main) part, work related to star formation is presented whereas ii) the second part deals with cosmic rays. When a star forms, huge bipolar ejections of material, under the form of jets and molecular outflows, are observed as accretion proceeds onto the central object. After an introduction giving a large overview of the star formation process, we focus on the different 'standard' approaches used to model molecular outflows. An alternative and complementary model is then built: the transit model. It is a self-similar MHD model where part of the infalling material is being diverted into an outflow when approaching the central object. It is shown that the transit allows to reach the huge mass rates observed in massive star formation, in opposition to the 'standard' approaches. The model is thoughtfully studied with a Monte Carlo exploration of the parameter space and two families of solutions are put to the fore. The transit model gives a large-scale description of the protostellar environment, showing both density and velocity structures. It is in such a medium that a jet launched from the accretion disk will propagate and a preliminary numerical study of this propagation shows that the morphology and kinematics of the jet is strongly affected by the ambient medium. We conclude in the importance of a good description of the latter and the urge of leaving the 'uniform and motionless medium' usually used in such simulations. The second part focuses on the nuclear component of the Galactic cosmic rays. After being accelerated in supernova remnants, these nuclei propagate through the Galaxy and its halo. Eventually, some of them reach the Earth where they are detected. A good understanding of the propagation processes is compulsory in order to derive the source abundances from the measured ones. In this work, we focus on ultra

  7. The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow

    Science.gov (United States)

    Feruglio, C.; Fiore, F.; Carniani, S.; Piconcelli, E.; Zappacosta, L.; Bongiorno, A.; Cicone, C.; Maiolino, R.; Marconi, A.; Menci, N.; Puccetti, S.; Veilleux, S.

    2015-11-01

    Mrk 231 is a nearby ultra-luminous IR galaxy exhibiting a kpc-scale, multi-phase AGN-driven outflow. This galaxy represents the best target to investigate in detail the morphology and energetics of powerful outflows, as well as their still poorly-understood expansion mechanism and impact on the host galaxy. In this work, we present the best sensitivity and angular resolution maps of the molecular disk and outflow of Mrk 231, as traced by CO(2-1) and (3-2) observations obtained with the IRAM/PdBI. In addition, we analyze archival deep Chandra and NuSTAR X-ray observations. We use this unprecedented combination of multi-wavelength data sets to constrain the physical properties of both the molecular disk and outflow, the presence of a highly-ionized ultra-fast nuclear wind, and their connection. The molecular CO(2-1) outflow has a size of 1 kpc, and extends in all directions around the nucleus, being more prominent along the south-west to north-east direction, suggesting a wide-angle biconical geometry. The maximum projected velocity of the outflow is nearly constant out to 1 kpc, thus implying that the density of the outflowing material must decrease from the nucleus outwards as r-2. This suggests that either a large part of the gas leaves the flow during its expansion or that the bulk of the outflow has not yet reached out to 1 kpc, thus implying a limit on its age of 1 Myr. Mapping the mass and energy rates of the molecular outflow yields dot {M} OF = [500-1000] M⊙ yr-1 and Ėkin,OF = [7-10] × 1043 erg s-1. The total kinetic energy of the outflow is Ekin,OF is of the same order of the total energy of the molecular disk, Edisk. Remarkably, our analysis of the X-ray data reveals a nuclear ultra-fast outflow (UFO) with velocity -20 000 km s-1, dot {M}UFO = [0.3-2.1] M⊙ yr-1, and momentum load dot {P}UFO/ dot {P}rad = [0.2-1.6]. We find Ėkin,UFO Ėkin,OF as predicted for outflows undergoing an energy conserving expansion. This suggests that most of the UFO

  8. Quasar Massive Ionized Outflows Traced by CIV λ1549 and [OIII]λλ4959,5007

    Energy Technology Data Exchange (ETDEWEB)

    Marziani, Paola [National Institute for Astrophysics, Osservatorio Astronomico di Padova, Rome (Italy); Negrete, C. Alenka; Dultzin, Deborah [Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Martínez-Aldama, Mary L.; Del Olmo, Ascensión [Instituto de Astrofísica de Andalucía (CSIC), Granada (Spain); D' Onofrio, Mauro [Dipartimento di Fisica e Astronomia, Università di Padova, Padova (Italy); Stirpe, Giovanna M., E-mail: paola.marziani@oapd.inaf.it [Osservatorio Astronomico di Bologna (INAF), Bologna (Italy)

    2017-09-27

    The most luminous quasars (with bolometric luminosities are ≳ 10{sup 47} erg/s) show a high prevalence of CIV λ1549 and [OIII]λλ4959,5007 emission line profiles with strong blueshifts. Blueshifts are interpreted as due to Doppler effect and selective obscuration, and indicate outflows occurring over a wide range of spatial scales. We found evidence in favor of the nuclear origin of the outflows diagnosed by [OIII]λλ4959,5007. The ionized gas mass, kinetic power, and mechanical thrust are extremely high, and suggest widespread feedback effects on the host galaxies of very luminous quasars, at cosmic epochs between 2 and 6 Gyr from the Big Bang. In this mini-review we summarize results obtained by our group and reported in several major papers in the last few years with an eye on challenging aspects of quantifying feedback effects in large samples of quasars.

  9. Quasar Massive Ionized Outflows Traced by CIV λ1549 and [OIII]λλ4959,5007

    Directory of Open Access Journals (Sweden)

    Paola Marziani

    2017-09-01

    Full Text Available The most luminous quasars (with bolometric luminosities are ≳ 1047 erg/s show a high prevalence of CIV λ1549 and [OIII]λλ4959,5007 emission line profiles with strong blueshifts. Blueshifts are interpreted as due to Doppler effect and selective obscuration, and indicate outflows occurring over a wide range of spatial scales. We found evidence in favor of the nuclear origin of the outflows diagnosed by [OIII]λλ4959,5007. The ionized gas mass, kinetic power, and mechanical thrust are extremely high, and suggest widespread feedback effects on the host galaxies of very luminous quasars, at cosmic epochs between 2 and 6 Gyr from the Big Bang. In this mini-review we summarize results obtained by our group and reported in several major papers in the last few years with an eye on challenging aspects of quantifying feedback effects in large samples of quasars.

  10. Misalignment of magnetic fields and outflows in protostellar cores

    NARCIS (Netherlands)

    Hull, Charles L. H.; Plambeck, Richard L.; Bolatto, Alberto D.; Bower, Geoffrey C.; Carpenter, John M.; Crutcher, Richard M.; Fiege, Jason D.; Franzmann, Erica; Hakobian, Nicholas S.; Heiles, Carl; Houde, Martin; Hughes, A. Meredith; Jameson, Katherine; Kwon, Woojin; Lamb, James W.; Looney, Leslie W.; Matthews, Brenda C.; Mundy, Lee; Pillai, Thushara; Pound, Marc W.; Stephens, Ian W.; Tobin, John J.; Vaillancourt, John E.; Volgenau, N. H.; Wright, Melvyn C. H.

    2013-01-01

    We present results of lambda 1.3 mm dust-polarization observations toward 16 nearby, low-mass protostars, mapped with similar to 2 ''.5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of similar to 1000 AU are not tightly aligned with outflows from the

  11. How Superbubble-Driven Outflows Shape Galaxies and their CGM

    Science.gov (United States)

    Keller, Ben

    2017-07-01

    M* galaxies, with halo masses 10^12 Msun, live in an interesting part of parameter space. Not only are they the "turnover" in the galaxy mass Schecter function, they also have the highest stellar mass (and baryon) fraction, very low bulge-to-disk ratios, and dominate the star formation of the epoch they live in. In this talk I will present the results of a sample of 18 cosmological M* galaxies, simulated using the state-of-the-art superbubble method for handling feedback from Type II Supernovae. I will show that the key to obtaining a realistic stellar mass to halo mass relation (SMHMR) is preventing the runaway growth of a massive bulge by driving outflows with large mass-loadings. If this happens, SN feedback alone can no longer effectively drive outflows from the galaxy, and star formation becomes unregulated. This is a key piece of evidence that the peak of the SMHMR is due to the shut down of SN regulation and the beginning of AGN regulation in more massive halos. I will also show how the interaction between hot outflows and the disk ISM, together with the potential well they live within, sets how much mass is entrained in a galactic wind/fountain, and how this can halt SN-driven winds in high- mass galaxies. Finally, I will detail some issues dealing with the chaotic nature of the dynamics in galaxies.

  12. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Brett H. [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A., E-mail: andrewsb@pitt.edu [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2017-02-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  13. Ice sculpture in the Martian outflow channels

    Science.gov (United States)

    Lucchitta, B. K.

    1982-01-01

    Viking Orbiter and terrestrial satellite images are examined at similar resolution to compare features of the Martian outflow channels with features produced by the movement of ice on earth, and many resemblances are found. These include the anastomoses, sinuosities, and U-shaped cross profiles of valleys; hanging valleys; linear scour marks on valley walls; grooves and ridges on valley floors; and the streamlining of bedrock highs. Attention is given to the question whether ice could have moved in the Martian environment. It is envisaged that springs or small catastrophic outbursts discharged fluids from structural outlets or chaotic terrains. These fluids built icings that may have grown into substantial masses and eventually flowed like glaciers down preexisting valleys. An alternative is that the fluids formed rivers or floods that in turn formed ice jams and consolidated into icy masses in places where obstacles blocked their flow.

  14. Knowledge Outflows from Foreign Subsidiaries

    DEFF Research Database (Denmark)

    Perri, Alessandra; Andersson, Ulf

    This paper analyzes the MNC subsidiaries’ trade-off between the need for knowledge creation and the need for knowledge protection, and relates it to the extent of knowledge outflows generated within the host location. Combining research in International Business with Social Theory, we find that s...

  15. Positron annihilation in the nuclear outflows of the Milky Way

    Science.gov (United States)

    Panther, Fiona H.; Crocker, Roland M.; Birnboim, Yuval; Seitenzahl, Ivo R.; Ruiter, Ashley J.

    2018-02-01

    Observations of soft gamma rays emanating from the Milky Way from SPI/INTEGRAL reveal the annihilation of ˜2 × 1043 positrons every second in the Galactic bulge. The origin of these positrons, which annihilate to produce a prominent emission line centred at 511 keV, has remained mysterious since their discovery almost 50 yr ago. A plausible origin for the positrons is in association with the intense star formation ongoing in the Galactic centre. Moreover, there is strong evidence for a nuclear outflow in the Milky Way. We find that advective transport and subsequent annihilation of positrons in such an outflow cannot simultaneously replicate the observed morphology of positron annihilation in the Galactic bulge and satisfy the requirement that 90 per cent of positrons annihilate once the outflow has cooled to 104 K.

  16. Primary cardiac tumor presenting as left ventricular outflow tract obstruction and complex arrhythmia.

    Science.gov (United States)

    Fries, R; Achen, S; O'Brien, M T; Jackson, N D; Gordon, S

    2017-10-01

    An adult female mixed breed dog presented for recurrent collapsing episodes over several weeks. Holter evaluation revealed periods of sinus arrest and echocardiography identified a soft tissue mass with subsequent severe dynamic obstruction of the left ventricular outflow tract. The patient was euthanized five days after presentation for severe dyspnea. Necropsy revealed an irregular mass circumferentially lining the left ventricular outflow tract as well as multiple myocardial metastases. The final diagnosis was an undifferentiated pleomorphic endocardial sarcoma. Published by Elsevier B.V.

  17. Launching Cosmic-Ray-driven Outflows from the Magnetized Interstellar Medium

    Science.gov (United States)

    Girichidis, Philipp; Naab, Thorsten; Walch, Stefanie; Hanasz, Michał; Mac Low, Mordecai-Mark; Ostriker, Jeremiah P.; Gatto, Andrea; Peters, Thomas; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Baczynski, Christian

    2016-01-01

    We present a hydrodynamical simulation of the turbulent, magnetized, supernova (SN)-driven interstellar medium (ISM) in a stratified box that dynamically couples the injection and evolution of cosmic rays (CRs) and a self-consistent evolution of the chemical composition. CRs are treated as a relativistic fluid in the advection-diffusion approximation. The thermodynamic evolution of the gas is computed using a chemical network that follows the abundances of H+, H, H2, CO, C+, and free electrons and includes (self-)shielding of the gas and dust. We find that CRs perceptibly thicken the disk with the heights of 90% (70%) enclosed mass reaching ≳ 1.5 {kpc} (≳ 0.2 {kpc}). The simulations indicate that CRs alone can launch and sustain strong outflows of atomic and ionized gas with mass loading factors of order unity, even in solar neighborhood conditions and with a CR energy injection per SN of {10}50 {erg}, 10% of the fiducial thermal energy of an SN. The CR-driven outflows have moderate launching velocities close to the midplane (≲ 100 {km} {{{s}}}-1) and are denser (ρ ˜ 10-24-10-26 g cm-3), smoother, and colder than the (thermal) SN-driven winds. The simulations support the importance of CRs for setting the vertical structure of the disk as well as the driving of winds.

  18. Simulating Supernovae Driven Outflows in Dwarf Galaxies

    Science.gov (United States)

    Rodriguez, Jaimee-Ian

    2018-01-01

    Galactic outflows, or winds, prove to be a necessary input for galactic simulations to produce results comparable to observation, for it solves issues caused by what previous literature dubbed the “angular momentum catastrophe.” While it is known that the nature of outflows depends on the nature of the Interstellar Medium (ISM), the mechanisms behind outflows are still not completely understood. We investigate the driving force behind galactic outflows and the factors that influence their behavior, hypothesizing that supernovae within the galaxy drive these winds. We study isolated, high-resolution, smooth particle hydrodynamic simulations, focusing specifically on dwarf galaxies due to their shallow potential wells, which allow for more significant outflows. We find that outflows follow star formation (and associated supernovae) suggesting the causal relationship between the two. Furthermore, simulations with higher diffusivity differ little in star formation rate, but show significantly lower outflow rates, suggesting that environmental factors that have little effect on regulating star formation can greatly influence outflows, and so efficient outflows can be driven by a constant rate of supernovae, depending on ISM behavior. We are currently analyzing disk morphology and ambient density in order to comprehend the effect of supernovae on the immediate interstellar gas. By attaining greater understanding of the origin of galactic outflows, we will be able to not only improve the accuracy of simulations, we will also be able to gain greater insight into galactic formation and evolution, as outflows and resultant inflows may be vital to the regulation of galaxies throughout their lifetimes.

  19. Updating the (supermassive black hole mass)-(spiral arm pitch angle) relation: a strong correlation for galaxies with pseudobulges

    Science.gov (United States)

    Davis, Benjamin L.; Graham, Alister W.; Seigar, Marc S.

    2017-10-01

    We have conducted an image analysis of the (current) full sample of 44 spiral galaxies with directly measured supermassive black hole (SMBH) masses, MBH, to determine each galaxy's logarithmic spiral arm pitch angle, ϕ. For predicting black hole masses, we have derived the relation: log (MBH/M⊙) = (7.01 ± 0.07) - (0.171 ± 0.017)[|ϕ| - 15°]. The total root mean square scatter associated with this relation is 0.43 dex in the log MBH direction, with an intrinsic scatter of 0.30 ± 0.08 dex. The MBH-ϕ relation is therefore at least as accurate at predicting SMBH masses in spiral galaxies as the other known relations. By definition, the existence of an MBH-ϕ relation demands that the SMBH mass must correlate with the galaxy discs in some manner. Moreover, with the majority of our sample (37 of 44) classified in the literature as having a pseudobulge morphology, we additionally reveal that the SMBH mass correlates with the large-scale spiral pattern and thus the discs of galaxies hosting pseudobulges. Furthermore, given that the MBH-ϕ relation is capable of estimating black hole masses in bulge-less spiral galaxies, it therefore has great promise for predicting which galaxies may harbour intermediate-mass black holes (IMBHs, MBH < 105 M⊙). Extrapolating from the current relation, we predict that galaxies with |ϕ| ≥ 26.7° should possess IMBHs.

  20. Enhanced ion acoustic fluctuations and ion outflows

    Directory of Open Access Journals (Sweden)

    F. R. E. Forme

    1999-02-01

    Full Text Available A number of observations showing enhanced ion acoustic echoes observed by means of incoherent scatter radars have been reported in the literature. The received power is extremely enhanced by up to 1 or 2 orders of magnitude above usual values, and it is mostly contained in one of the two ion acoustic lines. This spectral asymmetry and the intensity of the received signal cannot be resolved by the standard analysis procedure and often causes its failure. As a result, and in spite of a very clear spectral signature, the analysis is unable to fit the plasma parameters inside the regions of ion acoustic turbulence. We present European Incoherent Scatter radar (EISCAT observations of large ion outflows associated with the simultaneous occurrence of enhanced ion acoustic echoes. The ion fluxes can reach 1014 m-2 s-1 at 800 km altitude. From the very clear spectral signatures of these echoes, a method is presented to extract estimates of the electron temperature and the ion drift within the turbulent regions. It is shown that the electron gas is strongly heated up to 11 000 K. Also electron temperature gradients of about 0.02 K/m exist. Finally, the estimates of the electron temperature and of the ion drift are used to study the possible implications for the plasma transport inside turbulent regions. It is shown that strong electron temperature gradients cause enhancement of the ambipolar electric field and can account for the observed ion outflows.Key words. Ionosphere (auroral ionosphere; ionosphere · magnetosphere interactions; plasma waves and instabilities.

  1. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate.

    Science.gov (United States)

    Wone, B W M; Madsen, P; Donovan, E R; Labocha, M K; Sears, M W; Downs, C J; Sorensen, D A; Hayes, J P

    2015-04-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR, and BMR was slightly, but not significantly, higher (2.5%). Compared with controls, MMR was significantly higher (5.3%) in antagonistically selected lines, and BMR was slightly, but not significantly, lower (4.2%). Analysis of breeding values revealed no positive genetic trend for elevated BMR in high-MMR lines. A weak positive genetic correlation was detected between MMR and BMR. That weak positive genetic correlation supports the aerobic capacity model for the evolution of endothermy in the sense that it fails to falsify a key model assumption. Overall, the results suggest that at least in these mice there is significant capacity for independent evolution of metabolic traits. Whether that is true in the ancestral animals that evolved endothermy remains an important but unanswered question.

  2. OT2_tvelusam_3: Atomic and Ionic Spectral Line Probes of Protostellar Jets and Outflows

    Science.gov (United States)

    Velusamy, T.

    2011-09-01

    We propose to resolve the origin of the strong [OI] 63micron and [CII] 158 micron emissions, within protostellar jet-outflow sources, detected by ISO LWS, and use it as a diagnostic of the shock conditions. Both [CII] and [OI] emission are useful diagnostics of the postshock gas, and [OI] is an efficient coolant in the high velocity dissociative shocks. Though [CII] is less important as a coolant in the shocks, its high intensities make it an ideal probe for Herschel because of HIFIs high spatial and velocity resolution which can answer where, within a jet and wind driven environment filled with shocks and outflow cavities, such strong emissions originate. In this proposal we use the PACS and HIFI spectral line mapping of shocks in 4 representative jet/outflow sources to study their spatial and velocity structures and their association with the jets and outflows, and the entrained regions. All these jet outflow targets have strong [OI] and [CII] detections by ISO LWS and contain atomic and ionic and molecular hydrogen jets; two were selected for the presence of wide angle outflow cavities; and two were selected for their star-forming and external FUV environments. These observations will characterize the components of the [OI] and [CII] associated with the shocks and outflows and serves as templates for understanding the ISO detections in a larger sample and using them as probes in future.

  3. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate

    DEFF Research Database (Denmark)

    Wone, B W M; Madsen, Per; Donovan, E R

    2015-01-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selecti...

  4. Strong and weak lensing united: II. The cluster mass distribution of the most X-ray luminous cluster RX J1347.5-1145

    Energy Technology Data Exchange (ETDEWEB)

    Bradač, M.; Erben, T.; Schneider, P.; Hildebrandt, H.; Lombardi, M.; Schirmer, M.; Miralles, J. -M.; Clowe, D.; Schindler, S.

    2005-07-01

    We have shown that the cluster-mass reconstruction method which combines strong and weak gravitational lensing data, developed in the first paper in the series, successfully reconstructs the mass distribution of a simulated cluster. In this paper we apply the method to the ground-based high-quality multi-colour data of RX J1347.5-1145 , the most X-ray luminous cluster to date. A new analysis of the cluster core on very deep, multi-colour data analysis of VLT/FORS data reveals many more arc candidates than previously known for this cluster. The combined strong and weak lensing reconstruction confirms that the cluster is indeed very massive. If the redshift and identification of the multiple-image system as well as the redshift estimates of the source galaxies used for weak lensing are correct, we determine the enclosed cluster mass in a cylinder to M(<360 h -1 kpc)= (1.2± 0.3) x 1015 M. In addition the reconstructed mass distribution follows the distribution found with independent methods (X-ray measurements, SZ). With higher resolution (e.g. HST imaging data) more reliable multiple imaging information can be obtained and the reconstruction can be improved to accuracies greater than what is currently possible with weak and strong lensing techniques.

  5. Strong and Weak Lensing United II: the Cluster Mass Distribution of the Most X-ray Luminous Cluster RX J1347.5-1145

    Energy Technology Data Exchange (ETDEWEB)

    Bradac, M.

    2005-04-13

    We have shown that the cluster-mass reconstruction method which combines strong and weak gravitational lensing data, developed in the first paper in the series, successfully reconstructs the mass distribution of a simulated cluster. In this paper we apply the method to the ground-based high-quality multi-colour data of RX J1347.5-1145, the most X-ray luminous cluster to date. A new analysis of the cluster core on very deep, multi-colour data analysis of VLT/FORS data reveals many more arc candidates than previously known for this cluster. The combined strong and weak lensing reconstruction confirms that the cluster is indeed very massive. If the redshift and identification of the multiple-image system as well as the redshift estimates of the source galaxies used for weak lensing are correct, we determine the enclosed cluster mass in a cylinder to M(< 360h{sup -1}kpc) = (1.2 {+-} 0.3) x 10{sup 15}M{circle_dot}. In addition the reconstructed mass distribution follows the distribution found with independent methods (X-ray measurements, SZ). With higher resolution (e.g. HST imaging data) more reliable multiple imaging information can be obtained and the reconstruction can be improved to accuracies greater than what is currently possible with weak and strong lensing techniques.

  6. Episodic molecular outflow in the very young protostellar cluster Serpens South.

    Science.gov (United States)

    Plunkett, Adele L; Arce, Héctor G; Mardones, Diego; van Dokkum, Pieter; Dunham, Michael M; Fernández-López, Manuel; Gallardo, José; Corder, Stuartt A

    2015-11-05

    The loss of mass from protostars, in the form of a jet or outflow, is a necessary counterpart to protostellar mass accretion. Outflow ejection events probably vary in their velocity and/or in the rate of mass loss. Such 'episodic' ejection events have been observed during the class 0 protostellar phase (the early accretion stage), and continue during the subsequent class I phase that marks the first one million years of star formation. Previously observed episodic-ejection sources were relatively isolated; however, the most common sites of star formation are clusters. Outflows link protostars with their environment and provide a viable source of the turbulence that is necessary for regulating star formation in clusters, but it is not known how an accretion-driven jet or outflow in a clustered environment manifests itself in its earliest stage. This early stage is important in establishing the initial conditions for momentum and energy transfer to the environment as the protostar and cluster evolve. Here we report that an outflow from a young, class 0 protostar, at the hub of the very active and filamentary Serpens South protostellar cluster, shows unambiguous episodic events. The (12)C(16)O (J = 2-1) emission from the protostar reveals 22 distinct features of outflow ejecta, the most recent having the highest velocity. The outflow forms bipolar lobes--one of the first detectable signs of star formation--which originate from the peak of 1-mm continuum emission. Emission from the surrounding C(18)O envelope shows kinematics consistent with rotation and an infall of material onto the protostar. The data suggest that episodic, accretion-driven outflow begins in the earliest phase of protostellar evolution, and that the outflow remains intact in a very clustered environment, probably providing efficient momentum transfer for driving turbulence.

  7. Preoperative low muscle mass has a strong negative effect on pulmonary function in patients undergoing living donor liver transplantation.

    Science.gov (United States)

    Shirai, Hisaya; Kaido, Toshimi; Hamaguchi, Yuhei; Yao, Siyuan; Kobayashi, Atsushi; Okumura, Shinya; Kamo, Naoko; Yagi, Shintaro; Okajima, Hideaki; Uemoto, Shinji

    2018-01-01

    This study investigated the effect of preoperative sarcopenia on cardiopulmonary function in patients undergoing living donor liver transplantation (LDLT). A retrospective analysis was performed of 207 patients who underwent LDLT between January 2008 and April 2015. The quantity and quality of skeletal muscle were evaluated by the psoas muscle mass index (PMI) and intramuscular adipose tissue content (IMAC), respectively, using preoperative computed tomography imaging. The correlations between preoperative cardiopulmonary function and sarcopenic factors (PMI, IMAC, and grip strength [GS]) were examined. Moreover, overall survival (OS) rates according to preoperative pulmonary function and risk factors were analyzed. No significant differences were found between ejection fraction (EF) and these sarcopenic factors. In contrast, preoperative vital capacity (VC) and forced expiratory volume (FEV) 1.0 were significantly correlated with PMI (P < 0.001, P < 0.001), IMAC (P = 0.024, P = 0.013), and GS (P = 0.006, P = 0.033) in males. Preoperative VC and FEV1.0 were significantly correlated with IMAC (P = 0.002, P = 0.001) and GS (P = 0.002, P = 0.001) in females. Moreover, %VC, VC, and FEV1.0 in the preoperative low muscle mass group were significantly lower than in the normal muscle mass group (P = 0.004, P < 0.001, P < 0.001, respectively) in males. Multivariate analysis revealed that preoperative low PMI and preoperative restrictive ventilatory impairment were independent risk factors (P = 0.046 and P = 0.014, respectively). Preoperative low muscle mass was closely involved with pulmonary dysfunction in patients undergoing LDLT. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Quark matter and quark stars in strong magnetic fields at finite temperature within the confined-isospin-density-dependent mass model

    Science.gov (United States)

    Chu, Peng-Cheng; Li, Xiao-Hua; Ma, Hong-Yang; Wang, Bin; Dong, Yu-Min; Zhang, Xiao-Min

    2018-03-01

    We study the properties of strange quark matter (SQM) and quark stars (QSs) in strong magnetic fields within the extended confined isospin-density-dependent mass (CIDDM) model including the temperature dependence of the equivalent mass for quarks. The quark symmetry energy, quark symmetry free energy, and the equation of state (EOS) of SQM in constant magnetic fields at finite temperature are investigated, and it is found that including the temperature dependence in CIDDM model and considering strong magnetic fields can both significantly influence the properties of the SQM and the maximum mass of quark stars. Using the density-dependent magnetic field and assuming two extreme cases for the magnetic field orientation in QSs (the radial orientation in which the local magnetic fields are along the radial direction and the transverse orientation in which the local magnetic fields are randomly oriented but perpendicular to the radial orientation), we analyze the mass-radius relations for different stages of the protoquark stars (PQSs) along the star evolution. Our results indicate that the maximum mass of magnetized PQSs may depend on not only the strength distribution and the orientation of the magnetic fields inside the PQSs, but also the heating process and the cooling process in the star evolution.

  9. Unconventional aqueous humor outflow: A review.

    Science.gov (United States)

    Johnson, Mark; McLaren, Jay W; Overby, Darryl R

    2017-05-01

    Aqueous humor flows out of the eye primarily through the conventional outflow pathway that includes the trabecular meshwork and Schlemm's canal. However, a fraction of aqueous humor passes through an alternative or 'unconventional' route that includes the ciliary muscle, supraciliary and suprachoroidal spaces. From there, unconventional outflow may drain through two pathways: a uveoscleral pathway where aqueous drains across the sclera to be resorbed by orbital vessels, and a uveovortex pathway where aqueous humor enters the choroid to drain through the vortex veins. We review the anatomy, physiology and pharmacology of these pathways. We also discuss methods to determine unconventional outflow rate, including direct techniques that use radioactive or fluorescent tracers recovered from tissues in the unconventional pathway and indirect methods that estimate unconventional outflow based on total outflow over a range of pressures. Indirect methods are subject to a number of assumptions and generally give poor agreement with tracer measurements. We review the variety of animal models that have been used to study conventional and unconventional outflow. The mouse appears to be a promising model because it captures several aspects of conventional and unconventional outflow dynamics common to humans, although questions remain regarding the magnitude of unconventional outflow in mice. Finally, we review future directions. There is a clear need to develop improved methods for measuring unconventional outflow in both animals and humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Changes in the Composition of the Fram Strait Freshwater Outflow

    Science.gov (United States)

    Dodd, Paul; Granskog, Mats; Fransson, Agneta; Chierici, Melissa; Stedmon, Colin

    2016-04-01

    Fram Strait is the largest gateway and only deep connection between the Arctic Ocean and the subpolar oceans. Monitoring the exchanges through Fram Strait allows us to detect and understand current changes occurring in the Arctic Ocean and to predict the effects of those changes on the Arctic and Subarctic climate and ecosystems. Polar water, recirculating Atlantic Water and deeper water masses exported from the Arctic Ocean through western Fram Strait are monitored year-round by an array of moored instruments along 78°50'N, continuously maintained by the Norwegian Polar Institute since the 1990s. Complimentary annual hydrographic sections have been repeated along the same latitude every September. This presentation will focus on biogeochemical tracer measurements collected along repeated sections from 1997-2015, which can be used to identify freshwater from different sources and reveal the causes of variations in total volume of freshwater exported e. g.: pulses of freshwater from the Pacific. Repeated tracer sections across Fram Strait reveal significant changes in the composition of the outflow in recent years, with recent sections showing positive fractions of sea ice meltwater at the surface near the core of the EGC, suggesting that more sea ice melts back into the surface than previously. The 1997-2015 time series of measurements reveals a strong anti-correlation between run-off and net sea ice meltwater inventories, suggesting that run-off and brine may be delivered to Fram Strait together from a common source. While the freshwater outflow at Fram Strait typically exhibits a similar run-off to net sea ice meltwater ratio to the central Arctic Ocean and Siberian shelves, we find that the ratio of run-off to sea ice meltwater at Fram Strait is decreasing with time, suggesting an increased surface input of sea ice meltwater in recent years. In 2014 and 2015 measurements of salinity, δ18O and total alkalinity were collected from sea ice cores as well as the

  11. The effects of calcium channel antagonists on coronary nitrite outflow in isolated rat heart.

    Science.gov (United States)

    Djuric, Dragan; Mitrovic, Veselin; Jakovljevic, Vladimir

    2002-01-01

    The aim of the study was to compare the effects of Ca2+ channel antagonists on coronary endothelial L-arginine/NO system in isolated rat heart. The hearts of male Wistar albino rats (n = 36, age 8 weeks, body mass 180-200 g) were perfused according to Langendorff technique at gradually increased coronary perfusion pressure (CPP) which induced flow-dependent NO release (nitrite outflow). The experiments were performed during control condition or in the presence of different Ca2+ channel antagonists: nifedipine (CAS 21829-25-4, 30 nmol/l), diltiazem (CAS 42399-41-7, 3 mumol/l), verapamil (CAS 52-53-9, 0.4 mumol/l) or amlodipine (CAS 88150-42-9, 100 nmol/l) were administered separately. Also, nifedipine or amlodipine were administered in combination with an inhibitor of nitric oxide synthase (NOS), L-NAME (NG-nitro-L-arginine-methylester, 30 mumol/l). Coronary flow (CF) varied in autoregulatory range from 3.93 +/- 0.25 ml/min/g wt at 50 cmH2O to 4.49 +/- 0.31 ml/min/g wt at 90 cmH2O. In autoregulatory range nitrite outflow varied from 1.80 +/- 0.22 nmol/min/g wt at 50 cmH2O to 2.21 +/- 0.25 nmol/min/g wt at 90 cmH2O and was strictly parallel with the CPP-CF (coronary perfusion pressure/coronary flow) curve. The autoregulatory range of CF was significantly extended (40-100 cmH2O) under the influence of nifedipine. Hemodynamic effects were accompanied by significant changes in nitrite outflow in all groups except for the verapamil group. Nifedipine and diltiazem induced statistically significant increases of nitrite outflow in coronary venous effluent, strictly parallel with the CPP-CF curve, from 58% at 120 cmH2O to 190% at 40 cmH2O and from 74% at 120 cmH2O to 166% at 40 cmH2O, respectively. On the contrary, amlodipine induced significant reduction of nitrite outflow which was stronger at the lower value of CPP (44-46% at 40-80 cmH2O), compared to the higher value of CPP (32-37% at 100-120 cmH2O). When L-NAME was applied in combination with nifedipine or amlodipine

  12. New Opportunities for the Observations of Strong Gravity Effects Near Stellar-Mass and Supermassive Black Holes

    Science.gov (United States)

    Cherepashchuk, A. M.

    2017-06-01

    With the great discovery of gravitational waves, performed by the LIGO observatory, there is hope that in the near future scientists would be able to “ hear” the ring from the merging of stellar-mass black holes (BHs) in a number of binary systems, and with the help of the ground and space short-wave interferometers λ ≤ 1 mm (“Event Horizon Telescope”, “Millimetron”) we will be able to “see” the images of the shadows from supermassive BHs in galactic nuclei.

  13. Mass Transfer in Mira-Type Binaries

    Directory of Open Access Journals (Sweden)

    Mohamed S.

    2012-06-01

    Full Text Available Detached, symbiotic binaries are generally assumed to interact via Bondi-Hoyle-Littleton (BHL wind accretion. However, the accretion rates and outflow geometries that result from this mass-transfer mechanism cannot adequately explain the observations of the nearest and best studied symbiotic binary, Mira, or the formation of some post-AGB binaries, e.g. barium stars. We propose a new mass-transfer mode for Mira-type binaries, which we call ‘wind Roche-lobe overflow’ (WRLOF, and which we demonstrate with 3D hydrodynamic simulations. Importantly, we show that the circumstellar outflows which result from WRLOF tend to be highly aspherical and strongly focused towards the binary orbital plane. Furthermore, the subsequent mass-transfer rates are at least an order of magnitude greater than the analogous BHL values. We discuss the implications of these results for the shaping of bipolar (proto-planetary nebulae and other related systems.

  14. Three-Dimensional General-Relativistic Magnetohydrodynamic Simulations of Remnant Accretion Disks from Neutron Star Mergers: Outflows and r-Process Nucleosynthesis.

    Science.gov (United States)

    Siegel, Daniel M; Metzger, Brian D

    2017-12-08

    The merger of binary neutron stars, or of a neutron star and a stellar-mass black hole, can result in the formation of a massive rotating torus around a spinning black hole. In addition to providing collimating media for γ-ray burst jets, unbound outflows from these disks are an important source of mass ejection and rapid neutron capture (r-process) nucleosynthesis. We present the first three-dimensional general-relativistic magnetohydrodynamic (GRMHD) simulations of neutrino-cooled accretion disks in neutron star mergers, including a realistic equation of state valid at low densities and temperatures, self-consistent evolution of the electron fraction, and neutrino cooling through an approximate leakage scheme. After initial magnetic field amplification by magnetic winding, we witness the vigorous onset of turbulence driven by the magnetorotational instability (MRI). The disk quickly reaches a balance between heating from MRI-driven turbulence and neutrino cooling, which regulates the midplane electron fraction to a low equilibrium value Y_{e}≈0.1. Over the 380-ms duration of the simulation, we find that a fraction ≈20% of the initial torus mass is unbound in powerful outflows with asymptotic velocities v≈0.1c and electron fractions Y_{e}≈0.1-0.25. Postprocessing the outflows through a nuclear reaction network shows the production of a robust second- and third-peak r process. Though broadly consistent with the results of previous axisymmetric hydrodynamical simulations, extrapolation of our results to late times suggests that the total ejecta mass from GRMHD disks is significantly higher. Our results provide strong evidence that postmerger disk outflows are an important site for the r process.

  15. Three-Dimensional General-Relativistic Magnetohydrodynamic Simulations of Remnant Accretion Disks from Neutron Star Mergers: Outflows and r -Process Nucleosynthesis

    Science.gov (United States)

    Siegel, Daniel M.; Metzger, Brian D.

    2017-12-01

    The merger of binary neutron stars, or of a neutron star and a stellar-mass black hole, can result in the formation of a massive rotating torus around a spinning black hole. In addition to providing collimating media for γ -ray burst jets, unbound outflows from these disks are an important source of mass ejection and rapid neutron capture (r -process) nucleosynthesis. We present the first three-dimensional general-relativistic magnetohydrodynamic (GRMHD) simulations of neutrino-cooled accretion disks in neutron star mergers, including a realistic equation of state valid at low densities and temperatures, self-consistent evolution of the electron fraction, and neutrino cooling through an approximate leakage scheme. After initial magnetic field amplification by magnetic winding, we witness the vigorous onset of turbulence driven by the magnetorotational instability (MRI). The disk quickly reaches a balance between heating from MRI-driven turbulence and neutrino cooling, which regulates the midplane electron fraction to a low equilibrium value Ye≈0.1 . Over the 380-ms duration of the simulation, we find that a fraction ≈20 % of the initial torus mass is unbound in powerful outflows with asymptotic velocities v ≈0.1 c and electron fractions Ye≈0.1 - 0.25 . Postprocessing the outflows through a nuclear reaction network shows the production of a robust second- and third-peak r process. Though broadly consistent with the results of previous axisymmetric hydrodynamical simulations, extrapolation of our results to late times suggests that the total ejecta mass from GRMHD disks is significantly higher. Our results provide strong evidence that postmerger disk outflows are an important site for the r process.

  16. HST/COS Observations of 10 Quasar Outflows in the Extreme UV: AGN Feedback

    Science.gov (United States)

    Reid Miller, Timothy; Arav, Nahum; Xu, Xinfeng

    2018-01-01

    Quasars and Seyferts show ubiquitous outflows where blue-shifted absorption lines are attributed to sub-relativistic (~103-104 km/s) mass ejections. These outflows are prime candidates for producing various AGN feedback processes: curtailing the growth of the host galaxy, explaining the relationship between the masses of the central black hole and the host galaxy, and chemical enrichment of the intergalactic and intracluster medium. HST COS observations from Cycle 24 program GO14777 allowed for the first time a sample of quasar outflows covering the diagnostic-rich 500-1050 Angstrom rest-frame (EUV) wavelength range. Initial results on the distances and energetics of the observed outflows are presented here.

  17. Body weight and fat mass index as strong predictors of factor VIII in vivo recovery in adults with hemophilia A.

    Science.gov (United States)

    Henrard, S; Speybroeck, N; Hermans, C

    2011-09-01

    The treatment of hemophilia A requires infusions of factor VIII (FVIII) concentrates. The number of units to be given in order to obtain the target level is calculated using the formula: [body weight (BW) × desired FVIII increase]/2, which assumes that each unit infused per kg of BW increases the FVIII level by 2%. The present observational study evaluated the dependence of FVIII recovery on different morphometrical variables: BW, fat mass index (FMI), body mass index, and the difference between actual and ideal BW. FVIII recovery was measured in 46 non-actively bleeding hemophilia A patients, being treated with a recombinant FVIII concentrate. Regression trees were used to identify morphometrical predictors of recovery. The median recovery was 2.08 for all patients, 2.63 for those with a BW ≥ 81.0 kg and 1.87 for others (P recovery was significantly higher when FMI was ≥ 20% compared with FMI recovery: 2.35 vs. 1.74; P = 0.007). Using regression trees, three groups were created: BW recovery in these groups was 1.80, 2.16 and 2.63, respectively (P recovery after different FVIII concentrates should keep in mind morphometrical patient characteristics. © 2011 International Society on Thrombosis and Haemostasis.

  18. SMA submillimeter observations of HL Tau: revealing a compact molecular outflow

    Energy Technology Data Exchange (ETDEWEB)

    Lumbreras, Alba M.; Zapata, Luis A. [Centro de Radioastronomía y Astrofísica, UNAM, Morelia (Mexico)

    2014-04-01

    We present archival high angular resolution (∼2'') {sup 12}CO(3-2) line and continuum submillimeter observations of the young stellar object HL Tau made with the Submillimeter Array. The {sup 12}CO(3-2) line observations reveal the presence of a compact and wide opening angle bipolar outflow with a northeast to southwest orientation (P.A. = 50°) that is associated with the optical and infrared jet emanating from HL Tau with a similar orientation. On the other hand, the 850 μm continuum emission observations exhibit a strong and compact source in the position of HL Tau that has a spatial size of ∼200 × 70 AU with a P.A. = 145° and a dust mass of around 0.1 M {sub ☉}. These physical parameters are in agreement with values obtained recently from millimeter observations. This submillimeter source is therefore related to the disk surrounding HL Tau.

  19. The MOSDEF Survey: The Prevalence and Properties of Galaxy-wide AGN-driven Outflows at z ˜ 2

    Science.gov (United States)

    Leung, Gene C. K.; Coil, Alison L.; Azadi, Mojegan; Aird, James; Shapley, Alice; Kriek, Mariska; Mobasher, Bahram; Reddy, Naveen; Siana, Brian; Freeman, William R.; Price, Sedona H.; Sanders, Ryan L.; Shivaei, Irene

    2017-11-01

    Using observations from the first 2 yr of the MOSFIRE Deep Evolution Field (MOSDEF) survey, we study 13 active galactic nucleus (AGN) driven outflows detected from a sample of 67 X-ray, IR, and/or optically selected AGNs at z˜ 2. The AGNs have bolometric luminosities of ˜ {10}44{--}{10}46 {erg} {{{s}}}-1, including both quasars and moderate-luminosity AGNs. We detect blueshifted, ionized gas outflows in the Hβ, [O III], Hα, and/or [N II] emission lines of 19% of the AGNs, while only 1.8% of the MOSDEF galaxies have similarly detected outflows. The outflow velocities span ˜300 to 1000 km s-1. Eight of the 13 outflows are spatially extended on similar scales to the host galaxies, with spatial extents of 2.5-11.0 kpc. Outflows are detected uniformly across the star-forming main sequence, showing little trend with the host galaxy star formation rate. Line ratio diagnostics indicate that the outflowing gas is photoionized by the AGNs. We do not find evidence for positive AGN feedback, in either our small MOSDEF sample or a much larger Sloan Digital Sky Survey sample, using the BPT diagram. Given that a galaxy with an AGN is 10 times more likely to have a detected outflow, the outflowing gas is photoionized by the AGNs, and estimates of the mass and energy outflow rates indicate that stellar feedback is insufficient to drive at least some of these outflows; they are very likely to be AGN driven. The outflows have mass-loading factors of the order of unity, suggesting that they help regulate star formation in their host galaxies, though they may be insufficient to fully quench it.

  20. Unravelling the Complex Structure of AGN-driven Outflows. II. Photoionization and Energetics

    Science.gov (United States)

    Karouzos, Marios; Woo, Jong-Hak; Bae, Hyun-Jin

    2016-12-01

    Outflows have been shown to be prevalent in galaxies hosting luminous active galactic nuclei (AGNs); they present a physically plausible way to couple the AGN energy output with the interstellar medium of their hosts. Despite their prevalence, accurate characterization of these outflows has been challenging. In the second of a series of papers, we use Gemini Multi-Object Spectrograph integral field unit (IFU) data of six local (z connecting the extreme kinematics of the ionized gas to the AGN photoionization. The kinematic component related to the AGN-driven outflow is clearly separated from other kinematic components, such as virial motions or rotation, on the velocity and velocity dispersion diagram. Our spatially resolved kinematic analysis reveals that 30 to 90% of the total mass and kinetic energy of the outflow is contained within the central kpc of the galaxy. The spatially integrated mass and kinetic energy of the gas entrained in the outflow correlate well with the AGN bolometric luminosity and results in energy conversion efficiencies between 0.01% and 1%. Intriguingly, we detect ubiquitous signs of ongoing circumnuclear star formation. Their small size, the centrally contained mass and energy, and the universally detected circumnuclear star formation cast doubts on the potency of these AGN-driven outflows as agents of galaxy-scale negative feedback.

  1. AGN outflows and feedback twenty years on

    Science.gov (United States)

    Harrison, C. M.; Costa, T.; Tadhunter, C. N.; Flütsch, A.; Kakkad, D.; Perna, M.; Vietri, G.

    2018-03-01

    It is twenty years since the seminal works by Magorrian and co-authors and by Silk and Rees, which, along with other related work, ignited an explosion of publications connecting active galactic nucleus (AGN)-driven outflows to galaxy evolution. With a surge in observations of AGN outflows, studies are attempting to test AGN feedback models directly using the outflow properties. With a focus on outflows traced by optical and CO emission lines, we discuss significant challenges that greatly complicate this task, from both an observational and theoretical perspective. We highlight the observational uncertainties involved and the assumptions required when deriving kinetic coupling efficiencies (that is, outflow kinetic power as a fraction of AGN luminosity) from typical observations. Based on recent models we demonstrate that extreme caution should be taken when comparing observationally derived kinetic coupling efficiencies to coupling efficiencies from fiducial feedback models.

  2. THE ROLE OF COSMIC-RAY PRESSURE IN ACCELERATING GALACTIC OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Christine M.; Pakmor, Rüdiger; Pfrommer, Christoph; Springel, Volker [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Marinacci, Federico [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Glover, Simon C. O. [Zentrum für Astronomie der Universität Heidelberg, ITA, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Clark, Paul C. [School of Physics and Astronomy, Queen’s Buildings, The Parade, Cardiff University, Cardiff CF24 3AA (United Kingdom); Smith, Rowan J., E-mail: Christine.Simpson@h-its.org [Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-08-20

    We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.

  3. Radiation-Hydrodynamic Simulations of Massive Star Formation with Protostellar Outflows

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, A J; Klein, R I; Krumholz, M R; McKee, C F

    2011-03-02

    We report the results of a series of AMR radiation-hydrodynamic simulations of the collapse of massive star forming clouds using the ORION code. These simulations are the first to include the feedback effects protostellar outflows, as well as protostellar radiative heating and radiation pressure exerted on the infalling, dusty gas. We find that that outflows evacuate polar cavities of reduced optical depth through the ambient core. These enhance the radiative flux in the poleward direction so that it is 1.7 to 15 times larger than that in the midplane. As a result the radiative heating and outward radiation force exerted on the protostellar disk and infalling cloud gas in the equatorial direction are greatly diminished. The simultaneously reduces the Eddington radiation pressure barrier to high-mass star formation and increases the minimum threshold surface density for radiative heating to suppress fragmentation compared to models that do not include outflows. The strength of both these effects depends on the initial core surface density. Lower surface density cores have longer free-fall times and thus massive stars formed within them undergo more Kelvin contraction as the core collapses, leading to more powerful outflows. Furthermore, in lower surface density clouds the ratio of the time required for the outflow to break out of the core to the core free-fall time is smaller, so that these clouds are consequently influenced by outflows at earlier stages of collapse. As a result, outflow effects are strongest in low surface density cores and weakest in high surface density one. We also find that radiation focusing in the direction of outflow cavities is sufficient to prevent the formation of radiation pressure-supported circumstellar gas bubbles, in contrast to models which neglect protostellar outflow feedback.

  4. Multiple monopolar outflows driven by massive protostars in IRAS 18162-2048

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-López, M. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Girart, J. M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C5-parell 2, E-08193 Bellaterra, Catalunya (Spain); Curiel, S.; Fonfría, J. P. [Instituto de Astronomía, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-264, 04510 México, DF (Mexico); Zapata, L. A. [Centro de Radioastronomía y Astrofísica, UNAM, Apartado Postal 3-72, Morelia, Michoacán 58089 (Mexico); Qiu, K., E-mail: manferna@illinois.edu, E-mail: girart@ieec.cat [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2013-11-20

    In this article, we present Combined Array for Research in Millimeter-wave Astronomy (CARMA) 3.5 mm observations and SubMillimeter Array (SMA) 870 μm observations toward the high-mass star-forming region IRAS 18162-2048, which is the core of the HH 80/81/80N system. Molecular emission from HCN, HCO{sup +}, and SiO traces two molecular outflows (the so-called northeast and northwest outflows). These outflows have their origin in a region close to the position of MM2, a millimeter source known to harbor two protostars. For the first time we estimate the physical characteristics of these molecular outflows, which are similar to those of 10{sup 3}-5 × 10{sup 3} L {sub ☉} protostars, and suggest that MM2 harbors high-mass protostars. High-angular resolution CO observations show an additional outflow due southeast. Also for the first time, we identify its driving source, MM2(E), and see evidence of precession. All three outflows have a monopolar appearance, but we link the NW and SE lobes, and explain their asymmetric shape as being a consequence of possible deflection.

