WorldWideScience

Sample records for strong light scattering

  1. Light and neutron scattering study of strongly interacting ionic micelles

    International Nuclear Information System (INIS)

    Degiorgio, V.; Corti, M.; Piazza, R.

    1989-01-01

    Dilute solutions of ionic micelles formed by biological glycolipids (gangliosides) have been investigated at various ionic strengths by static and dynamic light scaterring and by small-angle neutron scattering. The size and shape of the micelle is not appreciably affected by the added salt concentration in the range 0-100 mM NaCL. From the measured intensity of scattered light we derive the electric charge Z of the micelle by fitting the data to a theoretical calculation which uses a screened Coulomb potential for the intermicellar interaction, and the hypernetted chain approximation for the calculation of the radial distribution function. The correlation function derived from dynamic light scattering shows the long time contribution typical of concentrated polydisperse systems (author). 15 refs.; 6 figs

  2. RAMAN LIGHT SCATTERING IN PSEUDOSPIN-ELECTRON MODEL AT STRONG PSEUDOSPIN-ELECTRON INTERACTION

    Directory of Open Access Journals (Sweden)

    T.S.Mysakovych

    2004-01-01

    Full Text Available Anharmonic phonon contributions to Raman scattering in locally anharmonic crystal systems in the framework of the pseudospin-electron model with tunneling splitting of levels are investigated. The case of strong pseudospin-electron coupling is considered. Pseudospin and electron contributions to scattering are taken into account. Frequency dependences of Raman scattering intensity for different values of model parameters and for different polarization of scattering and incident light are investigated.

  3. Analytical modeling of light transport in scattering materials with strong absorption.

    Science.gov (United States)

    Meretska, M L; Uppu, R; Vissenberg, G; Lagendijk, A; Ijzerman, W L; Vos, W L

    2017-10-02

    We have investigated the transport of light through slabs that both scatter and strongly absorb, a situation that occurs in diverse application fields ranging from biomedical optics, powder technology, to solid-state lighting. In particular, we study the transport of light in the visible wavelength range between 420 and 700 nm through silicone plates filled with YAG:Ce 3+ phosphor particles, that even re-emit absorbed light at different wavelengths. We measure the total transmission, the total reflection, and the ballistic transmission of light through these plates. We obtain average single particle properties namely the scattering cross-section σ s , the absorption cross-section σ a , and the anisotropy factor µ using an analytical approach, namely the P3 approximation to the radiative transfer equation. We verify the extracted transport parameters using Monte-Carlo simulations of the light transport. Our approach fully describes the light propagation in phosphor diffuser plates that are used in white LEDs and that reveal a strong absorption (L/l a > 1) up to L/l a = 4, where L is the slab thickness, l a is the absorption mean free path. In contrast, the widely used diffusion theory fails to describe this parameter range. Our approach is a suitable analytical tool for industry, since it provides a fast yet accurate determination of key transport parameters, and since it introduces predictive power into the design process of white light emitting diodes.

  4. Focusing light through strongly scattering media using genetic algorithm with SBR discriminant

    Science.gov (United States)

    Zhang, Bin; Zhang, Zhenfeng; Feng, Qi; Liu, Zhipeng; Lin, Chengyou; Ding, Yingchun

    2018-02-01

    In this paper, we have experimentally demonstrated light focusing through strongly scattering media by performing binary amplitude optimization with a genetic algorithm. In the experiments, we control 160 000 mirrors of digital micromirror device to modulate and optimize the light transmission paths in the strongly scattering media. We replace the universal target-position-intensity (TPI) discriminant with signal-to-background ratio (SBR) discriminant in genetic algorithm. With 400 incident segments, a relative enhancement value of 17.5% with a ground glass diffuser is achieved, which is higher than the theoretical value of 1/(2π )≈ 15.9 % for binary amplitude optimization. According to our repetitive experiments, we conclude that, with the same segment number, the enhancement for the SBR discriminant is always higher than that for the TPI discriminant, which results from the background-weakening effect of SBR discriminant. In addition, with the SBR discriminant, the diameters of the focus can be changed ranging from 7 to 70 μm at arbitrary positions. Besides, multiple foci with high enhancement are obtained. Our work provides a meaningful reference for the study of binary amplitude optimization in the wavefront shaping field.

  5. Monte Carlo simulation of reflection spectra of random multilayer media strongly scattering and absorbing light

    International Nuclear Information System (INIS)

    Meglinskii, I V

    2001-01-01

    The reflection spectra of a multilayer random medium - the human skin - strongly scattering and absorbing light are numerically simulated. The propagation of light in the medium and the absorption spectra are simulated by the stochastic Monte Carlo method, which combines schemes for calculations of real photon trajectories and the statistical weight method. The model takes into account the inhomogeneous spatial distribution of blood vessels, water, and melanin, the degree of blood oxygenation, and the hematocrit index. The attenuation of the incident radiation caused by reflection and refraction at Fresnel boundaries of layers inside the medium is also considered. The simulated reflection spectra are compared with the experimental reflection spectra of the human skin. It is shown that a set of parameters that was used to describe the optical properties of skin layers and their possible variations, despite being far from complete, is nevertheless sufficient for the simulation of the reflection spectra of the human skin and their quantitative analysis. (laser applications and other topics in quantum electronics)

  6. High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue

    International Nuclear Information System (INIS)

    Canpolat, M.; Mourant, J.R.

    2000-01-01

    Measurement of light transport in tissue has the potential to be an inexpensive and practical tool for non-invasive tissue diagnosis in medical applications because it can provide information on both morphological and biochemical properties. To capitalize on the potential of light transport as a diagnostic tool, an understanding of what information can be gleaned from light transport measurements is needed. We present data concerning the sensitivity of light transport measurements, made in clinically relevant geometries, to scattering properties. The intensity of the backscattered light at small source-detector separations is shown to be sensitive to the phase function, and furthermore the collected light intensity is found to be correlated with the amount of high-angle scattering in the medium. (author)

  7. Elastic removal self-shielding factors for light and medium nuclides with strong-resonance scattering

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Ishiguro, Yukio; Tokuno, Yukio.

    1978-01-01

    The self-shielding factors for elastic removal cross sections of light and medium weight nuclides were calculated for the parameter, σ 0 within the conventional concept of the group constant sets. The numerical study were performed for obtaining a simple and accurate method. The present results were compared with the exact values and the conventional ones, and shown to be remarkably improved. It became apparent that the anisotropy of the elastic scattering did not affect to the self-shielding factors though it did to the infinite dilution cross sections. With use of the present revised set, the neutron flux were calculated in an iron medium and in a prototype FBR and compared with those by the fine spectrum calculations and the conventional set. The present set showed the considerable improvement in the vicinity of the large resonance regions of sodium, iron and oxygen. (auth.)

  8. Mesoporous TiO{sub 2} aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunhui; Luo, Yanhong; Guo, Xiaozhi; Li, Dongmei [Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Mi, Jianli; So, Lasse; Hald, Peter [Center for Materials Crystallography, Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus (Denmark); Meng, Qingbo, E-mail: qbmeng@iphy.ac.cn [Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Iversen, Bo B., E-mail: bo@chem.au.dk [Center for Materials Crystallography, Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus (Denmark)

    2012-12-15

    Phase-pure anatase TiO{sub 2} nanocrystallite aggregates synthesized by a continuous supercritical fluid process have been first used for fabricating mesoporous photoanodes of dye-sensitized solar cells (DSCs). Due to the small size (11 nm) of the TiO{sub 2} nanocrystallites in the aggregates, the mesoporous photoanode provides a high specific surface area, 80 m{sup 2}/g, which ensures high dye loading. At the same time, the submicrometer-sized aggregates endow the mesoporous photoanode with strong light scattering effect. Therefore, the light harvesting efficiency of the photoanode is increased. With an improved short-circuit current density, a high overall power conversion efficiency of 8.65% (100 mW/cm{sup 2}, AM 1.5) is achieved without additional scattering layers, 12% enhanced compared with the DSCs fabricated from commercial Degussa P25 with exactly the same procedures. In addition, this supercritical fluid process is scalable and rapid (less than one minute) for TiO{sub 2} aggregates synthesis, which will push the commercialization of DSCs in the future. - Graphical abstract: Due to the special morphology and structure, the photoanode of DSCs provides high specific surface area and strong light scattering at the same time, which results in high conversion efficiencies of the DSCs. Table of contents: Thanks to the synchronous realization of high specific surface area and strong light scattering, a high efficiency of 8.65% was achieved based on a novel mesoporous TiO{sub 2} aggregates photoanode for DSCs. Highlights: Black-Right-Pointing-Pointer The TiO{sub 2} aggregate photoanode provides a possible route for highly efficient DSCs. Black-Right-Pointing-Pointer Photoanode with high dye loading and light scattering is successfully fabricated. Black-Right-Pointing-Pointer TiO{sub 2} synthesized by a supercritical fluid process is first applied to DSCs. Black-Right-Pointing-Pointer The synthesis method and high efficiency will push the commercialization of DSCs.

  9. Inelastic Light Scattering Processes

    Science.gov (United States)

    Fouche, Daniel G.; Chang, Richard K.

    1973-01-01

    Five different inelastic light scattering processes will be denoted by, ordinary Raman scattering (ORS), resonance Raman scattering (RRS), off-resonance fluorescence (ORF), resonance fluorescence (RF), and broad fluorescence (BF). A distinction between fluorescence (including ORF and RF) and Raman scattering (including ORS and RRS) will be made in terms of the number of intermediate molecular states which contribute significantly to the scattered amplitude, and not in terms of excited state lifetimes or virtual versus real processes. The theory of these processes will be reviewed, including the effects of pressure, laser wavelength, and laser spectral distribution on the scattered intensity. The application of these processes to the remote sensing of atmospheric pollutants will be discussed briefly. It will be pointed out that the poor sensitivity of the ORS technique cannot be increased by going toward resonance without also compromising the advantages it has over the RF technique. Experimental results on inelastic light scattering from I(sub 2) vapor will be presented. As a single longitudinal mode 5145 A argon-ion laser line was tuned away from an I(sub 2) absorption line, the scattering was observed to change from RF to ORF. The basis, of the distinction is the different pressure dependence of the scattered intensity. Nearly three orders of magnitude enhancement of the scattered intensity was measured in going from ORF to RF. Forty-seven overtones were observed and their relative intensities measured. The ORF cross section of I(sub 2) compared to the ORS cross section of N2 was found to be 3 x 10(exp 6), with I(sub 2) at its room temperature vapor pressure.

  10. Light scattering reviews 8 radiative transfer and light scattering

    CERN Document Server

    Kokhanovsky, Alexander A

    2013-01-01

    Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

  11. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument

    Science.gov (United States)

    Kristin Lewis; William P. Arnott; Hans Moosmuller; Cyle E. Wold

    2008-01-01

    A dual-wavelength photoacoustic instrument operating at 405 and 870 nm was used during the 2006 Fire Lab at Missoula Experiment to measure light scattering and absorption by smoke from the combustion of a variety of biomass fuels. Simultaneous measurements of aerosol light scattering by reciprocal nephelometry within the instrument's acoustic resonator accompany...

  12. Light scattering studies at UNICAMP

    International Nuclear Information System (INIS)

    Luzzi, R.; Cerdeira, H.A.; Salzberg, J.; Vasconcellos, A.R.; Frota Pessoa, S.; Reis, F.G. dos; Ferrari, C.A.; Algarte, C.A.S.; Tenan, M.A.

    1975-01-01

    Current theoretical studies on light scattering spectroscopy at UNICAMP is presented briefly, such as: inelastic scattering of radiation from a solid state plasma; resonant Ramman scattering; high excitation effects; saturated semiconductors and glasses

  13. Light scattering by small particles

    CERN Document Server

    Hulst, H C van de

    1981-01-01

    ""A must for researchers using the techniques of light scattering."" ? S. C. Snowdon, Journal of the Franklin InstituteThe measurement of light scattering of independent, homogeneous particles has many useful applications in physical chemistry, meteorology and astronomy. There is, however, a sizeable gap between the abstract formulae related to electromagnetic-wave-scattering phenomena, and the computation of reliable figures and curves. Dr. van de Hulst's book enables researchers to bridge that gap. The product of twelve years of work, it is an exhaustive study of light-scattering properties

  14. Diffraction scattering of strongly bound system

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.

    1982-04-01

    The scattering of a hadron on a strongly bound system of two hadrons (dihadron) is considered in the high-energy limit for the relative hadron-dihadron motion. The dihadron scatterer motion and the internal interaction are included in our consideration. It is shown that only small values of the internal transfer momentum of dihadron particles bring the principal contribution to the three-particle propagator in eikonal approximation. On the basis of the exact analytical solution of the integral equation for the total Green function the scattering amplitude is derived. It is shown that the scattering amplitude contains only single, double, and triple scattering terms. The three new terms to the Glauber formula for the total cross section are obtained. These terms decrease both the true total hadron-hadron cross section and the screening correction. (orig.)

  15. Light scattering reviews 9 light scattering and radiative transfer

    CERN Document Server

    Kokhanovsky, Alexander A

    2014-01-01

    This book details modern methods of the radiative transfer theory. It presents recent advances in light scattering (measurements and theory) and highlights the newest developments in remote sensing of aerosol and cloud properties.

  16. Light scattering by soap films

    NARCIS (Netherlands)

    Vrij, A.

    A theory is constructed describing the scattering from a liquid film (e.g., a soap film) of a light beam polarized normal to the plane of incidence. This scattering is due to the small irregular corrugations caused by thermal motion. The interference of the reflected incident beam with its multiple

  17. Static and dynamic properties of multiple light scattering

    Science.gov (United States)

    Štěpánek, Petr

    1993-11-01

    We have examined the onset and evolution of multiple scattering of light on a series of latex dispersions as a function of increasing volume concentration φ of particles. We have shown that using vertically polarized incident light, the static scattered intensity becomes progressively depolarized, with increasing φ. The polarization of scattered light is completely random in the limit of strong multiple scattering. The spectra of decay times of dynamic light scattering display a region of oligo scattering at intermediate φ where both the single and multiple scattering components can be dynamically identified. For φ≳0.03 the limit of diffusive transport of light is attained. The obtained results confirm that our earlier measurements of dynamic light scattering on systems exhibiting critical opalescence are not influenced by multiple light scattering.

  18. Inelastic light scattering in crystals

    Science.gov (United States)

    Sushchinskii, M. M.

    The papers presented in this volume are concerned with a variety of problems in optics and solid state physics, such as Raman scattering of light in crystals and disperse media, Rayleigh and inelastic scattering during phase transitions, characteristics of ferroelectrics in relation to the general soft mode concept, and inelastic spectral opalescence. A group-theory approach is used to classify the vibrational spectra of the crystal lattice and to analyze the properties of idealized crystal models. Particular attention is given to surface vibrational states and to the study of the surface layers of crystals and films by light scattering methods.

  19. Strongly interacting light dark matter

    International Nuclear Information System (INIS)

    Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo

    2016-07-01

    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  20. Light Scattering in Solid IX

    CERN Document Server

    Cardona, Manuel

    2007-01-01

    This is the ninth volume of a well-established series in which expert practitioners discuss topical aspects of light scattering in solids. It reviews recent developments concerning mainly semiconductor nanostructures and inelastic x-ray scattering, including both coherent time-domain and spontaneous scattering studies. In the past few years, light scattering has become one of the most important research and characterization methods for studying carbon nanotubes and semiconducting quantum dots, and a crucial tool for exploring the coupled exciton--photon system in semiconductor cavities. Among the novel techniques discussed in this volume are pump--probe ultrafast measurements and those which use synchrotron radiation as light source. The book addresses improvements in the intensity, beam quality and time synchronization of modern synchrotron sources, which made it possible to measure the phonon dispersion in very small samples and to determine electronic energy bands as well as enabling real-time observations...

  1. Light Scattering at Various Angles

    Science.gov (United States)

    Latimer, Paul; Pyle, B. E.

    1972-01-01

    The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering. PMID:4556610

  2. Scattered light characterization of FORTIS

    Science.gov (United States)

    McCandliss, Stephan R.; Carter, Anna; Redwine, Keith; Teste, Stephane; Pelton, Russell; Hagopian, John; Kutyrev, Alexander; Li, Mary J.; Moseley, S. Harvey

    2017-08-01

    We describe our efforts to build a Wide-Field Lyman alpha Geocoronal simulator (WFLaGs) for characterizing the end-to-end sensitivity of FORTIS (Far-UV Off Rowland-circle Telescope for Imaging and Spectroscopy) to scattered Lyman α emission from outside of the nominal (1/2 degree)2 field-of-view. WFLaGs is a 50 mm diameter F/1 aluminum parabolic collimator fed by a hollow cathode discharge lamp with a 80 mm clear MgF2 window housed in a vacuum skin. It creates emission over a 10 degree FOV. WFLaGS will allow us to validate and refine a recently developed scattered light model and verify our scatter light mitigation strategies, which will incorporate low scatter baffle materials, and possibly 3-d printed light traps, covering exposed scatter centers. We present measurements of scattering intensity of Lyman alpha as a function of angle with respect to the specular reflectance direction for several candidate baffle materials. Initial testing of WFLaGs will be described.

  3. Lensless ghost imaging through the strongly scattering medium

    International Nuclear Information System (INIS)

    Yang Zhe; Zhao Xueliang; Li Junlin; Zhao Lianjie; Qin Wei

    2016-01-01

    Lensless ghost imaging has attracted much interest in recent years due to its profound physics and potential applications. In this paper we report studies of the robust properties of the lensless ghost imaging system with a pseudo-thermal light source in a strongly scattering medium. The effects of the positions of the strong medium on the ghost imaging are investigated. In the lensless ghost imaging system, a pseudo-thermal light is split into two correlated beams by a beam splitter. One beam goes to a charge-coupled detector camera, labeled as CCD2. The other beam goes to an object and then is collected in another charge-coupled detector camera, labeled as CCD1, which serves as a bucket detector. When the strong medium, a pane of ground glass disk, is placed between the object and CCD1, the bucket detector, the quality of ghost imaging is barely affected and a good image could still be obtained. The quality of the ghost imaging can also be maintained, even when the ground glass is rotating, which is the strongest scattering medium so far. However, when the strongly scattering medium is present in the optical path from the light source to CCD2 or the object, the lensless ghost imaging system hardly retrieves the image of the object. A theoretical analysis in terms of the second-order correlation function is also provided. (paper)

  4. Laser light scattering basic principles and practice

    CERN Document Server

    Chu, Benjamin

    1994-01-01

    Geared toward upper-level undergraduate and graduate students, this text introduces the interdisciplinary area of laser light scattering, focusing chiefly on theoretical concepts of quasielastic laser scattering.

  5. Light scattering near phase transitions

    CERN Document Server

    Cummins, HZ

    1983-01-01

    Since the development of the laser in the early 1960's, light scattering has played an increasingly crucial role in the investigation of many types of phase transitions and the published work in this field is now widely dispersed in a large number of books and journals.A comprehensive overview of contemporary theoretical and experimental research in this field is presented here. The reviews are written by authors who have actively contributed to the developments that have taken place in both Eastern and Western countries.

  6. Manipulating light with strongly modulated photonic crystals

    International Nuclear Information System (INIS)

    Notomi, Masaya

    2010-01-01

    Recently, strongly modulated photonic crystals, fabricated by the state-of-the-art semiconductor nanofabrication process, have realized various novel optical properties. This paper describes the way in which they differ from other optical media, and clarifies what they can do. In particular, three important issues are considered: light confinement, frequency dispersion and spatial dispersion. First, I describe the latest status and impact of ultra-strong light confinement in a wavelength-cubic volume achieved in photonic crystals. Second, the extreme reduction in the speed of light is reported, which was achieved as a result of frequency dispersion management. Third, strange negative refraction in photonic crystals is introduced, which results from their unique spatial dispersion, and it is clarified how this leads to perfect imaging. The last two sections are devoted to applications of these novel properties. First, I report the fact that strong light confinement and huge light-matter interaction enhancement make strongly modulated photonic crystals promising for on-chip all-optical processing, and present several examples including all-optical switches/memories and optical logics. As a second application, it is shown that the strong light confinement and slow light in strongly modulated photonic crystals enable the adiabatic tuning of light, which leads to various novel ways of controlling light, such as adiabatic frequency conversion, efficient optomechanics systems, photon memories and photons pinning.

  7. Time-resolved pulse propagation in a strongly scattering material

    NARCIS (Netherlands)

    Johnson, Patrick M.; Imhof, Arnout; Bret, B.P.J.; Gomez Rivas, J.; Gomez Rivas, Jaime; Lagendijk, Aart

    2003-01-01

    Light transport in macroporous gallium phosphide, perhaps the strongest nonabsorbing scatterer of visible light, is studied using phase-sensitive femtosecond pulse interferometry. Phase statistics are measured at optical wavelengths in both reflection and transmission and compared with theory. The

  8. Dynamic light scattering. Observation of polymer dynamics

    International Nuclear Information System (INIS)

    Hiroi, Takashi

    2015-01-01

    Dynamic light scattering is a technique to measure properties of polymer solutions such as size distribution. Principle of dynamic light scattering is briefly explained. Sometime dynamic light scattering is regarded as the observation of Doppler shift of scattered light. First, the difficulty for the direct observation of this Doppler shift is mentioned. Then the measurement by using a time correlation function is introduced. Measuring techniques for dynamic light scattering are also introduced. In addition to homodyne and heterodyne detection techniques, the technique called partial heterodyne method is also introduced. This technique is useful for the analysis of nonergodic medium such as polymer gels. Then the application of this technique to condensed suspension is briefly reviewed. As one of the examples, a dynamic light scattering microscope is introduced. By using this apparatus, we can measure the concentration dependence of the size distribution of polymer solutions. (author)

  9. Scattering theory of stochastic electromagnetic light waves.

    Science.gov (United States)

    Wang, Tao; Zhao, Daomu

    2010-07-15

    We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.

  10. Anisotropic light scattering of individual sickle red blood cells.

    Science.gov (United States)

    Kim, Youngchan; Higgins, John M; Dasari, Ramachandra R; Suresh, Subra; Park, YongKeun

    2012-04-01

    We present the anisotropic light scattering of individual red blood cells (RBCs) from a patient with sickle cell disease (SCD). To measure light scattering spectra along two independent axes of elongated-shaped sickle RBCs with arbitrary orientation, we introduce the anisotropic Fourier transform light scattering (aFTLS) technique and measured both the static and dynamic anisotropic light scattering. We observed strong anisotropy in light scattering patterns of elongated-shaped sickle RBCs along its major axes using static aFTLS. Dynamic aFTLS analysis reveals the significantly altered biophysical properties in individual sickle RBCs. These results provide evidence that effective viscosity and elasticity of sickle RBCs are significantly different from those of the healthy RBCs.

  11. Light scattering by nonspherical particles theory, measurements, and applications

    CERN Document Server

    Mishchenko, Michael I; Travis, Larry D

    1999-01-01

    There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid part

  12. Light scattering from crystals, glasses and liquids

    International Nuclear Information System (INIS)

    Subbaswamy, K.R.

    1984-09-01

    The theory of inelastic light scattering from a model system in the crystalline, disordered and liquid phases is analyzed. The roles of disorder induced first order scattering and second order scattering are clarified in the context of the classical liquid. The correlation functions appropriate for the various contributions are identified and useful ways of processing experimental data are pointed out. (author)

  13. Electromagnetic theory of plasma light scattering

    International Nuclear Information System (INIS)

    Bobin, J.L.

    1969-01-01

    The theory of light scattering by a plasma is formulated using Klimontovich's microscopic distribution functions and Landau method to solve linear kinetic equations. First, Salpeter's derivation and results are given for the spectrum of light scattered by a collisionless plasma. Then, the influence of collision is investigated through B.G.K. kinetic equation. (author) [fr

  14. Scattering of light and other electromagnetic radiation

    CERN Document Server

    Kerker, Milton

    1969-01-01

    The Scattering of Light and Other Electromagnetic Radiation discusses the theory of electromagnetic scattering and describes some practical applications. The book reviews electromagnetic waves, optics, the interrelationships of main physical quantities and the physical concepts of optics, including Maxwell's equations, polarization, geometrical optics, interference, and diffraction. The text explains the Rayleigh2 theory of scattering by small dielectric spheres, the Bessel functions, and the Legendre functions. The author also explains how the scattering functions for a homogenous sphere chan

  15. Strong WW scattering at photon linear colliders

    International Nuclear Information System (INIS)

    Berger, M.S.

    1994-06-01

    We investigate the possibility of observing strong interactions of longitudinally polarized weak vector bosons in the process γγ → ZZ at a photon linear collider. We make use of polarization of the photon beams and cuts on the decay products of the Z bosons to enhance the signal relative to the background of transversely polarized ZZ pairs. We find that the background overwhelms the signal unless there are strong resonant effects, as for instance from a technicolor analogue of the hadronic f 2 (1270) meson

  16. Radiofrequency encoded angular-resolved light scattering

    DEFF Research Database (Denmark)

    Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.

    2015-01-01

    The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...

  17. Controlled light scattering in transparent polycrystalline ferroelectrics

    International Nuclear Information System (INIS)

    Vasilevskaya, A.S.; Grodnenskij, I.M.; Sonin, A.S.

    1977-01-01

    Scattering indicatrices, birefringence, attenuation factor and time characteristics of the light scattering effect have been investigated in a polycrystal solid solution of Pbsub(0.92)Lasub(0.08)(Zrsub(0.65)Tisub(0.35))Osub(3) with the crystallite dimension 4-5 μm. The measurements have been taken for longitudinal and transverse scattering effects in the visible range of spectrum in the temperature range 20-200 deg C. The time characteristics of the scattering effect have been found to be significantly different when a sample transfers from a thermally depolarized state to an electrically polarized one and from an electrically polarized state to an electrically depolarized one. The shape of the scattering indicatrices depends on the polarization state of a sample. The distribution of the scattered light intensity in the part of the indicatrix characterizing the fundamental scattering is satisfactorily described by the Rayleigh-Hans theory. The diameter of scattering centres responsible for the scattering has been determined to be 6-7 μm. The experimental data show that there are different types of scattering centres, in the material. The fundamental scattering is caused by centres arising irreversibly during initial polarization of the sample. The second type of centres is responsible for the controlled part of scattering during repolarization

  18. Light scattering from polymer solutions and nanoparticle dispersions

    CERN Document Server

    Schärtl, Wolfgang; Janca, Josef

    2007-01-01

    Light scattering is a very powerful method to characterize the structure of polymers and nanoparticles in solution. Recent technical developments have strongly enhanced the possible applications of this technique, overcoming previous limitations like sample turbidity or insufficient experimental time scales. However, despite their importance, these new developments have not yet been presented in a comprehensive form. In addition, and maybe even more important to the broad audience, there lacks a simple-to-read textbook for students and non-experts interested in the basic principles and fundamental techniques of light scattering. As part of the Springer Laboratory series, this book tries not only to provide such a simple-to-read and illustrative textbook about the seemingly very complicated topic of light scattering from polymers and nanoparticles in dilute solution, but also intends to cover some of the newest technical developments in experimental light scattering.

  19. Light-scattering theory of diffraction.

    Science.gov (United States)

    Guo, Wei

    2010-03-01

    Since diffraction is a scattering process in principle, light propagation through one aperture in a screen is discussed in the light-scattering theory. Through specific calculation, the expression of the electric field observed at an observation point is obtained and is used not only to explain why Kirchhoff's diffraction theory is a good approximation when the screen is both opaque and sufficiently thin but also to demonstrate that the mathematical and physical problems faced by Kirchhoff's theory are avoided in the light-scattering theory.

  20. Rayleigh scattering under light-atom coherent interaction

    OpenAIRE

    Takamizawa, Akifumi; Shimoda, Koichi

    2012-01-01

    Semi-classical calculation of an oscillating dipole induced in a two-level atom indicates that spherical radiation from the dipole under coherent interaction, i.e., Rayleigh scattering, has a power level comparable to that of spontaneous emission resulting from an incoherent process. Whereas spontaneous emission is nearly isotropic and has random polarization generally, Rayleigh scattering is strongly anisotropic and polarized in association with incident light. In the case where Rabi frequen...

  1. Ultrasonic trap for light scattering measurement

    Science.gov (United States)

    Barton, Petr; Pavlu, Jiri

    2017-04-01

    Light scattering is complex phenomenon occurring widely in space environments, including the dense dusty clouds, nebulas or even the upper atmosphere of the Earth. However, when the size of the dust (or of other scattering center) is close to the incident light wavelength, theoretical determination is difficult. In such case, Mie theory is to be used but there is a lack of the material constants for most space-related materials. For experimental measurement of light scattering, we designed unique apparatus, based on ultrasonic trap. Using acoustic levitation we are able to capture the dust grain in midair, irradiate it with laser, and observe scattering directly with goniometer-mounted photodiode. Advantage of this approach is ability to measure directly in the air (thus, no need for the carrier medium) and possibility to study non-spherical particles. Since the trap development is nearly finished and initial experiments are carried out, the paper presents first tests on water droplets.

  2. Entanglement degradation in depolarizing light scattering

    International Nuclear Information System (INIS)

    Aiello, A.; Woerdman, J.P.

    2005-01-01

    Full text: In the classical regime, when a beam of light is scattered by a medium, it may emerge partially or completely depolarized depending on the optical properties of the medium. Correspondingly, in the quantum regime, when an entangled two-photon pair is scattered, the classical depolarization may result in an entanglement degradation. Here, relations between photon scattering, entanglement and multi-mode detection are investigated. We establish a general framework in which one- and two-photon elastic scattering processes can be discussed, and we focus on the study of the intrinsic entanglement degradation caused by a multi-mode detection. We show that any multi-mode scattered state cannot maximally violate the Bell-CHSH inequality because of the momentum spread. The results presented here have general validity and can be applied to both deterministic and random scattering processes. (author)

  3. Stray light reduction for Thomson scattering

    NARCIS (Netherlands)

    Bakker, L.P.; Kroesen, G.M.W.; Doebele, H.F.; Muraoka, K.

    1999-01-01

    In order to perform Thomson scattering in a gas discharge tube, the reduction of stray light is very important because of the very small Thomson cross-section. By introducing a sodium absorption cell as a notch filter, we can reduce the measured stray light considerably. Then we have to use a dye

  4. The Whiteness of Things and Light Scattering

    Science.gov (United States)

    Gratton, L. M.; Lopez-Arias, T.; Calza, G.; Oss, S.

    2009-01-01

    We discuss some simple experiments dealing with intriguing properties of light and its interaction with matter. In particular, we show how to emphasize that light reflection, refraction and scattering can provide a proper, physical description of human perception of the "colour" white. These experiments can be used in the classroom with an enquiry…

  5. Collinear light scattering using electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Harris, S.E.; Sokolov, A.V.; Walker, D.R.; Yavuz, D.D.; Yin, G.Y.

    2001-01-01

    The paper describes two types of nonlinear optical processes which are based on electromagnetically induced transparency. These are: (1) Collinear generation of FM-like Raman sidebands and (2) a type of pondermotive light scattering which is inherent to the interaction of slow light with cold atoms. Connections to other areas of EIT-based nonlinear optics are also described

  6. Light scattering from superfluid fog

    International Nuclear Information System (INIS)

    Kim, Heetae; Lemieux, P.-A.Pierre-Anthony; Durian, Douglas; Williams, G.A.Gary A.

    2003-01-01

    The dynamics of the droplets of superfluid 4 He fog created by an ultrasonic transducer are investigated using a laser scattering technique. Diffusing-wave spectroscopy probes the motion of the droplets, which is found to be ballistic for times shorter than a characteristic viscous time τ v =10 -5 s. The average relative velocity between the droplets is small compared to the velocity that the droplets are ejected from the surface into the fog, but increases proportionally to it

  7. 1D energy transport in a strongly scattering laboratory model

    International Nuclear Information System (INIS)

    Wijk, Kasper van; Scales, John A.; Haney, Matthew

    2004-01-01

    Radiative transfer (RT) theory is often invoked to describe energy propagation in strongly scattering media. Fitting RT to measured wave field intensities is rather different at late times, when the transport is diffusive, than at intermediate times (around one extinction mean free time), when ballistic and diffusive behavior coexist. While there are many examples of late-time RT fits, we describe ultrasonic multiple scattering measurements with RT over the entire range of times--from ballistic to diffusive. In addition to allowing us to retrieve the scattering and absorption mean free paths independently, our results also support theoretical predictions in 1D that suggest an intermediate regime of diffusive (nonlocalized) behavior

  8. Scattering of strongly absorbed particles near the Coulomb barrier

    International Nuclear Information System (INIS)

    Fernandez, B.

    1979-01-01

    The elastic scattering of strongly absorbed particles near the Coulomb barrier is sensitive to one size parameter, which is the distance at which the real nuclear potential has some fixed value, 0.2 MeV for α-particle, 1 MeV for 16 O. This size parameter can be related in a simple way to the radial distance of the target nucleus where the density takes some given value, 2x10 -3 nucleon /fm 3 for α-particle scattering and 5x10 -3 nucleon/fm 3 for 16 O scattering

  9. Light-by-light scattering and muon's anomalous magnetic moment

    International Nuclear Information System (INIS)

    Pauk, Vladyslav

    2014-01-01

    A study of hadron production by photons opens unique ways to address a number of fundamental problems in strong interaction physics as well as fundamental questions in Quantum Field Theory. In particular, an understanding of two-photon processes is of crucial importance for constraining the hadronic uncertainties in precision measurements and in searches for new physics. The process of γ * γ * fusion (by quasi-real photons γ or virtual photons γ * ) into leptons and hadrons has been observed and studied in detail at nearly all high-energy colliders. From the theoretical point of view two-photon processes are very complicated. One of approaches which may be efficiently used to study non-perturbative features of two-photon production is based on a dispersion theory. Using general properties of relativistic quantum field theory we relate in this work the forward light-by-light scattering to energy weighted integrals of the γ * γ fusion cross sections. The first type of new relations derived in this work have the form of exact super-convergence sum rules. The second type involves the effective constants of the low-energy photon-photon interaction and allow to define them in terms of two-photon production cross sections. We subsequently test and verify these sum rules exactly at tree and one-loop level in scalar and spinor QED. Furthermore, we test the criterium of the tree-level unitarity imposed by the sum rules on the example of the massive spin-1 QED. Next, we apply the sum rules for the forward light-by-light scattering process within the context of the φ 4 quantum field theory. Within this theory, we present a stringent causality criterion and apply it to a particular non-perturbative resummation of graphs. Applied to the γ * γ production of mesons, the superconvergence sum rules lead to intricate relations between theγγ decay widths and the γ * γ transition form factors for (pseudo-) scalar, axial-vector and tensor mesons. We discuss the

  10. Light scattering from superfluid fog

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heetae; Lemieux, P.-A.Pierre-Anthony; Durian, Douglas; Williams, G.A.Gary A

    2003-05-01

    The dynamics of the droplets of superfluid {sup 4}He fog created by an ultrasonic transducer are investigated using a laser scattering technique. Diffusing-wave spectroscopy probes the motion of the droplets, which is found to be ballistic for times shorter than a characteristic viscous time {tau}{sub v}=10{sup -5} s. The average relative velocity between the droplets is small compared to the velocity that the droplets are ejected from the surface into the fog, but increases proportionally to it.

  11. Ocular forward light scattering and corneal backward light scattering in patients with dry eye.

    Science.gov (United States)

    Koh, Shizuka; Maeda, Naoyuki; Ikeda, Chikako; Asonuma, Sanae; Mitamura, Hayato; Oie, Yoshinori; Soma, Takeshi; Tsujikawa, Motokazu; Kawasaki, Satoshi; Nishida, Kohji

    2014-09-18

    To evaluate ocular forward light scattering and corneal backward light scattering in patients with dry eye. Thirty-five eyes in 35 patients with dry eye and 20 eyes of 20 healthy control subjects were enrolled. The 35 dry eyes were classified into two groups according to whether superficial punctate keratopathy in the central 6-mm corneal zone (cSPK) was present or not. Ocular forward light scattering was quantified with a straylight meter. Corneal backward light scattering from the anterior, middle, and posterior corneal parts was assessed with a corneal densitometry program using the Scheimpflug imaging system. Both dry eye groups had significantly higher intraocular forward light scattering than the control group (both Pdry eye group with cSPK had significantly higher values in anterior and total corneal backward light scattering than the other two groups. Moderate positive correlations were observed between the cSPK score and corneal backward light scattering from the anterior cornea (R=0.60, Pdry eyes than in normal eyes. Increased corneal backward light scattering in dry eye at least partially results from cSPK overlying the optical zone. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  12. Light Scattering Reviews, Vol 6 Light Scattering and Remote Sensing of Atmosphere and Surface

    CERN Document Server

    Kokhanovsky, Alexander A

    2012-01-01

    This is the next volume in series of Light Scattering Reviews. Volumes 1-5 have already been printed by Springer. The volume is composed of several papers ( usually, 10) of leading researchers in the respective field. The main focus of this book is light scattering, radiative transfer and optics of snow.

  13. Pion scattering from very light nuclei

    International Nuclear Information System (INIS)

    Berman, B.

    1993-01-01

    Selected recent elastic and inelastic pion-scattering experiments on 3 H, 3 He, and 4 He will be reviewed. Particular attention will be given to multinucleon or cluster aspects of the data, and to possible comparisons with electron-scattering results. From elastic scattering from 3 H and 3 He at forward angles, one can extract the matter distribution of the paired neutrons in 3 H as well as that of the paired protons in 3 He. At backward angles, scattering from correlated nucleon pairs and/or two-step processes play an important role. For inelastic scattering, the momentum-transfer dependence of the cross section varies strongly with incident energy. Elastic scattering from a polarized 3 He target shows a strong asymmetry near 90 degrees. Elastic scattering from 4 He yields results which cannot be fitted with a simple optical model. An for inelastic scattering from 4 He, analysis of the data requires an important contribution from direct triton knockout

  14. Raman scattering of light off a superconductor

    International Nuclear Information System (INIS)

    Cuden, C.B.

    1976-01-01

    Raman scattering off a superconducting surface is formulated using Kubo's nonlinear response theory in a form suitable for systematic diagrammatic expansion. The effects of the sample surface are correctly taken into account. It is shown that in the presence of vacuum polarization processes, the contribution to the scattering efficiency from the density-density correlation function considered in the literature, is reduced. The relevant four-vertex parts, describing inelastic scattering of light by electronic excitations via intermediate interband states in a superconductor, are calculated. Frequency and temperature dependence of the relative scattering efficiency for the large momentum transfer (Pippard limit), and constant transition matrix elements, are obtained. The estimated magnitude of the total scattering efficiency is of the order of 10 -11

  15. Laser light scattering instrument advanced technology development

    Science.gov (United States)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  16. Inelastic electron scattering influence on the strong coupling oxide superconductors

    International Nuclear Information System (INIS)

    Gabovich, A.M.; Voitenko, A.I.

    1995-01-01

    The superconducting order parameters Δ and energy gap Δ g are calculated taking into account the pair-breaking inelastic quasiparticle scattering by thermal Bose-excitations, e.g., phonons. The treatment is self-consistent because the scattering amplitude depends on Δ. The superconducting transition for any strength of the inelastic scattering is the phase transition of the first kind and the dependences Δ (T) and Δ g (T) tend to rectangular curve that agrees well with the experiment for high-Tc oxides. On the basis of the developed theory the nuclear spin-lattice relaxation rate R s in the superconducting state is calculated. The Hebel-Slichter peak in R s (T) is shown to disappear for strong enough inelastic scattering

  17. Laser light scattering in Brownian medium

    International Nuclear Information System (INIS)

    Suwono; Santoso, Budi; Baiquni, A.

    1983-01-01

    The principle of laser light scattering in Brownian medium and photon correlation spectroscopy are described in detail. Their application to the study of the behaviour of a polystyrene latex solution are discussed. The auto-correlation function of light scattered by the polystyrene latex solution in various angle, various temperature and in various sample times, have been measured. Information on the translation diffusion coefficient and size on the particle can be obtained from the auto-correlation function. Good agreement between the available data and experiment is shown. (author)

  18. Strong paramagnon scattering in single atom Pd contacts

    DEFF Research Database (Denmark)

    Schendel, V.; Barreteau, Cyrille; Brandbyge, Mads

    2017-01-01

    Pd contacts shows a reduction with increasing bias, which gives rise to a peculiar Lambda-shaped spectrum. Supported by theoretical calculations, we correlate this finding with the lifetime of hot quasiparticles in Pd, which is strongly influenced by paramagnon scattering. In contrast to this, Co...

  19. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  20. An empirical correction for moderate multiple scattering in super-heterodyne light scattering.

    Science.gov (United States)

    Botin, Denis; Mapa, Ludmila Marotta; Schweinfurth, Holger; Sieber, Bastian; Wittenberg, Christopher; Palberg, Thomas

    2017-05-28

    Frequency domain super-heterodyne laser light scattering is utilized in a low angle integral measurement configuration to determine flow and diffusion in charged sphere suspensions showing moderate to strong multiple scattering. We introduce an empirical correction to subtract the multiple scattering background and isolate the singly scattered light. We demonstrate the excellent feasibility of this simple approach for turbid suspensions of transmittance T ≥ 0.4. We study the particle concentration dependence of the electro-kinetic mobility in low salt aqueous suspension over an extended concentration regime and observe a maximum at intermediate concentrations. We further use our scheme for measurements of the self-diffusion coefficients in the fluid samples in the absence or presence of shear, as well as in polycrystalline samples during crystallization and coarsening. We discuss the scope and limits of our approach as well as possible future applications.

  1. Light-like scattering in quantum gravity

    International Nuclear Information System (INIS)

    Bjerrum-Bohr, N.E.J.; Donoghue, John F.; Holstein, Barry R.; Planté, Ludovic; Vanhove, Pierre

    2016-01-01

    We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin-(1/2), spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.

  2. Light-like scattering in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bjerrum-Bohr, N.E.J. [Niels Bohr International Academy & Discovery Center, Niels Bohr Institute,University of Copenhagen, Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Donoghue, John F. [Department of Physics-LGRT, University of Massachusetts,Amherst, MA, 01003 (United States); Holstein, Barry R. [Department of Physics-LGRT, University of Massachusetts,Amherst, MA, 01003 (United States); Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA, 93016 (United States); Planté, Ludovic; Vanhove, Pierre [CEA, DSM, Institut de Physique Théorique, IPhT, CNRS MPPU, URA2306,Saclay, Gif-sur-Yvette, F-91191 (France)

    2016-11-21

    We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin-(1/2), spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.

  3. Light scattering in glass-ceramics

    International Nuclear Information System (INIS)

    Hendy, S.C.

    2002-01-01

    Full text: Glass-ceramic materials with microstructures comprised of dispersed nanocrystallites in a residual glass matrix show promise for many new technological applications. In particular, transparent glass-ceramics offer low thermal expansion and stability, in addition to the prospect of novel non-linear optical properties that can arise from the nanocrystallites. Good transparency requires low optical scattering and low atomic absorption. Light scattering in the glass-ceramic arises primarily from the glass-crystallite interface. The attenuation due to scattering (turbidity) will depend upon the difference in refractive index of the two phases and the size and distribution of nanocrystallites in the glass. Here we consider models of glass-ceramic structure formation and look at scattering in these model structures to increase our understanding of the transparency of glass-ceramics

  4. Protoplanetary disks and exoplanets in scattered light

    NARCIS (Netherlands)

    Stolker, T.

    2017-01-01

    High-contrast imaging facilitates the direct detection of protoplanetary disks in scattered light and self-luminous exoplanets on long-period orbits. The combined power of extreme adaptive optics and differential imaging techniques delivers high spatial resolution images of disk morphologies down to

  5. Collective hypersonic excitations in strongly multiple scattering colloids.

    Science.gov (United States)

    Still, T; Gantzounis, G; Kiefer, D; Hellmann, G; Sainidou, R; Fytas, G; Stefanou, N

    2011-04-29

    Unprecedented low-dispersion high-frequency acoustic excitations are observed in dense suspensions of elastically hard colloids. The experimental phononic band structure for SiO(2) particles with different sizes and volume fractions is well represented by rigorous full-elastodynamic multiple-scattering calculations. The slow phonons, which do not relate to particle resonances, are localized in the surrounding liquid medium and stem from coherent multiple scattering that becomes strong in the close-packing regime. Such rich phonon-matter interactions in nanostructures, being still unexplored, can open new opportunities in phononics.

  6. Light scattering from a binary-liquid entanglement gel

    Science.gov (United States)

    Xia, K.-Q.; Maher, J. V.

    1987-09-01

    Light-scattering experiments have been carried out on an entanglement gel with a binary-liquid mixture as solvent. The onset temperature for critical opalescence has a composition dependence which is similar to the coexistence curve of the free-liquid mixture. This system resembles previously reported work on the cross-linked gel polyacrylamide in two ways: (1) As temperature is lowered toward the critical temperature of the free-liquid mixture, the binary-fluid gel exhibits a strong and increasing light scattering over a broad temperature region of several kelvins, and (2) no appreciable temporal fluctuations are observed throughout this temperature region. Two added features are observed in the present, entanglement-gel measurements: (a) Gel samples with solvent composition both near and off the critical composition of the free-liquid mixture exhibit similar light-scattering behavior, and (b) a Lorentzian-squared fit to the light-scattering angular distributions yields a characteristic wave number which does not change with temperature and an amplitude which shows a very strong dependence on the temperature.

  7. Quasi-Elastic Light Scattering in Ophthalmology

    Science.gov (United States)

    Ansari, Rafat R.

    The eye is not just a "window to the soul"; it can also be a "window to the human body." The eye is built like a camera. Light which travels from the cornea to the retina traverses through tissues that are representative of nearly every tissue type and fluid type in the human body. Therefore, it is possible to diagnose ocular and systemic diseases through the eye. Quasi-elastic light scattering (QELS) also known as dynamic light scattering (DLS) is a laboratory technique routinely used in the characterization of macromolecular dispersions. QELS instrumentation has now become more compact, sensitive, flexible, and easy to use. These developments have made QELS/DLS an important tool in ophthalmic research where disease can be detected early and noninvasively before the clinical symptoms appear.

  8. Light scattering by surface phonons in crystals

    International Nuclear Information System (INIS)

    Albuquerque, E.L. de

    1981-01-01

    A theory of inelastic light scattering by surface acoustic phonons in homogeneous crystals is presented. The Green functions are determined by the use of a classical linear response method and used to evaluate the Brillouin cross section. The acoustic modes are found from solutions to the acoustical-wave equation and boundary conditions appropriated. Two light-scattering mechanisms, namely the surface corrugation and bulk elasto-optic effect are analyzed by deriving optical fields which satisfy both the acousto-optically driven wave equation and the electromagnetic boundary conditions. No restrictions are imposed concerning the angle of incidence of the light. Some representative computed Brillouin lineshapes are also presented and their features discussed. (Author) [pt

  9. Light scattering by surface phonons in crystals

    International Nuclear Information System (INIS)

    Albuquerque, D.L.

    1980-01-01

    Theory of inelastic light scattering by surface acoustic phonons homogeneous crystals is presented. The Green functions are determined by the use of a classical linear response method and used to evaluate the Brillouin cross section. The acoustic modes are found from solutions to the acoustical-wave equation and boundary conditions appropriated. Two light-scattering mechanisms, amely the surface corrugation and bulk elasto-optic effect are analyzed by deriving optical fields which satisfy both the acousto-optically driven wave equation and the electromagnetic boundary conditions. No restrictions are imposed concerning the angle of incidence of the light. Some representative computed Brillouin ineshapes are also presented and their features discussed. (author) [pt

  10. A Theory of Exoplanet Transits with Light Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Tyler D., E-mail: tydrobin@ucsc.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2017-02-20

    Exoplanet transit spectroscopy enables the characterization of distant worlds, and will yield key results for NASA's James Webb Space Telescope . However, transit spectra models are often simplified, omitting potentially important processes like refraction and multiple scattering. While the former process has seen recent development, the effects of light multiple scattering on exoplanet transit spectra have received little attention. Here, we develop a detailed theory of exoplanet transit spectroscopy that extends to the full refracting and multiple scattering case. We explore the importance of scattering for planet-wide cloud layers, where the relevant parameters are the slant scattering optical depth, the scattering asymmetry parameter, and the angular size of the host star. The latter determines the size of the “target” for a photon that is back-mapped from an observer. We provide results that straightforwardly indicate the potential importance of multiple scattering for transit spectra. When the orbital distance is smaller than 10–20 times the stellar radius, multiple scattering effects for aerosols with asymmetry parameters larger than 0.8–0.9 can become significant. We provide examples of the impacts of cloud/haze multiple scattering on transit spectra of a hot Jupiter-like exoplanet. For cases with a forward and conservatively scattering cloud/haze, differences due to multiple scattering effects can exceed 200 ppm, but shrink to zero at wavelength ranges corresponding to strong gas absorption or when the slant optical depth of the cloud exceeds several tens. We conclude with a discussion of types of aerosols for which multiple scattering in transit spectra may be important.

  11. The No-Higgs Signal: Strong WW Scattering at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Michael S. Chanowitz

    2004-12-07

    Strong WW scattering at the LHC is discussed as a manifestation of electroweak symmetry breaking in the absence of a light Higgs bosom. The general framework of the Higgs mechanism--with or without a Higgs boson--is reviewed, and unitarity is shown to fix the scale of strong WW scattering. Strong WW scattering is also shown to be a possible outcome of five-dimensional models, which do not employ the usual Higgs mechanism at the TeV scale. Precision electroweak constraints are briefly discussed. Illustrative LHC signals are reviewed for models with QCD-like dynamics, stressing the complementarity of the W{sup {+-}}Z and like-charge W{sup +}W{sup +} + W{sup -}W{sup -} channels.

  12. Light scattering measurement of sodium polyacrylate products

    Science.gov (United States)

    Lama, Nisha; Norwood, David; Boone, Steven; Massie-Boyer, Valerie

    2015-03-01

    In the presentation, we will describe the use of a multi-detector HPLC incorporating the DAWN EOS multi-angle laser light scattering (MALLS) detector to measure the properties such as molecular weight, RMS radius, contour and persistence length and polydispersity of sodium polyacrylate products. The samples of sodium polyacrylate are used in various industries as thickening agents, coating dispersants, artificial snow, laundry detergent and disposable diapers. Data and results obtained from the experiment will be presented.

  13. LIGHT SCATTERING FROM EXOPLANET OCEANS AND ATMOSPHERES

    International Nuclear Information System (INIS)

    Zugger, M. E.; Kane, T. J.; Kasting, J. F.; Williams, D. M.; Philbrick, C. R.

    2010-01-01

    Orbital variation in reflected starlight from exoplanets could eventually be used to detect surface oceans. Exoplanets with rough surfaces, or dominated by atmospheric Rayleigh scattering, should reach peak brightness in full phase, orbital longitude (OL) = 180 0 , whereas ocean planets with transparent atmospheres should reach peak brightness in crescent phase near OL = 30 0 . Application of Fresnel theory to a planet with no atmosphere covered by a calm ocean predicts a peak polarization fraction of 1 at OL = 74 0 ; however, our model shows that clouds, wind-driven waves, aerosols, absorption, and Rayleigh scattering in the atmosphere and within the water column dilute the polarization fraction and shift the peak to other OLs. Observing at longer wavelengths reduces the obfuscation of the water polarization signature by Rayleigh scattering but does not mitigate the other effects. Planets with thick Rayleigh scattering atmospheres reach peak polarization near OL = 90 0 , but clouds and Lambertian surface scattering dilute and shift this peak to smaller OL. A shifted Rayleigh peak might be mistaken for a water signature unless data from multiple wavelength bands are available. Our calculations suggest that polarization alone may not positively identify the presence of an ocean under an Earth-like atmosphere; however, polarization adds another dimension which can be used, in combination with unpolarized orbital light curves and contrast ratios, to detect extrasolar oceans, atmospheric water aerosols, and water clouds. Additionally, the presence and direction of the polarization vector could be used to determine planet association with the star, and constrain orbit inclination.

  14. Dynamic light scattering optical coherence tomography.

    Science.gov (United States)

    Lee, Jonghwan; Wu, Weicheng; Jiang, James Y; Zhu, Bo; Boas, David A

    2012-09-24

    We introduce an integration of dynamic light scattering (DLS) and optical coherence tomography (OCT) for high-resolution 3D imaging of heterogeneous diffusion and flow. DLS analyzes fluctuations in light scattered by particles to measure diffusion or flow of the particles, and OCT uses coherence gating to collect light only scattered from a small volume for high-resolution structural imaging. Therefore, the integration of DLS and OCT enables high-resolution 3D imaging of diffusion and flow. We derived a theory under the assumption that static and moving particles are mixed within the OCT resolution volume and the moving particles can exhibit either diffusive or translational motion. Based on this theory, we developed a fitting algorithm to estimate dynamic parameters including the axial and transverse velocities and the diffusion coefficient. We validated DLS-OCT measurements of diffusion and flow through numerical simulations and phantom experiments. As an example application, we performed DLS-OCT imaging of the living animal brain, resulting in 3D maps of the absolute and axial velocities, the diffusion coefficient, and the coefficient of determination.