  5. $K^{0} \\leftrightharpoons \\overline{K}^0$ transitions monitored by strong interactions a new determination of the $K_{L} - K_{S}$ mass difference

    CERN Document Server

    Angelopoulos, Angelos; Backenstoss, Gerhard; Bargassa, P; Behnke, O; Benelli, A; Bertin, V; Blanc, F; Bloch, P; Carlson, P J; Carroll, M; Cawley, E; Chertok, M B; Danielsson, M; Dejardin, M; Derré, J; Ealet, A; Eleftheriadis, C; Fetscher, W; Fidecaro, Maria; Filipcic, A; Francis, D; Fry, J; Gabathuler, Erwin; Gamet, R; Gerber, H J; Go, A; Haselden, A; Haymen, P J; Henry-Coüannier, F; Hollander, R W; Jon-And, K; Kettle, P R; Kokkas, P; Kreuger, R; Le Gac, R; Leimgruber, F; Mandic, I; Manthos, N; Marel, Gérard; Mikuz, M; Miller, J; Montanet, François; Müller, A; Nakada, Tatsuya; Pagels, B; Papadopoulos, I M; Pavlopoulos, P; Polivka, G; Rickenbach, R; Roberts, B L; Ruf, T; Sakelliou, L; Schäfer, M; Schaller, L A; Schietinger, T; Schopper, A; Tauscher, Ludwig; Thibault, C; Touchard, F; Touramanis, C; van Eijk, C W E; Vlachos, S; Weber, P; Wigger, O; Wolter, M; Zavrtanik, D; Zimmerman, D

    2001-01-01

    The CPLEAR set-up (modified) has been used to determine the K/sub L/- K/sub S/ mass difference by a method where neutral-kaon strangeness oscillations are monitored through kaon strong interactions, rather than semileptonic decays, thus requiring no assumptions on CPT invariance for the decay amplitudes. The result, Delta m= (0.5343+or-0.0063/sub stat/+or-0.0025/sub syst/)*10/sup 10/ h(cross) /s, provides a valuable input for CPT tests. (22 refs).

  6. Rest-frame ultraviolet spectra of massive galaxies at z ~ 3: evidence of high-velocity outflows

    Science.gov (United States)

    Karman, Wouter; Caputi, Karina I.; Trager, Scott C.; Almaini, Omar; Cirasuolo, Michele

    2014-05-01

    Galaxy formation models invoke the presence of strong feedback mechanisms that regulate the growth of massive galaxies at high redshifts. Providing observational evidence of these processes is crucial to justify and improve these prescriptions. In this paper we aim to (1) confirm spectroscopically the redshifts of a sample of massive galaxies selected with photometric redshifts zphot > 2.5; (2) investigate the properties of their stellar and interstellar media; (3) detect the presence of outflows and measure their velocities. To achieve this, we analysed deep, high-resolution (R ≈ 2000) FORS2 rest-frame UV spectra for 11 targets. We confirmed that 9 out of 11 have spectroscopic redshifts zspec > 2.5. We also serendipitously found two mask fillers at redshift zspec > 2.5, which originally were assigned photometric redshifts 2.0 energy distribution fitting U-band through 8 μm photometry, including the analysis of a power-law component subtraction to identify the possible presence of AGNs. The revised stellar masses of all but one of our targets are ≳ 1010 M⊙, with four having stellar masses > 5 × 1010 M⊙. Three galaxies have significant power-law components in their spectral energy distributions, indicating that they host AGNs. We conclude that massive galaxies are characterised by significantly higher velocity outflows than the typical Lyman-break galaxies at z ~ 3. The incidence of high-velocity outflows (~40% within our sample) is also much higher than among massive galaxies at z nuclear activity that most massive galaxies display at z > 2.

  7. Failed Radiatively Accelerated Dusty Outflow Model of the Broad Line Region in Active Galactic Nuclei. I. Analytical Solution

    Energy Technology Data Exchange (ETDEWEB)

    Czerny, B.; Panda, S.; Wildy, C.; Sniegowska, M. [Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Li, Yan-Rong; Wang, J.-M. [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Hryniewicz, K.; Sredzinska, J. [Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw (Poland); Karas, V., E-mail: bcz@cft.edu.pl [Astronomical Institute, Academy of Sciences, Bocni II 1401, CZ-141 00 Prague (Czech Republic)

    2017-09-10

    The physical origin of the broad line region in active galactic nuclei is still unclear despite many years of observational studies. The reason is that the region is unresolved, and the reverberation mapping results imply a complex velocity field. We adopt a theory-motivated approach to identify the principal mechanism responsible for this complex phenomenon. We consider the possibility that the role of dust is essential. We assume that the local radiation pressure acting on the dust in the accretion disk atmosphere launches the outflow of material, but higher above the disk the irradiation from the central parts causes dust evaporation and a subsequent fallback. This failed radiatively accelerated dusty outflow is expected to represent the material forming low ionization lines. In this paper we formulate simple analytical equations to describe the cloud motion, including the evaporation phase. The model is fully described just by the basic parameters of black hole mass, accretion rate, black hole spin, and viewing angle. We study how the spectral line generic profiles correspond to this dynamic. We show that the virial factor calculated from our model strongly depends on the black hole mass in the case of enhanced dust opacity, and thus it then correlates with the line width. This could explain why the virial factor measured in galaxies with pseudobulges differs from that obtained from objects with classical bulges, although the trend predicted by the current version of the model is opposite to the observed trend.

  8. A RECONNECTION-DRIVEN RAREFACTION WAVE MODEL FOR CORONAL OUTFLOWS

    International Nuclear Information System (INIS)

    Bradshaw, S. J.; Aulanier, G.; Del Zanna, G.

    2011-01-01

    We conduct numerical experiments to determine whether interchange reconnection at high altitude coronal null points can explain the outflows observed as blueshifts in coronal emission lines at the boundaries between open and closed magnetic field regions. In this scenario, a strong, post-reconnection pressure gradient forms in the field-aligned direction when dense and hot, active region core loops reconnect with neighboring tenuous and cool, open field lines. We find that the pressure gradient drives a supersonic outflow and a rarefaction wave develops in both the open and closed post-reconnection magnetic field regions. We forward-model the spectral line profiles for a selection of coronal emission lines to predict the spectral signatures of the rarefaction wave. We find that the properties of the rarefaction wave are consistent with the observed velocity versus temperature structure of the corona in the outflow regions, where the velocity increases with the formation temperature of the emission lines. In particular, we find excellent agreement between the predicted and observed Fe XII 195.119 Å spectral line profiles in terms of the blueshift (10 km s –1 ), full width at half-maximum (83 mÅ) and symmetry. Finally, we find that T i e in the open field region, which indicates that the interchange reconnection scenario may provide a viable mechanism and source region for the slow solar wind.

  9. Mass

    International Nuclear Information System (INIS)

    Quigg, Chris

    2007-01-01

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  10. DISCOVERY OF AN EXTREMELY WIDE-ANGLE BIPOLAR OUTFLOW IN AFGL 5142

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tie; Kim, Kee-Tae; Lee, Chang-Won; Cho, Se-Hyung [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wu, Yuefang [Department of Astronomy, Peking University, Beijing 100871 (China); Goldsmith, Paul F. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Li, Di [National Astronomical Observatories, Chinese Academy of Science, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Liu, Sheng-Yuan; Chen, Huei-Ru [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan (China); Tatematsu, Ken’ichi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Wang, Ke [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Lee, Jeong-Eun [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Qin, Sheng-Li [Department of Astronomy, Yunnan University, and Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming 650091 (China); Mardones, Diego, E-mail: liutiepku@gmail.com [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile)

    2016-06-10

    Most bipolar outflows are associated with individual young stellar objects and have small opening angles. Here we report the discovery of an extremely wide-angle (∼180°) bipolar outflow (“EWBO”) in a cluster forming region AFGL 5142 from low-velocity emission of the HCN (3–2) and HCO{sup +} (3–2) lines. This bipolar outflow is along a north-west to south-east direction with a line of sight flow velocity of about 3 km s{sup −1} and is spatially connected to the high-velocity jet-like outflows. It seems to be a collection of low-velocity material entrained by the high-velocity outflows due to momentum feedback. The total ejected mass and mass loss rate due to both high-velocity jet-like outflows and the “EWBO” are ∼24.5 M {sub ⊙} and ∼1.7 × 10{sup −3} M {sub ⊙} yr{sup −1}, respectively. Global collapse of the clump is revealed by the “blue profile” in the HCO{sup +} (1–0) line. A hierarchical network of filaments was identified in NH{sub 3} (1, 1) emission. Clear velocity gradients of the order of 10 km s{sup −1} pc{sup −1} are found along filaments, indicating gas inflow along the filaments. The sum of the accretion rate along filaments and mass infall rate along the line of sight is ∼3.1 × 10{sup −3} M {sub ⊙} yr{sup −1}, which exceeds the total mass loss rate, indicating that the central cluster is probably still gaining mass. The central cluster is highly fragmented and 22 condensations are identified in 1.1 mm continuum emission. The fragmentation process seems to be determined by thermal pressure and turbulence. The magnetic field may not play an important role in fragmentation.

  11. Dissecting the Butterfly: Dual Outflows in the Dual AGN NGC 6240

    Science.gov (United States)

    Mueller Sanchez, Francisco; Comerford, Julie; Nevin, Rebecca; Davies, Richard; Treister, Ezequiel; Privon, George

    2018-01-01

    Current theories of galaxy evolution invoke some kind of feedback (from the stars or the supermassive black hole) to explain the properties of galaxies. However, numerical simulations and observations have not been able to evaluate the real impact of feedback in galaxies. This is largely because most studies have focused on studying stellar feedback or AGN feedback alone, instead of considering the combined effect of both. In fact, this is an unexplored territory for observations due to the difficulty of separating the contribution from the two sources.In this contribution I present the discovery of a dual outflow of different species of gas in the prototypical merging galaxy NGC 6240 using HST imaging, long-slit and integral-eld spectroscopy: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. The AGN outflow extends up to 4 kpc along a position angle of 56 degrees, has a conical shape with an opening angle of 52 degrees and a maximum line-of-sight velocity of 350 km/s. The WFC3 images also reveal a bubble of Halpha emission in the northwest, which has no counterpart in [O III], consistent with a scenario in which the starburst is ionizing and driving outflowing winds which inflate the bubble at an expansion velocity of 380 km/s. Assuming a spherical geometry for the starburst-driven bubble and a conical geometry for the AGN-driven outflow, we estimate mass outflow rates of 26 Msun/yr and 62 Msun/yr, respectively. We conclude that the AGN contribution to the evolution of the merger remnant and the formation of outflowing winds is signicant in the central 5 kpc of NGC 6240.

  12. Infall and Outflow Motions towards a Sample of Massive Star Forming Regions from the RMS Survey

    Science.gov (United States)

    Cunningham, N.; Lumsden, S. L.; Moore, T. J. T.; Maud, L. T.; Mendigutía, I.

    2018-03-01

    We present the results of an outflow and infall survey towards a distance limited sample of 31 massive star forming regions drawn from the RMS survey. The presence of young, active outflows is identified from SiO (8-7) emission and the infall dynamics are explored using HCO+/H13CO+ (4-3) emission. We investigate if the infall and outflow parameters vary with source properties, exploring whether regions hosting potentially young active outflows show similarities or differences with regions harbouring more evolved, possibly momentum driven, "fossil" outflows. SiO emission is detected towards approximately 46% of the sources. When considering sources with and without an SiO detection (i.e. potentially active and fossil outflows respectively), only the 12CO outflow velocity shows a significant difference between samples, indicating SiO is more prevalent towards sources with higher outflow velocities. Furthermore, we find the SiO luminosity increases as a function of the Herschel 70 μm to WISE 22μm flux ratio, suggesting the production of SiO is prevalent in younger, more embedded regions. Similarly, we find tentative evidence that sources with an SiO detection have a smaller bolometric luminosity-to-mass ratio, indicating SiO (8-7) emission is associated with potentially younger regions. We do not find a prevalence towards sources displaying signatures of infall in our sample. However, the higher energy HCO+ transitions may not be the best suited tracer of infall at this spatial resolution in these regions.

  13. ON THE ORIGIN OF THE MOLECULAR OUTFLOWS IN IRAS 16293–2422

    Energy Technology Data Exchange (ETDEWEB)

    Girart, Josep M.; Palau, Aina; Torrelles, José M. [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Estalella, Robert [Departament d' Astronomia i Meteorologia, Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès, Universitat de Barcelona, E-08028 Barcelona, Catalonia (Spain); Rao, Ramprasad, E-mail: girart@ice.cat [Institute of Astronomy and Astrophysics, Academia Sinica, 645 N. Aohoku Pl., Hilo, HI 96720 (United States)

    2014-01-01

    We present CO 3-2, SiO 8-7, C{sup 34}S 7-6, and 878 μm dust continuum subarcsecond angular resolution observations with the Submillimeter Array (SMA) toward the IRAS 16293–2422 (I16293) multiple low-mass protostellar system. The C{sup 34}S emission traces the 878 μm dust continuum well, and in addition clearly shows a smooth velocity gradient along the major axis of component I16293A. CO shows emission at moderate high velocities arising from two bipolar outflows, which appear to be perpendicular with respect to each other. The high sensitivity and higher angular resolution of these observations allows us to pinpoint well the origin of these two outflows at the center of component I16293A. Interestingly, the most compact outflow appears to point toward I16293B. Our data show that the previously reported monopolar blueshifted CO outflow associated with component I16293B seems to be part of the compact outflow arising from component I16293A. In addition, the SiO emission is also tracing this compact outflow: on the one hand, the SiO emission appears to have a jet-like morphology along the southern redshifted lobe; on the other hand, the SiO emission associated with the blueshifted northern lobe traces a well-defined arc on the border of component I16293B facing I16293A. The blueshifted CO lobe of the compact outflow splits into two lobes around the position of this SiO arc. All these results lead us to propose that the compact outflow from component I16293A is impacting on the circumstellar gas around component I16293B, possibly being diverged as a consequence of the interaction.

  14. Developing the Next Generation of Tools for Simulating Galaxy Outflows

    Science.gov (United States)

    Scannapieco, Evan

    Outflows are observed in starbursting galaxies of all masses and at all cosmological epochs. They play a key role throughout the history of the Universe: shaping the galaxy mass-metallicity relation, drastically affecting the content and number density of dwarf galaxies, and transforming the chemical composition of the intergalactic medium. Yet, a complete model of galaxy out ows has proven to be elusive, as it requires both a better understanding of the evolution of the turbulent, multiphase gas in and around starbursting galaxies, and better tools to reproduce this evolution in galaxy-scale simulations. Here we propose to conduct a detailed series of numerical simulations designed to help develop such next-generation tools for the simulation of galaxy outflows. The program will consist of three types of direct numerical simulations, each of which will be targeted to allow galaxy-scale simulations to more accurately model key microphysical processes and their observational consequences. Our first set of simulations will be targeted at better modeling the starbursting interstellar medium (ISM) from which galaxy outflows are driven. The surface densities in starbursting galaxies are much larger than those in the Milky Way, resulting in larger gravitational accelerations and random velocities exceeding 30 or even 100 km/s. Under these conditions, the thermal stability of the ISM is changed dramatically, due to the sharp peak in gas cooling efficiency at H 200,000 K. Our simulations will carefully quantify the key ways in which this medium differs from the local ISM, and the consequences of these differences for when, where, and how outflows are driven. A second set of simulations will be targeted at better modeling the observed properties of rapidly cooling, highly turbulent gas. Because gas cooling in and around starbursts is extremely efficient, turbulent motions are often supersonic, which leads to a distribution of ionization states that is vastly different than

  15. INTEGRAL FIELD SPECTROSCOPY OF AGN ABSORPTION OUTFLOWS: MRK 509 AND IRAS F04250–5718

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guilin; Arav, Nahum [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Rupke, David S. N., E-mail: glliu@vt.edu [Department of Physics, Rhodes College, Memphis, TN 38112 (United States)

    2015-11-15

    Ultraviolet (UV) absorption lines provide abundant spectroscopic information enabling the probe of the physical conditions in active galactic nucleus (AGN) outflows, but the outflow radii (and the energetics consequently) can only be determined indirectly. We present the first direct test of these determinations using integral field unit (IFU) spectroscopy. We have conducted Gemini IFU mapping of the ionized gas nebulae surrounding two AGNs, whose outflow radii have been constrained by UV absorption line analyses. In Mrk 509, we find a quasi-spherical outflow with a radius of 1.2 kpc and a velocity of ∼290 km s{sup −1}, while IRAS F04250–5718 is driving a biconical outflow extending out to 2.9 kpc, with a velocity of ∼580 km s{sup −1} and an opening angle of ∼70°. The derived mass flow rate ∼5 and >1 M{sub ⊙} yr{sup −1}, respectively, and the kinetic luminosity ≳1 × 10{sup 41} erg s{sup −1} for both. Adopting the outflow radii and geometric parameters measured from IFU, absorption line analyses would yield mass flow rates and kinetic luminosities in agreement with the above results within a factor of ∼2. We conclude that the spatial locations, kinematics, and energetics revealed by this IFU emission-line study are consistent with pre-existing UV absorption line analyses, providing a long-awaited direct confirmation of the latter as an effective approach for characterizing outflow properties.

  16. Fading AGN Candidates: AGN Histories and Outflow Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Keel, William C.; Maksym, W. Peter [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Lintott, Chris J. [Astrophysics, Oxford University and Adler Planetarium, 1300 S. Lakeshore Drive, Chicago, IL 60605 (United States); Bennert, Vardha N.; Scott, Bryan; Showley, Charles; Flatland, Kelsi [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Chojnowski, S. Drew [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Moiseev, Alexei; Smirnova, Aleksandrina [Special Astrophysical Observatory, Russian Academy of Sciences, Nizhny Arkhyz, 369167 (Russian Federation); Schawinski, Kevin; Sartori, Lia F. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Straße 27, CH-8093 Zurich (Switzerland); Urry, C. Megan [Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States); Pancoast, Anna [Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Schirmer, Mischa, E-mail: wkeel@ua.edu [Gemini Observatory, La Serena (Chile)

    2017-02-01

    We consider the energy budgets and radiative history of eight fading active galactic nuclei (AGNs), identified from an energy shortfall between the requirements to ionize very extended (radius > 10 kpc) ionized clouds and the luminosity of the nucleus as we view it directly. All show evidence of significant fading on timescales of ≈50,000 yr. We explore the use of minimum ionizing luminosity Q {sub ion} derived from photoionization balance in the brightest pixels in H α at each projected radius. Tests using presumably constant Palomar–Green QSOs, and one of our targets with detailed photoionization modeling, suggest that we can derive useful histories of individual AGNs, with the caveat that the minimum ionizing luminosity is always an underestimate and subject to uncertainties about fine structure in the ionized material. These consistency tests suggest that the degree of underestimation from the upper envelope of reconstructed Q {sub ion} values is roughly constant for a given object and therefore does not prevent such derivation. The AGNs in our sample show a range of behaviors, with rapid drops and standstills; the common feature is a rapid drop in the last ≈2×10{sup 4} yr before the direct view of the nucleus. The e -folding timescales for ionizing luminosity are mostly in the thousands of years, with a few episodes as short as 400 yr. In the limit of largely obscured AGNs, we find additional evidence for fading from the shortfall between even the lower limits from recombination balance and the maximum luminosities derived from far-infrared fluxes. We compare these long-term light curves, and the occurrence of these fading objects among all optically identified AGNs, to simulations of AGN accretion; the strongest variations over these timespans are seen in models with strong and local (parsec-scale) feedback. We present Gemini integral-field optical spectroscopy, which shows a very limited role for outflows in these ionized structures. While rings and

  17. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs: III - Location and Energetics

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-01-01

    Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval approx.0.0003-0.03pc (approx.10(exp 2)-10(exp 4)tau(sub s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are constrained between approx.0.01- 1 Stellar Mass/y, corresponding to approx. or >5-10% of the accretion rates. The average lower-upper limits on the mechanical power are logE(sub K) approx. or = 42.6-44.6 erg/s. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN r.osmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyferts galaxies .

  18. Extreme Gaseous Outflows in Radio-Loud Narrow-Line Seyfert 1 Galaxies

    Science.gov (United States)

    Komossa, S.; Xu, D. W.; Wagner, A. Y.

    2018-04-01

    We present four radio-loud NLS1 galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km/s, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km/s. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [OIII]λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required, to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [NeV] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.

  19. Outflow Feedback Regulated Massive Star Formation in Parsec-Scale Cluster Forming Clumps

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; /KIPAC, Menlo Park /Stanford U., Phys.Dept.; Li, Zhi-Yun; /Virginia U., Astron. Dept.; Abel, Tom; /KIPAC, Menlo Park /Stanford U., Phys.Dept.; Nakamura, Fumitaka; /Niigata U.

    2010-02-15

    We investigate massive star formation in turbulent, magnetized, parsec-scale clumps of molecular clouds including protostellar outflow feedback using three dimensional numerical simulations of effective resolution 2048{sup 3}. The calculations are carried out using a block structured adaptive mesh refinement code that solves the ideal MHD equations including self-gravity and implements accreting sink particles. We find that, in the absence of regulation by magnetic fields and outflow feedback, massive stars form readily in a turbulent, moderately condensed clump of {approx} 1,600 M{sub {circle_dot}} (containing {approx} 10{sup 2} initial Jeans masses), along with a cluster of hundreds of lower mass stars. The massive stars are fed at high rates by (1) transient dense filaments produced by large-scale turbulent compression at early times, and (2) by the clump-wide global collapse resulting from turbulence decay at late times. In both cases, the bulk of the massive star's mass is supplied from outside a 0.1 pc-sized 'core' that surrounds the star. In our simulation, the massive star is clump-fed rather than core-fed. The need for large-scale feeding makes the massive star formation prone to regulation by outflow feedback, which directly opposes the feeding processes. The outflows reduce the mass accretion rates onto the massive stars by breaking up the dense filaments that feed the massive star formation at early times, and by collectively slowing down the global collapse that fuel the massive star formation at late times. The latter is aided by a moderate magnetic field of strength in the observed range (corresponding to a dimensionless clump mass-to-flux ratio {lambda} {approx} a few); the field allows the outflow momenta to be deposited more efficiently inside the clump. We conclude that the massive star formation in our simulated turbulent, magnetized, parsec-scale clump is outflow-regulated and clump-fed (ORCF for short). An important implication

  20. Mixing and Dynamics of the Mediterranean Outflow

    Science.gov (United States)

    1994-02-01

    Ambar and Howe, 1979a, 1979b; Ochoa and Bray, 1991). Figure 1.6 shows the path of the outflow as depicted by Madelain (1970). The northward turn of...deflection of the flow due to the Coriolis force ( Ambar and Howe, 1979a; Price et al., 1993). Kenyon and Belderson (1973) believe the north-south...outflow separating into the North Atlantic near 700-800 m and 1000-1200 m ( Ambar and Howe, 1979a). Madelain (1970) believed that the complex topography of

  1. THE SYSTEMATICS OF STRONG LENS MODELING QUANTIFIED: THE EFFECTS OF CONSTRAINT SELECTION AND REDSHIFT INFORMATION ON MAGNIFICATION, MASS, AND MULTIPLE IMAGE PREDICTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Traci L.; Sharon, Keren, E-mail: tljohn@umich.edu [University of Michigan, Department of Astronomy, 1085 South University Avenue, Ann Arbor, MI 48109-1107 (United States)

    2016-11-20

    Until now, systematic errors in strong gravitational lens modeling have been acknowledged but have never been fully quantified. Here, we launch an investigation into the systematics induced by constraint selection. We model the simulated cluster Ares 362 times using random selections of image systems with and without spectroscopic redshifts and quantify the systematics using several diagnostics: image predictability, accuracy of model-predicted redshifts, enclosed mass, and magnification. We find that for models with >15 image systems, the image plane rms does not decrease significantly when more systems are added; however, the rms values quoted in the literature may be misleading as to the ability of a model to predict new multiple images. The mass is well constrained near the Einstein radius in all cases, and systematic error drops to <2% for models using >10 image systems. Magnification errors are smallest along the straight portions of the critical curve, and the value of the magnification is systematically lower near curved portions. For >15 systems, the systematic error on magnification is ∼2%. We report no trend in magnification error with the fraction of spectroscopic image systems when selecting constraints at random; however, when using the same selection of constraints, increasing this fraction up to ∼0.5 will increase model accuracy. The results suggest that the selection of constraints, rather than quantity alone, determines the accuracy of the magnification. We note that spectroscopic follow-up of at least a few image systems is crucial because models without any spectroscopic redshifts are inaccurate across all of our diagnostics.

  2. Outflows, dusty cores, and a burst of star formation in the North America and Pelican nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Bally, John [Department of Astrophysical and Planetary Sciences, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Ginsburg, Adam [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei Munchen (Germany); Probst, Ron [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii at Manoa, 640 North A' ohoku Place, Hilo, HI 96720 (United States); Shirley, Yancy L. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Stringfellow, Guy S., E-mail: John.Bally@colorado.edu, E-mail: aginsburg@eso.org, E-mail: probst@noao.edu, E-mail: reipurth@ifa.hawaii.edu, E-mail: yshirley@as.arizona.edu, E-mail: Guy.Stringfellow@colorado.edu [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 80309 (United States)

    2014-12-01

    We present observations of near-infrared 2.12 μm molecular hydrogen outflows emerging from 1.1 mm dust continuum clumps in the North America and Pelican Nebula (NAP) complex selected from the Bolocam Galactic Plane Survey (BGPS). Hundreds of individual shocks powered by over 50 outflows from young stars are identified, indicating that the dusty molecular clumps surrounding the NGC 7000/IC 5070/W80 H II region are among the most active sites of ongoing star formation in the solar vicinity. A spectacular X-shaped outflow, MHO 3400, emerges from a young star system embedded in a dense clump more than a parsec from the ionization front associated with the Pelican Nebula (IC 5070). Suspected to be a binary, the source drives a pair of outflows with orientations differing by 80°. Each flow exhibits S-shaped symmetry and multiple shocks indicating a pulsed and precessing jet. The 'Gulf of Mexico', located south of the North America Nebula (NGC 7000), contains a dense cluster of molecular hydrogen objects (MHOs), Herbig-Haro (HH) objects, and over 300 young stellar objects (YSOs), indicating a recent burst of star formation. The largest outflow detected thus far in the North America and Pelican Nebula complex, the 1.6 parsec long MHO 3417 flow, emerges from a 500 M {sub ☉} BGPS clump and may be powered by a forming massive star. Several prominent outflows such as MHO 3427 appear to be powered by highly embedded YSOs only visible at λ > 70 μm. An 'activity index' formed by dividing the number of shocks by the mass of the cloud containing their source stars is used to estimate the relative evolutionary states of Bolocam clumps. Outflows can be used as indicators of the evolutionary state of clumps detected in millimeter and submillimeter dust continuum surveys.

  3. Inflammatory Pseudotumor Originating from the Right Ventricular Outflow Tract

    Directory of Open Access Journals (Sweden)

    Mohita Singh

    2016-01-01

    Full Text Available Introduction. Inflammatory pseudotumor is an uncommon entity, and its cardiac origin is exceedingly rare. Case History. A previously healthy 27-year-old man was found to have a systolic murmur during preemployment screening evaluation. A transthoracic echocardiogram revealed a 4 × 2.5 cm mass originating from the right ventricle (RV outflow tract extending into the aortic root. A computed tomography guided biopsy confirmed an IgG4-related inflammatory pseudotumor. Patient was started on oral prednisone with subsequent reduction in mass size. Conclusion. Cardiac inflammatory pseudotumors are markedly rare tumors that should be considered in the differential of intracardiac tumors which otherwise includes cardiac fibromas, myxomas, and sarcomas.

  4. A calorimetric measurement of the strong coupling constant in electron-positron annihilation at a center-of-mass energy of 91.6 GeV

    International Nuclear Information System (INIS)

    Martirena, S.G.

    1994-04-01

    In this work, a measurement of the strong coupling constant α s in e + e - annihilation at a center-of-mass energy of 91.6 GeV is presented. The measurement was performed with the SLD at the Stanford Linear Collider facility located at the Stanford Linear Accelerator Center in California. The procedure used consisted of measuring the rate of hard gluon radiation from the primary quarks in a sample of 9,878 hadronic events. After defining the asymptotic manifestation of partons as 'jets', various phenomenological models were used to correct for the hadronization process. A value for the QCD scale parameter Λ bar MS , defined in the bar MS renormalization convention with 5 active quark flavors, was then obtained by a direct fit to O(α s 2 ) calculations. The value of α s obtained was α s (M z0 ) = 0.122 ± 0.004 -0.007 +0.008 where the uncertainties are experimental (combined statistical and systematic) and theoretical (systematic) respectively. Equivalently, Λ bar MS = 0.28 -0.10 +0.16 GeV where the experimental and theoretical uncertainties have been combined

  5. <strong>OPTIMIZATION OF IMMOBILIZED METAL strong>>ION AFFINITYstrong>> strong>>CHROMATOGRAPHY strong>>FOR strong>>PHOSPHOPEPTIDE ENRICHMENT  PRIOR TO strong>MASS SPECTROMETRYstrong>

    DEFF Research Database (Denmark)

    Ye, Juanying; Zhang, Xumin; Young, Clifford

    simple procedures.     Methods Tryptic digests of standard phosphoproteins (bovine α,β- casein) and 3 non-phosphoproteins (bovine serum albumin, bovine β-lactoglobulin, and bovine carbonic anhydrase) with different ratios (1:50, 1:200, 1:500, 1:1000) were used for Fe(III)-IMAC (Qiagen Ni-NTA) enrichment.......   Results Fe(III)-IMAC using NTA-silica from Qiagen  showed a better performance than two other commercially available resins under the testing conditions. Increase of the acetonitrile content to 60% in loading and washing buffer significantly improved the specificity of IMAC enrichment. It was demonstrated...

  6. DETECTION OF OUTFLOWING AND EXTRAPLANAR GAS IN DISKS IN AN ASSEMBLING GALAXY CLUSTER AT z = 0.37

    International Nuclear Information System (INIS)

    Freeland, Emily; Tran, Kim-Vy H.; Irwin, Trevor; Giordano, Lea; Saintonge, Amélie; Gonzalez, Anthony H.; Zaritsky, Dennis; Just, Dennis

    2011-01-01

    We detect ionized gas characteristics indicative of winds in three disk-dominated galaxies that are members of a super-group at z = 0.37 that will merge to form a Coma-mass cluster. All three galaxies are IR luminous (L IR > 4 × 10 10 L ☉ , SFR > 8 M ☉ yr –1 ) and lie outside the X-ray cores of the galaxy groups. We find that the most IR-luminous galaxy has strong blueshifted and redshifted emission lines with velocities of ∼ ± 200 km s –1 and a third, blueshifted (∼900 km s –1 ) component. This galaxy's line widths (Hβ, [O III]λ5007, [N II], Hα) correspond to velocities of 100-1000 km s –1 . We detect extraplanar gas in two of the three galaxies with SFR >8 M ☉ yr –1 whose orientations are approximately edge-on and which have integral field unit (IFU) spaxels off the stellar disk. IFU maps reveal that the extraplanar gas extends to r h ∼ 10 kpc; [N II] and Hα line widths correspond to velocities of ∼200-400 km s –1 in the disk and decrease to ∼50-150 km s –1 above the disk. Multi-wavelength observations indicate that the emission is dominated by star formation. Including the most IR-luminous galaxy we find that 18% of supergroup members with SFR >8 M ☉ yr –1 show ionized gas characteristics indicative of outflows. This is a lower limit as showing that gas is outflowing in the remaining, moderately inclined, galaxies requires a non-trivial decoupling of contributions to the emission lines from rotational and turbulent motion. Ionized gas mass loss in these winds is ∼0.1 M ☉ yr –1 for each galaxy, although the winds are likely to entrain significantly larger amounts of mass in neutral and molecular gases.

  7. Evidence for ultrafast outflows in radio-quiet AGNs - III. Location and energetics

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-05-01

    Using the results of a previous X-ray photoionization modelling of blueshifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this Letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ˜0.0003-0.03 pc (˜ 102-104rs) from the central black hole, consistent with what is expected for accretion disc winds/outflows. The mass outflow rates are constrained between ˜0.01 and 1 M⊙ yr-1, corresponding to >rsim5-10 per cent of the accretion rates. The average lower/upper limits on the mechanical power are log? 42.6-44.6 erg s-1. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN cosmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyfert galaxies.

  8. Ionized Gas Outflows from the MAGNUM Survey: NGC 1365 and NGC 4945

    Science.gov (United States)

    Venturi, Giacomo; Marconi, Alessandro; Mingozzi, Matilde; Carniani, Stefano; Cresci, Giovanni; Risaliti, Guido; Mannucci, Filippo

    2017-12-01

    AGN feedback, acting through strong outflows accelerated in the nuclear region of AGN hosts, is invoked as a key ingredient for galaxy evolution by many models to explain the observed BH-galaxy scaling relations. Recently, some direct observational evidence of radiative mode feedback in action has been finally found in quasars at z >1.5. However, it is not possible to study outflows in quasars at those redshifts on small scales (⪉100 pc), as spatial information is limited by angular resolution. This is instead feasible in nearby active galaxies, which are ideal laboratories to explore outflow structure and properties, as well as the effects of AGN on their host galaxies. In this proceeding we present preliminary results from the MAGNUM survey, which comprises nearby Seyfert galaxies observed with the integral field spectrograph VLT/MUSE. We focus on two sources, NGC 1365 and NGC 4945, that exhibit double conical outflows extending on distances >1 kpc. We disentangle the dominant contributions to ionization of the various gas components observed in the central 5.3 kpc of NGC 1365. An attempt to infer outflow 3D structure in NGC 4945 is made via simple kinematic modeling, suggesting a hollow cone geometry.

  9. Ionized Gas Outflows from the MAGNUM Survey: NGC 1365 and NGC 4945

    Energy Technology Data Exchange (ETDEWEB)

    Venturi, Giacomo; Marconi, Alessandro [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino (Italy); Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Mingozzi, Matilde [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); Carniani, Stefano [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom); Cresci, Giovanni [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Risaliti, Guido [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino (Italy); Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Mannucci, Filippo, E-mail: gventuri@arcetri.astro.it [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy)

    2017-11-24

    AGN feedback, acting through strong outflows accelerated in the nuclear region of AGN hosts, is invoked as a key ingredient for galaxy evolution by many models to explain the observed BH-galaxy scaling relations. Recently, some direct observational evidence of radiative mode feedback in action has been finally found in quasars at z >1.5. However, it is not possible to study outflows in quasars at those redshifts on small scales (≲100 pc), as spatial information is limited by angular resolution. This is instead feasible in nearby active galaxies, which are ideal laboratories to explore outflow structure and properties, as well as the effects of AGN on their host galaxies. In this proceeding we present preliminary results from the MAGNUM survey, which comprises nearby Seyfert galaxies observed with the integral field spectrograph VLT/MUSE. We focus on two sources, NGC 1365 and NGC 4945, that exhibit double conical outflows extending on distances >1 kpc. We disentangle the dominant contributions to ionization of the various gas components observed in the central ~5.3 kpc of NGC 1365. An attempt to infer outflow 3D structure in NGC 4945 is made via simple kinematic modeling, suggesting a hollow cone geometry.

  10. Ionized Gas Outflows from the MAGNUM Survey: NGC 1365 and NGC 4945

    Directory of Open Access Journals (Sweden)

    Giacomo Venturi

    2017-11-01

    Full Text Available AGN feedback, acting through strong outflows accelerated in the nuclear region of AGN hosts, is invoked as a key ingredient for galaxy evolution by many models to explain the observed BH-galaxy scaling relations. Recently, some direct observational evidence of radiative mode feedback in action has been finally found in quasars at z >1.5. However, it is not possible to study outflows in quasars at those redshifts on small scales (≲100 pc, as spatial information is limited by angular resolution. This is instead feasible in nearby active galaxies, which are ideal laboratories to explore outflow structure and properties, as well as the effects of AGN on their host galaxies. In this proceeding we present preliminary results from the MAGNUM survey, which comprises nearby Seyfert galaxies observed with the integral field spectrograph VLT/MUSE. We focus on two sources, NGC 1365 and NGC 4945, that exhibit double conical outflows extending on distances >1 kpc. We disentangle the dominant contributions to ionization of the various gas components observed in the central ~5.3 kpc of NGC 1365. An attempt to infer outflow 3D structure in NGC 4945 is made via simple kinematic modeling, suggesting a hollow cone geometry.

  11. Glider observations of the Dotson Ice Shelf outflow

    Science.gov (United States)

    Miles, Travis; Lee, Sang Hoon; Wåhlin, Anna; Ha, Ho Kyung; Kim, Tae Wan; Assmann, Karen M.; Schofield, Oscar

    2016-01-01

    The Amundsen Sea is one of the most productive polynyas in the Antarctic per unit area and is undergoing rapid changes including a reduction in sea ice duration, thinning ice sheets, retreat of glaciers and the potential collapse of the Thwaites Glacier in Pine Island Bay. A growing body of research has indicated that these changes are altering the water mass properties and associated biogeochemistry within the polynya. Unfortunately difficulties in accessing the remote location have greatly limited the amount of in situ data that has been collected. In this study data from a Teledyne-Webb Slocum glider was used to supplement ship-based sampling along the Dotson Ice Shelf (DIS). This autonomous underwater vehicle revealed a detailed view of a meltwater laden outflow from below the western flank of the DIS. Circumpolar Deep Water intruding onto the shelf drives glacial melt and the supply of macronutrients that, along with ample light, supports the large phytoplankton blooms in the Amundsen Sea Polynya. Less well understood is the source of micronutrients, such as iron, necessary to support this bloom to the central polynya where chlorophyll concentrations are highest. This outflow region showed decreasing optical backscatter with proximity to the bed indicating that particulate matter was sourced from the overlying glacier rather than resuspended sediment. This result suggests that particulate iron, and potentially phytoplankton primary productivity, is intrinsically linked to the magnitude and duration of sub-glacial melt from Circumpolar Deep Water intrusions onto the shelf.

  12. The Small-Scale Structure of the CO Outflow in Barnard 1

    Science.gov (United States)

    Hirano, Naomi; Kameya, Osamu; Mikami, Hitomi; Umemoto, Tomofumi; Yamamoto, Satoshi

    1997-03-01

    We present aperture synthesis CO (J = 1-0) observations of the compact molecular outflow in the dark cloud B1 (Barnard 1). We have detected strong blueshifted emission having a peak brightness temperature of 14.3 K, while no significant emission was detected in the redshifted velocity range. The most prominent feature in our map is a distinct ringlike structure having a size of 25" (8700 AU) × 14" (5000 AU) at velocities blueshifted by 1.9-2.7 km s-1 from the systemic velocity. The central hole of the CO ring coincides well with the IRAS position, suggesting that this outflow is driven by the IRAS source, 03301+3057. The CO ring structure is interpreted as a conical outflow lobe with a brightened limb observed from its polar direction. The high-velocity gas that is blueshifted more than 4 km s-1 shows a V-shaped structure open to the southwest. This structure well delineates the northeast edge of the CO blue lobe observed with the single dish, where the CO lobe faces to the dense gas traced by the C18O emission. The strong peak of SiO emission observed by Yamamoto et al. is located at the interface between the CO outflow and the dense gas traced by the C18O and H13CO+ emission. This suggests that the outflow which emanates from the young star strongly interacts with the dense material and causes a shock that propagates into the surrounding cloud. The presence of strong SiO emission and the cold IRAS spectrum (log [Fν(60 μm)/Fν(100 μm)] Culture, Japan.

  13. Early Metal Enrichment of the Intergalactic Medium by Pregalactic Outflows

    Science.gov (United States)

    Madau, Piero; Ferrara, Andrea; Rees, Martin J.

    2001-07-01

    We assess supernova-driven pregalactic outflows as a mechanism for distributing the product of stellar nucleosynthesis over large cosmological volumes prior to the reionization epoch. Supernova (SN) ejecta will escape the grasp of halos with virial temperatures Tvir>~104.3 K (corresponding to masses M>~108 h-1 Msolar at redshift z=9 when they collapse from 2 σ fluctuations) if rapid cooling can take place, and a significant fraction of their baryonic mass is converted into stars over a dynamical timescale. We study the evolution of SN-driven bubbles as they blow out from subgalactic halos and propagate into the intergalactic medium (IGM), and we show that to lift the halo gas out of the potential well, the energy injection must continue at least until blowaway occurs. If the fraction of ionizing photons that escape the dense sites of star formation into intergalactic space is greater than a few percent, pregalactic outflows will propagate into an IGM that has been prephotoionized by the same massive stars that later explode as SNe, and the expansion of the metal-enriched bubbles will be halted by the combined action of external pressure, gravity, and radiative losses. The collective explosive output of about 10,000 SNe per M>~108 h-1 Msolar halo at these early epochs could pollute vast regions of intergalactic space to a mean metallicity =ΩZ/Ωb>~0.003 (comparable to the levels observed in the Lyα forest at z~3) without hydrodynamically perturbing the IGM much, i.e., producing large variations of the baryons relative to the dark matter. Rayleigh-Taylor instabilities between the dense shell that contains pristine swept-up material and the hot, metal-enriched, low-density bubble may contribute to the mixing and diffusion of heavy elements. The volume filling factor of the ejecta is higher than 20% if the star formation efficiency is on the order of 10%. Larger filling factors (not required by current observations) may be obtained for larger efficiencies

  14. Collimated Jet Or Expanding Outflow: Possible Origins of GRBs And X-Ray Flashes

    Energy Technology Data Exchange (ETDEWEB)

    Mizuta, Akira; /Kyoto U., Yukawa Inst., Kyoto /Garching, Max Planck Inst.; Yamasaki, Tatsuya; /Kyoto U., Yukawa Inst., Kyoto; Nagataki, Shigehiro; /Kyoto U., Yukawa Inst.,; Mineshige, Shin; /Kyoto U., Yukawa Inst., Kyoto

    2006-08-10

    We investigate the dynamics of an injected outflow propagating in a progenitor in the context of the collapsar model for gamma-ray bursts (GRBs) through two dimensional axisymmetric relativistic hydrodynamic simulations. Initially, we locally inject an outflow near the center of a progenitor. We calculate 25 models, in total, by fixing its total input energy to be 10{sup 51} ergs s{sup -1} and radius of the injected outflow to be 7 x 10{sup 7} cm while varying its bulk Lorentz factor, {Lambda}{sub 0} = 1.05 {approx} 5, and its specific internal energy, {epsilon}{sub 0}/c{sup 2} 30 (with c being speed of light). The injected outflow propagates in the progenitor and drives a large-scale outflow or jet. We find a smooth but dramatic transition from a collimated jet to an expanding outflow among calculated models. The opening angle of the outflow ({theta}{sub sim}) is sensitive to {Lambda}{sub 0}; we find {theta}{sub sim} < 2{sup o} for {Lambda}{sub 0} {approx}> 3. The maximum Lorentz factor is, on the other hand, sensitive to both of {Lambda}{sub 0} and {epsilon}{sub 0}; roughly {Lambda}{sub max} {approx} {Lambda}{sub 0}(1 + {epsilon}{sub 0}/c{sup 2}). In particular, a very high Lorentz factor of {Lambda}{sub max} {approx}> 100 is achieved in one model. A variety of opening angles can arise by changing {epsilon}{sub 0}, even when the maximum Lorentz factor is fixed. The jet structure totally depends on {Lambda}{sub 0}. When {Lambda}{sub 0} is high, a strong bow shock appears and generates a back flow. High pressure progenitor gas heated by the bow shock collimates the outflow to form a narrow, relativistic jet. A number of internal oblique shocks within the jet are generated by the presence of the back flow and/or shear instability. When {Lambda}{sub 0} is low, on the contrary, the outflow expands soon after the injection, since the bow shock is weak and thus the pressure of the progenitor gas is not high enough to confine the flow. Our finding will explain a smooth

  15. Silo outflow of soft frictionless spheres

    Science.gov (United States)

    Ashour, Ahmed; Trittel, Torsten; Börzsönyi, Tamás; Stannarius, Ralf

    2017-12-01

    Outflow of granular materials from silos is a remarkably complex physical phenomenon that has been extensively studied with simple objects like monodisperse hard disks in two dimensions (2D) and hard spheres in 2D and 3D. For those materials, empirical equations were found that describe the discharge characteristics. Softness adds qualitatively new features to the dynamics and to the character of the flow. We report a study of the outflow of soft, practically frictionless hydrogel spheres from a quasi-2D bin. Prominent features are intermittent clogs, peculiar flow fields in the container, and a pronounced dependence of the flow rate and clogging statistics on the container fill height. The latter is a consequence of the ineffectiveness of Janssen's law: the pressure at the bottom of a bin containing hydrogel spheres grows linearly with the fill height.

  16. Another piece of the puzzle: The fast H I outflow in Mrk 231

    Science.gov (United States)

    Morganti, Raffaella; Veilleux, Sylvain; Oosterloo, Tom; Teng, Stacy H.; Rupke, David

    2016-09-01

    We present the detection, performed with the Westerbork Synthesis Radio Telescope (WSRT) and the Karl Jansky Very Large Array (VLA), of a fast H I 21 cm outflow in the ultra-luminous infrared galaxy Mrk 231. The outflow is observed as shallow H I absorption blueshifted ~1300 km s-1 with respect to the systemic velocity and located against the inner kpc of the radio source. The outflowing gas has an estimated column density between 5 and 15 × 1018Tspin cm-2. We derive the Tspin to lie in the range 400-2000 K and the corresponding H I densities are nHI ~ 10-100 cm-3. Our results complement previous findings and confirm the multiphase nature of the outflow in Mrk 231. Although effects of the interaction between the radio plasma and the surrounding medium cannot be ruled out, the energetics and the lack of a clear kpc-scale jet suggest that the most likely origin of the H I outflow is a wide-angle nuclear wind, as earlier proposed to explain the neutral outflow traced by Na I and molecular gas in this source. Our results suggest that an H I component is present in fast outflows regardless of the acceleration mechanism (wind vs. jet driven) and that it must be connected with common properties of the pre-interaction gas involved. Considering the observed similarity of their column densities, the H I outflow likely represents the inner part of the broad wind identified on larger scales in atomic Na I. The mass outflow rate of the H I outflow (between 8 and 18 M⊙ yr-1) does not appear to be as large as that observed in molecular gas, partly owing to the smaller sizes of the outflowing region sampled by the H I absorption. These characteristics are commonly seen in other cases of outflows driven by the active galactic nucleus (AGN) suggesting that the H I may represent a short intermediate phase in the rapid cooling of the gas. The results further confirm H I as a good tracer for AGN-driven outflows not only in powerful radio sources. We also obtained deeper continuum

  17. Pitx2-mediated cardiac outflow tract remodeling.

    Science.gov (United States)

    Ma, Hsiao-Yen; Xu, Jun; Eng, Diana; Gross, Michael K; Kioussi, Chrissa

    2013-05-01

    Heart morphogenesis involves sequential anatomical changes from a linear tube of a single channel peristaltic pump to a four-chamber structure with two channels controlled by one-way valves. The developing heart undergoes continuous remodeling, including septation. Pitx2-null mice are characterized by cardiac septational defects of the atria, ventricles, and outflow tract. Pitx2-null mice also exhibited a short outflow tract, including unseptated conus and deformed endocardial cushions. Cushions were characterized with a jelly-like structure, rather than the distinct membrane-looking leaflets, indicating that endothelial mesenchymal transition was impaired in Pitx2(-/-) embryos. Mesoderm cells from the branchial arches and neural crest cells from the otic region contribute to the development of the endocardial cushions, and both were reduced in number. Members of the Fgf and Bmp families exhibited altered expression levels in the mutants. We suggest that Pitx2 is involved in the cardiac outflow tract septation by promoting and/or maintaining the number and the remodeling process of the mesoderm progenitor cells. Pitx2 influences the expression of transcription factors and signaling molecules involved in the differentiation of the cushion mesenchyme during heart development. Copyright © 2013 Wiley Periodicals, Inc.

  18. First tomographic image of ionospheric outflows

    Science.gov (United States)

    Yizengaw, E.; Moldwin, M. B.; Dyson, P. L.; Fraser, B. J.; Morley, S.

    2006-10-01

    An image of the dayside low-energy ion outflow event that occurred on 16 December 2003 was constructed with ground- and space-based GPS (Global Positioning System) Total Electron Content (TEC) data and ion drift meter data from the DMSP (Defense Meteorological Satellite Program). A tomographic reconstruction technique has been applied to the GPS TEC data obtained from the GPS receiver on the Low Earth Orbit (LEO) satellite FedSat. The two dimensional tomographic image of the topside ionosphere and plasmasphere reveals a spectacular beam-like dayside ion outflow emanating from the cusp region. The transverse components of the magnetic field in FedSat's NewMag data show the presence of field aligned current (FAC) sheets, indicating the existence of low-energy electron precipitation in the cusp region. The DMSP ion drift data show upward ion drift velocities and upward fluxes of low-energy ions and electrons at the orbiting height of the DMSP spacecraft in the cusp region. This study presents the first tomographic image of the flux tube structure of ionospheric ion outflows from 0.13 Re up to 3.17 Re altitude.

  19. Supernova blast wave within a stellar cluster outflow

    Science.gov (United States)

    Rodríguez-Ramírez, J. C.; Raga, A. C.; Velázquez, P. F.; Rodríguez-González, A.; Toledo-Roy, J. C.

    2014-11-01

    In this paper, we develop a semi-analytic model of a supernova which goes off in the centre of a stellar cluster. The supernova remnant interacts with a stratified, pre-existent outflow produced by the winds of the cluster stars. We compare our semi-analytic model with numerical simulations using the spherically symmetric Euler equations with appropriate mass and energy source terms. We find good agreement between these two approaches, and we find that for typical parameters the blast wave is likely to reach the Taylor-Sedov regime outside the cluster radius. We also calculate the predicted X-ray luminosity of the flow as a function of time, and we obtain its dependence on the outer radius and the number of stars of the cluster.