  15. Strong tW Scattering at the LHC

    CERN Document Server

    Dror, Jeff Asaf; Salvioni, Ennio; Serra, Javi

    2016-01-01

    Deviations of the top electroweak couplings from their Standard Model values imply that certain amplitudes for the scattering of third generation fermions and longitudinally polarized vector bosons or Higgses diverge quadratically with momenta. This high-energy growth is a genuine signal of models where the top quark is strongly coupled to the sector responsible for electroweak symmetry breaking. We propose to profit from the high energies accessible at the LHC to enhance the sensitivity to non-standard top-$Z$ couplings, which are currently very weakly constrained. To demonstrate the effectiveness of the approach, we perform a detailed analysis of $tW \\to tW$ scattering, which can be probed at the LHC via $pp\\to t\\bar{t}Wj$. By recasting a CMS analysis at 8 TeV, we derive the strongest direct bounds to date on the $Ztt$ couplings. We also design a dedicated search at 13 TeV that exploits the distinctive features of the $t\\bar{t}Wj$ signal. Finally, we present other scattering processes in the same class that...

  16. Seismic Evidence for Possible Slab Melting from Strong Scattering Waves

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2011-01-01

    Full Text Available Slab melting in young and hot subduction zones has been studied using geochemical observations and thermal modelling, but there are few data from seismic studies to confirm slab melting. Also the detailed geometry in the deep part of the melting slab is often ambiguous in that the intraslab earthquakes within the Wadati-Benioff zone are only limited to shallower depths. To improve our understanding of both the seismic features and geometry found in a young and hot subducted slab, I analyzed anomalous moonquake-like seismograms that were generated by an intermediate-depth earthquake recorded in central Japan. For this study, possible reflected (or scattered sources were examined using detailed analyses of particle motions and a grid search for travel-time differences between the direct and later P-waves. The results show that using strong seismic scattering, slab melting is likely occurring in the deeper, flexing part of the subducted Philippine Sea plate. Because the subducted Philippine Sea plate in central Japan is young and therefore hot, partial melting might have taken place to produce abundant melting spots in the subducted slab. Melting spots, identified as ¡§bright spots,¡¨ could efficiently reflect or scatter seismic energy and generate many later phases with large amplitudes.

  17. ATLAS Event Display: Light-by-Light Scattering

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    An event display of light-by-light scattering in ultra-peripheral lead+lead collisions at 5.02 TeV with the ATLAS detector at the LHC. The event 461251458 from run 287931 recorded on 13 December 2015 at 09:51:07 is shown. Two back-to-back photons with an invariant mass of 24 GeV with no additional activity in the detector are presented. All calorimeter cells with E>500 MeV are shown.

  18. Optical switching based on the manipulation of microparticles in a colloidal liquid using strong scattering force

    International Nuclear Information System (INIS)

    Liu Jin; Liu Zheng-Qi; Feng Tian-Hua; Dai Qiao-Feng; Wu Li-Jun; Lan Sheng

    2010-01-01

    This paper demonstrates the realization of an optical switch by optically manipulating a large number of polystyrene spheres contained in a capillary. The strong scattering force exerted on polystyrene spheres with a large diameter of 4.3 μm is employed to realize the switching operation. A transparent window is opened for the signal light when the polystyrene spheres originally located at the beam centre are driven out of the beam region by the strong scattering force induced by the control light. The switching dynamics under different incident powers is investigated and compared with that observed in the optical switch based on the formation of optical matter. It is found that a large extinction ratio of ∼ 30 dB and fast switching-on and switching-off times can be achieved in this type of switch. (classical areas of phenomenology)

  19. Light Focusing through Scattering Media by Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Huang Hui-Ling; Chen Zi-Yang; Sun Cun-Zhi; Liu Ji-Lin; Pu Ji-Xiong

    2015-01-01

    We demonstrate light focusing through scattering media by introducing particle swarm optimization for modulating the phase wavefront. Light refocusing is simulated numerically based on the angular spectrum method and the circular Gaussian distribution model of the scattering media. Experimentally, a spatial light modulator is used to control the phase of incident light, so as to make the scattered light converge to a focus. The influence of divided segments of input light and the effect of the number of iterations on light intensity enhancement are investigated. Simulation results are found to be in good agreement with the theoretical analysis for light refocusing. (paper)

  20. Magneto-optical light scattering from ferromagnetic surfaces

    International Nuclear Information System (INIS)

    Gonzalez, M.U.; Armelles, G.; Martinez Boubeta, C.; Cebollada, A.

    2003-01-01

    We have studied the optical and magneto-optical components of the light scattered by the surface of several Fe films with different morphologies. We present a method, based on the ratio between the optical and magneto-optical components of the scattered intensity, to discern the physical origin, either structural or magnetic corrugation, of the light scattered by these ferromagnetic surfaces. Surface versus bulk magnetic information can be separated by magneto-optical light scattering measurements, the scattered light being more sensitive to magnetization differences between surface and bulk than the reflected one

  1. How to distinguish elastically scattered light from Stokes shifted light for solid-state lighting?

    NARCIS (Netherlands)

    Meretska, Maryna; Lagendijk, Aart; Thyrrestrup Nielsen, Henri; Mosk, Allard; IJzerman, W.L.; Vos, Willem L.

    2016-01-01

    We have studied the transport of light through phosphor diffuser plates that are used in commercial solid-state lighting modules (Fortimo). These polymer plates contain YAG:Ce+3phosphor particles that both elastically scatter and Stokes shift light in the visible wavelength range (400–700 nm). We

  2. Modeling of light scattering by icy bodies

    Science.gov (United States)

    Kolokolova, L.; Mackowski, D.; Pitman, K.; Verbiscer, A.; Buratti, B.; Momary, T.

    2014-07-01

    As a result of ground-based, space-based, and in-situ spacecraft mission observations, a great amount of photometric, polarimetric, and spectroscopic data of icy bodies (satellites of giant planets, Kuiper Belt objects, comet nuclei, and icy particles in cometary comae and rings) has been accumulated. These data have revealed fascinating light-scattering phenomena, such as the opposition surge resulting from coherent backscattering and shadow hiding and the negative polarization associated with them. Near-infrared (NIR) spectra of these bodies are especially informative as the depth, width, and shape of the absorption bands of ice are sensitive not only to the ice abundance but also to the size of icy grains. Numerous NIR spectra obtained by Cassini's Visual and Infrared Mapping Spectrometer (VIMS) have been used to map the microcharacteristics of the icy satellites [1] and rings of Saturn [2]. VIMS data have also permitted a study of the opposition surge for icy satellites of Saturn [3], showing that coherent backscattering affects not only brightness and polarization of icy bodies but also their spectra [4]. To study all of the light-scattering phenomena that affect the photopolarimetric and spectroscopic characteristics of icy bodies, including coherent backscattering, requires computer modeling that rigorously considers light scattering by a large number of densely packed small particles that form either layers (in the case of regolith) or big clusters (ring and comet particles) . Such opportunity has appeared recently with a development of a new version MSTM4 of the Multi-Sphere T-Matrix code [5]. Simulations of reflectance and absorbance spectra of a ''target'' (particle layer or cluster) require that the dimensions of the target be significantly larger than the wavelength, sphere radius, and layer thickness. For wavelength-sized spheres and packing fractions typical of regolith, targets can contain dozens of thousands of spheres that, with the original MSTM

  3. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Bennett N., E-mail: bennett.walker@fda.hhs.gov [Optical Therapeutics and Medical Nanophotonics Laboratory, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); James, Robert H.; Ilev, Ilko K. [Optical Therapeutics and Medical Nanophotonics Laboratory, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); Calogero, Don [Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States)

    2015-09-15

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearly 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.

  4. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    International Nuclear Information System (INIS)

    Walker, Bennett N.; James, Robert H.; Ilev, Ilko K.; Calogero, Don

    2015-01-01

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearly 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter

  5. Pulsed Neutron Scattering Studies of Strongly Fluctuating solids, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collin Broholm

    2006-06-22

    The conventional description of a solid is based on a static atomic structure with small amplitude so-called harmonic fluctuations about it. This is a final technical report for a project that has explored materials where fluctuations are sufficiently strong to severely challenge this approach and lead to unexpected and potentially useful materials properties. Fluctuations are enhanced when a large number of configurations share the same energy. We used pulsed spallation source neutron scattering to obtain detailed microscopic information about structure and fluctuations in such materials. The results enhance our understanding of strongly fluctuating solids and their potential for technical applications. Because new materials require new experimental techniques, the project has also developed new techniques for probing strongly fluctuating solids. Examples of material that were studied are ZrW2O8 with large amplitude molecular motion that leads to negative thermal expansion, NiGa2S4 where competing interactions lead to an anomalous short range ordered magnet, Pr1- xBixRu2O7 where a partially filled electron shell (Pr) in a weakly disordered environment produces anomalous metallic properties, and TbMnO3 where competing interactions lead to a magneto-electric phase. The experiments on TbMnO3 exemplify the relationship between research funded by this project and future applications. Magneto-electric materials may produce a magnetic field when an electric field is applied or vise versa. Our experiments have clarified the reason why electric and magnetic polarization is coupled in TbMnO3. While this knowledge does not render TbMnO3 useful for applications it will focus the search for a practical room temperature magneto-electric for applications.

  6. Submicron scale tissue multifractal anisotropy in polarized laser light scattering

    Science.gov (United States)

    Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, Prasanta K.; Meglinski, Igor; Ghosh, Nirmalya

    2018-03-01

    The spatial fluctuations of the refractive index within biological tissues exhibit multifractal anisotropy, leaving its signature as a spectral linear diattenuation of scattered polarized light. The multifractal anisotropy has been quantitatively assessed by the processing of relevant Mueller matrix elements in the Fourier domain, utilizing the Born approximation and subsequent multifractal analysis. The differential scaling exponent and width of the singularity spectrum appear to be highly sensitive to the structural multifractal anisotropy at the micron/sub-micron length scales. An immediate practical use of these multifractal anisotropy parameters was explored for non-invasive screening of cervical precancerous alterations ex vivo, with the indication of a strong potential for clinical diagnostic purposes.

  7. High-energy scattering in strongly coupled N=4 super Yang-Mills theory

    International Nuclear Information System (INIS)

    Sprenger, Martin

    2014-11-01

    This thesis concerns itself with the analytic structure of scattering amplitudes in strongly coupled N=4 super Yang-Mills theory (abbreviated N = 4 SYM) in the multi-Regge limit. Through the AdS/CFT-correspondence observables in strongly coupled N = 4 SYM are accessible via dual calculations in a weakly coupled string theory on an AdS 5 x S 5 -geometry, in which observables can be calculated using standard perturbation theory. In particular, the calculation of the leading order of the n-gluon amplitude in N = 4 SYM at strong coupling corresponds to the calculation of a minimal surface embedded into AdS 5 . This surface ends on the concatenation of the gluon momenta, which is a light-like curve. The calculation of the minimal surface area can be reduced to finding the solution of a set of non-linear, coupled integral equations, which have no analytic solution in arbitrary kinematics. In this thesis, we therefore specialise to the multi-Regge limit, the n-particle generalisation of the Regge limit. This limit is especially interesting as even in the description of scattering amplitudes in weakly coupled N = 4 SYM in this limit a certain set of Feynman diagrams has to be resummed. This description organises itself into orders of logarithms of the energy involved in the scattering process. In this expansion each order in logarithms includes terms from every order in the coupling constant and therefore contains information about the strong coupling sector of the theory, albeit in a very specific way. This raises the central question of this thesis, which is how much of the analytic structure of the scattering amplitudes in the multi-Regge limit is preserved as we go to the strong coupling regime. We show that the equations governing the area of the minimal surface simplify drastically in the multi-Regge limit, which allows us to obtain analytic results for the scattering amplitudes. We develop an algorithm for the calculation of scattering amplitudes in the multi

  8. NASA Laser Light Scattering Advanced Technology Development Workshop, 1988

    Science.gov (United States)

    Meyer, William V. (Editor)

    1989-01-01

    The major objective of the workshop was to explore the capabilities of existing and prospective laser light scattering hardware and to assess user requirements and needs for a laser light scattering instrument in a reduced gravity environment. The workshop addressed experimental needs and stressed hardware development.

  9. Positron Production in Multiphoton Light-by-Light Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Koffas, Thomas

    2003-07-28

    We present the results of an experimental study on e{sup +}e{sup -} pair production during the collision of a low emittance 46.6 GeV electron beam with terawatt laser pulses from a Nd:glass laser at 527 nm wavelength and with linear polarization. The experiment was conducted at the Final Focus Test Beam facility in the Stanford Linear Accelerator Center. Results with a 49.1 GeV electron beam are also included. A signal of 106 {+-} 14 positrons for the 46.6 GeV electron beam case and of 22 {+-} 10 positrons for the 49.1 GcV case above background, has been detected. We interpret the positrons as the products of a two-step process during which laser photons are backscattered to high energy gamma photons that absorb in their turn several laser photons in order to produce a e{sup +}e{sup -} pair. The data compare well with the existing theoretical models. This is the first observation in the laboratory of inelastic Light-by-Light scattering with only real photons. Alternatively, the data are interpreted as a manifestation of the spontaneous breakdown of the vacuum under the influence of an intense external alternating electric field.

  10. Light scattering of thin azobenzene side-chain polyester layers

    DEFF Research Database (Denmark)

    Kerekes, Á.; Lörincz, E.; Ramanujam, P.S.

    2002-01-01

    Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering...... characteristics than the liquid crystalline polyester. The amorphous samples have negligible polarization part orthogonal to the incident beam. the liquid crystalline samples have relative high orthogonal polarization part in light scattering, The light scattering results can be used to give a lower limit...... for the domain size in thin liquid crystalline polyester layers being responsible for the dominant light scattering. The characteristic domain Sizes obtained from the Fourier transformation of polarization microscopic Pictures confirm these values....

  11. Evaluation of aggregate stability of Haplic Stagnosols using dynamic light scattering, phase analysis light scattering and color coordinates

    Czech Academy of Sciences Publication Activity Database

    Artemyeva, Z.; Žigová, Anna; Kirillova, N.; Šťastný, Martin; Holubík, O.; Podrázský, V.

    2017-01-01

    Roč. 63, č. 13 (2017), s. 1838-1851 ISSN 0365-0340 Institutional support: RVO:67985831 Keywords : land use * aggregate stability * organo-clay complexes * dynamic light scattering * phase analysis light scattering * color coordinates Subject RIV: DF - Soil Science OBOR OECD: Soil science Impact factor: 2.137, year: 2016

  12. An analysis of scattered light in low dispersion IUE spectra

    Science.gov (United States)

    Basri, G.; Clarke, J. T.; Haisch, B. M.

    1985-01-01

    A detailed numerical simulation of light scattering from the low-resolution grating in the short wavelength spectrograph of the IUE Observatory was developed, in order to quantitatively analyze the effects of scattering on both continuum and line emission spectra. It is found that: (1) the redistribution of light by grating scattering did not appreciably alter either the shape or the absolute flux level of continuum spectra for A-F stars; (2) late-type stellar continua showed a tendency to flatten when observed in scattered light toward the shorter wavelengths; and (3) the effect of grating scattering on emission lines is to decrease measured line intensities by an increasing percentage toward the shorter wavelengths. The spectra obtained from scattering experiments for solar-type and late type stars are reproduced in graphic form.

  13. Absorption and scattering of light by small particles

    CERN Document Server

    Bohren, Craig F

    1983-01-01

    Absorption and Scattering of Light by Small Particles. Treating absorption and scattering in equal measure, this self-contained, interdisciplinary study examines and illustrates how small particles absorb and scatter light. The authors emphasize that any discussion of the optical behavior of small particles is inseparable from a full understanding of the optical behavior of the parent material-bulk matter. To divorce one concept from the other is to render any study on scattering theory seriously incomplete. Special features and important topics covered in this book include:. * Classical theor

  14. Light scattering by particles in water theoretical and experimental foundations

    CERN Document Server

    Jonasz, Miroslaw

    2007-01-01

    Light scattering-based methods are used to characterize small particles suspended in water in a wide range of disciplines ranging from oceanography, through medicine, to industry. The scope and accuracy of these methods steadily increases with the progress in light scattering research. This book focuses on the theoretical and experimental foundations of the study and modeling of light scattering by particles in water and critically evaluates the key constraints of light scattering models. It begins with a brief review of the relevant theoretical fundamentals of the interaction of light with condensed matter, followed by an extended discussion of the basic optical properties of pure water and seawater and the physical principles that explain them. The book continues with a discussion of key optical features of the pure water/seawater and the most common components of natural waters. In order to clarify and put in focus some of the basic physical principles and most important features of the experimental data o...

  15. Intraocular light scatter, reflections, fluorescence and absorption: what we see in the slit lamp.

    Science.gov (United States)

    van den Berg, Thomas J T P

    2018-01-01

    Much knowledge has been collected over the past 20 years about light scattering in the eye- in particular in the eye lens- and its visual effect, called straylight. It is the purpose of this review to discuss how these insights can be applied to understanding the slit lamp image. The slit lamp image mainly results from back scattering, whereas the effects on vision result mainly from forward scatter. Forward scatter originates from particles of about wavelength size distributed throughout the lens. Most of the slit lamp image originates from small particle scatter (Rayleigh scatter). For a population of middle aged lenses it will be shown that both these scatter components remove around 10% of the light from the direct beam. For slit lamp observation close to the reflection angles, zones of discontinuity (Wasserspalten) at anterior and posterior parts of the lens show up as rough surface reflections. All these light scatter effects increase with age, but the correlations with age, and also between the different components, are weak. For retro-illumination imaging it will be argued that the density or opacity seen in areas of cortical or posterior subcapsular cataract show up because of light scattering, not because of light loss. NOTES: (1) Light scatter must not be confused with aberrations. Light penetrating the eye is divided into two parts: a relatively small part is scattered, and removed from the direct beam. Most of the light is not scattered, but continues as the direct beam. This non-scattered part is the basis for functional imaging, but its quality is under the control of aberrations. Aberrations deflect light mainly over small angles (light scatter is important because of the straylight effects over large angles (>1°), causing problems like glare and hazy vision. (2) The slit lamp image in older lenses and nuclear cataract is strongly influenced by absorption. However, this effect is greatly exaggerated by the light path lengths concerned. This

  16. Light Scattering by Optically Soft Particles Theory and Applications

    CERN Document Server

    Sharma, Subodh K

    2006-01-01

    The present monograph deals with a particular class of approximation methods in the context of light scattering by small particles. This class of approximations has been termed as eikonal or soft particle approximations. The eikonal approximation was studied extensively in the potential scattering and then adopted in optical scattering problems. In this context, the eikonal and other soft particle approximations pertain to scatterers whose relative refractive index compared to surrounding medium is close to unity. The study of these approximations is very important because soft particles occur abundantly in nature. For example, the particles that occur in ocean optics, biomedical optics, atmospheric optics and in many industrial applications can be classified as soft particles. This book was written in recognition of the long-standing and current interest in the field of scattering approximations for soft particles. It should prove to be a useful addition for researchers in the field of light scattering.

  17. Locally-enhanced light scattering by a monocrystalline silicon wafer

    Directory of Open Access Journals (Sweden)

    Li Ma

    2018-03-01

    Full Text Available We study the optical properties of light scattering by a monocrystalline silicon wafer, by using transparent material to replicate its surface structure and illuminating a fabricated sample with a laser source. The experimental results show that the scattering field contains four spots of concentrated intensity with high local energy, and these spots are distributed at the four vertices of a square with lines of intensity linking adjacent spots. After discussing simulations of and theory about the formation of this light scattering, we conclude that the scattering field is formed by the effects of both geometrical optics and physical optics. Moreover, we calculate the central angle of the spots in the light field, and the result indicates that the locally-enhanced intensity spots have a definite scattering angle. These results may possibly provide a method for improving energy efficiency within mono-Si based solar cells.

  18. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering

    Science.gov (United States)

    Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik

    2018-05-01

    The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.

  19. Elastic scattering, fusion, and breakup of light exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kolata, J.J. [University of Notre Dame, Physics Department, Notre Dame, IN (United States); Guimaraes, V. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Aguilera, E.F. [Instituto Nacional de Investigaciones Nucleares, Departamento de Aceleradores, Mexico, Distrito Federal (Mexico)

    2016-05-15

    The present status of fusion reactions involving light (A< 20) radioactive projectiles at energies around the Coulomb barrier (E<10 MeV per nucleon) is reviewed, emphasizing measurements made within the last decade. Data on elastic scattering (providing total reaction cross section information) and breakup channels for the involved systems, demonstrating the relationship between these and the fusion channel, are also reviewed. Similarities and differences in the behavior of fusion and total reaction cross section data concerning halo nuclei, weakly-bound but less exotic projectiles, and strongly-bound systems are discussed. One difference in the behavior of fusion excitation functions near the Coulomb barrier seems to emerge between neutron-halo and proton-halo systems. The role of charge has been investigated by comparing the fusion excitation functions, properly scaled, for different neutron- and proton-rich systems. Possible physical explanations for the observed differences are also reviewed. (orig.)

  20. Modelling of classical ghost images obtained using scattered light

    International Nuclear Information System (INIS)

    Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A

    2007-01-01

    The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres

  1. Modelling of classical ghost images obtained using scattered light

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A [School of Physics, University of Melbourne, Victoria, 3010 (Australia)

    2007-08-15

    The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres.

  2. Optical fibre probes in the measurement of scattered light ...

    Indian Academy of Sciences (India)

    2014-01-08

    Jan 8, 2014 ... light reflected/scattered/fluoresced from the sample containing the .... Turbidity of water, for example, is determined by the amount of particulate matter such as soil, sand, ... These packets take random steps whose step size.

  3. Propagation and scattering of light in fluctuating media

    Science.gov (United States)

    Kuz'min, V. L.; Romanov, V. P.; Zubkov, L. A.

    1994-11-01

    The monograph deals with the problems of the propagation and scattering of light in molecular media. The explicit statistical mechanical averaging procedure for the equations of electrodynamics is developed. It permits to transform the molecular level description into the macroscopic one for the electrodynamics of the fluctuating media. In the framework of such an approach, the problems of the molecular correlation contribution into the dielectric permeability, of the calculation of the reflection coefficients with an account of surface layers and of the multiple light scattering are considered. The developed theory is applied to the description of the critical opalescence, the coherent backscattering enhancement, the light scattering depolarization phenomena and the propagation and scattering of light in anisotropic media, including the case of liquid crystals.

  4. Light Scattering Spectroscopies of Semiconductor Nanocrystals (Quantum Dots)

    International Nuclear Information System (INIS)

    Yu, Peter Y; Gardner, Grat; Nozaki, Shinji; Berbezier, Isabelle

    2006-01-01

    We review the study of nanocrystals or quantum dots using inelastic light scattering spectroscopies. In particular recent calculations of the phonon density of states and low frequency Raman spectra in Ge nanocrystals are presented for comparison with experimental results

  5. Statistical properties of laser light scattering in Brownian medium

    International Nuclear Information System (INIS)

    Suwono; Santoso, Budi; Baiquni, A.

    1983-01-01

    Relationship between statistical properties of laser light scattering in Brownian medium and photon-counting distributions are described in detail. A coherence optical detection has been constructed and by using photon-counting technique the ensemble distribution of the scattered field within space and time coherence has been measured. Good agreement between theory and experiment is shown. (author)

  6. Surface magnetism studied by polarized light emission after He+ scattering

    NARCIS (Netherlands)

    Manske, J; Dirska, M; Lubinski, G; Schleberger, M; Narmann, A; Hoekstra, R

    Surface magnetism is studied by means of an ion beam of low energy (2-15 keV) scattered off the surface under grazing incidence conditions. During the scattering, a small fraction of the ions is neutralized into excited states which decay subsequently by light emission. The circular polarization of

  7. Separate observation of ballistic and scattered photons in the propagation of short laser pulses through a strongly scattering medium

    International Nuclear Information System (INIS)

    Tereshchenko, Sergei A; Podgaetskii, Vitalii M; Vorob'ev, Nikolai S; Smirnov, A V

    1998-01-01

    The conditions are identified for simultaneous observation of the peaks of scattered and unscattered (ballistic) photons in a narrow pulsed laser beam crossing a strongly scattering medium. The experimental results are explained on the basis of a nonstationary two-flux model of radiation transport. An analytic expression is given for the contribution of ballistic photons to the transmitted radiation, as a function of the characteristics of the scattering medium. It is shown that the ballistic photon contribution can be increased by the use of high-contrast substances which alter selectively the absorption and scattering coefficients of the medium. (laser applications and other topics in quantum electronics)

  8. Design of fiber optic probes for laser light scattering

    Science.gov (United States)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  9. Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems

    NARCIS (Netherlands)

    Sprik, R.; Tourin, A.; de Rosny, J.; Fink, M.

    2008-01-01

    We experimentally study the effects of correlations in the propagation of ultrasonic waves in water from a multielement source to a multielement detector through a strongly scattering system of randomly placed vertical rods. Due to the strong scattering, the wave transport in the sample is in the

  10. Intermediate energy proton and light-ion scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1981-01-01

    A review is presented of recent (1979-81) developments in the field of intermediate-energy proton and light-ion scattering from nuclei. New theoretical and calculational techniques of particular interest to experimentalists are discussed. Emphasis is placed on topics in nuclear structure physics - giant resonances, pion-condensation precursor phenomena, and polarization transfer (spin-flip) experiments - where intermediate energy proton and light-ion scattering has made new and unique contributions

  11. Scattering of light at the growing solid-melt interface

    International Nuclear Information System (INIS)

    Gontijo, I.

    1987-12-01

    The scattering of light at the growing solid-melt interface of biphenyl and naphthalene was studied using the Photon Correlation Spectroscopy technique. The origin of this light scattering remained without a satisfactory explanation since its discovery at the ice-water interface in 1978. Recently, a model based on the segregation of gaseous impurities at the interface and subsequent precipitation of microbubbles was proposed to explain this phenomenon. We report here the first experimental results that confirm the microbbubles hypothesis. (author)

  12. Synthesis of aerogel tiles with high light scattering length

    CERN Document Server

    Danilyuk, A F; Okunev, A G; Onuchin, A P; Shaurman, S A

    1999-01-01

    The possibility of aerogel tiles production for RICH detectors is described. Monolithic blocks of silica aerogel were synthesized by two-step sol-gel processing of tetraethoxysilane Si(OEt) sub 4 followed by high temperature supercritical drying with organic solvent. The important characteristic of aerogel is the light scattering length. In the wide range of refraction indexes the light scattering length exceeds 4 cm at 400 nm.

  13. Signals of strong electronic correlation in ion scattering processes

    Science.gov (United States)

    Bonetto, F.; Gonzalez, C.; Goldberg, E. C.

    2016-05-01

    Previous measurements of neutral atom fractions for S r+ scattered by gold polycrystalline surfaces show a singular dependence with the target temperature. There is still not a theoretical model that can properly describe the magnitude and the temperature dependence of the neutralization probabilities found. Here, we applied a first-principles quantum-mechanical theoretical formalism to describe the time-dependent scattering process. Three different electronic correlation approaches consistent with the system analyzed are used: (i) the spinless approach, where two charge channels are considered (S r0 and S r+ ) and the spin degeneration is neglected; (ii) the infinite-U approach, with the same charge channels (S r0 and S r+ ) but considering the spin degeneration; and (iii) the finite-U approach, where the first ionization and second ionization energy levels are considered very, but finitely, separated. Neutral fraction magnitudes and temperature dependence are better described by the finite-U approach, indicating that e -correlation plays a significant role in charge-transfer processes. However, none of them is able to explain the nonmonotonous temperature dependence experimentally obtained. Here, we suggest that small changes in the surface work function introduced by the target heating, and possibly not detected by experimental standard methods, could be responsible for that singular behavior. Additionally, we apply the same theoretical model using the infinite-U approximation for the Mg-Au system, obtaining an excellent description of the experimental neutral fractions measured.

  14. Application of light scattering to coatings a user's guide

    CERN Document Server

    Diebold, Michael P

    2014-01-01

    The book begins with the fundamentals of light scattering, first by individual particles, then by small groups of particles, and finally by the trillions of particles present in a real-life paint film. From there, Dr. Diebold focuses on application of these fundamentals to paint formulation. The scope includes both theory and practice with an emphasis on application (from both performance and cost standpoints). The book gives a clear understanding of light scattering principles and application of these principles to paint formulation (with a focus on TiO2 - the strongest scattering material a

  15. Effects of temperature and salinity on light scattering by water

    Science.gov (United States)

    Zhang, Xiaodong; Hu, Lianbo

    2010-04-01

    A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.

  16. Interactive directional subsurface scattering and transport of emergent light

    DEFF Research Database (Denmark)

    Dal Corso, Alessandro; Frisvad, Jeppe Revall; Mosegaard, Jesper

    2016-01-01

    need to store elements of irradiance from specific directions. To include changes in subsurface scattering due to changes in the direction of the incident light, we instead sample incident radiance and store scattered radiosity. This enables us to accommodate not only the common distance....... To build our maps of scattered radiosity, we progressively render the model from different directions using an importance sampling pattern based on the optical properties of the material. We obtain interactive frame rates, our subsurface scattering results are close to ground truth, and our technique...

  17. Ambiguities in strong absorption parametrisations of nuclear scattering data

    International Nuclear Information System (INIS)

    Steward, C.; Fiedeldey, H.; Amos, K.; Allen, L.J.

    1994-01-01

    Fixed energy inverse scattering methods have been applied to extract 12 C - 208 Pb inversion potentials from measured differential cross sections. A semiclassical (WKB) inversion scheme was used to ascertain those complex, local interactions for the data taken at 1449 MeV. The first step was to fit the differential cross section data with a McIntyre form for the S-function. Then each McIntyre S-function was mapped into a rational function representation with which the inversion was performed. The inversion potentials vary significantly in their absorption components within the sensitive radial regions. The results highlight the crucial importance of making more extensive and accurate measurements of cross section data before a much further understanding can be made of heavy ion collisions. 18 refs., 3 tabs., 3 figs

  18. Structural study of concentrated micelle-solutions of sodium octanoate by light scattering

    International Nuclear Information System (INIS)

    Hayoun, Marc

    1982-05-01

    Structural investigation of sodium octanoate (CH 3 -(CH 2 ) 6 -COONa) by light scattering has been made to study properties of concentrated aqueous micelle-solutions. From static light scattering data, the micellar weight and shape have been determined. The monomer aggregation number and the apparent micellar charge have been confirmed. Quasi-elastic light scattering, has been used to measure the effective diffusion coefficient as a function of the volume fraction. Extrapolation to the c.m.c. give the hydrodynamic radius of the micelles. At low micelle-concentration, strong exchange reaction between monomers and micelles affects the Brownian motion and resulting is an increase in the diffusion coefficient. The experimental data show a strong hydrodynamic contribution to S(q) (factor structure) and D(q) (effective diffusion coefficient) arising from hard spheres interactions with a large repulsive potential. (author) [fr

  19. Magnon and phonon thermometry with inelastic light scattering

    Science.gov (United States)

    Olsson, Kevin S.; An, Kyongmo; Li, Xiaoqin

    2018-04-01

    Spin caloritronics investigates the interplay between the transport of spin and heat. In the spin Seebeck effect, a thermal gradient across a magnetic material generates a spin current. A temperature difference between the energy carriers of the spin and lattice subsystems, namely the magnons and phonons, is necessary for such thermal nonequilibrium generation of spin current. Inelastic light scattering is a powerful method that can resolve the individual temperatures of magnons and phonons. In this review, we discuss the thermometry capabilities of inelastic light scattering for measuring optical and acoustic phonons, as well as magnons. A scattering spectrum offers three temperature sensitive parameters: frequency shift, linewidth, and integrated intensity. We discuss the temperatures measured via each of these parameters for both phonon and magnons. Finally, we discuss inelastic light scattering experiments that have examined the magnon and phonon temperatures in thermal nonequilibrium which are particularly relevant to spin caloritronic phenomena.

  20. ANGULAR LIGHT-SCATTERING STUDIES ON ISOLATED MITOCHONDRIA

    Science.gov (United States)

    Gotterer, Gerald S.; Thompson, Thomas E.; Lehninger, Albert L.

    1961-01-01

    Angular light-scattering studies have been carried out on suspensions of isolated rat liver mitochondria. The angular scatter pattern has a large forward component, typical of large particles. Changes in dissymmetry and in the intensity of light scattered at 90° have been correlated with changes in optical density during the course of mitochondrial swelling and contraction. Such changes can be measured at mitochondrial concentrations much below those required for optical density measurements. Changes in mitochondrial geometry caused by factors "leaking" from mitochondria, not detectable by optical density measurements, have been demonstrated by measuring changes in dissymmetry. Angular light-scattering measurements therefore offer the advantages of increased sensitivity and of added indices of changes in mitochondrial conformation. PMID:19866589

  1. Chiral symmetry and dispersion relations: from $\\pi \\pi$ scattering to hadronic light-by-light.

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Chiral symmetry provides strong constraints on hadronic matrix elements at low energy, which are most efficiently derived with chiral perturbation theory. As an effective quantum field theory the latter also accounts for rescattering or unitarity effects, albeit only perturbatively, via the loop expansion. In cases where rescattering effects are important it becomes necessary to go beyond the perturbative expansion, e.g. by using dispersion relations. A matching between the chiral and the dispersive representation provides in several cases results of high precision. I will discuss this approach with the help of a few examples, like $\\pi \\pi$ scattering (which has been tested successfully by CERN experiments like NA48/2 and DIRAC), $\\eta \\to 3 \\pi$ and the hadronic light-by-light contribution to $(g-2)_\\mu$. For the latter quantity the implementation of the dispersive approach has opened up the way to a model-independent calculation and the concrete possibility to significantly reduce the theoretical uncertain...

  2. Single particle analysis with a 3600 light scattering photometer

    International Nuclear Information System (INIS)

    Bartholdi, M.F.

    1979-06-01

    Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 μm and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360 0 light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5 0 to 177.5 0 at phi = 0 0 and 180 0 is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3 0 in scattering angle on 6 0 centers around 360 0 . 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells

  3. Light scattering in optical CT scanning of Presage dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y; Adamovics, J; Cheeseborough, J C; Chao, K S; Wuu, C S, E-mail: yx2010@columbia.ed

    2010-11-01

    The intensity of the scattered light from the Presage dosimeters was measured using a Thorlabs PM100D optical power meter (Thorlabs Inc, Newton, NJ) with an optical sensor of 1 mm diameter sensitive area. Five Presage dosimeters were made as cylinders of 15.2 cm, 10 cm, 4 cm diameters and irradiated with 6 MV photons using a Varian Clinac 2100EX. Each dosimeter was put into the scanning tank of an OCTOPUS' optical CT scanner (MGS Research Inc, Madison, CT) filled with a refractive index matching liquid. A laser diode was positioned at one side of the water tank to generate a stationary laser beam of 0.8 mm width. On the other side of the tank, an in-house manufactured positioning system was used to move the optical sensor in the direction perpendicular to the outgoing laser beam from the dosimeters at an increment of 1 mm. The amount of scattered photons was found to be more than 1% of the primary light signal within 2 mm from the laser beam but decreases sharply with increasing off-axis distance. The intensity of the scattered light increases with increasing light attenuations and/or absorptions in the dosimeters. The scattered light at the same off-axis distance was weaker for dosimeters of larger diameters and for larger detector-to-dosimeter distances. Methods for minimizing the effect of the light scattering in different types of optical CT scanners are discussed.

  4. Imaging back scattered and near back scattered light in ignition scale plasmas

    International Nuclear Information System (INIS)

    Kirkwood, R.K.; Back, C.A.; Glenzer, S.H.; Moody, J.D.

    1996-01-01

    Diagnostics have been developed and fielded at the Nova laser facility that image scattered light in the vicinity of the final laser focusing lens. The absolute calibration of optical components exposed to the target debris have been achieved by a combination of routine in situ calibration and maintenance. The scattering observed from plasmas relevant to ignition experiments indicates that light scattered just outside the lens can be larger than that collected by the lens, and is a significant factor in the energy balance when the f number is high

  5. Elastic and quasielastic scattering of light nuclei in the theory of multiple scattering

    International Nuclear Information System (INIS)

    Ismatov, E.I.; Kuterbekov, K.A.; Dzhuraev, Sh.Kh.; Ehsaniyazov, Sh.P.; Zholdasova, S.M.

    2005-01-01

    In the work the calculation method for diffraction scattering amplitudes of light nuclei by heavy nuclei is developed. For A 1 A 2 -scattering effects of pair-, three-fold, and four-fold screenings are estimated. It is shown, that in amplitude calculations for A 1 A 2 elastic scattering it is enough come to nothing more than accounting of total screenings in the first order. Analysis of nucleus-nucleus scattering sensitive characteristics to choice of single-particle nuclear densities parametrization is carried out

  6. The accuracy of liquid-liquid phase transition temperatures determined from semiautomated light scattering measurements

    Science.gov (United States)

    Dean, Kevin M.; Babayco, Christopher B.; Sluss, Daniel R. B.; Williamson, J. Charles

    2010-08-01

    The synthetic-method determination of liquid-liquid coexistence curves using semiautomated light scattering instrumentation and stirred samples is based on identifying the coexistence curve transition temperatures (Tcx) from sudden changes in turbidity associated with droplet formation. Here we use a thorough set of such measurements to evaluate the accuracy of several different analysis methods reported in the literature for assigning Tcx. More than 20 samples each of weakly opalescent isobutyric acid+water and strongly opalescent aniline+hexane were tested with our instrumentation. Transmitted light and scattering intensities at 2°, 24°, and 90° were collected simultaneously as a function of temperature for each stirred sample, and the data were compared with visual observations and light scattering theory. We find that assigning Tcx to the onset of decreased transmitted light or increased 2° scattering has a potential accuracy of 0.01 K or better for many samples. However, the turbidity due to critical opalescence obscures the identification of Tcx from the light scattering data of near-critical stirred samples, and no simple rule of interpretation can be applied regardless of collection geometry. At best, when 90° scattering is collected along with transmitted or 2° data, the accuracy of Tcx is limited to 0.05 K for near-critical samples. Visual determination of Tcx remains the more accurate approach in this case.

  7. Direct observation of strong localization of quasi-two-dimensional light waves

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.

    1999-01-01

    Scattering of surface plasmon polaritons on rough metal surfaces is investigated by using scanning near-field optical microscopy. Different scattering regimes, i.e. single, double and multiple scattering, are observed and related to the spatial Fourier spectra of the corresponding near-field opti...... caused by surface roughness. Similar bright light spots are observed with light scattering by silver colloid clusters deposited on glass substrates. Differences and similarities in these scattering phenomena are discussed....

  8. Strong SH-to-Love wave scattering off the Southern California Continental Borderland

    Science.gov (United States)

    Yu, Chunquan; Zhan, Zhongwen; Hauksson, Egill; Cochran, Elizabeth S.

    2017-01-01

    Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers associated with lateral heterogeneities remains challenging. In this study, we analyze broadband waveforms recorded by the Southern California Seismic Network and observe strongly scattered Love waves following the arrival of teleseismic SH wave. These scattered Love waves travel approximately in the same (azimuthal) direction as the incident SH wave at a dominant period of ~10 s but at an apparent velocity of ~3.6 km/s as compared to the ~11 km/s for the SH wave. Back-projection suggests that this strong scattering is associated with pronounced bathymetric relief in the Southern California Continental Borderland, in particular the Patton Escarpment. Finite-difference simulations using a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling suggests a relatively low shear wave velocity in the Continental Borderland.

  9. Scattering of light by nonspherical particles

    International Nuclear Information System (INIS)

    Coulson, K.L.

    1985-12-01

    Methods of computing scattering by non-spherical particles are reviewed for the Mie theory, the Rayleigh-Gans approximation, the geometric optics method, the extended boundary condition method, the anamalous diffraction, the suppression of resonances, the statistical approach, the expansion of vector wave equations in spheroidal coordinates, and the semi-emperical theory of Pollack and Cuzzi. The results of computations for nonspherical particles are compared for prolate and oblate spheroids, homogeneous sphere with holes, rough particles made of stacked cylinders, irregular particles of various shapes, and particles of carbonaceous smokes. Conclusions are presented in the context of nuclear winter

  10. Light-scattering evolution from particles to regolith

    International Nuclear Information System (INIS)

    Videen, Gorden; Muinonen, Karri

    2015-01-01

    The radiative-transfer coherent-backscattering (RT–CB) model is unique among light-scattering methodologies as it can be used to calculate accurate light-scattering properties of sparsely populated particle volumes with sizes ranging from subwavelength to infinity. We use the RT–CB model to examine the evolution of light-scattering properties as a volume of particles increases from wavelength-sized to several hundreds of wavelengths. We examine the evolution of light-scattering intensity phase function and polarization, as well as linear and circular polarization ratios. We confirm the expected trends for backscattering features to shift to smaller phase angles as the volume increases. In addition, we also see the amplitude of these features increases to some maximum for volumes having size parameters kR∼100, before decaying to less than half this amplitude as their volumes approach infinity. - Highlights: • We use the RT–CB method to examine how gross light-scattering properties evolve as particle size increases. • The transition from a wavelength-sized particle to a large particle is not monotonic. • Backscattering properties associated with the CB mechanism appear to have a peak value before decaying asymptotically

  11. Light scattering in additively colored alkali-halide crystals

    International Nuclear Information System (INIS)

    Trakhbrot, B.M.

    1979-01-01

    Studied is extinction in ultra-violet, visible and infrared spectrum ranges, caused by light scattering in additively colored KCl and KBr crystals. The crystals were prepared of the powder. The specimens were annealed in saturated potassium vapours: KBr - at 600-630 deg C, KCl - at 700 deg C. While investigating the spectra it is observed that the optical density of the specimens processed in such a regime is more than 2 in the ultraviolet and visible spectrum ranges at the 0.1-0.05 cm thickness of the specimens. In the infrared spectra the growth of the extinction coefficient with the wave length decrease is observed. The spectrum character shows IR radiation scattering by the defects in the crystal lattice. The attempt of determination of the scattering centres nature is taken. It is shown that the possible centres causing the light scattering observed can be colloid and quasicolloid centres in the additively colored materials

  12. Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes

    DEFF Research Database (Denmark)

    Westerhof, E.; Nielsen, Stefan Kragh; Oosterbeek, J.W.

    2009-01-01

    In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power...

  13. Experimental light scattering by small particles in Amsterdam and Granada

    Directory of Open Access Journals (Sweden)

    Volten H.

    2010-06-01

    Full Text Available We report on two light scattering instruments located in Amsterdam and Granada, respectively. These instruments enable measuring scattering matrices as functions of the scattering angle of collections of randomly orieneted irregular particles. In the past decades, the experimental setup located in Amsterdam, The Netherlands, has produced a significant amount of experimental data. Unfortunately, this setup was officially closed a couple of years ago. We also present a modernized descendant of the Dutch experimental setup recently constructed at the Instituto de Astrofísica de Andalucía (IAA in Granada, Spain. We give a brief description of the instruments, and present some representative results.

  14. Characterization of the angular memory effect of scattered light in biological tissues.

    Science.gov (United States)

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-18

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers.

  15. Dynamic light scattering with applications to chemistry, biology, and physics

    CERN Document Server

    Berne, Bruce J

    2000-01-01

    Lasers play an increasingly important role in a variety of detection techniques, making inelastic light scattering a tool of growing value in the investigation of dynamic and structural problems in chemistry, biology, and physics. Until the initial publication of this work, however, no monograph treated the principles behind current developments in the field.This volume presents a comprehensive introduction to the principles underlying laser light scattering, focusing on the time dependence of fluctuations in fluid systems; it also serves as an introduction to the theory of time correlation f

  16. Proof of the formula for the ideal gas scattering kernel for nuclides with strongly energy dependent scattering cross sections

    International Nuclear Information System (INIS)

    Rothenstein, W.

    2004-01-01

    The current study is a sequel to a paper by Rothenstein and Dagan [Ann. Nucl. Energy 25 (1998) 209] where the ideal gas based kernel for scatterers with internal structure was introduced. This double differential kernel includes the neutron energy after scattering as well as the cosine of the scattering angle for isotopes with strong scattering resonances. A new mathematical formalism enables the inclusion of the new kernel in NJOY [MacFarlane, R.E., Muir, D.W., 1994. The NJOY Nuclear Data Processing System Version 91 (LA-12740-m)]. Moreover the computational time of the new kernel is reduced significantly, feasible for practical application. The completeness of the new kernel is proven mathematically and demonstrated numerically. Modifications necessary to remove the existing inconsistency of the secondary energy distribution in NJOY are presented

  17. Dominance of strong absorption in 9Be + 28Si elastic scattering

    International Nuclear Information System (INIS)

    Zisman, M.S.; Cramer, J.G.; DeVries, R.M.; Goldberg, D.A.; Watson, J.W.

    1979-07-01

    Because the character of the scattering changes markedly from 6 Li to 12 C projectiles, a study of the 9 Be + 28 Si system was undertaken to examine the transition region. Data were measured at 121.0 and 201.6 MeV. Low-energy data of other investigators were used to carry out global optical model searches. It was found that the elastic scattering of 9 Be from 28 Si is dominated at all energies by relatively strong absorption. This removes much of the sensitivity to the real potential, and even elastic scattering data spanning a range of energies from 13 to 201 MeV do not allow a unique determination of the potential parameters. There is at least circumstantial evidence that 6 Li scattering at low energies (and by implication also 9 Be scattering) may be strongly influenced by breakup processes, although it is not clear that the mechanism is the same. 3 figures, 1 table

  18. How to distinguish scattered and absorbed light from re-emitted light for white LEDs?

    NARCIS (Netherlands)

    Meretska, Maryna; Lagendijk, Aart; Thyrrestrup Nielsen, Henri; Mosk, Allard; IJzerman, Wilbert; Vos, Willem L.

    2017-01-01

    We have studied the light transport through phosphor diffuser plates that are used in commercial solid-state lighting modules (Fortimo). These polymer plates contain YAG:Ce+3 phosphor particles that scatter, absorb and re-emit incident light in the visible wavelength range (400-700 nm). To

  19. Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field

    Science.gov (United States)

    Luo, Sui

    Ultrastrong laser-matter interaction has direct bearing to next generation technologies including plasma acceleration, laser fusion and attosecond X-ray generation. The commonly known physics in strong field becomes different as one progress to ultrastrong field. The works presented in this dissertation theoretically study the influence of relativistic effect and magnetic component of the laser field on the ionization, photoelectron dynamics and elastic scattering processes. The influence of magnetic component (B laser) of circularly polarized (CP) ultrastrong fields (up to3 x 1022 W/cm2) on atomic bound state dynamics is investigated. The Poincare plots are used to find the changes in trajectory energies are on the order of a few percent for intensities up to1 x 1022 W/cm2. It is found that at intensities where ionization approaches 50% for the bound state, the small changes from Blaser of the circular polarized light can actually result in a several-fold decrease in ionization probability. The force on the bound electron exerted by the Lorentz force from B laser is perpendicular to the rotating plane of the circular polarized light, and this nature makes those trajectories which are aligned away from the minimum in the potential barrier stabilized against tunneling ionization. Our results provide a classical understanding for ionization in ultrastrong fields and indicate that relativistic effects in ultrastrong field ionization may most easily be seen with CP fields. The photoelectron energy spectra from elastic rescattering in ultrastrong laser fields (up to 2x1019 W/cm2) is studied by using a relativistic adaption of a semi-classical three-step recollision model. The Hartree-Fock scattering potentials are used in calculating the elastic rescattering for both hydrogenlike and noble gas species. It is found that there is a reduction in elastic rescattering for intensities beyond 6 x 1016 W/cm2 when the laser Lorentz deflection of the photoelectron exceeds its

  20. Optical Asymmetry and Nonlinear Light Scattering from Colloidal Gold Nanorods.

    Science.gov (United States)

    Lien, Miao-Bin; Kim, Ji-Young; Han, Myung-Geun; Chang, You-Chia; Chang, Yu-Chung; Ferguson, Heather J; Zhu, Yimei; Herzing, Andrew A; Schotland, John C; Kotov, Nicholas A; Norris, Theodore B

    2017-06-27

    A systematic study is presented of the intensity-dependent nonlinear light scattering spectra of gold nanorods under resonant excitation of the longitudinal surface plasmon resonance (SPR). The spectra exhibit features due to coherent second and third harmonic generation as well as a broadband feature that has been previously attributed to multiphoton photoluminescence arising primarily from interband optical transitions in the gold. A detailed study of the spectral dependence of the scaling of the scattered light with excitation intensity shows unexpected scaling behavior of the coherent signals, which is quantitatively accounted for by optically induced damping of the SPR mode through a Fermi liquid model of the electronic scattering. The broadband feature is shown to arise not from luminescence, but from scattering of the second-order longitudinal SPR mode with the electron gas, where efficient excitation of the second order mode arises from an optical asymmetry of the nanorod. The electronic-temperature-dependent plasmon damping and the Fermi-Dirac distribution together determine the intensity dependence of the broadband emission, and the structure-dependent absorption spectrum determines the spectral shape through the fluctuation-dissipation theorem. Hence a complete self-consistent picture of both coherent and incoherent light scattering is obtained with a single set of physical parameters.

  1. Light absorption and scattering mechanisms in laser fusion plasmas

    International Nuclear Information System (INIS)

    Barnes, C.; Estabrook, K.G.; Kruer, W.L.; Langdon, A.B.; Lasinski, B.F.; Max, C.E.; Randall, C.; Thomson, J.J.

    1977-01-01

    The picture of laser light absorption and scattering which is emerging from theory and computer simulation studies of laser-plasma interactions is described. On the subject of absorption, we discuss theoretical and experimental evidence that resonance absorption in a steepened density profile is a dominant absorption mechanism. Recent work also indicates the presence of critical surface ripples, which we study using two and three dimensional computer simulations. Predictions of hot electron spectra due to resonance absorption are described, as are effects of plasma outflow. We then discuss two regimes where stimulated scattering may occur. Brillouin scattering is expected in the underdense target blow-off, for long laser pulses, and is limited by ion heating. Raman scattering in the background gas of a reactor target chamber is predicted to be at most a 10 percent effect for 1 μm lasers

  2. Laser light scatter experiments on plasma focus plant

    International Nuclear Information System (INIS)

    Wenzel, N.

    1985-01-01

    The plasma focus plant is an experiment on nuclear fusion, which is distinguished by a high neutron yield. Constituting an important method of diagnosis in plasma focussing, the laser light scatter method makes it possible, apart from finding the electron temperature and density, to determine the ion temperature resolved according to time and place and further, to study the occurrence of micro-turbulent effects. Starting from the theoretical basis, this dissertation describes light scatter measurements with ruby lasers on the POSEIDON plasma focus. They are given, together with earlier measurements on the Frascati 1 MJ plant and the Heidelberg 12 KJ plant. The development of the plasma parameters and the occurrence of superthermal light scatter events are discussed in connection with the dynamics of the plasma and the neutron emission characteristics of the individual plants. The results support the view that the thermo-nuclear neutron production at the plasma focus is negligible. Although the importance of micro-turbulent mechanisms in producing neutrons cannot be finally judged, important guidelines are given for the spatial and time relationships with plasma dynamics, plasma parameters and neutron emission. The work concludes with a comparison of all light scatter measurements at the plasma focus described in the literature. (orig.) [de

  3. Insulin association in neutral solutions studied by light scattering

    DEFF Research Database (Denmark)

    Hvidt, S.

    1991-01-01

    Molecular weights and weight distributions of sulfated, Zn-free, and 2Zn insulins have been measured at pH 7.3 as a function of concentration from 0.1 to 2 mg/ml by use of a combination of light scattering, refractometry, and size-exclusion chromatography. Results show that sulfated insulin...

  4. HeNe-laser light scattering by human dental enamel

    NARCIS (Netherlands)

    Zijp, [No Value; tenBosch, JJ; Groenhuis, RAJ

    1995-01-01

    Knowledge of the optical properties of tooth enamel and an understanding of the origin of these properties are necessary for the development of new optical methods for caries diagnosis and the measurement of tooth color. We measured the scattering intensity functions for HeNe-laser light of 80- to

  5. Simulating elastic light scattering using high performance computing methods

    NARCIS (Netherlands)

    Hoekstra, A.G.; Sloot, P.M.A.; Verbraeck, A.; Kerckhoffs, E.J.H.