  20. Radiation hydrodynamic simulations of line-driven disk winds for ultra-fast outflows

    Science.gov (United States)

    Nomura, Mariko; Ohsuga, Ken; Takahashi, Hiroyuki R.; Wada, Keiichi; Yoshida, Tessei

    2016-02-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate the origin of the ultra-fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (˜30 Schwarzschild radii). A wide range of black hole masses (MBH) and Eddington ratios (ε) was investigated to study the conditions causing the line-driven winds. For MBH = 106-109 M⊙ and ε = 0.1-0.7, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70°-80° and with 10% of the speed of light. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as obscuration by the torus does not affect the observation of X-ray bands, the UFOs could be statistically observed in about 13%-28% of the luminous AGNs, which is not inconsistent with the observed ratio (˜40%). We also found that the results are insensitive to the X-ray luminosity and the density of the disk surface. Thus, we can conclude that UFOs could exist in any luminous AGNs, such as narrow-line Seyfert 1s and quasars with ε > 0.1, with which fast line-driven winds are associated.

  1. Outflows in the narrow-line region of bright Seyfert galaxies - I. GMOS-IFU data

    Science.gov (United States)

    Freitas, I. C.; Riffel, R. A.; Storchi-Bergmann, T.; Elvis, M.; Robinson, A.; Crenshaw, D. M.; Nagar, N. M.; Lena, D.; Schmitt, H. R.; Kraemer, S. B.

    2018-05-01

    We present two-dimensional maps of emission-line fluxes and kinematics, as well as of the stellar kinematics of the central few kpc of five bright nearby Seyfert galaxies - Mrk 6, Mrk 79, Mrk 348, Mrk 607, and Mrk 1058 - obtained from observations with the Gemini Multi-Object Spectrograph Integral Field Unit on the Gemini North Telescope. The data cover the inner 3.5 arcsec × 5.0 arcsec - corresponding to physical scales in the range 0.6 × 0.9-1.5 × 2.2 kpc2 - at a spatial resolution ranging from 110 to 280 pc with a spectral coverage of 4300-7100 Å and velocity resolution of ≈90 km s-1. The gas excitation is Seyfert like everywhere but show excitation gradients that are correlated with the gas kinematics, reddening and/or the gas density. The gas kinematics show in all cases two components: a rotation one similar to that observed in the stellar velocity field, and an outflow component. In the case of Mrk607, the gas is counter-rotating relative to the stars. Enhanced gas velocity dispersion is observed in association with the outflows according to two patterns: at the locations of the highest outflow velocities along the ionization axis or perpendicularly to it in a strip centred at the nucleus that we attribute to an equatorial outflow. Bipolar outflows are observed in Mrk 348 and Mrk 79, while in Mrk 1058 only the blueshifted part is clearly observed, while in cases of Mrk 6 and Mrk 607, the geometry of the outflow needs further constraints from modelling to be presented in a forthcoming study, where the mass flow rate and powers will also be obtained.

  2. Incision of the Jezero Crater Outflow Channel by Fluvial Sediment Transport

    Science.gov (United States)

    Holo, S.; Kite, E. S.

    2017-12-01

    Jezero crater, the top candidate landing site for the Mars 2020 rover, once possessed a lake that over-spilled and eroded a large outflow channel into the Eastern rim. The Western deltaic sediments that would be the primary science target of the rover record a history of lake level, which is modulated by the inflow and outflow channels. While formative discharges for the Western delta exist ( 500 m3/s), little work has been done to see if these flows are the same responsible for outflow channel incision. Other models of the Jezero outflow channel incision assume that a single rapid flood (incision timescales of weeks), with unknown initial hydraulic head and no discharge into the lake (e.g. from the inflow channels or the subsurface), incised an open channel with discharge modulated by flow over a weir. We present an alternate model where, due to an instability at the threshold of sediment motion, the incision of the outflow channel occurs in concert with lake filling. In particular, we assume a simplified lake-channel-valley system geometry and that the channel is hydraulically connected to the filling/draining crater lake. Bed load sediment transport and water discharge through the channel are quantified using the Meyer-Peter and Mueller relation and Manning's law respectively. Mass is conserved for both water and sediment as the lake level rises/falls and the channel incises. This model does not resolve backwater effects or concavity in the alluvial system, but it does capture the non-linear feedbacks between lake draining, erosion rate, channel flow rate, and slope relaxation. We identify controls on incision of the outflow channel and estimate the time scale of outflow channel formation through a simple dynamical model. We find that the observed 300m of channel erosion can be reproduced in decades to centuries of progressive bed load as the delta forming flows fill the lake. This corresponds to time scales on the order of or smaller than the time scale

  3. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    Science.gov (United States)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately equal to 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) holds for low stellar mass and high SFR galaxies. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFR with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 dex above the redshift (z) approximately 1 stellar mass-SFR relation and 0.23 plus or minus 0.23 dex below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 dex, but significant dispersion remains dex with 0.16 dex due to measurement uncertainties). This dispersion suggests that gas accretion, star formation, and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately equal to 100 (sup plus 310) (sub minus 75) million years which suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 94.4 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  4. Strong disk winds traced throughout outbursts in black-hole X-ray binaries.

    Science.gov (United States)

    Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  5. Strong disk winds traced throughout outbursts in black-hole X-ray binaries

    Science.gov (United States)

    Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  6. New noninvasive treatment for prostate outflow obstruction

    International Nuclear Information System (INIS)

    Richards, D.; Milroy, E.; Chapple, C.; Eldin, A.; Wallstein, H.

    1989-01-01

    Sixteen patients with prostatic outflow obstruction underwent implantation of the Wallstent endoprothesis, a woven mesh of fine stainless steel, mounted on a 9-F delivery system with an unconstrained diameter of 14 mm. The stent was inserted under local anesthesia, and placement was guided by linear transrectal US and flexible urethroscopy. In no patient was the distal sphincter mechanism compromised. In four, stent balloon dilation was needed. Urodynamic parameters (especially flow rate, voiding detrusor pressure, and postvoid residual) improved in all patients. Our experience showed the Wallstent endoprosthesis to be a safe, clinically acceptable, and minimally invasive alternative to prostatectomy

  7. Iodine-131 monitoring in sewage plant outflow

    International Nuclear Information System (INIS)

    McGowan, D R; Crawley, M T; Pratt, B E; Hinton, P J; Peet, D J

    2014-01-01

    Three different hospital sites (Oxford, Sutton and Guildford) have performed sampling of their local sewage plant outflow to determine levels of radioactivity resulting from iodine-131 patients undergoing radionuclide therapies. It was found that a maximum of 20% of activity discharged from the hospitals was present in the sewage plant final effluent channel. This is significantly below the level predicted by mathematical models in current use. The results further show that abatement systems to reduce public exposure are unlikely to be warranted at hospital sites. (paper)

  8. Inferring Polar Ion Outflows from Topside Ionograms

    Science.gov (United States)

    Sojka, J. J.; Rice, D. D.; Eccles, V.; Schunk, R. W.; David, M.; Benson, R. F.; James, H. G.

    2017-12-01

    The high-latitude topside ionosphere is dominated by O+ ions from the F-region peak around 300 km to over 1000 km altitude. The O+ profile shape provides information on the thermal structure, field aligned plasma dynamics, and outflows into the magnetosphere. Topside electron density profiles (EDP) are either obtained from topside sounders or Incoherent Scatter Radars. There is a large archive of topside sounder ionograms and hand scaled EDPs from the Alouette and ISIS satellites between 1962 and 1990. Recent NASA data enhancement efforts have augmented these EDP archives by producing digital topside ionograms both from the 7-track analog telemetry tapes and from 35 mm topside film ionograms. Rice et al [2017] in their 35 mm ionogram recovery emphasized high latitude ionograms taken during disturbed conditions. The figure below contrasts ISIS-II EDPs extracted from 35 mm films before and during a major storm (Dst -200nT) on 9 April 1972 (left panel: quiet period before the storm; right panel: during the peak of the storm). Both satellite passes used for these EDPs were centered on the Resolute Bay location that in 1972 was close to the magnetic pole. They begin at auroral latitudes around 2100 MLT and end on the dayside around 0900MLT. We will present results of how ionospheric models replicate both the quiet and disturbed conditions shown in the figure. Three types of models will be contrasted: an empirical ionosphere (IRI), a physics based ionospheric model (TDIM), and a fluid-based polar-wind model (PW). During the storm pass, when it is expected that substantial heating is present, the ISIS-II topside EDPs provide severe constraints on the usage of these models. These constraints enable estimates of the outflow fluxes as well as the heating that has occurred. The comparisons with the empirical model establish how well the pre-storm topside is modeled and identifies the challenges as the storm magnitude increases. The physics-based TDIM does have storm drivers

  9. ALMA Cycle 1 Observations of the HH46/47 Molecular Outflow: Structure, Entrainment, and Core Impact

    Science.gov (United States)

    Zhang, Yichen; Arce, Héctor G.; Mardones, Diego; Cabrit, Sylvie; Dunham, Michael M.; Garay, Guido; Noriega-Crespo, Alberto; Offner, Stella S. R.; Raga, Alejandro C.; Corder, Stuartt A.

    2016-12-01

    We present Atacama Large Millimeter/sub-millimeter Array Cycle 1 observations of the HH 46/47 molecular outflow using combined 12 m array and Atacama Compact Array observations. The improved angular resolution and sensitivity of our multi-line maps reveal structures that help us study the entrainment process in much more detail and allow us to obtain more precise estimates of outflow properties than in previous observations. We use {}13{{CO}} (1-0) and {{{C}}}18{{O}} (1-0) emission to correct for the {}12{{CO}} (1-0) optical depth to accurately estimate the outflow mass, momentum, and kinetic energy. This correction increases the estimates of the mass, momentum, and kinetic energy by factors of about 9, 5, and 2, respectively, with respect to estimates assuming optically thin emission. The new {}13{{CO}} and {{{C}}}18{{O}} data also allow us to trace denser and slower outflow material than that traced by the {}12{{CO}} maps, and they reveal an outflow cavity wall at very low velocities (as low as 0.2 {\\text{km s}}-1 with respect to the core’s central velocity). Adding the slower material traced only by {}13{{CO}} and {{{C}}}18{{O}}, there is another factor of three increase in the mass estimate and 50% increase in the momentum estimate. The estimated outflow properties indicate that the outflow is capable of dispersing the parent core within the typical lifetime of the embedded phase of a low-mass protostar and that it is responsible for a core-to-star efficiency of 1/4 to 1/3. We find that the outflow cavity wall is composed of multiple shells associated with a series of jet bow-shock events. Within about 3000 au of the protostar the {}13{{CO}} and {{{C}}}18{{O}} emission trace a circumstellar envelope with both rotation and infall motions, which we compare with a simple analytic model. The CS (2-1) emission reveals tentative evidence of a slowly moving rotating outflow, which we suggest is entrained not only poloidally but also toroidally by a disk wind that

  10. Negative and Positive Outflow-Feedback in Nearby (ULIRGs

    Directory of Open Access Journals (Sweden)

    Sara Cazzoli

    2017-12-01

    Full Text Available The starburst-AGN coexistence in local (ULIRGs makes these galaxies excellent laboratories for the study of stellar and AGN outflows and feedback. Outflows regulate star formation and AGN activity, redistributing gas, dust and metals over large scales in the interstellar and intergalactic media (negative feedback being also considered to be able to undergo vigorous star formation (positive feedback. In this contribution, I will summarize the results from a search for outflows in a sample of nearby 38 local (ULIRG systems observed with VIMOS/VLT integral field unit. For two galaxies of the sample I will detail the outflow properties and discuss the observational evidence for negative and positive outflow-feedback. The assessment of both negative and positive feedback effects represent a novel approach toward a comprehensive understanding of the impact of outflow feedback in the galaxy evolution.

  11. The Distance of Quasar outflows: VLT/X-SHOOTER Survey

    Science.gov (United States)

    Xu, Xinfeng; Arav, Nahum; Reid Miller, Timothy

    2018-01-01

    We observed 13 BAL and mini-BAL quasars using the VLT X-Shooter spectrograph. In 7 of these we find outflow troughs from S IV and S IV*. Using collisional excitation models of the measured S IV and S IV* column densities, we determine the electron number density (ne) of the outflow; and combining this value of ne with photoionization simulations, we derive the distance of each outflow from the central source. We find that 6 out of 8 outflows (one quasar shows two such outflows) are located at a distances of more than 100 pc from the central source. The spectral region covering the S IV and S IV* troughs was not observed in our targets prior to the VLT observations; and therefore this sample is unbiased towards a specific distance scale. Thus, these results are representitive (albeit in a small sample) for the general population of the high ionization BAL and mini-BAL outflows.

  12. X-ray evidence for ultra-fast outflows in Seyfert galaxies

    Science.gov (United States)

    Tombesi, Francesco; Braito, Valentina; Reeves, James; Cappi, Massimo; Dadina, Mauro

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts observed with XMM-Newton. Similar results are also obtained from a Suzaku analysis of 5 radio galaxies. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1}. The associated mechanical power is also high, in the range ˜10^{43}--10^{45} erg/s, which indicates that UFOs are capable to provide a significant contribution to the AGN cosmological feedback.

  13. Molecular outflows in the L1641 region of Orion

    International Nuclear Information System (INIS)

    Morgan, J.A.

    1990-01-01

    Little is known about the interaction between molecular outflows associated with young stellar objects and the parent molecular cloud that produced them. This is because molecular outflows are a recently discovered phenomenon and, so, have not had their global properties studied in great detail and molecular clouds were not mapped to sufficiently high spatial resolution to resolve the interaction. The interaction between molecular outflows and the L1641 molecular cloud is addressed by both identifying and mapping all the molecular outflows as well as the detailed structure of the cloud. Candidate molecular outflows were found from single point 12-CO observations of young stellar objects identified from the IRAS survey data. The candidate sources were then mapped to confirm their molecular outflow nature. From these maps, molecular outflow characteristics such as their morphology, orientation, and energetics were determined. In addition, the Orion molecular cloud was mapped to compare directly with the molecular outflows. The molecular outflows identified were found to have rising infrared spectra, radio continuum emission that suggests a stellar wind or optically thick H II region, and molecular line strengths that indicate that they are embedded within a very dense environment. The lack of an optical counterpart for many molecular outflows suggests that they occur at the earliest stages of stellar evolution. The lack of an optical counterpart for many molecular outflows suggest that they occur at the earliest stages of stellar evolution. The orientations of the molecular outflows appear to lie in no preferred direction and they have shapes that indicate that the molecular cloud is responsible for determining their direction and collimation

  14. RIGHT VENTRICULAR MYXOMA INFILTRATING THE TRICUSPID VALVE AND OBSTRUCTING THE RIGHT VENTRICULAR INFLOW AND OUTFLOW TRACTS

    OpenAIRE

    Tezcan, Hakan; Caymaz, Oğuz; Toprak, Ahmet; Fak, Ali Serdar; Yakut, Cevat; Oktay, Ahmet

    2016-01-01

    Myxomas originating in the right ventricle are extremely rare tumors. Herein, a case of right ventricular myxoma, infiltrating the tricuspid valve and causing right ventricular inflow and outflow tract obstruction, is described. Two-dimentional echocardiography diagnosed the mass easily and cardiac Doppler with color-flow examinations defined precisely its hemodynamic consequences to the heart. Magnetic resonance imaging study helped In preoperatively defining its intracardiac extension and t...

  15. Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers

    Science.gov (United States)

    Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.

    2016-12-01

    We consider r-process nucleosynthesis in outflows from black hole accretion discs formed in double neutron star and neutron star-black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disc outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A spike at A = 132 that is absent in the Solar system r-process distribution. The spike arises from convection in the disc and depends on the treatment of nuclear heating in the simulations. We conclude that disc outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.

  16. Measurement of Outflow Facility Using iPerfusion.

    Directory of Open Access Journals (Sweden)

    Joseph M Sherwood

    Full Text Available Elevated intraocular pressure (IOP is the predominant risk factor for glaucoma, and reducing IOP is the only successful strategy to prevent further glaucomatous vision loss. IOP is determined by the balance between the rates of aqueous humour secretion and outflow, and a pathological reduction in the hydraulic conductance of outflow, known as outflow facility, is responsible for IOP elevation in glaucoma. Mouse models are often used to investigate the mechanisms controlling outflow facility, but the diminutive size of the mouse eye makes measurement of outflow technically challenging. In this study, we present a new approach to measure and analyse outflow facility using iPerfusion™, which incorporates an actuated pressure reservoir, thermal flow sensor, differential pressure measurement and an automated computerised interface. In enucleated eyes from C57BL/6J mice, the flow-pressure relationship is highly non-linear and is well represented by an empirical power law model that describes the pressure dependence of outflow facility. At zero pressure, the measured flow is indistinguishable from zero, confirming the absence of any significant pressure independent flow in enucleated eyes. Comparison with the commonly used 2-parameter linear outflow model reveals that inappropriate application of a linear fit to a non-linear flow-pressure relationship introduces considerable errors in the estimation of outflow facility and leads to the false impression of pressure-independent outflow. Data from a population of enucleated eyes from C57BL/6J mice show that outflow facility is best described by a lognormal distribution, with 6-fold variability between individuals, but with relatively tight correlation of facility between fellow eyes. iPerfusion represents a platform technology to accurately and robustly characterise the flow-pressure relationship in enucleated mouse eyes for the purpose of glaucoma research and with minor modifications, may be applied

  17. Suzaku Discovery of Ultra-fast Outflows in Radio-loud AGN

    Science.gov (United States)

    Sambruna, Rita M.; Tombesi, F.; Reeves, J.; Braito, V.; Gofford, J.; Cappi, M.

    2010-03-01

    We present the results of an analysis of the 3.5--10.5 keV spectra of five bright Broad-Line Radio Galaxies (BLRGs) using proprietary and archival Suzaku observations. In three sources -- 3C 111, 3C 120, and 3C 390.3 -- we find evidence, for the first time in a radio-loud AGN, for absorption features at observed energies 7 keV and 8--9 keV, with high significance according to both the F-test and extensive Monte Carlo simulations (99% or larger). In the remaining two BLRGs, 3C 382 and 3C 445, there is no evidence for such absorption features in the XIS spectra. If interpreted as due to Fe XXV and/or Fe XXVI K-shell resonance lines, the absorption features in 3C 111, 3C 120, and 3C 390.3 imply an origin from an ionized gas outflowing with velocities in the range v 0.04-0.15c, reminiscent of Ultra-Fast Outflows (UFOs) previously observed in radio-quiet Seyfert galaxies. A fit with specific photoionization models gives ionization parameters log ξ 4--5.6 erg s-1 cm and column densities of NH 1022-23 cm-2, similar to the values observed in Seyferts. Based on light travel time arguments, we estimate that the UFOs in the three BLRGs are located within 20--500 gravitational radii from the central black hole, and thus most likely are connected to disk winds/outflows. Our estimates show that the UFOs mass outflow rate is comparable to the accretion rate and their kinetic energy a significant fraction of the AGN bolometric luminosity, making these outflows significant for the global energetic of these systems, in particular for mechanisms of jet formation.

  18. Mass-loss rates from decomposition of plant residues in spruce forests near the northern tree line subject to strong air pollution.

    Science.gov (United States)

    Lukina, Natalia V; Orlova, Maria A; Steinnes, Eiliv; Artemkina, Natalia A; Gorbacheva, Tamara T; Smirnov, Vadim E; Belova, Elena A

    2017-08-01

    Mass-loss rates during the early phase of decomposition of plant residues were studied for a period of 3 years in Norway spruce forests subjected to air pollution by Cu-Ni smelters on the Kola Peninsula, northwest Russia. Litterbags were deployed in two main patches of forests at the northern tree line, between and below the crowns of spruce trees older than 100 years. The study results demonstrated the dependence of the decomposition rates on the initial concentrations of nutrients and the C/N and lignin/N ratios in plant residues. Lower rates of mass loss in forests subject to air pollution may be related to low quality of plant residues, i.e. high concentrations of heavy metals, low concentrations of nutrients, and high lignin/N and C/N ratios. The increased losses of Ca, Mg, K, and Mn from plant residues in these forests compared to the reference were, probably, related to leaching of their compounds from the residues. The relatively high rates of heavy metal accumulation in the residues were most likely related to uptake of pollutants from the atmosphere, as well as to the lower mass-loss rates. The present study results demonstrate that the forest patchiness should be taken into account in assessment and predictions of decomposition rates in Norway spruce forests. Mass-loss rates of plant residues below the crowns of old spruce trees were significantly lower than those in the patches between the crowns. This was explained by the high C/N and lignin/N ratios in the residues of evergreens which contribute significantly to litterfall below the crowns and by lower soil temperature during winter and spring below the crowns. In addition, a lower amount of precipitation reaching the forest floor below the dense, long crowns of old Norway spruce trees may result in considerably lower washing out of the organic compounds from the residues. Lower mass-loss rates below the crowns of old spruce trees may be part of the evidence that the old-growth spruce forests can

  19. Helical Flow Component of Left Ventricular Assist Devices (LVADs) Outflow Improves Aortic Hemodynamic States

    Science.gov (United States)

    Zhang, Qi; Chang, Yu

    2018-01-01

    Background Although LVADs are confirmed to have strong effects on aortic hemodynamics, the precise mechanisms of the helical flow component of LVAD outflow are still unclear. Material/Methods To clarify these effects, 3 cases – normal case, flat flow case, and realistic flow case – were designed and studied by using the CFD approach. The normal case denoted the normal aorta without LVAD support, and the flat flow case represented the aorta with the outflow cannula. Similarly, the realistic flow case included the aortic model, the model of outflow cannula, and the model of LVAD. The velocity vector, blood streamline, distribution of wall shear stress (WSS), and the local normalized helicity (LNH) were calculated. Results The results showed that the helical component of LVAD outflow significantly improved the aortic hemodynamics. Compared with the flat flow case, the helical flow eliminated the vortex near the outer wall of the aorta and improved the blood flow transport (normal case 0.1 m/s vs. flat flow case 0.14 m/s vs. realistic flow case 0.30 m/s) at the descending aorta. Moreover, the helical flow was confirmed to even the distribution of WSS, reduce the peak value of WSS (normal case 0.92 Pa vs. flat flow case 7.39 Pa vs. realistic flow case 5.2Pa), and maintain a more orderly WSS direction. Conclusions The helical flow component of LVAD outflow has significant advantages for improving aortic hemodynamic stability. Our study provides novel insights into LVAD optimization. PMID:29431154

  20. Arctic Ocean outflow shelves in the changing Arctic: A review and perspectives

    Science.gov (United States)

    Michel, Christine; Hamilton, Jim; Hansen, Edmond; Barber, David; Reigstad, Marit; Iacozza, John; Seuthe, Lena; Niemi, Andrea

    2015-12-01

    Over the past decade or so, international research efforts, many of which were part of the International Polar Year, have accrued our understanding of the Arctic outflow shelves. The Arctic outflow shelves, namely the East Greenland Shelf (EGS) and the Canadian Arctic Archipelago (CAA), serve as conduits through which Arctic sea ice and waters and their properties are exported to the North Atlantic. These shelves play an important role in thermohaline circulation and global circulation patterns, while being influenced by basin-scale and regional changes taking place in the Arctic. Here, we synthesize the current knowledge on key forcings of primary production and ecosystem processes on the outflow shelves, as they influence their structure and functionalities and, consequently their role in Arctic Ocean productivity and global biogeochemical cycles. For the CAA, a fresh outlook on interannual and decadal physical and biological time-series reveals recent changes in productivity patterns, while an extensive analysis of sea ice conditions over the past 33 years (1980-2012) demonstrates significant declines in multi-year ice and a redistribution of ice types. For the EGS, our analysis shows that sea ice export strongly contributes to structuring spatially diverse productivity regimes. Despite the large heterogeneity in physical and biological processes within and between the outflow shelves, a conceptual model of productivity regimes is proposed, helping identify general productivity patterns and key forcings. The different productivity regimes are expected to respond differently to current and future Arctic change, providing a useful basis upon which to develop predictive scenarios of future productivity states. Current primary production estimates for both outflow shelves very likely underestimate their contribution to total Arctic production.

  1. The response of relativistic outflowing gas to the inner accretion disk of a black hole.

    Science.gov (United States)

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different

  2. Luminosity excesses in low-mass young stellar objects - a statistical study

    International Nuclear Information System (INIS)

    Strom, K.M.; Strom, S.E.; Kenyon, S.J.; Hartmann, L.

    1988-01-01

    This paper presents a statistical study in which the observed total luminosity is compared quantitatively with an estimate of the stellar luminosity for a sample of 59 low-mass young stellar objects (YSOs) in the Taurus-Auriga complex. In 13 of the analyzed YSOs, luminosity excesses greater than 0.20 are observed together with greater than 0.6 IR excesses, which typically contribute the bulk of the observed excess luminosity and are characterized by spectral energy distributions which are flat or rise toward long wavelengths. The analysis suggests that YSOs showing the largest luminosity excesses typically power optical jets and/or molecular outflows or have strong winds, as evidenced by the presence of O I emission, indicating a possible correlation between accretion and mass-outflow properties. 38 references

  3. Standing Shocks around Black Holes and Estimation of Outflow Rates

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... One can obtain the spectral properties, quasi-periodic oscillation frequencies and the outflowrates when the inflow parameters are known. Since temperature of the CENBOL decides the spectral states of the black hole, and also the outflow rate, the outflow rate is directly related to the spectral states.

  4. THE TEMPERATURE DEPENDENCE OF SOLAR ACTIVE REGION OUTFLOWS

    International Nuclear Information System (INIS)

    Warren, Harry P.; Ugarte-Urra, Ignacio; Young, Peter R.; Stenborg, Guillermo

    2011-01-01

    Spectroscopic observations with the EUV Imaging Spectrometer (EIS) on Hinode have revealed large areas of high-speed outflows at the periphery of many solar active regions. These outflows are of interest because they may connect to the heliosphere and contribute to the solar wind. In this paper, we use slit rasters from EIS in combination with narrowband slot imaging to study the temperature dependence and morphology of an outflow region and show that it is more complicated than previously thought. Outflows are observed primarily in emission lines from Fe XI to Fe XV. Observations at lower temperatures (Si VII), in contrast, show bright fan-like structures that are dominated by inflows. These data also indicate that the morphology of the outflows and the fans is different, outflows are observed in regions where there is no emission in Si VII. This suggests that the fans, which are often associated with outflows in studies involving imaging data, are not directly related to the active region outflows.

  5. Confronting the outflow-regulated cluster formation model with observations

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Li, Zhi-Yun, E-mail: fumitaka.nakamura@nao.ac.jp, E-mail: zl4h@virginia.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States)

    2014-03-10

    Protostellar outflows have been shown theoretically to be capable of maintaining supersonic turbulence in cluster-forming clumps and keeping the star formation rate per free-fall time as low as a few percent. We aim to test two basic predictions of this outflow-regulated cluster formation model, namely, (1) the clump should be close to virial equilibrium and (2) the turbulence dissipation rate should be balanced by the outflow momentum injection rate, using recent outflow surveys toward eight nearby cluster-forming clumps (B59, L1551, L1641N, Serpens Main Cloud, Serpens South, ρ Oph, IC 348, and NGC 1333). We find, for almost all sources, that the clumps are close to virial equilibrium and the outflow momentum injection rate exceeds the turbulence momentum dissipation rate. In addition, the outflow kinetic energy is significantly smaller than the clump gravitational energy for intermediate and massive clumps with M {sub cl} ≳ a few × 10{sup 2} M {sub ☉}, suggesting that the outflow feedback is not enough to disperse the clump as a whole. The number of observed protostars also indicates that the star formation rate per free-fall time is as small as a few percent for all clumps. These observationally based results strengthen the case for outflow-regulated cluster formation.

  6. Simulation of Breach Outflow for Earthfill Dam

    International Nuclear Information System (INIS)

    Razad, Azwin Zailti Abdul; Muda, Rahsidi Sabri; Sidek, Lariyah Mohd; Azia, Intan Shafilah Abdul; Mansor, Faezah Hanum; Yalit, Ruzaimei

    2013-01-01

    Dams have been built for many reasons such as irrigation, hydropower, flood mitigation, and water supply to support development for the benefit of human. However, the huge amount of water stored behind the dam can seriously pose adverse impacts to the downstream community should it be released due to unwanted dam break event. To minimise the potential loss of lives and property damages, a workable Emergency Response Plan is required to be developed. As part of a responsible dam owner and operator, TNB initiated a study on dam breach modelling for Cameron Highlands Hydroelectric Scheme to simulate the potential dam breach for Jor Dam. Prediction of dam breach parameters using the empirical equations of Froehlich and Macdonal-Langridge-Monopolis formed the basis of the modelling, coupled with MIKE 11 software to obtain the breach outflow due to Probable Maximum Flood (PMF). This paper will therefore discuss the model setup, simulation procedure and comparison of the prediction with existing equations.

  7. Metabolite profiling of Camellia sinensis by automated sequential, multidimensional gas chromatography/mass spectrometry reveals strong monsoon effects on tea constituents.

    Science.gov (United States)

    Kowalsick, Amanda; Kfoury, Nicole; Robbat, Albert; Ahmed, Selena; Orians, Colin; Griffin, Timothy; Cash, Sean B; Stepp, John Richard

    2014-11-28

    Seasonal variation in tea (Camellia sinensis (L.) Kuntze; Theaceae) chemistry was investigated using automated sequential, multidimensional gas chromatography/mass spectrometry (GC-GC/MS). Metabolite libraries were produced for teas harvested from the Bulang Mountains in Yunnan, China before and after the onset of the East Asian Monsoon. A total of 201 spring and 196 monsoon metabolites were identified, with 169 common and 59 seasonally unique compounds. An additional 163 metabolites were detected but their identity could not be confirmed. Spectral deconvolution of GC/MS data was used to measure the relative concentrations in the teas. Within each family individual metabolite concentrations increased, decreased and stayed the same. The major constituents in both teas were linalool (28%), geraniol (13%), α-terpineol (10%), hotrienol (4%) and nerol (3%). This work provides the foundation to monitor seasonal variations of tea chemistry. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Nature of shocks revealed by SOFIA OI observations in the Cepheus E protostellar outflow

    Science.gov (United States)

    Gusdorf, A.; Anderl, S.; Lefloch, B.; Leurini, S.; Wiesemeyer, H.; Güsten, R.; Benedettini, M.; Codella, C.; Godard, B.; Gómez-Ruiz, A. I.; Jacobs, K.; Kristensen, L. E.; Lesaffre, P.; Pineau des Forêts, G.; Lis, D. C.

    2017-06-01

    Context. Protostellar jets and outflows are key features of the star-formation process, and primary processes of the feedback of young stars on the interstellar medium. Understanding the underlying shocks is necessary to explain how jet and outflow systems are launched, and to quantify their chemical and energetic impacts on the surrounding medium. Aims: We performed a high-spectral resolution study of the [OI]63μm emission in the outflow of the intermediate-mass Class 0 protostar Cep E-mm. The goal is to determine the structure of the outflow, to constrain the chemical conditions in the various components, and to understand the nature of the underlying shocks, thus probing the origin of the mass-loss phenomenon. Methods: We present observations of the O I 3P1 → 3P2, OH between 2Π1/2J = 3/2 and J = 1/2 at 1837.8 GHz, and CO (16-15) lines with the GREAT receiver onboard SOFIA towards three positions in the Cep E protostellar outflow: Cep E-mm (the driving protostar), Cep E-BI (in the southern lobe), and Cep E-BII (the terminal position in the southern lobe). Results: The CO (16-15) line is detected at all three positions. The [OI]63μm line is detected in Cep E-BI and BII, whereas the OH line is not detected. In Cep E-BII, we identify three kinematical components in O I and CO. These were already detected in CO transitions and relate to spatial components: the jet, the HH377 terminal bow-shock, and the outflow cavity. We measure line temperature and line integrated intensity ratios for all components. The O I column density is higher in the outflow cavity than in the jet, which itself is higher than in the terminal shock. The terminal shock is the region where the abundance ratio of O I to CO is the lowest (about 0.2), whereas the jet component is atomic (N(O I)/N(CO) 2.7). In the jet, we compare the [OI]63μm observations with shock models that successfully fit the integrated intensity of 10 CO lines. We find that these models most likely do not fit the [OI]63

  9. Probing the connection between the accretion disk, outflows and the jet in 3C111

    Science.gov (United States)

    Tombesi, Francesco

    2011-10-01

    Recent XMM-Newton and Suzaku observations of 3C111 demonstrated the presence of ultra-fast outflows (UFOs) with v~0.1c and their relation with the accretion disk. Independent studies found that X-ray dips are followed by ejection of superluminal radio knots, therefore providing a proof of the disk-jet connection. We acquired evidence that UFOs are preferentially present between X-ray dips and new knots, possibly indicating also a link between disk outflows and the jet. The goal of this XMM-Newton proposal is to confirm this evidence. Given the strong correlation with X-rays, we will use an ongoing optical monitoring campaign to trigger a 90ks observation within two days of a dip to detect a UFO and we request a possible additional 60ks >15 days after to compare with the non-dipped state.

  10. ALMA Reveals Sequential High-mass Star Formation in the G9.62+0.19 Complex

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tie; Kim, Kee-Tae [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, Korea 34055 (Korea, Republic of); Lacy, John [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Li, Pak Shing [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Wang, Ke [European Southern Observatory, Karl-Schwarzschild-Str.2, D-85748 Garching bei München (Germany); Qin, Sheng-Li [Department of Astronomy, Yunnan University, and Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming, 650091 (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Garay, Guido; Mardones, Diego [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Wu, Yuefang [Department of Astronomy, Peking University, Beijing 100871 (China); Zhu, Qingfeng [Astronomy Department, University of Science and Technology, Chinese Academy of Sciences, Hefei 210008 (China); Tatematsu, Ken’ichi; Hirota, Tomoya [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ren, Zhiyuan; Li, Di [National Astronomical Observatories, Chinese Academy of Science, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Liu, Sheng-Yuan; Chen, Huei-Ru; Su, Yu-Nung, E-mail: liutiepku@gmail.com [Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2017-11-01

    Stellar feedback from high-mass stars (e.g., H ii regions) can strongly influence the surrounding interstellar medium and regulate star formation. Our new ALMA observations reveal sequential high-mass star formation taking place within one subvirial filamentary clump (the G9.62 clump) in the G9.62+0.19 complex. The 12 dense cores (MM1–MM12) detected by ALMA are at very different evolutionary stages, from the starless core phase to the UC H ii region phase. Three dense cores (MM6, MM7/G, MM8/F) are associated with outflows. The mass–velocity diagrams of the outflows associated with MM7/G and MM8/F can be well-fit by broken power laws. The mass–velocity diagram of the SiO outflow associated with MM8/F breaks much earlier than other outflow tracers (e.g., CO, SO, CS, HCN), suggesting that SiO traces newly shocked gas, while the other molecular lines (e.g., CO, SO, CS, HCN) mainly trace the ambient gas continuously entrained by outflow jets. Five cores (MM1, MM3, MM5, MM9, MM10) are massive starless core candidates whose masses are estimated to be larger than 25 M {sub ☉}, assuming a dust temperature of ≤20 K. The shocks from the expanding H ii regions (“B” and “C”) to the west may have a great impact on the G9.62 clump by compressing it into a filament and inducing core collapse successively, leading to sequential star formation. Our findings suggest that stellar feedback from H ii regions may enhance the star formation efficiency and suppress low-mass star formation in adjacent pre-existing massive clumps.

  11. Dense intermediate water outflow from the Cretan Sea: A salinity driven, recurrent phenomenon, connected to thermohaline circulation changes

    Science.gov (United States)

    Velaoras, Dimitris; Krokos, George; Nittis, Kostas; Theocharis, Alexander

    2014-08-01

    Data collected from different platforms in the Cretan Sea during the 2000s decade present evidence of gradually increasing salinity in the intermediate and deep intermediate layers after the middle of the decade. The observed gradual salt transport toward the deeper layers indicates contributions of dense water masses formed in various Aegean Sea subbasins. The accumulation of these saline and dense water masses in the Cretan Sea finally led to outflow from both Cretan Straits, with density greater than typical Levantine/Cretan Intermediate water but not dense enough to penetrate into the deep layers of the Eastern Mediterranean. We name this outflowing water mass as dense Cretan Intermediate Water (dCIW). A retrospective analysis of in situ data and literature references during the last four decades shows that similar events have occurred in the past in two occasions: (a) in the 1970s and (b) during the Eastern Mediterranean Transient (EMT) onset (1987-1991). We argue that these salinity-driven Aegean outflows are mostly attributed to recurrent changes of the Eastern Mediterranean upper thermohaline circulation that create favorable dense water formation conditions in the Aegean Sea through salinity preconditioning. We identify these phenomena as "EMT-like" events and argue that in these cases internal thermohaline mechanisms dominate over atmospheric forcing in dense water production. However, intense atmospheric forcing over an already salinity preconditioned basin is indispensable for creating massive deep water outflow from the Cretan Sea, such as the EMT event.

  12. Three-dimensional structure of clumpy outflow from supercritical accretion flow onto black holes

    Science.gov (United States)

    Kobayashi, Hiroshi; Ohsuga, Ken; Takahashi, Hiroyuki R.; Kawashima, Tomohisa; Asahina, Yuta; Takeuchi, Shun; Mineshige, Shin

    2018-02-01

    We perform global three-dimensional (3D) radiation-hydrodynamic (RHD) simulations of outflow from supercritical accretion flow around a 10 M⊙ black hole. We only solve the outflow part, starting from the axisymmetric 2D simulation data in a nearly steady state but with small perturbations in a sinusoidal form being added in the azimuthal direction. The mass accretion rate onto the black hole is ˜102LE/c2 in the underlying 2D simulation data, and the outflow rate is ˜10 LE/c2 (with LE and c being the Eddington luminosity and speed of light, respectively). We first confirm the emergence of clumpy outflow, which was discovered by the 2D RHD simulations, above the photosphere located at a few hundreds of Schwarzschild radii (rS) from the central black hole. As prominent 3D features we find that the clumps have the shape of a torn sheet, rather than a cut string, and that they are rotating around the central black hole with a sub-Keplerian velocity at a distance of ˜103 rS from the center. The typical clump size is ˜30 rS or less in the radial direction, and is more elongated in the angular directions, ˜ hundreds of rS at most. The sheet separation ranges from 50 to 150 rS. We expect stochastic time variations when clumps pass across the line of the sight of a distant observer. Variation timescales are estimated to be several seconds for a black hole with mass of ten to several tens of M⊙, in rough agreement with the observations of some ultra-luminous X-ray sources.

  13. Galactic Outflows, Star Formation Histories, and Timescales in Starburst Dwarf Galaxies from STARBIRDS

    Science.gov (United States)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Heilman, Taryn N.; Mitchell, Noah P.; Kelley, Tyler

    2018-03-01

    Winds are predicted to be ubiquitous in low-mass, actively star-forming galaxies. Observationally, winds have been detected in relatively few local dwarf galaxies, with even fewer constraints placed on their timescales. Here, we compare galactic outflows traced by diffuse, soft X-ray emission from Chandra Space Telescope archival observations to the star formation histories derived from Hubble Space Telescope imaging of the resolved stellar populations in six starburst dwarfs. We constrain the longevity of a wind to have an upper limit of 25 Myr based on galaxies whose starburst activity has already declined, although a larger sample is needed to confirm this result. We find an average 16% efficiency for converting the mechanical energy of stellar feedback to thermal, soft X-ray emission on the 25 Myr timescale, somewhat higher than simulations predict. The outflows have likely been sustained for timescales comparable to the duration of the starbursts (i.e., 100's Myr), after taking into account the time for the development and cessation of the wind. The wind timescales imply that material is driven to larger distances in the circumgalactic medium than estimated by assuming short, 5-10 Myr starburst durations, and that less material is recycled back to the host galaxy on short timescales. In the detected outflows, the expelled hot gas shows various morphologies which are not consistent with a simple biconical outflow structure. The sample and analysis are part of a larger program, the STARBurst IRregular Dwarf Survey (STARBIRDS), aimed at understanding the lifecycle and impact of starburst activity in low-mass systems.

  14. Cosmic ray driven outflows in global galaxy disc models

    Science.gov (United States)

    Salem, Munier; Bryan, Greg L.

    2014-02-01

    Galactic-scale winds are a generic feature of massive galaxies with high star formation rates across a broad range of redshifts. Despite their importance, a detailed physical understanding of what drives these mass loaded global flows has remained elusive. In this paper, we explore the dynamical impact of cosmic rays (CRs) by performing the first three-dimensional, adaptive mesh refinement simulations of an isolated starbursting galaxy that includes a basic model for the production, dynamics and diffusion of galactic CRs. We find that including CRs naturally leads to robust, massive, bipolar outflows from our 1012 M⊙ halo, with a mass loading factor dot{M}/SFR = 0.3 for our fiducial run. Other reasonable parameter choices led to mass loading factors above unity. The wind is multiphase and is accelerated to velocities well in excess of the escape velocity. We employ a two-fluid model for the thermal gas and relativistic CR plasma and model a range of physics relevant to galaxy formation, including radiative cooling, shocks, self-gravity, star formation, supernovae feedback into both the thermal and CR gas and isotropic CR diffusion. Injecting CRs into star-forming regions can provide significant pressure support for the interstellar medium (ISM), suppressing star formation and thickening the disc. We find that CR diffusion plays a central role in driving superwinds, rapidly transferring long-lived CRs from the highest density regions of the disc to the ISM at large, where their pressure gradient can smoothly accelerate the gas out of the disc.

  15. Radon-222 in boundary layer and free tropospheric continental outflow events at three ACE-Asia sites

    International Nuclear Information System (INIS)

    Zahorowski, Wlodek; Chambers, Scott; Wang Tao

    2005-01-01

    A 1-year record of hourly atmospheric radon-222 concentration observations at three ACE-Asia network sites Hok Tsui (Hong Kong), Gosan (Jeju Island) and Mauna Loa Observatory (Hawaii) is presented and discussed. The observations include the spring 2001 ACE-Asia intensive operation period. Site locations were chosen for the experimental characterization of both boundary layer (Hok Tsui, Gosan) and free tropospheric (Mauna Loa) continental outflow to the Pacific. A significant seasonal variability in background radon concentration is quantified at each site with the ratios of winter maximum to summer minimum background of 96, 15 and 3 for Hok Tsui, Gosan and Mauna Loa, respectively. Only during summer were background radon concentrations directly comparable with unperturbed marine values (20 mBq/m 3 ). The variability in radon signal was characterized at each site on diurnal to seasonal timescales. The seasonal variability in fetch regions for air masses experiencing the greatest and smallest terrestrial influence was characterized using 10-day back trajectories of air masses corresponding to radon concentrations higher (lower) than the 90th (10th) percentile value. The trajectory analyses for Hok Tsui and Gosan, as well as a direct analysis of the experimental results, further supports the previously postulated existence of a strong spatial heterogeneity in the radon source strength in East Asia. Back trajectories of free tropospheric air masses reaching Mauna Loa indicated source regions deep within the Asian continent primarily between 20 and 40 deg N. This fetch region is different from that influencing the Hok Tsui and Gosan sites. The radon concentration of air masses reaching Mauna Loa was shown to vary seasonally as well as with latitude of the predominant fetch region. Possible mechanisms of this phenomenon have been identified and include (a) seasonal variation in the radon source, (b) seasonal variation in the strength, frequency and/or efficiency of

  16. AGN outflows as neutrino sources: an observational test

    Science.gov (United States)

    Padovani, P.; Turcati, A.; Resconi, E.

    2018-04-01

    We test the recently proposed idea that outflows associated with Active Galactic Nuclei (AGN) could be neutrino emitters in two complementary ways. First, we cross-correlate a list of 94 "bona fide" AGN outflows with the most complete and updated repository of IceCube neutrinos currently publicly available, assembled by us for this purpose. It turns out that AGN with outflows matched to an IceCube neutrino have outflow and kinetic energy rates, and bolometric powers larger than those of AGN with outflows not matched to neutrinos. Second, we carry out a statistical analysis on a catalogue of [O III] λ5007 line profiles using a sample of 23,264 AGN at z values (˜6 and 18 per cent respectively, pre-trial) for relatively high velocities and luminosities. Our results are consistent with a scenario where AGN outflows are neutrino emitters but at present do not provide a significant signal. This can be tested with better statistics and source stacking. A predominant role of AGN outflows in explaining the IceCube data appears in any case to be ruled out.

  17. Simulation of California's Major Reservoirs Outflow Using Data Mining Technique

    Science.gov (United States)

    Yang, T.; Gao, X.; Sorooshian, S.

    2014-12-01

    The reservoir's outflow is controlled by reservoir operators, which is different from the upstream inflow. The outflow is more important than the reservoir's inflow for the downstream water users. In order to simulate the complicated reservoir operation and extract the outflow decision making patterns for California's 12 major reservoirs, we build a data-driven, computer-based ("artificial intelligent") reservoir decision making tool, using decision regression and classification tree approach. This is a well-developed statistical and graphical modeling methodology in the field of data mining. A shuffled cross validation approach is also employed to extract the outflow decision making patterns and rules based on the selected decision variables (inflow amount, precipitation, timing, water type year etc.). To show the accuracy of the model, a verification study is carried out comparing the model-generated outflow decisions ("artificial intelligent" decisions) with that made by reservoir operators (human decisions). The simulation results show that the machine-generated outflow decisions are very similar to the real reservoir operators' decisions. This conclusion is based on statistical evaluations using the Nash-Sutcliffe test. The proposed model is able to detect the most influential variables and their weights when the reservoir operators make an outflow decision. While the proposed approach was firstly applied and tested on California's 12 major reservoirs, the method is universally adaptable to other reservoir systems.

  18. Determination of the top-quark pole mass and strong coupling constant from the $t\\bar{t}$ production cross section in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Kalogeropoulos, Alexis; Keaveney, James; Maes, Michael; Olbrechts, Annik; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Selvaggi, Michele; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Tikvica, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice

    2014-01-20

    The inclusive cross section for top-quark pair production measured by the CMS experiment in proton-proton collisions at a center-of-mass energy of 7 TeV is compared to the QCD prediction at next-to-next-to-leading order with various parton distribution functions to determine the top-quark pole mass, $m_t^{pole}$, or the strong coupling constant, $\\alpha_S$. With the parton distribution function set NNPDF2.3, a pole mass of 176.7$^{+3.0}_{-2.8}$ GeV is obtained when constraining $\\alpha_S$ at the scale of the Z boson mass, $m_Z$, to the current world average. Alternatively, by constraining $m_t^{pole}$ to the latest average from direct mass measurements, a value of $\\alpha_S(m_Z)$ = 0.1151$^{+0.0028}_{-0.0027}$ is extracted. This is the first determination of $\\alpha_S$ using events from top-quark production.

  19. Evolution of the Outflows in NGC 3516

    Science.gov (United States)

    Dunn, Jay P.; Parvaresh, Rozhin; Kraemer, S. B.; Crenshaw, D. Michael

    2018-02-01

    We analyze the 2011 HST/COS spectrum of the Seyfert 1 galaxy NGC 3516, which demonstrates clear changes in one of the intrinsic absorption troughs (component 5), slight evidence of change in a second trough (component 6), and the appearance of a new absorption trough (component 9). We interpret both the changes and the appearance of the new trough as bulk motion across the line of sight. The implied lower limit on the transverse velocity of component 5 is 360 km s‑1, compared to the earlier 2001 HST/STIS spectrum, while the lower limits for components 6 and 9 are 920 km s‑1, based on 2009 FUSE data. Component 5 also exhibits a shift in velocity centroid. This is only the second known case of this behavior in a Seyfert galaxy. Due to the high quality of the HST/COS spectrum, we identify a previously undetected trough due to an excited state of Si II for component 1. In combination with the resonance trough of Si II and photoionization modeling, we directly determine the distance of the component 1 outflow to be 67.2 pc.

  20. On the plasma outflow in coronal rays

    International Nuclear Information System (INIS)

    Badalyan, O.G.; Livshits, M.A.