    1993-01-01

    The Coupled Dipole method, as originally formulated byPurcell and Pennypacker, is a very powerful method tosimulate the Elastic Light Scattering from arbitraryparticles. This method, which is a particle simulationmodel for Computational Electromagnetics, has one majordrawback: if the size of the

  6. Polarized Light Scattering from Perfect and Perturbed Surfaces and Fundamental Scattering Systems

    Science.gov (United States)

    1992-02-29

    ob- one frequency, an extension of it to multiple-field interac- served in the elastically scattered light emitted from glass tions would follow the...that 8. V CeIll . A. A. Maradudin, A. M. Marvin, and A. R. McGurn, can explain only gross scattering features. It is inde "Some aspects of light...and a surface of index n a 10.0 - 0.01. Such a surface could be made with a series of 1/4-wave dielectric layers on a glass substrate. It Is more

  7. Generation of Light Scattering States in Cholesteric Liquid Crystals by Optically Controlled Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Timothy J. Bunning

    2013-03-01

    Full Text Available Circularly polarized light was previously employed to stimulate the reversible and reconfigurable writing of scattering states in cholesteric liquid crystal (CLC cells constructed with a photosensitive layer. Such dynamic photodriven responses have utility in remotely triggering changes in optical constructs responsive to optical stimulus and applications where complex spatial patterning is required. Writing of scattering regions required the handedness of incoming radiation to match the handedness of the CLC and the reflection bandwidth of the CLC to envelop the wavelength of the incoming radiation. In this paper, the mechanism of transforming the CLC into a light scattering state via the influence of light on the photosensitive alignment layer is detailed. Specifically, the effects of: (i the polarization state of light on the photosensitive alignment layer; (ii the exposure time; and (iii the incidence angle of radiation on domain formation are reported. The photogenerated light-scattering domains are shown to be similar in appearance between crossed polarizers to a defect structure that occurs at a CLC/air interface (i.e., a free CLC surface. This observation provides strong indication that exposure of the photosensitive alignment layer to the circularly polarized light of appropriate wavelength and handedness generates an out-of-plane orientation leading to a periodic distortion of the original planar structure.

  8. Strong scintillations during atmospheric occultations Theoretical intensity spectra. [radio scattering during spacecraft occultations by planetary atmospheres

    Science.gov (United States)

    Hinson, D. P.

    1986-01-01

    Each of the two Voyager spacecraft launched in 1977 has completed a reconnaissance of the Jovian and Saturnian systems. In connection with occultation experiments, strong scintillations were observed. Further theoretical work is required before these scintillations can be interpreted. The present study is, therefore, concerned with the derivation of a theory for strong scattering during atmospheric occultation experiments, taking into account as fundamental quantity of interest the spatial spectrum (or spectral density) of intensity fluctuations. Attention is given to a theory for intensity spectra, and numerical calculations. The new formula derived for Phi-i accounts for strong scattering of electromagnetic waves during atmospheric occultations.

  9. Measuring spatially- and directionally-varying light scattering from biological material.

    Science.gov (United States)

    Harvey, Todd Alan; Bostwick, Kimberly S; Marschner, Steve

    2013-05-20

    Light interacts with an organism's integument on a variety of spatial scales. For example in an iridescent bird: nano-scale structures produce color; the milli-scale structure of barbs and barbules largely determines the directional pattern of reflected light; and through the macro-scale spatial structure of overlapping, curved feathers, these directional effects create the visual texture. Milli-scale and macro-scale effects determine where on the organism's body, and from what viewpoints and under what illumination, the iridescent colors are seen. Thus, the highly directional flash of brilliant color from the iridescent throat of a hummingbird is inadequately explained by its nano-scale structure alone and questions remain. From a given observation point, which milli-scale elements of the feather are oriented to reflect strongly? Do some species produce broader "windows" for observation of iridescence than others? These and similar questions may be asked about any organisms that have evolved a particular surface appearance for signaling, camouflage, or other reasons. In order to study the directional patterns of light scattering from feathers, and their relationship to the bird's milli-scale morphology, we developed a protocol for measuring light scattered from biological materials using many high-resolution photographs taken with varying illumination and viewing directions. Since we measure scattered light as a function of direction, we can observe the characteristic features in the directional distribution of light scattered from that particular feather, and because barbs and barbules are resolved in our images, we can clearly attribute the directional features to these different milli-scale structures. Keeping the specimen intact preserves the gross-scale scattering behavior seen in nature. The method described here presents a generalized protocol for analyzing spatially- and directionally-varying light scattering from complex biological materials at multiple

  10. Light extraction enhancement from organic light-emitting diodes with randomly scattered surface fixture

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dong-Ying; Shi, Xiao-Bo; Gao, Chun-Hong; Cai, Shi-Duan; Jin, Yue; Liao, Liang-Sheng, E-mail: lsliao@suda.edu.cn

    2014-09-30

    Graphical abstract: - Highlights: • A combination of scattering layer and roughened substrate is used for light extraction from OLEDs. • The scattering layer is readily achieved by spin-coating the TiO{sub 2} sol. • The enhancement relying scattering depends on the size of TiO{sub 2} nano particles. • With the light extraction techniques the uniform emission is achieved. - Abstract: A combination of a scattering medium layer and a roughened substrate was proposed to enhance the light extraction efficiency of organic light-emitting diodes (OLEDs). Comparing with a reference OLED without any scattering layer, 65% improvement in the forward emission has been achieved with a scattering layer formed on an intentionally roughened external substrate surface of the OLED by spin-coating a sol–gel fabricated matrix containing well dispersed titania (TiO{sub 2}) particles. Such a combination method not only demonstrated efficient extraction of the light trapped in the glass substrate but also achieved homogenous emission from the OLED panel. The proposed technique, convenient and inexpensive, is believed to be suitable for the large area OLED production in lighting applications.

  11. Light-by-light scattering and muon's anomalous magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Pauk, Vladyslav

    2014-07-01

    A study of hadron production by photons opens unique ways to address a number of fundamental problems in strong interaction physics as well as fundamental questions in Quantum Field Theory. In particular, an understanding of two-photon processes is of crucial importance for constraining the hadronic uncertainties in precision measurements and in searches for new physics. The process of γ{sup *}γ{sup *} fusion (by quasi-real photons γ or virtual photons γ{sup *}) into leptons and hadrons has been observed and studied in detail at nearly all high-energy colliders. From the theoretical point of view two-photon processes are very complicated. One of approaches which may be efficiently used to study non-perturbative features of two-photon production is based on a dispersion theory. Using general properties of relativistic quantum field theory we relate in this work the forward light-by-light scattering to energy weighted integrals of the γ{sup *}γ fusion cross sections. The first type of new relations derived in this work have the form of exact super-convergence sum rules. The second type involves the effective constants of the low-energy photon-photon interaction and allow to define them in terms of two-photon production cross sections. We subsequently test and verify these sum rules exactly at tree and one-loop level in scalar and spinor QED. Furthermore, we test the criterium of the tree-level unitarity imposed by the sum rules on the example of the massive spin-1 QED. Next, we apply the sum rules for the forward light-by-light scattering process within the context of the φ{sup 4} quantum field theory. Within this theory, we present a stringent causality criterion and apply it to a particular non-perturbative resummation of graphs. Applied to the γ{sup *}γ production of mesons, the superconvergence sum rules lead to intricate relations between theγγ decay widths and the γ{sup *}γ transition form factors for (pseudo-) scalar, axial-vector and tensor

  12. Light scattering studies of solids and atomic vapors

    International Nuclear Information System (INIS)

    Chiang, T.C.

    1978-09-01

    The general technique of light scattering and luminescence was used to study the properties of a number of material systems. First, multi-phonon resonant Raman scattering up to four phonons in GaSe and one- and two-phonon resonant Raman scattering in the mixed GaS/sub x/Se/sub 1-x/ crystals with x 2 is reported. The result is used to determine the position of the direct gap of HfS 2 . Third, the first observation of the π-polarized one-magnon luminescence sideband of the 4 T/sub lg/ ( 4 G) → 6 A/sub lg/( 6 S) excitonic transition in antiferromagnetic MnF 2 is presented. An effective temperature of the crystal is deduced from the simultaneously observed anti-Stokes sideband emission. Multi-magnon ( 2 , KMnF 2 , and RbMnF 3 using pulsed excitation and detection. A simple model based on two-ion local exchange is proposed to explain the results qualitatively. Fourth, the first observation of two-magnon resonant Raman scattering in MnF 2 around the magnon sidebands is reported. A simple theoretical description explains the experimental observations. Fifth, a detailed theory of exciton-exciton interaction in MnF 2 is developed to explain and to predict the experimental results on two-exciton absorption, high level excitation, and exciton--exciton scattering. Sixth, Brillouin scattering was used to obtain the five independent elastic constants of the layered compound GaSe. The results show clear elastic anisotropy of the crystal. Resonant Brillouin scattering near the absorption edge was also studied, but no resonant enhancement was found. Seventh, two-photon parametric scattering in sodium vapor was studied. Phase matching angles and scattering cross sections are calculated for a given set of experimental conditions

  13. LIGHT SCATTERING BY FRACTAL DUST AGGREGATES. I. ANGULAR DEPENDENCE OF SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    Tazaki, Ryo [Department of Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Tanaka, Hidekazu [Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Okuzumi, Satoshi; Nomura, Hideko [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Kataoka, Akimasa, E-mail: rtazaki@kusastro.kyoto-u.ac.jp [Institute for Theoretical Astrophysics, Heidelberg University, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany)

    2016-06-01

    In protoplanetary disks, micron-sized dust grains coagulate to form highly porous dust aggregates. Because the optical properties of these aggregates are not completely understood, it is important to investigate how porous dust aggregates scatter light. In this study, the light scattering properties of porous dust aggregates were calculated using a rigorous method, the T -matrix method, and the results were then compared with those obtained using the Rayleigh–Gans–Debye (RGD) theory and Mie theory with the effective medium approximation (EMT). The RGD theory is applicable to moderately large aggregates made of nearly transparent monomers. This study considered two types of porous dust aggregates—ballistic cluster–cluster agglomerates (BCCAs) and ballistic particle–cluster agglomerates. First, the angular dependence of the scattered intensity was shown to reflect the hierarchical structure of dust aggregates; the large-scale structure of the aggregates is responsible for the intensity at small scattering angles, and their small-scale structure determines the intensity at large scattering angles. Second, it was determined that the EMT underestimates the backward scattering intensity by multiple orders of magnitude, especially in BCCAs, because the EMT averages the structure within the size of the aggregates. It was concluded that the RGD theory is a very useful method for calculating the optical properties of BCCAs.

  14. Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime

    DEFF Research Database (Denmark)

    Mics, Zoltán; D’Angio, Andrea; Jensen, Søren A.

    2013-01-01

    In a series of systematic optical pump–terahertz probe experiments, we study the density-dependent electron scattering rate in photoexcited GaAs in the regime of strong carrier diffusion. The terahertz frequency-resolved transient sheet conductivity spectra are perfectly described by the Drude...... model, directly yielding the electron scattering rates. A diffusion model is applied to determine the spatial extent of the photoexcited electron-hole gas at each moment after photoexcitation, yielding the time-dependent electron density, and hence the density-dependent electron scattering time. We find...

  15. Practical way to avoid spurious geometrical contributions in Brillouin light scattering experiments at variable scattering angles.

    Science.gov (United States)

    Battistoni, Andrea; Bencivenga, Filippo; Fioretto, Daniele; Masciovecchio, Claudio

    2014-10-15

    In this Letter, we present a simple method to avoid the well-known spurious contributions in the Brillouin light scattering (BLS) spectrum arising from the finite aperture of collection optics. The method relies on the use of special spatial filters able to select the scattered light with arbitrary precision around a given value of the momentum transfer (Q). We demonstrate the effectiveness of such filters by analyzing the BLS spectra of a reference sample as a function of scattering angle. This practical and inexpensive method could be an extremely useful tool to fully exploit the potentiality of Brillouin acoustic spectroscopy, as it will easily allow for effective Q-variable experiments with unparalleled luminosity and resolution.

  16. A review of the light scattering properties of cirrus

    International Nuclear Information System (INIS)

    Baran, Anthony J.

    2009-01-01

    In this review paper the light scattering properties of naturally occurring ice crystals that are found in cirrus are discussed. Cirrus, also referred to as ice crystal clouds, due to their cold temperatures, consist of a variety of non-spherical ice particles which may take on a variety of geometrical forms. These geometrical forms can range from symmetric pristine hexagonal ice columns and plates, single bullets and bullet-rosettes to non-symmetric aggregates of these shapes. These aggregates may also consist of highly complex three-dimensional structures, which may themselves consist of symmetric components. Not only does cirrus consist of a wide variety of shapes but also sizes too, and these sizes can range between <10 μm to over 1 cm. With such a variety of shapes and sizes predicting the light scattering properties from such an ensemble of ice crystals is the current challenge. This challenge is important to overcome since with cirrus being so high in the Earth's atmosphere it has an important influence on the Earth-atmosphere radiation balance and consequently adds to the uncertainty of predicting climate change. This is why it is important to represent as accurately as possible the single-scattering properties of cirrus ice crystals within general circulation models so that uncertainties in climate change predictions can be reduced. In this review paper the current measurements and observations of ice crystal size and shape are discussed and how these observations relate to current ice crystal models is reviewed. The light scattering properties of the current ice crystal models are also discussed and it is shown how space-based instruments may be used to test these models. The need for particular microphysical and space-based measurements is stressed in order to further constrain ice crystal light scattering models.

  17. Electron scattering and correlation structure of light nuclei

    International Nuclear Information System (INIS)

    Lodhi, M.A.K.

    1976-01-01

    It has been known for some time that the short-range correlations due to the repulsive part of the nuclear interaction is exhibited in the nuclear form factors as obtained from high energy electron scattering. In this work the harmonic oscillator basis functions are used. The nuclear form factors as obtained from elastic electron scattering are calculated, with Jastrow's technique by means of the cluster expansion of Iwamoto Yamada, in the Born approximation. The correlated wave function is given. The results for nuclear form factors calculated with the wave function are presented for some light nuclei. (Auth.)

  18. Interference of conically scattered light in surface plasmon resonance.

    Science.gov (United States)

    Webster, Aaron; Vollmer, Frank

    2013-02-01

    Surface plasmon polaritons on thin metal films are a well studied phenomena when excited using prism coupled geometries such as the Kretschmann attenuated total reflection configuration. Here we describe a novel interference pattern in the conically scattered light emanating from such a configuration when illuminated by a focused beam. We observe conditions indicating only self-interference of scattered surface plasmon polaritions without any contributions from specular reflection. The spatial evolution of this field is described in the context of Fourier optics and has applications in highly sensitive surface plasmon based biosensing.

  19. General theory of intensity correlation on light scattering

    International Nuclear Information System (INIS)

    Villaeys, A.A.

    1978-01-01

    A general theory for spatio-temporal intensity correlations measurements for a scattered beam is developed. A completely quantum mechanical description for both excitation and detection set up is used. This description is essentially valid for weak incident light beams and single photon absorption processes. From a unified point of view both, stationary as well as, time resolved experiments are described. The interest for such experiments in the study of processes like resonance raman scattering and resonance fluorescence is emphasized. Also an observable coherent contribution associated to different final levels of the target-atoms or molecules is obtained a result which cannot be reached by intensity measurements

  20. A method and algorithm for correlating scattered light and suspended particles in polluted water

    International Nuclear Information System (INIS)

    Sami Gumaan Daraigan; Mohd Zubir Matjafri; Khiruddin Abdullah; Azlan Abdul Aziz; Abdul Aziz Tajuddin; Mohd Firdaus Othman

    2005-01-01

    An optical model has been developed for measuring total suspended solids TSS concentrations in water. This approach is based on the characteristics of scattered light from the suspended particles in water samples. An optical sensor system (an active spectrometer) has been developed to correlate pollutant (total suspended solids TSS) concentration and the scattered radiation. Scattered light was measured in terms of the output voltage of the phototransistor of the sensor system. The developed algorithm was used to calculate and estimate the concentrations of the polluted water samples. The proposed algorithm was calibrated using the observed readings. The results display a strong correlation between the radiation values and the total suspended solids concentrations. The proposed system yields a high degree of accuracy with the correlation coefficient (R) of 0.99 and the root mean square error (RMS) of 63.57 mg/l. (Author)

  1. Light source distribution and scattering phase function influence light transport in diffuse multi-layered media

    Science.gov (United States)

    Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine

    2017-06-01

    Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.

  2. Dust grain characterization — Direct measurement of light scattering

    Science.gov (United States)

    BartoÅ, P.; Pavlů, J.

    2018-01-01

    Dust grains play a key role in dusty plasma since they interact with the plasma we can use them to study plasma itself. The grains are illuminated by visible light (e.g., a laser sheet) and the situation is captured with camera. Despite of simplicity, light scattering on similar-to-wavelength sized grains is complex phenomenon. Interaction of the electromagnetic wave with material has to be computed with respect to Maxwell equations — analytic solution is nowadays available only for several selected shapes like sphere, coated sphere, or infinite cylinder. Moreover, material constants needed for computations are usually unknown. For computation result verification and material constant determination, we designed and developed a device directly measur­ing light scattering profiles. Single dust grains are trapped in the ultrasonic field (so called "acoustic levitation") and illuminated by the laser beam. Scattered light is then measured by a photodiode mounted on rotating platform. Synchronous detection is employed for a noise reduction. This setup brings several benefits against conventional methods: (1) it works in the free air, (2) the measured grain is captured for a long time, and (3) the grain could be of arbitrary shape.

  3. In situ measurement of inelastic light scattering in natural waters

    Science.gov (United States)

    Hu, Chuanmin

    Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to macrophytes, have been measured and have been found to vary with time possibly due to nonphotochemical quenching

  4. Protein aggregation studied by forward light scattering and light transmission analysis

    Science.gov (United States)

    Penzkofer, A.; Shirdel, J.; Zirak, P.; Breitkreuz, H.; Wolf, E.

    2007-12-01

    The aggregation of the circadian blue-light photo-receptor cryptochrome from Drosophila melanogaster (dCry) is studied by transmission and forward light scattering measurement in the protein transparent wavelength region. The light scattering in forward direction is caused by Rayleigh scattering which is proportional to the degree of aggregation. The light transmission through the samples in the transparent region is reduced by Mie light scattering in all directions. It depends on the degree of aggregation and the monomer volume fill factor of the aggregates (less total scattering with decreasing monomer volume fill factor of protein globule) allowing a distinction between tightly packed protein aggregation (monomer volume fill factor 1) and loosely packed protein aggregation (monomer volume fill factor less than 1). An increase in aggregation with temperature, concentration, and blue-light exposure is observed. At a temperature of 4 °C and a protein concentration of less than 0.135 mM no dCry aggregation was observed, while at 24 °C and 0.327 mM gelation occurred (loosely packed aggregates occupying the whole solution volume).

  5. Radiative heat transfer in strongly forward scattering media using the discrete ordinates method

    Science.gov (United States)

    Granate, Pedro; Coelho, Pedro J.; Roger, Maxime

    2016-03-01

    The discrete ordinates method (DOM) is widely used to solve the radiative transfer equation, often yielding satisfactory results. However, in the presence of strongly forward scattering media, this method does not generally conserve the scattering energy and the phase function asymmetry factor. Because of this, the normalization of the phase function has been proposed to guarantee that the scattering energy and the asymmetry factor are conserved. Various authors have used different normalization techniques. Three of these are compared in the present work, along with two other methods, one based on the finite volume method (FVM) and another one based on the spherical harmonics discrete ordinates method (SHDOM). In addition, the approximation of the Henyey-Greenstein phase function by a different one is investigated as an alternative to the phase function normalization. The approximate phase function is given by the sum of a Dirac delta function, which accounts for the forward scattering peak, and a smoother scaled phase function. In this study, these techniques are applied to three scalar radiative transfer test cases, namely a three-dimensional cubic domain with a purely scattering medium, an axisymmetric cylindrical enclosure containing an emitting-absorbing-scattering medium, and a three-dimensional transient problem with collimated irradiation. The present results show that accurate predictions are achieved for strongly forward scattering media when the phase function is normalized in such a way that both the scattered energy and the phase function asymmetry factor are conserved. The normalization of the phase function may be avoided using the FVM or the SHDOM to evaluate the in-scattering term of the radiative transfer equation. Both methods yield results whose accuracy is similar to that obtained using the DOM along with normalization of the phase function. Very satisfactory predictions were also achieved using the delta-M phase function, while the delta

  6. Time Dependence of Aerosol Light Scattering Downwind of Forest Fires

    Science.gov (United States)

    Kleinman, L. I.; Sedlacek, A. J., III; Wang, J.; Lewis, E. R.; Springston, S. R.; Chand, D.; Shilling, J.; Arnott, W. P.; Freedman, A.; Onasch, T. B.; Fortner, E.; Zhang, Q.; Yokelson, R. J.; Adachi, K.; Buseck, P. R.

    2017-12-01

    In the first phase of BBOP (Biomass Burn Observation Project), a Department of Energy (DOE) sponsored study, wildland fires in the Pacific Northwest were sampled from the G-1 aircraft via sequences of transects that encountered emission whose age (time since emission) ranged from approximately 15 minutes to four hours. Comparisons between transects allowed us to determine the near-field time evolution of trace gases, aerosol particles, and optical properties. The fractional increase in aerosol concentration with plume age was typically less than a third of the fractional increase in light scattering. In some fires the increase in light scattering exceeded a factor of two. Two possible causes for the discrepancy between scattering and aerosol mass are i) the downwind formation of refractory tar balls that are not detected by the AMS and therefore contribute to scattering but not to aerosol mass and ii) changes to the aerosol size distribution. Both possibilities are considered. Our information on tar balls comes from an analysis of TEM grids. A direct determination of size changes is complicated by extremely high aerosol number concentrations that caused coincidence problems for the PCASP and UHSAS probes. We instead construct a set of plausible log normal size distributions and for each member of the set do Mie calculations to determine mass scattering efficiency (MSE), angstrom exponents, and backscatter ratios. Best fit size distributions are selected by comparison with observed data derived from multi-wavelength scattering measurements, an extrapolated FIMS size distribution, and mass measurements from an SP-AMS. MSE at 550 nm varies from a typical near source value of 2-3 to about 4 in aged air.

  7. Parhelic-like circle from light scattering in Plateau borders

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A., E-mail: tufaile@usp.br; Tufaile, A.P.B.

    2015-03-06

    We are reporting a new simple optical element to generate halos. We have observed interesting patterns of light scattering in Plateau borders in foams. In analogy to the atmospheric phenomena known as parhelic circle, sun dogs, and sun pillars, we have named the features of the patterns observed as parlaseric circle, laser dogs, and laser pillars. The triangular symmetry of the Plateau borders is analogous to the hexagonal symmetry of ice crystals which produce these atmospheric phenomena. Working with one Plateau border at a time, we have observed wave optics phenomena that are not perceived in the atmospheric phenomena, such as diffraction and interference. - Highlights: • We obtained halo formation from light scattering in a Plateau border using an experiment. • We explained halo formation using geometrical theory of diffraction. • An optical element based on a Plateau border is proposed. • We compared some aspects of the parhelic circle with the parlaseric circle.

  8. Characterization of thermal plasmas by laser light scattering

    International Nuclear Information System (INIS)

    Snyder, S.C.; Lassahn, G.D.; Reynolds, L.D.; Fincke, J.R.

    1993-01-01

    Characterization of an atmospheric pressure free-burning arc discharge and a plasma jet by lineshape analysis of scattered laser light is described. Unlike emission spectroscopy, this technique provides direct measurement of plasma gas temperature, electron temperature and electron density without the assumption of local thermodynamic equilibrium (LTE). Plasma gas velocity can also be determined from the Doppler shift of the scattered laser light. Radial gas temperature, electron temperature and electron density profiles are presented for an atmospheric pressure argon free-burning arc discharge. These results show a significant departure from LTE in the arc column, contradicting results obtained from emission spectroscopy. Radial gas temperature and gas velocity profiles in the exit plane of a subsonic atmospheric pressure argon plasma jet are also presented. In this case, the results show the plasma jet is close to LTE in the center, but not in the fringes. The velocity profile is parabolic

  9. Light scattering measurements supporting helical structures for chromatin in solution.

    Science.gov (United States)

    Campbell, A M; Cotter, R I; Pardon, J F

    1978-05-01

    Laser light scattering measurements have been made on a series of polynucleosomes containing from 50 to 150 nucleosomes. Radii of gyration have been determined as a function of polynucleosome length for different ionic strength solutions. The results suggest that at low ionic strength the chromatin adopts a loosely helical structure rather than a random coil. The helix becomes more regular on increasing the ionic strength, the dimension resembling those proposed by Finch and Klug for their solenoid model.

  10. Quantum correlations induced by multiple scattering of quadrature squeezed light

    DEFF Research Database (Denmark)

    Lodahl, Peter

    2006-01-01

    Propagating quadrature squeezed light through a multiple scattering random medium is found to induce pronounced spatial quantum correlations that have no classical analogue. The correlations are revealed in the number of photons transported through the sample that can be measured from the intensity...... fluctuations of the total transmission or reflection. In contrast, no pronounced spatial quantum correlations appear in the quadrature amplitudes where excess noise above the shot noise level is found....

  11. Dust Evolution Can Produce Scattered Light Gaps in Protoplanetary Disks

    OpenAIRE

    Birnstiel, Tilman; Andrews, Sean M.; Pinilla, Paola; Kama, Mihkel

    2015-01-01

    Recent imaging of protoplanetary disks with high resolution and contrast have revealed a striking variety of substructure. Of particular interest are cases where near-infrared scattered light images show evidence for low-intensity annular "gaps." The origins of such structures are still uncertain, but the interaction of the gas disk with planets is a common interpretation. We study the impact that the evolution of the solid material can have on the observable properties of disks in a simple s...

  12. Measurement of molecular polarizability on Rayleigh light scattering

    International Nuclear Information System (INIS)

    Nerushev, O.A.; Novopashin, S.A.

    1994-01-01

    The installation for measuring the polarizability of atoms and molecules on Rayleigh light scattering is described. The measurements in gases with the known polarizability are used for a calibration. Test measurements are carried out on nitrogen, argon, carbon dioxide, vapours of water and acetone. The results of measurements are compared with the table data. The technique is used for measuring the polarizability of fullerene molecules. 6 refs., 2 figs

  13. The self-association of acebutolol: Conductometry and light scattering

    Science.gov (United States)

    Ruso, Juan M.; López-Fontán, José L.; Prieto, Gerardo; Sarmiento, Félix

    2003-04-01

    The association characteristics of an amphiphilic beta-blocker drug, acebutolol hydrochloride, in aqueous solution containing high concentrations of electrolyte and at different temperatures have been examined by static and dynamic light scattering and electrical conductivity. Time averaged light scattering measurements on aqueous solutions of acebutolol at 298.15 K in the presence of added electrolyte (0.4-1.0 mol kg-1 NaCl) have shown discontinuities which reflect the appearance of aggregates. The critical micelle concentration, aggregation numbers, effective micelle charges, and degree of micellar ionization were calculated. Dynamic light scattering has shown an increase in micellar size with increase in concentration of added electrolyte. Data have been interpreted using the DLVO theory to quantify the interaction between the drug aggregates and the colloidal stability. Critical micelle concentrations in water have been calculated from conductivity measurements over the temperature range 288.15-313.15 K. The variation in critical concentration with temperature passes through a minimum close to 294 K. Thermodynamic parameters of aggregate formation (ΔGm0,ΔHm0,ΔSm0) were obtained from a variation of the mass action model applicable to systems of low aggregation number.

  14. Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory

    Directory of Open Access Journals (Sweden)

    Adi Armoni

    2018-03-01

    Full Text Available We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.

  15. Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory

    Science.gov (United States)

    Armoni, Adi; Ireson, Edwin; Vadacchino, Davide

    2018-03-01

    We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement) the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.

  16. An unusually strong resonant phonon scattering by 3-d impurities in II-VI semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lonchakov, A.T.; Sokolov, V.I.; Gruzdev, N.B. [Institute of Metal Physics, Russian Academy of Sciences, Ural Branch, S. Kovalevskaya Str. 18, 620219 Ekaterinburg (Russian Federation)

    2004-11-01

    Low temperature phonon heat conductivity was measured for ZnSe and ZnS crystals, doped with 3-d impurities. A strong resonance-like phonon scattering by 3-d ions with orbitally degenerate ground state was observed. The Jahn-Teller effect is proposed as the reason of the strong resonance-like behaviour of heat conductivity. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    Energy Technology Data Exchange (ETDEWEB)

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential to be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.

  18. Inelastic light scattering spectroscopy of semiconductor nitride nanocolumns

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, J.M.; Lazic, S.; Sanchez-Paramo, J. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Agullo-Rueda, F. [Materials Science Institute of Madrid, CSIC, 28049 Madrid (Spain); Cerutti, L.; Ristic, J.; Fernandez-Garrido, S.; Sanchez-Garcia, M.A.; Grandal, J.; Calleja, E. [ISOM and Departamento de Ingenieria Electronica, ETSIT, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Trampert, A.; Jahn, U. [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2007-08-15

    A review of inelastic light scattering measurements on group III-nitride nanocolumns grown by molecular beam epitaxy is presented. The nanocolumns are hexagonal, high quality single crystals with diameters in the range of 20 to 100 nm, with no traces of extended defects. GaN nanocolumns grown on bare Si substrates with both (111) and (100) orientation display narrow phonon peaks, indicating the absence of strain inhomogeneities. This opens the possibility of efficient integration of the nanocolumns as optoelectronic devices with the complementary metal oxide semiconductor technology. Measurements of the E{sub 2} phonon frequency on AlGaN nanocolumns indicate a linear dependence of the Al concentration on the Al relative flux, up to 60%. The E{sub 2} peak width increases with Al content due to phonon damping by alloy scattering. Inelastic light scattering measurements in InN nanocolumns display a coupled LO phonon-plasmon mode together with uncoupled phonons. The coupled mode is not observed in a reference compact sample. The origin of the coupled mode is attributed to spontaneous accumulation of electrons at the lateral surfaces of the nanocolumns. The presence of free electrons in the nanocolumns is confirmed by infrared reflectance measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Inelastic light scattering spectroscopy of semiconductor nitride nanocolumns

    International Nuclear Information System (INIS)

    Calleja, J.M.; Lazic, S.; Sanchez-Paramo, J.; Agullo-Rueda, F.; Cerutti, L.; Ristic, J.; Fernandez-Garrido, S.; Sanchez-Garcia, M.A.; Grandal, J.; Calleja, E.; Trampert, A.; Jahn, U.

    2007-01-01

    A review of inelastic light scattering measurements on group III-nitride nanocolumns grown by molecular beam epitaxy is presented. The nanocolumns are hexagonal, high quality single crystals with diameters in the range of 20 to 100 nm, with no traces of extended defects. GaN nanocolumns grown on bare Si substrates with both (111) and (100) orientation display narrow phonon peaks, indicating the absence of strain inhomogeneities. This opens the possibility of efficient integration of the nanocolumns as optoelectronic devices with the complementary metal oxide semiconductor technology. Measurements of the E 2 phonon frequency on AlGaN nanocolumns indicate a linear dependence of the Al concentration on the Al relative flux, up to 60%. The E 2 peak width increases with Al content due to phonon damping by alloy scattering. Inelastic light scattering measurements in InN nanocolumns display a coupled LO phonon-plasmon mode together with uncoupled phonons. The coupled mode is not observed in a reference compact sample. The origin of the coupled mode is attributed to spontaneous accumulation of electrons at the lateral surfaces of the nanocolumns. The presence of free electrons in the nanocolumns is confirmed by infrared reflectance measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Light scattering in porous materials: Geometrical optics and stereological approach

    International Nuclear Information System (INIS)

    Malinka, Aleksey V.

    2014-01-01

    Porous material has been considered from the point of view of stereology (geometrical statistics), as a two-phase random mixture of solid material and air. Considered are the materials having the refractive index with the real part that differs notably from unit and the imaginary part much less than unit. Light scattering in such materials has been described using geometrical optics. These two – the geometrical optics laws and the stereological approach – allow one to obtain the inherent optical properties of such a porous material, which are basic in the radiative transfer theory: the photon survival probability, the scattering phase function, and the polarization properties (Mueller matrix). In this work these characteristics are expressed through the refractive index of the material and the random chord length distribution. The obtained results are compared with the traditional approach, modeling the porous material as a pack of particles of different shapes. - Highlights: • Porous material has been considered from the point of view of stereology. • Properties of a two-phase random mixture of solid material and air are considered. • Light scattering in such materials has been described using geometrical optics. • The inherent optical properties of such a porous material have been obtained

  1. Light scattering influence in cyanobacteria suspensions inside a photobioreactor

    Science.gov (United States)

    Fanjul-Vélez, F.; Arce-Diego, J. L.

    2018-02-01

    The application of biotechnology is increasing in areas such as agriculture, biochemistry or biomedicine. Growing bacteria or algae could be beneficial for supplying fuel, drugs, food or oxygen, among other products. An adequate knowledge of biological processes is becoming essential to estimate and control products production. Cyanobacteria are particularly appropriate for producing oxygen and biomass, by consuming mainly carbon dioxide and light irradiation. These capacities could be employed to provide human subsistence in adverse environments, as basic breathing and food needs would be satisfied. Cyanobacteria growing is carried out in bioreactors. As light irradiation is quite relevant for their behavior, photobioreactors are needed. Photobioreactors are designed to supply and control the amounts of elements they need, in order to maximize growth. The adequate design of photobioreactors greatly influences production throughput. This design includes, on the optical side, optical illumination and optical measurement of cyanobacteria growth. The influence of optical scattering is fundamental for maximizing cyanobacteria growing, as long as for adequately measure this growth. In this work, optical scattering in cyanobacteria suspensions is analyzed. Optical properties of cyanobacteria and its relationship with concentration is taken into account. Several types of cyanobacteria are considered. The influence of different beam spatial profiles and irradiances is studied by a Monte Carlo approach. The results would allow the consideration of the influence of optical scattering in the detected optical signal employed for growth monitoring, as a function of cyanobacteria type and optical beam parameters.

  2. Ultraviolet refractometry using field-based light scattering spectroscopy

    Science.gov (United States)

    Fu, Dan; Choi, Wonshik; Sung, Yongjin; Oh, Seungeun; Yaqoob, Zahid; Park, YongKeun; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angular scattering distribution of single microspheres immersed in homogeneous media is measured over the wavelength range 260 to 315 nm using quantitative phase microscopy. By least square fitting the observed scattering distribution with Mie scattering theory, the refractive index of either the sphere or the immersion medium can be determined provided that one is known a priori. Using this method, we have measured the refractive index dispersion of SiO2 spheres and bovine serum albumin (BSA) solutions in the deep UV region. Specific refractive index increments of BSA are also extracted. Typical accuracy of the present refractive index technique is ≤0.003. The precision of refractive index measurements is ≤0.002 and that of specific refractive index increment determination is ≤0.01 mL/g. PMID:20372622

  3. Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells.

    Science.gov (United States)

    van Lare, Claire; Lenzmann, Frank; Verschuuren, Marc A; Polman, Albert

    2015-08-12

    We demonstrate an effective light trapping geometry for thin-film solar cells that is composed of dielectric light scattering nanocavities at the interface between the metal back contact and the semiconductor absorber layer. The geometry is based on resonant Mie scattering. It avoids the Ohmic losses found in metallic (plasmonic) nanopatterns, and the dielectric scatterers are well compatible with nearly all types of thin-film solar cells, including cells produced using high temperature processes. The external quantum efficiency of thin-film a-Si:H solar cells grown on top of a nanopatterned Al-doped ZnO, made using soft imprint lithography, is strongly enhanced in the 550-800 nm spectral band by the dielectric nanoscatterers. Numerical simulations are in good agreement with experimental data and show that resonant light scattering from both the AZO nanostructures and the embedded Si nanostructures are important. The results are generic and can be applied on nearly all thin-film solar cells.

  4. Light scattering techniques for the characterization of optical components

    Science.gov (United States)

    Hauptvogel, M.; Schröder, S.; Herffurth, T.; Trost, M.; von Finck, A.; Duparré, A.; Weigel, T.

    2017-11-01

    The rapid developments in optical technologies generate increasingly higher and sometimes completely new demands on the quality of materials, surfaces, components, and systems. Examples for such driving applications are the steadily shrinking feature sizes in semiconductor lithography, nanostructured functional surfaces for consumer optics, and advanced optical systems for astronomy and space applications. The reduction of surface defects as well as the minimization of roughness and other scatter-relevant irregularities are essential factors in all these areas of application. Quality-monitoring for analysing and improving those properties must ensure that even minimal defects and roughness values can be detected reliably. Light scattering methods have a high potential for a non-contact, rapid, efficient, and sensitive determination of roughness, surface structures, and defects.

  5. Light scattering by epitaxial VO{sub 2} films near the metal-insulator transition point

    Energy Technology Data Exchange (ETDEWEB)

    Lysenko, Sergiy, E-mail: sergiy.lysenko@upr.edu; Fernández, Felix; Rúa, Armando; Figueroa, Jose; Vargas, Kevin; Cordero, Joseph [Department of Physics, University of Puerto Rico, Mayaguez, Puerto Rico 00681 (United States); Aparicio, Joaquin [Department of Physics, University of Puerto Rico-Ponce, Ponce, Puerto Rico 00732 (United States); Sepúlveda, Nelson [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States)

    2015-05-14

    Experimental observation of metal-insulator transition in epitaxial films of vanadium dioxide is reported. Hemispherical angle-resolved light scattering technique is applied for statistical analysis of the phase transition processes on mesoscale. It is shown that the thermal hysteresis strongly depends on spatial frequency of surface irregularities. The transformation of scattering indicatrix depends on sample morphology and is principally different for the thin films with higher internal elastic strain and for the thicker films where this strain is suppressed by introduction of misfit dislocations. The evolution of scattering indicatrix, fractal dimension, surface power spectral density, and surface autocorrelation function demonstrates distinctive behavior which elucidates the influence of structural defects and strain on thermal hysteresis, twinning of microcrystallites, and domain formation during the phase transition.

  6. Population of collective modes in light scattering by many atoms

    Science.gov (United States)

    Guerin, William; Kaiser, Robin

    2017-05-01

    The interaction of light with an atomic sample containing a large number of particles gives rise to many collective (or cooperative) effects, such as multiple scattering, superradiance, and subradiance, even if the atomic density is low and the incident optical intensity weak (linear optics regime). Tracing over the degrees of freedom of the light field, the system can be well described by an effective atomic Hamiltonian, which contains the light-mediated dipole-dipole interaction between atoms. This long-range interaction is at the origin of the various collective effects, or of collective excitation modes of the system. Even though an analysis of the eigenvalues and eigenfunctions of these collective modes does allow distinguishing superradiant modes, for instance, from other collective modes, this is not sufficient to understand the dynamics of a driven system, as not all collective modes are significantly populated. Here, we study how the excitation parameters, i.e., the driving field, determines the population of the collective modes. We investigate in particular the role of the laser detuning from the atomic transition, and demonstrate a simple relation between the detuning and the steady-state population of the modes. This relation allows understanding several properties of cooperative scattering, such as why superradiance and subradiance become independent of the detuning at large enough detuning without vanishing, and why superradiance, but not subradiance, is suppressed near resonance. We also show that the spatial properties of the collective modes allow distinguishing diffusive modes, responsible for radiation trapping, from subradiant modes.

  7. Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Vais, O. E.; Bochkarev, S. G., E-mail: bochkar@sci.lebedev.ru; Bychenkov, V. Yu. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2016-09-15

    The problem of nonlinear Thomson scattering of a relativistically strong linearly polarized ultrashort laser pulse tightly focused into a spot with a diameter of D{sub F} ≳ λ (where λ is the laser wavelength) is solved. The energy, spectral, and angular distributions of radiation generated due to Thomson scattering from test electrons located in the focal region are found. The characteristics of scattered radiation are studied as functions of the tightness of laser focusing and the initial position of test particles relative to the center of the focal region for a given laser pulse energy. It is demonstrated that the ultratight focusing is not optimal for obtaining the brightest and hardest source of secondary electromagnetic radiation. The hardest and shortest radiation pulse is generated when the beam waist diameter is ≃10λ.

  8. Angular characteristics of the stimulated-Brillouin-scattering spectrum from a laser plasma with strong acoustic-wave damping

    International Nuclear Information System (INIS)

    Saikia, P.

    1981-01-01

    The spectrum of stimulated Brillouin scattering from an inhomogeneous moving laser plasma is analyzed. The damping of acoustic waves and scattered electromagnetic waves is taken into account. Spectra are derived for various scattering angles and for various radii of the laser beam. For all observation angles the center of the spectral line is at an unshifted frequency. As the observation angle increases, the width of the red wing in the spectrum increases. The intensity of the scattered light is very anisotropic

  9. Online monitoring of a belt grinding process by using a light scattering method

    International Nuclear Information System (INIS)

    Boehm, Johannes; Vernes, Andras; Vorlaufer, Georg; Vellekoop, Michael

    2010-01-01

    Industrially ground surfaces often have a characteristic surface topography known as chatter marks. The surface finishing is mainly monitored by optical measurement techniques. In this work, the monitoring of an industrial belt grinding process with a light scattering sensor is presented. Although this technique is primarily applied for parametric surface roughness analysis, here it is shown that it enables also the measurement of the surface topography, i.e., the chatter marks occurring during the belt grinding process. In particular, it is proven that the light scattering method is appropriate to measure online the topography of chatter marks. Furthermore, the frequency analysis of the data reveals that the wavelength of chatter marks strongly depends on process parameters, such as the grinding speed.

  10. Experimental study of Rayleigh scattering with a ruby laser beam: relative variation of scattered light with the number of scattering center and the gases nature

    International Nuclear Information System (INIS)

    Bayer, Charles

    1973-06-01

    The experimental variation of the scattered light with the number of scattering centers and with the refraction index of gases is in agreement with the theoretical Rayleigh scattering. A direct calibration System gives the absolute value of the Rayleigh ratio. The experimental value appears to be half of the theoretical one. (author) [fr

  11. Computation of bessel functions in light scattering studies.

    Science.gov (United States)

    Ross, W D

    1972-09-01

    Computations of light scattering require finding Bessel functions of a series of orders. These are found most easily by recurrence, but excessive rounding errors may accumulate. Satisfactory procedures for cylinder and sphere functions are described. If argument z is real, find Y(n)(z) by recurrence to high orders. From two high orders of Y(n)(z) estimate J(n)(z). Use backward recurrence to maximum J(n)(z). Correct by forward recurrence to maximum. If z is complex, estimate high orders of J(n)(z) without Y(n)(z) and use backward recurrence.

  12. A preview of a microgravity laser light scattering instrument

    Science.gov (United States)

    Meyer, W. V.; Ansari, R. R.

    1991-01-01

    The development of a versatile, miniature, modular light scattering instrument to be used in microgravity is described. The instrument will measure microscopic particles in the size range of thirty angstroms to above three microns. This modular instrument permits several configurations, each optimized for a particular experiment. In particular, a multiangle instrument will probably be mounted in a rack in the Space Shuttle and on the Space Station. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations.

  13. Spectral analysis of scattered light from flowers' petals

    Science.gov (United States)

    Ozawa, Atsumi; Uehara, Tomomi; Sekiguchi, Fumihiko; Imai, Hajime

    2009-07-01

    A new method was developed for studying absorption characteristics of opaque samples based on the light scattering spectroscopy. Measurements were made in white, red and violet petals of Petunia hybrida, and gave the absorption spectra in a non-destructive manner without damaging the cell structures of the petal. The red petal has absorption peak at 550 nm and the violet has three absorption peaks: at 450, 670, and 550 nm. The results were discussed in correlation with the microscopic cell structures of the petal observed with optical microscope and transmission electron microscopy (TEM). Only the cells placed in the surface have the pigments giving the color of the petal.

  14. Light-scattering models applied to circumstellar dust properties

    International Nuclear Information System (INIS)

    Koehler, Melanie; Mann, Ingrid

    2004-01-01

    Radiation pressure force, Poynting-Robertson effect, and collisions are important to determine the size distribution of dust in circumstellar debris disks with the two former parameters depending on the light-scattering properties of grains. We here present Mie and discrete-dipole approximation (DDA) calculations to describe the optical properties of dust particles around β Pictoris, Vega, and Fomalhaut in order to study the influence of the radiation pressure force. We find that the differences between Mie and DDA calculations are lower than 30% for all porosities. Therefore, Mie calculations can be used to determine the cut-off limits which contribute to the size distribution for the different systems

  15. Impact of polishing on the light scattering at aerogel surface

    International Nuclear Information System (INIS)

    Barnyakov, A.Yu.; Barnyakov, M.Yu.; Bobrovnikov, V.S.; Buzykaev, A.R.; Danilyuk, A.F.; Katcin, A.A.; Kononov, S.A.; Kirilenko, P.S.; Kravchenko, E.A.; Kuyanov, I.A.; Onuchin, A.P.; Ovtin, I.V.; Predein, A.Yu.; Protsenko, R.S.

    2016-01-01

    Particle identification power of modern aerogel RICH detectors strongly depends on optical quality of radiators. It was shown that wavelength dependence of aerogel tile transparency after polishing cannot be described by the standard Hunt formula. The Hunt formula has been modified to describe scattering in a thin layer of silica dust on the surface of aerogel tile. Several procedures of polishing of aerogel tile have been tested. The best result has been achieved while using natural silk tissue. The resulting block has optical smooth surfaces. The measured decrease of aerogel transparency due to surface scattering is about few percent. This result could be used for production of radiators for the Focusing Aerogel RICH detectors.

  16. Comments on gluon 6-point scattering amplitudes in N = 4 SYM at strong coupling

    International Nuclear Information System (INIS)

    Astefanesei, Dumitru; Dobashi, Suguru; Ito, Katsushi; Nastase, Horatiu

    2007-01-01

    We use the AdS-CFT prescription of Alday and Maldacena [1] to analyze gluon 6-point scattering amplitudes at strong coupling in N = 4 SYM. By cutting and gluing we obtain AdS 6-point amplitudes that contain extra boundary conditions and come close to matching the field theory results. We interpret them as parts of the field theory amplitudes, containing only certain diagrams. We also analyze the collinear limits of 6- and 5-point amplitudes and discuss the results

  17. Strongly correlated electron systems and neutron scattering. Magnetism, superconductivity, structural phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron scattering experiments in our group on strongly correlated electron systems are reviewed Metal-insulator transitions caused by structural phase transitions in (La{sub 1-x}Sr{sub x}) MnO{sub 3}, a novel magnetic transition in the CeP compound, correlations between antiferromagnetism and superconductivity in UPd{sub 2}Al{sub 3} and so forth are discussed. Here, in this note, the phase transition of Mn-oxides was mainly described. (author)

  18. Collision induced light-scattering from gaseous sulphurhexafluoride

    International Nuclear Information System (INIS)

    Pleich, R.

    1983-10-01

    Modern laser technology permits the measurement of collision induced light-scattering spectra from molecular gases at low densities. Measurements of this type provide a test for the separation dependent pair polarizabilities and pair potentials. For this work the octahedral molecule sulphurhexafluoride (SF 6 , point group symmetry 0sub(h)) has been chosen for which the permanent polarizability anisotropy vanishes. For the experiment an argon ion laser in combination with a double grating monochromator and standard photon counting techniques were used. Both the polarized and depolarized scattering cross sections were obtained. The point dipole-induced-dipole (DID) effect is shown to account for the most of the total scattered intensity. At low frequency shifts the line shape of the SF 6 spectrum is dominated by bound dimers, whereas the intermediate frequency range up to 50 cm -1 is well described by a DID free trajectory binary collision model. The high frequency wings are discussed in terms of the collision induced rotational Raman (CIRR) effect and estimates for the dipole-octopole polarizability E are obtained both from the spectral distribution and from the depolarization ratio. It is demonstrated that the hierarchy of effects constituting the CIRR-model converges slowly for large frequency shifts. (Author)

  19. Light-matter interaction in the strong coupling regime: configurations, conditions, and applications.

    Science.gov (United States)

    Dovzhenko, D S; Ryabchuk, S V; Rakovich, Yu P; Nabiev, I R

    2018-02-22

    Resonance interaction between a molecular transition and a confined electromagnetic field can reach the coupling regime where coherent exchange of energy between light and matter becomes reversible. In this case, two new hybrid states separated in energy are formed instead of independent eigenstates, which is known as Rabi splitting. This modification of the energy spectra of the system offers new possibilities for controlled impact on various fundamental properties of coupled matter (such as the rate of chemical reactions and the conductivity of organic semiconductors). To date, the strong coupling regime has been demonstrated in many configurations under different ambient conditions. However, there is still no comprehensive approach to determining parameters for achieving the strong coupling regime for a wide range of practical applications. In this review, a detailed analysis of various systems and corresponding conditions for reaching strong coupling is carried out and their advantages and disadvantages, as well as the prospects for application, are considered. The review also summarizes recent experiments in which the strong coupling regime has led to new interesting results, such as the possibility of collective strong coupling between X-rays and matter excitation in a periodic array of Fe isotopes, which extends the applications of quantum optics; a strong amplification of the Raman scattering signal from a coupled system, which can be used in surface-enhanced and tip-enhanced Raman spectroscopy; and more efficient second-harmonic generation from the low polaritonic state, which is promising for nonlinear optics. The results reviewed demonstrate great potential for further practical applications of strong coupling in the fields of photonics (low-threshold lasers), quantum communications (switches), and biophysics (molecular fingerprinting).

  20. Total internal reflection and dynamic light scattering microscopy of gels

    Science.gov (United States)

    Gregor, Brian F.

    Two different techniques which apply optical microscopy in novel ways to the study of biological systems and materials were built and applied to several samples. The first is a system for adapting the well-known technique of dynamic light scattering (DLS) to an optical microscope. This can detect and scatter light from very small volumes, as compared to standard DLS which studies light scattering from volumes 1000x larger. The small scattering volume also allows for the observation of nonergodic dynamics in appropriate samples. Porcine gastric mucin (PGM) forms a gel at low pH which lines the epithelial cell layer and acts as a protective barrier against the acidic stomach environment. The dynamics and microscopic viscosity of PGM at different pH levels is studied using polystyrene microspheres as tracer particles. The microscopic viscosity and microrheological properties of the commercial basement membrane Matrigel are also studied with this instrument. Matrigel is frequently used to culture cells and its properties remain poorly determined. Well-characterized and purely synthetic Matrigel substitutes will need to have the correct rheological and morphological characteristics. The second instrument designed and built is a microscope which uses an interferometry technique to achieve an improvement in resolution 2.5x better in one dimension than the Abbe diffraction limit. The technique is based upon the interference of the evanescent field generated on the surface of a prism by a laser in a total internal reflection geometry. The enhanced resolution is demonstrated with fluorescent samples. Additionally. Raman imaging microscopy is demonstrated using the evanescent field in resonant and non-resonant samples, although attempts at applying the enhanced resolution technique to the Raman images were ultimately unsuccessful. Applications of this instrument include high resolution imaging of cell membranes and macroscopic structures in gels and proteins. Finally, a third

  1. Polarized scattered light from self-luminous exoplanets. Three-dimensional scattering radiative transfer with ARTES

    Science.gov (United States)

    Stolker, T.; Min, M.; Stam, D. M.; Mollière, P.; Dominik, C.; Waters, L. B. F. M.

    2017-11-01

    Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest generation of high-contrast imaging instruments. Aims: We aim to investigate the effect of latitudinal and longitudinal cloud variations, circumplanetary disks, atmospheric oblateness, and cloud particle properties on the integrated degree and direction of polarization in the near-infrared. We want to understand how 3D atmospheric asymmetries affect the polarization signal in order to assess the potential of infrared polarimetry for direct imaging observations of planetary-mass companions. Methods: We have developed a three-dimensional Monte Carlo radiative transfer code (ARTES) for scattered light simulations in (exo)planetary atmospheres. The code is applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. A gray atmosphere approximation is used for the thermal structure. Results: The disk-integrated degree of polarization of a horizontally-inhomogeneous atmosphere is maximal when the planet is flattened, the optical thickness of the equatorial clouds is large compared to the polar clouds, and the clouds are located at high altitude. For a flattened planet, the integrated polarization can both increase or decrease with respect to a spherical planet which depends on the horizontal distribution and optical thickness of the clouds. The direction of polarization can be either parallel or perpendicular to the projected direction of the rotation axis when clouds are zonally distributed. Rayleigh scattering by submicron-sized cloud particles will maximize the polarimetric signal whereas the integrated degree of polarization is significantly reduced with micron

  2. Assessment of Coulomb shifts in nucleon scattering resonances on light nuclei at low energies

    International Nuclear Information System (INIS)

    Takibaev, N.Zh.; Uzakova, Zh.; Abdanova, L.

    2003-01-01

    The assessments of the Coulomb forces contribution to position and width of the resonances at nucleons scattering on light nuclei within low energy field are given. In particular the shifts of resonances in amplitudes arising in the processes protons scattering on light nuclei relatively neutrons scattering resonance characteristics on these nuclei are considered

  3. Flow speed measurement using two-point collective light scattering

    International Nuclear Information System (INIS)

    Heinemeier, N.P.

    1998-09-01

    Measurements of turbulence in plasmas and fluids using the technique of collective light scattering have always been plagued by very poor spatial resolution. In 1994, a novel two-point collective light scattering system for the measurement of transport in a fusion plasma was proposed. This diagnostic method was design for a great improvement of the spatial resolution, without sacrificing accuracy in the velocity measurement. The system was installed at the W7-AS steallartor in Garching, Germany, in 1996, and has been operating since. This master thesis is an investigation of the possible application of this new method to the measurement of flow speeds in normal fluids, in particular air, although the results presented in this work have significance for the plasma measurements as well. The main goal of the project was the experimental verification of previous theoretical predictions. However, the theoretical considerations presented in the thesis show that the method can only be hoped to work for flows that are almost laminar and shearless, which makes it of very small practical interest. Furthermore, this result also implies that the diagnostic at W7-AS cannot be expected to give the results originally hoped for. (au)

  4. Fining of Red Wine Monitored by Multiple Light Scattering.

    Science.gov (United States)

    Ferrentino, Giovanna; Ramezani, Mohsen; Morozova, Ksenia; Hafner, Daniela; Pedri, Ulrich; Pixner, Konrad; Scampicchio, Matteo

    2017-07-12

    This work describes a new approach based on multiple light scattering to study red wine clarification processes. The whole spectral signal (1933 backscattering points along the length of each sample vial) were fitted by a multivariate kinetic model that was built with a three-step mechanism, implying (1) adsorption of wine colloids to fining agents, (2) aggregation into larger particles, and (3) sedimentation. Each step is characterized by a reaction rate constant. According to the first reaction, the results showed that gelatin was the most efficient fining agent, concerning the main objective, which was the clarification of the wine, and consequently the increase in its limpidity. Such a trend was also discussed in relation to the results achieved by nephelometry, total phenols, ζ-potential, color, sensory, and electronic nose analyses. Also, higher concentrations of the fining agent (from 5 to 30 g/100 L) or higher temperatures (from 10 to 20 °C) sped up the process. Finally, the advantage of using the whole spectral signal vs classical univariate approaches was demonstrated by comparing the uncertainty associated with the rate constants of the proposed kinetic model. Overall, multiple light scattering technique showed a great potential for studying fining processes compared to classical univariate approaches.

  5. Flow speed measurement using two-point collective light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeier, N.P

    1998-09-01

    Measurements of turbulence in plasmas and fluids using the technique of collective light scattering have always been plagued by very poor spatial resolution. In 1994, a novel two-point collective light scattering system for the measurement of transport in a fusion plasma was proposed. This diagnostic method was design for a great improvement of the spatial resolution, without sacrificing accuracy in the velocity measurement. The system was installed at the W7-AS steallartor in Garching, Germany, in 1996, and has been operating since. This master thesis is an investigation of the possible application of this new method to the measurement of flow speeds in normal fluids, in particular air, although the results presented in this work have significance for the plasma measurements as well. The main goal of the project was the experimental verification of previous theoretical predictions. However, the theoretical considerations presented in the thesis show that the method can only be hoped to work for flows that are almost laminar and shearless, which makes it of very small practical interest. Furthermore, this result also implies that the diagnostic at W7-AS cannot be expected to give the results originally hoped for. (au) 1 tab., 51 ills., 29 refs.

  6. Direct Detection of Polarized, Scattered Light from Exoplanets

    Science.gov (United States)

    Laughlin, Gregory

    We propose to radically advance the state of exoplanet characterization, which lags dramatically behind exoplanet discovery. We propose to directly detect scattered light from the atmospheres of close-in, highly eccentric, and extended/non-spherical exoplanets and thereby determine the following: orbital inclination (and therefore masses free of the M sin i mass ambiguity), geometric albedo, presence or lack of hazes and cloud layers, and scattering particle size and composition. Such measurements are crucial to the understanding of exoplanet atmospheres, because observations with NASA s Hubble, Spitzer, and Kepler space telescopes present the following questions: 1) Do exoplanets have highly reflective haze layers? 2) How does the upper atmospheric composition differ between exoplanets with and without thermal inversions? 3) What are the optical manifestations of the extreme heating of highly eccentric exoplanets? 4) Are the atmospheres of certain exoplanets truly escaping their Roche lobes? Using the POLISH2 polarimeter developed by the Postdoctoral Associate (Wiktorowicz) for the Lick 3-m telescope, we propose to monitor the linear polarization state of exoplanet host stars at the part per million level. POLISH2 consistently delivers nearly photon shot noise limited measurements with this precision. In addition, the simultaneous full-Stokes measurements of POLISH2 and the equatorial mount of the Lick 3-m telescope ensure that systematic effects are mitigated to the part per million level. Indeed, we find the accuracy of the POLISH2 polarimeter to be 0.1 parts per million. This instrument and telescope represent the highest precision polarimeter in the world for exoplanet research. We present potential detection of polarized, scattered light from the HD 189733b, Tau Boo b, and WASP-12b exoplanets. We propose to observe hot Jupiters on circular orbits, highly eccentric exoplanets, exoplanets with extended or non-spherical scattering surfaces, and 55 Cnc e, the

  7. The Kinetics of Crystallization of Colloids and Proteins: A Light Scattering Study

    Science.gov (United States)

    McClymer, Jim

    2002-01-01

    Hard-sphere colloidal systems serve as model systems for aggregation, nucleation, crystallization and gelation as well as interesting systems in their own right.There is strong current interest in using colloidal systems to form photonic crystals. A major scientific thrust of NASA's microgravity research is the crystallization of proteins for structural determination. The crystallization of proteins is a complicated process that requires a great deal of trial and error experimentation. In spite of a great deal of work, "better" protein crystals cannot always be grown in microgravity and conditions for crystallization are not well understood. Crystallization of colloidal systems interacting as hard spheres and with an attractive potential induced by entropic forces have been studied in a series of static light scattering experiments. Additionally, aggregation of a protein as a function of pH has been studied using dynamic light scattering. For our experiments we used PMMA (polymethylacrylate) spherical particles interacting as hard spheres, with no attractive potential. These particles have a radius of 304 nanometers, a density of 1.22 gm/ml and an index of refraction of 1.52. A PMMA colloidal sample at a volume fraction of approximately 54% was index matched in a solution of cycloheptyl bromide (CHB) and cis-decalin. The sample is in a glass cylindrical vial that is placed in an ALV static and dynamic light scattering goniometer system. The vial is immersed in a toluene bath for index matching to minimize flair. Vigorous shaking melts any colloidal crystals initially present. The sample is illuminated with diverging laser light (632.8 nanometers) from a 4x microscope objective placed so that the beam is approximately 1 cm in diameter at the sample location. The sample is rotated about its long axis at approximately 3.5 revolutions per minute (highest speed) as the colloidal crystal system is non-ergodic. The scattered light is detected at various angles using the

  8. Light Scatter in Optical Materials: Advanced Haze Modeling

    Science.gov (United States)

    2017-03-31

    contrast sensitivity with glare. This study measured angular scatter in the test articles , and showed that the cumulative (total) scatter beyond...Sample under laser illumination for angular scatter measurements ................................4  Figure 3: Scatter measurement system at a small...scatter effects image quality , visual performance and user acceptance. The purpose of the present effort was to develop a computational model that

  9. Modelling Elastic Scattering and Light Transport in 3D Collagen Gel Constructs

    National Research Council Canada - National Science Library

    Bixio, L

    2001-01-01

    A model of elastic scattering and light propagation is presented, which can be used to obtain the scattering coefficient, the index of refraction and the distribution of the collagen fibrils in a gel...

  10. Study on the Light Scattering from Random Rough Surfaces by Kirrhoff Approximation

    Directory of Open Access Journals (Sweden)

    Keding Yan

    2014-07-01

    Full Text Available In order to study the space distribution characteristics of light scattering from random rough surfaces, the linear filtering method is used to generate a series of Gaussian randomly rough surfaces, and the Kirchhoff Approximation is used to calculate the scattered light intensity distribution from random metal and dielectric rough surfaces. The three characteristics of the scattered light intensity distribution peak, the intensity distribution width and the position of peak are reviewed. Numerical calculation results show that significant differences between scattering characteristics of metal surfaces and the dielectric surfaces exist. The light scattering characteristics are jointly influenced by the slope distribution and reflectance of surface element. The scattered light intensity distribution is affected by common influence of surface local slope distribution and surface local reflectivity. The results can provide a basis theory for the research to lidar target surface scattering characteristics.

  11. Strong light-matter interaction in graphene - Invited talk

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    Graphene has attracted lots of attention due to its remarkable electronic and optical properties, thus providing great promise in photonics and optoelectronics. However, the performance of these devices is generally limited by the weak light-matter interaction in graphene. The combination...

  12. Theory of Thomson scattering in a strong magnetic field, 2. [Relativistic quantum theory, cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, T [Ibaraki Univ., Mito (Japan). Dept. of Physics

    1975-07-01

    A relativistic quantum theory is formulated for the Compton scattering by electrons in a strong magnetic field. It is shown that the relativistic quantum (Klein-Nishina) cross section in the center of drift system reduces exactly to the classical Thomson cross section in the limit h..omega../2..pi..<scattering in the direction of the magnetic field by an electron in the ground state.

  13. Systematics of interaction and strong absorption radii determined from heavy-ion elastic scattering

    International Nuclear Information System (INIS)

    Birkelund, J.R.; Huizenga, J.R.

    1977-01-01

    Various methods for determining the strong absorption radius for light and intermediate mass nuclei are discussed. It is found that this determination in terms of the half-density radii of the target and projectile is more accurate over the whole range of available data than the other simple parametrizations. 62 references

  14. Atomic and Free Electrons in a Strong Light Field

    International Nuclear Information System (INIS)

    Fedorov, Mikhail V.

    1998-02-01

    This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated Bremsstrahlung, free-electron lasers, ave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described oo, and their results are compared with those of the existing theoretical models. An extensive general theoretical introduction gives a good basis for subsequent parts of the book and is an independent and self-sufficient description of the most efficient theoretical methods of the strong-field and multiphoton physics. This book can serve as a textbook for graduate students

  15. Atomic and free electrons in a strong light field

    CERN Document Server

    Fedorov, Mikhail V

    1997-01-01

    This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated bremsstrahlung, free-electron lasers, wave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described too, and their results are compared with those of the existing theoretical models.An extensive ge

  16. Light--light scattering tensor and the anomalous magnetic moment of the muon

    International Nuclear Information System (INIS)

    Kuraev, E.A.; Silagadze, Z.K.; Cheshel', A.A.; Schiller, A.

    1989-01-01

    A general expression is obtained for the tensor that describes the effect of light--light scattering on the anomalous magnetic moment of leptons. An explicit expression is derived for the electron-loop contribution, for which an analytic evaluation is carried out of the coefficient in front of the logarithm of the ratio of the muon mass to the electron mass in the anomalous magnetic moment of the muon. Logarithmic contributions due to radiative corrections are shown to originate exclusively from the inclusion of the polarization of the vacuum of virtual photons

  17. The generalized multipole technique for light scattering recent developments

    CERN Document Server

    Eremin, Yuri

    2018-01-01

    This book presents the Generalized Multipole Technique as a fast and powerful theoretical and computation tool to simulate light scattering by nonspherical particles. It also demonstrates the considerable potential of the method. In recent years, the concept has been applied in new fields, such as simulation of electron energy loss spectroscopy and has been used to extend other methods, like the null-field method, making it more widely applicable. The authors discuss particular implementations of the GMT methods, such as the Discrete Sources Method (DSM), Multiple Multipole Program (MMP), the Method of Auxiliary Sources (MAS), the Filamentary Current Method (FCM), the Method of Fictitious Sources (MFS) and the Null-Field Method with Discrete Sources (NFM-DS). The Generalized Multipole Technique is a surface-based method to find the solution of a boundary-value problem for a given differential equation by expanding the fields in terms of fundamental or other singular solutions of this equation. The amplitudes ...

  18. Development of a versatile laser light scattering instrument

    Science.gov (United States)

    Meyer, William V.; Ansari, Rafat R.

    1990-10-01

    A versatile laser light scattering (LLS) instrument is developed for use in microgravity to measure microscopic particles of 30 A to above 3 microns. Since it is an optical technique, LLS does not affect the sample being studied. A LLS instrument built from modules allows several configurations, each optimized for a particular experiment. The multiangle LLS instrument can be mounted in the rack in the Space Shuttle and on Space Station Freedom. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations. This offers simple means of flying a great number of experiments without the additional requirements of full-scale flight hardware experiments.

  19. Point spread function due to multiple scattering of light in the atmosphere

    International Nuclear Information System (INIS)

    Pękala, J.; Wilczyński, H.

    2013-01-01

    The atmospheric scattering of light has a significant influence on the results of optical observations of air showers. It causes attenuation of direct light from the shower, but also contributes a delayed signal to the observed light. The scattering of light therefore should be accounted for, both in simulations of air shower detection and reconstruction of observed events. In this work a Monte Carlo simulation of multiple scattering of light has been used to determine the contribution of the scattered light in observations of a point source of light. Results of the simulations and a parameterization of the angular distribution of the scattered light contribution to the observed signal (the point spread function) are presented. -- Author-Highlights: •Analysis of atmospheric scattering of light from an isotropic point source. •Different geometries and atmospheric conditions were investigated. •A parameterization of scattered light distribution has been developed. •The parameterization allows one to easily account for the light scattering in air. •The results will be useful in analyses of observations of extensive air shower

  20. Intensity dependent waiting time for strong electron trapping events in speckle stimulated raman scatter

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Harvey [Los Alamos National Laboratory; Daughton, W [Los Alamos National Laboratory; Yin, L [Los Alamos National Laboratory

    2009-01-01

    The onset of Stimulated Raman scatter from an intense laser speckle is the simplest experimentally realizable laser-plasma-interaction environment. Despite this data and recent 3D particle simulations, the controlling mechanism at the onset of backscatter in the kinetic regime when strong electron trapping in the daughter Langmuir wave is a dominant nonlinearity is not understood. This paper explores the consequences of assuming that onset is controlled by large thermal fluctuations. A super exponential dependence of mean reflectivity on speckle intensity in the onset regime is predicted.

  1. Characterization of 'strong-fragile' behaviour of glass-forming aqueous solutions by neutron scattering

    CERN Document Server

    Branca, C; Galli, G; Magazù, S; Maisano, G; Migliardo, F

    2002-01-01

    Neutron-scattering measurements have been performed on trehalose/H sub 2 O and sucrose/H sub 2 O mixtures by using the spectrometer MIBEMOL at the Laboratoire Leon Brillouin (LLB, Saclay) as a function of temperature and concentration. In order to characterize the different rigidities of both the disaccharide/H sub 2 O mixtures, we have evaluated the R sub 1 (T sub g) parameter connected to the 'strong-fragile' classification of the systems according to Angell's nomenclature. (orig.)

  2. Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seipt, Daniel

    2012-12-20

    The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10{sup 24} W/cm{sup 2} and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton

  3. Route to strong localization of light: The role of disorder

    KAUST Repository

    Molinari, Diego P.; Fratalocchi, Andrea

    2012-01-01

    By employing Random Matrix Theory (RMT) and firstprinciple calculations, we investigated the behavior of Anderson localization in 1D, 2D and 3D systems characterized by a varying disorder. In particular, we considered random binary layer sequences in 1D and structurally disordered photonic crystals in two and three dimensions. We demonstrated the existence of a unique optimal degree of disorder that yields the strongest localization possible. In this regime, localized modes are constituted by defect states, which can show subwavelength confinement properties. These results suggest that disorder offers a new avenue for subwavelength light localization in purely dielectric media. © 2012 Optical Society of America.

  4. Purcell effect for active tuning of light scattering from semiconductor optical antennas.

    Science.gov (United States)

    Holsteen, Aaron L; Raza, Søren; Fan, Pengyu; Kik, Pieter G; Brongersma, Mark L

    2017-12-15

    Subwavelength, high-refractive index semiconductor nanostructures support optical resonances that endow them with valuable antenna functions. Control over the intrinsic properties, including their complex refractive index, size, and geometry, has been used to manipulate fundamental light absorption, scattering, and emission processes in nanostructured optoelectronic devices. In this study, we harness the electric and magnetic resonances of such antennas to achieve a very strong dependence of the optical properties on the external environment. Specifically, we illustrate how the resonant scattering wavelength of single silicon nanowires is tunable across the entire visible spectrum by simply moving the height of the nanowires above a metallic mirror. We apply this concept by using a nanoelectromechanical platform to demonstrate active tuning. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Scattered-field FDTD and PSTD algorithms with CPML absorbing boundary conditions for light scattering by aerosols

    International Nuclear Information System (INIS)

    Sun, Wenbo; Videen, Gorden; Fu, Qiang; Hu, Yongxiang

    2013-01-01

    As fundamental parameters for polarized-radiative-transfer calculations, the single-scattering phase matrix of irregularly shaped aerosol particles must be accurately modeled. In this study, a scattered-field finite-difference time-domain (FDTD) model and a scattered-field pseudo-spectral time-domain (PSTD) model are developed for light scattering by arbitrarily shaped dielectric aerosols. The convolutional perfectly matched layer (CPML) absorbing boundary condition (ABC) is used to truncate the computational domain. It is found that the PSTD method is generally more accurate than the FDTD in calculation of the single-scattering properties given similar spatial cell sizes. Since the PSTD can use a coarser grid for large particles, it can lower the memory requirement in the calculation. However, the Fourier transformations in the PSTD need significantly more CPU time than simple subtractions in the FDTD, and the fast Fourier transform requires a power of 2 elements in calculations, thus using the PSTD could not significantly reduce the CPU time required in the numerical modeling. Furthermore, because the scattered-field FDTD/PSTD equations include incident-wave source terms, the FDTD/PSTD model allows for the inclusion of an arbitrarily incident wave source, including a plane parallel wave or a Gaussian beam like those emitted by lasers usually used in laboratory particle characterizations, etc. The scattered-field FDTD and PSTD light-scattering models can be used to calculate single-scattering properties of arbitrarily shaped aerosol particles over broad size and wavelength ranges. -- Highlights: • Scattered-field FDTD and PSTD models are developed for light scattering by aerosols. • Convolutional perfectly matched layer absorbing boundary condition is used. • PSTD is generally more accurate than FDTD in calculating single-scattering properties. • Using same spatial resolution, PSTD requires much larger CPU time than FDTD

  6. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate.

    Science.gov (United States)

    Israelsen, Nathan D; Wooley, Donald; Hanson, Cynthia; Vargis, Elizabeth

    2016-01-01

    Surface-enhanced Raman scattering (SERS) is a powerful light scattering technique that can be used for sensitive immunoassay development and cell labeling. A major obstacle to using SERS is the complexity of fabricating SERS probes since they require nanoscale characterization and optical uniformity. The light scattering response of SERS probes may also be modulated by the substrate used for SERS analysis. A typical SERS substrate such as quartz can be expensive. Polystyrene is a cheaper substrate option but can decrease the SERS response due to interfering Raman emission peaks and high background fluorescence. The goal of this research is to develop an optimized process for fabricating Raman-labeled nanoparticles for a SERS-based immunoassay on a polystyrene substrate. We have developed a method for fabricating SERS nanoparticle probes for use in a light scattering immunoassay on a polystyrene substrate. The light scattering profile of both spherical gold nanoparticle and gold nanorod SERS probes were characterized using Raman spectroscopy and optical absorbance spectroscopy. The effects of substrate interference and autofluorescence were reduced by selecting a Raman reporter with a strong light scattering response in a spectral region where interfering substrate emission peaks are minimized. Both spherical gold nanoparticles and gold nanorods SERS probes used in the immunoassay were detected at labeling concentrations in the low pM range. This analytical sensitivity falls within the typical dynamic range for direct labeling of cell-surface biomarkers using SERS probes. SERS nanoparticle probes were fabricated to produce a strong light scattering signal despite substrate interference. The optical extinction and inelastic light scattering of these probes was detected by optical absorbance spectroscopy and Raman spectroscopy, respectively. This immunoassay demonstrates the feasibility of analyzing strongly enhanced Raman signals on polystyrene, which is an

  7. The strong interaction in e{sup +}e{sup -} annihilation and deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, J

    1996-01-01

    Various aspects of strong interactions are considered. Correlation effects in the hadronization process in a string model are studied. A discrete approximation scheme to the perturbative QCD cascade in e{sup +}e{sup -} annihilation is formulated. The model, Discrete QCD, predicts a rather low phase space density of `effective gluons`. This is related to the properties of the running coupling constant. It provides us with a simple tool for studies of the strong interaction. It is shown that it reproduces well-known properties of parton cascades. A new formalism for the Deep Inelastic Scattering (DIS) process is developed. The model which is called the Linked Dipole Chain Model provides an interpolation between regions of high Q{sup 2} (DGLAP) and low x-moderate Q{sup 2} (BFKL). It gives a unified treatment of the different interaction channels an a DIS process. 17 figs.

  8. The strong interaction in e+e- annihilation and deep inelastic scattering

    International Nuclear Information System (INIS)

    Samuelsson, J.

    1996-01-01

    Various aspects of strong interactions are considered. Correlation effects in the hadronization process in a string model are studied. A discrete approximation scheme to the perturbative QCD cascade in e + e - annihilation is formulated. The model, Discrete QCD, predicts a rather low phase space density of 'effective gluons'. This is related to the properties of the running coupling constant. It provides us with a simple tool for studies of the strong interaction. It is shown that it reproduces well-known properties of parton cascades. A new formalism for the Deep Inelastic Scattering (DIS) process is developed. The model which is called the Linked Dipole Chain Model provides an interpolation between regions of high Q 2 (DGLAP) and low x-moderate Q 2 (BFKL). It gives a unified treatment of the different interaction channels an a DIS process. 17 figs

  9. Hadronic light-by-light scattering contribution to the muon g-2

    International Nuclear Information System (INIS)

    Nyffeler, A.

    2010-01-01

    We review recent developments concerning the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon. We first discuss why fully off-shell hadronic form factors should be used for the evaluation of this contribution to the g-2. We then reevaluate the numerically dominant pion-exchange contribution in the framework of large-N C QCD, using an off-shell pion-photon-photon form factor which fulfills all QCD short-distance constraints,in particular, a new short-distance constraint on the off-shell form factor at the external vertex in g-2, which relates the form factor to the quark condensate magnetic susceptibility in QCD. Combined with available evaluations of the other contributions to hadronic light-by-light scattering this leads to the new result α μ LbyL;had =(116 ± 40) x 10 -11 , with a conservative error estimate in view of the many still unsolved problems. Some potential ways for further improvements are briefly discussed as well. For the electron we obtain the new estimate α e LbyL;had =(3.9 ± 1.3) x 10 -14 . (author)

  10. Laboratory studies of the growth, sublimation, and light- scattering properties of single levitated ice particles

    Science.gov (United States)

    Bacon, Neil Julian

    2001-12-01

    I describe experiments to investigate the properties of microscopic ice particles. The goal of the work was to measure parameters that are important in cloud processes and radiative transfer, using a novel technique that avoids the use of substrates. The experiments were conducted in two separate electrodynamic balance chambers. Single, charged ice particles were formed from frost particles or from droplets frozen either homogeneously or heteroge neously with a bionucleant. The particles were trapped at temperatures between -38°C and -4°C and grown or sublimated according to the temperature gradient in the cham ber. I describe observations of breakup of sublimating frost particles, measurements of light scattering by hexagonal crystals, and observations of the morphology of ice particles grown from frozen water droplets and frost particles. The breaking strength of frost particles was an order of magnitude less than that of bulk ice. Light scattering features not previously observed were analyzed and related to crystal dimension. Initial results from a computer model failed to reproduce these features. The widths of scattering peaks suggest that surface roughness may play a role in determining the angular distribution of scattered light. Ice particle mass evolution was found to be consistent with diffusion- limited growth. Crystals grown slowly from frozen droplets adopted isometric habits, while faster growth resulted in thin side-planes, although there was not an exact correspondence between growth conditions and particle morphology. From the morphological transition, I infer lower limits for the critical supersaturation for layer nucleation on the prism face of 2.4% at -15°C, 4.4% at -20°C, and 3.1% at -25°C. Analytic expressions for the size dependence of facet stability are developed, indicating a strong dependence of stability on both crystal size and surface kinetics, and compared with data. I discuss the role of complex particle morphologies in

  11. Strongly correlated electrons at high pressure: an approach by inelastic X-Ray scattering

    International Nuclear Information System (INIS)

    Rueff, J.P.

    2007-06-01

    Inelastic X-ray scattering (IXS) and associated methods has turn out to be a powerful alternative for high-pressure physics. It is an all-photon technique fully compatible with high-pressure environments and applicable to a vast range of materials. Standard focalization of X-ray in the range of 100 microns is typical of the sample size in the pressure cell. Our main aim is to provide an overview of experimental results obtained by IXS under high pressure in 2 classes of materials which have been at the origin of the renewal of condensed matter physics: strongly correlated transition metal oxides and rare-earth compounds. Under pressure, d and f-electron materials show behaviors far more complex that what would be expected from a simplistic band picture of electron delocalization. These spectroscopic studies have revealed unusual phenomena in the electronic degrees of freedom, brought up by the increased density, the changes in the charge-carrier concentration, the over-lapping between orbitals, and hybridization under high pressure conditions. Particularly we discuss about pressure induced magnetic collapse and metal-insulator transitions in 3d compounds and valence fluctuations phenomena in 4f and 5f compounds. Thanks to its superior penetration depth, chemical selectivity and resonant enhancement, resonant inelastic X-ray scattering has appeared extremely well suited to high pressure physics in strongly correlated materials. (A.C.)

  12. DaMaSCUS: the impact of underground scatterings on direct detection of light dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Emken, Timon; Kouvaris, Chris, E-mail: emken@cp3.sdu.dk, E-mail: kouvaris@cp3.sdu.dk [CP3-Origins, University of Southern Denmark, Campusvej 55, DK-5230 Odense (Denmark)

    2017-10-01

    Conventional dark matter direct detection experiments set stringent constraints on dark matter by looking for elastic scattering events between dark matter particles and nuclei in underground detectors. However these constraints weaken significantly in the sub-GeV mass region, simply because light dark matter does not have enough energy to trigger detectors regardless of the dark matter-nucleon scattering cross section. Even if future experiments lower their energy thresholds, they will still be blind to parameter space where dark matter particles interact with nuclei strongly enough that they lose enough energy and become unable to cause a signal above the experimental threshold by the time they reach the underground detector. Therefore in case dark matter is in the sub-GeV region and strongly interacting, possible underground scatterings of dark matter with terrestrial nuclei must be taken into account because they affect significantly the recoil spectra and event rates, regardless of whether the experiment probes DM via DM-nucleus or DM-electron interaction. To quantify this effect we present the publicly available Dark Matter Simulation Code for Underground Scatterings (DaMaSCUS), a Monte Carlo simulator of DM trajectories through the Earth taking underground scatterings into account. Our simulation allows the precise calculation of the density and velocity distribution of dark matter at any detector of given depth and location on Earth. The simulation can also provide the accurate recoil spectrum in underground detectors as well as the phase and amplitude of the diurnal modulation caused by this shadowing effect of the Earth, ultimately relating the modulations expected in different detectors, which is important to decisively conclude if a diurnal modulation is due to dark matter or an irrelevant background.

  13. DaMaSCUS: the impact of underground scatterings on direct detection of light dark matter

    International Nuclear Information System (INIS)

    Emken, Timon; Kouvaris, Chris

    2017-01-01

    Conventional dark matter direct detection experiments set stringent constraints on dark matter by looking for elastic scattering events between dark matter particles and nuclei in underground detectors. However these constraints weaken significantly in the sub-GeV mass region, simply because light dark matter does not have enough energy to trigger detectors regardless of the dark matter-nucleon scattering cross section. Even if future experiments lower their energy thresholds, they will still be blind to parameter space where dark matter particles interact with nuclei strongly enough that they lose enough energy and become unable to cause a signal above the experimental threshold by the time they reach the underground detector. Therefore in case dark matter is in the sub-GeV region and strongly interacting, possible underground scatterings of dark matter with terrestrial nuclei must be taken into account because they affect significantly the recoil spectra and event rates, regardless of whether the experiment probes DM via DM-nucleus or DM-electron interaction. To quantify this effect we present the publicly available Dark Matter Simulation Code for Underground Scatterings (DaMaSCUS), a Monte Carlo simulator of DM trajectories through the Earth taking underground scatterings into account. Our simulation allows the precise calculation of the density and velocity distribution of dark matter at any detector of given depth and location on Earth. The simulation can also provide the accurate recoil spectrum in underground detectors as well as the phase and amplitude of the diurnal modulation caused by this shadowing effect of the Earth, ultimately relating the modulations expected in different detectors, which is important to decisively conclude if a diurnal modulation is due to dark matter or an irrelevant background.

  14. On stimulated scattering of laser light in inertial fusion energy targets

    International Nuclear Information System (INIS)

    Nikolic, Lj; Skoric, M.M.; Ishiguro, S.; Sato, T.

    2002-11-01

    Propagation of a laser light through regions of an underdense plasma is an active research topic in laser fusion. In particular, a large effort has been invested in studies of stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) which can reflect laser energy and produce energetic particles to preheat a fusion energy target. Experiments, theory and simulations agree on a complex interplay between various laser-plasma instabilities. By particle-in-cell simulations of an underdense electron-plasma, we have found, apart from the standard SRS, a strong backscattering near the electron plasma frequency at densities beyond the quarter critical. This novel instability, recognized in recent experiments as stimulated laser scattering on a trapped electron-acoustic mode (SEAS), is absent from a classical theory of laser-parametric instabilities. A parametric excitation of SEAS instability, is explained by a three-wave resonant decay of the incident laser light into a standing backscattered wave and a slow trapped electron acoustic wave (ω p ). Large SEAS pulsations, eventually suppressed by relativistic heating of electrons, are observed in our simulations. This phenomenon seems relevant to future hohlraum target and fast ignition experiments. (author)

  15. Kinetics of red blood cell rouleaux formation studied by light scattering.

    Science.gov (United States)

    Szolna-Chodór, Alicja; Bosek, Maciej; Grzegorzewski, Bronislaw

    2015-02-01

    Red blood cell (RBC) rouleaux formation was experimentally studied using a light scattering technique. The suspensions of RBCs were obtained from the blood of healthy donors. Hematocrit of the samples was adjusted ranging from 1% to 4%. Measurements of the intensity of the coherent component of light scattered by the suspensions were performed and the scattering coefficient of the suspensions was determined. The number of RBCs per rouleaux was obtained using anomalous diffraction theory. The technique was used to show the effect of time, hematocrit, and sample thickness on the process. The number of cells per rouleaux first increases linearly, reaches a critical value at ∼3 cells per rouleaux, and then a further increase in the rouleaux size is observed. The kinetic constant of the rouleaux growth in the linear region is found to be independent of hematocrit. The aggregation rate increases as the sample thickness increases. The time at which the critical region appears strongly decreases as the hematocrit of the suspension increases. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

  16. Gold nanoparticle-polydimethylsiloxane films reflect light internally by optical diffraction and Mie scattering

    International Nuclear Information System (INIS)

    Dunklin, Jeremy R; Keith Roper, D; Forcherio, Gregory T

    2015-01-01

    Optical properties of polymer films embedded with plasmonic nanoparticles (NPs) are important in many implementations. In this work, optical extinction by polydimethylsiloxane (PDMS) films containing gold (Au) NPs was enhanced at resonance compared to AuNPs in suspensions, Beer–Lambert law, or Mie theory by internal reflection due to optical diffraction in 16 nm AuNP–PDMS films and Mie scattering in 76 nm AuNP–PDMS films. Resonant extinction per AuNP for 16 nm AuNPs with negligible resonant Mie scattering was enhanced up to 1.5-fold at interparticle separation (i.e., Wigner–Seitz radii) comparable to incident wavelength. It was attributable to diffraction through apertures formed by overlapping electric fields of adjacent, resonantly excited AuNPs at Wigner–Seitz radii equal to or less than incident wavelengths. Resonant extinction per AuNP for strongly Mie scattering 76 nm AuNPs was enhanced up to 1.3-fold at Wigner–Seitz radii four or more times greater than incident wavelength. Enhanced light trapping from diffraction and/or scattering is relevant to optoelectronic, biomedical, and catalytic activity of substrates embedded with NPs. (paper)

  17. Designing, Probing, and Stabilizing Exotic Fabry-Perot Cavities for Studying Strongly Correlated Light

    Science.gov (United States)

    Ryou, Albert

    Synthetic materials made of engineered quasiparticles are a powerful platform for studying manybody physics and strongly correlated systems due to their bottom-up approach to Hamiltonian modeling. Photonic quasiparticles called polaritons are particularly appealing since they inherit fast dynamics from light and strong interaction from matter. This thesis describes the experimental demonstration of cavity Rydberg polaritons, which are composite particles arising from the hybridization of an optical cavity with Rydberg EIT, as well as the tools for probing and stabilizing the cavity. We first describe the design, construction, and testing of a four-mirror Fabry-Perot cavity, whose small waist size on the order of 10 microns is comparable to the Rydberg blockade radius. By achieving strong coupling between the cavity photon and an atomic ensemble undergoing electromagnetically induced transparency (EIT), we observe the emergence of the dark-state polariton and characterize its single-body properties as well as the single-quantum nonlinearity. We then describe the implementation of a holographic spatial light modulator for exciting different transverse modes of the cavity, an essential tool for studying polariton-polariton scattering. For compensating optical aberrations, we employ a digital micromirror device (DMD), combining beam shaping with adaptive optics to produce diffraction-limited light. We quantitatively measure the purity of the DMD-produced Hermite-Gauss modes and confirm up to 99.2% efficiency. One application of the technique is to create Laguerre-Gauss modes, which have been used to probe synthetic Landau levels for photons in a twisted, nonplanar cavity. Finally, we describe the implementation of an FPGA-based FIR filter for stabilizing the cavity. We digitally cancel the acoustical resonances of the feedback-controlled mechanical system, thereby demonstrating an order-of-magnitude enhancement in the feedback bandwidth from 200 Hz to more than 2 k

  18. Compton scattering of photons from electrons bound in light elements

    International Nuclear Information System (INIS)

    Bergstrom, P.M. Jr.

    1994-01-01

    A brief introduction to the topic of Compton scattering from bound electrons is presented. The fundamental nature of this process in understanding quantum phenomena is reviewed. Methods for accurate theoretical evaluation of the Compton scattering cross section are presented. Examples are presented for scattering of several keV photons from helium

  19. Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory.

    Science.gov (United States)

    Voit, Florian; Hohmann, Ansgar; Schäfer, Jan; Kienle, Alwin

    2012-04-01

    For many research areas in biomedical optics, information about scattering of polarized light in turbid media is of increasing importance. Scattering simulations within this field are mainly performed on the basis of radiative transfer theory. In this study a polarization sensitive Monte Carlo solution of radiative transfer theory is compared to exact Maxwell solutions for all elements of the scattering Müller matrix. Different scatterer volume concentrations are modeled as a multitude of monodisperse nonabsorbing spheres randomly positioned in a cubic simulation volume which is irradiated with monochromatic incident light. For all Müller matrix elements effects due to dependent scattering and multiple scattering are analysed. The results are in overall good agreement between the two methods with deviations related to dependent scattering being prominent for high volume concentrations and high scattering angles.

  20. Validation of in-line surface characterization by light scattering in Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2014-01-01

    The suitability of a commercial scattered light sensor for in-line characterization of fine surfaces in the roughness range Sa 1 – 30 nm generated by the Robot Assisted Polishing (RAP) was investigated and validated. A number of surfaces were generated and directly measured with the scattered light...

  1. Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells

    NARCIS (Netherlands)

    van Dijk, L.; van de Groep, J.; Veldhuizen, L.W.; Di Vece, M.; Polman, A.; Schropp, R.E.I.

    2016-01-01

    Most types of thin film solar cells require light management to achieve sufficient light absorptance. We demonstrate a novel process for fabricating a scattering back reflector for flat, thin film hydrogenated nanocrystalline silicon (nc-Si:H) solar cells. This scattering back reflector consists of

  2. The effect of scattered light sensor orientation on roughness measurement of curved polished surfaces

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    directions, and its acquisition within ± 16º angular range with a linear detector array. From the distribution of the acquired scattered light intensity, a number of statistical parameters describing the surface texture are calculated, where the Aq parameter (variance of the scattered light distribution...

  3. A rotational diffusion coefficient of the 70s ribosome determined by depolarized laser light scattering

    NARCIS (Netherlands)

    Bruining, J.; Fijnaut, H.M.

    We have obtained a rotational diffusion coefficient of the 70S ribosome isolated from Escherichia-coli (MRE-600), from the depolarized light scattering spectrum measured by photon correlation spectroscopy. The intensity correlation function of depolarized scattered light contains contributions due

  4. Discrimination of human cytotoxic lymphocytes from regulatory and B-lymphocytes by orthogonal light scattering

    NARCIS (Netherlands)

    Terstappen, Leonardus Wendelinus Mathias Marie; de Grooth, B.G.; ten Napel, C.H.H.; van Berkel, W.; Greve, Jan

    1986-01-01

    Light scattering properties of human lymphocyte subpopulations selected by immunofluorescence were studied with a flow cytometer. Regulatory and B-lymphocytes showed a low orthogonal light scatter signal, whereas cytotoxic lymphocytes identified with leu-7, leu-11 and leu-15 revealed a large

  5. Computational time-resolved and resonant x-ray scattering of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Bansil, Arun [Northeastern Univ., Boston, MA (United States)

    2016-11-09

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source, literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of x-ray science. In particular, our Collaborative Research Team (CRT) focused on developing viable computational schemes for modeling x-ray scattering and photoemission spectra of strongly correlated materials in the time-domain. The vast arsenal of formal/numerical techniques and approaches encompassed by the members of our CRT were brought to bear through appropriate generalizations and extensions to model the pumped state and the dynamics of this non-equilibrium state, and how it can be probed via x-ray absorption (XAS), emission (XES), resonant and non-resonant x-ray scattering, and photoemission processes. We explored the conceptual connections between the time-domain problems and other second-order spectroscopies, such as resonant inelastic x-ray scattering (RIXS) because RIXS may be effectively thought of as a pump-probe experiment in which the incoming photon acts as the pump, and the fluorescent decay is the probe. Alternatively, when the core-valence interactions are strong, one can view K-edge RIXS for example, as the dynamic response of the material to the transient presence of a strong core-hole potential. Unlike an actual pump-probe experiment, here there is no mechanism for adjusting the time-delay between the pump and the probe. However, the core hole

  6. Static and dynamic light scattering studies on dilute polyrotaxane solutions

    Science.gov (United States)

    Kume, Tetsuya; Araki, Jun; Sakai, Yasuhiro; Mayumi, Koichi; Kidowaki, Masatoshi; Yokoyama, Hideaki; Ito, Kohzo

    2009-08-01

    Static and dynamic light scattering measurements were performed for dilute polyrotaxane solutions in different types of solvent systems, i.e. dimethylacetamide (DMAc) or dimethylformamide (DMF) containing 1-6 wt% lithium chloride (LiCl), 1 M aqueous sodium hydroxide (NaOH) and dimethylsulfoxide (DMSO). No aggregation of the polyrotaxane in DMF/LiCl was confirmed in the present study. Radius of gyration of the dissolved polyrotaxane was largest in NaOHaq., followed by values in amide solvents/LiCl and that in DMSO, and was probably dominated not by Coulombic repulsion but by the mutual affinity between solvent and polyrotaxane. Ratio of radius of gyration to hydrodynamic radius suggested the flexible random-coiled conformation in DMSO and relatively more extended, semi-flexible ones in amide solvents/LiCl and NaOHaq. The obtained values of second virial coefficient and weight average molecular weight seemed to be affected by a potential change in differential refractive index increments, caused by selective macrocationization or ionization.

  7. Light Scattering Characterization of Elastin-Like Polypeptide Trimer Micelles

    Science.gov (United States)

    Tsuper, Ilona; Terrano, Daniel; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    The elastin-like polypeptides (ELP) nanoparticles are composed of three-armed star polypeptides connected by a negatively charged foldon. Each of the three arms extending from the foldon domain includes 20 repeats of the (GVGVP) amino acid sequence. The ELP polymer chains are soluble at room temperature and become insoluble at the transition temperature (close to 50 ° C), forming micelles. The size and shape of the micelle are dependent on the temperature and the pH of the solution, and on the concentration of the phosphate buffered saline (PBS). The depolarized dynamic light scattering (DDLS) was employed to study the structure and dynamics of micelles at 62 ° C. The solution was maintained at an approximate pH level of 7.3 - 7.5, while varying PBS concentration. At low salt concentrations (60 mM) displayed an apparent elongation of the micelles evident by a significant VH signal, along with a surge in the apparent Rh. A model of micelle growth (and potential elongation) with increase in salt concentration is considered.

  8. Static and dynamic light scattering studies on dilute polyrotaxane solutions

    International Nuclear Information System (INIS)

    Kume, Tetsuya; Sakai, Yasuhiro; Mayumi, Koichi; Kidowaki, Masatoshi; Yokoyama, Hideaki; Ito, Kohzo; Araki, Jun

    2009-01-01

    Static and dynamic light scattering measurements were performed for dilute polyrotaxane solutions in different types of solvent systems, i.e. dimethylacetamide (DMAc) or dimethylformamide (DMF) containing 1-6 wt% lithium chloride (LiCl), 1 M aqueous sodium hydroxide (NaOH) and dimethylsulfoxide (DMSO). No aggregation of the polyrotaxane in DMF/LiCl was confirmed in the present study. Radius of gyration of the dissolved polyrotaxane was largest in NaOHaq., followed by values in amide solvents/LiCl and that in DMSO, and was probably dominated not by Coulombic repulsion but by the mutual affinity between solvent and polyrotaxane. Ratio of radius of gyration to hydrodynamic radius suggested the flexible random-coiled conformation in DMSO and relatively more extended, semi-flexible ones in amide solvents/LiCl and NaOHaq. The obtained values of second virial coefficient and weight average molecular weight seemed to be affected by a potential change in differential refractive index increments, caused by selective macrocationization or ionization.

  9. Portable bacterial identification system based on elastic light scatter patterns

    Directory of Open Access Journals (Sweden)

    Bae Euiwon

    2012-08-01

    Full Text Available Abstract Background Conventional diagnosis and identification of bacteria requires shipment of samples to a laboratory for genetic and biochemical analysis. This process can take days and imposes significant delay to action in situations where timely intervention can save lives and reduce associated costs. To enable faster response to an outbreak, a low-cost, small-footprint, portable microbial-identification instrument using forward scatterometry has been developed. Results This device, weighing 9 lb and measuring 12 × 6 × 10.5 in., utilizes elastic light scatter (ELS patterns to accurately capture bacterial colony characteristics and delivers the classification results via wireless access. The overall system consists of two CCD cameras, one rotational and one translational stage, and a 635-nm laser diode. Various software algorithms such as Hough transform, 2-D geometric moments, and the traveling salesman problem (TSP have been implemented to provide colony count and circularity, centering process, and minimized travel time among colonies. Conclusions Experiments were conducted with four bacteria genera using pure and mixed plate and as proof of principle a field test was conducted in four different locations where the average classification rate ranged between 95 and 100%.

  10. Rapid Antimicrobial Susceptibility Testing Using Forward Laser Light Scatter Technology.

    Science.gov (United States)

    Hayden, Randall T; Clinton, Lani K; Hewitt, Carolyn; Koyamatsu, Terri; Sun, Yilun; Jamison, Ginger; Perkins, Rosalie; Tang, Li; Pounds, Stanley; Bankowski, Matthew J

    2016-11-01

    The delayed reporting of antimicrobial susceptibility testing remains a limiting factor in clinical decision-making in the treatment of bacterial infection. This study evaluates the use of forward laser light scatter (FLLS) to measure bacterial growth for the early determination of antimicrobial susceptibility. Three isolates each (two clinical isolates and one reference strain) of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were tested in triplicate using two commercial antimicrobial testing systems, the Vitek2 and the MicroScan MIC panel, to challenge the BacterioScan FLLS. The BacterioScan FLLS showed a high degree of categorical concordance with the commercial methods. Pairwise comparison with each commercial system serving as a reference standard showed 88.9% agreement with MicroScan (two minor errors) and 72.2% agreement with Vitek (five minor errors). FLLS using the BacterioScan system shows promise as a novel method for the rapid and accurate determination of antimicrobial susceptibility. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Intrabeam scattering studies at the Swiss light source

    CERN Document Server

    Antoniou, F; Aiba, M; Boege, M; Milas, N; Streun, A; Demma, T

    2012-01-01

    The target parameters of modern ultra-low emittance rings are entering into a regime where Intra-beam Scattering (IBS) becomes important and, in the case of linear collider damping rings, even a limitation for the delivered emittances. The Swiss Light Source (SLS) storage ring, as it has achieved a vertical geometrical emittance of around 1 pm at 2.4 GeV [1], and it has the ability to run at even lower energies, and the availability of emittance monitoring diagnostics, is an ideal testbed for IBS studies. Simulations using the classical IBS theories and tracking codes are undertaken in order to explore the possibilities and limitations for IBS measurements at the SLS. In this respect, comparison between the theories and codes is first discussed. The dependence of the output emittances, taking into account the effect of IBS, with respect to energy, bunch charge and zero current vertical and longitudinal emittance is also studied, in order to define the regimes where the IBS effect can be significant. First mea...

  12. A study of light scattering of mononuclear blood cells with scanning flow cytometry

    International Nuclear Information System (INIS)

    Zharinov, Alexey; Tarasov, Peter; Shvalov, Alexander; Semyanov, Konstantin; Bockstaele, Dirk R. van; Maltsev, Valeri

    2006-01-01

    This study describes the measurement of light scattering of human mononuclear blood cells, the development of an appropriate optical model for those cells, and solution of the inverse light-scattering problem. The angular dependency of light-scattering intensity of mononuclear blood cells was experimentally measured by means of scanning flow cytometry. A sphere consisting of several concentric homogeneous layers with different refractive indices was tested as an optical model for mononuclear blood cells. A five-layer model has given the best agreement between experimental and theoretical light-scattering profiles. The inverse light-scattering problem was solved for a five-layer model with an optimization procedure that allows one to retrieve cell parameters: cell size relates to the outer diameter of the fifth layer; size of the nucleus relates to the outer diameter of the third layer. Mean values of cell size, nuclear size, refractive indices of nucleus and cellular cytoplasm were determined for blood monocytes and lymphocytes

  13. High energy x-ray scattering studies of strongly correlated oxides

    International Nuclear Information System (INIS)

    Hatton, Peter D; Wilkins, S B; Spencer, P D; Zimmermann, M v; D'Almeida, T

    2003-01-01

    Many transition metal oxides display strongly correlated charge, spin, or orbital ordering resulting in varied phenomena such as colossal magnetoresistance, high temperature superconductivity, metal-insulator transitions etc. X-ray scattering is one of the principle techniques for probing the structural response to such effects. In this paper, we discuss and review the use of synchrotron radiation high energy x-rays (50-200 keV) for the study of transition metal oxides such as nickelates (La 2-x Sr x NiO 4 ) and manganites (La 2-2x Sr 1+2x Mn 2 O 7 ). High energy x-rays have sufficient penetration to allow us to study large flux-grown single crystals. The huge increase in sample scattering volume means that extremely weak peaks can be observed. This allows us to study very weak charge ordering. Measurements of the intensity, width and position of the charge ordering satellites as a function of temperature provide us with quantitative measures of the charge amplitude, inverse correlation length and wavevector of the charge ordering

  14. Quantitative study of two- and three-dimensional strong localization of matter waves by atomic scatterers

    International Nuclear Information System (INIS)

    Antezza, Mauro; Castin, Yvan; Hutchinson, David A. W.

    2010-01-01

    We study the strong localization of atomic matter waves in a disordered potential created by atoms pinned at the nodes of a lattice, for both three-dimensional (3D) and two-dimensional (2D) systems. The localization length of the matter wave, the density of localized states, and the occurrence of energy mobility edges (for the 3D system), are numerically investigated as a function of the effective scattering length between the atomic matter wave and the pinned atoms. Both positive and negative matter wave energies are explored. Interesting features of the density of states are discovered at negative energies, where maxima in the density of bound states for the system can be interpreted in terms of bound states of a matter wave atom with a few pinned atomic scatterers. In 3D we found evidence of up to three mobility edges, one at positive energies, and two at negative energies, the latter corresponding to transitions between extended and localized bound states. In 2D, no mobility edge is found, and a rapid exponential-like increase of the localization length is observed at high energy.

  15. Angular-dependent light scattering from cancer cells in different phases of the cell cycle.

    Science.gov (United States)

    Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong

    2017-10-10

    Cancer cells in different phases of the cell cycle result in significant differences in light scattering properties. In order to harvest cancer cells in particular phases of the cell cycle, we cultured cancer cells through the process of synchronization. Flow cytometric analysis was applied to check the results of cell synchronization and prepare for light scattering measurements. Angular-dependent light scattering measurements of cancer cells arrested in the G1, S, and G2 phases have been performed. Based on integral calculations for scattering intensities from 5° to 10° and from 110° to 150°, conclusions have been reached. Clearly, the sizes of the cancer cells in different phases of the cell cycle dominated the forward scatter. Accompanying the increase of cell size with the progression of the cell cycle, the forward scattering intensity also increased. Meanwhile, the DNA content of cancer cells in every phase of the cell cycle is responsible for light scattering at large scatter angles. The higher the DNA content of cancer cells was, the greater the positive effect on the high-scattering intensity. As expected, understanding the relationships between the light scattering from cancer cells and cell cycles will aid in the development of cancer diagnoses. Also, it may assist in the guidance of antineoplastic drugs clinically.

  16. Theory of X-ray scattering by strongly distorted aging alloys with lamellar distribution of inclusions

    International Nuclear Information System (INIS)

    Barabash, R.I.; Krivoglaz, M.A.; AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1981-01-01

    The X-ray scattering by strongly distorted heterogeneous alloys containing inclusions of new phase particles is discussed. Two models describing the lamellar structure with various orientation of inclusion axes in different layers are studied. In the first model the dimensions of inclusions are small in comparison with the layer thickness and they are randomly distributed in it, in the second model lamellar inclusions stretch through the whole layer. It is shown that in both models the Debye broadened line intensity distribution consists of overlapping Lorentz curves. A case of inclusions oriented along directions [100] and layers perpendicular to axes [110] is analyzed in detail. The results obtained for this case are compared with experimental results for the Cu-Be alloy

  17. Diffusing-wave spectroscopy in a standard dynamic light scattering setup

    Science.gov (United States)

    Fahimi, Zahra; Aangenendt, Frank J.; Voudouris, Panayiotis; Mattsson, Johan; Wyss, Hans M.

    2017-12-01

    Diffusing-wave spectroscopy (DWS) extends dynamic light scattering measurements to samples with strong multiple scattering. DWS treats the transport of photons through turbid samples as a diffusion process, thereby making it possible to extract the dynamics of scatterers from measured correlation functions. The analysis of DWS data requires knowledge of the path length distribution of photons traveling through the sample. While for flat sample cells this path length distribution can be readily calculated and expressed in analytical form; no such expression is available for cylindrical sample cells. DWS measurements have therefore typically relied on dedicated setups that use flat sample cells. Here we show how DWS measurements, in particular DWS-based microrheology measurements, can be performed in standard dynamic light scattering setups that use cylindrical sample cells. To do so we perform simple random-walk simulations that yield numerical predictions of the path length distribution as a function of both the transport mean free path and the detection angle. This information is used in experiments to extract the mean-square displacement of tracer particles in the material, as well as the corresponding frequency-dependent viscoelastic response. An important advantage of our approach is that by performing measurements at different detection angles, the average path length through the sample can be varied. For measurements performed on a single sample cell, this gives access to a wider range of length and time scales than obtained in a conventional DWS setup. Such angle-dependent measurements also offer an important consistency check, as for all detection angles the DWS analysis should yield the same tracer dynamics, even though the respective path length distributions are very different. We validate our approach by performing measurements both on aqueous suspensions of tracer particles and on solidlike gelatin samples, for which we find our DWS-based microrheology

  18. Hybrid Monte Carlo-Diffusion Method For Light Propagation in Tissue With a Low-Scattering Region

    Science.gov (United States)

    Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji

    2003-06-01

    The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.