    1989-01-01

    The data set of ground-based and space white-light observations of large coronal rays at the distances (4-25)R sun is discussed. The observed intensities agree with those calculated for a cylindrical structure with a hydrostatic density distribution by the coronal plasma parameters T=1.6x10 6 K and n 0 =81-2)x10 9 cm -3 for different coronal rays. At (5-10) R sun , the observed brightness of concrete streamers apparently decreases with the distance faster than in the hydrostatic model. Since the hydrostatic hypothesis is besides that physically unrealistic in the corona external layers a model with Parker's type plasma outflow in a weakly diverging structure is considered. A concrete model with a singular point r c =7.6 R sun and v (25 R sun )=300 kmxs -1 is chosen which satisfies the observed brightness and contrast of the rays. The streamer flux nv turns out to be large

  1. Seasonal variability of organic matter composition in an Alaskan glacier outflow: insights into glacier carbon sources

    International Nuclear Information System (INIS)

    Spencer, Robert G M; Vermilyea, Andrew; Fellman, Jason; Hood, Eran; Raymond, Peter; Stubbins, Aron; Scott, Durelle

    2014-01-01

    Glacier ecosystems are a significant source of bioavailable, yet ancient dissolved organic carbon (DOC). Characterizing DOC in Mendenhall Glacier outflow (southeast Alaska) we document a seasonal persistence to the radiocarbon-depleted signature of DOC, highlighting ancient DOC as a ubiquitous feature of glacier outflow. We observed no systematic depletion in Δ 14 C-DOC with increasing discharge during the melt season that would suggest mobilization of an aged subglacial carbon store. However, DOC concentration, δ 13 C-DOC, Δ 14 C-DOC and fluorescence signatures appear to have been influenced by runoff from vegetated hillslopes above the glacier during onset and senescence of melt. In the peak glacier melt period, the Δ 14 C-DOC of stream samples at the outflow (−181.7 to −355.3‰) was comparable to the Δ 14 C-DOC for snow samples from the accumulation zone (−207.2 to −390.9‰), suggesting that ancient DOC from the glacier surface is exported in glacier runoff. The pre-aged DOC in glacier snow and runoff is consistent with contributions from fossil fuel combustion sources similar to those documented previously in ice cores and thus provides evidence for anthropogenic perturbation of the carbon cycle. Overall, our results emphasize the need to further characterize DOC inputs to glacier ecosystems, particularly in light of predicted changes in glacier mass and runoff in the coming century. (papers)

  2. A simple and efficient outflow boundary condition for the incompressible Navier–Stokes equations

    Directory of Open Access Journals (Sweden)

    Yibao Li

    2017-01-01

    Full Text Available Many researchers have proposed special treatments for outlet boundary conditions owing to lack of information at the outlet. Among them, the simplest method requires a large enough computational domain to prevent or reduce numerical errors at the boundaries. However, an efficient method generally requires special treatment to overcome the problems raised by the outlet boundary condition used. For example, mass flux is not conserved and the fluid field is not divergence-free at the outlet boundary. Overcoming these problems requires additional computational cost. In this paper, we present a simple and efficient outflow boundary condition for the incompressible Navier–Stokes equations, aiming to reduce the computational domain for simulating flow inside a long channel in the streamwise direction. The proposed outflow boundary condition is based on the transparent equation, where a weak formulation is used. The pressure boundary condition is derived by using the Navier–Stokes equations and the outlet flow boundary condition. In the numerical algorithm, a staggered marker-and-cell grid is used and temporal discretization is based on a projection method. The intermediate velocity boundary condition is consistently adopted to handle the velocity–pressure coupling. Characteristic numerical experiments are presented to demonstrate the robustness and accuracy of the proposed numerical scheme. Furthermore, the agreement of computational results from small and large domains suggests that our proposed outflow boundary condition can significantly reduce computational domain sizes.

  3. Regulation of breathing and autonomic outflows by chemoreceptors.

    Science.gov (United States)

    Guyenet, Patrice G

    2014-10-01

    Lung ventilation fluctuates widely with behavior but arterial PCO2 remains stable. Under normal conditions, the chemoreflexes contribute to PaCO2 stability by producing small corrective cardiorespiratory adjustments mediated by lower brainstem circuits. Carotid body (CB) information reaches the respiratory pattern generator (RPG) via nucleus solitarius (NTS) glutamatergic neurons which also target rostral ventrolateral medulla (RVLM) presympathetic neurons thereby raising sympathetic nerve activity (SNA). Chemoreceptors also regulate presympathetic neurons and cardiovagal preganglionic neurons indirectly via inputs from the RPG. Secondary effects of chemoreceptors on the autonomic outflows result from changes in lung stretch afferent and baroreceptor activity. Central respiratory chemosensitivity is caused by direct effects of acid on neurons and indirect effects of CO2 via astrocytes. Central respiratory chemoreceptors are not definitively identified but the retrotrapezoid nucleus (RTN) is a particularly strong candidate. The absence of RTN likely causes severe central apneas in congenital central hypoventilation syndrome. Like other stressors, intense chemosensory stimuli produce arousal and activate circuits that are wake- or attention-promoting. Such pathways (e.g., locus coeruleus, raphe, and orexin system) modulate the chemoreflexes in a state-dependent manner and their activation by strong chemosensory stimuli intensifies these reflexes. In essential hypertension, obstructive sleep apnea and congestive heart failure, chronically elevated CB afferent activity contributes to raising SNA but breathing is unchanged or becomes periodic (severe CHF). Extreme CNS hypoxia produces a stereotyped cardiorespiratory response (gasping, increased SNA). The effects of these various pathologies on brainstem cardiorespiratory networks are discussed, special consideration being given to the interactions between central and peripheral chemoreflexes.

  4. Regulation of Breathing and Autonomic Outflows by Chemoreceptors

    Science.gov (United States)

    Guyenet, Patrice G.

    2016-01-01

    Lung ventilation fluctuates widely with behavior but arterial PCO2 remains stable. Under normal conditions, the chemoreflexes contribute to PaCO2 stability by producing small corrective cardiorespiratory adjustments mediated by lower brainstem circuits. Carotid body (CB) information reaches the respiratory pattern generator (RPG) via nucleus solitarius (NTS) glutamatergic neurons which also target rostral ventrolateral medulla (RVLM) presympathetic neurons thereby raising sympathetic nerve activity (SNA). Chemoreceptors also regulate presympathetic neurons and cardiovagal preganglionic neurons indirectly via inputs from the RPG. Secondary effects of chemoreceptors on the autonomic outflows result from changes in lung stretch afferent and baroreceptor activity. Central respiratory chemosensitivity is caused by direct effects of acid on neurons and indirect effects of CO2 via astrocytes. Central respiratory chemoreceptors are not definitively identified but the retrotrapezoid nucleus (RTN) is a particularly strong candidate. The absence of RTN likely causes severe central apneas in congenital central hypoventilation syndrome. Like other stressors, intense chemosensory stimuli produce arousal and activate circuits that are wake- or attention-promoting. Such pathways (e.g., locus coeruleus, raphe, and orexin system) modulate the chemoreflexes in a state-dependent manner and their activation by strong chemosensory stimuli intensifies these reflexes. In essential hypertension, obstructive sleep apnea and congestive heart failure, chronically elevated CB afferent activity contributes to raising SNA but breathing is unchanged or becomes periodic (severe CHF). Extreme CNS hypoxia produces a stereotyped cardiorespiratory response (gasping, increased SNA). The effects of these various pathologies on brainstem cardiorespiratory networks are discussed, special consideration being given to the interactions between central and peripheral chemoreflexes. PMID:25428853

  5. A CONNECTION BETWEEN PLASMA CONDITIONS NEAR BLACK HOLE EVENT HORIZONS AND OUTFLOW PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, K. I. I.; Russell, D. M.; Bernardini, F. [New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi (United Arab Emirates); Fernández-Ontiveros, J. A. [Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Markoff, Sera [Astronomical Institute “Anton Pannekoek”, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Russell, T. D.; Miller-Jones, J. C. A.; Curran, P. A.; Soria, R. [International Centre for Radio Astronomy Research—Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Van der Horst, A. J. [Department of Physics, The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); Casella, P. [INAF, Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio Catone (Italy); Gandhi, P., E-mail: karri.koljonen@nyu.edu [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2015-12-01

    Accreting black holes are responsible for producing the fastest, most powerful outflows of matter in the universe. The formation process of powerful jets close to black holes is poorly understood, and the conditions leading to jet formation are currently hotly debated. In this paper, we report an unambiguous empirical correlation between the properties of the plasma close to the black hole and the particle acceleration properties within jets launched from the central regions of accreting stellar-mass and supermassive black holes. In these sources the emission of the plasma near the black hole is characterized by a power law at X-ray energies during times when the jets are produced. We find that the photon index of this power law, which gives information on the underlying particle distribution, correlates with the characteristic break frequency in the jet spectrum, which is dependent on magnetohydrodynamical processes in the outflow. The observed range in break frequencies varies by five orders of magnitude in sources that span nine orders of magnitude in black hole mass, revealing a similarity of jet properties over a large range of black hole masses powering these jets. This correlation demonstrates that the internal properties of the jet rely most critically on the conditions of the plasma close to the black hole, rather than other parameters such as the black hole mass or spin, and will provide a benchmark that should be reproduced by the jet formation models.

  6. X-ray evidence for ultra-fast outflows in AGNs

    Science.gov (United States)

    Tombesi, Francesco; Sambruna, Rita; Braito, Valentina; Reeves, James; Reynolds, Christopher; Cappi, Massimo

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 radio galaxies observed with XMM-Newton and Suzaku. We assessed the global detection significance of the absorption lines and performed a detailed photo-ionization modeling. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1} and the associated mechanical power is high, in the range ˜10^{43}--10^{45} erg/s. Therefore, UFOs are capable to provide a significant contribution to the AGN cosmological feedback and their study can provide important clues on the connection between accretion disks, winds and jets.

  7. Quasar outflows at z ≥ 6: the impact on the host galaxies

    Science.gov (United States)

    Barai, Paramita; Gallerani, Simona; Pallottini, Andrea; Ferrara, Andrea; Marconi, Alessandro; Cicone, Claudia; Maiolino, Roberto; Carniani, Stefano

    2018-01-01

    We investigate quasar outflows at z ≥ 6 by performing zoom-in cosmological hydrodynamical simulations. By employing the smoothed particle hydrodynamics code GADGET-3, we zoom in the 2R200 region around a 2 × 1012 M⊙ halo at z = 6, inside a (500 Mpc)3 comoving volume. We compare the results of our active galactic nuclei (AGN) runs with a control simulation in which only stellar/SN feedback is considered. Seeding 105 M⊙ black holes (BHs) at the centres of 109 M⊙ haloes, we find the following results. BHs accrete gas at the Eddington rate over z = 9-6. At z = 6, our most-massive BH has grown to MBH = 4 × 109 M⊙. Fast (vr > 1000 km s-1), powerful (\\dot{M}_out ˜ 2000 M_{⊙} yr-1) outflows of shock-heated low-density gas form at z ∼ 7, and propagate up to hundreds kpc. Star formation is quenched over z = 8-6, and the total star formation rate (SFR surface density near the galaxy centre) is reduced by a factor of 5 (1000). We analyse the relative contribution of multiple physical process: (i) disrupting cosmic filamentary cold gas inflows, (ii) reducing central gas density, (iii) ejecting gas outside the galaxy; and find that AGN feedback has the following effects at z = 6. The inflowing gas mass fraction is reduced by ∼ 12 per cent, the high-density gas fraction is lowered by ∼ 13 per cent, and ∼ 20 per cent of the gas outflows at a speed larger than the escape velocity (500 km s-1). We conclude that quasar-host galaxies at z ≥ 6 are accreting non-negligible amount of cosmic gas, nevertheless AGN feedback quenches their star formation dominantly by powerful outflows ejecting gas out of the host galaxy halo.

  8. The role of radiative acceleration in outflows from broad absorption line QSOs. 1: Comparison with O star winds

    Science.gov (United States)

    Arav, Nahum; Li, Zhi-Yun

    1994-01-01

    We investigate the role of radiation pressure in accelerating the broad absorption line (BAL) outflows in QSOs by comparing their properties with those of radiatively driven O star winds. We find that, owing to their lower column densities and higher velocity spreads, BAL outflows have only a few tens of strong resonance lines that are dynamically important, as compared with 10(exp 3) - 10(exp 4) lines in O star winds. We show that the combined radiative force (the 'force multiplier') declines more rapidly as a function of column density for BAL outflows than for O star winds. This is mainly attributed to the absence of lines from excited states in the BAL region. The absorbing gas in BAL outflows must have a small filling factor in order for radiative acceleration to be important dynamically. This allows the absorbing material to remain at a high enough density to maintain the ion species necessary for efficient radiative acceleration as well (as those responsible for the observed absorption), without the average flow density becoming so large that the absorbing matter cannot be accelerated by an increment larger than its own sound speed. The latter condition is necessary if the outflow is to tap a large portion of the incident photon momentum. Once a small filling factor is assumed, radiative acceleration can be more efficient in BAL outflows than in O stars. We show that terminal velocities of a few times 10(exp 4) km/sec can be expected, provided that the absorbing matter does not have to drag with it a much heavier substrate.

  9. Quasar outflow energetics from broad absorption line variability

    Science.gov (United States)

    McGraw, S. M.; Shields, J. C.; Hamann, F. W.; Capellupo, D. M.; Herbst, H.

    2018-03-01

    Quasar outflows have long been recognized as potential contributors to the co-evolution between supermassive black holes (SMBHs) and their host galaxies. The role of outflows in active galactic nucleus (AGN) feedback processes can be better understood by placing observational constraints on wind locations and kinetic energies. We utilize broad absorption line (BAL) variability to investigate the properties of a sample of 71 BAL quasars with P V broad absorption. The presence of P V BALs indicates that other BALs like C IV are saturated, such that variability in those lines favours clouds crossing the line of sight. We use these constraints with measurements of BAL variability to estimate outflow locations and energetics. Our data set consists of multiple-epoch spectra from the Sloan Digital Sky Survey and MDM Observatory. We detect significant (4σ) BAL variations from 10 quasars in our sample over rest-frame time-scales between ≤0.2-3.8 yr. Our derived distances for the 10 variable outflows are nominally ≲ 1-10 pc from the SMBH using the transverse-motion scenario, and ≲ 100-1000 pc from the central source using ionization-change considerations. These distances, in combination with the estimated high outflow column densities (i.e. NH ≳ 1022 cm-2), yield outflow kinetic luminosities between ˜ 0.001 and 1 times the bolometric luminosity of the quasar, indicating that many absorber energies within our sample are viable for AGN feedback.

  10. Decoupling peroxyacetyl nitrate from ozone in Chinese outflows observed at Gosan Climate Observatory

    Science.gov (United States)

    Han, Jihyun; Lee, Meehye; Shang, Xiaona; Lee, Gangwoong; Emmons, Louisa K.

    2017-09-01

    We measured peroxyacetyl nitrate (PAN) and other reactive species such as O3, NO2, CO, and SO2 with aerosols including mass, organic carbon (OC), and elemental carbon (EC) in PM2. 5 and K+ in PM1. 0 at Gosan Climate Observatory in Korea (33.17° N, 126.10° E) during 19 October-6 November 2010. PAN was determined through fast gas chromatography with luminol chemiluminescence detection at 425 nm every 2 min. The PAN mixing ratios ranged from 0.1 (detection limit) to 2.4 ppbv with a mean of 0.6 ppbv. For all measurements, PAN was unusually better correlated with PM2. 5 (Pearson correlation coefficient, γ = 0.79) than with O3 (γ = 0.67). In particular, the O3 level was highly elevated with SO2 at midnight, along with a typical midday peak when air was transported rapidly from the Beijing areas. The PAN enhancement was most noticeable during the occurrence of haze under stagnant conditions. In Chinese outflows slowly transported over the Yellow Sea, PAN gradually increased up to 2.4 ppbv at night, in excellent correlation with a concentration increase in PM2. 5 OC and EC, PM2. 5 mass, and PM1. 0 K+. The high K+ concentration and OC / EC ratio indicated that the air mass was impacted by biomass combustion. This study highlights PAN decoupling with O3 in Chinese outflows and suggests PAN as a useful indicator for diagnosing continental outflows and assessing their perturbation of regional air quality in northeast Asia.

  11. Decoupling peroxyacetyl nitrate from ozone in Chinese outflows observed at Gosan Climate Observatory

    Directory of Open Access Journals (Sweden)

    J. Han

    2017-09-01

    Full Text Available We measured peroxyacetyl nitrate (PAN and other reactive species such as O3, NO2, CO, and SO2 with aerosols including mass, organic carbon (OC, and elemental carbon (EC in PM2. 5 and K+ in PM1. 0 at Gosan Climate Observatory in Korea (33.17° N, 126.10° E during 19 October–6 November 2010. PAN was determined through fast gas chromatography with luminol chemiluminescence detection at 425 nm every 2 min. The PAN mixing ratios ranged from 0.1 (detection limit to 2.4 ppbv with a mean of 0.6 ppbv. For all measurements, PAN was unusually better correlated with PM2. 5 (Pearson correlation coefficient, γ =  0.79 than with O3 (γ =  0.67. In particular, the O3 level was highly elevated with SO2 at midnight, along with a typical midday peak when air was transported rapidly from the Beijing areas. The PAN enhancement was most noticeable during the occurrence of haze under stagnant conditions. In Chinese outflows slowly transported over the Yellow Sea, PAN gradually increased up to 2.4 ppbv at night, in excellent correlation with a concentration increase in PM2. 5 OC and EC, PM2. 5 mass, and PM1. 0 K+. The high K+ concentration and OC ∕ EC ratio indicated that the air mass was impacted by biomass combustion. This study highlights PAN decoupling with O3 in Chinese outflows and suggests PAN as a useful indicator for diagnosing continental outflows and assessing their perturbation of regional air quality in northeast Asia.

  12. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  13. Rock mass response to strong ground motion generated by mining induced seismic events and blasting observed at the surface of the excavations in deep level gold mines in South Africa

    Science.gov (United States)

    Milev, Alexander; Durrheim, Ray; Ogasawara, Hiroshi

    2014-05-01

    The strong ground motion generated by mining induced seismic events was studied to characterize the rock mass response and to estimate the site effect on the surface of the underground excavations. A stand-alone instruments, especially designed for recording strong ground motions, were installed underground at a number of deep level gold mines in South Africa. The instruments were recording data at the surface of the stope hangingwalls. A maximum value of 3 m/s was measured. Therefore data were compared to the data recorded in the solid rock by the mine seismic networks to determine the site response. The site response was defined as the ratio of the peak ground velocity measured at the surface of the excavations to the peak ground velocity inferred from the mine seismic data measured in the solid rocks. The site response measured at all mines studied was found to be 9 ± 3 times larger on average. A number of simulated rockbursts were conducted underground in order to estimate the rock mass response when subjected to extreme ground motion and derive the attenuation factors in near field. The rockbursts were simulated by means of large blasts detonated in solid rock close to the sidewall of a tunnel. The numerical models used in the design of the simulated rockbursts were calibrated by small blasts taking place at each experimental site. A dense array of shock type accelerometers was installed along the blasting wall to monitor the attenuation of the strong ground motion as a function of the distance from the source. The attenuation of the ground motion was found to be proportional to the distance from the source following R^-1.1 & R^-1.7 for compact rock and R^-3.1 & R^-3.4 for more fractured rock close to the surface of the tunnel. In addition the ground motion was compared to the quasi-static deformations taking place around the underground excavations. The quasi-static deformations were measured by means of strain, tilt and closure. A good correspondence

  14. Numerical Simulations of Turbulent Molecular Clouds Regulated by Radiation Feedback Forces. II. Radiation-Gas Interactions and Outflows

    Science.gov (United States)

    Raskutti, Sudhir; Ostriker, Eve C.; Skinner, M. Aaron

    2017-12-01

    Momentum deposition by radiation pressure from young, massive stars may help to destroy molecular clouds and unbind stellar clusters by driving large-scale outflows. We extend our previous numerical radiation hydrodynamic study of turbulent star-forming clouds to analyze the detailed interaction between non-ionizing UV radiation and the cloud material. Our simulations trace the evolution of gas and star particles through self-gravitating collapse, star formation, and cloud destruction via radiation-driven outflows. These models are idealized in that we include only radiation feedback and adopt an isothermal equation of state. Turbulence creates a structure of dense filaments and large holes through which radiation escapes, such that only ˜50% of the radiation is (cumulatively) absorbed by the end of star formation. The surface density distribution of gas by mass as seen by the central cluster is roughly lognormal with {σ }{ln{{Σ }}}=1.3{--}1.7, similar to the externally projected surface density distribution. This allows low surface density regions to be driven outwards to nearly 10 times their initial escape speed {v}{esc}. Although the velocity distribution of outflows is broadened by the lognormal surface density distribution, the overall efficiency of momentum injection to the gas cloud is reduced because much of the radiation escapes. The mean outflow velocity is approximately twice the escape speed from the initial cloud radius. Our results are also informative for understanding galactic-scale wind driving by radiation, in particular, the relationship between velocity and surface density for individual outflow structures and the resulting velocity and mass distributions arising from turbulent sources.

  15. Open complex-balanced mass action chemical reaction networks

    NARCIS (Netherlands)

    Rao, Shodhan; van der Schaft, Arjan; Jayawardhana, Bayu

    We consider open chemical reaction networks, i.e. ones with inflows and outflows. We assume that all the inflows to the network are constant and all outflows obey the mass action kinetics rate law. We define a complex-balanced open reaction network as one that admits a complex-balanced steady state.

  16. Toward Resolving the Outflow Engine: An Observational Perspective

    Science.gov (United States)

    Ray, T.; Dougados, C.; Bacciotti, F.; Eislöffel, J.; Chrysostomou, A.

    Jets from young stars represent one of the most striking signposts of star formation. The phenomenon has been researched for over two decades and there is now general agreement that such jets are generated as a byproduct of accretion, most likely by the accretion disk itself. Thus they mimic what occurs in more exotic objects such as active galactic nuclei and microquasars. The precise mechanism for their production, however, remains a mystery. To a large degree, progress is hampered observationally by the embedded nature of many jet sources as well as a lack of spatial resolution: Crude estimates, as well as more sophisticated models, nevertheless suggest that jets are accelerated and focused on scales of a few AU at most. It is only in the past few years, however, that we have begun to probe such scales in detail using classical T Tauri stars as touchstones. Application of adaptive optics, data provided by the HST, use of specialized techniques such as spectroastrometry, and the development of spectral diagnostic tools are beginning to reveal conditions in the jet launch zone. This has helped enormously to constrain models. Further improvements in the quality of the observational data are expected when the new generation of interferometers come on line. Here we review some of the most dramatic findings in this area since Protostars and Planets IV, including indications for jet rotation, i.e., that they transport angular momentum. We will also show how measurements such as those of width and the velocity field close to the source suggest jets are initially launched as warm magnetocentrifugal disk winds. Finally, the power of the spectroastrometric technique, as a probe of the central engine in very-low-mass stars and brown dwarfs, is shown by revealing the presence of a collimated outflow from a brown dwarf for the first time, copying what occurs on a larger scale in T Tauri stars.

  17. Multimodality characterization of a noncommunicating congenital duodenal duplication cyst causing pyloric outflow obstruction in a young dog.

    Science.gov (United States)

    Mutascio, Liliana; Vilaplana Grosso, Federico; Ramos-Vara, José; Simons, Micha

    2017-05-11

    A 10-month-old German Shepherd Dog presented for evaluation of intermittent vomiting. Abdominal radiographs revealed a marked right cranial mass effect. Initial differentials included abscess/cyst or less likely neoplasia from undetermined origin. On abdominal ultrasound the mass appeared cystic and thin walled. Computed tomography revealed a large cystic lesion originating from the pyloroduodenal junction causing pyloric outflow obstruction. A noncommunicating duodenal duplication cyst was found on exploratory laparotomy and further confirmed with histopathology and immunohistochemistry. Enteric duplication cyst should be considered as a differential in young dogs with gastrointestinal signs and a cystic abdominal mass detected with different imaging modalities. © 2017 American College of Veterinary Radiology.

  18. Seasonal changes and driving forces of inflow and outflow through the Bohai Strait

    Science.gov (United States)

    Zhang, Zhixin; Qiao, Fangli; Guo, Jingsong; Guo, Binghuo

    2018-02-01

    This work focuses on analyzing seasonal variation of inflow and outflow through the Bohai Strait that greatly affect the marine environment in the Bohai Sea, using observational data including sea bed mounted acoustic Doppler current profiler currents, CTD salinity data on deck, sea level anomalies of coastal tide gauge stations, and climatological monthly sea level anomalies from Archiving, Validation and Interpretation of Satellite Oceanographic data. Our results show three patterns of outflow and inflow through the Bohai Strait. The first is such that outflow and inflow occur respectively in the southern and northern parts of the strait, as in the traditional understanding. Our results suggest that this pattern occurs only in autumn and winter. Beginning in late September, Ekman currents driven by the northwesterly monsoon carry Bohai Sea water that piles up in the southern part of that sea and then exits eastward to the Yellow Sea. In this process, the pressure and current fields are continuously adjusted, until a quasi balance state between wind stress, Coriolis force and pressure gradient force is reached in winter. Inflow with a compensating property through the northern channel is close to the outflow through the southern channel in winter. The second pattern is a single inflow in spring, and the current and pressure fields are in adjustment. In early spring, the northwesterly monsoon ceases, Yellow Sea water enters the Bohai Sea under the pressure gradient force. With southeasterly monsoon establishment and strengthening, northern Yellow Sea water continually flows into the Bohai Sea and causes sea level rise northward. In the third pattern, outflow is much greater than inflow in summer. The currents run eastward in the central Bohai Sea and then enter the northern Yellow Sea through the northern channel and upper layer of the southern channel, while a westward current with a compensating property enters via the lower layer of the southern channel. Larger

  19. Posterior routes of choroidal blood outflow in high myopia.

    Science.gov (United States)

    Ohno-Matsui, K; Morishima, N; Ito, M; Yamashita, S; Tokoro, T

    1996-01-01

    A few reports in the ophthalmic literature have described choroidal blood outflow through posterior routes. Most of the patients reported were highly myopic; therefore, a correlation between such posterior routes and high myopia has been suspected. The authors examined highly myopic eyes using indocyanine green (ICG) videoangiography and investigated the prevalence and clinical significance of posterior routes in them. The authors examined 255 highly myopic eyes (146 patients) using ICG videoangiography. All had refractive errors greater than--8.25 diopters (D). They also examined a control group consisting of 42 eyes (26 patients) that had refractive errors within +/- 3D. Of 255 highly myopic eyes, 61 (23.9%) had choroidal blood outflow through posterior routes. These routes were classified by type of vein according to its penetration site. One drained into the margin of the optic nerve head, and the other penetrated the sclera near the macula. However, only 1 of the 42 eyes (2.4%) in the control group showed choroidal outflow by a posterior route. The prevalence of posterior routes was significantly higher in the highly myopic eyes than in the control group (P < 0.05). Posterior routes of choroidal blood outflow were observed in nearly 25% of highly myopic eyes. These vessels appear to be one of the major routes of posterior choroidal outflow in highly myopic eyes.

  20. Multiple outflows, spatial components, and nonlinearities in age theory

    Science.gov (United States)

    Calabrese, Salvatore; Porporato, Amilcare

    2017-01-01

    Water age has become an important variable for the characterization of hydrologic systems. The goal of this paper is to analyze the role of multiple outflows, spatial components, and nonlinearities in age theory. We first extend the theory to linear systems with multiple outflows, including the relationship between age distribution at death and survival time distribution at birth. We further show that for each outflow there is a survival time distribution at birth, which normalized corresponds to the impulse-response function for the specific outflow. We also analyze how the impulse-response function affects both the amplitude gain and time delay of the outflow and the long-term average partitioning. With regard to linear spatially extended systems, we link the impulse-response function to the Green's function. This allows us to easily compute the loss function and the age distribution for the system. Finally, we focus on nonlinear systems to analyze the effects of storage-dependent and age distribution-dependent loss functions. By considering the Burgers' equation, we show how the relationships between spatial dynamics and the age distribution are complicated by nonlinearities.

  1. The Importance of Preventive Feedback: Inference from Observations of the Stellar Masses and Metallicities of Milky Way Dwarf Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yu; Benson, Andrew; Wetzel, Andrew; Tonnesen, Stephanie [The Observatories, The Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Mao, Yao-Yuan [Department of Physics and Astronomy and the Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, Pittsburgh, PA 15260 (United States); Peter, Annika H. G. [CCAPP and Department of Physics, The Ohio State University, 191 W. Woodruff Avenue, Columbus, OH 43210 (United States); Boylan-Kolchin, Michael [Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2017-09-01

    Dwarf galaxies are known to have remarkably low star formation efficiency due to strong feedback. Adopting the dwarf galaxies of the Milky Way (MW) as a laboratory, we explore a flexible semi-analytic galaxy formation model to understand how the feedback processes shape the satellite galaxies of the MW. Using Markov Chain Monte Carlo, we exhaustively search a large parameter space of the model and rigorously show that the general wisdom of strong outflows as the primary feedback mechanism cannot simultaneously explain the stellar mass function and the mass–metallicity relation of the MW satellites. An extended model that assumes that a fraction of baryons is prevented from collapsing into low-mass halos in the first place can be accurately constrained to simultaneously reproduce those observations. The inference suggests that two different physical mechanisms are needed to explain the two different data sets. In particular, moderate outflows with weak halo mass dependence are needed to explain the mass–metallicity relation, and prevention of baryons falling into shallow gravitational potentials of low-mass halos (e.g., “pre-heating”) is needed to explain the low stellar mass fraction for a given subhalo mass.

  2. Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan

    OpenAIRE

    S. Ueda; S. Ueda; T. Nakayama; T. Nakayama; F. Taketani; K. Adachi; A. Matsuki; Y. Iwamoto; Y. Iwamoto; Y. Sadanaga; Y. Matsumi; Y. Matsumi

    2016-01-01

    The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mix...

  3. Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan

    OpenAIRE

    S. Ueda; T. Nakayama; F. Taketani; K. Adachi; A. Matsuki; Y. Iwamoto; Y. Sadanaga; Y. Matsumi

    2015-01-01

    The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mix...

  4. BREATHING FIRE: HOW STELLAR FEEDBACK DRIVES RADIAL MIGRATION, RAPID SIZE FLUCTUATIONS, AND POPULATION GRADIENTS IN LOW-MASS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    El-Badry, Kareem; Geha, Marla [Department of Astronomy, Yale University, New Haven, CT (United States); Wetzel, Andrew; Hopkins, Philip F. [TAPIR, California Institute of Technology, Pasadena, CA USA (United States); Kereš, Dusan; Chan, T. K. [Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla (United States); Faucher-Giguère, Claude-André, E-mail: kareem.el-badry@yale.edu [Department of Physics and Astronomy and CIERA, Northwestern University, Evanston, IL (United States)

    2016-04-01

    We examine the effects of stellar feedback and bursty star formation on low-mass galaxies (M{sub star} = 2 × 10{sup 6} − 5 × 10{sup 10} M{sub ⊙}) using the Feedback in Realistic Environments (FIRE) simulations. While previous studies emphasized the impact of feedback on dark matter profiles, we investigate the impact on the stellar component: kinematics, radial migration, size evolution, and population gradients. Feedback-driven outflows/inflows drive significant radial stellar migration over both short and long timescales via two processes: (1) outflowing/infalling gas can remain star-forming, producing young stars that migrate ∼1 kpc within their first 100 Myr, and (2) gas outflows/inflows drive strong fluctuations in the global potential, transferring energy to all stars. These processes produce several dramatic effects. First, galaxies’ effective radii can fluctuate by factors of >2 over ∼200 Myr, and these rapid size fluctuations can account for much of the observed scatter in the radius at fixed M{sub star}. Second, the cumulative effects of many outflow/infall episodes steadily heat stellar orbits, causing old stars to migrate outward most strongly. This age-dependent radial migration mixes—and even inverts—intrinsic age and metallicity gradients. Thus, the galactic-archaeology approach of calculating radial star formation histories from stellar populations at z = 0 can be severely biased. These effects are strongest at M{sub star} ≈ 10{sup 7–9.6} M{sub ⊙}, the same regime where feedback most efficiently cores galaxies. Thus, detailed measurements of stellar kinematics in low-mass galaxies can strongly constrain feedback models and test baryonic solutions to small-scale problems in ΛCDM.

  5. Triggered star formation: Rotation, magnetic fields and outflows

    Science.gov (United States)

    Frank, A.; Li, S.; Blackman, E. G.

    2015-12-01

    Star formation can be triggered by compression from wind or supernova driven shock waves that sweep over molecular clouds. In a previous work we used Adaptive Mesh Refinement (AMR) simulation methods, including sink particles, to simulate the full collapse of a stable Bonnor-Ebert sphere subjected to a passing shock. We tracked the flow of cloud material after a star (a sink particle) had formed. For rotating clouds we observed the formation of disks which then interact with the post-shock flow. In this paper we take the next step forward in complexity, presenting first results of simulations that include a magnetized cloud. Our results show that after a disk is formed a collimated magneto-centrifugal outflow is launched. The outflow is bipolar but asymmetric, due to interactions with the shocked flow. We explore the influence of the outflows on the post-triggering collapse dynamics.

  6. Plasma Outflows: Known Knowns, Known Unknowns, and The Unknown

    Science.gov (United States)

    Moore, T. E.

    2012-01-01

    A brief summary is given of i) what we know from observing ionospheric outflows and ii) how outflow parameterizations are being used in global simulations to evaluate their effects on magnetospheric dynamics. Then, a list of unanswered questions and issues to be resolved is given, followed by a description of the known future mission plans expressed in the Heliophysics Roadmap, such as Origin of Near-Earth Plasmas (ONEP), and Ion-Neutral Coupling in the Atmosphere (INCA). Finally, a set of requirements for definitive plasma outflow observations are identified, along with possible methods for fulfilling them in future missions. Since results of the current Heliophysics Decadal Survey are expected soon, it is hoped that future plans can be summarized and discussed without speculation at the GEM 2012 meeting.

  7. A young bipolar outflow from IRAS 15398-3359

    DEFF Research Database (Denmark)

    Bjerkeli, Per; Jørgensen, Jes Kristian; Brinch, Christian

    2016-01-01

    in the observedregion. From the kinematical information of the emission lines we aim todetermine the nature of the infalling and outflowing gas in the system.We also aim to determine the physical properties of the outflow. Methods: Maps from the Submillimeter Array (SMA) reveal the spatialdistribution of the gaseous......Context. Changing physical conditions in the vicinity of protostarsallow for a rich and interesting chemistry to occur. Heating and coolingof the gas allows molecules to be released from and frozen out on dustgrains. These changes in physics, traced by chemistry as well as thekinematical...... and the surrounding cloud also have a profoundimpact on the observed line profiles. N2H+ isdetected in the outflow, but is suppressed towards the central region,perhaps because of the competing reaction between CO andH3+ in the densest regions as well as thedestruction of N2H+ by CO.N2D+ is detected in a ridge south...

  8. ALMA suggests outflows in z ˜ 5.5 galaxies

    Science.gov (United States)

    Gallerani, S.; Pallottini, A.; Feruglio, C.; Ferrara, A.; Maiolino, R.; Vallini, L.; Riechers, D. A.; Pavesi, R.

    2018-01-01

    We present the first attempt to detect outflows from galaxies approaching the Epoch of Reionization (EoR) using a sample of nine star-forming (SFR = 31 ± 20 M⊙ yr- 1) z ∼ 5.5 galaxies for which the [C II]158 μm line has been previously obtained with Atacama Large Millimeter Array (ALMA). We first fit each line with a Gaussian function and compute the residuals by subtracting the best-fitting model from the data. We combine the residuals of all sample galaxies and find that the total signal is characterized by a flux excess of ∼0.5 mJy extended over ∼1000 km s-1. Although we cannot exclude that part of this signal is due to emission from faint satellite galaxies, we show that the most probable explanation for the detected flux excess is the presence of broad wings in the [C II] lines, signatures of starburst-driven outflows. We infer an average outflow rate of \\dot{M}=54± 23 M_{⊙} yr^{-1}, providing a loading factor η =\\dot{M}/SFR=1.7± 1.3 in agreement with observed local starbursts. Our interpretation is consistent with outcomes from zoomed hydrosimulations of Dahlia, a z ∼ 6 galaxy (SFR˜ 100 M_{⊙} yr^{-1}), whose feedback-regulated star formation results into an outflow rate \\dot{M}˜ 30 M_{⊙} yr^{-1}. The quality of the ALMA data is not sufficient for a detailed analysis of the [C II] line profile in individual galaxies. Nevertheless, our results suggest that starburst-driven outflows are in place in the EoR and provide useful indications for future ALMA campaigns. Deeper observations of the [C II] line in this sample are required to better characterize feedback at high-z and to understand the role of outflows in shaping early galaxy formation.

  9. Relative outflow enhancements during major geomagnetic storms – Cluster observations

    Directory of Open Access Journals (Sweden)

    A. Schillings

    2017-12-01

    Full Text Available The rate of ion outflow from the polar ionosphere is known to vary by orders of magnitude, depending on the geomagnetic activity. However, the upper limit of the outflow rate during the largest geomagnetic storms is not well constrained due to poor spatial coverage during storm events. In this paper, we analyse six major geomagnetic storms between 2001 and 2004 using Cluster data. The six major storms fulfil the criteria of Dst  < −100 nT or Kp  > 7+. Since the shape of the magnetospheric regions (plasma mantle, lobe and inner magnetosphere are distorted during large magnetic storms, we use both plasma beta (β and ion characteristics to define a spatial box where the upward O+ flux scaled to an ionospheric reference altitude for the extreme event is observed. The relative enhancement of the scaled outflow in the spatial boxes as compared to the data from the full year when the storm occurred is estimated. Only O+ data were used because H+ may have a solar wind origin. The storm time data for most cases showed up as a clearly distinguishable separate peak in the distribution toward the largest fluxes observed. The relative enhancement in the outflow region during storm time is 1 to 2 orders of magnitude higher compared to less disturbed time. The largest relative scaled outflow enhancement is 83 (7 November 2004 and the highest scaled O+ outflow observed is 2  ×  1014 m−2 s−1 (29 October 2003.

  10. Supernova-driven outflows and chemical evolution of dwarf spheroidal galaxies.

    Science.gov (United States)

    Qian, Yong-Zhong; Wasserburg, G J

    2012-03-27

    We present a general phenomenological model for the metallicity distribution (MD) in terms of [Fe/H] for dwarf spheroidal galaxies (dSphs). These galaxies appear to have stopped accreting gas from the intergalactic medium and are fossilized systems with their stars undergoing slow internal evolution. For a wide variety of infall histories of unprocessed baryonic matter to feed star formation, most of the observed MDs can be well described by our model. The key requirement is that the fraction of the gas mass lost by supernova-driven outflows is close to unity. This model also predicts a relationship between the total stellar mass and the mean metallicity for dSphs in accord with properties of their dark matter halos. The model further predicts as a natural consequence that the abundance ratios [E/Fe] for elements such as O, Mg, and Si decrease for stellar populations at the higher end of the [Fe/H] range in a dSph. We show that, for infall rates far below the net rate of gas loss to star formation and outflows, the MD in our model is very sharply peaked at one [Fe/H] value, similar to what is observed in most globular clusters. This result suggests that globular clusters may be end members of the same family as dSphs.

  11. The Influence of Galactic Outflows on the Formation of Nearby Dwarf Galaxies.

    Science.gov (United States)

    Scannapieco; Ferrara; Broadhurst

    2000-06-10

    We show that the gas in growing density perturbations is vulnerable to the influence of winds outflowing from nearby collapsed galaxies that have already formed stars. This suggests that the formation of nearby galaxies with masses less, similar10(9) M( middle dot in circle) is likely to be suppressed, irrespective of the details of galaxy formation. An impinging wind may shock-heat the gas of a nearby perturbation to above the virial temperature, thereby mechanically evaporating the gas, or the baryons may be stripped from the perturbation entirely if they are accelerated to above the escape velocity. We show that baryonic stripping is the most effective of these two processes, because shock-heated clouds that are too large to be stripped are able to radiatively cool within a sound crossing time, limiting evaporation. The intergalactic medium temperatures and star formation rates required for outflows to have a significant influence on the formation of low-mass galaxies are consistent with current observations, but may soon be examined directly via associated distortions in the cosmic microwave background and with near-infrared observations from the Next Generation Space Telescope, which may detect the supernovae from early-forming stars.

  12. THE LAUNCHING OF COLD CLOUDS BY GALAXY OUTFLOWS. I. HYDRODYNAMIC INTERACTIONS WITH RADIATIVE COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Scannapieco, Evan [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States); Brüggen, Marcus [Universität Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2015-06-01

    To better understand the nature of the multiphase material found in outflowing galaxies, we study the evolution of cold clouds embedded in flows of hot and fast material. Using a suite of adaptive mesh refinement simulations that include radiative cooling, we investigate both cloud mass loss and cloud acceleration under the full range of conditions observed in galaxy outflows. The simulations are designed to track the cloud center of mass, enabling us to study the cloud evolution at long disruption times. For supersonic flows, a Mach cone forms around the cloud, which damps the Kelvin–Helmholtz instability but also establishes a streamwise pressure gradient that stretches the cloud apart. If time is expressed in units of the cloud crushing time, both the cloud lifetime and the cloud acceleration rate are independent of cloud radius, and we find simple scalings for these quantities as a function of the Mach number of the external medium. A resolution study suggests that our simulations accurately describe the evolution of cold clouds in the absence of thermal conduction and magnetic fields, physical processes whose roles will be studied in forthcoming papers.

  13. Does the X-ray outflow quasar PDS 456 have a UV outflow at 0.3c?

    Science.gov (United States)

    Hamann, Fred; Chartas, George; Reeves, James; Nardini, Emanuele

    2018-05-01

    The quasar PDS 456 (at redshift ˜0.184) has a prototype ultra-fast outflow (UFO) measured in X-rays. This outflow is highly ionized with relativistic speeds, large total column densities log NH(cm-2) > 23, and large kinetic energies that could be important for feedback to the host galaxy. A UV spectrum of PDS 456 obtained with the Hubble Space Telescope in 2000 contains one well-measured broad absorption line (BAL) at ˜1346 Å (observed) that might be Ly α at v ≈ 0.06c or N V λ1240 at v ≈ 0.08c. However, we use photoionization models and comparisons to other outflow quasars to show that these BAL identifications are problematic because other lines that should accompany them are not detected. We argue that the UV BAL is probably C IV at v ≈ 0.30c. This would be the fastest UV outflow ever reported, but its speed is similar to the X-ray outflow and its appearance overall is similar to relativistic UV BALs observed in other quasars. The C IV BAL identification is also supported indirectly by the tentative detection of another broad C IV line at v ≈ 0.19c. The high speeds suggest that the UV outflow originates with the X-ray UFO crudely 20-30 rg from the central black hole. We speculate that the C IV BAL might form in dense clumps embedded in the X-ray UFO, requiring density enhancements of only ≳0.4 dex compared to clumpy structures already inferred for the soft X-ray absorber in PDS 456. The C IV BAL might therefore be the first detection of low-ionization clumps proposed previously to boost the opacities in UFOs for radiative driving.

  14. Quenching of Star Formation in Molecular Outflow Host NGC 1266

    NARCIS (Netherlands)

    Alatalo, K.; Nyland, K. E.; Graves, G.; Deustua, S.; Young, L. M.; Davis, T. A.; Crocker, A. F.; Bureau, M.; Bayet, E.; Blitz, L.; Bois, M.; Bournaud, F.; Cappellari, M.; Davies, R. L.; de Zeeuw, P. T.; Emsellem, E.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; McDermid, R. M.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.; Wong, Tony; Ott, Jürgen

    We detail the rich molecular story of NGC 1266, its serendipitous discovery within the ATLAS3D survey (Cappellari et al. 2011) and how it plays host to an AGN-driven molecular outflow, potentially quenching all of its star formation (SF) within the next 100 Myr. While major mergers appear to play a

  15. Outflow channels with deltaic deposits in Ismenius Lacus, Mars

    Science.gov (United States)

    Mangold, Nicolas; Howard, Alan D.

    2013-09-01

    A connected series of outflow channels in the Ismenius Lacus quadrangle are identified for the first time and characterized using High Resolution Stereo Camera images of Mars Express, the Context camera images of Mars Reconnaissance Orbiter and the topography of the Mars Observer Laser Altimeter. These channels (named Okavango Valles), which stretch over >400 km south to north and join the northern plains, were identified from braided channels, scour/groove marks, poorly sinuous valleys and depositional landforms. Discharge rates were estimated to 0.1-5 × 106 m3 s-1 from analysis of the topography of scour marks. Pathways of channels segments were extracted from topography showing a unique source at a breached crater rim, suggesting overflow from ponded depressions. A series of delta fans are observed inside depressions along the channel pathways. The presence of these deltas formed in former bodies of water is a compelling argument for formation of this outflow channel system by fluvial flows. The similarity of these flows with other outflow channels on Mars proves that volcanically-related outflows cannot explain all such features. In addition, this study also shows that catastrophic floods are able to create fan deltas in transient lakes. This example has to be taken into account in the interpretation of late stage fans associated with poorly branched valleys and single channels.

  16. Standing Shocks around Black Holes and Estimation of Outflow ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. We self-consistently obtain shock locations in an accretion flow by using an analytical method. One can obtain the spectral properties, quasi-periodic oscillation frequencies and the outflow rates when the inflow parameters are known. Since temperature of the CENBOL decides the spectral states of the black hole, ...

  17. Mechanisms for pressurized groundwater outflow channels, implications for Mars

    NARCIS (Netherlands)

    Marra, Wouter; Kleinhans, Maarten|info:eu-repo/dai/nl/217675123; Hauber, E.; McLelland, Stuart J.; Murphy, Brendan J.; Parsons, Daniel R.; Conway, Susan J.

    2014-01-01

    Various valleys on Mars show evidence for extensive fluvial activity in the past. The largest valleys on Mars are several tens to hundreds of kilometers wide and are thought to have originated from outflow of pressurized groundwater. However, exact mechanisms of these processes are lacking, which

  18. An unusual cause of left ventricular outflow tract obstruction

    Directory of Open Access Journals (Sweden)

    Shrenik R. Doshi

    2015-07-01

    Full Text Available Left ventricular outflow tract obstruction (LVOTO has been reported with bio-prosthetic and mechanical mitral valves (MV, though it is more common with the former. The obstruction can be dynamic or fixed. We hereby report a case of fixed LVOTO following bio-prosthetic MV replacement (MVR.

  19. THE SHAPING EFFECT OF COLLIMATED FAST OUTFLOWS IN THE EGG NEBULA

    International Nuclear Information System (INIS)

    Dinh-V-Trung; Lim, Jeremy

    2009-01-01

    We present high angular resolution observations of the HC 3 N J = 5-4 line from the Egg nebula, which is the archetype of proto-planetary nebulae (PPNs). We find that the HC 3 N emission in the approaching and receding portion of the envelope traces a clumpy hollow shell, similar to that seen in normal carbon-rich envelopes. Near the systemic velocity, the hollow shell is fragmented into several large blobs or arcs with missing portions correspond spatially to locations of previously reported high-velocity outflows in the Egg nebula. This provides direct evidence for the disruption of the slowly expanding envelope ejected during the AGB phase by the collimated fast outflows initiated during the transition to the PPN phase. From modeling the HC 3 N distribution, we could reproduce qualitatively the spatial kinematics of the HC 3 N J = 5-4 emission using a HC 3 N shell with two pairs of cavities cleared by the collimated high-velocity outflows along the polar direction and in the equatorial plane. We infer a relatively high abundance of HC 3 N/H 2 ∼ 3 x 10 -6 for an estimated mass-loss rate of 3 x 10 -5 M sun yr -1 in the HC 3 N shell. The high abundance of HC 3 N and the presence of some weaker J = 5-4 emission in the vicinity of the central post-AGB star suggest an unusually efficient formation of this molecule in the Egg nebula.

  20. The Orion Fingers: H2 Temperatures and Excitation in an Explosive Outflow

    Science.gov (United States)

    Youngblood, Allison; France, Kevin; Ginsburg, Adam; Hoadley, Keri; Bally, John

    2018-04-01

    We measure H2 temperatures and column densities across the Orion Becklin-Neugebauer/Kleinmann-Low (BN/KL) explosive outflow from a set of 13 near-infrared (IR) H2 rovibrational emission lines observed with the TripleSpec spectrograph on Apache Point Observatory’s 3.5 m telescope. We find that most of the region is well characterized by a single temperature (∼2000–2500 K), which may be influenced by the limited range of upper-energy levels (6000–20,000 K) probed by our data set. The H2 column density maps indicate that warm H2 comprises 10‑5–10‑3 of the total H2 column density near the center of the outflow. Combining column density measurements for co-spatial H2 and CO at T = 2500 K, we measure a CO/H2 fractional abundance of 2 × 10‑3 and discuss possible reasons why this value is in excess of the canonical 10‑4 value, including dust attenuation, incorrect assumptions on co-spatiality of the H2 and CO emission, and chemical processing in an extreme environment. We model the radiative transfer of H2 in this region with ultraviolet (UV) pumping models to look for signatures of H2 fluorescence from H I Lyα pumping. Dissociative (J-type) shocks and nebular emission from the foreground Orion H II region are considered as possible Lyα sources. From our radiative transfer models, we predict that signatures of Lyα pumping should be detectable in near-IR line ratios given a sufficiently strong source, but such a source is not present in the BN/KL outflow. The data are consistent with shocks as the H2 heating source.

  1. Efficient cold outflows driven by cosmic rays in high redshift galaxies and their global effects on the IGM

    Science.gov (United States)

    Samui, Saumyadip; Subramanian, Kandaswamy; Srianand, Raghunathan

    2018-02-01

    We present semi-analytical models of galactic outflows in high redshift galaxies driven by both hot thermal gas and non-thermal cosmic rays. Thermal pressure alone may not sustain a large scale outflow in low mass galaxies (i.e M ˜ 108 M⊙), in the presence of supernovae (SNe) feedback with large mass loading. We show that inclusion of cosmic ray pressure allows outflow solutions even in these galaxies. In massive galaxies for the same energy efficiency, cosmic ray driven winds can propagate to larger distances compared to pure thermally driven winds. On an average gas in the cosmic ray driven winds has a lower temperature which could aid detecting it through absorption lines in the spectra of background sources. Using our constrained semi-analytical models of galaxy formation (that explains the observed UV luminosity functions of galaxies) we study the influence of cosmic ray driven winds on the properties of the intergalactic medium (IGM) at different redshifts. In particular, we study the volume filling factor, average metallicity, cosmic ray and magnetic field energy densities for models invoking atomic cooled and molecular cooled halos. We show that the cosmic rays in the IGM could have enough energy that can be transferred to the thermal gas in presence of magnetic fields to influence the thermal history of the intergalactic medium. The significant volume filling and resulting strength of IGM magnetic fields can also account for recent γ-ray observations of blazars.