  19. Listening to light scattering in turbid media: quantitative optical scattering imaging using photoacoustic measurements with one-wavelength illumination

    International Nuclear Information System (INIS)

    Yuan, Zhen; Li, Xiaoqi; Xi, Lei

    2014-01-01

    Biomedical photoacoustic tomography (PAT), as a potential imaging modality, can visualize tissue structure and function with high spatial resolution and excellent optical contrast. It is widely recognized that the ability of quantitatively imaging optical absorption and scattering coefficients from photoacoustic measurements is essential before PAT can become a powerful imaging modality. Existing quantitative PAT (qPAT), while successful, has been focused on recovering absorption coefficient only by assuming scattering coefficient a constant. An effective method for photoacoustically recovering optical scattering coefficient is presently not available. Here we propose and experimentally validate such a method for quantitative scattering coefficient imaging using photoacoustic data from one-wavelength illumination. The reconstruction method developed combines conventional PAT with the photon diffusion equation in a novel way to realize the recovery of scattering coefficient. We demonstrate the method using various objects having scattering contrast only or both absorption and scattering contrasts embedded in turbid media. The listening-to-light-scattering method described will be able to provide high resolution scattering imaging for various biomedical applications ranging from breast to brain imaging. (papers)

  20. The contribution of Diamond Light Source to the study of strongly correlated electron systems and complex magnetic structures.

    Science.gov (United States)

    Radaelli, P G; Dhesi, S S

    2015-03-06

    We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007-2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Measuring light-by-light scattering at the LHC and FCC

    CERN Document Server

    d'Enterria, David

    2016-01-01

    Elastic light-by-light scattering, $\\gamma\\gamma\\to\\gamma\\gamma$, can be measured in electromagnetic interactions of lead (Pb) ions at the Large Hadron Collider (LHC) and Future Circular Collider (FCC), using the large (quasi)real photon fluxes available in ultraperipheral collisions. The $\\gamma\\gamma\\to\\gamma\\gamma$ cross sections for diphoton masses m$_{\\gamma\\gamma}>$ 5 GeV in pp, pPb, and PbPb collisions at LHC ($\\sqrt{\\rm s_{_{NN}}}$ = 5.5, 8.8, 14 TeV) and FCC ($\\sqrt{\\rm s_{_{NN}}}$ = 39, 63, 100 TeV) center-of-mass energies are presented. The measurement has controllable backgrounds in PbPb collisions, and one expects about 70 and 2500 signal events per year at the LHC and FCC respectively, after typical detector acceptance and reconstruction efficiency selections.

  2. Towards a data-driven analysis of hadronic light-by-light scattering

    Science.gov (United States)

    Colangelo, Gilberto; Hoferichter, Martin; Kubis, Bastian; Procura, Massimiliano; Stoffer, Peter

    2014-11-01

    The hadronic light-by-light contribution to the anomalous magnetic moment of the muon was recently analyzed in the framework of dispersion theory, providing a systematic formalism where all input quantities are expressed in terms of on-shell form factors and scattering amplitudes that are in principle accessible in experiment. We briefly review the main ideas behind this framework and discuss the various experimental ingredients needed for the evaluation of one- and two-pion intermediate states. In particular, we identify processes that in the absence of data for doubly-virtual pion-photon interactions can help constrain parameters in the dispersive reconstruction of the relevant input quantities, the pion transition form factor and the helicity partial waves for γ*γ* → ππ.

  3. Towards a data-driven analysis of hadronic light-by-light scattering

    International Nuclear Information System (INIS)

    Colangelo, Gilberto; Hoferichter, Martin; Kubis, Bastian; Procura, Massimiliano; Stoffer, Peter

    2014-01-01

    The hadronic light-by-light contribution to the anomalous magnetic moment of the muon was recently analyzed in the framework of dispersion theory, providing a systematic formalism where all input quantities are expressed in terms of on-shell form factors and scattering amplitudes that are in principle accessible in experiment. We briefly review the main ideas behind this framework and discuss the various experimental ingredients needed for the evaluation of one- and two-pion intermediate states. In particular, we identify processes that in the absence of data for doubly-virtual pion–photon interactions can help constrain parameters in the dispersive reconstruction of the relevant input quantities, the pion transition form factor and the helicity partial waves for γ * γ * →ππ

  4. Towards a data-driven analysis of hadronic light-by-light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Colangelo, Gilberto; Hoferichter, Martin [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Universität Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Kubis, Bastian [Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Procura, Massimiliano; Stoffer, Peter [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Universität Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-11-10

    The hadronic light-by-light contribution to the anomalous magnetic moment of the muon was recently analyzed in the framework of dispersion theory, providing a systematic formalism where all input quantities are expressed in terms of on-shell form factors and scattering amplitudes that are in principle accessible in experiment. We briefly review the main ideas behind this framework and discuss the various experimental ingredients needed for the evaluation of one- and two-pion intermediate states. In particular, we identify processes that in the absence of data for doubly-virtual pion–photon interactions can help constrain parameters in the dispersive reconstruction of the relevant input quantities, the pion transition form factor and the helicity partial waves for γ{sup *}γ{sup *}→ππ.

  5. Light-by-Light Scattering Constraint on Born-Infeld Theory.

    Science.gov (United States)

    Ellis, John; Mavromatos, Nick E; You, Tevong

    2017-06-30

    The recent measurement by ATLAS of light-by-light scattering in LHC Pb-Pb collisions is the first direct evidence for this basic process. We find that it excludes a range of the mass scale of a nonlinear Born-Infeld extension of QED that is ≲100  GeV, a much stronger constraint than those derived previously. In the case of a Born-Infeld extension of the standard model in which the U(1)_{Y} hypercharge gauge symmetry is realized nonlinearly, the limit on the corresponding mass reach is ∼90  GeV, which, in turn, imposes a lower limit of ≳11  TeV on the magnetic monopole mass in such a U(1)_{Y} Born-Infeld theory.

  6. Static and dynamic light scattering by red blood cells: A numerical study.

    Science.gov (United States)

    Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard; Fedosov, Dmitry A

    2017-01-01

    Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods-multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring.

  7. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign

    Directory of Open Access Journals (Sweden)

    G. Paredes-Miranda

    2009-06-01

    Full Text Available A photoacoustic spectrometer, a nephelometer, an aethalometer, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in North East Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP, as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethalometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 07:00 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the photochemical production of secondary aerosol (inorganic and organic is approximately 75% of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m2/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo.

  8. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign

    Science.gov (United States)

    Paredes-Miranda, G.; Arnott, W. P.; Jimenez, J. L.; Aiken, A. C.; Gaffney, J. S.; Marley, N. A.

    2009-06-01

    A photoacoustic spectrometer, a nephelometer, an aethalometer, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in North East Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP), as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethalometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 07:00 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the photochemical production of secondary aerosol (inorganic and organic) is approximately 75% of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m2/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA) indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo.

  9. Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model.

    Science.gov (United States)

    Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin

    2013-01-01

    Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities.

  10. Light Conversion and Scattering in UV Protective Textiles

    Directory of Open Access Journals (Sweden)

    Grancarić Ana Marija

    2014-12-01

    Full Text Available The primary cause of skin cancer is believed to be a long exposure to solar ultraviolet radiation (UV-R crossed with the amount of skin pigmentation in the population. It is believed that in childhood and adolescence 80% of UV-R gets absorbed, whilst in the remaining 20% gets absorbed later in the lifetime. This suggests that proper and early photoprotection may reduce the risk of subsequent occurrence of skin cancer. Textile and clothing are the most suitable interface between environment and human body. It can show UV protection, but in most cases it does not provide full sun screening properties. UV protection ability highly depends on large number of factors such as type of fibre, fabric surface and construction, type and concentration of dyestuff, fluorescent whitening agent (FWA, UV-B protective agents, as well as nanoparticles, if applied. Based on electronically excited state by energy of UV-R (usually 340-370 nm, the molecules of FWAs show the phenomenon of fluorescence giving to white textiles high whiteness of outstanding brightness by reemitting the energy at the blue region (typically 420-470 nm of the spectrum. By absorbing UV-A radiation, optical brightened fabrics transform this radiation into blue fluorescence, which leads to better UV protection. Natural zeolites are rock-forming, microporous silicate minerals. Applied as nanoparticles to textile surface, it scatters the UV-R resulting in lower UV-A and UV-B transmission. If applied with other UV absorbing agents, e.g. FWAs, synergistic effect occurs. Silicones are inert, synthetic compounds with a variety of forms and uses. It provides a unique soft touch, is very resistant to washing and improves the property of fabric to protect against UV radiation. Therefore, the UV protective properties of cotton fabric achieved by light conversion and scattering was researched in this paper. For that purpose, the stilbene-derived FWAs were applied on cotton fabric in wide concentration

  11. Hadronic light-by-light scattering contribution to the muon g - 2 on the lattice

    Science.gov (United States)

    Asmussen, Nils; Gérardin, Antoine; Green, Jeremy; Gryniuk, Oleksii; von Hippel, Georg; Meyer, Harvey B.; Nyffeler, Andreas; Pascalutsa, Vladimir; Wittig, Hartmut

    2018-05-01

    We briefly review several activities at Mainz related to hadronic light-by-light scattering (HLbL) using lattice QCD. First we present a position-space approach to the HLbL contribution in the muon g̅2, where we focus on exploratory studies of the pion-pole contribution in a simple model and the lepton loop in QED in the continuum and in infinite volume. The second part describes a lattice calculation of the double-virtual pion transition form factor Fπ0γ*γ* (q21; q21) in the spacelike region with photon virtualities up to 1.5 GeV2 which paves the way for a lattice calculation of the pion-pole contribution to HLbL. The third topic involves HLbL forward scattering amplitudes calculated in lattice QCD which can be described, using dispersion relations (HLbL sum rules), by γ*γ* → hadrons fusion cross sections and then compared with phenomenological models.

  12. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiang; Zhang, Zhenyu [Wuhan University, Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan (China); Liu, Qian; Zheng, Yangheng [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Han, Junbo [Huazhong University of Science and Technology, Wuhan National High Magnetic Field Center, Wuhan (China); Zhang, Xuan; Ding, Yayun; Zhou, Li; Cao, Jun; Wang, Yifang [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2015-11-15

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√(E(MeV)) required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments. (orig.)

  13. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiang, E-mail: xiangzhou@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan (China); Liu, Qian, E-mail: liuqian@ucas.ac.cn [School of Physics, University of Chinese Academy of Sciences, 100049, Beijing (China); Han, Junbo [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan (China); Zhang, Zhenyu [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan (China); Zhang, Xuan; Ding, Yayun [Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing (China); Zheng, Yangheng [School of Physics, University of Chinese Academy of Sciences, 100049, Beijing (China); Zhou, Li; Cao, Jun; Wang, Yifang [Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing (China)

    2015-11-21

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√(E(MeV)) required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments.

  14. Shape dependent resonance light scattering properties of gold nanorods

    International Nuclear Information System (INIS)

    Zhu Jian; Huang Liqing; Zhao Junwu; Wang Yongchang; Zhao Yanrui; Hao Limei; Lu Yimin

    2005-01-01

    Suspended gold nanorods with mean aspect ratio 2.5 have been synthesized via electrochemical method. Resonance scattering properties have been studied. Two scattering peaks fixed at 400 and 640 nm are due to the scattering of the gold nanorods via coupling to the transverse and longitudinal surface plasmon resonance. The quasi-static calculation results indicate that with the increasing aspect ratio of the nanorods, the longer wavelength scattering peak red shifts linearly and the shorter wavelength peak blue shifts non-linearly. When aspect ratio a/b = 1.0, ellipse degenerate to sphere and the two peaks unite into one peak at 450 nm

  15. Synthesis of 2.5 nm colloidal iridium nanoparticles with strong surface enhanced Raman scattering activity

    International Nuclear Information System (INIS)

    Cui, Malin; Zhao, Yuan; Wang, Chan; Song, Qijun

    2016-01-01

    Colloidal iridium nanoparticles (IrNPs) were synthesized through an environmentally friendly approach by using trisodium citrate as the capping molecule in an aqueous medium. The resulting colloidal IrNPs have a typical diameter of 2.5 nm and display absorption bands at 250, 400 and 600 nm. They possess uniform morphology, good dispersibility, excellent stability in water, and exhibit strong surface enhanced Raman scattering (SERS) activity with an enhancement factor (EF) of 3.5 × 10 5 at the 1512 cm -1 peak when using Rhodamine 6G as the probe molecule. The excellent SERS performance of the IrNPs was exemplarily applied to the determination of the industrial colorant Sudan Red I. The peak intensity of the Raman band at 1236 cm -1 is linearly related to the concentration of Sudan Red I which can be determined by SERS in the 2 nM to 8 μM concentration range with a limit of detection as low as 0.6 nM. In our perception, this strong SERS activity of the IrNPs has a large potential in the SERS-based quantitation of various chemical substances. (author)

  16. Quantum Wronskian approach to six-point gluon scattering amplitudes at strong coupling

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Ito, Katsushi; Satoh, Yuji; Suzuki, Junji

    2014-06-01

    We study the six-point gluon scattering amplitudes in N=4 super Yang-Mills theory at strong coupling based on the twisted Z 4 -symmetric integrable model. The lattice regularization allows us to derive the associated thermodynamic Bethe ansatz (TBA) equations as well as the functional relations among the Q-/T-/Y-functions. The quantum Wronskian relation for the Q-/T-functions plays an important role in determining a series of the expansion coefficients of the T-/Y-functions around the UV limit, including the dependence on the twist parameter. Studying the CFT limit of the TBA equations, we derive the leading analytic expansion of the remainder function for the general kinematics around the limit where the dual Wilson loops become regular-polygonal. We also compare the rescaled remainder functions at strong coupling with those at two, three and four loops, and find that they are close to each other along the trajectories parameterized by the scale parameter of the integrable model.

  17. Effects of relative humidity on aerosol light scattering in the Arctic

    Directory of Open Access Journals (Sweden)

    P. Zieger

    2010-04-01

    Full Text Available Aerosol particles experience hygroscopic growth in the ambient atmosphere. Their optical properties – especially the aerosol light scattering – are therefore strongly dependent on the ambient relative humidity (RH. In-situ light scattering measurements of long-term observations are usually performed under dry conditions (RH>30–40%. The knowledge of this RH effect is of eminent importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. This study combines measurements and model calculations to describe the RH effect on aerosol light scattering for the first time for aerosol particles present in summer and fall in the high Arctic. For this purpose, a field campaign was carried out from July to October 2008 at the Zeppelin station in Ny-Ålesund, Svalbard. The aerosol light scattering coefficient σsp(λ was measured at three distinct wavelengths (λ=450, 550, and 700 nm at dry and at various, predefined RH conditions between 20% and 95% with a recently developed humidified nephelometer (WetNeph and with a second nephelometer measuring at dry conditions with an average RH<10% (DryNeph. In addition, the aerosol size distribution and the aerosol absorption coefficient were measured. The scattering enhancement factor f(RH, λ is the key parameter to describe the RH effect on σsp(λ and is defined as the RH dependent σsp(RH, λ divided by the corresponding dry σsp(RHdry, λ. During our campaign the average f(RH=85%, λ=550 nm was 3.24±0.63 (mean ± standard deviation, and no clear wavelength dependence of f(RH, λ was observed. This means that the ambient scattering coefficients at RH=85% were on average about three times higher than the dry measured in-situ scattering coefficients. The RH dependency of the recorded f(RH, λ can be well described by an empirical one-parameter equation. We used a simplified

  18. Feasibility of Strong and Quasi-Monochromatic Gamma-Ray Generation by the Laser Compton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiyoung; Rehman, Haseeb ur; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    This is because LCS γ-rays are energy-tunable, quasi-monochromatic, and beam-like. The photon intensity of the mono-chromatic LCS gamma-ray should be high or strong for efficient and high transmutation rate. It was recently reported that a so-called energy-recovery linac system is able to produce a very high-intensity LCS photons in the order of approximately 1013 photons/s economically. It however did not evaluate quality of the LCS photon beam although a quasi-monoenergetic LCS beam is of huge importance in the photo-nuclear transmutation reactions. It is upon this observation that this paper was prepared. Specifically, this work attempts to quantify intensity of the quasi-monochromatic LCS beam from the said linac system. In addition, this paper aims to discuss general characteristics of the LCS photon, and possible approaches to increase its intensity. This paper presents essential characteristics of the laser Compton scattering (LCS) in terms of its photon energy, cross-section and photon intensity. By using different combinations of electron energy, laser energy and scattering angle, we can effectively generate high-intensity and highly-chromatic LCS gamma-rays. Our preliminary analyses indicate that, in view of Compton cross-section, higher-energy photon can be better generated by increasing the electron energy rather than increasing the laser energy. However, in order to maximize the intensity of monochromatic beam, the laser energy should be maximized for a targeted LCS photon energy.

  19. Near-IR Polarized Scattered Light Imagery of the DoAr 28 Transitional Disk

    Science.gov (United States)

    Rich, Evan A.; Wisiniewski, John P.; Mayama, Satoshi; Brandt, Timothy D.; Hashimoto, Jun; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Espaillat, Catherine; Serabyn, Eugene; Grady, Carol A.; hide

    2015-01-01

    We present the first spatially resolved polarized scattered light H-band detection of the DoAr 28 transitional disk. Our two epochs of imagery detect the scattered light disk from our effective inner working angle of 0 double prime.10 (13 AU) out to 0double prime.50 (65 AU). This inner working angle is interior to the location of the system's gap inferred by previous studies using spectral energy distribution modeling (15 AU). We detected a candidate point source companion 1 double prime.08 northwest of the system; however, our second epoch of imagery strongly suggests that this object is a background star. We constructed a grid of Monte Carlo Radiative Transfer models of the system, and our best fit models utilize a modestly inclined (50 degrees), 0.01 solar mass disk that has a partially depleted inner gap from the dust sublimation radius out to approximately 8 AU. Subtracting this best fit, axi-symmetric model from our polarized intensity data reveals evidence for two small asymmetries in the disk, which could be attributable to a variety of mechanisms.

  20. Here Be Dragons: Characterization of ACS/WFC Scattered Light Anomalies

    Science.gov (United States)

    Porterfield, B.; Coe, D.; Gonzaga, S.; Anderson, J.; Grogin, N.

    2016-11-01

    We present a study characterizing scattered light anomalies that occur near the edges of Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) images. We inspected all 8,573 full-frame ACS/WFC raw images with exposure times longer than 350 seconds obtained in the F606W and F814W filters from 2002 to October 2013. We visually identified two particular scattered light artifacts known as "dragon's breath" and edge glow. Using the 2MASS point source catalog and Hubble Guide Star Catalog (GSC II), we identified the stars that caused these artifacts. The stars are all located in narrow bands ( 3" across) just outside the ACS/WFC field of view (2" - 16" away). We provide a map of these risky areas around the ACS/WFC detectors - users should avoid positioning bright stars in these regions when designing ACS/WFC imaging observations. We also provide interactive webpages which display all the image artifacts we identified, allowing users to see examples of the severity of artifacts they might expect for a given stellar magnitude at a given position relative to the ACS/WFC field of view. On average, 10th (18th) magnitude stars produce artifacts about 1,000 (100) pixels long. But the severity of these artifacts can vary strongly with small positional shifts (∼ 1"). The results are similar for both filters (F606W and F814W) when expressed in total fluence, or flux multiplied by exposure time.

  1. Q-space analysis of light scattering by ice crystals

    Science.gov (United States)

    Heinson, Yuli W.; Maughan, Justin B.; Ding, Jiachen; Chakrabarti, Amitabha; Yang, Ping; Sorensen, Christopher M.

    2016-12-01

    Q-space analysis is applied to extensive simulations of the single-scattering properties of ice crystals with various habits/shapes over a range of sizes. The analysis uncovers features common to all the shapes: a forward scattering regime with intensity quantitatively related to the Rayleigh scattering by the particle and the internal coupling parameter, followed by a Guinier regime dependent upon the particle size, a complex power law regime with incipient two dimensional diffraction effects, and, in some cases, an enhanced backscattering regime. The effects of significant absorption on the scattering profile are also studied. The overall features found for the ice crystals are similar to features in scattering from same sized spheres.

  2. Application of the weighted total field-scattering field technique to 3D-PSTD light scattering model

    Science.gov (United States)

    Hu, Shuai; Gao, Taichang; Liu, Lei; Li, Hao; Chen, Ming; Yang, Bo

    2018-04-01

    PSTD (Pseudo Spectral Time Domain) is an excellent model for the light scattering simulation of nonspherical aerosol particles. However, due to the particularity of its discretization form of the Maxwell's equations, the traditional Total Field/Scattering Field (TF/SF) technique for FDTD (Finite Differential Time Domain) is not applicable to PSTD, and the time-consuming pure scattering field technique is mainly applied to introduce the incident wave. To this end, the weighted TF/SF technique proposed by X. Gao is generalized and applied to the 3D-PSTD scattering model. Using this technique, the incident light can be effectively introduced by modifying the electromagnetic components in an inserted connecting region between the total field and the scattering field region with incident terms, where the incident terms are obtained by weighting the incident field by a window function. To optimally determine the thickness of connection region and the window function type for PSTD calculations, their influence on the modeling accuracy is firstly analyzed. To further verify the effectiveness and advantages of the weighted TF/SF technique, the improved PSTD model is validated against the PSTD model equipped with pure scattering field technique in both calculation accuracy and efficiency. The results show that, the performance of PSTD seems to be not sensitive to variation of window functions. The number of the connection layer required decreases with the increasing of spatial resolution, where for spatial resolution of 24 grids per wavelength, a 6-layer region is thick enough. The scattering phase matrices and integral scattering parameters obtained by the improved PSTD show an excellent consistency with those well-tested models for spherical and nonspherical particles, illustrating that the weighted TF/SF technique can introduce the incident precisely. The weighted TF/SF technique shows higher computational efficiency than pure scattering technique.

  3. Detection of neurotransmitters by a light scattering technique based on seed-mediated growth of gold nanoparticles

    International Nuclear Information System (INIS)

    Shang Li; Dong Shaojun

    2008-01-01

    A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer. In particular, Au-nanoparticle seeds were added to facilitate the growth of nanoparticles, which was found to enhance the sensing performance greatly. Using this light scattering technique based on the seed-mediated growth of gold nanoparticles, detection limits of 4.4 x 10 -7 M, 3.5 x 10 -7 M, 4.1 x 10 -7 M, and 7.7 x 10 -7 M were achieved for dopamine, L-dopa, noradrenaline and adrenaline, respectively. The present strategy can be extended to detect other biologically important molecules in a very fast, simple and sensitive way, and may have potential applications in a wide range of fields

  4. Detection of neurotransmitters by a light scattering technique based on seed-mediated growth of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shang Li; Dong Shaojun [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun 130022 (China)], E-mail: dongsj@ciac.jl.cn

    2008-03-05

    A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer. In particular, Au-nanoparticle seeds were added to facilitate the growth of nanoparticles, which was found to enhance the sensing performance greatly. Using this light scattering technique based on the seed-mediated growth of gold nanoparticles, detection limits of 4.4 x 10{sup -7} M, 3.5 x 10{sup -7} M, 4.1 x 10{sup -7} M, and 7.7 x 10{sup -7} M were achieved for dopamine, L-dopa, noradrenaline and adrenaline, respectively. The present strategy can be extended to detect other biologically important molecules in a very fast, simple and sensitive way, and may have potential applications in a wide range of fields.

  5. Light exiting from real photonic band gap crystals is diffuse and strongly directional

    NARCIS (Netherlands)

    Koenderink, A.F.; Vos, Willem L.

    2003-01-01

    Any photonic crystal is in practice periodic with some inevitable fabricational imperfections. We have measured angle-resolved transmission of photons that are multiply scattered by this disorder in strongly photonic crystals. Peculiar non-Lambertian distributions occur as a function of frequency:

  6. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green.

    Science.gov (United States)

    Terashima, Ichiro; Fujita, Takashi; Inoue, Takeshi; Chow, Wah Soon; Oguchi, Riichi

    2009-04-01

    The literature and our present examinations indicate that the intra-leaf light absorption profile is in most cases steeper than the photosynthetic capacity profile. In strong white light, therefore, the quantum yield of photosynthesis would be lower in the upper chloroplasts, located near the illuminated surface, than that in the lower chloroplasts. Because green light can penetrate further into the leaf than red or blue light, in strong white light, any additional green light absorbed by the lower chloroplasts would increase leaf photosynthesis to a greater extent than would additional red or blue light. Based on the assessment of effects of the additional monochromatic light on leaf photosynthesis, we developed the differential quantum yield method that quantifies efficiency of any monochromatic light in white light. Application of this method to sunflower leaves clearly showed that, in moderate to strong white light, green light drove photosynthesis more effectively than red light. The green leaf should have a considerable volume of chloroplasts to accommodate the inefficient carboxylation enzyme, Rubisco, and deliver appropriate light to all the chloroplasts. By using chlorophylls that absorb green light weakly, modifying mesophyll structure and adjusting the Rubisco/chlorophyll ratio, the leaf appears to satisfy two somewhat conflicting requirements: to increase the absorptance of photosynthetically active radiation, and to drive photosynthesis efficiently in all the chloroplasts. We also discuss some serious problems that are caused by neglecting these intra-leaf profiles when estimating whole leaf electron transport rates and assessing photoinhibition by fluorescence techniques.

  7. Quantum screening effects on the electron-ion occurrence scattering time advance in strongly coupled semiclassical plasmas

    International Nuclear Information System (INIS)

    Song, Mi-Young; Jung, Young-Dae

    2003-01-01

    Quantum screening effects on the occurrence scattering time advance for elastic electron-ion collisions in strongly coupled semiclassical plasmas are investigated using the second-order eikonal analysis. The electron-ion interaction in strongly coupled semiclassical plasmas is obtained by the pseudopotential model taking into account the plasma screening and quantum effects. It is found that the quantum-mechanical effects significantly reduce the occurrence scattering time advance. It is also found that the occurrence scattering time advance increases with increasing Debye length. It is quite interesting to note that the domain of the maximum occurrence time advance is localized for the forward scattering case. The region of the scaled thermal de Broglie wave length (λ-bar) for the maximum occurrence time advance is found to be 0.4≤λ-bar≤1.4

  8. Contribution to the study of the molecular scattering of light. Use of a laser as light source (1963)

    International Nuclear Information System (INIS)

    Slama, L.

    1963-01-01

    The experiments of the molecular scattering of light have been repeated using a ruby laser as a light source. The angular distribution of the scattered light intensity has been measured when the electric vector of the incident beam is either in the plane of observation or perpendicular to that plane. In the first case a good agreement with the Rayleigh theory has been found but this is not true in the second case. The differential cross sections for scattering have been measured for various gases. The values found are two or three times larger than the ones deduced from the classical theory. The possible effect of a variation of the beam intensity upon the linearity of the scattering process has been looked for. (author) [fr

  9. Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering

    Directory of Open Access Journals (Sweden)

    Antoun Ayman

    2004-01-01

    Full Text Available Light scattering and standard stopped-flow techniques were used to monitor rapid association of ribosomal subunits during initiation of eubacterial protein synthesis. The effects of the initiation factors IF1, IF2, IF3 and buffer conditions on subunit association were studied along with the role of GTP in this process. The part of light scattering theory that is essential for kinetic measurements is high-lighted in the main text and a more general treatment of Rayleigh scattering from macromolecules is given in an appendix.

  10. Strong coupling expansion for scattering phases in hamiltonian lattice field theories. Pt. 1. The (d+1)-dimensional Ising model

    International Nuclear Information System (INIS)

    Dahmen, Bernd

    1994-01-01

    A systematic method to obtain strong coupling expansions for scattering quantities in hamiltonian lattice field theories is presented. I develop the conceptual ideas for the case of the hamiltonian field theory analogue of the Ising model, in d space and one time dimension. The main result is a convergent series representation for the scattering states and the transition matrix. To be explicit, the special cases of d=1 and d=3 spatial dimensions are discussed in detail. I compute the next-to-leading order approximation for the phase shifts. The application of the method to investigate low-energy scattering phenomena in lattice gauge theory and QCD is proposed. ((orig.))

  11. Polarized light scattering as a probe for changes in chromosome structure

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Daniel Benjamin [Univ. of California, Berkeley, CA (United States)

    1993-10-01

    Measurements and calculations of polarized light scattering are applied to chromosomes. Calculations of the Mueller matrix, which completely describes how the polarization state of light is altered upon scattering, are developed for helical structures related to that of chromosomes. Measurements of the Mueller matrix are presented for octopus sperm heads, and dinoflagellates. Comparisons of theory and experiment are made. A working theory of polarized light scattering from helices is developed. The use of the first Born approximation vs the coupled dipole approximation are investigated. A comparison of continuous, calculated in this work, and discrete models is also discussed. By comparing light scattering measurements with theoretical predictions the average orientation of DNA in an octopus sperm head is determined. Calculations are made for the Mueller matrix of DNA plectonemic helices at UV, visible and X-ray wavelengths. Finally evidence is presented that the chromosomes of dinoflagellates are responsible for observed differential scattering of circularly-polarized light. This differential scattering is found to vary in a manner that is possibly correlated to the cell cycle of the dinoflagellates. It is concluded that by properly choosing the wavelength probe polarized light scattering can provide a useful tool to study chromosome structure.

  12. Nucleation and Nanometric Inhomogeneity in Niobiogermanate Glass: In-Situ Inelastic Light Scattering and TEM Studies

    International Nuclear Information System (INIS)

    Takahashi, Y; Ihara, R; Fujiwara, T; Osada, M; Masai, H

    2011-01-01

    We performed in-situ inelastic light scattering measurement in KNbGeO 5 glass with a high nucleation ability during heating in order to elucidate nanocrystallization dynamics. The results of the in-situ measurement and TEM observation revealed that nanometric heterogeneous region (∼1-2 nm) consisting of the Nb-richer phase develops, i.e., K 3 Nb 7 O 19 , at the temperature, in which glassy-supercooled-liquid (SCL) phase-transition occurs, i.e., precursive stage of nanocrystallization. This strongly suggests that evolution of the nanometric Nb-richer phase in the SCL phase corresponds to nucleation in the KNbGeO 5 glass.

  13. Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Haldar, Arabinda; Banerjee, Chandrima; Laha, Pinaki; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700098 (India)

    2014-04-07

    Spin waves are investigated in Permalloy(Ni{sub 80}Fe{sub 20})/Cobalt(Co) exchange spring bilayer thin films using Brillouin light scattering (BLS) experiment. The magnetic hysteresis loops measured by magneto-optical Kerr effect show a monotonic decrease in coercivity of the bilayer films with increasing Py thickness. BLS study shows two distinct modes, which are modelled as Damon-Eshbach and perpendicular standing wave modes. Linewidths of the frequency peaks are found to increase significantly with decreasing Py layer thickness. Interfacial roughness causes to fluctuate exchange coupling at the nanoscale regimes and the effect is stronger for thinner Py films. A quantitative analysis of the magnon linewidths shows the presence of strong local exchange coupling field which is much larger compared to macroscopic exchange field.

  14. Multiple scattering of elliptically polarized light in two-dimensional medium with large inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Gorodnichev, E. E., E-mail: gorodn@theor.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    For elliptically polarized light incident on a two-dimensional medium with large inhomogeneities, the Stokes parameters of scattered waves are calculated. Multiple scattering is assumed to be sharply anisotropic. The degree of polarization of scattered radiation is shown to be a nonmonotonic function of depth when the incident wave is circularly polarized or its polarization vector is not parallel to the symmetry axis of the inhomogeneities.

  15. Light scattering in ecology and bio medicine; Rasejanje svetlosti u ekologiji i biomedicini

    Energy Technology Data Exchange (ETDEWEB)

    Sreckovic, M [Belgrade Univ. (Yugoslavia). Elektrotehnicki Fakultet; Ostojic, S [Belgrade Univ. (Yugoslavia). Tehnolosko-Metalurski Fakultet; Mamula-Tartalja, D [Visa Tehnicka PPT skola, Belgrade(Yugoslavia); Arandjelovic, S [Zavod za DDD, Belgrade (Yugoslavia); Stekovic, M [Belgrade Univ. (Yugoslavia). Elektrotehnicki Fakultet

    1996-07-01

    In the paper chosen experiments of application of light scattering in ecology and medicine are considered. Based on experimental curves, distribution of micro scatterers in micrometer and manometer particle size area is estimated and the question of corresponding mathematics devices for representing the given distribution is considered. For obtained distributions some definition parameters and needed number of parameters in order to distinguish certain categories of scatterers have been discussed. (author)

  16. In vivo diagnosis of skin cancer using polarized and multiple scattered light spectroscopy

    Science.gov (United States)

    Bartlett, Matthew Allen

    This thesis research presents the development of a non-invasive diagnostic technique for distinguishing between skin cancer, moles, and normal skin using polarized and multiple scattered light spectroscopy. Polarized light incident on the skin is single scattered by the epidermal layer and multiple scattered by the dermal layer. The epidermal light maintains its initial polarization while the light from the dermal layer becomes randomized and multiple scattered. Mie theory was used to model the epidermal light as the scattering from the intercellular organelles. The dermal signal was modeled as the diffusion of light through a localized semi-homogeneous volume. These models were confirmed using skin phantom experiments, studied with in vitro cell cultures, and applied to human skin for in vivo testing. A CCD-based spectroscopy system was developed to perform all these experiments. The probe and the theory were tested on skin phantoms of latex spheres on top of a solid phantom. We next extended our phantom study to include in vitro cells on top of the solid phantom. Optical fluorescent microscope images revealed at least four distinct scatterers including mitochondria, nucleoli, nuclei, and cell membranes. Single scattering measurements on the mammalian cells consistently produced PSD's in the size range of the mitochondria. The clinical portion of the study consisted of in vivo measurements on cancer, mole, and normal skin spots. The clinical study combined the single scattering model from the phantom and in vitro cell studies with the diffusion model for multiple scattered light. When parameters from both layers were combined, we found that a sensitivity of 100% and 77% can be obtained for detecting cancers and moles, respectively, given the number of lesions examined.

  17. Strong nonlinearity-induced correlations for counterpropagating photons scattering on a two-level emitter

    DEFF Research Database (Denmark)

    Nysteen, Anders; McCutcheon, Dara; Mørk, Jesper

    2015-01-01

    We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could be quanti......We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could...

  18. Neutron and photon (light) scattering on solitons in the quasi-one-dimensional magnetics

    CERN Document Server

    Abdulloev, K O

    1999-01-01

    The general expression we have found earlier for the dynamics form-factor is used to analyse experiments on the neutron and photon (light) scattering by the gas of solitons in quasi-one-dimensional magnetics (Authors)

  19. Light scattering properties of bovine muscle tissue in vitro, a comparison of methods

    NARCIS (Netherlands)

    Zijp, J.R.; ten Bosch, JJ; Benaron, DA; Chance, B; Ferrari, M; Kohl, M

    1998-01-01

    We measured the light scattering properties of muscular tissue using several methods, and compared the obtained results. Calculation of the extinction coefficient by using collimated transmission measurements and applying Beer's law is not appropriate. Probably surface roughness of the sample

  20. Light scattering reviews 7 radiative transfer and optical properties of atmosphere and underlying surface

    CERN Document Server

    Kokhanovsky, Alexander A

    2014-01-01

    This book describes modern advances in radiative transfer and light scattering. Coverage includes fast radiative transfer techniques, use of polarization in remote sensing and recent developments in remote sensing of snow properties from space observations.

  1. Light scattering in plane dielectric layers: Modeling in the 2d reciprocal space

    International Nuclear Information System (INIS)

    Shcherbakov, Alexey A.; Tishchenko, Alexandre V.

    2012-01-01

    The generalized source method previously developed for the light diffraction calculation on periodic dielectric structures is applied for the light scattering calculation in non-periodic planar media. This significantly enlarges the domain of applicability of Fourier-methods in light scattering modeling since the generalized source method is of much less numerical complexity than other rigorous methods used. -- Highlights: ► Method for light scattering simulation in planar layers. ► The approach is fairly independent of scattering particles’ shape. ► The method is based on the rigorous solution of Maxwell's equations. ► Each calculation stage allows the accuracy control by the convergence monitoring. ► Possibility to consider any practically possible dielectric materials.

  2. Experimental demonstration of singular-optical colouring of regularly scattered white light

    DEFF Research Database (Denmark)

    Angelsky, O.V.; Hanson, Steen Grüner; Maksimyak, P.P.

    2008-01-01

    Experimental interference modelling of the effects of colouring of a beam traversing a light-scattering medium is presented. It is shown that the result of colouring of the beam at the output of the medium depends on the magnitudes of the phase delays of the singly forward scattered partial signa...

  3. Finite-difference time domain solution of light scattering by arbitrarily shaped particles and surfaces

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Sun, Wenbo

    2012-01-01

    for particle and surface scattering calculations and the uniaxial perfectly matched layer (UPML) absorbing boundary conditions for truncation of the FDTD grid. We show that the FDTD approach has a significant potential for studying the light scattering by cloud, dust, and biological particles. The applications...

  4. Scattering of light by a periodic structure in the presence of ...

    Indian Academy of Sciences (India)

    In the method developed till now, the detection of periodic structures involves the detection of the central peak, first peak and second peak in the scattered intensity of light, located at scattering wave vectors = 0, , 2, respectively, where = 2/, their distinct identities being obfuscated by the fact that the peaks have ...

  5. Electron density and temperature determination in a Tokamak plasma using light scattering

    International Nuclear Information System (INIS)

    Perez-Navarro Gomez, A.; Zurro Hernandez, B.

    1976-01-01

    A theoretical foundation review for light scattering by plasmas is presented. Furthemore, a review of the experimental methods for electron density and temperature measurements, with spatial and time resolution, is included in a Tokamak plasma using spectral analysis of the scattered radiation. (author) [es

  6. Electron density and temperature determination in a Tokamak plasma using light scattering

    International Nuclear Information System (INIS)

    Perez-Navarro Gomerz, A.; Zurro Hernandez, B.

    1976-01-01

    A theoretical foundation review for light scattering by plasmas is presented. Furthermore, we have included a review of the experimental methods for electron density and temperature measurements, with spatial and time resolution, in a Tokamak plasma using spectral analysis of the scattered radiation. (Author) 13 refs

  7. Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air and moist air,

    NARCIS (Netherlands)

    Witschas, B.; Vieitez, M.O.; Duijn, van E.-J.; Reitebuch, O.; Water, van de W.; Ubachs, W.

    2010-01-01

    Atmospheric lidar techniques for the measurement of wind, temperature, and optical properties of aerosols rely on the exact knowledge of the spectral line shape of the scattered laser light on molecules. We report on spontaneous Rayleigh–Brillouin scattering measurements in the ultraviolet at a

  8. Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime

    NARCIS (Netherlands)

    Petoukhova, A. L.; Steenbergen, W.; van Leeuwen, T. G.; de Mul, F. F. M.

    2002-01-01

    A low coherence Mach-Zehnder interferometer is developed for path length resolved dynamic light scattering in highly turbid media. The path length distribution of multiply scattered photons in Intralipid is changed by the addition of absorbing dyes. Path length distributions obtained for various

  9. TOOTH COLOR AND REFLECTANCE AS RELATED TO LIGHT-SCATTERING AND ENAMEL HARDNESS

    NARCIS (Netherlands)

    TENBOSCH, JJ; COOPS, JC

    Tooth color is determined by the paths of light inside the tooth and absorption along these paths. This paper tests the hypothesis that, since the paths are determined by scattering, a relation between color and scattering coefficients exists. One hundred and two extracted incisors were fixed in

  10. Comprehensive Airborne in Situ Characterization of Atmospheric Aerosols: From Angular Light Scattering to Particle Microphysics

    Science.gov (United States)

    Espinosa, W. Reed

    dimensionality of the multi-angle PI-Neph scattering data and the results are examined as a function aerosol type. Strong clustering is observed in the PCA score space, corresponding to the ancillary classification results, suggesting a robust link between the angular scattering measurements and the aerosol type. Retrievals of the DC3 scattering data suggest the presence of a significant amount of mineral dust aerosol in the inflow of storms sampled during this campaign. The retrieved size distributions of all fine mode dominated aerosols measured during SEAC4RS were found to be remarkably similar. There were however consistent differences between the angular light scattering patterns of biomass burning samples and the other fine mode aerosols, which the GRASP retrieval attributed almost entirely to a higher real refractive index in the biomass burning samples.

  11. Light Scattering by Ice Crystals Containing Air Bubbles

    Science.gov (United States)

    Zhang, J.; Panetta, R. L.; Yang, P.; Bi, L.

    2014-12-01

    The radiative effects of ice clouds are often difficult to estimate accurately, but are very important for interpretation of observations and for climate modeling. Our understanding of these effects is primarily based on scattering calculations, but due to the variability in ice habit it is computationally difficult to determine the required scattering and absorption properties, and the difficulties are only compounded by the need to include consideration of air and carbon inclusions of the sort frequently observed in collected samples. Much of the previous work on effects of inclusions in ice particles on scattering properties has been conducted with variants of geometric optics methods. We report on simulations of scattering by ice crystals with enclosed air bubbles using the pseudo-spectral time domain method (PSTD) and improved geometric optics method (IGOM). A Bouncing Ball Model (BBM) is proposed as a parametrization of air bubbles, and the results are compared with Monte Carlo radiative transfer calculations. Consistent with earlier studies, we find that air inclusions lead to a smoothing of variations in the phase function, weakening of halos, and a reduction of backscattering. We extend these studies by examining the effects of the particular arrangement of a fixed number of bubbles, as well as the effects of splitting a given number of bubbles into a greater number of smaller bubbles with the same total volume fraction. The result shows that the phase function will not change much for stochastic distributed air bubbles. It also shows that local maxima of phase functions are smoothed out for backward directions, when we break bubbles into small ones, single big bubble scatter favors more forward scattering than multi small internal scatters.

  12. The scatter of light of different colour in the atmosphere.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1976-01-01

    It is often claimed (Devaux) that yellow light is superior to white light for vehicle headlamps. This claim is supported by evidence of a physical, physiological and psychological nature. In most cases, it appears that the advantages of yellow light are small, and can usually be neglected

  13. Inelastic electron and light scattering from the elementary electronic excitations in quantum wells: Zero magnetic field

    Directory of Open Access Journals (Sweden)

    Manvir S. Kushwaha

    2012-09-01

    Full Text Available The most fundamental approach to an understanding of electronic, optical, and transport phenomena which the condensed matter physics (of conventional as well as nonconventional systems offers is generally founded on two experiments: the inelastic electron scattering and the inelastic light scattering. This work embarks on providing a systematic framework for the theory of inelastic electron scattering and of inelastic light scattering from the electronic excitations in GaAs/Ga1−xAlxAs quantum wells. To this end, we start with the Kubo's correlation function to derive the generalized nonlocal, dynamic dielectric function, and the inverse dielectric function within the framework of Bohm-Pines’ random-phase approximation. This is followed by a thorough development of the theory of inelastic electron scattering and of inelastic light scattering. The methodological part is then subjected to the analytical diagnoses which allow us to sense the subtlety of the analytical results and the importance of their applications. The general analytical results, which know no bounds regarding, e.g., the subband occupancy, are then specified so as to make them applicable to practicality. After trying and testing the eigenfunctions, we compute the density of states, the Fermi energy, the full excitation spectrum made up of intrasubband and intersubband – single-particle and collective (plasmon – excitations, the loss functions for all the principal geometries envisioned for the inelastic electron scattering, and the Raman intensity, which provides a measure of the real transitions induced by the (laser probe, for the inelastic light scattering. It is found that the dominant contribution to both the loss peaks and the Raman peaks comes from the collective (plasmon excitations. As to the single-particle peaks, the analysis indicates a long-lasting lack of quantitative comparison between theory and experiments. It is inferred that the inelastic electron

  14. Identifying regions of strong scattering at the core-mantle boundary from analysis of PKKP precursor energy

    Science.gov (United States)

    Rost, S.; Earle, P.S.

    2010-01-01

    We detect seismic scattering from the core-mantle boundary related to the phase PKKP (PK. KP) in data from small aperture seismic arrays in India and Canada. The detection of these scattered waves in data from small aperture arrays is new and allows a better characterization of the fine-scale structure of the deep Earth especially in the southern hemisphere. Their slowness vector is determined from array processing allowing location of the heterogeneities at the core-mantle boundary using back-projection techniques through 1D Earth models. We identify strong scattering at the core-mantle boundary (CMB) beneath the Caribbean, Patagonia and the Antarctic Peninsula as well as beneath southern Africa. An analysis of the scattering regions relative to sources and receivers indicates that these regions represent areas of increased scattering likely due to increased heterogeneities close to the CMB. The 1. Hz array data used in this study is most sensitive to heterogeneity with scale lengths of about 10. km. Given the small size of the scatterers, a chemical origin of the heterogeneities is likely. By comparing the location of the fine-scale heterogeneity to geodynamical models and tomographic images, we identify different scattering mechanisms in regions related to subduction (Caribbean and Patagonia) and dense thermo chemical piles (Southern Africa). ?? 2010 Elsevier B.V.

  15. Experimental light scattering by positionally-controlled small particles — Implications for Planetary Science

    Science.gov (United States)

    Gritsevich, M.; Penttilä, A.; Maconi, G.; Kassamakov, I.; Martikainen, J.; Markkanen, J.; Vaisanen, T.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Electromagnetic scattering is a fundamental physical process that allows inferring characteristics of an object studied remotely. This possibility is enhanced by obtaining the light-scattering response at multiple wavelengths and viewing geometries, i.e., by considering a wider range of the phase angle (the angle between the incident light and the light reflected from the object) in the experiment. Within the ERC Advanced Grant project SAEMPL (http://cordis.europa.eu/project/rcn/107666_en.html) we have assembled an interdisciplinary group of scientists to develop a fully automated, 3D scatterometer that can measure scattered light at different wavelengths from small particulate samples. The setup comprises: (a) the PXI Express platform to synchronously record data from several photomultiplier tubes (PMTs); (b) a motorized rotation stage to precisely control the azimuthal angle of the PMTs around 360°; and (c) a versatile light source, whose wavelength, polarization, intensity, and beam shape can be precisely controlled. An acoustic levitator is used to hold the sample without touching it. The device is the first of its kind, since it measures controlled spectral angular scattering including all polarization effects, for an arbitrary object in the µm-cm size scale. It permits a nondestructive, disturbance-free measurement with control of the orientation and location of the scattering object. To demonstrate our approach we performed detailed measurements of light scattered by a Chelyabinsk LL5 chondrite particle, derived from the light-colored lithology sample of the meteorite. These measurements are cross-validated against the modeled light-scattering characteristics of the sample, i.e., the intensity and the degree of linear polarization of the reflected light, calculated with state-of-the-art electromagnetic techniques (see Muinonen et al., this meeting). We demonstrate a unique non-destructive approach to derive the optical properties of small grain samples

  16. Implications of Microwave Holography Using Minimum Required Frequency Samples for Weakly- and Strongly-Scattering Indications

    Science.gov (United States)

    Fallahpour, M.; Case, J. T.; Kharkovsky, S.; Zoughi, R.

    2010-01-01

    Microwave imaging techniques, an integral component of nondestructive testing and evaluation (NDTE), have received significant attention in the past decade. These techniques have included the implementation of synthetic aperture focusing (SAF) algorithms for obtaining high spatial resolution images. The next important step in these developments is the implementation of 3-D holographic imaging algorithms. These are well-known wideband imaging technique requiring a swept-frequency (i.e., wideband), which unlike SAF that is a single frequency technique, are not easily performed on a real-time basis. This is due to the fact that a significant number of data points (in the frequency domain) must be obtained within the frequency band of interest. This not only makes for a complex imaging system design, it also significantly increases the image-production time. Consequently in an attempt to reduce the measurement time and system complexity, an investigation was conducted to determine the minimum required number of frequency samples needed to image a specific object while preserving a desired maximum measurement range and range resolution. To this end the 3-D holographic algorithm was modified to use properlyinterpolated frequency data. Measurements of the complex reflection coefficient for several samples were conducted using a swept-frequency approach. Subsequently, holographical images were generated using data containing a relatively large number of frequency samples and were compared with images generated by the reduced data set data. Quantitative metrics such as average, contrast, and signal-to-noise ratio were used to evaluate the quality of images generated using reduced data sets. Furthermore, this approach was applied to both weakly- and strongly-scattering indications. This paper presents the methods used and the results of this investigation.

  17. Scattered light evidence for short density scale heights near critical density in laser-irradiated plasmas

    International Nuclear Information System (INIS)

    Phillion, D.W.; Lerche, R.A.; Rupert, V.C.; Haas, R.A.; Boyle, M.J.

    1976-01-01

    Experimental evidence is presented of a steepened electron density profile near critical density obtained from studying the time-integrated scattered light from targets illuminated by linearly polarized, 1.06 μ light. Both 10 μ thick disks and DT-filled glass microshells were irradiated by light focused by f/1 or f/2.5 lenses in one and two-beam experiments, respectively. From the dependence of the asymmetry of the scattered light about the beam axis upon the scattering angle, we infer scale lengths on the order of one micron. Scale lengths have also been deduced from measurements on the polarization state of the reflected light. Both analytic and numerical results are presented to show how the polarization state varies with the incidence angle and the scale length

  18. Scattered light evidence for short density heights near critical density in laser-irradiated plasmas

    International Nuclear Information System (INIS)

    Phillion, D.W.; Lerche, R.A.; Rupert, V.C.; Haas, R.A.; Boyle, M.J.

    1976-01-01

    Experimental evidence is presented of a steepened electron density profile near critical density obtained from studying the time-integrated scattered light from targets illuminated by linearly polarized, 1.06 μ light. Both 10 μ thick disks and DT-filled glass microshells were irradiated by light focused by f/1 or f/2.5 lenses in one and two-beam experiments, respectively. From the dependence of the asymmetry of the scattered light about the beam axis upon the scattering angle, scale lengths on the order of one micron are inferred. Scale lengths have also been deduced from measurements on the polarization state of the reflected light. Both analytic and numerical results are presented to show how the polarization state varies with the incidence angle and the scale length

  19. Double scattering of light from Biophotonic Nanostructures with short-range order

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G.J.; Dufresne, Eric R.; Cao, Hui (Yale)

    2010-07-28

    We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.

  20. Observation of spatial quantum correlations induced by multiple scattering of nonclassical light

    DEFF Research Database (Denmark)

    Smolka, Stephan; Huck, Alexander; Andersen, Ulrik Lund

    2009-01-01

    and negative spatial quantum correlations are observed when varying the quantum state incident to the multiple scattering medium, and the strength of the correlations is controlled by the number of photons. The experimental results are in excellent agreement with recent theoretical proposals by implementing......We present the experimental realization of spatial quantum correlations of photons that are induced by multiple scattering of squeezed light. The quantum correlation relates photons propagating along two different light paths through the random medium and is infinite in range. Both positive...... the full quantum model of multiple scattering....

  1. Microchip Flow Cytometer with Integrated Polymer Optical Elements for Measurement of Scattered Light

    DEFF Research Database (Denmark)

    Wang, Zhenyu; El-Ali, Jamil; Perch-Nielsen, Ivan Ryberg

    2004-01-01

    channels to form a complete microchip flow cytometer. All the optical elements, the microfluidic system, and the fiber-to-waveguide couplers were defined in one layer of polymer (SU-8, negative photoresist) by standard photolithography. With only one single mask procedure, all the fabrication and packaging...... processes can be finished in one day. Polystyrene beads were measured in the microchip flow cytometer, and three signals (forward scattering, large angle scattering and extinction) were measured simultaneously for each bead. The average intensities of the forward Scattered light and the incident light...

  2. Spectrum of an electromagnetic light wave on scattering from an anisotropic semisoft boundary medium.

    Science.gov (United States)

    Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu

    2016-04-01

    Spectral shifts and spectral switches of a polychromatic electromagnetic light wave on scattering from an anisotropic semisoft boundary medium are discussed. It is shown that both the property of the incident field and the character of the scattering medium play roles in the change of the spectrum of the far-zone scattered field. It is also shown that the distribution of the far-zone scattered spectrum, including the magnitude of the spectral shift and the direction at which the spectral switch occurs, is rotationally nonsymmetric.