  2. Usefulness of remote magnetic navigation for ablation of ventricular arrhythmias originating from outflow regions

    NARCIS (Netherlands)

    B. Schwagten (Bruno); T. Szili-Torok (Tamas); M. Rivero-Ayerza (Maximo); E. Jessurun; S.D.A. Valk (Suzanne); L.J.L.M. Jordaens (Luc)

    2009-01-01

    textabstractMonomorphic ventricular tachycardia (VT) and symptomatic monomorphic PVCs originating from the region of the right and left outflow tracts are increasingly treated by radiofrequency (RF) catheter ablation. Technical difficulties in catheter manipulation to access these outflow tract

  3. Generation of shockwave and vortex structures at the outflow of a boiling water jet

    Science.gov (United States)

    Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.; Sorokin, A. L.

    2014-12-01

    Results of numerical simulation for shock waves and generation of vortex structures during unsteady outflow of boiling liquid jet are presented. The features of evolution of shock waves and vortex structures formation during unsteady outflow of boiling water are compared with corresponding structures during unsteady gas outflow.

  4. SDSS-IV MaNGA: modelling the metallicity gradients of gas and stars - radially dependent metal outflow versus IMF

    Science.gov (United States)

    Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Parikh, Taniya; Fernández-Trincado, J. G.; Roman-Lopes, Alexandre; Rong, Yu; Tang, Baitian; Yan, Renbin

    2018-05-01

    In our previous work, we found that only two scenarios are capable of reproducing the observed integrated mass-metallicity relations for the gas and stellar components of local star-forming galaxies simultaneously. One scenario invokes a time-dependent metal outflow loading factor with stronger outflows at early times. The other scenario uses a time-dependent initial mass function (IMF) slope with a steeper IMF at early times. In this work, we extend our study to investigate the radial profile of gas and stellar metallicity in local star-forming galaxies using spatially resolved spectroscopic data from the SDSS-IV MaNGA survey. We find that most galaxies show negative gradients in both gas and stellar metallicity with steeper gradients in stellar metallicity. The stellar metallicity gradients tend to be mass dependent with steeper gradients in more massive galaxies while no clear mass dependence is found for the gas metallicity gradient. Then we compare the observations with the predictions from a chemical evolution model of the radial profiles of gas and stellar metallicities. We confirm that the two scenarios proposed in our previous work are also required to explain the metallicity gradients. Based on these two scenarios, we successfully reproduce the radial profiles of gas metallicity, stellar metallicity, stellar mass surface density, and star formation rate surface density simultaneously. The origin of the negative gradient in stellar metallicity turns out to be driven by either radially dependent metal outflow or IMF slope. In contrast, the radial dependence of the gas metallicity is less constrained because of the degeneracy in model parameters.

  5. MAGNETIC NESTED-WIND SCENARIOS FOR BIPOLAR OUTFLOWS: PREPLANETARY AND YSO NEBULAR SHAPING

    International Nuclear Information System (INIS)

    Dennis, Timothy J.; Frank, Adam; Blackman, Eric G.; DeMarco, Orsola; Balick, Bruce; Mitran, Sorin

    2009-01-01

    We present results of a series of magnetohydrodynamic (MHD) and hydrodynamic (HD) 2.5 dimensional simulations of the morphology of outflows driven by nested wide-angle winds, i.e., winds that emanate from a central star as well as from an orbiting accretion disk. While our results are broadly relevant to nested-wind systems, we have tuned the parameters of the simulations to touch on issues in both young stellar objects and planetary nebula (PN) studies. In particular, our studies connect to open issues in the early evolution of PNs. We find that nested MHD winds exhibit marked morphological differences from the single MHD wind case along both dimensions of the flow. Nested HD winds, on the other hand, give rise mainly to geometric distortions of an outflow that is topologically similar to the flow arising from a single stellar HD wind. Our MHD results are insensitive to changes in ambient temperature between ionized and un-ionized circumstellar environments. The results are sensitive to the relative mass-loss rates and the relative speeds of the stellar and disk winds. We also present synthetic emission maps of both nested MHD and HD simulations. We find that nested MHD winds show knots of emission appearing on-axis that do not appear in the HD case.

  6. Glider observations of the Dotson Ice Shelf outflow and its connection to the Amundsen Sea Polynya

    Science.gov (United States)

    Miles, T. N.; Schofield, O.; Lee, S. H.; Yager, P. L.; Ha, H. K.

    2016-02-01

    The Amundsen Sea is one of the most productive polynyas in the Antarctic per unit area and is undergoing rapid changes including a reduction in sea ice duration, thinning ice sheets, retreat of glaciers and the potential collapse of the Thwaites Glacier in Pine Island Bay. A growing body of research has indicated that these changes are altering the water mass properties and associated biogeochemistry within the polynya. Unfortunately difficulties in accessing the remote location have greatly limited the amount of in situ data that has been collected. In this study data from a Teledyne-Web Slocum glider was used to supplement ship-based sampling along the Dotson Ice Shelf (DIS). This autonomous underwater vehicle revealed a detailed view of a meltwater laden outflow from below the western flank of the DIS. Circumpolar Deep Water intruding onto the shelf drives glacial melt and the supply of macronutrients that, along with ample light, supports the large phytoplankton blooms in the Amundsen Sea Polynya. Less well understood is the source of micronutrients, such as iron, necessary to support this bloom to the central polynya where chlorophyll concentrations are highest. This outflow region showed decreasing optical backscatter with proximity to the bed indicating that particulate matter was sourced from the overlying glacier rather than resuspended sediment. This result suggests that particulate iron, and potentially phytoplankton primary productivity, is intrinsically linked to the magnitude and duration of sub-glacial melt from Circumpolar Deep Water intrusions onto the shelf.

  7. AN IONIZED OUTFLOW FROM AB AUR, A HERBIG AE STAR WITH A TRANSITIONAL DISK

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Luis F.; Zapata, Luis A.; Ortiz-León, Gisela N.; Loinard, Laurent [Centro de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Dzib, Sergio A. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Macías, Enrique; Anglada, Guillem, E-mail: l.rodriguez@crya.unam.mx [Instituto de Astrofísica de Andalucía (CSIC), Apartado 3004, E-18080 Granada (Spain)

    2014-09-20

    AB Aur is a Herbig Ae star with a transitional disk. Transitional disks present substantial dust clearing in their inner regions, most probably because of the formation of one or more planets, although other explanations are still viable. In transitional objects, accretion is found to be about an order of magnitude smaller than in classical full disks. Since accretion is believed to be correlated with outflow activity, centimeter free-free jets are expected to be present in association with these systems, at weaker levels than in classical protoplanetary (full) systems. We present new observations of the centimeter radio emission associated with the inner regions of AB Aur and conclude that the morphology, orientation, spectral index, and lack of temporal variability of the centimeter source imply the presence of a collimated, ionized outflow. The radio luminosity of this radio jet is, however, about 20 times smaller than that expected for a classical system of similar bolometric luminosity. We conclude that centimeter continuum emission is present in association with stars with transitional disks, but at levels than are becoming detectable only with the upgraded radio arrays. On the other hand, assuming that the jet velocity is 300 km s{sup –1}, we find that the ratio of mass loss rate to accretion rate in AB Aur is ∼0.1, similar to that found for less evolved systems.

  8. ANISOTROPIC METAL-ENRICHED OUTFLOWS DRIVEN BY ACTIVE GALACTIC NUCLEI IN CLUSTERS OF GALAXIES

    International Nuclear Information System (INIS)

    Kirkpatrick, C. C.; McNamara, B. R.; Cavagnolo, K. W.

    2011-01-01

    We present an analysis of the spatial distribution of metal-rich gas in 10 galaxy clusters using deep observations from the Chandra X-ray Observatory. The brightest cluster galaxies (BCGs) have experienced recent active galactic nucleus activity in the forms of bright radio emission, cavities, and shock fronts embedded in the hot atmospheres. The heavy elements are distributed anisotropically and are aligned with the large-scale radio and cavity axes. They are apparently being transported from the halo of the BCG into the intracluster medium along large-scale outflows driven by the radio jets. The radial ranges of the metal-enriched outflows are found to scale with jet power as R Fe ∝ P 0.42 jet , with a scatter of only 0.5 dex. The heavy elements are transported beyond the extent of the inner cavities in all clusters, suggesting that this is a long-lasting effect sustained over multiple generations of outbursts. Black holes in BCGs will likely have difficulty ejecting metal-enriched gas beyond 1 Mpc unless their masses substantially exceed 10 9 M sun .

  9. Blowing in the Milky Way Wind: Neutral Hydrogen Clouds Tracing the Galactic Nuclear Outflow

    Science.gov (United States)

    Di Teodoro, Enrico M.; McClure-Griffiths, N. M.; Lockman, Felix J.; Denbo, Sara R.; Endsley, Ryan; Ford, H. Alyson; Harrington, Kevin

    2018-03-01

    We present the results of a new sensitive survey of neutral hydrogen above and below the Galactic Center with the Green Bank Telescope. The observations extend up to Galactic latitude | b| Accounting for selection effects, the cloud population is symmetric in longitude, latitude, and V LSR. We model the cloud kinematics in terms of an outflow expanding from the Galactic Center and find the population consistent with being material moving with radial velocity {V}{{w}}≃ 330 {km} {{{s}}}-1 distributed throughout a bicone with opening angle α > 140^\\circ . This simple model implies an outflow luminosity {L}{{w}}> 3× {10}40 erg s‑1 over the past 10 Myr, consistent with star formation feedback in the inner region of the Milky Way, with a cold gas mass-loss rate ≲ 0.1 {{M}ȯ {yr}}-1. These clouds may represent the cold gas component accelerated in the nuclear wind driven by our Galaxy, although some of the derived properties challenge current theoretical models of the entrainment process.

  10. Constraining physical parameters of ultra-fast outflows in PDS 456 with Monte Carlo simulations

    Science.gov (United States)

    Hagino, K.; Odaka, H.; Done, C.; Gandhi, P.; Takahashi, T.

    2014-07-01

    Deep absorption lines with extremely high velocity of ˜0.3c observed in PDS 456 spectra strongly indicate the existence of ultra-fast outflows (UFOs). However, the launching and acceleration mechanisms of UFOs are still uncertain. One possible way to solve this is to constrain physical parameters as a function of distance from the source. In order to study the spatial dependence of parameters, it is essential to adopt 3-dimensional Monte Carlo simulations that treat radiation transfer in arbitrary geometry. We have developed a new simulation code of X-ray radiation reprocessed in AGN outflow. Our code implements radiative transfer in 3-dimensional biconical disk wind geometry, based on Monte Carlo simulation framework called MONACO (Watanabe et al. 2006, Odaka et al. 2011). Our simulations reproduce FeXXV and FeXXVI absorption features seen in the spectra. Also, broad Fe emission lines, which reflects the geometry and viewing angle, is successfully reproduced. By comparing the simulated spectra with Suzaku data, we obtained constraints on physical parameters. We discuss launching and acceleration mechanisms of UFOs in PDS 456 based on our analysis.

  11. Bipolar outflow in the active region orion KL

    Science.gov (United States)

    Matveenko, L. I.; Demichev, V. A.

    2010-11-01

    The fine structure of the region of formation of a protostar in the dense molecular cloud OMC-1 of the Orion Nebula was studied during a period of enhanced activity in 1998-1999, with an angular resolution of 50 µas and a velocity resolution of Δ v = 0.053 km/s. Inclusions of ice granules in the bipolar outflow were detected and identified. The velocity of the outflow reaches ˜50 km/s, while that of the granules is 5 mas), bullets corresponding to maser emission excited by the outflow in the surrounding medium are observed. The emission is amplified by the external medium at a velocity of v LSR = 7.65 km/s in the bandwidth Δ v ≈ 0.5 km/s. The sources of pumping are clusters of infrared sources. The bipolar outflow is inclined at a small angle to the plane of the sky. The acceleration of the maser inclusions also increases the longitudinal component of the velocity, reducing amplification of the emission. The brightness temperature of the components decreases: T b ˜ ρ -0.8±0.1. The activity terminates with the exponential decline of the maser emission, F ˜ exp(-0.5 t 2); in the saturated mode this is determined by a decrease in the optical depth, τ ˜ t 2. The material of the surrounding space, including the ice granules, is drawn into the disk, moves along spirals toward the nozzle, and is ejected as a highly collimated bipolar flow. The density of material in the outflow exceeds the surrounding density by three to four orders of magnitude. The accretion of the surrounding material and ejection of the bipolar outflow are a unified process accompanying the initial phase of formation of protostars. The counter motion of material at the center stimulates the formation of a central massive object, whose gravitational field accelerates the process and stabilizes the system. The ratio of the durations of periods of high and low activity is determined by the rates of ejection and disk replenishment, and is ˜1:10. The rotating bipolar flow is self-focused.

  12. Radiative impact of mixing state of black carbon aerosol in Asian outflow

    Science.gov (United States)

    Shiraiwa, M.; Kondo, Y.; Moteki, N.; Takegawa, N.; Sahu, L. K.; Takami, A.; Hatakeyama, S.; Yonemura, S.; Blake, D. R.

    2008-12-01

    The radiative impact of the mixing state of black carbon (BC) aerosol is investigated in Asian outflow. The mixing state and size distribution of BC aerosol were measured with a ground-based single-particle soot photometer at a remote island (Fukue) in Japan in spring 2007. The mass concentration of BC in Asian continental air masses reached 0.5 μg m-3, with a mass median diameter of 200-220 nm. The median value of the shell/core diameter ratio increased to ˜1.6 in Asian continental and maritime air masses with a core diameter of 200 nm, while in free tropospheric and Japanese air masses it was 1.3-1.4. On the basis of theoretical calculations using the size distribution and mixing state of BC aerosol, scattering and absorption properties of PM1 aerosols were calculated under both dry and ambient conditions, considering the hygroscopic growth of aerosols. It was estimated that internal mixing enhanced the BC absorption by a factor of 1.5-1.6 compared to external mixing. The calculated absorption coefficient was 2-3 times higher in Asian continental air masses than in clean air. Coatings reduced the single-scattering albedo (SSA) of PM1 aerosol by 0.01-0.02, which indicates the importance of the mixing state of BC aerosol in evaluating its radiative influence. The SSA was sensitive to changes in air mass type, with a value of ˜0.98 in Asian continental air masses and ˜0.95 in Japanese and free tropospheric air masses under ambient conditions.

  13. The shocked gas of the BHR71 outflow observed by Herschel: indirect evidence for an atomic jet

    Science.gov (United States)

    Benedettini, M.; Gusdorf, A.; Nisini, B.; Lefloch, B.; Anderl, S.; Busquet, G.; Ceccarelli, C.; Codella, C.; Leurini, S.; Podio, L.

    2017-02-01

    Context. In the BHR71 region, two low-mass protostars IRS1 and IRS2 drive two distinguishable outflows. They constitute an ideal laboratory to investigate both the effects of shock chemistry and the mechanisms that led to their formation. Aims: We aim to define the global morphology of the warm gas component of the BHR71 outflow and at modelling its shocked component. Methods: We present the first far infrared Herschel images of the BHR71 outflows system in the CO (14-13), H2O (221-110), H2O (212-101) and [O I] 145 μm transitions, revealing the presence of several knots of warm, shocked gas associated with the fast outflowing gas. In two of these knots we performed a detailed study of the physical conditions by comparing a large set of transitions from several molecules to a grid of shock models. Results: The Herschel lines ratios in the outflow knots are quite similar, showing that the excitation conditions of the fast moving gas do not change significantly within the first 0.068 pc of the outflow, apart at the extremity of the southern blue-shifted lobe that is expanding outside the parental molecular cloud. Rotational diagram, spectral line profile and LVG analysis of the CO lines in knot A show the presence of two gas components: one extended, cold (T 80 K) and dense (n(H2) = 3 × 105-4 × 106 cm-3) and another compact (18''), warm (T = 1700-2200 K) with slightly lower density (n(H2) = 2 × 104-6 × 104 cm-3). In the two brightest knots (where we performed shock modelling) we found that H2 and CO are well fitted with non-stationary (young) shocks. These models, however, significantly underestimate the observed fluxes of [O I] and OH lines, but are not too far off those of H2O, calling for an additional, possibly dissociative, J-type shock component. Conclusions: Our modelling indirectly suggests that an additional shock component exists, possibly a remnant of the primary jet. Direct, observational evidence for such a jet must be searched for. Herschel is an

  14. The effects of nitric oxide synthase--versus lipoxygenase inhibition on coronary flow and nitrite outflow in isolated rat heart.

    Science.gov (United States)

    Jakovljevic, V Lj; Djuric, D M

    2005-06-01

    The aim of this study was to assess the changes of coronary flow (CF) and nitrite outflow under inhibition of nitric oxide synthase (NOS) by Nomega-nitro-L-arginine monomethyl ester (L-NAME) or lipoxygenase (LOX) induced by nordihydroguaiaretic acid (NDGA) in isolated rat heart. The hearts of male Wistar albino rats (n=18, age 8 weeks, body mass 180-200 g) were retrograde perfused according to the Langendorff's technique at gradually increased constant coronary perfusion pressure (CPP) conditions (40-120 cm H2O) which induced flow-dependent nitric oxide (NO) release (nitrite outflow). The experiments were performed during control conditions, in the presence of NO synthesis inhibitor L-NAME (30 micromol/l) or nonspecific LOX inhibitor (NDGA, 0.1 mmol/l) which were administered separately or in combination. CF varied in autoregulatory range from 4.12+/-0.26 ml/min/g wt at 50 cm H2O to 5.22+/-0.26 ml/min/g wt at 90 cm H2O. In autoregulatory range, nitrite outflow varied from 2.05+/-0.17 nmol/min/g wt at 50 cm H2O to 2.52+/-0.21 nmol/min/g wt at 90 cm H2O and was strictly parallel with CPP/CF curve. The autoregulatory range of CF was significantly extended (40-100 cm H2O, 2.22+/-0.12 ml/min/g wt and 2.90+/-0.25 ml/min/g wt, respectively) under the influence of L-NAME. Hemodynamic effects were accompanied by significant decrease in nitrite outflow after L-NAME administration (0.56+/-0.11 nmol/min/g wt at 40 cm H2O to 1.45+/-0.14 nmol/min/g wt at 100 cm H2O). NDGA affected CF in the range of CPP 40-70 cm H2O only (from 42% at 50 cm H2O to 12% at 90 cm H2O, respectively) with no significant changes in nitrite outflow. When L-NAME was applied in combination with NDGA vs. NDGA only, CF was significantly reduced (from 34% at 50 cm H2O to 50% at 90 cm H2O, respectively) with parallel changes in nitrite outflow (from 40% at 50 cm H2O to 51% at 90 cm H2O, respectively). The results showed that CF and nitrite outflow could be decreased under L-NAME administration. Nonselective

  15. The role of local voltage potentials in outflow tract ectopy

    DEFF Research Database (Denmark)

    Thomsen, P.E.B.; Johannessen, A.; Jons, C.

    2010-01-01

    Discrete, fragmented, local voltage potentials (LVPs) have been observed in electrograms recorded at the ablation site in patients undergoing radiofrequency ablation for arrhythmias originating in both the right and left ventricular outflow tract; however, the incidence and the significance...... of the LVP with respect to arrhythmogenesis is uncertain. We studied 25 patients with outflow tract arrhythmias referred for radiofrequency catheter ablation and recorded high-amplified intracardiac electrograms close to the site of origin of the arrhythmia. Ten patients undergoing ablation...... in the ventricular premature beats. In 10 patients, ventricular parasystole was suggested by varying coupling intervals > 100 ms, and fusion beats allowing for the estimation of the least common denominator of R-R intervals. In 23 of the 25 patients, the 12-lead electrocardiogram (ECG) and intracardiac contact...

  16. Younger Dryas interval and outflow from the Laurentide ice sheet

    Science.gov (United States)

    Moore, T.C.; Walker, J.C.G.; Rea, David K.; Lewis, C.F.M.; Shane, L.C.K.; Smith, A.J.

    2000-01-01

    A boxmodel of the Great Lakes is used to estimate meltwater flow into the North Atlantic between 8000 and 14,000 calendar years B.P. Controls on the model include the oxygen isotopic composition of meltwaters and lake waters as measured in the shells of ostracodes. Outflow rates are highest when oxygen isotopic values of the lake waters are most negative, denoting a maximum glacial meltwater component. Flow rates reach maximum values before the onset of the Younger Dryas and after it ends. These maxima appear to be correlative with the major meltwater pulses MWP 1A and 1B. Although the resumption of North Atlantic Deep Water formation may be tied to the reduction in ice sheet melting, neither the onset nor the end of the Younger Dryas, as recorded in the Greenland Ice Sheet Project (GISP2) records, appear tied to maxima in meltwater outflow from the Laurentide ice sheet. Copyright 2000 by the American Geophysical Union.

  17. Mock X-ray Observations of Localized LMC Outflows

    Science.gov (United States)

    Tomesh, Teague; Bustard, Chad; Zweibel, Ellen

    2018-01-01

    The Milky Way’s nearest neighbor, the Large Magellanic Cloud (LMC), is a perfect testing ground for modeling a variety of astrophysical phenomena. Specifically, the LMC provides a unique opportunity for the study of possible localized outflows driven by star formation and their x-ray signatures. We have developed FLASH simulations of theoretical outflows originating in the LMC that we have used to generate predicted observations of X-ray luminosity. This X-ray emission can be a useful probe of the hot gas in these winds which may couple to the cool gas and drive it from the disk. Future observations of the LMC may provide us with valuable checks on our model. This work is partially supported by the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.

  18. A case study on the formation and evolution of ice supersaturation in the vicinity of a warm conveyor belt's outflow region

    Directory of Open Access Journals (Sweden)

    P. Spichtinger

    2005-01-01

    Full Text Available A case study is presented on the formation and evolution of an ice-supersaturated region (ISSR that was detected by a radiosonde in NE Germany at 06:00 UTC 29 November 2000. The ISSR was situated in the vicinity of the outflow region of a warm conveyor belt associated with an intense event of cyclogenesis in the eastern North Atlantic. Using ECMWF analyses and trajectory calculations it is determined when the air parcels became supersaturated and later subsaturated again. In the case considered, the state of air parcel supersaturation can last for longer than 24h. The ISSR was unusually thick: while the mean vertical extension of ISSRs in NE Germany is about 500m, the one investigated here reached 3km. The ice-supersaturated region investigated was bordered both vertically and horizontally by strongly subsaturated air. Near the path of the radiosonde the ISSR was probably cloud free, as inferred from METEOSAT infrared images. However, at other locations within the ISSR it is probable that there were cirrus clouds. Relative humidity measurements obtained by the Lindenberg radiosonde are used to correct the negative bias of the ECMWF humidity and to construct two-dimensional maps of ice supersaturation over Europe during the considered period. A systematic backward trajectory analysis for the ISSRs on these maps shows that the ISSR air masses themselves experienced only a moderate upward motion during the previous days, whereas parts of the ISSRs were located just above strongly ascending air masses from the boundary layer. This indicates qualitatively that warm conveyor belts associated with mid-latitude cyclogenesis are disturbances that can induce the formation of ISSRs in the upper troposphere. The ISSR maps also lead us to a new perception of ISSRs as large dynamic regions of supersaturated air where cirrus clouds can be embedded at some locations while there is clear air at others.

  19. FOREIGN DIRECT INVESTMENT OUTFLOWS FROM CHINA AND INDIA

    OpenAIRE

    K. C. FUNG; ALICIA GARCIA-HERRERO

    2012-01-01

    In this paper, we examine the determinants of Indian and Chinese FDI outflows. There are three sets of results. First, Chinese investment is attracted to more corrupt countries, while India is attracted to economies with better rule of law. Further analysis suggests that our result of China investing in more corrupt destinations is mostly driven by Chinese investment in the sub-sample of African countries. While we do not conduct economic welfare analysis, several studies in the literature re...

  20. Right ventricular outflow tract function in chronic heart failure

    OpenAIRE

    Bulent Deveci; Kazim Baser; Murat Gul; Fatih Sen; Habibe Kafes; Sedat Avci; Orkun Temizer; Ozcan Ozeke; Omac Tufekcioglu; Zehra Golbasi

    2016-01-01

    Background: Heart failure (HF) is a common, progressive, complex clinical syndrome and a subset of HF patients has symptoms out of proportion to the resting hemodynamics and left ventricular ejection fraction (LVEF). Right ventricular (RV) function is a powerful prognostic factor in HF, but assessing it is a challenge because of the right ventricle's complex geometry. Objective: The aim of this study was to investigate the clinical application value of RV outflow tract (RVOT) function meas...

  1. Large sea ice outflow into the Nares Strait in 2007

    DEFF Research Database (Denmark)

    Kwok, R.; Pedersen, L.T.; Gudmandsen, Preben

    2010-01-01

    Sea ice flux through the Nares Strait is most active during the fall and early winter, ceases in mid- to late winter after the formation of ice arches along the strait, and re-commences after breakup in summer. In 2007, ice arches failed to form. This resulted in the highest outflow of Arctic sea...... at Fram Strait. Clearly, the ice arches control Arctic sea ice outflow. The duration of unobstructed flow explains more than 84% of the variance in the annual area flux. In our record, seasonal stoppages are always associated with the formation of an arch near the same location in the southern Kane Basin...... ice in the 13-year record between 1997 and 2009. The 2007 area and volume outflows of 87 x 10(3) km(2) and 254 km(3) are more than twice their 13-year means. This contributes to the recent loss of the thick, multiyear Arctic sea ice and represents similar to 10% of our estimates of the mean ice export...

  2. Fluid outflows from Venus impact craters - Analysis from Magellan data

    Science.gov (United States)

    Asimow, Paul D.; Wood, John A.

    1992-01-01

    Many impact craters on Venus have unusual outflow features originating in or under the continuous ejecta blankets and continuing downhill into the surrounding terrain. These features clearly resulted from flow of low-viscosity fluids, but the identity of those fluids is not clear. In particular, it should not be assumed a priori that the fluid is an impact melt. A number of candidate processes by which impact events might generate the observed features are considered, and predictions are made concerning the rheological character of flows produce by each mechanism. A sample of outflows was analyzed using Magellan images and a model of unconstrained Bingham plastic flow on inclined planes, leading to estimates of viscosity and yield strength for the flow materials. It is argued that at least two different mechanisms have produced outflows on Venus: an erosive, channel-forming process and a depositional process. The erosive fluid is probably an impact melt, but the depositional fluid may consist of fluidized solid debris, vaporized material, and/or melt.

  3. Collision-Induced Dissociation Study of Strong Hydrogen-Bonded Cluster Ions Y-(HF) n (Y=F, O2) Using Atmospheric Pressure Corona Discharge Ionization Mass Spectrometry Combined with a HF Generator.

    Science.gov (United States)

    Sakamoto, Kenya; Sekimoto, Kanako; Takayama, Mitsuo

    2017-01-01

    Hydrogen fluoride (HF) was produced by a homemade HF generator in order to investigate the properties of strong hydrogen-bonded clusters such as (HF) n . The HF molecules were ionized in the form of complex ions associated with the negative core ions Y - produced by atmospheric pressure corona discharge ionization (APCDI). The use of APCDI in combination with the homemade HF generator led to the formation of negative-ion HF clusters Y - (HF) n (Y=F, O 2 ), where larger clusters with n ≥4 were not detected. The mechanisms for the formation of the HF, F - (HF) n , and O 2 - (HF) n species were discussed from the standpoints of the HF generator and APCDI MS. By performing energy-resolved collision-induced dissociation (CID) experiments on the cluster ions F - (HF) n ( n =1-3), the energies for the loss of HF from F - (HF) 3 , F - (HF) 2 , and F - (HF) were evaluated to be 1 eV or lower, 1 eV or higher, and 2 eV, respectively, on the basis of their center-of-mass energy ( E CM ). These E CM values were consistent with the values of 0.995, 1.308, and 2.048 eV, respectively, obtained by ab initio calculations. The stability of [O 2 (HF) n ] - ( n =1-4) was discussed on the basis of the bond lengths of O 2 H-F - (HF) n and O 2 - H-F(HF) n obtained by ab initio calculations. The calculations indicated that [O 2 (HF) 4 ] - separated into O 2 H and F - (HF) 3 .

  4. Recent Chandra/HETGS and NuSTAR observations of the quasar PDS 456 and its Ultra-Fast Outflow

    Science.gov (United States)

    Boissay Malaquin, Rozenn; Marshall, Herman L.; Nowak, Michael A.

    2018-01-01

    Evidence is growing that the interaction between outflows from active galactic nuclei (AGN) and their surrounding medium may play an important role in galaxy evolution, i.e. in the regulation of star formation in galaxies, through AGN feedback processes. Indeed, powerful outflows, such as the ultra-fast outflows (UFOs) that can reach mildly relativistic velocities of 0.2-0.4c, could blow away a galaxy’s reservoir of star-forming gas and hence quench the star formation in host galaxies. The low-redshift (z=0.184) radio-quiet quasar PDS 456 has showed the presence of a strong and blueshifted absorption trough in the Fe K band above 7 keV, that has been associated with the signature of such a fast and highly ionized accretion disk wind of a velocity of 0.25-0.3c. This persistent and variable feature has been detected in many observations of PDS 456, in particular by XMM-Newton, Suzaku and NuSTAR, together with other blueshifted absorption lines in the soft energy band (e.g. Nardini et al. 2015, Reeves et al. 2016). I will present here the results of the analysis of recent and contemporaneous high-resolution Chandra/HETGS and NuSTAR observations of PDS 456, and compare them with the previous findings.

  5. Nonlinear internal waves and plumes generated in response to sea-loch outflow, AUV, and time-lapse photography observations

    Science.gov (United States)

    Toberman, Matthew; Inall, Mark; Boyd, Tim; Dumount, Estelle; Griffiths, Colin

    2017-07-01

    The tidally modulated outflow of brackish water from a sea loch forms a thin surface layer that propagates into the coastal ocean as a buoyant gravity current, transporting nutrients and sediments, as well as fresh water, heat and momentum. The fresh intrusion both propagates into and generates a strongly stratified environment which supports trains of nonlinear internal waves (NLIWs). NLIWs are shown to propagate ahead of this buoyancy input in response to propagation of the outflow water into the stratified environment generated by the previous release as well as in the opposing direction after the reflection from steep bathymetry. Oblique aerial photographs were taken and photogrammetric rectification led to the identification of the buoyant intrusion and the subsequent generation of NLIWs. An autonomous underwater vehicle (AUV) was deployed on repeated reciprocal transects in order to make simultaneous CTD, ADCP, and microstructure shear measurements of the evolution of these phenomena in conjunction with conventional mooring measurements. AUV-based temperature and salinity signals of NLIWs of depression were observed together with increased turbulent kinetic energy dissipation rates of over 2 orders of magnitude within and in the wake of the NLIWs. Repeated measurements allow a unique opportunity to investigate the horizontal structure of these phenomena. Simple metric scaling demonstrates that these processes are likely to be feature of many fjordic systems located on the west coast of Scotland but may also play a key role in the assimilation of the outflow from many tidally dominated fjordic systems throughout the world.

  6. OT1_sbontemp_1: Water emission from outflows and hot cores in the Cygnus X proto-stars

    Science.gov (United States)

    Bontemps, S.

    2010-07-01

    The impressive first results from the WISH GT key program by van Dishoeck et al. indicate that water emission is bright towards the embedded proto-stars of all masses. These emissions are tracing outflows and warm inner regions of the collapsing envelopes (radiatively heated hot cores) which are unique probes of the cooling of these regions and of the kinematics of the dense warm gas. But WISH is limited by the reduced number of targets, and by the unavoidable biases introduced by the stringent selection of sources. The intermediate to high mass range is critical to challenge protostellar evolution models, and we argue that water emission from a complete sample of proto-stars in this mass range will be an important piece of knowledge for outflows to trace indirectly accretion and for hot cores to follow their time of appearance. Only Cygnus X is nearby and rich enough to provide a large sample of such proto-stars. We propose here to dramatically change the level of significance of WISH results by observing as many as 92 proto-stars covering the (final stellar) mass range of 3 to 20 Msun in the single complex of Cygnus X.

  7. DISCOVERY OF ULTRA-FAST OUTFLOWS IN A SAMPLE OF BROAD-LINE RADIO GALAXIES OBSERVED WITH SUZAKU

    International Nuclear Information System (INIS)

    Tombesi, F.; Sambruna, R. M.; Mushotzky, R. F.; Reeves, J. N.; Gofford, J.; Braito, V.; Ballo, L.; Cappi, M.

    2010-01-01

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v ≅ 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log ξ ≅ 4-5.6 erg s -1 cm and column densities of N H ≅ 10 22 -10 23 cm -2 . These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within ∼0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  8. Discovery of Ultra-fast Outflows in a Sample of Broad-line Radio Galaxies Observed with Suzaku

    Science.gov (United States)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Ballo, L.; Gofford, J.; Cappi, M.; Mushotzky, R. F.

    2010-08-01

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v ~= 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log ξ ~= 4-5.6 erg s-1 cm and column densities of N H ~= 1022-1023 cm-2. These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within ~0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  9. Searching for outflows in ultraluminous X-ray sources through high-resolution X-ray spectroscopy

    Science.gov (United States)

    Kosec, P.; Pinto, C.; Fabian, A. C.; Walton, D. J.

    2018-02-01

    Ultraluminous X-ray sources (ULXs) are non-nuclear point sources exceeding the Eddington luminosity of a 10 M⊙ black hole. Modern consensus for a majority of the ULX population is that they are powered by stellar-mass black holes or neutron stars accreting well above the Eddington limit. Theoretical models of super-Eddington accretion predict existence of powerful outflows of moderately ionized gas at mildly relativistic velocities. So far, these winds have been found in three systems: NGC 1313 X-1, NGC 5408 X-1 and NGC 55 ULX. In this work, we create a sample of all ULXs with usable archival high-resolution X-ray data, with 10 sources in total, in which we aim to find more signatures of outflows. We perform Gaussian line scans to find any narrow spectral signatures, and physical wind model scans where possible. We tentatively identify an outflow in NGC 5204 X-1, blueshifted to 0.34c, which produces emission features with a total significance of at least 3σ. Next we compare ULXs with similar hardness ratios. Holmberg IX X-1 shows absorption features that could be associated with a photoionized outflowing absorber, similar to that seen in NGC 1313 X-1. The spectrum of Holmberg II X-1 possesses features similar to NGC 5408 X-1 and NGC 6946 X-1 shows O VIII rest-frame emission. All other sources from the sample also show tentative evidence of spectral features in their high-resolution spectra. Further observations with the XMM-Newton and Chandra gratings will place stronger constraints. Future missions like XARM and Athena will be able to detect them at larger distances and increase our sample.

  10. Line-driven disc wind model for ultrafast outflows in active galactic nuclei - scaling with luminosity

    Science.gov (United States)

    Nomura, M.; Ohsuga, K.

    2017-03-01

    In order to reveal the origin of the ultrafast outflows (UFOs) that are frequently observed in active galactic nuclei (AGNs), we perform two-dimensional radiation hydrodynamics simulations of the line-driven disc winds, which are accelerated by the radiation force due to the spectral lines. The line-driven winds are successfully launched for the range of MBH = 106-9 M⊙ and ε = 0.1-0.5, and the resulting mass outflow rate (dot{M_w}), momentum flux (dot{p_w}), and kinetic luminosity (dot{E_w}) are in the region containing 90 per cent of the posterior probability distribution in the dot{M}_w-Lbol plane, dot{p}_w-Lbol plane, and dot{E}_w-Lbol plane shown in Gofford et al., where MBH is the black hole mass, ε is the Eddington ratio, and Lbol is the bolometric luminosity. The best-fitting relations in Gofford et al., d log dot{M_w}/d log {L_bol}˜ 0.9, d log dot{p_w}/d log {L_bol}˜ 1.2, and d log dot{E_w}/d log {L_bol}˜ 1.5, are roughly consistent with our results, d log dot{M_w}/d log {L_bol}˜ 9/8, d log dot{p_w}/d log {L_bol}˜ 10/8, and d log dot{E_w}/d log {L_bol}˜ 11/8. In addition, our model predicts that no UFO features are detected for the AGNs with ε ≲ 0.01, since the winds do not appear. Also, only AGNs with MBH ≲ 108 M⊙ exhibit the UFOs when ε ∼ 0.025. These predictions nicely agree with the X-ray observations. These results support that the line-driven disc wind is the origin of the UFOs.

  11. GBT Detection of Polarization-Dependent HI Absorption and HI Outflows in Local ULIRGs and Quasars

    Science.gov (United States)

    Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J.

    2013-01-01

    We present the results of a 21-cm HI survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Green Bank Telescope (GBT). These remnants were selected from the Quasar/ULIRG Evolution Study (QUEST) sample of ultraluminous infrared galaxies (ULIRGs; L(sub 8 - 1000 micron) > 10(exp 12) solar L) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGN) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of HI absorption (emission) to be 100% (29%) in ULIRGs with HI detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km/s in some cases. Unexpectedly, we find polarization-dependent HI absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground HI clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the approx 10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into "mature" radio galaxies.

  12. Flavour Democracy in Strong Unification

    CERN Document Server

    Abel, S A; Abel, Steven; King, Steven

    1998-01-01

    We show that the fermion mass spectrum may naturally be understood in terms of flavour democratic fixed points in supersymmetric theories which have a large domain of attraction in the presence of "strong unification". Our approach provides an alternative to the approximate Yukawa texture zeroes of the Froggatt-Nielsen mechanism. We discuss a particular model based on a broken gauged $SU(3)_L\\times SU(3)_R$ family symmetry which illustrates our approach.

  13. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  14. GMASS ultradeep spectroscopy of galaxies at z ~ 2 - VII. Star formation, extinction, and gas outflows from UV spectra

    OpenAIRE

    Talia, M.; Mignoli, M.; Cimatti, A.; Kurk, J.; Berta, S.; Bolzonella, M.; Cassata, P.; Daddi, E.; Dickinson, M.; Franceschini, A.; Halliday, C.; Pozzetti, L.; Renzini, A.; Rodighiero, G.; Rosati, P.

    2011-01-01

    We use rest-frame UV spectroscopy to investigate the properties related to large-scale gas outflows, and to the dust extinction and star-formation rates of a sample of z ~ 2 star-forming galaxies from the Galaxy Mass Assembly ultradeep Spectroscopic Survey (GMASS). Dust extinction is estimated from the rest-frame UV continuum slope and used to obtain dust-corrected star-formation rates for the galaxies of the sample. For the entire sample, a mean value of the continuum slope = -1.11 \\pm 0.44...

  15. Dynamic left ventricular outflow tract obstruction secondary to hypovolemia in a German Shepard dog with splenic hemangiosarcoma

    OpenAIRE

    AOKI, Takuma; SUNAHARA, Hiroshi; SUGIMOTO, Keisuke; ITO, Tetsuro; KANAI, Eiichi; NEO, Sakurako; FUJII, Yoko; WAKAO, Yoshito

    2015-01-01

    Dynamic left ventricular outflow tract obstruction (DLVOTO) is a common condition in cats and humans. In this case report, a dog is described with DLVOTO secondary to severe intra-abdominal hemorrhage caused by a hemangiosarcoma. The dog was a 9-year-old, 35.7-kg, spayed female German Shepard dog that presented with a history of tachypnea and collapse. A Levine II/VI systolic murmur was present at the heart base. Abdominal ultrasonography revealed a splenic mass and a large amount of ascites....

  16. THERMAL CONDUCTANCE IN AQUATIC BIRDS IN RELATION TO THE DEGREE OF WATER CONTACT, BODY-MASS, AND BODY-FAT - ENERGETIC IMPLICATIONS OF LIVING IN A STRONG COOLING ENVIRONMENT

    NARCIS (Netherlands)

    DEVRIES, J; VANEERDEN, MR

    1995-01-01

    Thermal conductance of carcasses of 14 aquatic bird species was determined by the warming constant technique. The effect on thermal conductance of body mass, age sex, fat deposits, and the degree of contact with water were studied. Only body mass and the degree of submergence in water had an effect.

  17. ERUPTIVE VARIABLE STARS AND OUTFLOWS IN SERPENS NW

    Energy Technology Data Exchange (ETDEWEB)

    Hodapp, Klaus W. [Institute for Astronomy, University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Chini, Rolf; Watermann, Ramon; Lemke, Roland, E-mail: hodapp@ifa.hawaii.edu [Ruhr Universitaet Bochum, Astronomisches Institut, Universitaetsstrasse 150, D-44801 Bochum (Germany)

    2012-01-01

    We study the outflow activity, photometric variability, and morphology of three very young stellar objects in the Serpens NW star-forming region: OO Serpentis, EC 37 (V370 Ser), and EC 53 (V371 Ser). High spatial resolution Keck/NIRC2 laser guide star adaptive optics images obtained in 2007 and 2009 in broadband K and in a narrowband filter centered on the 1-0 S(1) emission line of H{sub 2} allow us to identify the outflows from all three objects. We also present new, seeing-limited data on the photometric evolution of the OO Ser reflection nebula and re-analyze previously published data. We find that OO Ser declined in brightness from its outburst peak in 1995 to about 2003, but that this decline has recently stopped and actually reversed itself in some areas of the reflection nebula. The morphology and proper motions of the shock fronts MHO 2218 near EC 37 suggest that they all originate in EC 37 and that this is an outflow seen nearly along its axis. We identify an H{sub 2} jet emerging from the cometary nebula EC 53. The star illuminating EC 53 is periodically variable with a period of 543 days and has a close-by, non-variable companion at a projected distance of 92 AU. We argue that the periodic variability is the result of accretion instabilities triggered by another very close, not directly observable, binary companion and that EC 53 can be understood in the model of a multiple system developing into a hierarchical configuration.

  18. Modeling water outflow from tile-drained agricultural fields.

    Science.gov (United States)

    Kuzmanovski, Vladimir; Trajanov, Aneta; Leprince, Florence; Džeroski, Sašo; Debeljak, Marko

    2015-02-01

    The estimation of the pollution risk of surface and ground water with plant protection products applied on fields depends highly on the reliable prediction of the water outflows over (surface runoff) and through (discharge through sub-surface drainage systems) the soil. In previous studies, water movement through the soil has been simulated mainly using physically-based models. The most frequently used models for predicting soil water movement are MACRO, HYDRUS-1D/2D and Root Zone Water Quality Model. However, these models are difficult to apply to a small portion of land due to the information required about the soil and climate, which are difficult to obtain for each plot separately. In this paper, we focus on improving the performance and applicability of water outflow modeling by using a modeling approach based on machine learning techniques. It allows us to overcome the major drawbacks of physically-based models e.g., the complexity and difficulty of obtaining the information necessary for the calibration and the validation, by learning models from data collected from experimental fields that are representative for a wider area (region). We evaluate the proposed approach on data obtained from the La Jaillière experimental site, located in Western France. This experimental site represents one of the ten scenarios contained in the MACRO system. Our study focuses on two types of water outflows: discharge through sub-surface drainage systems and surface runoff. The results show that the proposed modeling approach successfully extracts knowledge from the collected data, avoiding the need to provide the information for calibration and validation of physically-based models. In addition, we compare the overall performance of the learned models with the performance of existing models MACRO and RZWQM. The comparison shows overall improvement in the prediction of discharge through sub-surface drainage systems, and partial improvement in the prediction of the surface

  19. THE TURBULENT ORIGIN OF OUTFLOW AND SPIN MISALIGNMENT IN MULTIPLE STAR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Offner, Stella S. R.; Lee, Katherine I.; Arce, Héctor G.; Fielding, Drummond B. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Dunham, Michael M., E-mail: soffner@astro.umass.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2016-08-10

    The protostellar outflows of wide-separation forming binaries frequently appear misaligned. We use magneto-hydrodynamic simulations to investigate the alignment of protostellar spin and molecular outflows for forming binary pairs. We show that the protostellar pairs, which form from turbulent fragmentation within a single parent core, have randomly oriented angular momentum. Although the pairs migrate to closer separations, their spins remain partially misaligned. We produce {sup 12}CO(2-1) synthetic observations of the simulations and characterize the outflow orientation in the emission maps. The CO-identified outflows exhibit a similar random distribution and are also statistically consistent with the observed distribution of molecular outflows. We conclude that the observed misalignment provides a clear signature of binary formation via turbulent fragmentation. The persistence of misaligned outflows and stellar spins following dynamical evolution may provide a signature of binary origins for more evolved multiple star systems.

  20. THE TURBULENT ORIGIN OF OUTFLOW AND SPIN MISALIGNMENT IN MULTIPLE STAR SYSTEMS

    International Nuclear Information System (INIS)

    Offner, Stella S. R.; Lee, Katherine I.; Arce, Héctor G.; Fielding, Drummond B.; Dunham, Michael M.

    2016-01-01

    The protostellar outflows of wide-separation forming binaries frequently appear misaligned. We use magneto-hydrodynamic simulations to investigate the alignment of protostellar spin and molecular outflows for forming binary pairs. We show that the protostellar pairs, which form from turbulent fragmentation within a single parent core, have randomly oriented angular momentum. Although the pairs migrate to closer separations, their spins remain partially misaligned. We produce 12 CO(2-1) synthetic observations of the simulations and characterize the outflow orientation in the emission maps. The CO-identified outflows exhibit a similar random distribution and are also statistically consistent with the observed distribution of molecular outflows. We conclude that the observed misalignment provides a clear signature of binary formation via turbulent fragmentation. The persistence of misaligned outflows and stellar spins following dynamical evolution may provide a signature of binary origins for more evolved multiple star systems.

  1. Negative and Positive Outflow-Feedback in Nearby (U)LIRGs

    Energy Technology Data Exchange (ETDEWEB)

    Cazzoli, Sara, E-mail: sara@iaa.es [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain)

    2017-12-15

    The starburst-AGN coexistence in local (U)LIRGs makes these galaxies excellent laboratories for the study of stellar and AGN outflows and feedback. Outflows regulate star formation and AGN activity, redistributing gas, dust and metals over large scales in the interstellar and intergalactic media (negative feedback) being also considered to be able to undergo vigorous star formation (positive feedback). In this contribution, I will summarize the results from a search for outflows in a sample of nearby 38 local (U)LIRG systems observed with VIMOS/VLT integral field unit. For two galaxies of the sample I will detail the outflow properties and discuss the observational evidence for negative and positive outflow-feedback. The assessment of both negative and positive feedback effects represent a novel approach toward a comprehensive understanding of the impact of outflow feedback in the galaxy evolution.

  2. Assessment of cardiac blood pool imaging in patients with left ventricular outflow tract stenosis

    International Nuclear Information System (INIS)

    Nakamura, Yutaka; Ono, Yasuo; Kohata, Tohru; Tsubata, Shinichi; Kamiya, Tetsuroh.

    1993-01-01

    We performed cardiac blood pool imagings with Tc-99m at rest and during supine ergometer exercise to evaluate left ventricular performance in 14 patients with left ventricular outflow tract stenosis. All catheterized patients were divided into two subgroups: 8 patients with peak systolic left ventricular to descending aortic pressure gradients of less than 50 mmHg (LPG group) and 6 patients with peak systolic gradients of more than 50 mmHg (HPG group). Control group included 10 patients without stenotic coronary lesions after Kawasaki disease. Left ventricular ejection fraction (LVEF) was obtained as systolic index; both filling fraction during the first third of diastole (1/3FF) and mean filling rate during the first third of diastole (1/3FR mean) were obtained as diastolic indices. None of the patients had abnormal findings on 201 Tl imaging. LVEF at rest in HPG group was significantly higher than those in control group, but LVEF in HPG group did not increase after exercise. It increased significantly in control group and LPG group. 1/3 FF in HPG group was significantly lower not only at rest but also during exercise. 1/3 FR mean at rest was not different significantly among the 3 groups. However, 1/3FR mean during exercise in LPG group was significantly lower; and 1/3 FR mean during exercise was significantly lower in HPG group than LPG group. The ratio of left ventricular muscular mass to left ventricular end-diastolic volume (M/V) calculated from left ventricular cineangiograms was different significantly among the 3 groups. The M/V ratio showed a correlation with LVEF and 1/3 FF both at rest and during exercise. These results would indicate that systolic function was impaired on exercise in severe left ventricular outflow tract stenosis and diastolic function was impaired on exercise in mild and severe left ventricular outflow tract stenosis. This may correlate with left ventricular hypertrophy and interaction of systolic function. (author)

  3. Assessment of cardiac blood pool imaging in patients with left ventricular outflow tract stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Yutaka (Tajimi City Hospital, Gifu (Japan)); Ono, Yasuo; Kohata, Tohru; Tsubata, Shinichi; Kamiya, Tetsuroh

    1993-09-01

    We performed cardiac blood pool imagings with Tc-99m at rest and during supine ergometer exercise to evaluate left ventricular performance in 14 patients with left ventricular outflow tract stenosis. All catheterized patients were divided into two subgroups: 8 patients with peak systolic left ventricular to descending aortic pressure gradients of less than 50 mmHg (LPG group) and 6 patients with peak systolic gradients of more than 50 mmHg (HPG group). Control group included 10 patients without stenotic coronary lesions after Kawasaki disease. Left ventricular ejection fraction (LVEF) was obtained as systolic index; both filling fraction during the first third of diastole (1/3FF) and mean filling rate during the first third of diastole (1/3FR mean) were obtained as diastolic indices. None of the patients had abnormal findings on [sup 201]Tl imaging. LVEF at rest in HPG group was significantly higher than those in control group, but LVEF in HPG group did not increase after exercise. It increased significantly in control group and LPG group. 1/3 FF in HPG group was significantly lower not only at rest but also during exercise. 1/3 FR mean at rest was not different significantly among the 3 groups. However, 1/3FR mean during exercise in LPG group was significantly lower; and 1/3 FR mean during exercise was significantly lower in HPG group than LPG group. The ratio of left ventricular muscular mass to left ventricular end-diastolic volume (M/V) calculated from left ventricular cineangiograms was different significantly among the 3 groups. The M/V ratio showed a correlation with LVEF and 1/3 FF both at rest and during exercise. These results would indicate that systolic function was impaired on exercise in severe left ventricular outflow tract stenosis and diastolic function was impaired on exercise in mild and severe left ventricular outflow tract stenosis. This may correlate with left ventricular hypertrophy and interaction of systolic function. (author).

  4. The Charm and Beauty of Strong Interactions

    Science.gov (United States)

    El-Bennich, Bruno

    2018-01-01

    We briefly review common features and overlapping issues in hadron and flavor physics focussing on continuum QCD approaches to heavy bound states, their mass spectrum and weak decay constants in different strong interaction models.

  5. Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?

    OpenAIRE

    Rodriguez, J. Alexis P.; Kargel, Jeffrey S.; Baker, Victor R.; Gulick, Virginia C.; Berman, Daniel C.; Fairén, Alberto G.; Linares, Rogelio; Zarroca, Mario; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie

    2015-01-01

    Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System’s most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet’s upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronou...

  6. Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-04-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show

  7. The Prevalence of Ionized Gas Outflow Signatures in SDSS-IV MaNGA Active Galactic Nuclei

    Science.gov (United States)

    Flores, Anthony M.; Wylezalek, Dominika; Zakamska, Nadia

    2018-01-01

    Actively accreting supermassive black holes (AGN) can have a variety of effects on their host galaxies, from generating large regions of hot, photoionized gas, to driving AGN feedback in the form of galaxy wide outflows that may affect the evolution of the galaxy over time by quenching their star formation and by thus setting limits to the total mass of their host galaxy. The focus of this work is to assess the prevalence of AGN-driven outflows in low-redshift AGN of moderate power using IFU observations of 2778 galaxies available through SDSS-IV MaNGA.SDSS-IV MaNGA is an optical spectroscopic IFU survey which will have obtained spatially resolved spectroscopic observations of ~10,000 galaxies at z ≤ 0.1 and with stellar masses >10^9 solar masses over the next three years, allowing us to describe the kinematic properties of a large galaxy sample across different spatial regions.We have re-mapped the kinematics of the [O III] emission line to account for asymmetries and secondary kinematic components in the emission line brought on by potential AGN-driven outflows. Using all galaxies currently in the MaNGA survey, we implement a new fitting procedure to help determine the prevalence of these secondary components. Specifically, we use the non-parametric W80 value as a proxy for velocity dispersion, which we expect to be affected especially in the case of asymmetries and broadening of the emission lines. Separating these galaxies into two samples of independently identified AGN candidates and non-AGN, I will show that broad secondary components are twice as common in MaNGA-selected AGN compared to galaxies in MaNGA not classified as AGN. Moreover, when the underlying distribution of W80 values are compared between samples, I will show that the differences in these distributions are statistically significant. This demonstrates that large IFU survey like SDSS-IV MaNGA will uncover many previously unknown AGN and AGN feedback signatures. Outflows and feedback from low

  8. The fast, massive outflow of the pre-planetary nebula IRAS 19374+2356

    Science.gov (United States)

    Sánchez Contreras, C.; Martin, S.; Sahai, R.

    2013-05-01

    At some point in the late-AGB stage, a process (or processes) becomes operative that accelerates and imposes bipolarity upon the slow, spherical AGB winds. What produces bipolarity in these objects and at what stage does bipolarity manifest itself are key questions that remain yet poorly understood. We present CO (115 & 230 GHz) emission maps of IRAS19374+2359, an extreme pre-PN with an unparalleledly massive, fast molecular outflow discovered in our OVRO Post-AGB CO 1-0 emission Survey (referred to as OPACOS; Sánchez Contreras & Sahai 2012, ApJS, 203, 16). We present sub-arcsecond resolution ^{(12,13)}CO 2-1 and 1.3 mm-continuum interferometric maps recently obtained with the Submillimeter Array (SMA) together with our discovery ˜8s-resolution ^{(12,13)}CO 1-0 OVRO data. The prominent ˜300 km s^{-1}-broad wings and the lack of an intense, low-velocity CO line core in IRAS 19374 indicate that most or all of the molecular gas participates in the high-velocity flow. From our CO data, we estimate a total mass in the molecular outflow of ˜ 1 msun and an unprecedentedly large value for the linear momemtum carried of ≥ 45 msun km s^{-1}. Our SMA maps show CO emission arising from a ˜3s×2s hourglass-shaped molecular flow aligned with the optical lobes; a linear velocity gradient along the lobes as well as equatorial expansion at the nebula waist are found. The spatio-kinematic structure of this object is in support of a jet-envelope entrainment scenario in which a substantial amount of directed momentum is transferred to large parts of the dense AGB wind by interaction with fast, collimated post-AGB jets.

  9. Arctic Ocean outflow and glacier–ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland

    Directory of Open Access Journals (Sweden)

    I. A. Dmitrenko

    2017-12-01

    Full Text Available The first-ever conductivity–temperature–depth (CTD observations on the Wandel Sea shelf in northeastern Greenland were collected in April–May 2015. They were complemented by CTDs taken along the continental slope during the Norwegian FRAM 2014–2015 drift. The CTD profiles are used to reveal the origin of water masses and interactions with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has interacted with the warm Atlantic water outflow through the Fram Strait, recorded below 140 m. Over the outer shelf, the halocline shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient polar water mass across the continental slope. At the front of the tidewater glacier outlet, colder and turbid water intrusions were observed at the base of the halocline. On the temperature–salinity plots these stations indicate a mixing line that is different from the ambient water and seems to be conditioned by the ocean–glacier interaction. Our observations of Pacific water are set within the context of upstream observations in the Beaufort Sea and downstream observations from the Northeast Water Polynya, and clearly show the modification of Pacific water during its advection across the Arctic Ocean. Moreover, ambient water over the Wandel Sea slope shows different thermohaline structures indicating the different origin and pathways of the on-shore and off-shore branches of the Arctic Ocean outflow through the western Fram Strait.

  10. Arctic Ocean outflow and glacier-ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland)

    Science.gov (United States)

    Dmitrenko, Igor A.; Kirillov, Sergey A.; Rudels, Bert; Babb, David G.; Toudal Pedersen, Leif; Rysgaard, Søren; Kristoffersen, Yngve; Barber, David G.

    2017-12-01

    The first-ever conductivity-temperature-depth (CTD) observations on the Wandel Sea shelf in northeastern Greenland were collected in April-May 2015. They were complemented by CTDs taken along the continental slope during the Norwegian FRAM 2014-2015 drift. The CTD profiles are used to reveal the origin of water masses and interactions with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has interacted with the warm Atlantic water outflow through the Fram Strait, recorded below 140 m. Over the outer shelf, the halocline shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient polar water mass across the continental slope. At the front of the tidewater glacier outlet, colder and turbid water intrusions were observed at the base of the halocline. On the temperature-salinity plots these stations indicate a mixing line that is different from the ambient water and seems to be conditioned by the ocean-glacier interaction. Our observations of Pacific water are set within the context of upstream observations in the Beaufort Sea and downstream observations from the Northeast Water Polynya, and clearly show the modification of Pacific water during its advection across the Arctic Ocean. Moreover, ambient water over the Wandel Sea slope shows different thermohaline structures indicating the different origin and pathways of the on-shore and off-shore branches of the Arctic Ocean outflow through the western Fram Strait.

  11. Burst Activity and Heart Rhythm Modulation in the Sympathetic Outflow to the Heart

    National Research Council Canada - National Science Library

    Baselli, G

    2001-01-01

    In 13 decerebrate, artificially ventilated cats preganglionic sympathetic outflow to the heart was recorded with ECG and ventilation signal, A novel algorithm was implemented that extracts weighted...

  12. The digital aqueous humor outflow meter: an alternative tool for screening of the human eye outflow facility

    Directory of Open Access Journals (Sweden)

    Vassilios P Kozobolis

    2010-08-01

    Full Text Available Vassilios P Kozobolis, Eleftherios I Paschalis, Nikitas C Foudoulakis, Stavrenia C Koukoula, Georgios LabirisDepartment of Ophthalmology and Eye Institute of Thrace, Democritus University of Thrace, Alexandroupolis, GreecePurpose: To develop, characterize, and validate a prototype digital aqueous humor outflow tonographer (DAHOM.Material and methods: The DAHOM was developed, characterized, and validated in three phases. Phase 1 involved construction of the sensor. This was broadly based on the fundamental design of a typical Schiotz tonographer with a series of improvements, including corneal indentation, which was converted to an electrical signal via a linear variable differential transducer, an analog signal which was converted to digital via ADC circuitry, and digital data acquisition and processing which was made possible by a serial port interface. Phase 2 comprised development of software for automated assessment of the outflow facility. Automated outflow facility assessment incorporated a series of fundamental improvements in comparison with traditional techniques, including software-based filtering of ripple noise and extreme variations, rigidity impact analysis, and evaluation of the impact of patient age, central corneal thickness, and ocular axial length. Phase 3 comprised characterization and validation of DAHOM, for which we developed an experimental setup using porcine cadaver eyes. DAHOM’s repeatability was evaluated by means of Cronbach’s alpha and intraclass correlation coefficient. The level of agreement with a standard Schiotz tonographer was evaluated by means of paired t-tests and Bland-Altman analysis in human eyes.Results: The experimental setup provided the necessary data for the characterization of DAHOM. A fourth order polynomial equation provided excellent fit (R square >0.999. DAHOM demonstrated high repeatability (Cronbach’s alpha ≥0.997; intraclass correlation coefficient ≥0.987 and an adequate level of

  13. High-latitude ionospheric outflows characterized through analytic formulas

    Science.gov (United States)

    Zeng, W.; Horwitz, J. L.

    2008-12-01

    Recent advances involving multi-fluid treatments have begun to allow the prospect of global magnetospheric models to simulate the dynamics of multiple ion species, such as various ion species originating from sources in the solar wind and terrestrial ionosphere. Such opportunities for the dynamic treatment of ionospheric ions within the magnetosphere portend a need for realistic accessible methods of estimating ionospheric outflows as linked plasma sources for these global models. Toward this end, in this presentation, the results of numerous physics-based simulations of ionospheric plasma outflows under varied driving agents are distilled in terms of relatively compact analytic expressions. The simulations are conducted with the UT Arlington Dynamic Fluid (DyFK) ionospheric plasma transport code. These analytic expressions for O+ and H+ densities, temperatures and flow velocities are obtained at the 3 RE altitudes corresponding to typical inner boundary levels for certain current global magnetospheric models. These O+ and H+ parameters are expressed as functions of precipitation electron energy flux levels, characteristic energy levels of the precipitating electrons, the peak spectral wave densities for low-frequency electrostatic waves which transversely heat ionospheric ions, and solar zenith angle.

  14. Ultrafast outflow in tidal disruption event ASASSN-14li

    Science.gov (United States)

    Kara, E.; Dai, L.; Reynolds, C. S.; Kallman, T.

    2018-03-01

    At only 90 Mpc, ASASSN-14li is one of the nearest tidal disruption events (TDE) ever discovered, and because of this, it has been observed by several observatories at many wavelengths. In this paper, we present new results on archival XMM-Newton observations, three of which were taken at early times (within 40 d of the discovery), and three of which were taken at late times, about 1 yr after the peak. We find that, at early times, in addition to the ˜105 K blackbody component that dominates the X-ray band, there is evidence for a broad, P Cygni-like absorption feature at around 0.7 keV in all XMM-Newton instruments (CCD detectors and grating spectrometers), and that this feature disappears (or at least diminishes) in the late-time observations. We perform photoionization modelling with XSTAR and interpret this absorption feature as blueshifted O VIII, from an ionized outflow with a velocity of 0.2 c. As the TDE transitions from high to low accretion rate, the outflow turns off, thus explaining why the absorption is less evident in the late-time observations.

  15. Disks, Microjets, Windblown Bubbles, and Outflows in the Orion Nebula

    Science.gov (United States)

    Bally, John; O'Dell, C. R.; McCaughrean, Mark J.

    2000-06-01

    New deep narrowband images of the Orion Nebula obtained with WFPC2 on the Hubble Space Telescope (HST) and spectra taken with the HIRES spectrometer at the Keck Observatory are presented. We report eight new circumstellar disks seen in silhouette against the background nebular light and about 30 dark disks embedded within the bright proplyds rimmed by ionization fronts. Deep narrowband λ6300 Å images reveal skins of glowing [O I] emission associated with several disks embedded within bright proplyds. [O I] emission also surrounds one dark disk not surrounded by an ionization front; this object may be embedded within the photon-dominated, mostly neutral region behind the ionization front of the Orion Nebula. The intensity and morphology of the [O I] emission provides support for the photon-dominated-region models of externally irradiated circumstellar disks in which soft UV powers photoablation of the disk surface. Dozens of outflows powered by young stars have been discovered on the new images. More than 20 stellar jets emerge from the externally irradiated circumstellar disks or their associated young stars embedded within the Nebula. Most are one-sided (monopolar) subarcsecond-scale microjets, too small to be seen on ground-based images against the bright background nebular light. Additionally, wide-angle winds from 10 young stars in the outskirts of the Nebula power large-scale bow shocks facing the Trapezium OB stars. These shocks may be produced by wind-wind interactions where the T-Tauri winds interact with the outflow of plasma from the core of M42. The largest such structure, associated with the star LL Ori, contains a number of compact high-proper-motion clumps moving almost tangentially to the bow shock. The new data are combined with older HST images to determine proper motions for many nebular features. Neither the LL Ori type bow shocks in the outskirts of the nebula nor the Hα + [O III] arcs that surround many proplyds near the Trapezium show

  16. FEEDBACK EFFECTS ON LOW-MASS STAR FORMATION

    International Nuclear Information System (INIS)

    Hansen, Charles E.; Klein, Richard I.; McKee, Christopher F.; Fisher, Robert T.

    2012-01-01

    Protostellar feedback, both radiation and bipolar outflows, dramatically affects the fragmentation and mass accretion from star-forming cores. We use ORION, an adaptive mesh refinement gravito-radiation-hydrodynamics code, to simulate low-mass star formation in a turbulent molecular cloud in the presence of protostellar feedback. We present results of the first simulations of a star-forming cluster that include both radiative transfer and protostellar outflows. We run four simulations to isolate the individual effects of radiation feedback and outflow feedback as well as the combination of the two. We find that outflows reduce protostellar masses and accretion rates each by a factor of three and therefore reduce protostellar luminosities by an order of magnitude. This means that, while radiation feedback suppresses fragmentation, outflows render protostellar radiation largely irrelevant for low-mass star formation above a mass scale of 0.05 M ☉ . We find initial fragmentation of our cloud at half the global Jeans length, around 0.1 pc. With insufficient protostellar radiation to stop it, these 0.1 pc cores fragment repeatedly, forming typically 10 stars each. The accretion rate in these stars scales with mass as predicted from core accretion models that include both thermal and turbulent motions; the accretion rate does not appear to be consistent with either competitive accretion or accretion from an isothermal sphere. We find that protostellar outflows do not significantly affect the overall cloud dynamics, in the absence of magnetic fields, due to their small opening angles and poor coupling to the dense gas. The outflows reduce the mass from the cores by 2/3, giving a core to star efficiency, ε core ≅ 1/3. The simulations are also able to reproduce many observation of local star-forming regions. Our simulation with radiation and outflows reproduces the observed protostellar luminosity function. All of the simulations can reproduce observed core mass

  17. Strongly coupled semidirect mediation of supersymmetry breaking

    International Nuclear Information System (INIS)

    Ibe, M.; Izawa, K.-I.; Nakai, Y.

    2009-01-01

    Strongly coupled semidirect gauge mediation models of supersymmetry breaking through massive mediators with standard-model charges are investigated by means of composite degrees of freedom. Sizable mediation is realized to generate the standard-model gaugino masses for a small mediator mass without breaking the standard-model symmetries.

  18. The SAMI Galaxy Survey: understanding observations of large-scale outflows at low redshift with EAGLE simulations

    Science.gov (United States)

    Tescari, E.; Cortese, L.; Power, C.; Wyithe, J. S. B.; Ho, I.-T.; Crain, R. A.; Bland-Hawthorn, J.; Croom, S. M.; Kewley, L. J.; Schaye, J.; Bower, R. G.; Theuns, T.; Schaller, M.; Barnes, L.; Brough, S.; Bryant, J. J.; Goodwin, M.; Gunawardhana, M. L. P.; Lawrence, J. S.; Leslie, S. K.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Richards, S. N.; Sweet, S. M.; Tonini, C.

    2018-01-01

    This work presents a study of galactic outflows driven by stellar feedback. We extract main-sequence disc galaxies with stellar mass 109 ≤ M⋆/ M⊙ ≤ 5.7 × 1010 at redshift z = 0 from the highest resolution cosmological simulation of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) set. Synthetic gas rotation velocity and velocity dispersion (σ) maps are created and compared to observations of disc galaxies obtained with the Sydney-AAO (Australian Astronomical Observatory) Multi-object Integral field spectrograph (SAMI), where σ-values greater than 150 km s-1 are most naturally explained by bipolar outflows powered by starburst activity. We find that the extension of the simulated edge-on (pixelated) velocity dispersion probability distribution depends on stellar mass and star formation rate surface density (ΣSFR), with low-M⋆/low-ΣSFR galaxies showing a narrow peak at low σ (∼30 km s-1) and more active, high-M⋆/high-ΣSFR galaxies reaching σ > 150 km s-1. Although supernova-driven galactic winds in the EAGLE simulations may not entrain enough gas with T EAGLE: (i) low-σ peak ⇔ disc of the galaxy ⇔ gas with T <105 K; (ii) high-σ tail ⇔ galactic winds ⇔ gas with T ≥105 K.

  19. Mass-loss rates of hot stars

    Czech Academy of Sciences Publication Activity Database

    Kubát, Jiří; Šurlan, Brankica

    -, č. 92 (2013), s. 137-146 ISSN 0373-3742. [Future science with metre-class telescopes. Beograd, 18.09.2012-21.09.2012] R&D Projects: GA ČR GA205/08/0003 Institutional support: RVO:67985815 Keywords : stars winds * outflows stars * mass-loss stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  20. Strongly nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2014-01-01

    This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...

  1. The XMM deep survey in the CDF-S. IX. An X-ray outflow in a luminous obscured quasar at z ≈ 1.6

    Science.gov (United States)

    Vignali, C.; Iwasawa, K.; Comastri, A.; Gilli, R.; Lanzuisi, G.; Ranalli, P.; Cappelluti, N.; Mainieri, V.; Georgantopoulos, I.; Carrera, F. J.; Fritz, J.; Brusa, M.; Brandt, W. N.; Bauer, F. E.; Fiore, F.; Tombesi, F.

    2015-11-01

    In active galactic nuclei (AGN)-galaxy co-evolution models, AGN winds and outflows are often invoked to explain why super-massive black holes and galaxies stop growing efficiently at a certain phase of their lives. They are commonly referred to as the leading actors of feedback processes. Evidence of ultra-fast (v ≳ 0.05c) outflows in the innermost regions of AGN has been collected in the past decade by sensitive X-ray observations for sizable samples of AGN, mostly at low redshift. Here we present ultra-deep XMM-Newton and Chandra spectral data of an obscured (NH≈ 2 × 1023 cm-2), intrinsically luminous (L2-10 keV≈ 4 × 1044 erg s-1) quasar (named PID352) at z ≈ 1.6 (derived from the X-ray spectral analysis) in the Chandra Deep Field-South. The source is characterized by an iron emission and absorption line complex at observed energies of E ≈ 2-3 keV. While the emission line is interpreted as being due to neutral iron (consistent with the presence of cold absorption), the absorption feature is due to highly ionized iron transitions (FeXXV, FeXXVI) with an outflowing velocity of , as derived from photoionization models. The mass outflow rate - ~2 M⊙ yr-1 - is similar to the source accretion rate, and the derived mechanical energy rate is ~9.5 × 1044 erg s-1, corresponding to 9% of the source bolometric luminosity. PID352 represents one of the few cases where indications of X-ray outflowing gas have been observed at high redshift thus far. This wind is powerful enough to provide feedback on the host galaxy.

  2. A two-stage outflow in NGC 1068

    Science.gov (United States)

    May, D.; Steiner, J. E.

    2017-07-01

    We present an analysis of the Seyfert 2 galaxy NGC 1068 of archive data from the Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI)-Very Large Telescope, in the HK bands with pixel scales of 0.1 (data set 1 - DS1) and 0.025 (DS2) arcsec. The data are revisited with a sophisticated data treatment, such as the differential atmospheric refraction correction and the application of a Butterworth filtering and deconvolution. The gain in the process is quantified by a significant improvement in the Strehl ratio and it shows that an unprecedented high spatial resolution is achieved. For DS1, a detailed study of the H2, [Fe II] and [Si VI] emission lines reveals a three-phase gas morphology: (1) the low-velocity [Fe II] emission representing the glowing wall of an hourglass structure, (2) the high-velocity compact blobs of low and high ionization emissions filling the hourglass volume and (3) the distribution of H2 molecular gas defines the thick and irregular walls of a bubble surrounding a cavity. Both the hourglass and the molecular emissions have an asymmetry caused by the fragmentation of the north-eastern molecular wall, closest to the active galactic nucleus, resulting in high-velocity compact blobs of ionized gas outside the bubble. The south-western part of the bubble is excavated by the jet, where the blobs remain confined and are blown along the bubble's inner boundary. We propose that those blobs are driven by a hot 'secondary wind' coming from the spot where the jet interacts and injects its energy in the molecular gas. The combination of a primary wind launched by the central source and the secondary wind is what we call a two-stage outflow. For DS2, we detected a [Si VI] outflow nearly coplanar to the maser disc and orthogonal to the CO outflow found by a previous study. Such unexpected scenario is interpreted as the interaction between the central radiation field and a two-phase gas density torus.

  3. Strongly Correlated Topological Insulators

    Science.gov (United States)

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  4. Strong Cosmic Censorship

    Science.gov (United States)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  5. A 3D view of the outflow in the Orion Molecular Cloud 1 (OMC-1)

    DEFF Research Database (Denmark)

    Nissen, H.D.; Cunningham, N.J.; Sherson, Maiken Gustafsson

    2012-01-01

    The fast outflow emerging from a region associated with massive star formation in the Orion Molecular Cloud 1 (OMC-1), located behind the Orion Nebula, appears to have been set in motion by an explosive event. Here we study the structure and dynamics of outflows in OMC-1. We combine radial velocity...

  6. Financial Crisis, Capital Outflows, and Policy Responses: Examples from East Asia

    Science.gov (United States)

    Rajan, Ramkishen S.

    2007-01-01

    Financial crises seem to have become the norm rather than the exception since 1992. The author examines the impact of a crisis of confidence and resultant capital outflows from a small and open economy and the possible policy options in response to such outflows, using simple tools and definitions that will be familiar to any money and banking or…

  7. The effect of outflowing water coolant with supercritical parameters on a barrier

    Directory of Open Access Journals (Sweden)

    Alekseev Maksim

    2017-01-01

    Full Text Available The outflow of supercritical coolant with different initial parameters and its impact on the barrier have been numerically simulated. Spatial and axial distributions of pressure and steam quality are presented. The force acting on the barrier at different parameters of the outflow has been calculated.

  8. Radio Jets as Driving Mechanism of Fast Outflows: The HI View

    NARCIS (Netherlands)

    Morganti, Raffaella; Maccagni, Filippo; Oosterloo, Tom; Schulz, Robert; Santoro, Francesco

    2017-01-01

    The complex and multi-phase nature of gas outflows is one of the properties highlighted by the work in recent years on AGN-driven outflows. In particular, the cold gas is found to play a more important role than previously expected. Surprisingly, HI has been shown to be a good tracer of fast

  9. Fast outflow of Hi in starburst radio galaxy 3C 293

    NARCIS (Netherlands)

    Emonts, B; van der Hulst, T; Morganti, R; Oosterloo, T; Tadhunter, C; Holt, J; Wills, K; Aalto, S; Huttemeister, S; Pedlar, A

    2004-01-01

    We detect a fast outflow of gas in the central region of the nearby starburst radio galaxy 3C 293. The outflow is detected both in the optical emission lines of ionized gas as well as in HI absorption against the radio continuum. The broad HI absorption feature (observed with the recently upgraded

  10. Modeling the outflow of liquid with initial supercritical parameters using the relaxation model for condensation

    Directory of Open Access Journals (Sweden)

    Lezhnin Sergey

    2017-01-01

    Full Text Available The two-temperature model of the outflow from a vessel with initial supercritical parameters of medium has been realized. The model uses thermodynamic non-equilibrium relaxation approach to describe phase transitions. Based on a new asymptotic model for computing the relaxation time, the outflow of water with supercritical initial pressure and super- and subcritical temperatures has been calculated.

  11. Left ventricular outflow tract obstruction following repair of pneumococcal mitral annular abscess.

    Science.gov (United States)

    Charney, R; Schwinger, M E; Brodman, R; Spindola-Franco, H; Levine, E; Moser, S

    1993-04-01

    An unusual case of a mitral annular abscess caused by Streptococcus pneumoniae was diagnosed by transesophageal echocardiography. The patient underwent surgical resection of the abscess and developed outflow tract obstruction. This is an unusual complication of the surgical procedure. The outflow tract obstruction may have been due to anterior displacement of the mitral valve by the abscess.

  12. Paleoceanography. Onset of Mediterranean outflow into the North Atlantic.

    Science.gov (United States)

    Hernández-Molina, F Javier; Stow, Dorrik A V; Alvarez-Zarikian, Carlos A; Acton, Gary; Bahr, André; Balestra, Barbara; Ducassou, Emmanuelle; Flood, Roger; Flores, José-Abel; Furota, Satoshi; Grunert, Patrick; Hodell, David; Jimenez-Espejo, Francisco; Kim, Jin Kyoung; Krissek, Lawrence; Kuroda, Junichiro; Li, Baohua; Llave, Estefania; Lofi, Johanna; Lourens, Lucas; Miller, Madeline; Nanayama, Futoshi; Nishida, Naohisa; Richter, Carl; Roque, Cristina; Pereira, Hélder; Sanchez Goñi, Maria Fernanda; Sierro, Francisco J; Singh, Arun Deo; Sloss, Craig; Takashimizu, Yasuhiro; Tzanova, Alexandrina; Voelker, Antje; Williams, Trevor; Xuan, Chuang

    2014-06-13

    Sediments cored along the southwestern Iberian margin during Integrated Ocean Drilling Program Expedition 339 provide constraints on Mediterranean Outflow Water (MOW) circulation patterns from the Pliocene epoch to the present day. After the Strait of Gibraltar opened (5.33 million years ago), a limited volume of MOW entered the Atlantic. Depositional hiatuses indicate erosion by bottom currents related to higher volumes of MOW circulating into the North Atlantic, beginning in the late Pliocene. The hiatuses coincide with regional tectonic events and changes in global thermohaline circulation (THC). This suggests that MOW influenced Atlantic Meridional Overturning Circulation (AMOC), THC, and climatic shifts by contributing a component of warm, saline water to northern latitudes while in turn being influenced by plate tectonics. Copyright © 2014, American Association for the Advancement of Science.

  13. Advances in the endoscopic management of gastric outflow disorders.

    Science.gov (United States)

    Storm, Andrew C; Ryou, Marvin

    2017-11-01

    Disorders of gastric outflow and outlet obstruction include a variety of benign and malignant disorders such as peptic strictures, foreign bodies, gastroparesis, and cancers of the stomach, duodenum, and pancreas. Historically, a majority of patients presenting with gastric outlet obstruction (GOO) were to the result of peptic ulcers and surgical management of peptic ulcer complications was a mainstay of general surgical training. Invasive surgery is being performed less frequently today due to realization of the role of Helicobacter pylori in peptic ulcer disease and the introduction of novel endoscopic techniques for management of GOO. For malignant GOO, the introduction of lumen-apposing metal stents have opened the door for the development and performance of endoscopic ultrasound-guided gastric bypass procedures. For benign GOO, including gastroparesis and pyloric stenosis, endoscopic myotomy shows promise. Endoscopic ultrasound-guided gastric bypass, per-oral endoscopic myotomy, and other novel techniques in the endoscopic management of GOO, are discussed in this review.

  14. Ultrafast outflows in radio-loud active galactic nuclei

    Science.gov (United States)

    Tombesi, F.; Tazaki, F.; Mushotzky, R. F.; Ueda, Y.; Cappi, M.; Gofford, J.; Reeves, J. N.; Guainazzi, M.

    2014-09-01

    Recent X-ray observations show absorbing winds with velocities up to mildly relativistic values of the order of ˜0.1c in a limited sample of six broad-line radio galaxies. They are observed as blueshifted Fe XXV-XXVI K-shell absorption lines, similarly to the ultrafast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud active galactic nuclei (AGN) observed with XMM-Newton and Suzaku. The sample is drawn from the Swift Burst Alert Telescope 58-month catalogue and blazars are excluded. X-ray bright Fanaroff-Riley Class II radio galaxies constitute the majority of the sources. Combining the results of this analysis with those in the literature we find that UFOs are detected in >27 per cent of the sources. However, correcting for the number of spectra with insufficient signal-to-noise ratio, we can estimate that the incidence of UFOs is this sample of radio-loud AGN is likely in the range f ≃ (50 ± 20) per cent. A photoionization modelling of the absorption lines with XSTAR allows us to estimate the distribution of their main parameters. The observed outflow velocities are broadly distributed between vout ≲ 1000 km s-1 and vout ≃ 0.4c, with mean and median values of vout ≃ 0.133c and vout ≃ 0.117c, respectively. The material is highly ionized, with an average ionization parameter of logξ ≃ 4.5 erg s-1 cm, and the column densities are larger than NH > 1022 cm-2. Overall, these characteristics are consistent with the presence of complex accretion disc winds in a significant fraction of radio-loud AGN and demonstrate that the presence of relativistic jets does not preclude the existence of winds, in accordance with several theoretical models.

  15. Dynamic left ventricular outflow tract obstruction: underestimated cause of hypotension and hemodynamic instability

    Directory of Open Access Journals (Sweden)

    Dorota Sobczyk

    2014-12-01

    Full Text Available Left ventricular outflow tract obstruction, which is typically associated with hypertrophic cardiomyopathy, is the third most frequent cause of unexplained hypotension. This underestimated problem may temporarily accompany various diseases (it is found in even <1% of patients with no tangible cardiac disease and clinical situations (hypovolemia, general anesthesia. It is currently assumed that left ventricular outflow tract obstruction is a dynamic phenomenon, the occurrence of which requires the coexistence of predisposing anatomic factors and a physiological condition that induces it. The diagnosis of left ventricular outflow tract obstruction should entail immediate implementation of the therapy to eliminate the factors that can potentially intensify the obstruction. Echocardiography is the basic modality in the diagnosis and treatment of left ventricular outflow tract obstruction. This paper presents four patients in whom the immediate implementation of bedside echocardiography enabled a rapid diagnosis of left ventricular outflow tract obstruction and implementation of proper treatment.

  16. Quantitation of uveoscleral outflow in normotensive and glaucomatous Beagles by 3H-labeled dextran

    International Nuclear Information System (INIS)

    Barrie, K.P.; Gum, G.G.; Samuelson, D.A.; Gelatt, K.N.

    1985-01-01

    In uveoscleral outflow, aqueous humor leaves the anterior chamber and passes caudally through the trabecular meshwork and the sclerociliary cleft to enter the supraciliary and suprachoroidal spaces. The fluid is then absorbed by choroidal and scleral circulations. Using 3 H-labeled dextran, uveoscleral outflow was quantitated in normotensive and glaucomatous Beagles under general anesthesia. The intrascleral plexus was isolated and 3 H-labeled dextran was injected into the anterior chamber. Intrascleral plexus contents were sampled every 5 minutes over a 30- to 60-minute period. The eyes were enucleated, sectioned, and prepared for scintillation counting. Uveoscleral outflow accounted for 15% and 3% of the total aqueous humor outflow in the normotensive dogs and in the advanced glaucomatous dogs, respectively. In the advanced glaucomatous Beagle, conventional and uveoscleral outflow pathways were reduced and contributed to the etiopathogenesis of glaucoma

  17. Mass hysteria

    CERN Document Server

    Hellemans, Alexander

    2004-01-01

    Considerable research is being undertaken to identify the Higgs particle that is believed to give things their mass. According to the standard model, what we call mass is really an indication of how strongly particles interact with an invisible syrupy substance called the Higgs field. Quantum mechanics say that the mass-giving field can also be thought of as a sea of electrically neutral Higgs particles that should be dislodged in collisions between subatomic particles with high enough energies. Particle physicists expect the Higgs to exist only for a fleeting moment before decaying into other particles, which are caught in a detector. (Edited abstract).

  18. A Compact Group of Galaxies at z = 2.48 Hosting an AGN-driven Outflow

    Science.gov (United States)

    Shih, Hsin-Yi; Stockton, Alan

    2015-12-01

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 1011M⊙ and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass-metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The work is also based, in part, on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  19. Radio emission from the X-ray pulsar Her X-1: a jet launched by a strong magnetic field neutron star?

    Science.gov (United States)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-01-01

    Her X-1 is an accreting neutron star (NS) in an intermediate-mass X-ray binary. Like low-mass X-ray binaries (LMXBs), it accretes via Roche lobe overflow, but similar to many high-mass X-ray binaries containing a NS; Her X-1 has a strong magnetic field and slow spin. Here, we present the discovery of radio emission from Her X-1 with the Very Large Array. During the radio observation, the central X-ray source was partially obscured by a warped disc. We measure a radio flux density of 38.7 ± 4.8 μJy at 9 GHz but cannot constrain the spectral shape. We discuss possible origins of the radio emission, and conclude that coherent emission, a stellar wind, shocks and a propeller outflow are all unlikely explanations. A jet, as seen in LMXBs, is consistent with the observed radio properties. We consider the implications of the presence of a jet in Her X-1 on jet formation mechanisms and on the launching of jets by NSs with strong magnetic fields.

  20. Strong Arcwise Connectedness

    OpenAIRE

    Espinoza, Benjamin; Gartside, Paul; Kovan-Bakan, Merve; Mamatelashvili, Ana

    2012-01-01

    A space is `n-strong arc connected' (n-sac) if for any n points in the space there is an arc in the space visiting them in order. A space is omega-strong arc connected (omega-sac) if it is n-sac for all n. We study these properties in finite graphs, regular continua, and rational continua. There are no 4-sac graphs, but there are 3-sac graphs and graphs which are 2-sac but not 3-sac. For every n there is an n-sac regular continuum, but no regular continuum is omega-sac. There is an omega-sac ...

  1. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally......'s scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims....

  2. Outflows from Compact Objects in Supernovae and Novae

    Science.gov (United States)

    Vlasov, Andrey Dmitrievich

    Originally thought of as a constant and unchanging place, the Universe is full of dramas of stars emerging, dying, eating each other, colliding, etc. One of the first transient phenomena noticed were called novae (the name means "new" in Latin). Years later, supernovae were discovered. Despite their names, both novae and supernovae are events in relatively old stars, with supernovae marking the point of stellar death. Known for thousands of years, supernovae and novae remain among the most studied events in our Universe. Supernovae strongly influence the circumstellar medium, enriching it with heavy elements and shocking it, facilitating star formation. Cosmic rays are believed to be accelerated in shocks from supernovae, with small contribution possibly coming from novae. Even though the basic physics of novae is understood, many questions remain unanswered. These include the geometry of the ejecta, why some novae are luminous radio or gamma-ray sources and others are not, what is the ultimate fate of recurrent novae, etc. Supernova explosions are the primary sources of elements heavier than hydrogen and helium. The elements up to nuclear masses A around 100 can form through successive nuclear fusion in the cores of stars starting with hydrogen. Beyond iron, the fusion becomes endothermic instead of exothermic. In addition, for these nuclear masses the temperatures required to overcome the Coulomb barriers are so high that the nuclei are dissociated into alpha particles and free nucleons. Hence all elements heavier than A around 100 should have formed by some other means. These heavier nuclear species are formed by neutron capture on seed nuclei close to or heavier than iron-group nuclei. Depending on the ratio between neutron-capture timescale and beta-decay timescale, neutron-capture processes are called rapid or slow (r- and s-processes, respectively). The s-process, which occurs near the valley of stable isotopes, terminates at Bi (Z=83), because after Bi

  3. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.

    1992-01-01

    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  4. Stable carbon and nitrogen isotopic compositions of ambient aerosols collected from Okinawa Island in the western North Pacific Rim, an outflow region of Asian dusts and pollutants

    Science.gov (United States)

    Kunwar, Bhagawati; Kawamura, Kimitaka; Zhu, Chunmao

    2016-04-01

    Stable carbon (δ13C) and nitrogen (δ15N) isotope ratios were measured for total carbon (TC) and nitrogen (TN), respectively, in aerosol (TSP) samples collected at Cape Hedo, Okinawa, an outflow region of Asian pollutants, during 2009-2010. The averaged δ13C and δ15N ratios are -22.2‰ and +12.5‰, respectively. The δ13C values are similar in both spring (-22.5‰) and winter (-22.5‰), suggesting the similar sources and/or source regions. We found that δ13C from Okinawa aerosols are ca. 2‰ higher than those reported from Chinese megacities probably due to photochemical aging of organic aerosols. A strong correlation (r = 0.81) was found between nss-Ca and TSP, suggesting that springtime aerosols are influenced from Asian dusts. However, carbonates in the Asian dusts were titrated with acidic species such as sulfuric acid and oxalic acid during atmospheric transport although two samples suggested the presence of remaining carbonate. No correlations were found between δ13C and tracer compounds (levoglucosan, elemental carbon, oxalic acid, and Na+). During winter and spring, coal burning is significant source in China. Based on isotopic mass balance, contribution of coal burning origin particles to total aerosol carbon was estimated as ca. 97% in winter, which is probably associated with the high emissions in China. Contribution of NO3- to TN was on average 45% whereas that of NH4+ was 18%. These results suggest that vehicular exhaust is an important source of TN in Okinawa aerosols. Concentration of water-soluble organic nitrogen (WSON) is higher in summer, suggesting that WSON is more emitted from the ocean in warmer season whereas inorganic nitrogen is more emitted in winter and spring from pollution sources in the Asian continent.

  5. THE ORION FINGERS: NEAR-IR SPECTRAL IMAGING OF AN EXPLOSIVE OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, Allison; Bally, John [Department of Astrophysical and Planetary Sciences, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Ginsburg, Adam, E-mail: allison.youngblood@colorado.edu [ESO Headquarters, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany)

    2016-06-01

    We present near-IR (1.1–2.4 μ m) position–position–velocity cubes of the 500 year old Orion BN/KL explosive outflow with spatial resolution 1″ and spectral resolution 86 km s{sup −1}. We construct integrated intensity maps free of continuum sources of 15 H{sub 2} and [Fe ii] lines while preserving kinematic information of individual outflow features. Included in the detected H{sub 2} lines are the 1-0 S(1) and 1-0 Q(3) transitions, allowing extinction measurements across the outflow. Additionally, we present dereddened flux ratios for over two dozen outflow features to allow for the characterization of the true excitation conditions of the BN/KL outflow. All of the ratios show the dominance of the shock excitation of the H{sub 2} emission, although some features exhibit signs of fluorescent excitation from stellar radiation or J-type shocks. We also detect tracers of the PDR/ionization front north of the Trapezium stars in [O i] and [Fe ii] and analyze other observed outflows not associated with the BN/KL outflow.

  6. Cold Ion Outflow Modulated by the Solar Wind Energy Input and Tilt of the Geomagnetic Dipole

    Science.gov (United States)

    Li, Kun; Wei, Y.; André, M.; Eriksson, A.; Haaland, S.; Kronberg, E. A.; Nilsson, H.; Maes, L.; Rong, Z. J.; Wan, W. X.

    2017-10-01

    The solar wind energy input into the Earth's magnetosphere-ionosphere system drives ionospheric outflow, which plays an important role in both the magnetospheric dynamics and evolution of the atmosphere. However, little is known about the cold ion outflow with energies lower than a few tens of eV, as the direct measurement of cold ions is difficult because a spacecraft gains a positive electric charge due to the photoemission effect, which prevents cold ions from reaching the onboard detectors. A recent breakthrough in the measurement technique using Cluster spacecraft revealed that cold ions dominate the ion population in the magnetosphere. This new technique yields a comprehensive data set containing measurements of the velocities and densities of cold ions for the years 2001-2010. In this paper, this data set is used to analyze the cold ion outflow from the ionosphere. We found that about 0.1% of the solar wind energy input is transformed to the kinetic energy of cold ion outflow at the topside ionosphere. We also found that the geomagnetic dipole tilt can significantly affect the density of cold ion outflow, modulating the outflow rate of cold ion kinetic energy. These results give us clues to study the evolution of ionospheric outflow with changing global magnetic field and solar wind condition in the history.

  7. THE EMISSION-LINE SPECTRA OF MAJOR MERGERS: EVIDENCE FOR SHOCKED OUTFLOWS

    International Nuclear Information System (INIS)

    Soto, Kurt T.; Martin, C. L.; Prescott, M. K. M.; Armus, L.

    2012-01-01

    Using a spectral decomposition technique, we investigate the physical origin of the high-velocity emission-line gas in a sample of 39 gas-rich, ultraluminous infrared galaxy mergers. Regions with shock-like excitation were identified in two kinematically distinct regimes, characterized by broad (σ > 150 km s –1 ) and narrow linewidths (σ ≤ 150 km s –1 ). Here, we investigate the physical origin of the broad emission, which we show is predominantly excited by shocks with velocities of 200-300 km s –1 . Considering the large amount of extinction in these galaxies, the blueshift of the broad emission suggests an origin on the near side of the galaxy and therefore an interpretation as a galactic outflow. The large spatial extent of the broad, shocked emission component is generally inconsistent with an origin in the narrow-line region of an active galactic nucleus. The kinetic energy in the mass loss as well as the luminosity of the emission lines is consistent with the fraction of the supernova energy attributed to these mechanisms by shocked stellar winds. Since some shocks can be recognized in moderately high resolution, integrated spectra of nearby ultraluminous starbursts, the spectral fitting technique introduced in Soto and Martin may therefore be used to improve the accuracy of the physical properties measured for high-redshift galaxies from their (observed frame) infrared spectra.

  8. Probing the Gas Fueling and Outflows in Nearby AGN with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Audibert, Anelise [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, PSL University, Sorbonne University, UPMC, Paris (France); Combes, Françoise [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, PSL University, Sorbonne University, UPMC, Paris (France); College de France, Paris (France); García-Burillo, Santiago [Observatorio Astronómico Nacional, Observatorio de Madrid, Madrid (Spain); Salomé, Philippe, E-mail: anelise.audibert@obspm.fr [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, PSL University, Sorbonne University, UPMC, Paris (France)

    2017-12-12

    Feeding and feedback in AGN play a very important role to gain a proper understanding of galaxy formation and evolution. The interaction between activity mechanisms in the nucleus and its influence in the host galaxy are related to the physical processes involved in feedback and the gas fueling of the black hole. The discovery of many massive molecular outflows in the last few years have been promoting the idea that winds may be major actors in sweeping the gas out of galaxies. Also, the widely observed winds from the central regions of AGN are promising candidates to explain the scaling relations (e.g., the black hole-bulge mass relation, BH accretion rate tracking the star formation history) under the AGN feedback scenario. Out goal is to probe these phenomena through the kinematic and morphology of the gas inside the central kpc in nearby AGN. This has recently been possible due to the unprecedented ALMA spatial resolution and sensitivity. We present results on NGC7213 and NGC1808, the latter is part of a new ALMA follow-up of the NuGa project, a previous high-resolution (0.5–1″) CO survey of low luminosity AGN performed with the IRAM PdBI.

  9. Microscopic Characterization of Carbonaceous Aerosol Particle Aging in the Outflow from Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Moffet, R. C.; Henn, T. R.; Tivanski, A. V.; Hopkins, R. J.; Desyaterik, Y.; Kilcoyne, A. L. D.; Tyliszczak, T.; Fast, J.; Barnard, J.; Shutthanandan, V.; Cliff, S.S.; Perry, K. D.; Laskin, A.; Gilles, M. K.

    2009-09-16

    This study was part of the Megacities Initiative: Local and Global Research Observations (MILAGRO) field campaign conducted in Mexico City Metropolitan Area during spring 2006. The physical and chemical transformations of particles aged in the outflow from Mexico City were investigated for the transport event of 22 March 2006. A detailed chemical analysis of individual particles was performed using a combination of complementary microscopy and micro-spectroscopy techniques. The applied techniques included scanning transmission X-ray microscopy (STXM) coupled with near edge X-ray absorption fine structure spectroscopy (NEXAFS) and computer controlled scanning electron microscopy with an energy dispersive X-ray analyzer (CCSEM/EDX). As the aerosol plume evolves from the city center, the organic mass per particle increases and the fraction of carbon-carbon double bonds (associated with elemental carbon) decreases. Organic functional groups enhanced with particle age include: carboxylic acids, alkyl groups, and oxygen bonded alkyl groups. At the city center (T0) the most prevalent aerosol type contained inorganic species (composed of sulfur, nitrogen, oxygen, and potassium) coated with organic material. At the T1 and T2 sites, located northeast of T0 (~;;29 km and ~;;65 km, respectively), the fraction of homogenously mixed organic particles increased in both size and number. These observations illustrate the evolution of the physical mixing state and organic bonding in individual particles in a photochemically active environment.

  10. Watching AGN feedback at its birth: HST observations of nascent outflow host IC860

    Science.gov (United States)

    Alatalo, Katherine

    2016-10-01

    IC860 is a nearby IR-luminous early-type spiral with a unique set of properties: it is a shocked, poststarburst galaxy that hosts an AGN-driven neutral wind and a compact core of molecular gas. IC860 can serve as a rosetta stone for the early stages of triggering AGN feedback. We propose to use WFC3 on HST to obtain NUV, optical and near-IR imaging of IC860. We will create a spatially-resolved history of star formation quenching through SED-fitting of 7 requested broadband filters, and compare the spatially resolved star formation histories to in different positions within the underlying stellar features (such as spiral structure) that might define a narrative of how star formation is quenching in IC860. These observations will also resolve the super-star cluster sites to trace the most recent star formation. Finally, these observations will trace the mass of the outflow by building an absorption map of the dust. IC860 presents a unique opportunity to study a galaxy at an early stage of transitioning from blue spiral to red early-type galaxy, that also hosts an AGN-driven neutral wind and a compact, turbulent molecular gas core.

  11. Microscopic characterization of carbonaceous aerosol particle aging in the outflow from Mexico City

    Science.gov (United States)

    Moffet, R. C.; Henn, T. R.; Tivanski, A. V.; Hopkins, R. J.; Desyaterik, Y.; Kilcoyne, A. L. D.; Tyliszczak, T.; Fast, J.; Barnard, J.; Shutthanandan, V.; Cliff, S. S.; Perry, K. D.; Laskin, A.; Gilles, M. K.

    2010-02-01

    This study was part of the Megacities Initiative: Local and Global Research Observations (MILAGRO) field campaign conducted in Mexico City metropolitan area during spring 2006. The physical and chemical transformations of particles aged in the outflow from Mexico City were investigated for the transport event of 22 March 2006. A detailed chemical analysis of individual particles was performed using a combination of complementary microscopy and micro-spectroscopy techniques. The applied techniques included scanning transmission X-ray microscopy (STXM) coupled with near edge X-ray absorption fine structure spectroscopy (NEXAFS) and computer controlled scanning electron microscopy with an energy dispersive X-ray analyzer (CCSEM/EDX). As the aerosol plume evolves from the city center, the organic mass per particle increases and the fraction of carbon-carbon double bonds (associated with elemental carbon) decreases. Organic functional groups enhanced with particle age include: carboxylic acids, alkyl groups, and oxygen bonded alkyl groups. At the city center (T0) the most prevalent aerosol type contained inorganic species (composed of sulfur, nitrogen, oxygen, and potassium) coated with organic material. At the T1 and T2 sites, located northeast of T0 (~29 km and ~65 km, respectively), the fraction of homogenously mixed organic particles increased in both size and number. These observations illustrate the evolution of the physical mixing state and organic bonding in individual particles in a photochemically active environment.

  12. Probing the Gas Fueling and Outflows in Nearby AGN with ALMA

    Directory of Open Access Journals (Sweden)

    Anelise Audibert

    2017-12-01

    Full Text Available Feeding and feedback in AGN play a very important role to gain a proper understanding of galaxy formation and evolution. The interaction between activity mechanisms in the nucleus and its influence in the host galaxy are related to the physical processes involved in feedback and the gas fueling of the black hole. The discovery of many massive molecular outflows in the last few years have been promoting the idea that winds may be major actors in sweeping the gas out of galaxies. Also, the widely observed winds from the central regions of AGN are promising candidates to explain the scaling relations (e.g., the black hole-bulge mass relation, BH accretion rate tracking the star formation history under the AGN feedback scenario. Out goal is to probe these phenomena through the kinematic and morphology of the gas inside the central kpc in nearby AGN. This has recently been possible due to the unprecedented ALMA spatial resolution and sensitivity. We present results on NGC7213 and NGC1808, the latter is part of a new ALMA follow-up of the NuGa project, a previous high-resolution (0.5–1″ CO survey of low luminosity AGN performed with the IRAM PdBI.