  3. The current status of small-angle x-ray scattering beamline at Diamond Light Source

    International Nuclear Information System (INIS)

    Inoue, Katsuaki; Doutch, James; Terrill, Nick

    2013-01-01

    The small-angle X-ray scattering (SAXS) covers the major disciplines of biology, chemistry and physics delivering structural and dynamic information in nanoscience, mesoscopic architectures, supramolecular structures, and nucleation/growth of crystals. SAXS is also proving to be important in archaeological, environmental, and conservation sciences, and has further indicated its ability to span wide-ranging scientific disciplines. Thus, strong needs for SAXS studies are increasing significantly in a broad range of scientific fields year by year. Based on such a background, the demand for high throughput SAXS experiments is increasing. At the synchrotron facility, Diamond Light Source, one SAXS beamline, Non-crystalline diffraction I22 is now operational and highly automated throughput small-angle X-ray scattering (HATSAXS) beamline B21 is now under construction. I22 is the Undulator beamline and wide varieties of experiments, including time-resolved experiments are attempted. Based on the concept of HATSAXS, the key feature of B21 will focuses on the automation of end-station equipment. A automated sample changer has been purchased for solution SAXS measurements on biomolecules. A robotic-arm-type automated sample changer that is capable of handling several kinds of samples in material science is also being constructed. B21 is expected to successfully provide all users highly automated throughput measurements with the highest possible reliability and accuracy. Construction of this beamline will end in the second half of 2012, and will be open for users in the early summer of 2013 after commissioning. (author)

  4. Light Scattering of Rough Orthogonal Anisotropic Surfaces with Secondary Most Probable Slope Distributions

    International Nuclear Information System (INIS)

    Li Hai-Xia; Cheng Chuan-Fu

    2011-01-01

    We study the light scattering of an orthogonal anisotropic rough surface with secondary most probable slope distribution. It is found that the scattered intensity profiles have obvious secondary maxima, and in the direction perpendicular to the plane of incidence, the secondary maxima are oriented in a curve on the observation plane, which is called the orientation curve. By numerical calculation of the scattering wave fields with the height data of the sample, it is validated that the secondary maxima are induced by the side face element, which constitutes the prismoid structure of the anisotropic surface. We derive the equation of the quadratic orientation curve. Experimentally, we construct the system for light scattering measurement using a CCD. The scattered intensity profiles are extracted from the images at different angles of incidence along the orientation curves. The experimental results conform to the theory. (fundamental areas of phenomenology(including applications))

  5. Strong Three-magnon Scattering in Cuprates by Resonant X-rays

    OpenAIRE

    Ament, Luuk J. P.; Brink, Jeroen van den

    2010-01-01

    We show that Resonant Inelastic X-ray scattering (RIXS) is sensitive to three-magnon excitations in cuprates. Even if it requires three electrons to simultaneously flip their spin, the RIXS tri-magnon scattering amplitude is not small. At the Cu $L$-edge its intensity is generally larger than the bi-magnon one and at low transferred momentum even larger than the single-magnon intensity. At the copper $M$-edge the situation is yet more extreme: in this case three-magnon scattering is dominatin...

  6. [Light scattering extinction properties of atmospheric particle and pollution characteristics in hazy weather in Hangzhou].

    Science.gov (United States)

    Xu, Chang; Ye, Hui; Shen, Jian-Dong; Sun, Hong-Liang; Hong, Sheng-Mao; Jiao, Li; Huang, Kan

    2014-12-01

    In order to evaluate the influence of particle scattering on visibility, light scattering coefficient, particle concentrations and meteorological factor were simultaneously monitored from July 2011 to June 2012 in Hangzhou. Daily scattering coefficients ranged from 108.4 to 1 098.1 Mm(-1), with an annual average concentration of 428.6 Mm(-1) ± 200.2 Mm(-1). Seasonal variation of scattering coefficients was significant, with the highest concentrations observed in autumn and winter and the lowest in summer. It was found there were two peaks for the average diurnal variations of the scattering coefficient, which could be observed at 08:00 and 21:00. The scattering efficiencies of PM2.5 and PM10 were 7.6 m2 x g(-1) and 4.4 m2 x g(-1), respectively. The particle scattering was about 90.2 percent of the total light extinction. The scattering coefficients were 684.4 Mm(-1) ± 218.1 Mm(-1) and 1 095.4 Mm(-1) ± 397.7 Mm(-1) in hazy and heavy hazy days, respectively, which were 2.6 and 4.2 times as high as in non-hazy weather, indicating that particle scattering is the main factor for visibility degradation and the occurrence of hazy weather in Hangzhou.

  7. Dispersion relation for hadronic light-by-light scattering: two-pion contributions

    Energy Technology Data Exchange (ETDEWEB)

    Colangelo, Gilberto [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, 3012 Bern (Switzerland); Hoferichter, Martin [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550 (United States); Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106 (United States); Procura, Massimiliano [Theoretical Physics Department, CERN, Geneva (Switzerland); Stoffer, Peter [Helmholtz-Institut für Strahlen- und Kernphysik (Theory)and Bethe Center for Theoretical Physics, University of Bonn, 53115 Bonn (Germany); Department of Physics, University of California at San Diego, La Jolla, CA 92093 (United States)

    2017-04-27

    In this third paper of a series dedicated to a dispersive treatment of the hadronic light-by-light (HLbL) tensor, we derive a partial-wave formulation for two-pion intermediate states in the HLbL contribution to the anomalous magnetic moment of the muon (g−2){sub μ}, including a detailed discussion of the unitarity relation for arbitrary partial waves. We show that obtaining a final expression free from unphysical helicity partial waves is a subtle issue, which we thoroughly clarify. As a by-product, we obtain a set of sum rules that could be used to constrain future calculations of γ{sup ∗}γ{sup ∗}→ππ. We validate the formalism extensively using the pion-box contribution, defined by two-pion intermediate states with a pion-pole left-hand cut, and demonstrate how the full known result is reproduced when resumming the partial waves. Using dispersive fits to high-statistics data for the pion vector form factor, we provide an evaluation of the full pion box, a{sub μ}{sup π-box}=−15.9(2)×10{sup −11}. As an application of the partial-wave formalism, we present a first calculation of ππ-rescattering effects in HLbL scattering, with γ{sup ∗}γ{sup ∗}→ππ helicity partial waves constructed dispersively using ππ phase shifts derived from the inverse-amplitude method. In this way, the isospin-0 part of our calculation can be interpreted as the contribution of the f{sub 0}(500) to HLbL scattering in (g−2){sub μ}. We argue that the contribution due to charged-pion rescattering implements corrections related to the corresponding pion polarizability and show that these are moderate. Our final result for the sum of pion-box contribution and its S-wave rescattering corrections reads a{sub μ}{sup π-box}+a{sub μ,J=0}{sup ππ,π-pole} {sup LHC}=−24(1)×10{sup −11}.

  8. VLBA Observations of Strong Anisotripic Radio Scattering Toward the Orion Nebula

    Science.gov (United States)

    Kounkel, Marina; Hartmann, Lee; Loinard, Laurent; Mioduszewski, Amy J.; Rodríguez, Luis F.; Ortiz-León, Gisela N.; Johnson, Michael D.; Torres, Rosa M.; Briceño, Cesar

    2018-05-01

    We present observations of VLBA 20, a radio source found toward the edge of the Orion Nebula Cluster (ONC). Nonthermal emission dominates the spectral energy distribution of this object from the radio to mid-infrared regime, suggesting that VLBA 20 is extragalactic. This source is heavily scattered in the radio regime. Very Long Baseline Array observations resolve it to ∼34 × 19 mas at 5 GHz, and the wavelength dependence of the scattering disk is consistent with ν ‑2 at other frequencies. The origin of the scattering is most likely the ionized X-ray emitting gas from the winds of the most massive stars of the ONC. The scattering is highly anisotropic, with the axis ratio of 2:1, higher than what is typically observed toward other sources.

  9. Surface roughness studies with DALLAS-detector array for laser light angular scattering

    Science.gov (United States)

    Vorburger, T. V.; Teague, E. C.; Scire, F. E.; Mclay, M. J.; Gilsinn, D. E.

    1984-01-01

    An attempt is made to develop a better mathematical description of optical scattering phenomena, in order to construct an optical scattering apparatus for reliable and routine measurements of roughness parameters without resorting to comparator standards. After a brief outline of optical scattering theory, a description is presented of an experimental instrument for measuring surface roughness which incorporates optical scattering principles. The instrument has a He-Ne laser which illuminates the test surface at a variable angle of incidence. Scattered light distribution is detected by an array of 87 fiber-optic sensors positioned in a rotating semicircular yoke. The output from the detector is digitized and analyzed in a laboratory computer. For a comparison with experimental data, theoretical distributions are calculated by substituting the roughness profiles into the operand of and integral equation for electromagnetic scattering developed by Beckmann and Spizzichino (1963). A schematic diagram of the instrument is provided and the general implications of the experimental results are discussed.

  10. Conical light scattering in strontium barium niobate crystals related to an intrinsic composition inhomogeneity

    International Nuclear Information System (INIS)

    Bastwoeste, K; Sander, U; Imlau, M

    2007-01-01

    Conical light scattering is uncovered in poly- and mono-domain, nominally pure and Eu-doped strontium barium niobate (SBN) crystals over a wide temperature regime. The appearance of two scattering cones, a scattering line and a corona is observed and can be explained comprehensively within the Ewald sphere concept. Photorefraction, scattering from domain boundaries or from growth striations can be excluded from explaining the origin of the scattering. It is shown that the temperature-persistent scattering process is related to a growth-induced seeding rod, i.e. a composition inhomogeneity primarily localized at the centre of the SBN sample. The rod is directed parallel to the c axis and yields a refractive-index inhomogeneity with spatial frequencies on the micro-scale

  11. High pressure sample container for thermal neutron spectroscopy and diffraction on strongly scattering fluids

    International Nuclear Information System (INIS)

    Verkerk, P.; Pruisken, A.M.M.

    1979-01-01

    A description is presented of the construction and performance of a container for thermal neutron scattering on a fluid sample with about 1.5 cm -1 macroscopic cross section (neglecting absorption). The maximum pressure is about 900 bar. The container is made of 5052 aluminium capillary with inner diameter 0.75 mm and wall thickness 0.25 mm; it covers a neutron beam with a cross section of 9 X 2.5 cm 2 . The container has been successfully used in neutron diffraction and time-of-flight experiments on argon-36 at 120 K and several pressures up to 850 bar. It is shown that during these measurements the temperature gradient over the sample as well as the error in the absolute temperature were both less than 0.05 K. Subtraction of the Bragg peaks due to container scattering in diffraction experiments may be dfficult, but seems feasible because of the small amount of aluminium in the neutron beam. Correction for container scattering and multiple scattering in time-of-flight experiments may be difficult only in the case of coherently scattering samples and small scattering angles. (Auth.)

  12. Maximizing the information transfer in a quantum-limited light-scattering system

    DEFF Research Database (Denmark)

    Lading, Lars; Jørgensen, Thomas Martini

    1990-01-01

    A quantum-limited light-scattering system is considered. The spatial configuration that maximizes a given figure of merit is investigated, assuming that the emitted light has Poisson photon statistics. A specific system for measuring the velocity of a small particle is considered as an example. A...

  13. Light scattering by cubical particle in the WKB approximation

    Directory of Open Access Journals (Sweden)

    redouane lamsoudi

    2017-11-01

    Full Text Available In this work, we determined the analytical expressions of the form factor of a cubical particle in the WKB approximation. We adapted some variables (size parameter, refractive index, the scattering angle and found the form factor in the approximation of Rayleigh-Gans-Debye (RGD, Anomalous Diffraction (AD, and determined the efficiency factor of the extinction. Finally, to illustrate our formalism, we analyzed some numerical examples

  14. Light scattering by rough surfaces for increase of absorption of low band gap light in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kloppstech, Konstantin; Knabe, Sebastian; Bauer, Gottfried H. [Institute of Physics, Carl von Ossietzky University Oldenburg (Germany)

    2011-07-01

    Scattering of low band gap light for the increase of the absorption of low band gap photons is commonly formulated in phenomenological magnitudes such as haze factors resulting from experiments at particular scattering media. We have formulated analytically and described by numerical simulations the scattering of light by the interaction of photons with rough surfaces based on wave numbers of photons k{sub {lambda}} and wave numbers of the topological surface contour k{sub s} that has been derived in 2 dimensions via AFM analyses of the contour function h(x,y) of the scattering medium, e.g. a glassy diffusor. We have distinguished two regimes: i) k{sub {lambda}}scattering has been formulated on Huygens' Principle with generation of spherical waves at the respective position h(x,y). The experimental scattering of photons with different wavelengths - recorded with a standard type goniometer - are compared with the simulation of numerically generated far field results in dependence of distance r from the scattering medium and scattering angle {beta}. In particular for the wave optical approach we find a ''scattering function'' that contains the contour function h(x,y) however that substantially departs from its puristic Fourier Transform.

  15. Light scattering by coated sphere immersed in absorbing medium: a comparison between the FDTD and analytic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sun Wenbo E-mail: w.sun@larc.nasa.gov; Loeb, Norman G.; Fu Qiang

    2004-02-01

    A recently developed finite-difference time domain scheme is examined using the exact analytic solutions for light scattering by a coated sphere immersed in an absorbing medium. The relative differences are less than 1% in the extinction, scattering, and absorption efficiencies and less than 5% in the scattering phase functions. The definition of apparent single-scattering properties is also discussed.

  16. Theory of disorder-induced coherent scattering and light localization in slow-light photonic crystal waveguides

    International Nuclear Information System (INIS)

    Patterson, M; Hughes, S

    2010-01-01

    We introduce a theoretical formalism to describe disorder-induced extrinsic scattering in slow light photonic crystal waveguides. This work details and extends the optical scattering theory used in a recent issue of Physics Review Letters (Patterson et al 2009 Phys. Rev. Lett. 102 253903) to describe coherent scattering phenomena and successfully explain related experimental measurements. Our presented theory, which combines Green function and coupled mode methods, allows us to self-consistently account for arbitrary multiple scattering for the propagating electric field and recover experimental features such as resonances near the band edge. The technique is fully three-dimensional and can calculate the effects of disorder on the propagating field over thousands of unit cells. As an application of this theory, we explore various sample lengths and disordered instances, and demonstrate the profound effect of multiple scattering in the waveguide transmission. The spectra yield rich features associated with disorder-induced localization and multiple scattering, which are shown to be exacerbated in the slow light propagation regime

  17. Shaping the light for the investigation of depth-extended scattering media

    Science.gov (United States)

    Osten, W.; Frenner, K.; Pedrini, G.; Singh, A. K.; Schindler, J.; Takeda, M.

    2018-02-01

    Scattering media are an ongoing challenge for all kind of imaging technologies including coherent and incoherent principles. Inspired by new approaches of computational imaging and supported by the availability of powerful computers, spatial light modulators, light sources and detectors, a variety of new methods ranging from holography to time-of-flight imaging, phase conjugation, phase recovery using iterative algorithms and correlation techniques have been introduced and applied to different types of objects. However, considering the obvious progress in this field, several problems are still matter of investigation and their solution could open new doors for the inspection and application of scattering media as well. In particular, these open questions include the possibility of extending the 2d-approach to the inspection of depth-extended objects, the direct use of a scattering media as a simple tool for imaging of complex objects and the improvement of coherent inspection techniques for the dimensional characterization of incoherently radiating spots embedded in scattering media. In this paper we show our recent findings in coping with these challenges. First we describe how to explore depth-extended objects by means of a scattering media. Afterwards, we extend this approach by implementing a new type of microscope making use of a simple scatter plate as a kind of flat and unconventional imaging lens. Finally, we introduce our shearing interferometer in combination with structured illumination for retrieving the axial position of fluorescent light emitting spots embedded in scattering media.

  18. Calculations of light scattering matrices for stochastic ensembles of nanosphere clusters

    International Nuclear Information System (INIS)

    Bunkin, N.F.; Shkirin, A.V.; Suyazov, N.V.; Starosvetskiy, A.V.

    2013-01-01

    Results of the calculation of the light scattering matrices for systems of stochastic nanosphere clusters are presented. A mathematical model of spherical particle clustering with allowance for cluster–cluster aggregation is used. The fractal properties of cluster structures are explored at different values of the model parameter that governs cluster–cluster interaction. General properties of the light scattering matrices of nanosphere-cluster ensembles as dependent on their mean fractal dimension have been found. The scattering-matrix calculations were performed for finite samples of 10 3 random clusters, made up of polydisperse spherical nanoparticles, having lognormal size distribution with the effective radius 50 nm and effective variance 0.02; the mean number of monomers in a cluster and its standard deviation were set to 500 and 70, respectively. The implemented computation environment, modeling the scattering matrices for overall sequences of clusters, is based upon T-matrix program code for a given single cluster of spheres, which was developed in [1]. The ensemble-averaged results have been compared with orientation-averaged ones calculated for individual clusters. -- Highlights: ► We suggested a hierarchical model of cluster growth allowing for cluster–cluster aggregation. ► We analyzed the light scattering by whole ensembles of nanosphere clusters. ► We studied the evolution of the light scattering matrix when changing the fractal dimension

  19. Light Scattering Studies of Organic Field Effect Transistors

    Science.gov (United States)

    Adil, Danish

    Organic semiconductors hold a great promise of enabling new technology based on low cost and flexible electronic devices. While much work has been done in the field of organic semiconductors, the field is still quite immature when compared to that of traditional inorganic based devices. More work is required before the full potential of organic field effect transistors (OFETs), organic light emitting diodes (OLEDs), and organic photovoltaics (OPVs) is realized. Among such work, a further development of diagnostic tools that characterize charge transport and device robustness more efficiently is required. Charge transport in organic semiconductors is limited by the nature of the metal-semiconductor interfaces where charge is injected into the semiconductor film and the semiconductor-dielectric interface where the charge is accumulated and transported. This, combined with that fact that organic semiconductors are especially susceptible to having structural defects induced via oxidation, charge transport induced damage, and metallization results in a situation where a semiconductor film's ability to conduct charge can degrade over time. This degradation manifests itself in the electrical device characteristics of organic based electronic devices. OFETs, for example, may display changes in threshold voltage, lowering of charge carrier mobilities, or a decrease in the On/Off ratio. All these effects sum together to result in degradation in device performance. The work begins with a study where matrix assisted pulsed laser deposition (MAPLE), an alternative organic semiconductor thin film deposition method, is used to fabricate OFETs with improved semiconductor-dielectric interfaces. MAPLE allows for the controlled layer-by-layer growth of the semiconductor film. Devices fabricated using this technique are shown to exhibit desirable characteristics that are otherwise only achievable with additional surface treatments. MAPLE is shown to be viable alternative to other

  20. Skeletal light-scattering accelerates bleaching response in reef-building corals.

    Science.gov (United States)

    Swain, Timothy D; DuBois, Emily; Gomes, Andrew; Stoyneva, Valentina P; Radosevich, Andrew J; Henss, Jillian; Wagner, Michelle E; Derbas, Justin; Grooms, Hannah W; Velazquez, Elizabeth M; Traub, Joshua; Kennedy, Brian J; Grigorescu, Arabela A; Westneat, Mark W; Sanborn, Kevin; Levine, Shoshana; Schick, Mark; Parsons, George; Biggs, Brendan C; Rogers, Jeremy D; Backman, Vadim; Marcelino, Luisa A

    2016-03-21

    At the forefront of ecosystems adversely affected by climate change, coral reefs are sensitive to anomalously high temperatures which disassociate (bleaching) photosynthetic symbionts (Symbiodinium) from coral hosts and cause increasingly frequent and severe mass mortality events. Susceptibility to bleaching and mortality is variable among corals, and is determined by unknown proportions of environmental history and the synergy of Symbiodinium- and coral-specific properties. Symbiodinium live within host tissues overlaying the coral skeleton, which increases light availability through multiple light-scattering, forming one of the most efficient biological collectors of solar radiation. Light-transport in the upper ~200 μm layer of corals skeletons (measured as 'microscopic' reduced-scattering coefficient, μ'(S,m)), has been identified as a determinant of excess light increase during bleaching and is therefore a potential determinant of the differential rate and severity of bleaching response among coral species. Here we experimentally demonstrate (in ten coral species) that, under thermal stress alone or combined thermal and light stress, low-μ'(S,m) corals bleach at higher rate and severity than high-μ'(S,m) corals and the Symbiodinium associated with low-μ'(S,m) corals experience twice the decrease in photochemical efficiency. We further modelled the light absorbed by Symbiodinium due to skeletal-scattering and show that the estimated skeleton-dependent light absorbed by Symbiodinium (per unit of photosynthetic pigment) and the temporal rate of increase in absorbed light during bleaching are several fold higher in low-μ'(S,m) corals. While symbionts associated with low-[Formula: see text] corals receive less total light from the skeleton, they experience a higher rate of light increase once bleaching is initiated and absorbing bodies are lost; further precipitating the bleaching response. Because microscopic skeletal light-scattering is a robust predictor

  1. Quantum theory of dynamic multiple light scattering in fluctuating disordered media

    International Nuclear Information System (INIS)

    Skipetrov, S. E.

    2007-01-01

    We formulate a quantum theory of dynamic multiple light scattering in fluctuating disordered media and calculate the fluctuation and the autocorrelation function of the photon number operator for light transmitted through a disordered slab. The effect of disorder on the information capacity of a quantum communication channel operating in a disordered environment is estimated, and the use of squeezed light in diffusing-wave spectroscopy is discussed

  2. Reflection Matrix Method for Controlling Light After Reflection From a Diffuse Scattering Surface

    Science.gov (United States)

    2016-12-22

    of Philosophy Kenneth W. Burgi, BS, MS Major, USAF 22 December 2016 DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT...refocusing light through thin films of a turbid medium. When coherent light is trans- mitted through a stationary diffuser (i.e. a turbid medium), a fine...resultant light scatter [14, 15, 21, 23]. Transmission matrices were measured with microscopic objectives and thin films of turbid media, resulting in

  3. Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers

    Science.gov (United States)

    Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-01-01

    This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems. PMID:26606898

  4. Light-scattering study of the glass transition in lubricants

    Science.gov (United States)

    Alsaad, M. A.; Winer, W. O.; Medina, F. D.; Oshea, D. C.

    1977-01-01

    The sound velocity of four lubricants has been measured as a function of temperature and pressure using Brillouin scattering. A change in slope of the velocity as a function of temperature or pressure allowed the determination of the glass transition temperature and pressure. The glass transition data were used to construct a phase diagram for each lubricant. The data indicate that the glass transition temperature increased with pressure at a rate which ranged from 120 to 200 C/GPa. The maximum pressure attained was 0.69 GPa and the temperature range was from 25 to 100 C.

  5. Quantum Interference and Entanglement Induced by Multiple Scattering of Light

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Mortensen, Asger; Lodahl, Peter

    2010-01-01

    We report on the effects of quantum interference induced by the transmission of an arbitrary number of optical quantum states through a multiple-scattering medium. We identify the role of quantum interference on the photon correlations and the degree of continuous variable entanglement between two...... output modes. It is shown that quantum interference survives averaging over all ensembles of disorder and manifests itself as increased photon correlations due to photon antibunching. Furthermore, the existence of continuous variable entanglement correlations in a volume speckle pattern is predicted. Our...

  6. Simulations of the Light Scattering Properties of Metal/Oxide Core/Shell Nanospheres

    International Nuclear Information System (INIS)

    Ruffino, F.; Piccitto, G.; Grimaldi, M.G.; Ruffino, F.; Grimaldi, M.G.

    2014-01-01

    Given the importance of the optical properties of metal/dielectric core/shell nanoparticles, in this work we focus our attention on the light scattering properties, within the Mie framework, of some specific categories of these noteworthy nano structures. In particular, we report theoretical results of angle-dependent light scattering intensity and scattering efficiency for Ag/Ag 2 O, Al/Al 2 O 2 , Cu/Cu 2 O, Pd/PdO, and Ti/TiO 2 core/shell nanoparticles as a function of the core radius/shell thickness ratio and on a relative comparison. The results highlight the light scattering characteristics of these systems as a function of the radius/shell thickness ratio, helping in the choice of the more suitable materials and sizes for specific applications (i.e., dynamic light scattering for biological and molecular recognition, increasing light trapping in thin-film silicon, organic solar cells for achieving a higher photocurrent).

  7. Variation of the critical slab thickness with the degree of strongly anisotropic scattering in one-speed neutron transport theory

    International Nuclear Information System (INIS)

    Yildiz, C.

    1998-01-01

    The critical slab problem is studied in one-speed neutron transport theory using a linearly anisotropic kernel which combines forward and backward scattering. It is shown that, the recently observed non-monotonic variation of the thickness also exists in this strongly anisotropic case. In addition, the influence of the linear anisotropy on the critical thickness is analysed in detail. Numerical analysis for the critical thickness are performed using the spherical harmonics method and results are tabulated for selected illustrative cases as a function of different degrees of anisotropic scattering. Finally, some results are discussed and compared with those already obtained by other methods, the agreement is satisfactory. The spherical harmonic method gives generally accurate results in one dimensional geometry, and it is very suitable for the numerical solution of the neutron transport equation with linearly anisotropic scattering

  8. Sonochemical synthesis and resonance light scattering effect of Zn(II)bis(1-(2-pyridylazo)-2-naphthol) nanorods

    International Nuclear Information System (INIS)

    Pan Hongcheng; Liang Fupei; Mao Changjie; Zhu Junjie

    2007-01-01

    Zn(II)bis(1-(2-pyridylazo)-2-naphthol) (Zn(PAN) 2 ) complex nanorods have been successfully synthesized via a facile sonochemical method. The transmission electron microscopy (TEM) images showed that the products had a rod-like morphology with a diameter of about 20-70 nm and a length of about 100-300 nm. The Zn(PAN) 2 nanorods exhibit an intense resonance light-scattering (RLS) effect, displaying a very strong RLS peak at 622 nm, a moderate peak at 361 nm and several broad bands ranged from 400 to 550 nm. The effect of ultrasonic irradiation and the mechanism of aggregation growth and resonance-enhanced light scattering were also discussed. Exciton coupling among neighbour Zn(PAN) 2 complex monomers in the nanorods were found to produce resonance-enhanced light scattering. The red-shifted absorption bands and depolarized RLS data can be explained in terms of a J-aggregate geometry of Zn(PAN) 2

  9. Powder agglomeration study in RF silane plasmas by in situ polarization-sensitive laser light scattering and TEM measurements

    Energy Technology Data Exchange (ETDEWEB)

    Courteille, C; Hollenstein, C; Dorier, J L; Gay, P; Schwarzenbach, W; Howling, A A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Bertran, E; Viera, G [Barcelona Univ., Dep. de de Fisica Aplicada I Electronica, Barcelona (Spain); Martins, R; Macarico, A [FCTUNL, Materials Science Dep., Monte de Caparica (Portugal)

    1966-03-01

    To determine self-consistently the time evolution of particle size and their number density in situ multi-angle polarization laser light scattering was used. Cross-polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135{sup o} and ex-situ TEM analysis demonstrate the existence of non-spherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross-polarization intensities is accompanied by low frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian Free Molecule Coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian Free Molecule Coagulation model including a log-normal particle size distribution. (author) 11 figs., 48 refs.

  10. Powder agglomeration study in RF silane plasmas by in situ polarization-sensitive laser light scattering and TEM measurements

    International Nuclear Information System (INIS)

    Courteille, C.; Hollenstein, C.; Dorier, J.L.; Gay, P.; Schwarzenbach, W.; Howling, A.A.; Bertran, E.; Viera, G.; Martins, R.; Macarico, A.

    1966-03-01

    To determine self-consistently the time evolution of particle size and their number density in situ multi-angle polarization laser light scattering was used. Cross-polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135 o and ex-situ TEM analysis demonstrate the existence of non-spherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross-polarization intensities is accompanied by low frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian Free Molecule Coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian Free Molecule Coagulation model including a log-normal particle size distribution. (author) 11 figs., 48 refs

  11. Spectral blueshifts in laser light scattered from argon-gas-cluster plasmas

    International Nuclear Information System (INIS)

    Singhal, H.; Arora, V.; Naik, P.A.; Gupta, P.D.

    2005-01-01

    An experimental study is presented on scattering of laser light from argon gas clusters irradiated by multipicosecond Nd:glass laser pulses at moderate intensity of 10 15 W/cm 2 . Space-resolved side-scattered laser light has a predominantly blueshifted and broadened spectrum (up to ∼8 nm). The scattered signal intensity and average blueshift exhibit a marked dependence on the backing pressure of the gas. The results are explained by self-phase modulation of the laser radiation due to changing polarizability as the heated clusters pass through resonance at 3 times the critical density during which intense absorption and scattering occurs. The observed blueshift may be useful in diagnostics of this important phase of laser-cluster interactions

  12. Body Temperature Controlled Optical and Thermal Information Storage Light Scattering Display with Fluorescence Effect and High Mechanical Strength.

    Science.gov (United States)

    Chen, Si; Tong, Xiaoqian; He, Huiwen; Ma, Meng; Shi, Yanqin; Wang, Xu

    2017-04-05

    A kind of body temperature controlled optical and thermal information storage light scattering display based on super strong liquid crystalline physical gel with special "loofah-like gel network" was successfully prepared. Such liquid crystal (LC) gel was obtained by mixing a dendritic gelator (POSS-G1-BOC), an azobenzene compound (2Azo2), and a phosphor tethered liquid crystalline host (5CB), which could show its best contrast ratio at around human body temperature under UV light because of the phosphor's fluorescence effect. The gel also has quite strong mechanical strength, which could be used in wearable device field especially under sunlight, even under the forcing conditions as harsh as being centrifuged for 10 min at the speed of 2000 r/min. The whole production process of such a display is quite simple and could lead to displays at any size through noncontact writing. We believe it will have wide applications in the future.

  13. DETERMINATION OF THE THERMODYNAMICS OF β-LACTOGLOBULIN AGGREGATION USING ULTRA VIOLET LIGHT SCATTERING SPECTROSCOPY

    OpenAIRE

    Belton, Daniel; Austerberry, James

    2018-01-01

    The problem of protein aggregation is widely studied across a number of disciplines, where understanding the behaviour of the protein monomer, and its behaviour with co-solutes is imperative in order to devise solutions to the problem. Here we present a method for measuring the kinetics of protein aggregation based on ultra violet light scattering spectroscopy (UVLSS) across a range of NaCl conditions. Through measurement of wavelength dependant scattering and using the model protein β-lactog...

  14. A semiclassical method in the theory of light scattering by semiconductor quantum dots

    International Nuclear Information System (INIS)

    Lang, I. G.; Korovin, L. I.; Pavlov, S. T.

    2008-01-01

    A semiclassical method is proposed for the theoretical description of elastic light scattering by arbitrary semiconductor quantum dots under conditions of size quantization. This method involves retarded potentials and allows one to dispense with boundary conditions for electric and magnetic fields. Exact results for the Umov-Poynting vector at large distances from quantum dots in the case of monochromatic and pulsed irradiation and formulas for differential scattering cross sections are obtained

  15. Taking apart the enhanced backscattering cone: Interference fringes from reciprocal paths in multiple light scattering

    International Nuclear Information System (INIS)

    Bret, Boris P. J.; Ferreira, Flavio P.; Nunes-Pereira, Eduardo J.; Belsley, Michael

    2010-01-01

    We report the decomposition of the enhanced backscattering cone into its constitutive interference fringes. These fringes are due to the constructive interference between reciprocal paths of any multiply scattered wave after ensemble averaging. An optical setup combining a two-point continuous-wave illumination and matching detection allows the observation of the fringes and, therefore, the quantitative characterization of the Green's function for light propagation between the two points in a multiple-scattering media.

  16. Coherent scattering of CO2 light from ion-acoustic waves

    International Nuclear Information System (INIS)

    Peratt, A.L.; Watterson, R.L.; Derfler, H.

    1977-01-01

    Scattering of laser radiation from ion-acoustic waves in a plasma is investigated analytically and experimentally. The formulation predicts a coherent component of the scattered power on a largely incoherent background spectrum when the acoustic analog of Bragg's law and Doppler shift conditions are satisfied. The experiment consists of a hybrid CO 2 laser system capable of either low power continuous wave or high power pulsed mode operation. A heterodyne light mixing scheme is used to detect the scattered power. The proportionality predicted by the theory is verified by scattering from externally excited acoustic and ion-acoustic waves; continuous wave and pulsed modes in each case. Measurement of the ion-acoustic dispersion relation by continuous wave scattering is also presented

  17. Light scattering by microstructures in plastic nuclear track detector plane surfaces

    International Nuclear Information System (INIS)

    Wipasuramonton, O.

    1985-01-01

    The angular distributions of light elastically scattered by finite dielectric conical and cylindrical microstructures in plastic nuclear track detector plane surfaces have been measured. These microstructures are the chemically etched tracks of various nuclei, viz., protons, neutrons, 3 He, alphas, and 56 Fe. The base diameters of the structures are larger than twice the wavelength of the incident light. The results show the dependence of the scattering patterns on shape, size, orientation, and refractive index of the structures as well as the polarization of the incident light. It is also observed that in the single and independent scattering regime, the intensity at the intermediate angular region exhibits linear proportionality to the number of the microstructures per unit area. 84 refs., 96 figs., 4 tabs

  18. Sensitivity of a fibre scattered-light interferometer to external phase perturbations in an optical fibre

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A E; Potapov, V T [V.A.Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino Branch, Fryazino, Moscow region (Russian Federation); Gorshkov, B G [OOO ' Petrofaiber' , Russia, Tula region, Novomoskovsk (Russian Federation)

    2015-10-31

    Sensitivity of a fibre scattered-light interferometer to external phase perturbations is studied for the first time. An expression is derived for an average power of a useful signal at the interferometer output under external harmonic perturbations in a signal fibre of the interferometer. It is shown that the maximum sensitivity of the scattered-light interferometer depends on the dispersion of the interferogram intensity. An average signal-to-noise ratio is determined theoretically and experimentally at the output of the interferometer at different amplitudes of external perturbations. Using the measured dependences of the signal-to-noise ratio, the threshold sensitivity of the fibre scattered-light interferometer to external phase perturbations is found. The results obtained can be used to optimise characteristics of optical time-domain reflectometers and to design individual phase-sensitive fibre-optic sensors. (laser applications and other topics in quantum electronics)

  19. Inelastic light scattering by low-lying excitations of electrons in low-dimensional semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, V. [NEST CNR-INFM and Scuola Normale Superiore, Pisa (Italy); Pinczuk, A. [Department of Physics, Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey (United States)

    2006-11-15

    The low-dimensional electron systems that reside in artificial semiconductor heterostructures of great perfection are a contemporary materials base for explorations of collective phenomena. Studies of low-lying elementary excitations by inelastic light scattering offer insights on properties such energetics, interactions and spin magnetization. We review here recent light scattering results obtained from two-dimensional (2D) quantum fluids in semiconductor heterostructures under extreme conditions of low temperature and large magnetic field, where the quantum Hall phases are archetypes of novel behaviors. We also consider recent light scattering experiments that have probed the excitation spectra of few-electron states in semiconductor quantum dots. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Field-based dynamic light scattering microscopy: theory and numerical analysis.

    Science.gov (United States)

    Joo, Chulmin; de Boer, Johannes F

    2013-11-01

    We present a theoretical framework for field-based dynamic light scattering microscopy based on a spectral-domain optical coherence phase microscopy (SD-OCPM) platform. SD-OCPM is an interferometric microscope capable of quantitative measurement of amplitude and phase of scattered light with high phase stability. Field-based dynamic light scattering (F-DLS) analysis allows for direct evaluation of complex-valued field autocorrelation function and measurement of localized diffusive and directional dynamic properties of biological and material samples with high spatial resolution. In order to gain insight into the information provided by F-DLS microscopy, theoretical and numerical analyses are performed to evaluate the effect of numerical aperture of the imaging optics. We demonstrate that sharp focusing of fields affects the measured diffusive and transport velocity, which leads to smaller values for the dynamic properties in the sample. An approach for accurately determining the dynamic properties of the samples is discussed.

  1. Deep inelastic lepton-nucleus scattering from the light-cone quantum field theory

    International Nuclear Information System (INIS)

    Boqiang Ma; Ji Sun

    1990-01-01

    We show that for deep inelastic lepton-nucleus scattering, the conditions which validate the impulse approximation are hardly satisfied when using ordinary instant form dynamics in the rest frame of the nucleus, whereas they are well satisfied when using instant form dynamics in the infinite-momentum frame, or using light-front form dynamics in an ordinary frame. Therefore a reliable theoretical treatment of deep inelastic lepton-nucleus scattering should be performed in the time-ordered perturbation theory in the infinite-momentum frame, or its equivalent, the light-cone perturbation theory in an ordinary frame. To this end, we extend the light-cone quantum field theory to the baryon-meson field to establish a relativistic composite model of nuclei. We then apply the impulse approximation to deep inelastic lepton-nucleus scattering in this model.(author)

  2. Light focusing through a multiple scattering medium: ab initio computer simulation

    Science.gov (United States)

    Danko, Oleksandr; Danko, Volodymyr; Kovalenko, Andrey

    2018-01-01

    The present study considers ab initio computer simulation of the light focusing through a complex scattering medium. The focusing is performed by shaping the incident light beam in order to obtain a small focused spot on the opposite side of the scattering layer. MSTM software (Auburn University) is used to simulate the propagation of an arbitrary monochromatic Gaussian beam and obtain 2D distribution of the optical field in the selected plane of the investigated volume. Based on the set of incident and scattered fields, the pair of right and left eigen bases and corresponding singular values were calculated. The pair of right and left eigen modes together with the corresponding singular value constitute the transmittance eigen channel of the disordered media. Thus, the scattering process is described in three steps: 1) initial field decomposition in the right eigen basis; 2) scaling of decomposition coefficients for the corresponding singular values; 3) assembling of the scattered field as the composition of the weighted left eigen modes. Basis fields are represented as a linear combination of the original Gaussian beams and scattered fields. It was demonstrated that 60 independent control channels provide focusing the light into a spot with the minimal radius of approximately 0.4 μm at half maximum. The intensity enhancement in the focal plane was equal to 68 that coincided with theoretical prediction.

  3. Comparison of forward light scatter estimations using Shack-Hartmann spot patterns and a straylight meter.

    Science.gov (United States)

    Benito Lopez, Pablo; Radhakrishnan, Hema; Nourrit, Vincent

    2015-02-01

    To determine whether an unmodified commercial wavefront aberrometer (irx3) can be used to estimate forward light scattering and how this assessment matches estimations obtained from the C-Quant straylight meter. University of Manchester, Manchester, United Kingdom. Prospective comparative study. Measurements obtained with a straylight meter and with Shack-Hartmann spot patterns using a previously reported metric were compared. The method was first validated in a model eye by spraying an aerosol over 4 contact lenses to generate various levels of scattering. Measurements with both methods were subsequently obtained in healthy eyes. The study comprised 33 healthy participants (mean age 38.9 years ± 13.1 [SD]). A good correlation was observed between the density of droplets over the contact lenses and the objective scatter value extracted from the hartmanngrams (r = 0.972, P meter and the metric derived from the Shack-Hartmann method (r = 0.133, P = .460). The hartmanngrams provided a valid objective measurement of the light scatter in a model eye; the measurements in human eyes were not significantly correlated with those of the light scatter meter. The straylight meter assesses large-angle scattering, while the Shack-Hartmann method collates information from a narrow angle around the center of the point-spread function; this could be the reason for the difference in measurements. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  4. [Multiple scattering of visible and infrared light by sea fog over wind driving rough sea surface].

    Science.gov (United States)

    Sun, Xian-Ming; Wang, Hai-Hua; Lei, Cheng-Xin; Shen, Jin

    2013-08-01

    The present paper is concerned with computing the multiple scattering characteristics of a sea fog-sea surface couple system within this context. The single scattering characteristics of sea fog were studied by Mie theory, and the multiple scattering of sunlight by single sea fog layer was studied by radiative transfer theory. The reflection function of a statistically rough ocean surface was obtained using the standard Kirchhoff formulation, with shadowing effects taken into account. The reflection properties of the combined sea fog and ocean surface were obtained employing the adding method, and the results indicated that the reflected light intensity of sea fog increased with the sea background.

  5. Use of polarization to separate on-axis scattered and unscattered light in red blood cells

    Science.gov (United States)

    Sardar, Dhiraj K.; Nemati, Babak; Barrera, Frederick J.

    1991-06-01

    The separation of on-axis scattered and unscattered transmission through turbid media has been a difficult experimental task in recent years. This study suggests the use of a polarimeter to filter out the contribution of scattered light to the net on-axis transmission. Red blood cells (RBC) were used to produce the scattering effect. The scattering level was varied by: (1) altering the distance of the detector from the sample, (2) using erythrocytes from three different species, e.g., the dog, goat, and human, which are know to have different RBC sizes, and (3) allowing the RBCs from each species to shrink and swell osmotically. An He-Ne laser was used as the source of the radiation so that data were obtained at a wavelength in the spectral region used in oximetry and hemoglobinometry. In each case, the difference in the scattering cross sections obtained for each sample, with and without polarization filtering, gave us a measure of the filtered scattered light. The results obtained were in close agreement with the expected contribution of scattered radiation to the net axial transmission. This method may be used effectively for all studies involving measurements of on-axis transmission through turbid media, such as biological tissue.

  6. Four-photon parametric light scattering of ultrashort laser pulses in water in case of weak self-phase modulation

    International Nuclear Information System (INIS)

    Babenko, V A; Sychev, Andrei A

    2009-01-01

    The hyper-Raman scattering (HRS) of light in water is detected reliably by the active spectroscopy method of coherent light scattering, in particular, by the method of four-photon parametric light scattering in a medium in which HRS is a 'signal' wave in the parametric process involving simultaneously two high-power laser photons and IR photons of an 'idler' wave. Hyper-Raman scattering by libration vibrations of water molecules, which virtually cannot be detected by conventional methods of Raman scattering, was observed. (nonlinear optical phenomena)

  7. Detection of internal structure by scattered light intensity: Application to kidney cell sorting

    Science.gov (United States)

    Goolsby, C. L.; Kunze, M. E.

    1985-01-01

    Scattered light measurements in flow cytometry were sucessfully used to distinguish cells on the basis of differing morphology and internal structure. Differences in scattered light patterns due to changes in internal structure would be expected to occur at large scattering angles. Practically, the results of these calculations suggest that in experimental situations an array of detectors would be useful. Although in general the detection of the scattered light intensity at several intervals within the 10 to 60 region would be sufficient, there are many examples where increased sensitivity could be acheived at other angles. The ability to measure at many different angular intervals would allow the experimenter to empirically select the optimum intervals for the varying conditions of cell size, N/C ratio, granule size and internal structure from sample to sample. The feasibility of making scattered light measurements at many different intervals in flow cytometry was demonstrated. The implementation of simplified versions of these techniques in conjunction with independant measurements of cell size could potentially improve the usefulness of flow cytometry in the study of the internal structure of cells.

  8. Real-Time Measurements and Modelling on Dynamic Behaviour of SonoVue Bubbles Based on Light Scattering Technology

    International Nuclear Information System (INIS)

    Juan, Tu; Rongjue, Wei; Guan, J. F.; Matula, T. J.; Crum, L. A.

    2008-01-01

    The dynamic behaviour of SonoVue microbubbles, a new generation ultrasound contrast agent, is investigated in real time with light scattering method. Highly diluted SonoVue microbubbles are injected into a diluted gel made of xanthan gum and water. The responses of individual SonoVue bubbles to driven ultrasound pulses are measured. Both linear and nonlinear bubble oscillations are observed and the results suggest that SonoVue microbubbles can generate strong nonlinear responses. By fitting the experimental data of individual bubble responses with Sarkar's model, the shell coating parameter of the bubbles and dilatational viscosity is estimated to be 7.0 nm·s·Pa

  9. Coherent light scattering of heterogeneous randomly rough films and effective medium in the theory of electromagnetic wave multiple scattering

    Energy Technology Data Exchange (ETDEWEB)

    Berginc, G [THALES, 2 avenue Gay-Lussac 78995 ELANCOURT (France)

    2013-11-30

    We have developed a general formalism based on Green's functions to calculate the coherent electromagnetic field scattered by a random medium with rough boundaries. The approximate expression derived makes it possible to determine the effective permittivity, which is generalised for a layer of an inhomogeneous random medium with different types of particles and bounded with randomly rough interfaces. This effective permittivity describes the coherent propagation of an electromagnetic wave in a random medium with randomly rough boundaries. We have obtained an expression, which contains the Maxwell – Garnett formula at the low-frequency limit, and the Keller formula; the latter has been proved to be in good agreement with experiments for particles whose dimensions are larger than a wavelength. (coherent light scattering)

  10. Quenching of light flickering in synthetic guanine crystals in aqueous solutions under strong static magnetic fields

    Science.gov (United States)

    Mootha, A.; Takanezawa, Y.; Iwasaka, M.

    2018-05-01

    The present study focused on the vibration of micro crystal particles of guanine due to Brownian motion. The organic particle has a refractive index of 1.83 and caused a flickering of light. To test the possibility of using magnetic properties under wet conditions, changes in the frequency of particle vibration by applying magnetic fields were investigated. At first, we found that the exposure at 5 T inhibited the flickering light intensities and the particle vibration slightly decreased. Next, we carried out a high speed camera measurement of the Brownian motion of the particle with a time resolution of 100 flame per second (fps) with and without magnetic field exposures. It was revealed that the vibrational speed of synthetic particles was enhanced at 500 mT. Detailed analyses of the particle vibration by changing the direction of magnetic fields versus the light source revealed that the Brownian motion's vibrational frequency was entrained under magnetic fields at 500 mT, and an increase in vibration speed to 20Hz was observed. Additional measurements of light scattering fluctuation using photo-detector and analyses on auto-correlation also confirmed this speculation. The studied Brownian vibration may be influenced by the change in mechanical interactions between the vibration particles and surrounding medium. The discovered phenomena can be applied for molecular and biological interactions in future studies.

  11. AutoLens: Automated Modeling of a Strong Lens's Light, Mass and Source

    Science.gov (United States)

    Nightingale, J. W.; Dye, S.; Massey, Richard J.

    2018-05-01

    This work presents AutoLens, the first entirely automated modeling suite for the analysis of galaxy-scale strong gravitational lenses. AutoLens simultaneously models the lens galaxy's light and mass whilst reconstructing the extended source galaxy on an adaptive pixel-grid. The method's approach to source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing AutoLens to cleanly deblend its light from the source. Single component mass models representing the lens's total mass density profile are demonstrated, which in conjunction with light modeling can detect central images using a centrally cored profile. Decomposed mass modeling is also shown, which can fully decouple a lens's light and dark matter and determine whether the two component are geometrically aligned. The complexity of the light and mass models are automatically chosen via Bayesian model comparison. These steps form AutoLens's automated analysis pipeline, such that all results in this work are generated without any user-intervention. This is rigorously tested on a large suite of simulated images, assessing its performance on a broad range of lens profiles, source morphologies and lensing geometries. The method's performance is excellent, with accurate light, mass and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

  12. Enhanced light scattering in Si nanostructures produced by pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sberna, P. M.; Scapellato, G. G.; Boninelli, S.; Miritello, M.; Crupi, I.; Bruno, E.; Privitera, V.; Simone, F.; Mirabella, S. [MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Piluso, N. [IMM-CNR, VIII strada 5, 95121 Catania (Italy)

    2013-11-25

    An innovative method for Si nanostructures (NS) fabrication is proposed, through nanosecond laser irradiation (λ = 532 nm) of thin Si film (120 nm) on quartz. Varying the laser energy fluences (425–1130 mJ/cm{sup 2}) distinct morphologies of Si NS appear, going from interconnected structures to isolated clusters. Film breaking occurs through a laser-induced dewetting process. Raman scattering is enhanced in all the obtained Si NS, with the largest enhancement in interconnected Si structures, pointing out an increased trapping of light due to multiple scattering. The reported method is fast, scalable and cheap, and can be applied for light management in photovoltaics.

  13. Polydisperse-particle-size-distribution function determined from intensity profile of angularly scattered light

    International Nuclear Information System (INIS)

    Alger, T.W.

    1979-01-01

    A new method for determining the particle-size-distribution function of a polydispersion of spherical particles is presented. The inversion technique for the particle-size-distribution function is based upon matching the measured intensity profile of angularly scattered light with a summation of the intensity contributions of a series of appropriately spaced, narrowband, size-distribution functions. A numerical optimization technique is used to determine the strengths of the individual bands that yield the best agreement with the measured scattered-light-intensity profile. Because Mie theory is used, the method is applicable to spherical particles of all sizes. Several numerical examples demonstrate the application of this inversion method

  14. Apparatus and method for detection and characterization of particles using light scattered therefrom

    Science.gov (United States)

    Johnston, R.G.

    1987-03-23

    Apparatus and method for detection and characterization of particles using light scattered therefrom. Differential phase measurements on scattered light from particles are possible using the two-frequency Zeeman effect laser which emits two frequencies of radiation 250 kHz apart. Excellent discrimination and reproducibility for various pure pollen and bacterial samples in suspension have been observed with a single polarization element. Additionally, a 250 kHz beat frequency was recorded from an individual particle traversing the focused output from the laser in a flow cytometer. 13 figs.

  15. Continuous-wave spatial quantum correlations of light induced by multiple scattering

    DEFF Research Database (Denmark)

    Smolka, Stephan; Ott, Johan Raunkjær; Huck, Alexander

    2012-01-01

    and reflectance. Utilizing frequency-resolved quantum noise measurements, we observe that the strength of the spatial quantum correlation function can be controlled by changing the quantum state of an incident bright squeezed-light source. Our results are found to be in excellent agreement with the developed......We present theoretical and experimental results on spatial quantum correlations induced by multiple scattering of nonclassical light. A continuous-mode quantum theory is derived that enables determining the spatial quantum correlation function from the fluctuations of the total transmittance...... theory and form a basis for future research on, e. g., quantum interference of multiple quantum states in a multiple scattering medium....

  16. Study of the grazing-incidence X-ray scattering of strongly disturbed fractal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roshchin, B. S., E-mail: ross@crys.ras.ru; Chukhovsky, F. N.; Pavlyuk, M. D.; Opolchentsev, A. M.; Asadchikov, V. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    The applicability of different approaches to the description of hard X-ray scattering from rough surfaces is generally limited by a maximum surface roughness height of no more than 1 nm. Meanwhile, this value is several times larger for the surfaces of different materials subjected to treatment, especially in the initial treatment stages. To control the roughness parameters in all stages of surface treatment, a new approach has been developed, which is based on a series expansion of wavefield over the plane eigenstate-function waves describing the small-angle scattering of incident X-rays in terms of plane q-waves propagating through the interface between two media with a random function of relief heights. To determine the amplitudes of reflected and transmitted plane q-waves, a system of two linked integral equations was derived. The solutions to these equations correspond (in zero order) to the well-known Fresnel expressions for a smooth plane interface. Based on these solutions, a statistical fractal model of an isotropic rough interface is built in terms of root-mean-square roughness σ, two-point correlation length l, and fractal surface index h. The model is used to interpret X-ray scattering data for polished surfaces of single-crystal cadmium telluride samples.

  17. Strong white light emission from a processed porous silicon and its photoluminescence mechanism

    International Nuclear Information System (INIS)

    Karacali, T.; Cicek, K.

    2011-01-01

    We have prepared various porous silicon (PS) structures with different surface conditions (any combination of oxidation, carbonization as well as thermal annealing) to increase the intensity of photoluminescence (PL) spectrum in the visible range. Strong white light (similar to day-light) emission was achieved by carrying out thermal annealing at 1100 deg. C after surface modification with 1-decene of anodic oxidized PS structures. Temperature-dependent PL measurements were first performed by gradually increasing the sample temperature from 10 to 300 K inside a cryostat. Then, we analyzed the measured spectrum of all prepared samples. After the analysis, we note that throughout entire measured spectrum, only two main peaks corresponding to blue and green-orange emission lines (which can be interpreted by quantum size effect and/or configuration coordinate model) were seem to be predominant for all temperature range. To further reveal and analysis these peaks, finally, measured data were inputted into the formula of activation energy of thermal excitation. We found that activation energies of blue and green-orange lines were approximately 49.3 and 44.6 meV, respectively. - Highlights: →Light emitting devices based on silicon technology are of great interest in illumination and display applications. → We have achieved strong white light (similar to day-light) emission from porous silicon. → The most important impact of carbonization on porous silicon and post annealing is the enhancement of room temperature luminescence.