  13. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  14. Extraction of the strong coupling constant from the measurement of inclusive multijet event cross-sections in pp collisions at center of mass energy of 8 TeV

    CERN Document Server

    Kaur, Anterpreet

    2017-01-01

    A measurement of inclusive multijet event cross sections is presented from proton-proton collisions recorded at 8 TeV with the CMS detector and corresponding to an integrated luminosity of 19.7/fb. Jets are reconstructed with the anti-kt clustering algorithm for a jet size parameter R=0.7 in a phase space region ranging up to jet transverse momenta pT of 2.0 TeV and rapidity of IyI lt 2.5. The inclusive 2-jet and 3-jet event cross sections are measured as a function of the average pT of the two leading jets. The results are compared to fixed-order predictions of perturbative QCD and to simulations using various Monte Carlo event generators including parton showers, hadronisation, and multiparton interactions. A fit of the strong coupling constant is performed with the ratio of the 3-jet over 2-jet event cross section.

  15. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows.

    Science.gov (United States)

    Governato, F; Brook, C; Mayer, L; Brooks, A; Rhee, G; Wadsley, J; Jonsson, P; Willman, B; Stinson, G; Quinn, T; Madau, P

    2010-01-14

    For almost two decades the properties of 'dwarf' galaxies have challenged the cold dark matter (CDM) model of galaxy formation. Most observed dwarf galaxies consist of a rotating stellar disk embedded in a massive dark-matter halo with a near-constant-density core. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles, because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate. Here we report hydrodynamical simulations (in a framework assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies-bulgeless and with shallow central dark-matter profiles-arise naturally in these simulations.

  16. SUSY strong production (leptonic) with ATLAS

    CERN Document Server

    Saito, Tomoyuki; The ATLAS collaboration

    2017-01-01

    Supersymmetry is one of the most motivated scenarios for physics beyond the Standard Model. This article summarizes recent ATLAS results on searches for supersymmetry in proton-proton collisions at a centre-of-mass energy of 13 TeV at LHC, which target supersymmetric particles produced by strong interaction in events with leptonic fi nal states. No signi ficant excess above the Standard Model expectation is observed and exclusion limits have been set on squark and gluino masses in various scenarios.

  17. Probing the Outflowing Multiphase Gas ∼1 kpc below the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Savage, Blair D.; Kim, Tae-Sun; Wakker, Bart P. [Department of astronomy, University of Wisconsin, Madison, 475 North Charter Street, Madison, WI 53706 (United States); Fox, Andrew J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Massa, Derck [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Bordoloi, Rongmon [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Jenkins, Edward B. [Princeton University Observatory, Princeton, NJ 08544 (United States); Lehner, Nicolas [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Bland-Hawthorn, Joss [Institute of Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Lockman, Felix J. [Green Bank Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Hernandez, Svea [Department of Astrophysics, Radboud University, Nijmegen, PO Box 9010, 6500 GL Nijmegen (Netherlands)

    2017-10-01

    Comparison of interstellar medium (ISM) absorption in the UV spectrum of LS 4825, a B1 Ib−II star d  = 21 ± 5 kpc from the Sun toward l  = 1.°67 and b  = −6.°63, with ISM absorption toward an aligned foreground star at d  < 7.0 ± 1.7 kpc, allows us to isolate and study gas associated with the Milky Way nuclear wind. Spectra from the Space Telescope Imaging Spectrograph show low-ionization absorption out to d  < 7 kpc (e.g., O i, C ii, Mg ii, Si ii, Fe ii, S ii) only between 0 and 40 km s{sup −1}, while absorption at d  > 7 kpc, ∼1 kpc below the Galactic plane, is complex and spans −290 to +94 km s{sup −1}. The intermediate and high ions Si iii, C iv, Si iv, and N v show extremely strong absorption with multiple components from −283 to 107 km s{sup −1}, implying that the ISM ∼1 kpc below the Galactic center has a substantial reservoir of plasma and more gas containing C iv and N v than in the Carina OB1 association at z  = 0 kpc. Abundances and physical conditions are presented for many absorption components. The high ion absorption traces cooling transition temperature plasma probably driven by the outflowing hot gas, while the extraordinarily large thermal pressure, p / k  ∼ 10{sup 5} cm{sup −3} K{sup −1}, in an absorption component at −114 km s{sup −1} probably arises from the ram pressure of the outflowing hot gas. The observations are consistent with a flow whose ionization structure in the high ions can be understood through a combination of nonequilibrium radiative cooling and turbulent mixing.

  18. Black Sea outflow response to Holocene meltwater events.

    Science.gov (United States)

    Herrle, Jens O; Bollmann, Jörg; Gebühr, Christina; Schulz, Hartmut; Sheward, Rosie M; Giesenberg, Annika

    2018-03-06

    During the Holocene, North American ice sheet collapse and rapid sea-level rise reconnected the Black Sea with the global ocean. Rapid meltwater releases into the North Atlantic and associated climate change arguably slowed the pace of Neolithisation across southeastern Europe, originally hypothesized as a catastrophic flooding that fueled culturally-widespread deluge myths. However, we currently lack an independent record linking the timing of meltwater events, sea-level rise and environmental change with the timing of Neolithisation in southeastern Europe. Here, we present a sea surface salinity record from the Northern Aegean Sea indicative of two meltwater events at ~8.4 and ~7.6 kiloyears that can be directly linked to rapid declines in the establishment of Neolithic sites in southeast Europe. The meltwater events point to an increased outflow of low salinity water from the Black Sea driven by rapid sea level rise >1.4 m following freshwater outbursts from Lake Agassiz and the final decay of the Laurentide ice sheet. Our results shed new light on the link between catastrophic sea-level rise and the Neolithisation of southeastern Europe, and present a historical example of how coastal populations could have been impacted by future rapid sea-level rise.

  19. Estimation of future outflows of e-waste in India

    International Nuclear Information System (INIS)

    Dwivedy, Maheshwar; Mittal, R.K.

    2010-01-01

    The purpose of this study is to construct an approach and a methodology to estimate the future outflows of electronic waste (e-waste) in India. Consequently, the study utilizes a time-series multiple lifespan end-of-life model proposed by Peralta and Fontanos for estimating the current and future quantities of e-waste in India. The model estimates future e-waste generation quantities by modeling their usage and disposal. The present work considers two scenarios for the approximation of e-waste generation based on user preferences to store or to recycle the e-waste. This model will help formal recyclers in India to make strategic decisions in planning for appropriate recycling infrastructure and institutional capacity building. Also an extension of the model proposed by Peralta and Fontanos is developed with the objective of helping decision makers to conduct WEEE estimates under a variety of assumptions to suit their region of study. During 2007-2011, the total WEEE estimates will be around 2.5 million metric tons which include waste from personal computers (PC), television, refrigerators and washing machines. During the said period, the waste from PC will account for 30% of total units of WEEE generated.

  20. Physical Conditions in Ultra-fast Outflows in AGN

    Science.gov (United States)

    Kraemer, S. B.; Tombesi, F.; Bottorff, M. C.

    2018-01-01

    XMM-Newton and Suzaku spectra of Active Galactic Nuclei (AGN) have revealed highly ionized gas, in the form of absorption lines from H-like and He-like Fe. Some of these absorbers, ultra-fast outflows (UFOs), have radial velocities of up to 0.25c. We have undertaken a detailed photoionization study of high-ionization Fe absorbers, both UFOs and non-UFOs, in a sample of AGN observed by XMM-Newton. We find that the heating and cooling processes in UFOs are Compton-dominated, unlike the non-UFOs. Both types are characterized by force multipliers on the order of unity, which suggest that they cannot be radiatively accelerated in sub-Eddington AGN, unless they were much less ionized at their point of origin. However, such highly ionized gas can be accelerated via a magneto-hydrodynamic (MHD) wind. We explore this possibility by applying a cold MHD flow model to the UFO in the well-studied Seyfert galaxy, NGC 4151. We find that the UFO can be accelerated along magnetic streamlines anchored in the accretion disk. In the process, we have been able to constrain the magnetic field strength and the magnetic pressure in the UFO and have determined that the system is not in magnetic/gravitational equipartition. Open questions include the variability of the UFOs and the apparent lack of non-UFOs in UFO sources.

  1. AGN Outflow Shocks on Bonnor–Ebert Spheres

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, Zachary; Silk, Joseph; Rahman, Mubdi [The Johns Hopkins University Department of Physics and Astronomy, Bloomberg Center for Physics and Astronomy, Room 366, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Gaibler, Volker [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Bieri, Rebekka [Institut d’Astrophysique de Paris, UMR 7095, CNRS, UPMC Univ. Paris VI, 98 bis Boulevard Arago, F-75014 Paris (France)

    2017-04-20

    Feedback from active galactic nuclei (AGNs) and subsequent jet cocoons and outflow bubbles can have a significant impact on star formation in the host galaxy. To investigate feedback physics on small scales, we perform hydrodynamic simulations of realistically fast AGN winds striking Bonnor–Ebert spheres and examine gravitational collapse and ablation. We test AGN wind velocities ranging from 300 to 3000 km s{sup −1} and wind densities ranging from 0.5 to 10 m {sub p} cm{sup −3}. We include heating and cooling of low- and high-temperature gas, self-gravity, and spatially correlated perturbations in the shock, with a maximum resolution of 0.01 pc. We find that the ram pressure is the most important factor that determines the fate of the cloud. High ram pressure winds increase fragmentation and decrease the star formation rate, but they also cause star formation to occur on a much shorter timescale and with increased velocities of the newly formed stars. We find a threshold ram pressure of ∼2 × 10{sup −8} dyn cm{sup −2} above which stars are not formed because the resulting clumps have internal velocities large enough to prevent collapse. Our results indicate that simultaneous positive and negative feedback will be possible in a single galaxy, as AGN wind parameters will vary with location within a galaxy.

  2. Surgical therapy for benign prostatic hypertrophy/bladder outflow obstruction

    Directory of Open Access Journals (Sweden)

    Nikesh Thiruchelvam

    2014-01-01

    Full Text Available Monopolar transurethral resection of the prostate (TURP with endoscopic electrocautery remains the gold standard surgical technique for benign prostatic hypertrophy (BPH by which all new procedures are compared. We reviewed the current literature, and international urological guidelines and consensus opinion on various surgical options for BPH and present a brief overview of alternative techniques including bipolar TURP, transurethral incision of the prostate, transurethral vaporization of the prostate, laser prostatectomy (with holmium, thulium and potassium titanyl phosphate greenlight lasers and open prostatectomy (with mention of new techniques including laparoscopic and robotic prostatectomy. Emerging, experimental and less established techniques are also described including endoscopic heat generation (transurethral microwave thermotherapy, radiofrequency transurethral needle ablation of the prostate, high intensity focused ultrasound, hot water induced thermotherapy, pulsed electromagnetic radiofrequency, injection therapy (transurethral ethanol ablation and botulinum toxin and mechanical devices (intraprostatic stents and urethral lift devices. Despite a plethora of surgical options, none have realistically improved outcomes in the long-term compared with TURP. Improvements have been made on improving surgical morbidity and time in hospital. Questions remain in this area, including what specific elements of bladder outflow obstruction (BOO result in damage to the urinary tract, how does BPH contribute to BOO and how much prostate volume reduction is necessary to relieve BOO or lower urinary tract symptoms. Given these unanswered questions and the multitude of procedures available, it is clear that appropriate counselling is necessary in all men who undergo BPH surgery.

  3. Surgical therapy for benign prostatic hypertrophy/bladder outflow obstruction.

    Science.gov (United States)

    Thiruchelvam, Nikesh

    2014-04-01

    Monopolar transurethral resection of the prostate (TURP) with endoscopic electrocautery remains the gold standard surgical technique for benign prostatic hypertrophy (BPH) by which all new procedures are compared. We reviewed the current literature, and international urological guidelines and consensus opinion on various surgical options for BPH and present a brief overview of alternative techniques including bipolar TURP, transurethral incision of the prostate, transurethral vaporization of the prostate, laser prostatectomy (with holmium, thulium and potassium titanyl phosphate greenlight lasers) and open prostatectomy (with mention of new techniques including laparoscopic and robotic prostatectomy). Emerging, experimental and less established techniques are also described including endoscopic heat generation (transurethral microwave thermotherapy, radiofrequency transurethral needle ablation of the prostate, high intensity focused ultrasound, hot water induced thermotherapy, pulsed electromagnetic radiofrequency), injection therapy (transurethral ethanol ablation and botulinum toxin) and mechanical devices (intraprostatic stents and urethral lift devices). Despite a plethora of surgical options, none have realistically improved outcomes in the long-term compared with TURP. Improvements have been made on improving surgical morbidity and time in hospital. Questions remain in this area, including what specific elements of bladder outflow obstruction (BOO) result in damage to the urinary tract, how does BPH contribute to BOO and how much prostate volume reduction is necessary to relieve BOO or lower urinary tract symptoms. Given these unanswered questions and the multitude of procedures available, it is clear that appropriate counselling is necessary in all men who undergo BPH surgery.

  4. Virtual special issue on IODP Expedition 339: The Mediterranean outflow

    Science.gov (United States)

    Hodell, D. A.; Hernández-Molina, F. Javier; Stow, Dorrik A. V.; Alvarez-Zarikian, Carlos

    2016-09-01

    IODP Expedition 339 had two inter-related objectives to recover continuous sedimentary sequences for: (i) studying the Contourite Depositional System formed by the MOW; and (ii) reconstructing North Atlantic climate variability on orbital and suborbital time scales. This Elsevier Virtual Special Issue (VSI) ;Mediterranean Outflow; is comprised of two volumes that are roughly divided along these lines with Marine Geology devoted to (i) and Global and Planetary Change to (ii), although some papers overlap the two themes. The Marine Geology volume contains 9 contributions addressing specific aspects of IODP Expedition 339 related to contourite deposits including sedimentology, seismic interpretation, stratigraphy, physical properties, downhole logging and ichnofacies (Hernández-Molina et al., 2015; Lofi et al., 2015; Ducassou et al., 2015; Alonso et al., 2015; Takashimizu et al., 2016; Nishida, 2015; Dorador and Rodríguez-Tovar, 2015a, 2015b; Kaboth et al., 2015). The Global and Planetary Change volume consists of 18 papers described below, highlighting paleoclimatic results from sites drilled on the SW Iberian Margin and in the Gulf of Cadiz. The two volumes provide a sample of emerging results of Expedition 339 and foretell of the promising research yet to come.

  5. Gust-Front and Outflow Related Waterspouts: Timely Warnings, Formation, and Impact on Public Safety

    Science.gov (United States)

    Cappucci, M.

    2013-12-01

    Massachusetts may be over a thousand miles away from the traditional "tornado alley", but as the deadly tornadoes that killed four on June 1st 2011 proved, we are not immune to such storms. Over the course of half a century or so, Massachusetts has bore witness to scores of tornadoes, including an F5 twister that touched down on June 9th 1953, resulting in the death of 94 people. Since this tornado, none other in the United States had caused as many deaths, until the Joplin, Missouri catastrophe of May 22, 2011 (161 deaths). In Massachusetts, however, storms of such destructive magnitude are generally confined to the western half of the state, as the June 1, 2011 tornadoes in South Central Massachusetts illustrated. Despite this, a recently observed trend has revealed that the eastern Massachusetts coastline may boast as many, if not more, tornadoes, albeit undocumented. On June 23rd, 2012, a strong thunderstorm produced a spectacular gust front over Boston Harbor. This gust front was associated with intense thunderstorm outflow that helped to spawn a waterspout that roared ashore in Scituate as an EF-0 tornado. This waterspout, however, developed ahead of the gust front, yet merged with the cloud structure of the outflow, hinting at a type of interaction between the thunderstorm downdraft and the waterspout. This tornado caused minor damage. A similar situation occurred in Plymouth, MA, on July 24th, when three waterspouts formed ahead of the gust front of a severe thunderstorm; one of these tempests roared ashore on White Horse Beach as an EF-0 storm, causing minor damage to the sum of a few hundred dollars. Photos taken of these spouts reveal their formation ahead of the gust front, with a downdraft/waterspout interaction similar to the situation of June 23rd. Time-lapse videography of the gust front taken moments after the dissipation of the spouts reveals a horizontally oriented vortex a few hundred meters ahead of the storm's outflow boundary. The spinning of

  6. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  7. Strong interaction and QFD

    International Nuclear Information System (INIS)

    Ebata, T.

    1981-01-01

    With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)

  8. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  9. Recognition and treatment of outflow tract stenosis during and after endovascular exclusion for abdominal aortic aneurysm

    International Nuclear Information System (INIS)

    Lu Qingsheng; Jing Zaiping; Zhao Zhiqing; Bao Junmin; Zhao Jun; Feng Xiang; Feng Rui; Huang Sheng

    2003-01-01

    Objective: To study the cognition and treatment of outflow tract stenosis in and after endovascular exclusion for abdominal aortic aneurysm. Methods: From Mar 1997 to Oct 2002, in 136 patients undergoing abdominal aortic aneurysm endovascular exclusion, 8 patients had outflow tract stenosis during the operation, and 3 patients had outflow tract stenosis after operation. The stenosis of 5 patients occurred at the crotch of the graft-stent. PTA was done in 7 patients and stents were placed in stenotic segment in 2 patients. 2 patients were treated with crossover operation. Results: Following up 1 month to 2 years, all patients have no lower limbs ischemia. Conclusions: The diagnosis of outflow tract stenosis during and after abdominal endovascular exclusion for aortic aneurysm must be in time. The treatment should be according to the different causes of stenosis

  10. Cephalic Vein Transposition versus Vein Grafts for Venous Outflow in Free-flap Breast Reconstruction

    Directory of Open Access Journals (Sweden)

    Edward I. Chang, MD

    2014-05-01

    Conclusions: The CVT is a reliable alternate venous outflow that can be used as a primary recipient vein or as a salvage option following venous thrombosis. Surgeons should consider a CVT when primary recipient veins are compromised or unavailable.

  11. Heart fossilization is possible and informs the evolution of cardiac outflow tract in vertebrates.

    Science.gov (United States)

    Maldanis, Lara; Carvalho, Murilo; Almeida, Mariana Ramos; Freitas, Francisco Idalécio; de Andrade, José Artur Ferreira Gomes; Nunes, Rafael Silva; Rochitte, Carlos Eduardo; Poppi, Ronei Jesus; Freitas, Raul Oliveira; Rodrigues, Fábio; Siljeström, Sandra; Lima, Frederico Alves; Galante, Douglas; Carvalho, Ismar S; Perez, Carlos Alberto; de Carvalho, Marcelo Rodrigues; Bettini, Jefferson; Fernandez, Vincent; Xavier-Neto, José

    2016-04-19

    Elucidating cardiac evolution has been frustrated by lack of fossils. One celebrated enigma in cardiac evolution involves the transition from a cardiac outflow tract dominated by a multi-valved conus arteriosus in basal actinopterygians, to an outflow tract commanded by the non-valved, elastic, bulbus arteriosus in higher actinopterygians. We demonstrate that cardiac preservation is possible in the extinct fish Rhacolepis buccalis from the Brazilian Cretaceous. Using X-ray synchrotron microtomography, we show that Rhacolepis fossils display hearts with a conus arteriosus containing at least five valve rows. This represents a transitional morphology between the primitive, multivalvar, conal condition and the derived, monovalvar, bulbar state of the outflow tract in modern actinopterygians. Our data rescue a long-lost cardiac phenotype (119-113 Ma) and suggest that outflow tract simplification in actinopterygians is compatible with a gradual, rather than a drastic saltation event. Overall, our results demonstrate the feasibility of studying cardiac evolution in fossils.

  12. The largely unconstrained multiphase nature of outflows in AGN host galaxies

    Science.gov (United States)

    Cicone, Claudia; Brusa, Marcella; Ramos Almeida, Cristina; Cresci, Giovanni; Husemann, Bernd; Mainieri, Vincenzo

    2018-03-01

    Observations and simulations show that outflows in active galactic nuclei contain gas in different phases. To understand their true impact on galaxy evolution, we advocate consistent and unbiased investigation of these multiphase winds in large active galactic nuclei samples.

  13. Arctic Ocean outflow and glacier-ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland)

    DEFF Research Database (Denmark)

    Dmitrenko, Igor A.; Kirillov, Sergey A.; Rudels, Bert

    2017-01-01

    the origin of water masses and interactions with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has...... glacier outlet, colder and turbid water intrusions were observed at the base of the halocline. On the temperature-salinity plots these stations indicate a mixing line that is different from the ambient water and seems to be conditioned by the ocean-glacier interaction. Our observations of Pacific water...... are set within the context of upstream observations in the Beaufort Sea and downstream observations from the Northeast Water Polynya, and clearly show the modification of Pacific water during its advection across the Arctic Ocean. Moreover, ambient water over the Wandel Sea slope shows different...

  14. Arctic Ocean outflow and glacier-ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland)

    DEFF Research Database (Denmark)

    Dmitrenko, Igor A.; Kirillov, Sergey A.; Rudels, Bert

    2017-01-01

    glacier outlet, colder and turbid water intrusions were observed at the base of the halocline. On the temperature-salinity plots these stations indicate a mixing line that is different from the ambient water and seems to be conditioned by the ocean-glacier interaction. Our observations of Pacific water...... the origin of water masses and interactions with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has...... are set within the context of upstream observations in the Beaufort Sea and downstream observations from the Northeast Water Polynya, and clearly show the modification of Pacific water during its advection across the Arctic Ocean. Moreover, ambient water over the Wandel Sea slope shows different...

  15. Dynamic left ventricular outflow tract obstruction secondary to hypovolemia in a German Shepard dog with splenic hemangiosarcoma.

    Science.gov (United States)

    Aoki, Takuma; Sunahara, Hiroshi; Sugimoto, Keisuke; Ito, Tetsuro; Kanai, Eiichi; Neo, Sakurako; Fujii, Yoko; Wakao, Yoshito

    2015-09-01

    Dynamic left ventricular outflow tract obstruction (DLVOTO) is a common condition in cats and humans. In this case report, a dog is described with DLVOTO secondary to severe intra-abdominal hemorrhage caused by a hemangiosarcoma. The dog was a 9-year-old, 35.7-kg, spayed female German Shepard dog that presented with a history of tachypnea and collapse. A Levine II/VI systolic murmur was present at the heart base. Abdominal ultrasonography revealed a splenic mass and a large amount of ascites. Echocardiography showed a reduced left ventricular diameter and an increased aortic velocity caused by systolic anterior motion (SAM) of the mitral valve apparatus. The heart murmur and the SAM were resolved after treatment including a splenectomy and a blood transfusion.

  16. FEATURES OF OUTFLOW OF INTRAOCULAR LIQUID AFTER AN EKSIMERLAZER SKLEREKTOMY (PILOT STUDY)

    OpenAIRE

    E. A. Korchuganova; O. A. Rumyantseva; S. B. Gudkova

    2017-01-01

    Modern approaches to surgical glaucoma treatment is based on the safe and effective methods. In recent years, great attention is paid to the techniques of stimulating uveoscleral path outtake aqueous humor from the eye. Uveoscleral space in the extended outflow pathways is dominant and constitutes about 72%. Sclera is a field of the greatest interest, as the end stages of the outflow of aqueous humor via the uveoscleral path. The aim of the study was to investigate the influence of excimer la...

  17. An X-Ray/SDSS Sample: Observational Characterization of The Outflowing Gas

    Science.gov (United States)

    Perna, Michele; Brusa, M.; Lanzuisi, G.; Mignoli, M.

    2016-10-01

    Powerful ionised AGN-driven outflows, commonly detected both locally and at high redshift, are invoked to contribute to the co-evolution of SMBH and galaxies through feedback phenomena. Our recent works (Brusa+2015; 2016; Perna+2015a,b) have shown that the XMM-COSMOS targets with evidence of outflows collected so far ( 10 sources) appear to be associated with low X-ray kbol corrections (Lbol /LX ˜ 18), in spite of their spread in obscuration, in the locations on the SFR-Mstar diagram, in their radio emission. A higher statistical significance is required to validate a connection between outflow phenomena and a X-ray loudness. Moreover, in order to validate their binding nature to the galaxy fate, it is crucial to correctly determine the outflow energetics. This requires time consuming integral field spectroscopic (IFS) observations, which are, at present, mostly limited to high luminosity objectsThe study of SDSS data offers a complementary strategy to IFS efforts. I will present physical and demographic characterization of the AGN-galaxy system during the feedback phase obtained studying a sample of 500 X-ray/SDSS AGNs, at z<0.8. Outflow velocity inferred from [OIII]5007 emission line profile has been related to optical (e.g., [OIII] and bolometric luminosities, Eddington ratio, stellar velocity dispersion) and X-ray properties (intrinsic X-ray luminosity, obscuration and X-ray kbol correction), to determine what drives ionised winds. Several diagnostic line ratios have been used to infer the physical properties of the ionised outflowing gas. The knowledge of these properties can reduce the actual uncertainties in the outflow energetics by a factor of ten, pointing to improve our understanding of the AGN outflow phenomenon and its impact on galaxy evolution.

  18. Boiling water outflow through cylindrical extended channels in the range of initial low pressures

    International Nuclear Information System (INIS)

    Murav'ev, I.F.

    2000-01-01

    The results of experimental studies on the boiling water outflow through cylindrical extended channels by change in the initial pressure and counterpressure within the range of 10 - 110 and 1.33 - 26,6 kPa are presented. It is shown that the outflow critical regimes are realized under the study conditions at the flow low rate. The obtained critical parameters differ from those ones calculated through the methodologies, recommended for other areas of the initial pressure change [ru

  19. SINFONI spectra of heavily obscured AGNs in COSMOS: Evidence of outflows in a MIR/O target at z ~ 2.5

    Science.gov (United States)

    Perna, M.; Brusa, M.; Salvato, M.; Cresci, G.; Lanzuisi, G.; Berta, S.; Delvecchio, I.; Fiore, F.; Lutz, D.; Le Floc'h, E.; Mainieri, V.; Riguccini, L.

    2015-11-01

    Aims: We present new data for four candidate obscured Compton-Thick (CT) quasars at z ~ 1-2.5 observed with the SINFONI VLT spectrograph in adaptive optics (AO) mode. These sources were selected from a 24 μm Spitzer MIPS survey of the COSMOS field, on the basis of red mid-infrared to optical and optical to near-infrared colours, with the intention of identifying active galactic nuclei (AGNs) in dust enshrouded environments, where most of the black hole mass is assembled. Methods: Near-infrared spectra were analysed to check for emission line features and to search for broad components in the [OIII]-Hβ and Hα-[NII] regions. We also employed X-ray spectral analysis, radio and MIR diagnostics, and SED fitting to study the nature of the sources. Results: We successfully identified three objects for which we had only a photometric redshift estimate. Based on their emission line diagnostics and on ancillary multi-wavelength constraints, we find that all four targets harbour obscured AGNs. Broad profiles, which could be attributed to the effects of outflows, are revealed in only one target, MIRO20581. In particular, we clearly resolved a fast (~1600 km s-1) and extended (~5 kpc) outflow in the [OIII]5007 emission line. This feature, the commonly used indicator for ionised outflowing gas, was only sampled and detected for this target; hence, we cannot exclude the presence of outflows in the other sources. Overall, the constraints we obtain from our targets and from other comparative samples from the literature suggest that these optically faint luminous infrared galaxies, hosting obscured AGNs, may represent a brief evolutionary phase between the post-merger starburst and the unobscured quasar phases. Based on observations with SINFONI VLT spectrograph, ESO program 092.A-0884(A).

  20. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  1. Peroxy radical observations over West Africa during AMMA 2006: photochemical activity in the outflow of convective systems

    Directory of Open Access Journals (Sweden)

    M. D. Andrés-Hernández

    2009-06-01

    Full Text Available Peroxy radical measurements made on board the DLR-Falcon research aircraft over West Africa within the African Monsoon Multidisciplinary Analysis (AMMA campaign during the 2006 wet monsoon are presented in this study. The analysis of data focuses on the photochemical activity of air masses sampled during episodes of intense convection and biomass burning. Generally, the total sum of peroxy radical mixing ratios, measured in the outflow of convective clouds, are quite variable but occasionally are coupled with the NO variations indicating the coexistence or simultaneous emission of NOx, with a potential radical precursor (i.e. formaldehyde, acetone or peroxides, which has likely been transported to higher atmospheric altitudes. Based on the measurements, significant O3 production rates around 1 ppb/h in the MCS outflow are estimated by using a box model with simplified chemistry. Peroxy radicals having mixing ratios around 20–25 pptv and with peak values of up to 60–70 pptv are measured within biomass burning plumes, detected at the coast in Ghana. Calculations of back-trajectory densities confirm the origin of these air masses being a biomass burning region at southern latitudes and close to the Gulf of Guinea, according to satellite pictures.

    Measured peroxy radical concentrations agree reasonably with modelled estimations taking into account simple local chemistry. Moreover, the vertical profiles taken at the aircraft base in Ouagadougou, Burkina Faso, indicate the common feature of having maximum concentrations between 2 and 4 km, in agreement with other literature values obtained under similar conditions.

  2. Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?

    Science.gov (United States)

    Rodriguez, J. Alexis P.; Kargel, Jeffrey S.; Baker, Victor R.; Gulick, Virginia C.; Berman, Daniel C.; Fairén, Alberto G.; Linares, Rogelio; Zarroca, Mario; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie

    2015-09-01

    Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System’s most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet’s upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronounced elevation differences around the Highland-Lowland Dichotomy Boundary. However, the restricted geographic location of the channels indicates that these conditions were not uniform Boundary. Furthermore, some outflow channel sources are too high to have been fed by south polar basal melting. Using more recent mission data, we argue that during the Late Noachian fluvial and glacial sediments were deposited into a clastic wedge within a paleo-basin located in the southern circum-Chryse region, which was then completely submerged under a primordial northern plains ocean. Subsequent Late Hesperian outflow channels were sourced from within these geologic materials and formed by gigantic groundwater outbursts driven by an elevated hydraulic head from the Valles Marineris region. Thus, our findings link the formation of the southern circum-Chryse outflow channels to ancient marine, glacial, and fluvial erosion and sedimentation.

  3. Bmp signaling represses Vegfa to promote outflow tract cushion development.

    Science.gov (United States)

    Bai, Yan; Wang, Jun; Morikawa, Yuka; Bonilla-Claudio, Margarita; Klysik, Elzbieta; Martin, James F

    2013-08-01

    Congenital heart disease (CHD) is a devastating anomaly that affects ∼1% of live births. Defects of the outflow tract (OFT) make up a large percentage of human CHD. We investigated Bmp signaling in mouse OFT development by conditionally deleting both Bmp4 and Bmp7 in the second heart field (SHF). SHF Bmp4/7 deficiency resulted in defective epithelial to mesenchymal transition (EMT) and reduced cardiac neural crest ingress, with resultant persistent truncus arteriosus. Using a candidate gene approach, we found that Vegfa was upregulated in the Bmp4/7 mutant hearts. To determine if Vegfa is a downstream Bmp effector during EMT, we examined whether Vegfa is transcriptionally regulated by the Bmp receptor-regulated Smad. Our findings indicate that Smad directly binds to Vegfa chromatin and represses Vegfa transcriptional activity. We also found that Vegfa is a direct target for the miR-17-92 cluster, which is also regulated by Bmp signaling in the SHF. Deletion of miR-17-92 reveals similar phenotypes to Bmp4/7 SHF deletion. To directly address the function of Vegfa repression in Bmp-mediated EMT, we performed ex vivo explant cultures from Bmp4/7 and miR-17-92 mutant hearts. EMT was defective in explants from the Bmp4/7 double conditional knockout (dCKO; Mef2c-Cre;Bmp4/7(f/f)) and miR-17-92 null. By antagonizing Vegfa activity in explants, EMT was rescued in Bmp4/7 dCKO and miR-17-92 null culture. Moreover, overexpression of miR-17-92 partially suppressed the EMT defect in Bmp4/7 mutant embryos. Our study reveals that Vegfa levels in the OFT are tightly controlled by Smad- and microRNA-dependent pathways to modulate OFT development.

  4. GREEN BANK TELESCOPE DETECTION OF POLARIZATION-DEPENDENT H I ABSORPTION AND H I OUTFLOWS IN LOCAL ULIRGs AND QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Stacy H. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Veilleux, Sylvain [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Baker, Andrew J., E-mail: stacy.h.teng@nasa.gov [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States)

    2013-03-10

    We present the results of a 21 cm H I survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Robert C. Byrd Green Bank Telescope. These remnants were selected from the Quasar/ULIRG Evolution Study sample of ultraluminous infrared galaxies (ULIRGs; L{sub 8{sub -{sub 1000{sub {mu}m}}}} > 10{sup 12} L{sub Sun }) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGNs) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of H I absorption (emission) to be 100% (29%) in ULIRGs with H I detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km s{sup -1} in some cases. Unexpectedly, we find polarization-dependent H I absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground H I clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the {approx}10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into ''mature'' radio galaxies.

  5. Vector mesons in strongly interacting matter

    Indian Academy of Sciences (India)

    Properties of hadrons in strongly interacting matter provide a link between quantum chromodynamics in the ... Top: Spectral function of the ρ-meson at normal nuclear matter density as a function of mass and ... directly but folded with the branching ratio ΓV →p1+p2 /Γtot into the specific final channel one is investigating.

  6. Bottomonia: open bottom strong decays and spectrum

    Directory of Open Access Journals (Sweden)

    Santopinto E.

    2014-05-01

    Full Text Available We present our results for the bottomonium spectrum with self energy corrections. The bare masses used in the calculation are computed within Godfrey and Isgur’s relativized quark model. We also discuss our results for the open bottom strong decay widths of higher bottomonia in the 3P0 pair-creation model.

  7. John Strong (1941 - 2006)

    CERN Multimedia

    Wickens, F

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

  8. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  9. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.

    1989-01-01

    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  10. Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253 III. Helical magnetic fields in the nuclear outflow

    Science.gov (United States)

    Heesen, V.; Beck, R.; Krause, M.; Dettmar, R.-J.

    2011-11-01

    -scale field is regular and of even parity. Conclusions. The magnetic filaments indicate an interaction of the nuclear outflow with the interstellar medium. The magnetic field is able to collimate the outflow, which can explain the observed small opening angle of ≈ 26°. Owing to the conservation of angular momentum by the plasma in the nuclear outflow, the field lines are frozen into the plasma, and they wind up into a helix. Strong adiabatic losses of the cosmic-ray electrons in the accelerated outflow can partly explain why the radio luminosity of the nucleus lies below the radio-FIR correlation.

  11. Secondary chaotic terrain formation in the higher outflow channels of southern circum-Chryse, Mars

    Science.gov (United States)

    Rodriguez, J.A.P.; Kargel, J.S.; Tanaka, K.L.; Crown, D.A.; Berman, D.C.; Fairen, A.G.; Baker, V.R.; Furfaro, R.; Candelaria, P.; Sasaki, S.

    2011-01-01

    Higher outflow channel dissection in the martian region of southern circum-Chryse appears to have extended from the Late Hesperian to the Middle Amazonian Epoch. These outflow channels were excavated within the upper 1. km of the cryolithosphere, where no liquid water is expected to have existed during these geologic epochs. In accordance with previous work, our examination of outflow channel floor morphologies suggests the upper crust excavated by the studied outflow channels consisted of a thin (a few tens of meters) layer of dry geologic materials overlying an indurated zone that extends to the bases of the investigated outflow channels (1. km in depth). We find that the floors of these outflow channels contain widespread secondary chaotic terrains (i.e., chaotic terrains produced by the destruction of channel-floor materials). These chaotic terrains occur within the full range of outflow channel dissection and tend to form clusters. Our examination of the geology of these chaotic terrains suggests that their formation did not result in the generation of floods. Nevertheless, despite their much smaller dimensions, these chaotic terrains are comprised of the same basic morphologic elements (e.g., mesas, knobs, and smooth deposits within scarp-bound depressions) as those located in the initiation zones of the outflow channels, which suggests that their formation must have involved the release of ground volatiles. We propose that these chaotic terrains developed not catastrophically but gradually and during multiple episodes of nested surface collapse. In order to explain the formation of secondary chaotic terrains within zones of outflow channel dissection, we propose that the regional Martian cryolithosphere contained widespread lenses of volatiles in liquid form. In this model, channel floor collapse and secondary chaotic terrain formation would have taken place as a consequence of instabilities arising during their exhumation by outflow channel dissection

  12. A Massive Prestellar Clump Hosting No High-mass Cores

    Energy Technology Data Exchange (ETDEWEB)

    Sanhueza, Patricio; Lu, Xing; Tatematsu, Ken’ichi [National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Jackson, James M. [School of Mathematical and Physical Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308 (Australia); Zhang, Qizhou; Stephens, Ian W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Guzmán, Andrés E. [Departamento de Astronomía, Universidad de Chile, Camino el Observatorio 1515, Las Condes, Santiago (Chile); Wang, Ke, E-mail: patricio.sanhueza@nao.ac.jp [European Southern Observatory (ESO) Headquarters, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany)

    2017-06-01

    The infrared dark cloud (IRDC) G028.23-00.19 hosts a massive (1500 M {sub ⊙}), cold (12 K), and 3.6–70 μ m IR dark clump (MM1) that has the potential to form high-mass stars. We observed this prestellar clump candidate with the Submillimeter Array (∼3.″5 resolution) and Jansky Very Large Array (∼2.″1 resolution) in order to characterize the early stages of high-mass star formation and to constrain theoretical models. Dust emission at 1.3 mm wavelength reveals five cores with masses ≤15 M {sub ⊙}. None of the cores currently have the mass reservoir to form a high-mass star in the prestellar phase. If the MM1 clump will ultimately form high-mass stars, its embedded cores must gather a significant amount of additional mass over time. No molecular outflows are detected in the CO (2-1) and SiO (5-4) transitions, suggesting that the SMA cores are starless. By using the NH{sub 3} (1, 1) line, the velocity dispersion of the gas is determined to be transonic or mildly supersonic (Δ V {sub nt}/Δ V {sub th} ∼ 1.1–1.8). The cores are not highly supersonic as some theories of high-mass star formation predict. The embedded cores are four to seven times more massive than the clump thermal Jeans mass and the most massive core (SMA1) is nine times less massive than the clump turbulent Jeans mass. These values indicate that neither thermal pressure nor turbulent pressure dominates the fragmentation of MM1. The low virial parameters of the cores (0.1–0.5) suggest that they are not in virial equilibrium, unless strong magnetic fields of ∼1–2 mG are present. We discuss high-mass star formation scenarios in a context based on IRDC G028.23-00.19, a study case believed to represent the initial fragmentation of molecular clouds that will form high-mass stars.

  13. Detection of HD in the Orion molecular outflow

    Science.gov (United States)

    Bertoldi, Frank; Timmermann, Ralf; Rosenthal, Dirk; Drapatz, Siegfried; Wright, Christopher M.

    1999-06-01

    We report a detection in the interstellar medium of an infrared transition within the electronic ground state of the deuterated hydrogen molecule, HD. Through a deep integration with the Short-Wavelength-Spectrometer (SWS) on board the Infrared Space Observatory (ISO), the pure rotational v=0-0 R(5) line at 19.43 mu m was detected toward the Orion (OMC-1) outflow at its brightest H_2\\ emission region, Peak 1. The ~ 20'' beam-averaged observed flux of the line is (1.84 +/- 0.4) x 10(-5) erg cm(-2) s(-1) sr(-1) . Upper flux limits were derived for sixteen other rotational and ro-vibrational HD lines in the wavelength range 2.5 to 38 mu m. We utilize the rich spectrum of H_2\\ lines observed at the same position to correct for extinction, and to derive a total warm HD column density under the assumption that similar excitation conditions apply to H_2\\ and HD. Because the observed HD level population is not thermalized at the densities prevailing in the emitting region, the total HD column density is sensitive to the assumed gas density, temperature, and dissociation fraction. Accounting for non-LTE HD level populations in a partially dissociated gas, our best estimate for the total warm HD column density is N(HD)=(2.0+/- 0.75)x 10(16) cm(-2) . The warm molecular hydrogen column density is (2.21+/-0.24)x 10(21) cm(-2) , so that the relative abundance is [HD]/[H_2]=(9.0+/- 3.5)x 10(-6) . The observed emission presumably arises in the warm layers of partially dissociative magnetic shocks, where HD can be depleted relative to H_2 due to an asymmetry in the deuterium-hydrogen exchange reaction. This leads to an average HD depletion relative to H_2\\ of about 40%. Correcting for this chemical depletion, we derive a deuterium abundance in the warm shocked gas, [D]/[H]= (7.6+/- 2.9) x 10(-6) . The derived deuterium abundance is not very sensitive to the dissociation fraction in the emitting region, since both the non-LTE and the chemical depletion corrections act in

  14. Scalar quarkonium masses

    International Nuclear Information System (INIS)

    Lee, W.; Weingarten, D.

    1996-01-01

    We evaluate the valence approximation to the mass of scalar quarkonium for a range of different parameters. Our results strongly suggest that the infinite volume continuum limit of the mass of ss scalar quarkonium lies well below the mass of f J (1710). The resonance f 0 (1500) appears to the best candidate for ss scalar quarkonium. (orig.)

  15. A dearth of dark matter in strong gravitational lenses

    NARCIS (Netherlands)

    Sanders, R. H.

    I show that the lensing masses of the Sloan Lens Advanced Camera Surveys sample of strong gravitational lenses are consistent with the stellar masses determined from population synthesis models using the Salpeter initial mass function. This is true in the context of both General Relativity and

  16. Mobile mini-DOAS measurement of the outflow of NO2 and HCHO from Mexico City

    Directory of Open Access Journals (Sweden)

    L. Molina

    2009-08-01

    Full Text Available We here present the results from mobile measurements using two ground-based zenith viewing Differential Optical Absorption Spectroscopy (DOAS instruments. The measurement was performed in a cross-section of the plume from the Mexico City Metropolitan Area (MCMA on 10 March 2006 as part of the MILAGRO field campaign. The two instruments operated in the UV and the visible wavelength region respectively and have been used to derive the differential vertical columns of HCHO and NO2 above the measurement route. This is the first time the mobile mini-DOAS instrument has been able to measure HCHO, one of the chemically most important and interesting gases in the polluted urban atmosphere. Using a mass-averaged wind speed and wind direction from the WRF model the instantaneous flux of HCHO and NO2 has been calculated from the measurements and the results are compared to the CAMx chemical model. The calculated flux through the measured cross-section was 1.9 (1.5–2.2 kg/s of HCHO and 4.4 (4.0–5.0 kg/s of NO2 using the UV instrument and 3.66 (3.63–3.73 kg/s of NO2 using the visible light instrument. The modeled values from CAMx for the outflow of both NO2 and HCHO, 1.1 and 3.6 kg/s, respectively, show a reasonable agreement with the measurement derived fluxes.

  17. Suppressed sympathetic outflow to skeletal muscle, muscle thermogenesis, and activity energy expenditure with calorie restriction.

    Science.gov (United States)

    Almundarij, Tariq I; Gavini, Chaitanya K; Novak, Colleen M

    2017-02-01

    During weight loss, adaptive thermogenesis occurs where energy expenditure (EE) is suppressed beyond that predicted for the smaller body size. Here, we investigated the contributions of resting and nonresting EE to the reduced total EE seen after 3 weeks of 50% calorie restriction (CR) in rats, focusing on activity-associated EE, muscle thermogenesis, and sympathetic outflow. Prolonged food restriction resulted in a 42% reduction in daily EE, through a 40% decrease in resting EE, and a 48% decline in nonresting EE These decreases in EE were significant even when the reductions in body weight and lean mass were taken into account. Along with a decreased caloric need for low-to-moderate-intensity treadmill activity with 50% CR, baseline and activity-related muscle thermogenesis were also suppressed, though the ability to increase muscle thermogenesis above baseline levels was not compromised. When sympathetic drive was measured by assessing norepinephrine turnover (NETO), 50% CR was found to decrease NETO in three of the four muscle groups examined, whereas elevated NETO was found in white adipose tissue of food-restricted rats. Central activation of melanocortin 4 receptors in the ventromedial hypothalamus stimulated this pathway, enhancing activity EE; this was not compromised by 50% CR These data suggest that suppressed activity EE contributes to adaptive thermogenesis during energy restriction. This may stem from decreased sympathetic drive to skeletal muscle, increasing locomotor efficiency and reducing skeletal muscle thermogenesis. The capacity to increase activity EE in response to central stimuli is retained, however, presenting a potential target for preventing weight regain. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. Remnants of strong tidal interactions

    International Nuclear Information System (INIS)

    Mcglynn, T.A.

    1990-01-01

    This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs

  19. VizieR Online Data Catalog: NH3 observations in outflows (Sepulveda+, 2011)

    Science.gov (United States)

    Sepulveda, I.; Anglada, G.; Estalella, R.; Lopez, R.; Girart, J. M.; Yang, J.

    2010-11-01

    We present the results of the observations of the (J,K)=(1,1) and the (J,K)=(2,2) inversion transitions of the NH3 molecule towards a large sample of 40 regions with molecular or optical outflows, using the 37m radio telescope of the Haystack Observatory. We detected NH3 emission in 27 of the observed regions and we mapped this emission in 25 of them. Additionally, we searched for the 616-523 H2O maser line towards six regions, detecting H2O maser emission in two of them. We estimate the physical parameters of the regions mapped in NH3 and, for each particular region, we analyze the distribution of high density gas and its relationship with the presence of young stellar objects We confirm with a larger sample of regions that the NH3 line emission is more intense towards molecular outflow sources than towards sources with optical outflow, suggesting a possible evolutionary scheme in which young stellar objects associated with molecular outflows lose progressively their neighboring high-density gas, weakening both the NH3 emission and the molecular outflow in the process, and making optical jets more easily detectable as the total amount of gas decreases. (6 data files).

  20. Characterizing the origin and impact of the most extreme molecular outflows in the nearby universe

    Science.gov (United States)

    Gowardhan, Avani; Riechers, Dominik A.; Spoon, Henrik; Farrah, Duncan

    2018-01-01

    Observations over the last decade have revealed that feedback in the form of molecular gas outflows is ubiquitous in local ultra luminous infrared galaxies (ULIRGs). Such outflows can clear the nuclear environments of gas and dust, quench star formation and active galactic nuclei (AGN) growth, and they are a key step in the evolution of dust-obscured AGN to optically luminous quasars. We here present multi-spectral line observations of feedback in the two most powerful molecular gas outflows in the local universe. We spatially resolve the outflows to determine their kinematics and structure and find that they can drive out the molecular gas and quench star formation within ~ few Myr. Applying mid-IR diagnostics to constrain the relative contributions of AGN and nuclear starburst activity, we find that starburst activity plays a significant role in driving the outflow. We discuss the implications for future studies of feedback in the local universe and obscured AGN at high redshift, which is a key target population for JWST and ALMA over the next decade.

  1. Shaken and stirred: the effects of turbulence and rotation on disc and outflow formation during the collapse of magnetised molecular cloud cores

    Science.gov (United States)

    Lewis, Benjamin T.; Bate, Matthew R.

    2018-03-01

    We present the results of eighteen magnetohydrodynamical calculations of the collapse of a molecular cloud core to form a protostar. Some calculations include radiative transfer in the flux limited diffusion approximation while others employ a barotropic equation of state. We cover a wide parameter space, with mass-to-flux ratios ranging from μ = 5 to 20; initial turbulent amplitudes ranging from a laminar calculation (i.e. where the Mach number, M = 0) to transonic M = 1; and initial rotation rates from β _{rot} = 0.005 to 0.02. We first show that using a radiative transfer scheme produces warmer pseudodiscs than the barotropic equation of state, making them more stable. We then shake the core by increasing the initial turbulent velocity field, and find that at all three mass-to-flux ratios transonic cores are weakly bound and do not produce pseudo-discs; M = 0.3 cores produce very disrupted discs; and M = 0.1 cores produce discs broadly comparable to a laminar core. In our previous paper we showed that a pseudo-disc coupled with sufficent magnetic field is necessary to form a bipolar outflow. Here we show that only weakly turbulent cores exhibit collimated jets. We finally take the M = 1.0, μ = 5 core and stir it by increasing the initial angular momentum, finding that once the degree of rotational energy exceeds the turbulent energy in the core the disc returns, with a corresponding (though slower), outflow. These conclusions place constraints on the initial mixtures of rotation and turbulence in molecular cloud cores which are conducive to the formation of bipolar outflows early in the star formation process.

  2. The origin of blueshifted absorption features in the X-ray spectrum of PG 1211+143: outflow or disc

    Science.gov (United States)

    Gallo, L. C.; Fabian, A. C.

    2013-07-01

    In some radio-quiet active galactic nuclei (AGN), high-energy absorption features in the X-ray spectra have been interpreted as ultrafast outflows (UFOs) - highly ionized material (e.g. Fe XXV and Fe XXVI) ejected at mildly relativistic velocities. In some cases, these outflows can carry energy in excess of the binding energy of the host galaxy. Needless to say, these features demand our attention as they are strong signatures of AGN feedback and will influence galaxy evolution. For the same reason, alternative models need to be discussed and refuted or confirmed. Gallo and Fabian proposed that some of these features could arise from resonance absorption of the reflected spectrum in a layer of ionized material located above and corotating with the accretion disc. Therefore, the absorbing medium would be subjected to similar blurring effects as seen in the disc. A priori, the existence of such plasma above the disc is as plausible as a fast wind. In this work, we highlight the ambiguity by demonstrating that the absorption model can describe the ˜7.6 keV absorption feature (and possibly other features) in the quasar PG 1211+143, an AGN that is often described as a classic example of a UFO. In this model, the 2-10 keV spectrum would be largely reflection dominated (as opposed to power law dominated in the wind models) and the resonance absorption would be originating in a layer between about 6 and 60 gravitational radii. The studies of such features constitute a cornerstone for future X-ray observatories like Astro-H and Athena+. Should our model prove correct, or at least important in some cases, then absorption will provide another diagnostic tool with which to probe the inner accretion flow with future missions.