  18. Time-dependent scattering of incident light of various wavelengths in ferrofluids under external magnetic field

    Science.gov (United States)

    Jin, Jingyu; Song, Dongxing; Geng, Jiafeng; Jing, Dengwei

    2018-02-01

    Ferrofluids can exhibit the anisotropic thermodynamic properties under magnetic fields. The dynamic optical properties of ferrofluids in the presence of magnetic fields are of particular interest due to their potential application as various optical devices. Although time-dependent light scattering by ferrofluids have been extensively studied, the effect of wavelength of incident light have been rarely considered. Here, for the first time, we investigated both the time- and wavelength-dependent light scattering in water based ferrofluids containing Fe3O4 nanoparticles under an external magnetic field. The field-induced response behavior of the prepared ferrofluid samples was determined and verified first by thermal conductivity measurement and numerical simulation. Double-beam UV-Vis spectrophotometer was employed to record the temporal evolution of transmitted intensity of incident light of various wavelengths passing through the ferrofluid sample and propagating parallel to the applied field. As expected, the light intensity decreases to a certain value right after the field is turned on due to the thermal fluctuation induced disorder inside the flexible particle chains. Then the light intensity further decreases with time until the appearance of a minimum at time τ0 followed by an inversed increase before finally reaches equilibrium at a particular time. More importantly, the characteristic inversion time τ0 was found to follow a power law increase with the wavelength of incident light (τ0 ∼ λα, where α = 2.07). A quantitative explanation for the wavelength dependence of characteristic time was proposed based on the finite-difference time-domain (FDTD) method. The simulation results are in good agreement with our experimental observations. The time-dependent light scattering in ferrofluids under different incident wavelengths was rationalized by considering both the coarsening process of the particle chains and the occurrence of resonance within the

  19. Crossing statistics of laser light scattered through a nanofluid.

    Science.gov (United States)

    Arshadi Pirlar, M; Movahed, S M S; Razzaghi, D; Karimzadeh, R

    2017-09-01

    In this paper, we investigate the crossing statistics of speckle patterns formed in the Fresnel diffraction region by a laser beam scattering through a nanofluid. We extend zero-crossing statistics to assess the dynamical properties of the nanofluid. According to the joint probability density function of laser beam fluctuation and its time derivative, the theoretical frameworks for Gaussian and non-Gaussian regimes are revisited. We count the number of crossings not only at zero level but also for all available thresholds to determine the average speed of moving particles. Using a probabilistic framework in determining crossing statistics, a priori Gaussianity is not essentially considered; therefore, even in the presence of deviation from Gaussian fluctuation, this modified approach is capable of computing relevant quantities, such as mean value of speed, more precisely. Generalized total crossing, which represents the weighted summation of crossings for all thresholds to quantify small deviation from Gaussian statistics, is introduced. This criterion can also manipulate the contribution of noises and trends to infer reliable physical quantities. The characteristic time scale for having successive crossings at a given threshold is defined. In our experimental setup, we find that increasing sample temperature leads to more consistency between Gaussian and perturbative non-Gaussian predictions. The maximum number of crossings does not necessarily occur at mean level, indicating that we should take into account other levels in addition to zero level to achieve more accurate assessments.

  20. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    Energy Technology Data Exchange (ETDEWEB)

    Rest, A; Welch, D L; Suntzeff, N B; Oaster, L; Lanning, H; Olsen, K; Smith, R C; Becker, A C; Bergmann, M; Challis, P; Clocchiatti, A; Cook, K H; Damke, G; Garg, A; Huber, M E; Matheson, T; Minniti, D; Prieto, J L; Wood-Vasey, W M

    2008-05-06

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.

  1. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    International Nuclear Information System (INIS)

    Rest, A.; Welch, D.L.; Suntzeff, N.B.; Oaster, L.; Lanning, H.; Olsen, K.; Smith, R.C.; Becker, A.C.; Bergmann, M.; Challis, P.; Clocchiatti, A.; Cook, K.H.; Damke, G.; Garg, A.; Huber, M.E.; Matheson, T.; Minniti, D.; Prieto, J.L.; Wood-Vasey, W.M.

    2008-01-01

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane

  2. Deep inelastic scattering and light-cone wave functions

    International Nuclear Information System (INIS)

    Belyaev, V.M.; Johnson, M.B.

    1996-01-01

    In the framework of light-cone QCD rules, we study the valence quark distribution function q(x B ) of a pion for moderate x B . The sum rule with the leading twist-2 wave function gives q(x B ) = φ π (x B ). Twist-4 wave functions give about 30% for x B ∼0.5. It is shown that QCD sum rule predictions, with the asymptotic pion wave function, are in good agreement with experimental data. We found that a two-hump profile for the twist-2 wave function leads to a valence quark distribution function that contradicts experimental data

  3. Research Update: A minimal region of squid reflectin for vapor-induced light scattering

    Directory of Open Access Journals (Sweden)

    Patrick B. Dennis

    2017-12-01

    Full Text Available Reflectins are a family of proteins found in the light manipulating cells of cephalopods. These proteins are made up of a series of conserved repeats that contain highly represented amino acids thought to be important for function. Previous studies demonstrated that recombinant reflectins cast into thin films produced structural colors that could be dynamically modulated via changing environmental conditions. In this study, we demonstrate light scattering from reflectin films following exposure to a series of water vapor pulses. Analysis of film surface topography shows that the induction of light scatter is accompanied by self-assembly of reflectins into micro- and nanoscale features. Using a reductionist strategy, we determine which reflectin repeats and sub-repeats are necessary for these events following water vapor pulsing. With this approach, we identify a singly represented, 23-amino acid region in reflectins as being sufficient to recapitulate the light scattering properties observed in thin films of the full-length protein. Finally, the aqueous stability of reflectin films is leveraged to show that pre-exposure to buffers of varying pH can modulate the ability of water vapor pulses to induce light scatter and protein self-assembly.

  4. Quantitative photoplethysmography: Lambert-Beer law or inverse function incorporating light scatter.

    Science.gov (United States)

    Cejnar, M; Kobler, H; Hunyor, S N

    1993-03-01

    Finger blood volume is commonly determined from measurement of infra-red (IR) light transmittance using the Lambert-Beer law of light absorption derived for use in non-scattering media, even when such transmission involves light scatter around the phalangeal bone. Simultaneous IR transmittance and finger volume were measured over the full dynamic range of vascular volumes in seven subjects and outcomes compared with data fitted according to the Lambert-Beer exponential function and an inverse function derived for light attenuation by scattering materials. Curves were fitted by the least-squares method and goodness of fit was compared using standard errors of estimate (SEE). The inverse function gave a better data fit in six of the subjects: mean SEE 1.9 (SD 0.7, range 0.7-2.8) and 4.6 (2.2, 2.0-8.0) respectively (p < 0.02, paired t-test). Thus, when relating IR transmittance to blood volume, as occurs in the finger during measurements of arterial compliance, an inverse function derived from a model of light attenuation by scattering media gives more accurate results than the traditional exponential fit.

  5. Research Update: A minimal region of squid reflectin for vapor-induced light scattering

    Science.gov (United States)

    Dennis, Patrick B.; Singh, Kristi M.; Vasudev, Milana C.; Naik, Rajesh R.; Crookes-Goodson, Wendy J.

    2017-12-01

    Reflectins are a family of proteins found in the light manipulating cells of cephalopods. These proteins are made up of a series of conserved repeats that contain highly represented amino acids thought to be important for function. Previous studies demonstrated that recombinant reflectins cast into thin films produced structural colors that could be dynamically modulated via changing environmental conditions. In this study, we demonstrate light scattering from reflectin films following exposure to a series of water vapor pulses. Analysis of film surface topography shows that the induction of light scatter is accompanied by self-assembly of reflectins into micro- and nanoscale features. Using a reductionist strategy, we determine which reflectin repeats and sub-repeats are necessary for these events following water vapor pulsing. With this approach, we identify a singly represented, 23-amino acid region in reflectins as being sufficient to recapitulate the light scattering properties observed in thin films of the full-length protein. Finally, the aqueous stability of reflectin films is leveraged to show that pre-exposure to buffers of varying pH can modulate the ability of water vapor pulses to induce light scatter and protein self-assembly.

  6. Light scattering at small angles by atmospheric irregular particles: modelling and laboratory measurements

    Science.gov (United States)

    Lurton, T.; Renard, J.-B.; Vignelles, D.; Jeannot, M.; Akiki, R.; Mineau, J.-L.; Tonnelier, T.

    2014-04-01

    We have investigated the behaviour of light scattering by particulates of various sizes (0.1 μm to 100 μm) at a small scattering angle (below 20°). It has been previously shown that, for a small angle, the scattered intensities are weakly dependent upon the particulates' composition (Renard et al., 2010). Particles found in the atmosphere exhibit roughness that leads to large discrepancies with the classical Mie solution in terms of scattered intensities in the low angular set-up. This article focuses on building an effective theoretical tool to predict the behaviour of light scattering by real particulates at a small scattering angle. We present both the classical Mie theory and its adaptation to the case of rough particulates with a fairly simple roughness parameterisation. An experimental device was built, corresponding to the angular set-up of interest (low scattering angle and therefore low angular aperture). Measurements are presented that confirm the theoretical results with good agreement. It was found that differences between the classical Mie solution and actual measurements - especially for large particulates - can be attributed to the particulate roughness. It was also found that, in this low angular set-up, saturation of the scattered intensities occurs for relatively small values of the roughness parameter. This confirms the low variability in the scattered intensities observed for atmospheric particulates of different kinds. A direct interest of this study is a broadening of the dynamic range of optical counters: using a small angle of aperture for measurements allows greater dynamics in terms of particle size. Thus it allows a single device to observe a broad range of particle sizes whilst utilising the same electronics.

  7. Selective Rayleigh light scattering determination of trace quercetin with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Usoltseva, Liliya O.; Samarina, Tatiana O. [Department of Chemistry, M.V.Lomonosov Moscow State University, 119991 GSP-1 Moscow (Russian Federation); Abramchuk, Sergei S. [Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Prokhorova, Aleksandra F. [Department of Chemistry, M.V.Lomonosov Moscow State University, 119991 GSP-1 Moscow (Russian Federation); Beklemishev, Mikhail K., E-mail: mkb@analyt.chem.msu.ru [Department of Chemistry, M.V.Lomonosov Moscow State University, 119991 GSP-1 Moscow (Russian Federation)

    2016-11-15

    Rayleigh light scattering (RLS) is a simple technique with a high potential of sensitive determination of small organic molecules. We have found that ppb amounts of quercetin (Qu) greatly enhance the RLS of the solution of silver nanoparticles (AgNPs) stabilized with cetyltrimethylammonium bromide (CTAB) or sodium n-dodecyl sulfate (SDS). Enhancement of light scattering is observed only in the presence of an excess of AgNO{sub 3}, which implies that it is a result of nanoparticle growth; another reason for the enhanced scattering is the aggregation of AgNPs by the analyte that was confirmed by dynamic light scattering technique. The conditions were chosen for the determination of Qu in aqueous solution with the detection limits of 0.01 and 0.03 μmol L{sup −1} and linear ranges of 0.1–1.3 and 0.1–2.0 μmol L{sup −1} for SDS- and CTAB-stabilized AgNPs, respectively; the intra-day RSDs did not exceed 7%. Unexpectedly, other bioflavonoids (rutin, dihydroquercetin, and naringenin) did not change the signal of Qu and did not interfere with its determination in 1:1 M ratio (0.5 μmol L{sup −1} each). Other compounds (asparagin, uric acid, urea and some inorganic ions) were also tolerated in high amounts. - Highlights: • Low concentrations of quercetin enhance the light scattering by silver nanoparticles. • Main processes are aggregation, nanoparticle growth and formation of new particles. • Other compounds exert a weaker effect on the light scattering signal.

  8. Robust sensor for turbidity measurement from light scattering and absorbing liquids.

    Science.gov (United States)

    Kontturi, Ville; Turunen, Petri; Uozumi, Jun; Peiponen, Kai-Erik

    2009-12-01

    Internationally standardized turbidity measurements for probing solid particles in liquid are problematic in the case of simultaneous light scattering and absorption. A method and a sensor to determine the turbidity in the presence of light absorption are presented. The developed sensor makes use of the total internal reflection of a laser beam at the liquid-prism interface, and the turbidity is assessed using the concept of laser speckle pattern. Using average filtering in speckle data analyzing the observed dynamic speckle pattern, which is due to light scattering from particles and the static speckle due to stray light of the sensor, can be separated from each other. Good correlation between the standard deviation of dynamic speckle and turbidity value for nonabsorbing and for absorbing liquids was observed. The sensor is suggested, for instance, for the measurement of ill-behaved as well as small-volume turbid liquids in both medicine and process industry.

  9. Strong seismic wave scattering beneath Kanto region derived from dense K-NET/KiK-net strong motion network and numerical simulation

    Science.gov (United States)

    Takemura, S.; Yoshimoto, K.

    2013-12-01

    Observed seismograms, which consist of the high-frequency body waves through the low-velocity (LV) region at depth of 20-40 km beneath northwestern Chiba in Kanto, show strong peak delay and spindle shape of S waves. By analyzing dense seismic records from K-NET/KiK-net, such spindle-shape S waves are clearly observed in the frequency range of 1-8 Hz. In order to investigate a specific heterogeneous structure to generate such observations, we conduct 3-D finite-difference method (FDM) simulation using realistic heterogeneous models and compare the simulation results with dense strong motion array observations. Our 3-D simulation model is covering the zone 150 km by 64 km in horizontal directions and 75 km in vertical direction, which has been discretized with uniform grid size 0.05 km. We assume a layered background velocity structure, which includes basin structure, crust, mantle and subducting oceanic plate, base on the model proposed by Koketsu et al. (2008). In order to introduce the effect of seismic wave scattering, we assume a stochastic random velocity fluctuation in each layer. Random velocity fluctuations are characterized by exponential-type auto-correlation function (ACF) with correlation distance a = 3 km and rms value of fluctuation e = 0.05 in the upper crust, a = 3 km and e = 0.07 in the lower crust, a = 10 km and e = 0.02 in the mantle. In the subducting oceanic plate, we assume an anisotropic random velocity fluctuation characterized by exponential-type ACF with aH = 10 km in horizontal direction, aZ = 0.5 km in vertical direction and e = 0.02 (e.g., Furumura and Kennett, 2005). In addition, we assume a LV zone at northeastern part of Chiba with depth of 20-40 km (e.g., Matsubara et al., 2004). In the LV zone, random velocity fluctuation characterized by Gaussian-type ACF with a = 1 km and e = 0.07 is superposed on exponential-type ACF with a = 3 km and e = 0.07, in order to modulate the S-wave propagation in the dominant frequency range of

  10. Building a Unified Computational Model for the Resonant X-Ray Scattering of Strongly Correlated Materials

    International Nuclear Information System (INIS)

    Bansil, Arun

    2016-01-01

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering-density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization-to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.

  11. Lepton--lepton scattering in a spontaneously broken gauge theory satisfying strong interaction duality

    International Nuclear Information System (INIS)

    Dicus, D.A.; Teplitz, V.L.; Young, J.E.

    1974-01-01

    A spontaneously broken gauge theory of leptons (e, μ, ν/sub e'/, ν/sub μ/) is constructed in which the two-body scattering amplitudes are dual. The resultant model leads to suppression of ν/sub μ/ + e → ν/sub μ/ + e and predictions for ν/sub e/ + e → ν/sub e/ + e and e + e → μ + μ - that are distinctly different from those of both the conventional V--A theory and the Weinberg-Salam model. (U.S.)

  12. Visible light scatter as quantitative information source on milk constituents

    DEFF Research Database (Denmark)

    Melentiyeva, Anastasiya; Kucheryavskiy, Sergey; Bogomolov, Andrey

    2012-01-01

    analysis. The main task here is to extract individual quantitative information on milk fat and total protein content from spectral data. This is particularly challenging problem in the case of raw natural milk, where the fat globule sizes may essentially differ depending on source. Fig. 1. Spots of light...... designed set of raw milk samples with simultaneously varying fat, total protein and particle size distribution has been analyzed in the Vis spectral region. The feasibility of raw milk analysis by PLS regression on spectral data has been proved. The root mean-square errors below 0.10% and 0.04% for fat....... 3J&M Analytik AG, Willy-Messerschmitt-Strasse 8, 73457 Essingen, Germany. bogomolov@j-m.de Fat and protein are two major milk nutrients that are routinely analyzed in the dairy industry. Growing food quality requirements promote the dissemination of spectroscopic analysis, enabling real...

  13. Strong light-matter coupling from atoms to solid-state systems

    CERN Document Server

    2014-01-01

    The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptu...

  14. Strong interaction scattering of a spin-zero particle by a 1/2 spin particle

    International Nuclear Information System (INIS)

    Derem, Andre

    1969-03-01

    This paper gather kinematic formulas that are commonly used to describe the scattering, with conservation of parity, 0 - + 1 + /2 → 0 - + 1 + /2 (in the notation S P , S being the spin and P the parity). The two particles 0 - will be two mesons M and M', the two particles 1 + /2 two baryons B and B'. The authors assume that the masses of these four particles are all different. The notations and the definitions are introduced in chapter 1. Chapter 2 recalls essential notions concerning the Dirac equation. The relativistic invariant differential cross-section is calculated in chapter 3, as a function of the invariant amplitudes A'(s,t) and B(s,t). Pauli's usual formalism in the center of mass system is given in chapter 4, as well as the means of passing f(θ) and g(θ) amplitudes to A' and B amplitudes. Chapter 5 is concerned with elastic scattering [fr

  15. Strong Light Localization and a Peculiar Feature of Light Leakage in the Negative Curvature Hollow Core Fibers

    Directory of Open Access Journals (Sweden)

    Andrey D. Pryamikov

    2017-11-01

    Full Text Available In this paper we would like to continue a discussion started in our previous work and devoted to the mechanism of light localization in hollow core microstructured fibers with a noncircular core-cladding boundary. It has been shown in many works that, for waveguide microstructures with different types of core-cladding boundary shape, the positions of the transmission bands’ edges can be predicted by applying the well-known anti–resonant reflecting optical waveguide (ARROW model. At the same time, the ARROW model cannot explain the strong light localization and guiding at high material loss inside the transmission bands which are observed in negative curvature hollow core fibers, for example. In this paper we want to clarify our previous findings and consider the light localization process from another point of view, namely, by comparing the light leakage process in waveguide microstructures with different shapes of the core-cladding boundary. The results are discussed based on the ARROW model and a new approach associated with the consideration of spatial dispersion occurring under the interaction of the air core mode with the core-cladding boundary.

  16. Stability and morphology of Ag nanoplatelets probed by depolarized dynamic light scattering

    Science.gov (United States)

    Zimbone, M.; Contino, A.; Maccarrone, G.; Musumeci, P.; Lo Faro, M. J.; Calcagno, L.

    2018-06-01

    The stability of silver nanoplatelet (NP) suspensions prepared with different concentrations of trisodium citrate (TSC) was studied by depolarized dynamic light scattering (DDLS) and UV–vis spectrometry. The morphology of the nanoparticles, as well as the color and stability of the sols, are tuned by the concentration of the capping agent. The nanoparticles prepared with high TSC concentration (>10‑4 M) are blue triangular NPs showing a slight truncation of the tips with aging. When low TSC concentrations are used, the color of the sols changes from blue to yellow with aging time and a strong modification of the morphology occurs: the nanoparticle shape changes from triangular to spherical. Remarkably, they show a high degree of anisotropy. The aging process was followed by the UV–vis spectra and by measuring the rotational diffusion coefficient by DDLS, providing information on the nanoparticle size and shape evolution. The high intensity of depolarized signal and the high value of rotational diffusion coefficient suggest that the aging process increases the thickness and the roughness of the nanoparticles

  17. White light photothermal lens spectrophotometer for the determination of absorption in scattering samples.

    Science.gov (United States)

    Marcano, Aristides; Alvarado, Salvador; Meng, Junwei; Caballero, Daniel; Moares, Ernesto Marín; Edziah, Raymond

    2014-01-01

    We developed a pump-probe photothermal lens spectrophotometer that uses a broadband arc-lamp and a set of interference filters to provide tunable, nearly monochromatic radiation between 370 and 730 nm as the pump light source. This light is focused onto an absorbing sample, generating a photothermal lens of millimeter dimensions. A highly collimated monochromatic probe light from a low-power He-Ne laser interrogates the generated lens, yielding a photothermal signal proportional to the absorption of light. We measure the absorption spectra of scattering dye solutions using the device. We show that the spectra are not affected by the presence of scattering, confirming that the method only measures the absorption of light that results in generation of heat. By comparing the photothermal spectra with the usual absorption spectra determined using commercial transmission spectrophotometers, we estimate the quantum yield of scattering of the sample. We discuss applications of the device for spectroscopic characterization of samples such as blood and gold nanoparticles that exhibit a complex behavior upon interaction with light.

  18. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media

    International Nuclear Information System (INIS)

    Lai, Puxiang; Suzuki, Yuta; Xu, Xiao; Wang, Lihong V

    2013-01-01

    Scattering dominates light propagation in biological tissue, and therefore restricts both resolution and penetration depth in optical imaging within thick tissue. As photons travel into the diffusive regime, typically 1 mm beneath human skin, their trajectories transition from ballistic to diffusive due to the increased number of scattering events, which makes it impossible to focus, much less track, photon paths. Consequently, imaging methods that rely on controlled light illumination are ineffective in deep tissue. This problem has recently been addressed by a novel method capable of dynamically focusing light in thick scattering media via time reversal of ultrasonically encoded (TRUE) diffused light. Here, using photorefractive materials as phase conjugate mirrors, we show a direct visualization and dynamic control of optical focusing with this light delivery method, and demonstrate its application for focused fluorescence excitation and imaging in thick turbid media. These abilities are increasingly critical for understanding the dynamic interactions of light with biological matter and processes at different system levels, as well as their applications for biomedical diagnosis and therapy. (letter)

  19. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    Science.gov (United States)

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.

    2000-01-01

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  20. A simple and convenient set-up for high-temperature Brillouin light scattering

    International Nuclear Information System (INIS)

    Guerette, Michael; Huang Liping

    2012-01-01

    An emulated platelet geometry (or reflection-induced platelet geometry) is employed to collect photons scattered from both longitudinal and transverse acoustic waves travelling within a bulk transparent sample sitting on a reflective Pt plate. Temperature of the sample was controlled with a Linkam TS1500 optical furnace (maximum temperature of 1500 °C). This simple and convenient set-up allows a full determination of elastic constants of transparent materials in situ as a function of temperature from Brillouin light scattering. Structural information can be gained at the same time by guiding the scattered light into a Raman spectrometer using a flipping mirror or a beam splitter. We will demonstrate the applications of this set-up in transparent inorganic glasses, but it can be easily extended to any other transparent materials, either crystalline or amorphous in nature. (paper)

  1. A high-power spatial filter for Thomson scattering stray light reduction

    Science.gov (United States)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  2. High Precision Stokes Polarimetry for Scattering Light using Wide Dynamic Range Intensity Detector

    Directory of Open Access Journals (Sweden)

    Shibata Shuhei

    2015-01-01

    Full Text Available This paper proposes a Stokes polarimetry for scattering light from a sample surface. To achieve a high accuracy measurement two approaches of an intensity detector and analysis algorism of a Stokes parameter were proposed. The dynamic range of this detector can achieve up to 1010 by combination of change of neutral-density (ND filters having different density and photon counting units. Stokes parameters can be measured by dual rotating of a retarder and an analyzer. The algorism of dual rotating polarimeter can be calibrated small linear diattenuation and linear retardance error of the retarder. This system can measured Stokes parameters from −20° to 70° of its scattering angle. It is possible to measure Stokes parameters of scattering of dust and scratch of optical device with high precision. This paper shows accuracy of this system, checking the polarization change of scattering angle and influence of beam size.

  3. Scattering of light by a periodic structure in the presence of ...

    Indian Academy of Sciences (India)

    extended matched filtering method, and try to reach the lowest possible value of detection in (r0/Λ) by ... technique allows ease of measurement and analysis. ... In this particular case of scattering of light from a periodic surface in the presence.

  4. Light scattering from thermal density fluctuations using a CW-CO2-laser and heterodyne detection

    International Nuclear Information System (INIS)

    Massig, J.H.

    1978-01-01

    The ion feature in the scattered light spectrum of an arc plasma was measured using heterodyne detection. A low-power CW-CO 2 -laser was employed. The weak signals were discriminated against noise by lock-in technique. (orig.) [de

  5. On the interpolation of light-scattering responses from irregularly shaped particles

    Science.gov (United States)

    Videen, Gorden; Zubko, Evgenij; Arnold, Jessica A.; MacCall, Benjamin; Weinberger, Alycia J.; Shkuratov, Yuriy; Muñoz, Olga

    2018-05-01

    Common particle characteristics needed for many applications may include size, eccentricity, porosity and refractive index. Determining such characteristics from scattered light is a primary goal of remote sensing. For other applications, like differentiating a hazardous particle from the natural background, information about higher fidelity particle characteristics may be required, including specific shape or chemical composition. While a complete characterization of a particle system from its scattered light through the inversion process remains unachievable, great strides have been made in providing information in the form of constraints on particle characteristics. Recent advances have been made in quantifying the characteristics of polydispersions of irregularly shaped particles by making comparisons of the light-scattering signals from model simulant particles. We show that when the refractive index is changed, the light-scattering characteristics from polydispersions of such particles behave monotonically over relatively large parameter ranges compared with those of monodisperse distributions of particles having regular shapes, like spheres, spheroids, etc. This allows for their properties to be interpolated, which results in a significant reduction of the computational load when performing inversions.

  6. Light Scattering of TiO2 Nanoparticles Embedded in Polyurethane

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Canulescu, Stela; Johansen, Villads Egede

    A new approach of enhancing light scattering in polyurethane polymer through the effect of TiO2 nanoparticles (NP) is explored. The TiO2 NP with sizes of 360 nm, 410 nm and 500 nm were dispersed in polyurethane polymer in concentrations ranging from 0.25 wt% up to 2 wt%. Reflectivity and UV-visible...

  7. Surface plasmon polariton generation by light scattering off aligned organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Leakage radiation spectroscopy has been applied to study surface plasmon polariton (SPP) generation by light scattered off aligned organic nanofibers deposited on a thin silver film. The efficiency of SPP generation was studied by angularly resolved leakage radiation spectroscopy as a function of...

  8. Mirror System for Collecting Thomson-Scattered Light in a Tangential Direction

    NARCIS (Netherlands)

    Barth, C. J.; Grobben, B. J. J.; Verhaag, G. C. H. M.

    1994-01-01

    We describe an optical system for collecting Thomson-scattering light in the tangential direction of a tokamak. The key part of the optics is a set of mirrors arranged as a Venetian blind. This system makes it possible to look around the corner of the tokamak vessel. Design considerations and test

  9. Optical Imaging of Cells with Gold Nanoparticle Clusters as Light Scattering Contrast Agents

    DEFF Research Database (Denmark)

    Tanev, Stoyan

    2011-01-01

    This chapter has two main objectives. First, to review a number of examples illustrating the application of the FDTD approach to the modeling of some typical light scattering configurations that could be associated with flow cytometry. Second, to provide a thorough discussion of these new develop...

  10. Spectroscopy of scattered light for the characterization of micro and nanoscale objects in biology and medicine.

    Science.gov (United States)

    Turzhitsky, Vladimir; Qiu, Le; Itzkan, Irving; Novikov, Andrei A; Kotelev, Mikhail S; Getmanskiy, Michael; Vinokurov, Vladimir A; Muradov, Alexander V; Perelman, Lev T

    2014-01-01

    The biomedical uses for the spectroscopy of scattered light by micro and nanoscale objects can broadly be classified into two areas. The first, often called light scattering spectroscopy (LSS), deals with light scattered by dielectric particles, such as cellular and sub-cellular organelles, and is employed to measure their size or other physical characteristics. Examples include the use of LSS to measure the size distributions of nuclei or mitochondria. The native contrast that is achieved with LSS can serve as a non-invasive diagnostic and scientific tool. The other area for the use of the spectroscopy of scattered light in biology and medicine involves using conducting metal nanoparticles to obtain either contrast or electric field enhancement through the effect of the surface plasmon resonance (SPR). Gold and silver metal nanoparticles are non-toxic, they do not photobleach, are relatively inexpensive, are wavelength-tunable, and can be labeled with antibodies. This makes them very promising candidates for spectrally encoded molecular imaging. Metal nanoparticles can also serve as electric field enhancers of Raman signals. Surface enhanced Raman spectroscopy (SERS) is a powerful method for detecting and identifying molecules down to single molecule concentrations. In this review, we will concentrate on the common physical principles, which allow one to understand these apparently different areas using similar physical and mathematical approaches. We will also describe the major advancements in each of these areas, as well as some of the exciting recent developments.

  11. Study of light scattering by a granulated coated sphere - a model of granulated blood cells

    NARCIS (Netherlands)

    Yurkin, M.A.; de Kanter, D.; Hoekstra, A.G.

    2008-01-01

    We performed extensive simulations of light scattering by granulated coated sphere model using the discrete dipole approximation and varying model parameters in the ranges of sizes and refractive indices of granulated blood cells. We compared these results with predictions of Maxwell-Garnett

  12. Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction

    NARCIS (Netherlands)

    Streekstra, G. J.; Hoekstra, A. G.; Nijhof, E. J.; Heethaar, R. M.

    1993-01-01

    In the present literature on ektacytometry, small angle light scattering by ellipsoidal red blood cells is commonly approximated by Fraunhofer diffraction. Calculations on a sphere with the size and relative refractive index of a red cell, however, show that Fraunhofer diffraction deviates

  13. Four-Parameter white blood cell differential counting based on light scattering measurements

    NARCIS (Netherlands)

    Terstappen, Leonardus Wendelinus Mathias Marie; de Grooth, B.G.; Visscher, K.; Kouterik, F.A.; Greve, Jan

    1988-01-01

    Measurement of the depolarized orthogonal light scattering in flow cytometry enables one to discriminate human eosinephilic granulocytes from neutrophilic granulocytes. We use this method to perform a four-parameter differential white blood cell analysis. A simple flow cytometer was built equipped

  14. Light-scattering properties of undiluted human blood subjected to simple shear

    NARCIS (Netherlands)

    Steenbergen, Wiendelt; Kolkman, R.G.M.; de Mul, F.F.M.

    1999-01-01

    An experimental investigation was performed into the effect of simple shear on the light-scattering properties of undiluted human blood. Undiluted human blood was enclosed between two glass plates with an adjustable separation between 30 and 120 mm and with one plate moving parallel to the other.

  15. Light scattering evidence of selective protein fouling on biocompatible block copolymer micelles

    Czech Academy of Sciences Publication Activity Database

    Giacomelli, F. C.; Štěpánek, Petr; Schmidt, V.; Jäger, Eliezer; Jäger, Alessandro; Giacomelli, C.

    2012-01-01

    Roč. 4, č. 15 (2012), s. 4504-4514 ISSN 2040-3364 R&D Projects: GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505 Keywords : copolymer micelles * protein fouling * light scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.233, year: 2012

  16. Influence of light refraction on the image reconstruction in transmission optical tomography of scattering media

    International Nuclear Information System (INIS)

    Tereshchenko, Sergei A; Potapov, D A; Podgaetskii, Vitalii M; Smirnov, A V

    2002-01-01

    A distorting influence of light refraction at the boundaries of scattering media on the results of tomographic reconstruction of images of radially symmetric objects is investigated. The methods for the correction of such refraction-caused distortions are described. The results of the image reconstruction for two model cylindrical objects are presented.

  17. Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime

    NARCIS (Netherlands)

    Petoukhova, Anna; Steenbergen, Wiendelt; van Leeuwen, Ton; de Mul, F.F.M.

    2002-01-01

    A low coherence Mach–Zehnder interferometer is developed for path length resolved dynamic light scattering in highly turbid media. The path length distribution of multiply scatteredphotons in Intralipid is changed by the addition of absorbing dyes. Path length distributions obtained for various

  18. Laser Light Scattering, from an Advanced Technology Development Program to Experiments in a Reduced Gravity Environment

    Science.gov (United States)

    Meyer, William V.; Tscharnuter, Walther W.; Macgregor, Andrew D.; Dautet, Henri; Deschamps, Pierre; Boucher, Francois; Zuh, Jixiang; Tin, Padetha; Rogers, Richard B.; Ansari, Rafat R.

    1994-01-01

    Recent advancements in laser light scattering hardware are described. These include intelligent single card correlators; active quench/active reset avalanche photodiodes; laser diodes; and fiber optics which were used by or developed for a NASA advanced technology development program. A space shuttle experiment which will employ aspects of these hardware developments is previewed.

  19. Protein dynamics by neutron scattering: The protein dynamical transition and the fragile-to-strong dynamical crossover in hydrated lysozyme

    International Nuclear Information System (INIS)

    Magazù, Salvatore; Migliardo, Federica; Benedetto, Antonio; Vertessy, Beata

    2013-01-01

    Highlights: • The role played by the instrumental energy resolution in neutron scattering is presented. • The effect of natural bioprotectants on protein dynamics is shown. • A connection between the protein dynamical transition and the fragile-to-strong dynamical crossover is formulated. - Abstract: In this work Elastic Incoherent Neutron Scattering (EINS) results on lysozyme water mixtures in absence and in presence of bioprotectant systems are presented. The EINS data have been collected by using the IN13 and the IN10 spectrometers at the Institut Laue-Langevin (ILL, Grenoble, France) allowing to evaluate the temperature behaviour of the mean square displacement and of the relaxation time for the investigated systems. The obtained experimental findings together with theoretical calculations allow to put into evidence the role played by the spectrometer resolution and to clarify the connexion between the registered protein dynamical transition, the system relaxation time, and the instrumental energy resolution

  20. Hadronic light-by-light scattering in the muon g-2: A new short-distance constraint on pion exchange

    International Nuclear Information System (INIS)

    Nyffeler, Andreas

    2009-01-01

    Recently it was pointed out that for the evaluation of the numerically dominant pion-exchange contribution to the hadronic light-by-light scattering correction in the muon g-2, a fully off-shell pion-photon-photon form factor should be used. Following this proposal, we first derive a new short-distance constraint on the off-shell form factor which enters at the external vertex for the muon g-2 and show that it is related to the quark condensate magnetic susceptibility in QCD. We then evaluate the pion-exchange contribution in the framework of large-N C QCD using an off-shell form factor which fulfills all short-distance constraints. With a value for the magnetic susceptibility as estimated in the same large-N C framework, we obtain the result a μ LbyL;π 0 =(72±12)x10 -11 . Updating our earlier results for the contributions from the exchanges of the η and η ' using simple vector-meson dominance form factors, we obtain a μ LbyL;PS =(99±16)x10 -11 for the sum of all light pseudoscalars. Combined with available evaluations for the other contributions to hadronic light-by-light scattering this leads to the new estimate a μ LbyL;had =(116±40)x10 -11 .

  1. Building a Unified Computational Model for the Resonant X-Ray Scattering of Strongly Correlated Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bansil, Arun [Northeastern Univ., Boston, MA (United States)

    2016-12-01

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering—density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization—to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.

  2. Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes

    Science.gov (United States)

    Brotons-Gisbert, Mauro; Martínez-Pastor, Juan P.; Ballesteros, Guillem C.; Gerardot, Brian D.; Sánchez-Royo, Juan F.

    2018-01-01

    Two-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.

  3. Development of High Spectral Resolution Technique for Registration Quasielastic Light Scattering Spectra Including Rayleigh and Brillouin Scattering as a Diagnostic Tool in Materials Characterization

    National Research Council Canada - National Science Library

    Bairamov, Bakhysh

    2004-01-01

    ...: As detailed in an on-line proposal the contractor will: 1) develop and build an optical device, fitted to a Fabry-Perot interferometer, to perform high-resolution quasieleastic light scattering spectroscopy; 2...

  4. Simultaneous determination of inorganic anions and cations by supercritical fluid chromatography using evaporative light scattering detection.

    Science.gov (United States)

    Foulon, Catherine; Di Giulio, Pauline; Lecoeur, Marie

    2018-01-26

    Supercritical fluid chromatography (SFC) is commonly used for the analysis of non-polar compounds, but remains poorly explored for the separation of polar and ionized molecules. In this paper, SFC has been investigated for the separation of 14 inorganic ions sampled in aqueous solutions. Four polar stationary phases were first screened using CO 2 -methanol-based mobile phases containing water or different acidic or basic additives, in order to select the most efficient conditions for the simultaneous retention of inorganic cations and anions and to favor their detection using evaporative light scattering detector (ELSD). Orthogonal selectivity was obtained depending on the stationary phase used: whereas anions are less retained on HILIC stationary phase, 2-ethylpyridine (2-EP) stationary phase exhibits strong interaction for anions. Best results were obtained under gradient elution mode using a 2-EP stationary phase and by adding 0.2% triethylamine in the CO 2 -methanol-based mobile phase. The composition of the injection solvent was also investigated. The results showed that a methanolic sample containing a percentage of water not exceeding 20% does not affect the analytical performances obtained on 2-EP. Moreover, the presence of triethylamine in the injection solvent contributes to eliminate peaks shoulders. Among the 14 inorganic ions tested, three cations (Li + , Ca 2+ and Mg 2+ ) and five anions (Cl - , Br - , NO 3 - , I - , SCN - ) were totally resolved in 15 min. NO 3 - and NO 2 - still coeluted in the final optimized conditions. The other investigated ions were either strongly retained on the stationary phase or not detected by the ELSD. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Measurement of elastic light scattering from two optically trapped microspheres and red blood cells in a transparent medium.

    Science.gov (United States)

    Kinnunen, Matti; Kauppila, Antti; Karmenyan, Artashes; Myllylä, Risto

    2011-09-15

    Optical tweezers can be used to manipulate small objects and cells. A trap can be used to fix the position of a particle during light scattering measurements. The places of two separately trapped particles can also be changed. In this Letter we present elastic light scattering measurements as a function of scattering angle when two trapped spheres are illuminated with a He-Ne laser. This setup is suitable for trapping noncharged homogeneous spheres. We also demonstrate measurement of light scattering patterns from two separately trapped red blood cells. Two different illumination schemes are used for both samples.

  6. Peculiarities of light ion-nucleus scattering in medium-energy region

    International Nuclear Information System (INIS)

    Berezhnoj, Yu.A.; Pilipenko, V.V.

    1982-01-01

    Differential cross-sections of 3 He and 4 He nuclei elastic scattering at E > or approximately 10 MeV/nucleon are analyzed in the quasi-classical approximation. At energies E > or approximately 25 MeV/nucleon in differential cross sections of 3 He and 4 He nuclei elastic scattering by atomic nuclei in the field of scattering angles THETA > or approximately 35 deg diffraction minima start to appear. ScuiSuch effect of Fraunhofer cross section oscillations is eluciiated on the basis of diffraction theory by means of modelfree determination of nuclear scattering phase and quantum deviation function. It is shown that the elastic scattering cross section in the field of energies under consideration represents a typical quasiclassical picture of ''iridescent'' scattering at strong absorption. The theoretical analysis performed permits to correctly describe the experimentally measured differential cross sections of 3 He nuclei elastic scattering at 109.2 MeV by 40 Ca, 58 Ni nuclei and at 118.5 NeV by 58 Ni nuclei as well as 4 He at 166 MeV by 24 Mg, 32 S and at 141.7 MeV by 40 Ca nuclei

  7. The artefacts of radiochromic film dosimetry with flatbed scanners and their causation by light scattering from radiation-induced polymers.

    Science.gov (United States)

    Schoenfeld, Andreas A; Poppinga, Daniela; Harder, Dietrich; Doerner, Karl-Joachim; Poppe, Bjoern

    2014-07-07

    Optical experiments and theoretical considerations have been undertaken in order to understand the causes of the 'orientation effect' and the 'parabola effect', the artefacts impairing the desired light absorption measurement on radiochromic EBT3 films with flatbed scanners. EBT3 films exposed to doses up to 20.9 Gy were scanned with an Epson Expression 10000XL flatbed scanner in landscape and portrait orientation. The horizontally and vertically polarized light components of the scanner were determined, and another Epson Expression 10000XL flatbed scanner was disassembled to examine its optical components. The optical properties of exposed and unexposed EBT3 films were studied with incident polarized and unpolarized white light, and the transmitted red light was investigated for its polarization and scattering properties including the distribution of the scattering angles. Neutral density filters were studied for comparison. Guidance was sought from the theory of light scattering from rod-like macromolecular structures. The drastic dose-dependent variation of the transmitted total light current as function of the orientation of front and rear polarizers, interpreted by light scattering theory, shows that the radiation-induced polymerization of the monomers of EBT3 films produces light scattering oscillators preferably polarized at right angles with the coating direction of the film. The directional distribution of the scattered light is partly anisotropic, with a preferred scattering plane at right angles with the coating direction, indicating light scattering from stacks of coherently vibrating oscillators piled up along the monomer crystals. The polyester carrier film also participates in these effects. The 'orientation' and 'parabola' artefacts due to flatbed scanning of radiochromic films can be explained by the interaction of the polarization-dependent and anisotropic light scattering from exposed and unexposed EBT3 films with the quantitative difference

  8. The artefacts of radiochromic film dosimetry with flatbed scanners and their causation by light scattering from radiation-induced polymers

    International Nuclear Information System (INIS)

    Schoenfeld, Andreas A; Poppinga, Daniela; Poppe, Bjoern; Harder, Dietrich; Doerner, Karl-Joachim

    2014-01-01

    Optical experiments and theoretical considerations have been undertaken in order to understand the causes of the ‘orientation effect’ and the ‘parabola effect’, the artefacts impairing the desired light absorption measurement on radiochromic EBT3 films with flatbed scanners. EBT3 films exposed to doses up to 20.9 Gy were scanned with an Epson Expression 10000XL flatbed scanner in landscape and portrait orientation. The horizontally and vertically polarized light components of the scanner were determined, and another Epson Expression 10000XL flatbed scanner was disassembled to examine its optical components. The optical properties of exposed and unexposed EBT3 films were studied with incident polarized and unpolarized white light, and the transmitted red light was investigated for its polarization and scattering properties including the distribution of the scattering angles. Neutral density filters were studied for comparison. Guidance was sought from the theory of light scattering from rod-like macromolecular structures. The drastic dose-dependent variation of the transmitted total light current as function of the orientation of front and rear polarizers, interpreted by light scattering theory, shows that the radiation-induced polymerization of the monomers of EBT3 films produces light scattering oscillators preferably polarized at right angles with the coating direction of the film. The directional distribution of the scattered light is partly anisotropic, with a preferred scattering plane at right angles with the coating direction, indicating light scattering from stacks of coherently vibrating oscillators piled up along the monomer crystals. The polyester carrier film also participates in these effects. The ‘orientation’ and ‘parabola’ artefacts due to flatbed scanning of radiochromic films can be explained by the interaction of the polarization-dependent and anisotropic light scattering from exposed and unexposed EBT3 films with the quantitative

  9. Light comfort zones of mesopelagic acoustic scattering layers in two contrasting optical environments

    KAUST Repository

    Røstad, Anders

    2016-03-31

    We make a comparison of the mesopelagic sound scattering layers (SLs) in two contrasting optical environments; the clear Red Sea and in murkier coastal waters of Norway (Masfjorden). The depth distributions of the SL in Masfjorden are shallower and narrower than those of the Red Sea. This difference in depth distribution is consistent with the hypothesis that the organisms of the SL distribute according to similar light comfort zones (LCZ) in the two environments. Our study suggest that surface and underwater light measurements ranging more than10 orders of magnitude is required to assess the controlling effects of light on SL structure and dynamics.

  10. Light comfort zones of mesopelagic acoustic scattering layers in two contrasting optical environments

    KAUST Repository

    Rø stad, Anders; Kaartvedt, Stein; Aksnes, Dag L.

    2016-01-01

    We make a comparison of the mesopelagic sound scattering layers (SLs) in two contrasting optical environments; the clear Red Sea and in murkier coastal waters of Norway (Masfjorden). The depth distributions of the SL in Masfjorden are shallower and narrower than those of the Red Sea. This difference in depth distribution is consistent with the hypothesis that the organisms of the SL distribute according to similar light comfort zones (LCZ) in the two environments. Our study suggest that surface and underwater light measurements ranging more than10 orders of magnitude is required to assess the controlling effects of light on SL structure and dynamics.

  11. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    Science.gov (United States)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  12. Study of the scattering of the light in aqueous samples collagen in the presence of nanoparticles and curcuma pigment

    Science.gov (United States)

    Silva, F. M. L.; Alencar, L. D. S.; Bernardi, M. I. B.; Lima, F. W. S.; Melo, C. A. S.

    2015-06-01

    In this work we investigate the scattering of light in means turbid in the presence or not of pigment and nanoparticles. For this we initially using a sample of collagen from means turbid with and without the presence of curcuma pigments and nanoparticles. Our results show that the light scattering is more intense in the samples with nanoparticles and curcuma pigment.

  13. Amplitude of Light Scattering by a Truncated Pyramid and Cone in the Rayleigh-Gans-Debye Approximation

    Directory of Open Access Journals (Sweden)

    Konstantin A. Shapovalov

    2013-01-01

    Full Text Available The article considers general approach to structured particle and particle system form factor calculation in the Rayleigh-Gans-Debye (RGD approximation. Using this approach, amplitude of light scattering by a truncated pyramid and cone formulas in RGD approximation are obtained. Light scattering indicator by a truncated pyramid and cone in the RGD approximation are calculated.

  14. Nonlinear light scattering in a two component medium: optical limiting application

    International Nuclear Information System (INIS)

    Joudrier, Valerie

    1998-01-01

    Scattering is a fundamental manifestation of the interaction between matter and radiation, resulting from inhomogeneities in the refractive index, which decrease transmission. This phenomenon is then especially attractive for sensor protection from laser light by optical limiting. One of the methods to induce scattering at high incident energy is to make use of the Kerr effect where the index of refraction is intensity dependent. Thus, the idea is to use a two component medium with a good index matching between the two components at low intensity, resulting in the medium transparency, and to modify it, at high intensity, due to the non linearity of one component making the medium highly scattering. Some of the experimental and theoretical investigations concerning a new material (here, a cell containing some liquid with small silica particles as inclusion in it) are presented in the visible domain (I=532 nm), for the nanosecond protection regime, beginning, with the chemical synthesis of the sample. The experimental results concerning the optical limiting process are presented, showing that nonlinear scattering is clearly the dominant mechanism in confrontation with other potential nonlinear effects. Several complementary experiments are then performed to complete the nonlinear scattering characterization, involving the measurement of the angular distribution of scattered energy and the integrating sphere measurement. Further information are also gained by studying the time response of the nonlinearities with a dual-beam (pulsed-pump, cw probe) technique. The previous experimental data is also analyzed with some simple theoretical models to evaluate the nonlinearity of the material from optical limiting, the angular scattering and the total scattering energy measurements. The good match between all the analytical results permits to delineate the physical mechanisms responsible for the nonlinear scattering effect and to direct the final conclusion. (author) [fr

  15. Double-layered liquid crystal light shutter for control of absorption and scattering of the light incident to a transparent display device

    Science.gov (United States)

    Huh, Jae-Won; Yu, Byeong-Hun; Shin, Dong-Myung; Yoon, Tae-Hoon

    2015-03-01

    Recently, a transparent display has got much attention as one of the next generation display devices. Especially, active studies on a transparent display using organic light-emitting diodes (OLEDs) are in progress. However, since it is not possible to obtain black color using a transparent OLED, it suffers from poor visibility. This inevitable problem can be solved by using a light shutter. Light shutter technology can be divided into two types; light absorption and scattering. However, a light shutter based on light absorption cannot block the background image perfectly and a light shutter based on light scattering cannot provide black color. In this work we demonstrate a light shutter using two liquid crystal (LC) layers, a light absorption layer and a light scattering layer. To realize a light absorption layer and a light scattering layer, we use the planar state of a dye-doped chiral nematic LC (CNLC) cell and the focal-conic state of a long-pitch CNLC cell, respectively. The proposed light shutter device can block the background image perfectly and show black color. We expect that the proposed light shutter can increase the visibility of a transparent display.

  16. Characterization of 'strong-fragile' behaviour of glass-forming aqueous solutions by neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Branca, C.; Faraone, A.; Galli, G.; Magazu' , S.; Maisano, G.; Migliardo, F. [Dipartimento di Fisica and INFM, Universita' di Messina, PO Box 55, 98166 Messina (Italy)

    2002-07-01

    Neutron-scattering measurements have been performed on trehalose/H{sub 2}O and sucrose/H{sub 2}O mixtures by using the spectrometer MIBEMOL at the Laboratoire Leon Brillouin (LLB, Saclay) as a function of temperature and concentration. In order to characterize the different rigidities of both the disaccharide/H{sub 2}O mixtures, we have evaluated the R{sub 1}(T{sub g}) parameter connected to the 'strong-fragile' classification of the systems according to Angell's nomenclature. (orig.)

  17. Coherent scattering of three-level atoms in the field of a bichromatic standing light wave

    International Nuclear Information System (INIS)

    Pazgalev, A.S.; Rozhdestvenskii, Yu.V.

    1996-01-01

    We discuss the coherent scattering of three-level atoms in the field of two standing light waves for two values of the spatial shift. In the case of a zero spatial shift and equal frequency detunings of the standing waves, the problem of scattering of a three-level atoms is reduced to scattering of an effectively two-level atom. For the case of an exact resonance between the waves and transitions we give expressions for the population probability of the states of the three-level atom obtained in the short-interaction-time approximation. Depending on the initial population distribution over the states, different scattering modes are realized. In particular, we show that there can be initial conditions for which the three-level system does not interact with the field of the standing waves, with the result that there is no coherent scattering of atoms. In the case of standing waves shifted by π/2, there are two types of solution, depending on the values of the frequency detuning. For instance, when the light waves are detuned equally we give the exact solution for arbitrary relationships between the detuning and the standing wave intensities valid for any atom-field interaction times. The case of 'mirror' detunings and shifted standing waves is studied only numerically

  18. The spectral energy distribution of the scattered light from dark clouds

    Science.gov (United States)

    Mattila, Kalevi; Schnur, G. F. O.

    1989-01-01

    A dark cloud is exposed to the ambient radiation field of integrated starlight in the Galaxy. Scattering of starlight by the dust particles gives rise to a diffuse surface brightness of the dark nebula. The intensity and the spectrum of this diffuse radiation can be used to investigate, e.g., the scattering parameters of the dust, the optical thickness of the cloud, and as a probe of the ambient radiation field at the location of the cloud. An understanding of the scattering process is also a prerequisite for the isolation of broad spectral features due to fluorescence or to any other non-scattering origin of the diffuse light. Model calculations are presented for multiple scattering in a spherical cloud. These calculations show that the different spectral shapes of the observed diffuse light can be reproduced with standard dust parameters. The possibility to use the observed spectrum as a diagnostic tool for analyzing the thickness of the cloud and the dust particle is discussed.

  19. Calculated energy distributions for light 0.25--18-keV ions scattered from solid surfaces

    International Nuclear Information System (INIS)

    Robinson, J.E.; Harms, A.A.; Karapetsas, S.K.

    1975-01-01

    Scattered energy distributions are calculated for light ions incident on Nb and Mo surfaces of interest for controlled nulcear fusion reactors. The scattered energy is found to vary as a function of the reflection coefficient between a multiple-collision limit at low energies and a single-collision Rutherford scattering limit at high energies. High-energy peaking of the scattered particle distributions is also found for low incident energies

  20. Modelling of strong heterogeneities in aerosol single scattering albedos over a polluted region

    Science.gov (United States)

    Mallet, M.; Pont, V.; Liousse, C.

    2005-05-01

    To date, most models dedicated to the investigation of aerosol direct or semi-direct radiative forcings have assumed the various aerosol components to be either completely externally mixed or homogeneously internally mixed. Some recent works have shown that a core-shell treatment of particles should be more realistic, leading to significant differences in the radiative impact as compared to only externally or well-internally mixed states. To account for these studies, an optical module, ORISAM-RAD, has been developed for computing aerosol radiative properties under the hypothesis of internally mixed particles with a n-layer spherical concentric structure. Mesoscale simulations using ORISAM-RAD, coupled with the 3D mesoscale model Meso-NH-C, have been performed for one selected day (06/24/2001) during the ESCOMPTE experiment in the Marseilles-Fos/Berre region, which illustrate the ability of this new module to reproduce spatial heterogeneities of measured single scattering albedo (ωo), due to industrial and/or urban pollution plumes.