  3. Tidal disruption of white dwarfs by intermediate mass black holes

    Directory of Open Access Journals (Sweden)

    Bode T.

    2012-12-01

    Full Text Available Modeling ultra-close encounters between a white dwarf and a spinning, intermediate mass black hole requires a full general relativistic treatment of gravity. This paper summarizes results from such a study. Our results show that the disruption process and prompt accretion of the debris strongly depend on the magnitude and orientation of the black hole spin. On the other hand, the late-time accretion onto the black hole follows the same decay, Ṁ ∝  t−5/3, estimated from Newtonian gravity disruption studies. The spectrum of the fallback material peaks in the soft X-rays and sustains Eddington luminosity for 1–3 yrs after the disruption. The orientation of the black hole spin has also a profound effect on how the outflowing debris obscures the central region. The disruption produces a burst of gravitational radiation with characteristic frequencies of ∼3.2 Hz and strain amplitudes of ∼10−18 for galactic intermediate mass black holes.

  4. Heating of the Intracluster Medium by Quasar Outflows Suparna ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    are strong galactic winds driven by supernovae. However Valageas & Silk (1999) showed that the energy provided by supernovae cannot raise the entropy of intergalactic medium (IGM) up to the level required by current observations. The observed amount of required energy injection have been found to be in the range of ...

  5. Heating of the Intracluster Medium by Quasar Outflows Suparna ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    evidence of an entropy excess with respect to the level expected from gravitational heating in the centres of groups. The candidate process which has been looked into as a source for this “preheating” are strong galactic winds driven by supernovae. However Valageas & Silk (1999) showed that the energy provided by ...

  6. Cloud Formation and Water Transport on Mars after Major Outflow Events

    Science.gov (United States)

    Santiago, D. L.; Colaprete, A.; Kreslavsky, M.; Kahre, M. A.; Asphaug, E.

    2012-01-01

    The triggering of a robust water cycle on Mars might have been caused by the gigantic flooding events evidenced by outflow channels. We use the Ames Mars General Circulation Model (MGCM) to test this hypothesis, studying how these presumably abrupt eruptions of water might have affected the climate of Mars in the past. We model where the water ultimately went as part of a transient atmospheric water cycle, to answer questions including: (1) Can sudden introductions of large amounts of water on the Martian surface lead to a new equilibrated water cycle? (2) What are the roles of water vapor and water ice clouds to sudden changes in the water cycle on Mars? (3) How are radiative feedbacks involved with this? (4) What is the ultimate fate of the outflow water? (5) Can we tie certain geological features to outflow water redistributed by the atmosphere?

  7. The Upshear Environment-Outflow Interface of a Sheared, Rapidly Intensifying Tropical Cyclone

    Science.gov (United States)

    Ryglicki, D.; Doyle, J. D.; Jin, Y.; Hodyss, D.; Viner, K.

    2017-12-01

    An idealized, simulated tropical cyclone (TC) which undergoes rapid intensification in moderate vertical wind shear is shown to exhibit structural similarities to observed TCs of this class. Due to a complex vortex tilt evolution, enhanced convection causes enhanced outflow from the TC which subsequently serves to block and to divert environmental flow around the TC. This allows for the TC to come back into vertical alignment and undergo rapid intensification. A trajectory analysis indicates that blocking is limited to a narrow range of heights, indicating that the vertical profile of environmental winds is a key factor for permitting this evolution. Satellite observations indicate the presence of upper-level arcs extending upshear beyond the TC. Synthetic satellite imagery of the simulated TC indicates this is the termination of the outflow. Using a Helmholtz decomposition, it is found that the divergent component of the outflow extends 1000 km upshear into the environment, potentially explaining the 1000-km clearing seen in satellite observations.

  8. Topology optimization of mass distribution problems in Stokes flow

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Allan; Berggren, Martin; Dammann, Bernd

    enabled an evaluation of the design with a body fitted mesh in a standard analysis software relevant in engineering practice prior to design manufacturing. This work investigates the proper choice of a maximum penalization value during the optimization process that ensures that the target outflow rates......We consider topology optimization of mass distribution problems in 2D and 3D Stokes flow with the aim of designing devices that meet target outflow rates. For the purpose of validation, the designs have been post processed using the image processing tools available in FEMLAB. In turn, this has...

  9. High mass star formation to the extremes: NGC 3603 at high angular resolution in the near-infrared

    International Nuclear Information System (INIS)

    Nuernberger, Dieter E A

    2008-01-01

    High angular resolution observations play a decisive role for our understanding of high mass star formation processes, both within our Galaxy and in extragalactic starburst regions. We take the Galactic starburst template NGC 3603 as paradigm and report here on high angular resolution JHK s L' observations of the enigmatic, highly reddened sources IRS 9A-C in the NGC 3603 region, which were performed with NACO at ESO's Very Large Telescope Yepun. These broad-band imaging data strongly support the classification of IRS 9A-C as high mass protostellar candidates. We also confirm unambiguously the membership of IRS 9A-C with the NGC 3603 region as gas and dust is seen to be stripped off from their circumstellar envelopes by strong stellar winds, originating from the high mass main sequence stars of the nearby OB cluster. The orientation of these gas and dust streamers coincides with that of a very faint, only marginally detected mini-pillar protruding from the adjacent molecular clump NGC 3603 MM 2. The L' data show extended envelopes around IRS 9A-C and reveal sub-structures therein which are indicative for non-spherically distributed material. It seems obvious that protostellar mass outflows are at work to clear cavities along the polar axes of the central protostar, and / or that circumstellar disks are taking shape.

  10. High mass star formation to the extremes: NGC 3603 at high angular resolution in the near-infrared

    Energy Technology Data Exchange (ETDEWEB)

    Nuernberger, Dieter E A [European Southern Observatory, Casilla 19001, Santiago 19 (Chile)], E-mail: dnuernbe@eso.org

    2008-10-15

    High angular resolution observations play a decisive role for our understanding of high mass star formation processes, both within our Galaxy and in extragalactic starburst regions. We take the Galactic starburst template NGC 3603 as paradigm and report here on high angular resolution JHK{sub s}L' observations of the enigmatic, highly reddened sources IRS 9A-C in the NGC 3603 region, which were performed with NACO at ESO's Very Large Telescope Yepun. These broad-band imaging data strongly support the classification of IRS 9A-C as high mass protostellar candidates. We also confirm unambiguously the membership of IRS 9A-C with the NGC 3603 region as gas and dust is seen to be stripped off from their circumstellar envelopes by strong stellar winds, originating from the high mass main sequence stars of the nearby OB cluster. The orientation of these gas and dust streamers coincides with that of a very faint, only marginally detected mini-pillar protruding from the adjacent molecular clump NGC 3603 MM 2. The L' data show extended envelopes around IRS 9A-C and reveal sub-structures therein which are indicative for non-spherically distributed material. It seems obvious that protostellar mass outflows are at work to clear cavities along the polar axes of the central protostar, and / or that circumstellar disks are taking shape.

  11. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    Science.gov (United States)

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

  12. Investigations of Short-Timescale Outflow Variability in Quasars of the Sloan Digital Sky Survey

    Science.gov (United States)

    Hemler, Zachary; Grier, Catherine; Brandt, William; Hall, Patrick; Schneider, Donald; Shen, Yue; Fernandez-Trincado, Jose; SDSS-RM Collaboration

    2018-01-01

    Quasar outflows are hypothesized to regulate the growth of a quasar's host galaxy and the supermassive black hole (SMBH) itself. Thus, understanding the physics of these outflows is imperative to understanding galactic evolution. The physical properties of these outflows, such as density, radial distance from the SMBH, and kinetic energy can be investigated by measuring both the strength and shape variability of broad absorption lines (BALs) in quasar spectra. However, the accuracy of physical properties calculated using BAL variability methods is limited by the time resolution of the observations. Recent spectral data from the Sloan Digital Sky Survey Reverberation Mapping program (SDSS-RM) provides a novel opportunity to investigate the short-term BAL variability of many quasars at many epochs. The SDSS-RM program took many epochs of spectra for a large sample of quasars over a period of several years, many of which exhibit BALs. The median rest-frame time resolution of these observations is roughly 2 days, in contrast to previous large-sample studies, which typically have time spacing on the order of hundred of days. We are using the SDSS-RM dataset to conduct a BAL variability study that will further constrain outflow properties and provide significant insights into the variability mechanisms of quasar outflows. We are searching for variability in BALs on timescales of less than 2 days among our sample of 22 quasars and determining whether this behavior is common among quasars. We are also investigating the general short-term (less than 10 days) variability characteristics of the entire sample. We will present preliminary results from this study and the possible implications to our understanding of quasar outflows.

  13. HST and ground-based spectroscopy of quasar outflows: from mini-BALs to BALs

    Science.gov (United States)

    Moravec, E. A.; Hamann, F.; Capellupo, D. M.; McGraw, S. M.; Shields, J. C.; Rodríguez Hidalgo, P.

    2017-07-01

    Quasar outflows have been posited as a mechanism to couple supermassive black holes to evolution in their host galaxies. We use multi-epoch spectra from the Hubble Space Telescope (HST) and ground-based observatories to study the outflows in seven quasars that have C IV outflow lines ranging from a classic broad absorption line (BAL) to weaker/narrower 'mini-BALs' across rest wavelengths of at least 850-1650 Å. The C IV outflow lines all varied within a time frame of ≤1.9 yr (rest). This includes equal occurrences of strengthening and weakening plus the emergence of a new BAL system at -38 800 km s-1 accompanied by dramatic strengthening in a mini-BAL at -22 800 km s-1. We infer from ˜1:1 doublet ratios in P v and other lines that the BAL system is highly saturated with line-of-sight covering fractions ranging from 0.27 to 0.80 in the highest to lowest column density regions, respectively. Three of the mini-BALs also provide evidence for saturation and partial covering based on ˜1:1 doublet ratios. We speculate that the BALs and mini-BALs form in similar clumpy/filamentary outflows, with mini-BALs identifying smaller or fewer clumps along our lines of sight. If we attribute the line variabilities to clumps crossing our lines of sight at roughly Keplerian speeds, then a typical variability time in our study, ˜1.1 yr, corresponds to a distance ˜2 pc from the central black hole. Combining this with the speed and minimum total column density inferred from the P v BAL, NH ≳ 2.5 × 1022 cm-2, suggests that the BAL outflow kinetic energy is in the range believed to be sufficient for feedback to galaxy evolution.

  14. THE SPITZER c2d SURVEY OF NEARBY DENSE CORES. IX. DISCOVERY OF A VERY LOW LUMINOSITY OBJECT DRIVING A MOLECULAR OUTFLOW IN THE DENSE CORE L673-7

    International Nuclear Information System (INIS)

    Dunham, Michael M.; Evans, Neal J.; Bourke, Tyler L.; Myers, Philip C.; Huard, Tracy L.; Stutz, Amelia M.

    2010-01-01

    We present new infrared, submillimeter, and millimeter observations of the dense core L673-7 and report the discovery of a low-luminosity, embedded Class 0 protostar driving a molecular outflow. L673-7 is seen in absorption against the mid-infrared background in 5.8, 8, and 24 μm Spitzer images, allowing for a derivation of the column density profile and total enclosed mass of L673-7, independent of dust temperature assumptions. Estimates of the core mass from these absorption profiles range from 0.2to4.5 M sun . Millimeter continuum emission indicates a mass of ∼2 M sun , both from a direct calculation assuming isothermal dust and from dust radiative transfer models constrained by the millimeter observations. We use dust radiative transfer models to constrain the internal luminosity of L673-7, defined to be the luminosity of the central source and excluding the luminosity from external heating, to be L int = 0.01-0.045 L sun , with L int ∼ 0.04 L sun the most likely value. L673-7 is thus classified as a very low luminosity object (VeLLO), and is among the lowest luminosity VeLLOs yet studied. We calculate the kinematic and dynamic properties of the molecular outflow in the standard manner. From the outflow properties and standard assumptions regarding the driving of outflows, we calculate the time-averaged protostellar mass accretion rate, total protostellar mass accreted, and expected accretion luminosity to be acc >≥1.2 x 10 -6 (sin i)/(co 2 i) M sun yr -1 , M acc ≥0.07 1/cos i M sun , and L acc ≥ 0.36 L sun , respectively. The discrepancy between this calculated L acc and the L int derived from dust radiative transfer models indicates that the current accretion rate is much lower than the average rate over the lifetime of the outflow. Although the protostar embedded within L673-7 is consistent with currently being substellar, it is unlikely to remain as such given the substantial mass reservoir remaining in the core.

  15. The freshwater composition of the Fram Strait outflow derived from a decade of tracer measurements

    DEFF Research Database (Denmark)

    Dodd, Paul A.; Rabe, Benjamin; Hansen, Edmond

    2012-01-01

    The composition of the Fram Strait freshwater outflow is investigated by comparing 10 sections of concurrent salinity, δ18O, nitrate and phosphate measurements collected between 1997 and 2011. The largest inventories of net sea ice meltwater are found in 2009, 2010 and 2011. The 2009–2011 sections...... meltwater inventories, suggesting that meteoric water and brine may be delivered to Fram Strait together from a common source. We find that the freshwater outflow at Fram Strait exhibits a similar meteoric water to net sea ice meltwater ratio as the central Arctic Ocean and Siberian shelves, suggesting...

  16. Right ventricular outflow tract obstruction caused by double-chambered right ventricle presenting in adulthood.

    Science.gov (United States)

    Kokotsakis, John; Rouska, Efthymia G; Harling, Leanne; Ashrafian, Hutan; Anagnostakou, Vania; Charitos, Christos; Athanasiou, Thanos

    2014-08-01

    Congenital heart diseases that cause obstruction of the right ventricular outflow tract are often difficult to diagnose. We report the case of a 49-year-old man who presented with long-standing shortness of breath on exertion. Imaging revealed right ventricular outflow tract obstruction caused by a double-chambered right ventricle, and he was referred for surgical correction. This case emphasizes both the detailed perioperative evaluation that is needed when diagnosing adults who present with manifestations of congenital heart disease and a method of successful surgical correction that resulted in symptom resolution.

  17. Misalignment of outflow axes in the proto-multiple systems in Perseus

    DEFF Research Database (Denmark)

    Lee, Katherine I.; Dunham, Michael M.; Myers, Philip C.

    2016-01-01

    We investigate the alignment between outflow axes in nine of the youngest binary/multiple systems in the Perseus Molecular Cloud. These systems have typical member spacing larger than 1000 au. For outflow identification, we use 12CO(2-1) and 12CO(3-2) data from a large survey with the Submillimeter...... are possibly formed in environments where the distribution of angular momentum is complex and disordered, and these systems do not come from the same co-rotating structures or from an initial cloud with aligned vectors of angular momentum....

  18. Human cerebral venous outflow pathway depends on posture and central venous pressure

    DEFF Research Database (Denmark)

    Gisolf, J; van Lieshout, J J; van Heusden, K

    2004-01-01

    Internal jugular veins are the major cerebral venous outflow pathway in supine humans. In upright humans the positioning of these veins above heart level causes them to collapse. An alternative cerebral outflow pathway is the vertebral venous plexus. We set out to determine the effect of posture...... and during a Valsalva manoeuvre in both body positions, correlate highly with model simulation of the jugular cross-sectional area (R(2) = 0.97). The results suggest that the cerebral venous flow distribution depends on posture and CVP: in supine humans the internal jugular veins are the primary pathway...

  19. Echocardiographic outflow pump ramp test in centrifugal-flow left ventricular assist device.

    Science.gov (United States)

    Iacovoni, Attilio; Vittori, Claudia; Fontana, Alessandra; Carobbio, Alessandra; Fino, Carlo; D'Elia, Emilia; Terzi, Amedeo; Senni, Michele

    2017-04-18

    This study sought to develop a novel echocardiogram outflow ramp test to detect device malfunctions in centrifugal-flow left ventricular assist devices (LVADs). This new ramp pump test is based on the direct analyses of systolic and diastolic ratio (S/D) Doppler velocity in the outflow cannula in the HeartWare LVAD during progressive increases in speed. The results showed that in patients with normal pump function, the Doppler velocity S/D ratio gradually decreased during LVAD speed increases. This test is easily performed and seems promising to detect normal pump function in patients assisted by a centrifugal flow LVAD.

  20. Hydrogen neutral outflowing disks of B[e] supergiants

    Czech Academy of Sciences Publication Activity Database

    Kraus, Michaela; Borges Fernandes, M.; de Araújo, F. X.

    2008-01-01

    Roč. 33, - (2008), s. 47-49 ISSN 1405-2059. [Massive Stars: Fundamental Parameters and Circumstellar Interactions. Buenos Aires, 11.12.2006-14.12.2006] R&D Projects: GA AV ČR KJB300030701; GA ČR GA205/04/1267 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * mass loss * stars winds Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  1. Fast Airborne Aerosol Size and Chemistry Measurements with the High Resolution Aerosol Mass Spectrometer during the MILAGRO Campaign

    Science.gov (United States)

    DeCarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.; Aiken, A. C.; Sueper, D.; Crounse, J.; Wennberg, P. O.; Emmons, L.; Shinozuka, Y.; Clarke, A.; hide

    2007-01-01

    The concentration, size, and composition of non-refractory submicron aerosol (NR-PM(sub l)) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS. During the campaign the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM(sub l) mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 microg/cubic m (STP) ppm(exp -1). This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2008). The stability of the OA/CO while O/C increases with photochemical age implies a net loss of carbon from the OA. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major regional source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city

  2. MassAI

    DEFF Research Database (Denmark)

    2011-01-01

    A software tool for general analysis and data-mining of mass-spectrometric datasets. The program features a strong emphasis on scan-by-scan identification and results-transparency. MassAI also accommodates residue level analysis of labelled runs, e.g. HDX.......A software tool for general analysis and data-mining of mass-spectrometric datasets. The program features a strong emphasis on scan-by-scan identification and results-transparency. MassAI also accommodates residue level analysis of labelled runs, e.g. HDX....

  3. NuSTAR Reveals Relativistic Reflection But No Ultra-Fast Outflow in the Quasar Pg∼1211+143

    Science.gov (United States)

    Zoghbi, A.; Miller, J. M.; Walton, D. J.; Harrison, F. A.; Fabian, A. C.; Reynolds, C. S.; Boggs, S. E.; Christensen, F. E.; Craig, W.; Hailey, C. J.; Stern, D.; Zhang, W. W.

    2015-01-01

    We report on four epochs of observations of the quasar PG 1211+143 using NuSTAR. The net exposure time is 300 ks. Prior work on this source found suggestive evidence of an ultra-fast outflow (UFO) in the Fe K band with a velocity of approximately 0.1c. The putative flow would carry away a high-mass flux and kinetic power, with broad implications for feedback and black hole--galaxy co-evolution. NuSTAR detects PG 1211+143 out to 30 keV, meaning that the continuum is well-defined both through and above the Fe K band. A characteristic relativistic disk reflection spectrum is clearly revealed via a broad Fe K emission line and Compton back-scattering curvature. The data offer only weak constraints on the spin of the black hole. A careful search for UFOs shows no significant absorption feature above 90% confidence. The limits are particularly tight when relativistic reflection is included. We discuss the statistics and the implications of these results in terms of connections between accretion onto quasars, Seyferts, and stellar-mass black holes, and feedback into their host environments.

  4. NuSTAR REVEALS RELATIVISTIC REFLECTION BUT NO ULTRA-FAST OUTFLOW IN THE QUASAR PG 1211+143

    Energy Technology Data Exchange (ETDEWEB)

    Zoghbi, A.; Miller, J. M. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Walton, D. J.; Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Harrison, F. A. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Fabian, A. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 OHA (United Kingdom); Reynolds, C. S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Boggs, S. E.; Craig, W. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E. [DTU Space. National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Zhang, W. W., E-mail: abzoghbi@umich.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-02-01

    We report on four epochs of observations of the quasar PG 1211+143 using NuSTAR. The net exposure time is 300 ks. Prior work on this source found suggestive evidence of an ultra-fast outflow (UFO) in the Fe K band with a velocity of approximately 0.1c. The putative flow would carry away a high-mass flux and kinetic power, with broad implications for feedback and black hole--galaxy co-evolution. NuSTAR detects PG 1211+143 out to 30 keV, meaning that the continuum is well-defined both through and above the Fe K band. A characteristic relativistic disk reflection spectrum is clearly revealed via a broad Fe K emission line and Compton back-scattering curvature. The data offer only weak constraints on the spin of the black hole. A careful search for UFOs shows no significant absorption feature above 90% confidence. The limits are particularly tight when relativistic reflection is included. We discuss the statistics and the implications of these results in terms of connections between accretion onto quasars, Seyferts, and stellar-mass black holes, and feedback into their host environments.

  5. NuSTAR REVEALS RELATIVISTIC REFLECTION BUT NO ULTRA-FAST OUTFLOW IN THE QUASAR PG 1211+143

    International Nuclear Information System (INIS)

    Zoghbi, A.; Miller, J. M.; Walton, D. J.; Stern, D.; Harrison, F. A.; Fabian, A. C.; Reynolds, C. S.; Boggs, S. E.; Craig, W.; Christensen, F. E.; Hailey, C. J.; Zhang, W. W.

    2015-01-01

    We report on four epochs of observations of the quasar PG 1211+143 using NuSTAR. The net exposure time is 300 ks. Prior work on this source found suggestive evidence of an ultra-fast outflow (UFO) in the Fe K band with a velocity of approximately 0.1c. The putative flow would carry away a high-mass flux and kinetic power, with broad implications for feedback and black hole--galaxy co-evolution. NuSTAR detects PG 1211+143 out to 30 keV, meaning that the continuum is well-defined both through and above the Fe K band. A characteristic relativistic disk reflection spectrum is clearly revealed via a broad Fe K emission line and Compton back-scattering curvature. The data offer only weak constraints on the spin of the black hole. A careful search for UFOs shows no significant absorption feature above 90% confidence. The limits are particularly tight when relativistic reflection is included. We discuss the statistics and the implications of these results in terms of connections between accretion onto quasars, Seyferts, and stellar-mass black holes, and feedback into their host environments

  6. Effective rates of heavy metal release from alkaline wastes — Quantified by column outflow experiments and inverse simulations

    Science.gov (United States)

    Wehrer, Markus; Totsche, Kai Uwe

    2008-10-01

    Column outflow experiments operated at steady state flow conditions do not allow the identification of rate limited release processes. This requires an alternative experimental methodology. In this study, the aim was to apply such a methodology in order to identify and quantify effective release rates of heavy metals from granular wastes. Column experiments were conducted with demolition waste and municipal waste incineration (MSWI) bottom ash using different flow velocities and multiple flow interruptions. The effluent was analyzed for heavy metals, DOC, electrical conductivity and pH. The breakthrough-curves were inversely modeled with a numerical code based on the advection-dispersion equation with first order mass-transfer and nonlinear interaction terms. Chromium, Copper, Nickel and Arsenic are usually released under non-equilibrium conditions. DOC might play a role as carrier for those trace metals. By inverse simulations, generally good model fits are derived. Although some parameters are correlated and some model deficiencies can be revealed, we are able to deduce physically reasonable release-mass-transfer time scales. Applying forward simulations, the parameter space with equifinal parameter sets was delineated. The results demonstrate that the presented experimental design is capable of identifying and quantifying non-equilibrium conditions. They show also that the possibility of rate limited release must not be neglected in release and transport studies involving inorganic contaminants.

  7. Foreign direct investment outflows in the forest products industry: the case of the United States and Japan

    Science.gov (United States)

    R.V. Nagubadi; D. Zhang

    2008-01-01

    This paper investigates the determinants of foreign direct investment (FDI) outflows from two major forest product importing countries: the U.S. and Japan. Exchange rate, per capita income, cost of capital, and cost of labour in host countries have significant impacts on the FDI outflows from these two countries. A complementary relationship is found between forest...

  8. A search for shock-excited optical emission from the outflows of massive young stellar objects

    NARCIS (Netherlands)

    Alvarez, C; Hoare, MG

    We have searched for optical shock-excited emission lines in the outer parts of the bipolar outflows from massive young stellar objects where the flow terminates and the extinction is expected to be low. The Taurus Tunable Filter (TTF) at the Anglo-Australian Telescope (AAT) was used to obtain

  9. Stent migration after right ventricular outflow tract stenting in the severe cyanotic Tetralogy of Fallot case

    Directory of Open Access Journals (Sweden)

    Tamaki Hayashi

    2017-01-01

    Full Text Available We report our experience with a stent migration after right ventricle outflow tract stenting and converted to patent ductus arteriosus stenting in Tetralogy of Fallot (TOF with severe infundibular stenosis. Finally, the patient achieved to TOF repair, and the migrated stent was removed without any complication.

  10. Further studies of the role of dense molecular clouds around outflow sources

    International Nuclear Information System (INIS)

    Verdes-Montenegro, L.; Torrelles, J.M.; Rodriguez, L.F.; Anglada, G.; Lopez, R.

    1989-01-01

    The (J,K) = (1,1) and (2,2) ammonia inversion transitions toward six regions with active star formation and evidence of gas outflows have been observed. Ammonia emission has been detected and mapped in five of these regions: AFGL 5142, AFGL 5157, AFGL 6366S, HHL 73, and S140N. NH3 (2,2) emission was detected toward the peak of the NH3 (1,1) core of AFGL 5157 and S140N. A rotational temperature of T(R) (2,2;1,1) = about 16 K was estimated for the two regions. Two new H2O masers of intense emission, S(nu) greater or equal 40 Jy, were detected toward the ammonia cores of AFGL 5142 and AFGL 5157. It is clear that the dense NH3 gas is closely associated with the star formation activities, since the ammonia cores in all peak close to the centers of activity. In particular, the AFGL 5157 ammonia condensation coincides with the geometrical center of a bipolar molecular outflow, suggesting that the exciting source is embedded in the ammonia core. In contrast, the molecular outflow in the AFGL 6366S region is located at the southeast edge of the NH3 condensation, suggesting that the exciting source is outside the ammonia core and that the morphology of the outflow may be influenced by the interaction with the dense ambient gas. 52 refs

  11. On the hydrogen neutral outflowing disks of B[e] supergiants

    Czech Academy of Sciences Publication Activity Database

    Kraus, Michaela; Borges Fernandes, M.; de Araújo, F. X.

    2007-01-01

    Roč. 463, č. 2 (2007), s. 627-634 ISSN 0004-6361 R&D Projects: GA ČR GA205/04/1267 Institutional research plan: CEZ:AV0Z10030501 Keywords : supergiants * winds * outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.259, year: 2007

  12. Coastal circulations driven by river outflow in a variable-density 1.5-layer model

    Digital Repository Service at National Institute of Oceanography (India)

    McCreary, J.P.; Zhang, S.; Shetye, S.R.

    trapped. Immediately after the outflow is switched on, a coastal Kelvin wave is excited at the river mouth that establishes a southward current of oceanic water along the right-hand coast. In contrast, all the river water first bends to the left...

  13. X-ray Evidence for Ultra-Fast Outflows in Local AGNs

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.; Dadina, M.

    2012-08-01

    X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in ga 40% of the sources. Their outflow velocities are in the range ˜ 0.03-0.3c, with a mean value of ˜ 0.14c. The ionization is high, in the range logℰ ˜3-6rm erg s-1 cm, and also the associated column densities are large, in the interval ˜ 1022-1024rm cm-2. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets, and their study can provide important clues on the connection between accretion disks, winds, and jets.

  14. THE NATURE AND FREQUENCY OF OUTFLOWS FROM STARS IN THE CENTRAL ORION NEBULA CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    O’Dell, C. R. [Department of Physics and Astronomy, Vanderbilt University, Box 1807-B, Nashville, TN 37235 (United States); Ferland, G. J. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Henney, W. J. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, 58090 Morelia, Michoacán, México (Mexico); Peimbert, M. [Instituto de Astronomia, Universidad Nacional Autónoma de México, Apdo, Postal 70-264, 04510 México D. F., México (Mexico); García-Díaz, Ma. T. [Instituto de Astronomia, Universidad Nacional Autónoma de México, Km 103 Carretera Tijuana-Ensenada, 22860 Ensenada, B.C., México (Mexico); Rubin, Robert H., E-mail: cr.odell@vanderbilt.edu [NASA/Ames Research Center, Moffett Field, CA 94035-0001 (United States)

    2015-10-15

    Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig–Haro objects known within the inner Orion Nebula. We find that the best-known Herbig–Haro shocks originate from relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks are the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blueshifted because the redshifted outflows pass into the optically thick photon-dominated region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD database.

  15. Possible Outflow Formation in the Central Engine of GRBs Tong Liu ...

    Indian Academy of Sciences (India)

    Astr. (2011) 32, 285–287 c Indian Academy of Sciences. Possible Outflow Formation in the Central Engine of GRBs. Tong Liu, Wei-Min Gu. ∗. & Ju-Fu Lu. Department of Physics and Institute of Theoretical Physics and Astrophysics,. Xiamen University, Xiamen, Fujian 361005, China. ∗ e-mail: guwm@xmu.edu.cn. Abstract.

  16. Corrected tetralogy of Fallot: delayed enhancement in right ventricular outflow tract

    NARCIS (Netherlands)

    Oosterhof, Thomas; Mulder, Barbara J. M.; Vliegen, Hubert W.; de Roos, Albert

    2005-01-01

    PURPOSE: To evaluate retrospectively the presence of fibrosis and largest diameter of the right ventricular outflow tract (RVOT) by using delayed enhancement magnetic resonance (MR) imaging in patients who had undergone initial correction for tetralogy of Fallot. MATERIALS AND METHODS: MR imaging

  17. Cellular automaton model in the fundamental diagram approach reproducing the synchronized outflow of wide moving jams

    International Nuclear Information System (INIS)

    Tian, Jun-fang; Yuan, Zhen-zhou; Jia, Bin; Fan, Hong-qiang; Wang, Tao

    2012-01-01

    Velocity effect and critical velocity are incorporated into the average space gap cellular automaton model [J.F. Tian, et al., Phys. A 391 (2012) 3129], which was able to reproduce many spatiotemporal dynamics reported by the three-phase theory except the synchronized outflow of wide moving jams. The physics of traffic breakdown has been explained. Various congested patterns induced by the on-ramp are reproduced. It is shown that the occurrence of synchronized outflow, free outflow of wide moving jams is closely related with drivers time delay in acceleration at the downstream jam front and the critical velocity, respectively. -- Highlights: ► Velocity effect is added into average space gap cellular automaton model. ► The physics of traffic breakdown has been explained. ► The probabilistic nature of traffic breakdown is simulated. ► Various congested patterns induced by the on-ramp are reproduced. ► The occurrence of synchronized outflow of jams depends on drivers time delay.

  18. Possible Outflow Formation in the Central Engine of GRBs Tong Liu ...

    Indian Academy of Sciences (India)

    accretion flows in spherical coordinates. In our calculation, the empty fun- nel along the rotation axis can naturally explain the neutrino annihilable ejection. The outflow is possible due to the positive Bernoulli function, and the luminosity of neutrino annihilation is enhanced by one or two orders of magnitude. Key words.

  19. Knowledge Outflows from Foreign Subsidiaries and the Tension Between Knowledge Creation and Knowledge Protection

    DEFF Research Database (Denmark)

    Perri, Alessandra; Andersson, Ulf

    2014-01-01

    This paper analyzes the MNC subsidiaries' trade-off between the need for knowledge creation and the need for knowledge protection, and relates it to the extent of knowledge outflows generated within the host location. Combining research in International Business with Social Theory, we build a con...

  20. Multiple outflows in the bipolar planetary nebula M1-16: A molecular line study

    NARCIS (Netherlands)

    Sahai, Raghvendra; Wootten, Alwyn; Schwarz, Hugo E.; Wild, W.

    1994-01-01

    Extensive observations of the molecular gas in the young, compact planetary nebula M1-16 have been made, using the Swedish-ESO-Submillimeter Telescope. A map of the CO J = 2-1 emission shows that the molecular envelope contains both a slow and a fast outflow with expansion velocities of 19 km/s and

  1. Investigating the Influence of Technology Inflows on Technology Outflows in Open Innovation Processes : A Longitudinal Analysis

    NARCIS (Netherlands)

    Sikimic, U.; Chiesa, V.; Frattini, F.; Scalera, V.G.

    2016-01-01

    The open innovation (OI) paradigm emphasizes the importance of integrating inbound and outbound flows of technology to increase a firm's innovation performance. While the synergies between technology inflows and outflows have been discussed in conceptual OI articles, the majority of empirical

  2. Effects of viscosity and fluid outflow on postcibal gastric emptying of solids.

    Science.gov (United States)

    Meyer, J H; Gu, Y; Elashoff, J; Reedy, T; Dressman, J; Amidon, G

    1986-02-01

    It is known that the food-filled stomach retains large spheres or pieces of food, allowing the passage of food particles or of plastic spheres with diameters mainly below 2 mm. We have recently shown that spheres having densities greater or less than water emptied from the food-filled canine stomach more slowly than spheres of the same diameter with a density of 1. Thus, hydrodynamics seem to govern gastric emptying of spheres. The present studies were undertaken to determine how altering other hydrodynamic factors, viscosity and velocity of fluid outflow, might affect gastric sieving. Ten mongrel dogs were prepared with chronic duodenal fistulas, which allowed collecting and measuring of emptied spheres and food. The dogs were fed a standard meal of 75 g of steak plus 25 g of 99mTc-labeled chicken liver. Immediately afterward, 50 3.2-mm Teflon spheres were instilled into the stomachs along with 200- or 800-ml volumes of saline or saline plus guar (a viscous polysaccharide). Whether 200- or 800-ml volumes were instilled, the guar significantly sped the emptying of the spheres. Fluid outflow was twice as fast after the 800-ml instillates, but the faster outflow with the 800 ml of saline did not speed emptying of spheres. With the guar instillates, the faster outflow slightly sped the emptying of the spheres and significantly increased the diameter of emptied particles of 99mTc-labeled chicken liver. We conclude that meal viscosity significantly affects gastric sieving.

  3. Launching Cosmic-Ray-Driven Outflows from The Magnetized Interstellar Medium

    Czech Academy of Sciences Publication Activity Database

    Girichidis, P.; Naab, T.; Walch, S.; Hanasz, M.; Mac Low, M.-M.; Ostriker, J.P.; Gatto, A.; Peters, T.; Wünsch, Richard; Glover, S.C.O.; Klessen, R.S.; Clark, P.C.; Baczynski, C.

    2016-01-01

    Roč. 816, č. 2 (2016), L19/1-L19/6 ISSN 2041-8205 R&D Projects: GA ČR GAP209/12/1795 Institutional support: RVO:67985815 Keywords : cosmic rays * diffusion * jets and outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.522, year: 2016

  4. What's in the Wind? Determining the Properties of Outflowing Gas in Powerful Broad Absorption Line Quasars

    Science.gov (United States)

    Leighly, Karen

    2017-08-01

    A significant fraction of quasars exhibits blueshifted broadabsorption lines (BALs) in their rest-UV spectra, indicating powerfuloutflows emerging from the central engine. These outflows may removeangular momentum to enable black hole growth, enrich the intergalacticmedium with metals, and trigger quenching of star formation ingalaxies. Despite years of study, the physical conditions of theoutflowing gas are poorly understood. The handful of objects that havebeen subjected to detailed analysis are atypical and characterized byrelatively narrow lines where blending is unimportant. However,investigating more powerful BAL quasars will give us better insightinto the types of outflows much more likely to impact galaxyevolution.SimBAL is a novel spectral synthesis fitting method for BAL quasarsthat uses Bayesian model calibration to compare synthetic to observedspectra. With the model inputs of ionization parameter, columndensity, and covering fraction specified, the gas properties givingrise to the BAL features can be determined. We propose to applySimBAL to archival spectra of a sample of 14 luminous BAL quasars to characterize their bulk outflow properties as a function of velocityfor the first time. Our results will show the range of parameterstypical of powerful outflows, an essential step towards constrainingthe physics behind quasar winds and thus their impact on theirenvironments.

  5. Optimization of the Outflow Graft Position and Angle in a Left Ventricular Assist Device

    Science.gov (United States)

    McGah, Patrick; Prisco, Anthony; Beckman, Jennifer; Mokadam, Nahush; Mahr, Claudius; Aliseda, Alberto

    2015-11-01

    The placement of the outflow graft in the aorta plays a key role in the hemodynamics of Left Ventricle Assist Devices (LVAD), a medical device with a growing importance in the treatment of end-stage heart failure. We use a patient-specific computational model of the VAD and the ascending aorta to investigate the impact of VAD outflow graft configuration on the residence time and wall shear stresses along the ascending aorta and the ostia of the upper branches. The flow induced by the combination of VAD output through the graft anastomosed to the aorta and the limited cardiac output through intermittent opening of the aortic valve is studied to determine the nature of thrombogenic flow patterns. Outflow grafts are virtually anastomosed along the ascending aorta or subclavian artery of the patient-specific model at different positions and angles that are surgically-informed. Detailed markers of thrombosis, such as cell residence time, wall shear stress, and shear stress gradients are analyzed and compared for the different configurations. The angle of incidence of the outflow graft critically influences the volume of recirculating flow between aortic valve and anastomosis, and the aortic pressure acting against aortic valve opening.

  6. Hubble Space Telescope observations of BALQSO Ton 34 reveal a connection between the broad-line region and the BAL outflow

    Science.gov (United States)

    Krongold, Y.; Binette, L.; Bohlin, R.; Bianchi, L.; Longinotti, A. L.; Mathur, S.; Nicastro, F.; Gupta, A.; Negrete, C. A.; Hernandez-Ibarra, F.

    2017-07-01

    Ton 34 recently transitioned from non-absorbing quasar into a broad absorption line quasi-stellar object. Here, we report new HST-STIS observations of this quasar. Along with C IV absorption, we also detect absorption by NV+Lyα and possibly O VI+Lyβ. We follow the evolution of the C IV BAL, and find that, for the slower outflowing material, the absorption trough varies little (if at all) on a rest-frame time-scale of ˜2 yr. However, we detect a strong deepening of the absorption in the gas moving at larger velocities (-20 000 to -23 000 km s-1). The data is consistent with a multistreaming flow crossing our line of sight to the source. The transverse velocity of the flow should be ˜ few thousand km s-1, similar to the rotation velocity of the BLR gas (≈2 600 km s-1). By simply assuming Keplerian motion, these two components must have similar locations, pointing to a common outflow forming the BLR and the BAL. We speculate that BALs, mini-BALs and NALs are part of a common, ubiquitous, accretion-disc outflow in AGN, but become observable depending on the viewing angle towards the flow. The absorption troughs suggest a wind covering only ˜20 per cent of the emitting source, implying a maximum size of 10-3 pc for the clouds forming the BAL/BLR medium. This is consistent with constraints of the BLR clouds from X-ray occultations. Finally, we suggest that the low excitation broad emission lines detected in the spectra of this source lie beyond the wind, and this gas is probably excited by the shock of the BAL wind with the surrounding medium.

  7. FEATURES OF OUTFLOW OF INTRAOCULAR LIQUID AFTER AN EKSIMERLAZER SKLEREKTOMY (PILOT STUDY

    Directory of Open Access Journals (Sweden)

    E. A. Korchuganova

    2017-01-01

    Full Text Available Modern approaches to surgical glaucoma treatment is based on the safe and effective methods. In recent years, great attention is paid to the techniques of stimulating uveoscleral path outtake aqueous humor from the eye. Uveoscleral space in the extended outflow pathways is dominant and constitutes about 72%. Sclera is a field of the greatest interest, as the end stages of the outflow of aqueous humor via the uveoscleral path. The aim of the study was to investigate the influence of excimer laser sclerectomy on the drainage function of the eye and development of a mathematical model based on the permeability of the sclera of the amount of laser ablation at a defined area of laser exposure and the level of IOP. Studies were conducted on 12 human cadaver eyes isolated person. The domestic excimer laser “MicroScan Vizum” with a wavelength of 193нм (0,193 µm was used for the thinning of sclera. In the experiment used a special computer program provided ablation of scleral tissue, the scleral bed forming a rectangular shape with a size 7,0x5,0 mm. the Depth of influence started from 100 microns to 600 microns in increments of 50 µn. The exposure was carried out at a constant perfusion pressure of 25 mm Hg After each impact was measured of the coefficient ease the outflow. A correlation was established between the factor and effective features, i.e., between the excimer laser deep sclerectomy (µm and ratio of lightness outflow (mm3/min/mm Hg.St. Thinning of the sclera leads to an improvement of its permeability and increasing the coefficient ease the outflow. A mathematical model, allowing to achieve the desired ratio of lightness outflow experiment by excimer laser sclerectomy was developed. The mathematical model has the form of the regression equation.The sclera is a promising object for further developments in the surgical treatment of glaucoma. Laser ablation of the sclera leads to an improvement of outflow via the uveoscleral path and

  8. Long-Term Results of Stent Placement in Patients with Outflow Block After Living-Donor-Liver Transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Masashi, E-mail: fujimorim@clin.medic.mie-u.ac.jp [Mie University School of Medicine, Department of Radiology (Japan); Yamakado, Koichiro, E-mail: yamakado47@gmail.com; Takaki, Haruyuki, E-mail: takaki-h@clin.medic.mie-u.ac.jp [Hyogo College of Medicine, Department of Radiology (Japan); Nakatsuka, Atsuhiro, E-mail: nakatuka@clin.medic.mie-u.ac.jp; Uraki, Junji, E-mail: junji@clin.medic.mie-u.ac.jp; Yamanaka, Takashi, E-mail: t-yama@clin.medic.mie-u.ac.jp; Hasegawa, Takaaki, E-mail: hasegawat@clin.medic.mie-u.ac.jp; Sugino, Yuichi, E-mail: ysugino23@clin.medic.mie-u.ac.jp; Nakajima, Ken, E-mail: k-nakajima@clin.medic.mie-u.ac.jp; Matsushita, Naritaka, E-mail: n-matsushita@clin.medic.mie-u.ac.jp [Mie University School of Medicine, Department of Radiology (Japan); Mizuno, Shugo, E-mail: mizunos@clin.medic.mie-u.ac.jp [Mie University School of Medicine, Hepatobiliary Pancreatic and Transplant Surgery (Japan); Sakuma, Hajime, E-mail: sakuma.mie@gmail.com [Mie University School of Medicine, Department of Radiology (Japan); Isaji, Shuji, E-mail: isaji-s@clin.medic.mie-u.ac.jp [Mie University School of Medicine, Hepatobiliary Pancreatic and Transplant Surgery (Japan)

    2016-04-15

    PurposeTo evaluate long-term results of stent placement retrospectively in patients with outflow block after living-donor-liver transplantation (LDLT).Materials and MethodsFor this institutional review board approved retrospective study conducted during 2002–2012, stents were placed in outflow veins in 15 patients (11.3 %, 15/133) (12 men; 3 female) in whom outflow block developed after LDLT. Their mean age was 52.3 years ± 15.3 (SD) (range, 4–69 years). Venous stenosis with a pressure gradient ≥5 mmHg (outflow block) was observed in the inferior vena cava in seven patients, hepatic vein in seven patients, and both in one patient. Technical success, change in a pressure gradient and clinical manifestations, and complications were evaluated. Overall survival of 15 patients undergoing outflow block stenting was compared with that of 116 patients without outflow block after LDLT.ResultsStents were placed across the outflow block veins without complications, lowering the pressure gradient ≤ 3 mmHg in all patients (100 %, 15/15). Clinical manifestations improved in 11 patients (73.3 %, 11/15), and all were discharged from the hospital. However, they did not improve in the other 4 patients (26.7 %, 4/15) who died in the hospital 1.0–3.7 months after stenting (mean, 2.0 ± 1.2 months). No significant difference in 5-year survival rates was found between patients with and without outflow block after LDLT (61.1 vs. 72.2 %, p = .405).ConclusionStenting is a feasible, safe, and useful therapeutic option to resolve outflow block following LDLT, providing equal survival to that of patients without outflow block.

  9. Development and first experimental results of the KERENA Passive Outflow Reducer

    International Nuclear Information System (INIS)

    Dumond, Julien; Maisberger, Fabian; Class, Andreas

    2012-01-01

    Increased safety and reduced costs are achieved in the boiling water reactor KERENA with a smart combination of active and passive safety systems. One of these passive systems is the Emergency Condenser (EC). The EC passively removes excess heat and in particular the decay heat from the Reactor Pressure Vessel (RPV) during transients and Loss of Coolant Accidents (LOCA) without supplementary water inventory loss. The EC passively becomes active when the water level in the condenser tubes falls so that steam gets in contact with the cold condenser surface. This is triggered by a transient or a loss of coolant involving drop in RPV water level. The condensate returns to the RPV through the EC condensate return line. A break of the EC return line must be considered as a design accident. The Passive Outflow Reducer (POR) is positioned in the reactor nozzle at the end of the EC condensate return line to limit the loss of coolant passively without moving part in this scenario before other passive and active systems fill up the core with coolant. The requirements on the POR are conflicting. On the one hand, the mass flow leaving the RPV has to be limited in case of the break of the EC condensate return line. On the other hand, the flow resistance from the EC to the RPV should not decrease EC heat removal capacity. Furthermore, the component must be compact (l < 1m) and easily manufactured. In the framework of the PhD a new POR design composed of 37 parallel doublenozzle channels (Figure 1) has been developed. The development of this POR design is described in chapter 1. The system was first designed to meet LOCA requirement (section 1.1) in LOCA direction (red arrow on Figure 1) with system-code and then optimized to minimize flow resistance in EC direction (blue arrow on Figure 1) with commercial CFD software (section 1.2). Both requirements can be achieved with one single pipe but the component would be much too long (about 6 meters). To assure compactness of the

  10. Deciphering AGN outflows with joint UV and X-ray observations

    Science.gov (United States)

    Kaastra, Jelle; Mrk 509 team

    2018-01-01

    In this presentation I will show some recent highlights of large, joint monitoring campaigns on Active Galactic Nuclei outflows. The combination of UV grating observations with HST for the best velocity decomposition and the broad-range sensitivity on ionisation state offered by X-ray grating detectors on Chandra and XMM-Newton is a powerful tool to decipher AGN outflows. I will discuss the diagnostic power of density sensitive lines in the UV and delayed recombination measurement in X-rays to estimate densities and distances of the outflow. A good example is the large X-ray/UV campaign on Markarian 509.A breakthrough has been made by the observation of the prototype Seyfert galaxy NGC 5548 in an obscured state. Here the X-ray obscuration gives the column density and ionisation state of lowly ionized material close to the broad-line region that blocks most of the soft X-rays from the central regions in our line of sight, while UV spectroscopy provides all details on the outflow velocity, which cannot be obtained from the X-ray spectra. Also the obscured state allows to measure accurately the density and distance of the regular outflow at pc distances, which is de-ionized by the obscuring material.A second example of an obscuration event is provided by NGC 3783, where a trigger from Swift alerted us of the obscured state. I will compare these obscuration events and briefly discuss their impact on other AGN physics like the BLR analysis. Finally I present some future prospects of AGN studies with upcoming X-ray missions like XARM, Arcus and Athena.

  11. The transition between confined and unconfined flow: lateral outflow in a delta distributary network

    Science.gov (United States)

    Hiatt, M. R.; Passalacqua, P.

    2016-12-01

    Recent field work at the Wax Lake Delta (WLD) in coastal Louisiana indicates lateral outflow from the channel network to islands upstream of the bay; in this region of the delta the flow transitions from confined to unconfined. We study the hydraulics of this transition zone, which comprises the upstream river channel and the delta distributary network of channels and inundated islands, and the controls exerted by vegetation topography, and river discharge fluctuations. A numerical model solving the shallow water equations is used in two model domains: an idealized channel-island complex and the full domain of the WLD. In both domains, a significant fraction of the river discharge flows laterally from the distributary channels to the islands, indicating that deltaic islands are important conduits for hydraulic transport in the delta. Island vegetation roughness controls the lateral outflow from the channel network, which influences the backwater dynamics within the delta and the upstream river channel, leading to significant differences in water surface elevation predicted by gradually varied hydraulics theory and the actual water level. The presence of vegetation in the islands tends to increase velocities within the channel, except in the region upstream of significant lateral outflow, where the velocity increases with decreasing vegetation roughness due to the lowered water level that reduces the flow cross-section area. Lateral water surface gradients are driven by the topography of the channel-island complex which drives lateral outflow even in situations without island vegetation. A velocity spreading angle is introduced to quantitatively mark the transition between confined and unconfined flow. The hydraulic interactions among distributary channels and interdistributary islands on the network scale is discussed, and the influence of network structure on lateral outflow and hydraulic residence time is also quantified. The transition between confined and

  12. Kinetic modeling of auroral ion outflows observed by the VISIONS sounding rocket

    Science.gov (United States)

    Albarran, R. M.; Zettergren, M. D.

    2017-12-01

    The VISIONS (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of the ion outflow below 1000km. Energetic ion data from the VIS