  1. Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy

    Science.gov (United States)

    Lau, Condon; Šćepanović, Obrad; Mirkovic, Jelena; McGee, Sasha; Yu, Chung-Chieh; Fulghum, Stephen; Wallace, Michael; Tunnell, James; Bechtel, Kate; Feld, Michael

    2009-01-01

    Model-based light scattering spectroscopy (LSS) seemed a promising technique for in-vivo diagnosis of dysplasia in multiple organs. In the studies, the residual spectrum, the difference between the observed and modeled diffuse reflectance spectra, was attributed to single elastic light scattering from epithelial nuclei, and diagnostic information due to nuclear changes was extracted from it. We show that this picture is incorrect. The actual single scattering signal arising from epithelial nuclei is much smaller than the previously computed residual spectrum, and does not have the wavelength dependence characteristic of Mie scattering. Rather, the residual spectrum largely arises from assuming a uniform hemoglobin distribution. In fact, hemoglobin is packaged in blood vessels, which alters the reflectance. When we include vessel packaging, which accounts for an inhomogeneous hemoglobin distribution, in the diffuse reflectance model, the reflectance is modeled more accurately, greatly reducing the amplitude of the residual spectrum. These findings are verified via numerical estimates based on light propagation and Mie theory, tissue phantom experiments, and analysis of published data measured from Barrett’s esophagus. In future studies, vessel packaging should be included in the model of diffuse reflectance and use of model-based LSS should be discontinued. PMID:19405760

  2. Dependence of the forward light scattering on the refractive index of particles

    Science.gov (United States)

    Guo, Lufang; Shen, Jianqi

    2018-05-01

    In particle sizing technique based on forward light scattering, the scattered light signal (SLS) is closely related to the relative refractive index (RRI) of the particles to the surrounding, especially when the particles are transparent (or weakly absorbent) and the particles are small in size. The interference between the diffraction (Diff) and the multiple internal reflections (MIR) of scattered light can lead to the oscillation of the SLS on RRI and the abnormal intervals, especially for narrowly-distributed small particle systems. This makes the inverse problem more difficult. In order to improve the inverse results, Tikhonov regularization algorithm with B-spline functions is proposed, in which the matrix element is calculated for a range of particle sizes instead using the mean particle diameter of size fractions. In this way, the influence of abnormal intervals on the inverse results can be eliminated. In addition, for measurements on narrowly distributed small particles, it is suggested to detect the SLS in a wider scattering angle to include more information.

  3. Light scattering at the semiconductor-metal phase transition in vanadium dioxide

    International Nuclear Information System (INIS)

    Valiev, K.A.; Mokerov, V.G.; Sarajkin, V.V.; Petrova, A.G.

    1977-01-01

    The temperature dependence of optical properties has been investigated of vanadium dioxide thin monocrystals at the phase transition (PT) semiconductor-metal. It is established, that the anomaly arising herein is caused by the light scattering effect. As a result of the study of the scattered light intensity angle distribution and direct investigation of the samples the picture of optical heterogeneities responsible for the given scattering is determined into the polarization optical microscope. It is shown that these heterogeneities are due to the VO 2 two phases co-existence in the PT range and the light scattering effect is caused by the substantial difference of their optical constants, i.e. represents the so-called ''transition'' opalescence. At the PT investigation within the limits of the separate embrios of the new phase it has been found, that the PT temperature in various embrios is different. This is used to explain the PT temperature ''washing out'' in the investigated samples. It is supposed, that formation of the new phase is caused by the presence of elastic stress fields, arising close to the defects

  4. Light scattering by multiple spheres: comparison between Maxwell theory and radiative-transfer-theory calculations.

    Science.gov (United States)

    Voit, Florian; Schäfer, Jan; Kienle, Alwin

    2009-09-01

    We present a methodology to compare results of classical radiative transfer theory against exact solutions of Maxwell theory for a high number of spheres. We calculated light propagation in a cubic scattering region (20 x 20 x 20 microm(3)) consisting of different concentrations of polystyrene spheres in water (diameter 2 microm) by an analytical solution of Maxwell theory and by a numerical solution of radiative transfer theory. The relative deviation of differential as well as total scattering cross sections obtained by both approaches was evaluated for each sphere concentration. For the considered case, we found that deviations due to radiative transfer theory remain small, even for concentrations up to ca. 20 vol. %.

  5. Measuring the light scattering and orientation of a spheroidal particle using in-line holography.

    Science.gov (United States)

    Seo, Kyung Won; Byeon, Hyeok Jun; Lee, Sang Joon

    2014-07-01

    The light scattering properties of a horizontally and vertically oriented spheroidal particle under laser illumination are experimentally investigated using digital in-line holography. The reconstructed wave field shows the bright singular points as a result of the condensed beam formed by a transparent spheroidal particle acting as a lens. The in-plane (θ) and out-of-plane (ϕ) rotating angles of an arbitrarily oriented spheroidal particle are measured by using these scattering properties. As a feasibility test, the 3D orientation of a transparent spheroidal particle suspended in a microscale pipe flow is successfully reconstructed by adapting the proposed method.

  6. Light propagation and emission in scattering media. Application to imaging of complex media

    International Nuclear Information System (INIS)

    Pierrat, Romain

    2007-01-01

    In this manuscript, we raise different aspects of the propagation and emission of electromagnetic waves in a scattering medium. In the first part, we show that the Radiative Transfer Equation (rte) is a very good tool to study light propagation in a complex medium. Thanks to this formalism, we study the evolution of the spatial coherence of the beam inside the medium, which is seen as a signature of the different transport regimes of photons (single scattering, multiple scattering, diffusive regime). Next, we derive rigorously the diffusion approximation by using a modal approach of the rte. In particular, we obtain that the diffusion coefficient is independent of the level of absorption in the dynamic regime while it depends on absorption in the case of the steady-state regime. Finally, we study the temporal fluctuations of the scattered intensity and show that the use of the rte allows to go beyond the diffusive regime described by the diffusing-waves spectroscopy theory (dws). Comparisons between numerical computations and experiments are realized in reflexion to underline the fundamental role of the anisotropy of the scattering, which is not described by the standard theory. The second part is dedicated to the study of light emission in complex media. First, we study the amplification of scattered light in a gain system called random laser and show that it exists a laser threshold in the incoherent feedback regime. This threshold is quantified by using a modal approach of the rte. Thanks to this formalism, we highlight the limitations of the diffusion approximation in such a system. Next, we study the modification of the fluorescent decay rate of a single molecule embedded in a complex medium. We derive a model allowing the replacement of the scattering medium by an homogeneous equivalent medium taking into account the multiple scattering and the interactions between scatterers. This model is validated by comparison with the value of the decay rate of the

  7. I. Exchange currents in electron scattering from light nuclei. II. Heavy-ion scattering at intermediate and high energy

    International Nuclear Information System (INIS)

    Dubach, J.F.

    1976-01-01

    The purpose of this work is to develop a formalism that will allow one to search the wide variety of transitions presented by nuclei in order to locate situations in which the exchange-current effects are important or dominant and thus allow one to study the contributions of the meson exchanges to the electromagnetic densities within the nucleus. The nuclei studied are assumed to be described in a shell model using harmonic oscillator wave functions. The formalism needed to allow one to do a multipole analysis of these exchange currents within 1s and 1p nuclei is developed. This formalism is then applied to an examination of electron scattering from a series of light nuclei: 3 He, 6 Li, 7 Li, 9 Be, and 10 B. Three significant effects due to the inclusion of exchange currents are seen: (1) The exchange currents can often introduce new structure into the form factors. (2) At larger momentum transfer (700 to 1000 MeV/c) the exchange current contributions to the form factor dominate the simpler one-body form factor by a few orders of magnitude. (3) The exchange currents can excite E4 and M5 multipoles in the p shell which are forbidden to the simpler one-body currents. The elastic scattering of two heavy ions at intermediate and high energies (compared to the Coulomb barrier) is examined in the formalism of the WKB and ''Glauber theory'' approximations. As a concrete example, the scattering of 16 O from 60 Ni is studied assuming an optical-model potential that fits elastic scattering data at low energies. One immediate result is that the WKB approximation agrees quite well with ''exact'' numerical calculations at energies as low as 60 MeV. The Glauber theory fails below about 1 GeV but correction terms are developed that can extend the usefulness of the Glauber theory to much lower energies. The model problem of scattering from a black-sphere model of the nucleus is briefly examined

  8. Dynamic high pressure induced strong and weak hydrogen bonds enhanced by pre-resonance stimulated Raman scattering in liquid water.

    Science.gov (United States)

    Wang, Shenghan; Fang, Wenhui; Li, Fabing; Gong, Nan; Li, Zhanlong; Li, Zuowei; Sun, Chenglin; Men, Zhiwei

    2017-12-11

    355 nm pulsed laser is employed to excite pre-resonance forward stimulated Raman scattering (FSRS) of liquid water at ambient temperature. Due to the shockwave induced dynamic high pressure, the obtained Raman spectra begin to exhibit double peaks distribution at 3318 and 3373 cm -1 with the input energy of 17 mJ,which correspond with OH stretching vibration with strong and weak hydrogen (H) bonds. With laser energy rising from 17 to 27 mJ, the Stokes line at 3318 cm -1 shifts to 3255 and 3230 cm -1 because of the high pressure being enlarged. When the energy is up to 32 mJ, only 3373 cm -1 peak exists. The strong and weak H bond exhibit quite different energy dependent behaviors.

  9. Quantum physics of light and matter photons, atoms, and strongly correlated systems

    CERN Document Server

    Salasnich, Luca

    2017-01-01

    This compact but exhaustive textbook, now in its significantly revised and expanded second edition, provides an essential introduction to the field quantization of light and matter with applications to atomic physics and strongly correlated systems. Following an initial review of the origins of special relativity and quantum mechanics, individual chapters are devoted to the second quantization of the electromagnetic field and the consequences of light field quantization for the description of electromagnetic transitions. The spin of the electron is then analyzed, with particular attention to its derivation from the Dirac equation. Subsequent topics include the effects of external electric and magnetic fields on the atomic spectra and the properties of systems composed of many interacting identical particles. The book also provides a detailed explanation of the second quantization of the non-relativistic matter field, i.e., the Schrödinger field, which offers a powerful tool for the investigation of many-body...

  10. Propagation and scattering of optical light beams in free space, in atmosphere and in biological media

    Science.gov (United States)

    Sahin, Serkan

    With their first production implemented around 1960's, lasers have afterwards proven to be excellent light sources in building the technology. Subsequently, it has been shown that the extraordinary properties of lasers are related to their coherence properties. Recent developments in optics make it possible to synthesize partially coherent light beams from fully coherent ones. In the last several decades it was seen that using partially coherent light sources may be advantageous, in the areas such as laser surface processing, fiber and free-space optical communications, and medical diagnostics. In this thesis, I study extensively the generation, the propagation in different media, and the scattering of partially coherent light beams with respect to their spectral polarization and coherence states. For instance, I analyze the evolution of recently introduced degree of cross-polarization of light fields in free space; then develop a novel partially coherent light source which acquires and keeps a flat intensity profile around the axis at any distance in the far field; and investigate the interaction of electromagnetic random light with the human eye lens. A part of the thesis treats the effect of atmospheric turbulence on random light beams. Due to random variations in the refractive index, atmospheric turbulence modulates all physical and statistical properties of propagating beams. I have explored the possibility of employing the polarimetric domain of the beam for scintillation reduction, which positively affects the performance of free-space communication systems. I also discuss novel techniques for the sensing of rough targets in the turbulent atmosphere by polarization and coherence properties of light. The other contribution to the thesis is the investigation of light scattering from deterministic or random collections of particles, within the validity of first Born approximation. In the case of a random collection, I introduce and model the new quantity

  11. Plasmonic Light Scattering in Textured Silicon Solar Cells with Indium Nanoparticles from Normal to Non-Normal Light Incidence

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Ho

    2017-07-01

    Full Text Available In this study, we sought to improve the light trapping of textured silicon solar cells using the plasmonic light scattering of indium nanoparticles (In NPs of various dimensions. The light trapping modes of textured-silicon surfaces with and without In NPs were investigated at an angle of incidence (AOI ranging from 0° to 75°. The optical reflectance, external quantum efficiency (EQE, and photovoltaic performance were first characterized under an AOI of 0°. We then compared the EQE and photovoltaic current density-voltage (J-V as a function of AOI in textured silicon solar cells with and without In NPs. We observed a reduction in optical reflectance and an increase in EQE when the cells textured with pyramidal structures were coated with In NPs. We also observed an impressive increase in the average weighted external quantum efficiency (∆EQEw and short-circuit current-density (∆Jsc in cells with In NPs when illuminated under a higher AOI. The ∆EQEw values of cells with In NPs were 0.37% higher than those without In NPs under an AOI of 0°, and 3.48% higher under an AOI of 75°. The ∆Jsc values of cells with In NPs were 0.50% higher than those without In NPs under an AOI of 0°, and 4.57% higher under an AOI of 75°. The application of In NPs clearly improved the light trapping effects. This can be attributed to the effects of plasmonic light-scattering over the entire wavelength range as well as an expanded angle of incident light.

  12. Measurement of the strong coupling constant αs with hadronic jets in deep inelastic scattering

    International Nuclear Information System (INIS)

    Gouzevitch, Maxime

    2008-12-01

    In this analysis we have used the production of hard jets in neutral-current DIS for the extraction of the strong coupling constant α s . The jets have been selected in the NC DIS events at large momentum transvers 150 2 2 within the limits of the detector acceptance -0.8 Lab T B >5. Three jet observables normalized to the total NC DIS cross section have been used: Inclusive jet multiplicity as well as the production rates of 2-jet and 3-jet events. The prediction of the renormalization-group equation for the evolution of the strong coupling constant has been successfully tested for two orders of magnitude between Q=2 QeV to Q=122 GeV. The better precision on α s (m Z ) has been obtained with the combination ob the three observables at Q 2 >150 GeV 2 : α s (m Z )=0.1180±0.0007(exp.) -0.0034 +0.0050 (th.)±0.0017 (pdf.).

  13. Strong constraints on self-interacting dark matter with light mediators

    International Nuclear Information System (INIS)

    Bringmann, Torsten; Walia, Parampreet

    2017-04-01

    Coupling dark matter to light new particles is an attractive way to combine thermal production with strong velocity-dependent self-interactions. Here we point out that in such models the dark matter annihilation rate is generically enhanced by the Sommerfeld effect, and we derive the resulting constraints from the Cosmic Microwave Background and other indirect detection probes. For the frequently studied case of s-wave annihilation these constraints exclude the entire parameter space where the self-interactions are large enough to address the small-scale problems of structure formation.

  14. Atomic wavefunctions probed through strong-field light-matter interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mairesse, Y; Villeneuve, D M; Corkum, P B; Dudovich, N [Natl Res Council Canada, Ottawa, ON K1A 0R6 (Canada); Shafir, D; Dudovich, N [Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, (Israel); Mairesse, Y [Univ Bordeaux 1, CELIA, CNRS, UMR 5107, CEA, F-33405 Talence (France)

    2009-07-01

    Strong-field light-matter interactions can encode the spatial properties of the electronic wavefunctions that contribute to the process. In particular, the broadband harmonic spectra, measured for a series of molecular alignments, can be used to create a tomographic reconstruction of molecular orbitals. Here, we present an extension of the tomography approach to systems that cannot be naturally aligned. We demonstrate this ability by probing the two-dimensional properties of atomic wavefunctions. By manipulating an electron-ion re-collision process, we are able to resolve the symmetry of the atomic wavefunction with high contrast. (authors)

  15. Strong constraints on self-interacting dark matter with light mediators

    Energy Technology Data Exchange (ETDEWEB)

    Bringmann, Torsten; Walia, Parampreet [Oslo Univ. (Norway). Dept. of Physics; Kahlhoefer, Felix; Schmidt-Hoberg, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-04-15

    Coupling dark matter to light new particles is an attractive way to combine thermal production with strong velocity-dependent self-interactions. Here we point out that in such models the dark matter annihilation rate is generically enhanced by the Sommerfeld effect, and we derive the resulting constraints from the Cosmic Microwave Background and other indirect detection probes. For the frequently studied case of s-wave annihilation these constraints exclude the entire parameter space where the self-interactions are large enough to address the small-scale problems of structure formation.

  16. Temporal reflectance from a light pulse irradiated medium embedded with highly scattering cores

    International Nuclear Information System (INIS)

    Hsu Peifeng; Lu Xiaodong

    2007-01-01

    This paper presents a new approach to utilize ultrashort pulsed laser for optical diagnostics with numerical simulations. The method is based on the use of ultrafast pulses with a pulsewidth selected according to the probed medium's radiative property and/or size. Our previous work in nonhomogeneous media has shown that the resulting time-resolved reflectance signal will have a unique characteristic: it will show a direct correlation of ballistic photon travel time and interface location, which is in between different layers or nonhomogeneous regions. The premise is based on utilizing the medium's structural information carried by the ballistic and snake photons without being masked by the diffuse photons. In this study, the space-time correlation is further explored in the case of minimally scattered photons from a large scattering coefficient core region embedded within a less-scattering medium. Time-resolved reflectance signals of the single scattering core and multiple scattering cores within a three-dimensional medium demonstrate the concept and illustrate the additional effect due to the scattered photons from the core region. A unique temporal signal profile's correlation at various detector positions with respect to the scattering core is explained in detail. The result has important implications. This approach will lead to a much simpler and more precise determination of the probed medium's composition or structure. Due to the large computational requirement to obtain the physical details of the light pulse propagation inside highly scattering multi-dimensional media, the reverse Monte-Carlo method is used. The potential applications of the method include non-destructive diagnostics, optical imaging, and remote sensing of underwater objects

  17. [Particle Size and Number Density Online Analysis for Particle Suspension with Polarization-Differentiation Elastic Light Scattering Spectroscopy].

    Science.gov (United States)

    Chen, Wei-kang; Fang, Hui

    2016-03-01

    The basic principle of polarization-differentiation elastic light scattering spectroscopy based techniques is that under the linear polarized light incidence, the singlely scattered light from the superficial biological tissue and diffusively scattered light from the deep tissue can be separated according to the difference of polarization characteristics. The novel point of the paper is to apply this method to the detection of particle suspension and, to realize the simultaneous measurement of its particle size and number density in its natural status. We design and build a coaxial cage optical system, and measure the backscatter signal at a specified angle from a polystyrene microsphere suspension. By controlling the polarization direction of incident light with a linear polarizer and adjusting the polarization direction of collected light with another linear polarizer, we obtain the parallel polarized elastic light scattering spectrum and cross polarized elastic light scattering spectrum. The difference between the two is the differential polarized elastic light scattering spectrum which include only the single scattering information of the particles. We thus compare this spectrum to the Mie scattering calculation and extract the particle size. We then also analyze the cross polarized elastic light scattering spectrum by applying the particle size already extracted. The analysis is based on the approximate expressions taking account of light diffusing, from which we are able to obtain the number density of the particle suspension. We compare our experimental outcomes with the manufacturer-provided values and further analyze the influence of the particle diameter standard deviation on the number density extraction, by which we finally verify the experimental method. The potential applications of the method include the on-line particle quality monitoring for particle manufacture as well as the fat and protein density detection of milk products.

  18. INFLUENCE OF LASER BEAM PROFILE ON LIGHT SCATTERING BY HUMAN SKIN DURING PHOTOMETRY BY ELLIPSOIDAL REFLECTORS

    Directory of Open Access Journals (Sweden)

    M. A. Bezuglyi

    2018-01-01

    Full Text Available The correct accounting of laser emitter parameters for improvement of diagnostic authenticity of methods of optical biomedical diagnostic is important problem for applied biophotonic tasks. The purpose of the current research is estimation of influence of energy distribution profile in transversal section of laser beam on light scattering by human skin layers at photometry by ellipsoidal reflectors.Biomedical photometer with ellipsoidal reflectors for investigation of biological tissue specimens in transmitted and reflected light uses laser probing radiation with infinitely thin, Gauss-type and uniform cross-section profile. Distribution of beams with denoted profiles, which consist of 20 million photons with wavelength 632.8 nm, was modeled by using of Monte-Carlo simulation in human skin layers (corneous layer, epidermis, derma and adipose tissue of various anatomic thickness and with ellipsoidal reflectors with focal parameter equal to 16.875 mm and eccentricity of 0.66.The modeling results represent that illuminance distribution in zones of photometric imaging is significantly influenced by the laser beam cross-section profile for various thickness of corneous layer and epidermis in transmitted and reflected light, and also derma in reflected light. Illuminance distribution for adipose tissue in reflected and transmitted light, and also derma in transmitted light, practically do not depend of laser beam profile for anatomic thicknesses, which are appropriate for human skin on various sections of body.There are represented results of modified Monte-Carlo simulation method for biomedical photometer with ellipsoidal reflectors during biometry of human skin layers. For highly scattered corneous layer and epidermis the illumination of middle and external rings of photometric images changes depending from the laser beam profile for more than 50 % in transmitted and 30 % in reflected light. For weakly scattering skin layers (derma and adipose layer

  19. Light scattering by SiOsub(x) and TiOsub(x) films

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, A; Hacker, E; Schirmer, G; Walther, H G

    1981-11-20

    The scattering intensities of vapour-deposited SiOsub(x) films (x approx. <= 2) are the other of 10/sup -4/ if the incidence intensity is unity. This is of the same order of magnitude as the scattering intensity from highly polished optical glass surfaces. The low level of scattering results from the nearly amorphous film structure. Reactively evaporated TiOsub(x) films also exhibit a very low scattering intensity, whereas for reactively sputtered TiO/sub 2/ films the scattering intensity is strongly dependent on the partial pressure of oxygen in the sputtering gas. For films sputtered in 100% O/sub 2/ the scattering level amounts to a few per cent. This is due to the large grain sizes of up to 1 ..mu..m in these films. For low plasma oxygen concentrations TiO/sub 2/ films sputtered under unbiased conditions show microcrystalline sturctures of the anatase modification. However, when the oxygen partial pressure is increased and a bias voltage is applied to the substrate the rutile modification is produced.

  20. Characterization of nanoparticles of lidocaine in w/o microemulsions using small-angle neutron scattering and dynamic light scattering

    International Nuclear Information System (INIS)

    Shukla, A.; Kiselev, M.A.; Hoell, A.; Neubert, R.H.H.

    2004-01-01

    Microemulsions (MEs) are of special interest because a variety of reactants can be introduced into the nanometer-sized aqueous domains, leading to materials with controlled size and shape. In the past few years, significant research has been conducted in the reverse ME-mediated synthesis of organic nanoparticles. In this study, a w/o ME medium was employed for the synthesis of lidocaine by direct precipitation in w/o microemulsion systems: water/isopropylpalmitat/Tween80/Span80. The particle size as well as the location of nanoparticles in the ME droplet were characterized by means of dynamic light scattering (DLS) and small angle neutron scattering (SANS). It is observed that lidocaine precipitated in the aqueous cores because of its insolubility in water. Hydrodynamic radius and gyration radius of microemulsion droplets were estimated as ∼15 nm and ∼4.50 nm from DLS and SANS respectively. Furthermore, different size parameters obtained by DLS and SANS experiments were compared. (author)

  1. Characterization of nanoparticles of lidocaine in w/o microemulsions using small-angle neutron scattering and dynamic light scattering

    Science.gov (United States)

    Shukla, A.; Kiselev, M. A.; Hoell, A.; Neubert, R. H. H.

    2004-08-01

    Microemulsions (MEs) are of special interest because a variety of Reactants can be introduced into the nanometer-sized aqueous domains, leading to materials with controlled size and shape [1,2]. In the past few years, significant research has been conducted in the reverse ME-mediated synthesis of organic nanoparticles [3,4]. In this study, a w/o ME medium was employed for the synthesis of lidocaine by direct precipitation in w/o microemulsion systems: water/isopropylpalmitat/Tween80/Span80. The particle size as well as the location of nanoparticles in the ME droplet were characterized by means of dynamic light scattering (DLS) and small angle neutron scattering (SANS). It is observed that lidocaine precipitated in the aqueous cores because of its insolubility in water. Hydrodynamic radius and gyration radius of microemulsion droplets were estimated as ~15 nm and ~4.50 nm from DLS and SANS respectively. Furthermore, different size parameters obtained by DLS and SANS experiments were compared

  2. Collective laser light scattering from electron density fluctuations in fusion research plasmas (invited)

    International Nuclear Information System (INIS)

    Holzhauer, E.; Dodel, G.

    1990-01-01

    In magnetically confined plasmas density fluctuations of apparently turbulent nature with broad spectra in wave number and frequency space are observed which are thought to be the cause for anomalous energy and particle transport across the confining magnetic field. Collective laser light scattering has been used to study the nature of these fluctuations. Specific problems of scattering from fusion plasmas are addressed and illustrated with experimental results from the 119 μm far infrared laser scattering experiment operated on the ASDEX tokamak. Using the system in the heterodyne mode the direction of propagation with respect to the laboratory frame can be determined. Spatial resolution has bean improved by making use of the change in pitch of the total magnetic field across the minor plasma radius. Special emphasis is placed on the ohmic phase where a number of parameter variations including electron density, electron temperature, toroidal magnetic field, and filling gas were performed

  3. Roughness characterization of EUV multilayer coatings and ultra-smooth surfaces by light scattering

    Science.gov (United States)

    Trost, M.; Schröder, S.; Lin, C. C.; Duparré, A.; Tünnermann, A.

    2012-09-01

    Optical components for the extreme ultraviolet (EUV) face stringent requirements for surface finish, because even small amounts of surface and interface roughness can cause significant scattering losses and impair image quality. In this paper, we investigate the roughness evolution of Mo/Si multilayers by analyzing the scattering behavior at a wavelength of 13.5 nm as well as taking atomic force microscopy (AFM) measurements before and after coating. Furthermore, a new approach to measure substrate roughness is presented, which is based on light scattering measurements at 405 nm. The high robustness and sensitivity to roughness of this method are illustrated using an EUV mask blank with a highspatial frequency roughness of as low as 0.04 nm.

  4. Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metal films

    Science.gov (United States)

    Breit, M.; Podolskiy, V. A.; Grésillon, S.; von Plessen, G.; Feldmann, J.; Rivoal, J. C.; Gadenne, P.; Sarychev, Andrey K.; Shalaev, Vladimir M.

    2001-09-01

    Strongly enhanced second-harmonic generation (SHG), which is characterized by a nearly isotropic intensity distribution, is observed for gold-glass films near the percolation threshold. The diffuselike SHG scattering, which can be thought of as nonlinear critical opalescence, is in sharp contrast with highly collimated linear reflection and transmission from these nanostructured semicontinuous metal films. Our observations, which can be explained by giant fluctuations of local nonlinear sources for SHG due to plasmon localization, verify recent predictions of percolation-enhanced nonlinear scattering.

  5. Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    R. Fierz-Schmidhauser

    2010-03-01

    Full Text Available Ambient relative humidity (RH determines the water content of atmospheric aerosol particles and thus has an important influence on the amount of visible light scattered by particles. The RH dependence of the particle light scattering coefficient (σsp is therefore an important variable for climate forcing calculations. We used a humidification system for a nephelometer which allows for the measurement of σsp at a defined RH in the range of 20–95%. In this paper we present measurements of light scattering enhancement factors f(RH=σsp(RH/σsp(dry from a 1-month campaign (May 2008 at the high alpine site Jungfraujoch (3580 m a.s.l., Switzerland. Measurements at the Jungfraujoch are representative for the lower free troposphere above Central Europe. For this aerosol type hardly any information about the f(RH is available so far. At this site, f(RH=85% varied between 1.2 and 3.3. Measured f(RH agreed well with f(RH calculated with Mie theory using measurements of the size distribution, chemical composition and hygroscopic diameter growth factors as input. Good f(RH predictions at RH<85% were also obtained with a simplified model, which uses the Ångström exponent of σsp(dry as input. RH influences further intensive optical aerosol properties. The backscatter fraction decreased by about 30% from 0.128 to 0.089, and the single scattering albedo increased on average by 0.05 at 85% RH compared to dry conditions. These changes in σsp, backscatter fraction and single scattering albedo have a distinct impact on the radiative forcing of the Jungfraujoch aerosol.

  6. Computational modeling and experimental characterization of bacterial microcolonies for rapid detection using light scattering

    Science.gov (United States)

    Bai, Nan

    A label-free and nondestructive optical elastic forward light scattering method has been extended for the analysis of microcolonies for food-borne bacteria detection and identification. To understand the forward light scattering phenomenon, a model based on the scalar diffraction theory has been employed: a bacterial colony is considered as a biological spatial light modulator with amplitude and phase modulation to the incoming light, which continues to propagate to the far-field to form a distinct scattering 'fingerprint'. Numerical implementation via angular spectrum method (ASM) and Fresnel approximation have been carried out through Fast Fourier Transform (FFT) to simulate this optical model. Sampling criteria to achieve unbiased and un-aliased simulation results have been derived and the effects of violating these conditions have been studied. Diffraction patterns predicted by these two methods (ASM and Fresnel) have been compared to show their applicability to different simulation settings. Through the simulation work, the correlation between the colony morphology and its forward scattering pattern has been established to link the number of diffraction rings and the half cone angle with the diameter and the central height of the Gaussian-shaped colonies. In order to experimentally prove the correlation, a colony morphology analyzer has been built and used to characterize the morphology of different bacteria genera and investigate their growth dynamics. The experimental measurements have demonstrated the possibility of differentiating bacteria Salmonella, Listeria, Escherichia in their early growth stage (100˜500 µm) based on their phenotypic characteristics. This conclusion has important implications in microcolony detection, as most bacteria of our interest need much less incubation time (8˜12 hours) to grow into this size range. The original forward light scatterometer has been updated to capture scattering patterns from microcolonies. Experiments have

  7. High Intensity Compton Scattering in a strong plane wave field of general form

    International Nuclear Information System (INIS)

    Hartin, A.; Moortgat-Pick, G.; Hamburg Univ.

    2011-06-01

    Photon emission by an electron embedded in a strong external field of general form is studied theoretically. The external field considered is a plane wave electromagnetic field of any number of components, period and polarisation. Exact, Volkov solutions of the Dirac equation with the 4-potential of the general external field are obtained. The photon emission is considered in the usual perturbation theory using the Volkov solutions to represent the electron. An expression for the transition probability of this process is obtained after the usual spin and polarisation sums, trace calculation and phase space integration. The final transition probability in the general case contains a single sum over contributions from external field photons, an integration over one of the phase space components and the Fourier transforms of the Volkov phases. The validity of the general expression is established by considering specific external fields. Known specific analytic forms of the transition probability are obtained after substitution of the 4-potential for a circularly polarised and constant crossed external field. As an example usage of the general result for the transition probability, the case of two circularly polarised external fields separated by a phase difference is studied both analytically and numerically. (orig.)

  8. High Intensity Compton Scattering in a strong plane wave field of general form

    Energy Technology Data Exchange (ETDEWEB)

    Hartin, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Moortgat-Pick, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2011-06-15

    Photon emission by an electron embedded in a strong external field of general form is studied theoretically. The external field considered is a plane wave electromagnetic field of any number of components, period and polarisation. Exact, Volkov solutions of the Dirac equation with the 4-potential of the general external field are obtained. The photon emission is considered in the usual perturbation theory using the Volkov solutions to represent the electron. An expression for the transition probability of this process is obtained after the usual spin and polarisation sums, trace calculation and phase space integration. The final transition probability in the general case contains a single sum over contributions from external field photons, an integration over one of the phase space components and the Fourier transforms of the Volkov phases. The validity of the general expression is established by considering specific external fields. Known specific analytic forms of the transition probability are obtained after substitution of the 4-potential for a circularly polarised and constant crossed external field. As an example usage of the general result for the transition probability, the case of two circularly polarised external fields separated by a phase difference is studied both analytically and numerically. (orig.)

  9. On the role of strong gravity in polarization from scattering of light in relativistic flows

    Czech Academy of Sciences Publication Activity Database

    Horák, Jiří; Karas, Vladimír

    2006-01-01

    Roč. 365, č. 3 (2006), s. 813-826 ISSN 0035-8711 R&D Projects: GA MŠk(CZ) LC06014; GA AV ČR(CZ) IAA300030510; GA ČR GA205/03/0902 Institutional research plan: CEZ:AV0Z10030501 Keywords : polarization * black hole physics * relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.057, year: 2006

  10. Vertical motion and elastic light-scattering of a laser-levitated water droplet

    International Nuclear Information System (INIS)

    Chan, C. W.; Lee, W. K.

    2001-01-01

    We report the vertical motion and elastic scattered light of a single laser-levitated water microdroplet as it slowly evaporated. The vertical displacement as a function of time exhibited peaks of a variety of widths. Morphology-dependent resonances (MDRs) that induced the displacement peaks were identified. We found that the Stokes equation is adequate to describe the vertical motions driven by broad MDRs. For motions driven by relatively narrow MDRs, significant deviations from results predicted by the Stokes equation were found. The elastic scattered light intensity as a function of the size of the droplet showed sudden increases attributable to deformations of the droplet as its size parameter scanned through narrow MDRs. Copyright 2001 Optical Society of America

  11. Simultaneous measurement of amyloid fibril formation by dynamic light scattering and fluorescence reveals complex aggregation kinetics.

    Directory of Open Access Journals (Sweden)

    Aaron M Streets

    Full Text Available An apparatus that combines dynamic light scattering and Thioflavin T fluorescence detection is used to simultaneously probe fibril formation in polyglutamine peptides, the aggregating subunit associated with Huntington's disease, in vitro. Huntington's disease is a neurodegenerative disorder in a class of human pathologies that includes Alzheimer's and Parkinson's disease. These pathologies are all related by the propensity of their associated protein or polypeptide to form insoluble, β-sheet rich, amyloid fibrils. Despite the wide range of amino acid sequence in the aggregation prone polypeptides associated with these diseases, the resulting amyloids display strikingly similar physical structure, an observation which suggests a physical basis for amyloid fibril formation. Thioflavin T fluorescence reports β-sheet fibril content while dynamic light scattering measures particle size distributions. The combined techniques allow elucidation of complex aggregation kinetics and are used to reveal multiple stages of amyloid fibril formation.

  12. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces.

    Science.gov (United States)

    Schein, Perry; Ashcroft, Colby K; O'Dell, Dakota; Adam, Ian S; DiPaolo, Brian; Sabharwal, Manit; Shi, Ce; Hart, Robert; Earhart, Christopher; Erickson, David

    2015-08-15

    Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically "pushing" a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques.

  13. Pushing nanoparticles with light — A femtonewton resolved measurement of optical scattering forces

    Directory of Open Access Journals (Sweden)

    C. Zensen

    2016-05-01

    Full Text Available Optomechanical manipulation of plasmonic nanoparticles is an area of current interest, both fundamental and applied. However, no experimental method is available to determine the forward-directed scattering force that dominates for incident light of a wavelength close to the plasmon resonance. Here, we demonstrate how the scattering force acting on a single gold nanoparticle in solution can be measured. An optically trapped 80 nm particle was repetitively pushed from the side with laser light resonant to the particle plasmon frequency. A lock-in analysis of the particle movement provides a measured value for the scattering force. We obtain a resolution of less than 3 femtonewtons which is an order of magnitude smaller than any measurement of switchable forces performed on nanoparticles in solution with single beam optical tweezers to date. We compared the results of the force measurement with Mie simulations of the optical scattering force on a gold nanoparticle and found good agreement between experiment and theory within a few fN.

  14. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires

    International Nuclear Information System (INIS)

    Schaefer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Gruetzmacher, D; Calarco, R; Sutter, E; Sutter, P

    2010-01-01

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E 2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  15. Enhanced Light Scattering of the Forbidden longitudinal Optical Phonon Mode Studied by Micro-Raman Spectroscopy on Single InN nanowires

    International Nuclear Information System (INIS)

    Sutter, E.; Schafer-Nolte, E.O.; Stoica, T.; Gotschke, T.; Limbach, F.A.; Sutter, P.; Grutzmacher, D.; Calarco, R.

    2010-01-01

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  16. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires.

    Science.gov (United States)

    Schäfer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Sutter, E; Sutter, P; Grützmacher, D; Calarco, R

    2010-08-06

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E(2) phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  17. Comparison of particle size measurements of some aqueous suspensions by laser polarimetry and dynamic light scattering

    International Nuclear Information System (INIS)

    Chirikov, S N

    2016-01-01

    The results of the size distributions measurements of the particles of aqueous suspensions of ZnO, CuO, TiO 2 , and BaTiO 3 by methods of laser polarimetry and dynamic light scattering are considered. These measurements are compared with the results obtained by electron microscopy. It is shown that a laser polarimetry method gives more accurate results for size parameter values more than 1-2. (paper)

  18. Structure of light mass (exotic) nuclei as evidenced by scattering from hydrogen

    International Nuclear Information System (INIS)

    Amos, K.; Dortmans, P.J.

    1998-01-01

    Microscopic optical model potentials generated by full folding of realistic two-nucleon (n/N) interactions with nuclear structure specified by large basis shell model calculations have been constructed. With those (nonlocal) optical potentials, predictions of light mass nuclei-hydrogen scattering were obtained at intermediate energies (65 to 800 MeV) that agree well with observations of cross sections and analyzing powers

  19. Probability density cloud as a geometrical tool to describe statistics of scattered light.

    Science.gov (United States)

    Yaitskova, Natalia

    2017-04-01

    First-order statistics of scattered light is described using the representation of the probability density cloud, which visualizes a two-dimensional distribution for complex amplitude. The geometric parameters of the cloud are studied in detail and are connected to the statistical properties of phase. The moment-generating function for intensity is obtained in a closed form through these parameters. An example of exponentially modified normal distribution is provided to illustrate the functioning of this geometrical approach.

  20. Multiphase polymer systems: morphology and optical properties by light scattering methods

    Czech Academy of Sciences Publication Activity Database

    Holoubek, Jaroslav

    2002-01-01

    Roč. 18, 5-6 (2002), s. 286-292 ISSN 0934-0866 R&D Projects: GA ČR GA203/99/0573; GA AV ČR IAA4050902 Institutional research plan: CEZ:AV0Z4050913 Keywords : time-resolved light scattering * diffuse reflectance * phase dissolution Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.633, year: 2002

  1. Simultaneous determination of size and refractive index of red blood cells by light scattering measurements

    International Nuclear Information System (INIS)

    Ghosh, N.; Buddhiwant, P.; Uppal, A.; Majumder, S.K.; Patel, H.S.; Gupta, P.K.

    2006-01-01

    We present a fast and accurate approach for simultaneous determination of both the mean diameter and refractive index of a collection of red blood cells (RBCs). The approach uses the peak frequency of the power spectrum and the corresponding phase angle obtained by performing Fourier transform on the measured angular distribution of scattered light to determine these parameters. Results on the measurement of two important clinical parameters, the mean cell volume and mean cell hemoglobin concentration of a collection of RBCs, are presented

  2. Taking account of the recoil effect under a light particle scattering on two heavy particles

    International Nuclear Information System (INIS)

    Peresypkin, V.V.

    1978-01-01

    Proceeding from the Faddeev equations the derivation of the Bruekner formula describing a light particle scattering by a system of two fixed force centers is presented. Using the zero-range two-particle potential and assuming the ratio of the incident particle mass to the heavy particle mass to be a small perturbation parameter the correction to the Bruekner formula is obtained taking into account the heavy particle recoil

  3. The discovery of combination scattering of light in Russia and India

    International Nuclear Information System (INIS)

    Fabelinskii, Immanuil L

    2003-01-01

    The history of the discovery of combination (Raman) scattering of light in Moscow and Calcutta is briefly described. Moscow physicists observed the lines due to the new effect on February 21, 1928 and published their results on July 13, 1928, whereas for Indian physicists the respective dates are February 28, 1928 and April 21, 1928. Raman alone was to be awarded the Nobel Prize for the discovery. Research conditions in Russia and India are discussed in brief. (from the history of physics)

  4. Rayleigh light scattering in fullerene covered by a spherical argon film - a molecular dynamics study

    CERN Document Server

    Dawid, A

    2003-01-01

    We have calculated (by a molecular dynamics method) the interaction-induced polarizability correlation functions and spectra of the depolarized light scattering from fullerene C sub 6 sub 0 molecules surrounded by an argon 'atmosphere' (layer). The calculated correlation functions and spectra of (C sub 6 sub 0)Ar sub n (n = 32, 40, 46) clusters show a substantial dependence on the number n of atoms in the layer.

  5. Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure

    Science.gov (United States)

    Kim, Donghyeong; Jeong, Kwang-Yong; Kim, Jinhyung; Ee, Ho-Seok; Kang, Ju-Hyung; Park, Hong-Gyu; Seo, Min-Kyo

    2017-11-01

    Light scattering by nanostructures has facilitated research on various optical phenomena and applications by interfacing the near fields and free-propagating radiation. However, direct quantitative measurement of far-field scattering by a single nanostructure on the wavelength scale or less is highly challenging. Conventional back-focal-plane imaging covers only a limited solid angle determined by the numerical aperture of the objectives and suffers from optical aberration and distortion. Here, we present a quantitative measurement of the differential far-field scattering cross section of a single nanostructure over the full hemisphere. In goniometer-based far-field scanning with a high signal-to-noise ratio of approximately 27.4 dB, weak scattering signals are efficiently isolated and detected under total-internal-reflection illumination. Systematic measurements reveal that the total and differential scattering cross sections of a Au nanorod are determined by the plasmonic Fabry-Perot resonances and the phase-matching conditions to the free-propagating radiation, respectively. We believe that our angle-resolved far-field measurement scheme provides a way to investigate and evaluate the physical properties and performance of nano-optical materials and phenomena.

  6. Control of light scattering by nanoparticles with optically-induced magnetic responses

    International Nuclear Information System (INIS)

    Liu Wei; Miroshnichenko, Andrey E.; Kivshar, Yuri S.

    2014-01-01

    Conventional approaches to control and shape the scattering patterns of light generated by different nanostructures are mostly based on engineering of their electric response due to the fact that most metallic nanostructures support only electric resonances in the optical frequency range. Recently, fuelled by the fast development in the fields of metamaterials and plasmonics, artificial optically-induced magnetic responses have been demonstrated for various nanostructures. This kind of response can be employed to provide an extra degree of freedom for the efficient control and shaping of the scattering patterns of nanoparticles and nanoantennas. Here we review the recent progress in this research direction of nanoparticle scattering shaping and control through the interference of both electric and optically-induced magnetic responses. We discuss the magnetic resonances supported by various structures in different spectral regimes, and then summarize the original results on the scattering shaping involving both electric and magnetic responses, based on the interference of both spectrally separated (with different resonant wavelengths) and overlapped dipoles (with the same resonant wavelength), and also other higher-order modes. Finally, we discuss the scattering control utilizing Fano resonances associated with the magnetic responses. (topical review - plasmonics and metamaterials)

  7. Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.

    Science.gov (United States)

    Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z

    2014-08-14

    The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found. Copyright © 2014. Published by Elsevier B.V.

  8. Quantitative analysis of gold and carbon nanoparticles in mammalian cells by flow cytometry light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Gang [Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences (China); Liu, Naicheng; Wang, Zhenheng [Nanjing University, Department of Orthopedics, Jinling Hospital, School of Medicine (China); Shi, Tongguo; Gan, Jingjing; Wang, Zhenzhen; Zhang, Junfeng, E-mail: jfzhang@nju.edu.cn [Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences (China)

    2017-02-15

    Nanoparticle-based applications for diagnostics and therapeutics have been extensively studied. These applications require a profound understanding of the fate of nanoparticles (NPs) in cellular environments. However, until now, few analytical methods are available and most of them rely on fluorescent properties or special elements of NPs; therefore, for NPs without observable optical properties or special elements, the existing methods are hardly applicable. In this study, we introduce a flow cytometry light scattering (FCLS)-based approach that quantifies in situ NPs accurately in mammalian cells. Continuous cells of heterogeneous human epithelial colorectal adenocarcinoma (Caco-2 cells), mouse peritoneal macrophages (MPM), and human adenocarcinomic alveolar basal epithelia (A549 cells) were cultured with NPs with certain concentrations and size. The intensity of the flow cytometric side scattered light, which indicates the quantity of NPs in the cells, was analyzed. The result shows an accurate size- and dose-dependent uptake of Au NPs (5, 30, 250 nm) in Caco-2 cells. The size- and dose- dependence of Au NPs (5, 30, 250 nm) and carbon NPs (50, 500 nm) in cells was validated by transmission electron microscope (TEM). This paper demonstrates the great potential of flow cytometry light scattering in the quantitative study of the size and dose effect on in situ metallic or non-metallic NPs in mammalian cells.

  9. Quantitative analysis of gold and carbon nanoparticles in mammalian cells by flow cytometry light scattering

    Science.gov (United States)

    Zhou, Gang; Liu, Naicheng; Wang, Zhenheng; Shi, Tongguo; Gan, Jingjing; Wang, Zhenzhen; Zhang, Junfeng

    2017-02-01

    Nanoparticle-based applications for diagnostics and therapeutics have been extensively studied. These applications require a profound understanding of the fate of nanoparticles (NPs) in cellular environments. However, until now, few analytical methods are available and most of them rely on fluorescent properties or special elements of NPs; therefore, for NPs without observable optical properties or special elements, the existing methods are hardly applicable. In this study, we introduce a flow cytometry light scattering (FCLS)-based approach that quantifies in situ NPs accurately in mammalian cells. Continuous cells of heterogeneous human epithelial colorectal adenocarcinoma (Caco-2 cells), mouse peritoneal macrophages (MPM), and human adenocarcinomic alveolar basal epithelia (A549 cells) were cultured with NPs with certain concentrations and size. The intensity of the flow cytometric side scattered light, which indicates the quantity of NPs in the cells, was analyzed. The result shows an accurate size- and dose-dependent uptake of Au NPs (5, 30, 250 nm) in Caco-2 cells. The size- and dose- dependence of Au NPs (5, 30, 250 nm) and carbon NPs (50, 500 nm) in cells was validated by transmission electron microscope (TEM). This paper demonstrates the great potential of flow cytometry light scattering in the quantitative study of the size and dose effect on in situ metallic or non-metallic NPs in mammalian cells.

  10. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering.

    Science.gov (United States)

    Moskalensky, Alexander E; Yurkin, Maxim A; Konokhova, Anastasiya I; Strokotov, Dmitry I; Nekrasov, Vyacheslav M; Chernyshev, Andrei V; Tsvetovskaya, Galina A; Chikova, Elena D; Maltsev, Valeri P

    2013-01-01

    We introduce a novel approach for determination of volume and shape of individual blood platelets modeled as an oblate spheroid from angle-resolved light scattering with flow-cytometric technique. The light-scattering profiles (LSPs) of individual platelets were measured with the scanning flow cytometer and the platelet characteristics were determined from the solution of the inverse light-scattering problem using the precomputed database of theoretical LSPs. We revealed a phenomenon of parameter compensation, which is partly explained in the framework of anomalous diffraction approximation. To overcome this problem, additional a priori information on the platelet refractive index was used. It allowed us to determine the size of each platelet with subdiffraction precision and independent of the particular value of the platelet aspect ratio. The shape (spheroidal aspect ratio) distributions of platelets showed substantial differences between native and activated by 10 μM adenosine diphosphate samples. We expect that the new approach may find use in hematological analyzers for accurate measurement of platelet volume distribution and for determination of the platelet activation efficiency.

  11. Improvements in in-situ filter test methods using a total light-scattering detector

    International Nuclear Information System (INIS)

    Marshall, M.; Stevens, D.C.

    1986-01-01

    This paper presents research aimed at providing useful data on a commonly used technique; a DOP (di-2-ethylhexyl phthalate) aerosol and a total light-scattering photometer. Methods of increasing the sensitivity of this technique are described. Alternative methods of in-situ filter testing are also considered. The sensitivity of a typical, modern, total light-scattering photometer, as a function of particle diameter, has a broad maximum in mass terms between 0.1 and 0.4 um. At its maximum usable sensitivity the instrument can detect approx. 1 particle/cm 3 . This response can be explained by light scattering theory and particle loss in the instrument inlet. The mass median diameter of the aerosols produced by various DOP generators varies from 0.2 to 1.0μm. Experiments with good quality HEPA filters indicate a maximum penetration for particles of 0.15 - 0.2μm. Details of the studies are given and the consequences discussed. It is shown that filter penetration of -3 % can be measured in-situ with existing equipment. Methods of extending the sensitivity to measure a penetration of approx.10 -5 % are described. (author)

  12. On the role of individualized Regge poles in forming refractive structures in light and heavy ion scattering at large angles

    International Nuclear Information System (INIS)

    Kuznichenko, A.V.; Onyshchenko, G.M.; Pilipenko, V.V.; Burtebaev, N.; Zhurunbayeva, G.S.

    2002-01-01

    Investigation of the refraction structures in cross sections of nuclear scattering is a well-known method of probing the interior parts of the interaction region of colliding nuclei and attracts much attention. During recent years essential success was achieved in the experimental studies of scattering of light and heavy ions in wide scattering angle range. The studies were carried out not only in the energy region with standard nuclear rainbow behavior but also at energies near and below the critical energy of nuclear rainbow E cr which revealed well pronounced refractive structures in the angular distributions of the processes studied including rainbow-like maximums and anomalous large angle scattering. To analyze evolution of the refraction effects with energy a new S-matrix model, which can supplement the results of the analyses on the basis of commonly used optical potential approach. The S-matrix model takes into account of some Regge poles near the real axis ('individualized' poles), which addresses the case of energies near and below E cr . Basing on developed model a number a scattering patterns for system α+A, 16 O+ 16 O and 16 O+ 12 C at different energy values have been analyzed. The comparison with results of optical model analyses have been made. The studies were complemented by the analysis on basis of the modified Fuller procedure of decomposition of cross sections into near and far components with removing unphysical contributions. The results of analysis performed suggest the conclusion that the observed refractive structures at large angles (both the rainbow-like ones and ALAS) at E≤E cr are strongly affected by the above mentioned individualized Regge poles. Strictly saying, the scattering in this energy region is not a pure rainbow one, but is of transition character. The arising Regge poles can be considered as a quantum analog for the transition to the orbiting regime in the case of classical scattering. The notch test of the sensitivity

  13. Hadronic light-by-light scattering and the muon g −2

    International Nuclear Information System (INIS)

    Stoffer, P.; Colangelo, G.; Hoferichter, M.; Procura, M.

    2015-01-01

    The largest uncertainties in the Standard Model calculation of the anomalous magnetic moment of the muon (g − 2) μ come from hadronic contributions. In particular, it can be expected that in a few years the sub leading hadronic light-by-light (HLbL) contribution will dominate the theory uncertainty. We present a dispersive description of the HLbL tensor, which is based on unitarity, analyticity, crossing symmetry, and gauge invariance. Such a model-independent approach opens up an avenue towards a data-driven determination of the HLbL contribution to the (g − 2) μ .

  14. Competition Between Radial Loss and EMIC Wave Scattering of MeV Electrons During Strong CME-shock Driven Storms

    Science.gov (United States)

    Hudson, M. K.; Jaynes, A. N.; Li, Z.; Malaspina, D.; Millan, R. M.; Patel, M.; Qin, M.; Shen, X.; Wiltberger, M. J.

    2017-12-01

    The two strongest storms of Solar Cycle 24, 17 March and 22 June 2015, provide a contrast between magnetospheric response to CME-shocks at equinox and solstice. The 17 March CME-shock initiated storm produced a stronger ring current response with Dst = - 223 nT, while the 22 June CME-shock initiated storm reached a minimum Dst = - 204 nT. The Van Allen Probes ECT instrument measured a dropout in flux for both events which can be characterized by magnetopause loss at higher L values prior to strong recovery1. However, rapid loss is seen at L 3 for the June storm at high energies with maximum drop in the 5.2 MeV channel of the REPT instrument coincident with the observation of EMIC waves in the H+ band by the EMFISIS wave instrument. The rapid time scale of loss can be determined from the 65 minute delay in passage of the Probe A relative to the Probe B spacecraft. The distinct behavior of lower energy electrons at higher L values has been modeled with MHD-test particle simulations, while the rapid loss of higher energy electrons is examined in terms of the minimum resonant energy criterion for EMIC wave scattering, and compared with the timescale for loss due to EMIC wave scattering which has been modeled for other storm events.2 1Baker, D. N., et al. (2016), Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015, J. Geophys. Res. Space Physics, 121, 6647-6660, doi:10.1002/2016JA022502. 2Li, Z., et al. (2014), Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations, Geophys. Res. Lett., 41, 8722-8729, doi:10.1002/2014GL062273.

  15. Inclusion of the strong interaction in low-energy hydrogen-antihydrogen scattering using a complex potential

    International Nuclear Information System (INIS)

    Armour, E A G; Liu, Y; Vigier, A

    2005-01-01

    The aim of experimentalists currently working on the preparation of antihydrogen is to trap it at very low temperatures so that its properties can be studied. Any process that can lead to loss of antihydrogen is thus of great concern to them. In view of this, we have carried out a calculation of the antiproton annihilation cross section in very low-energy hydrogen-antihydrogen scattering using a complex potential to represent the strong interaction that brings about the annihilation. The potential takes into account the isotopic spin state of the proton and the antiproton and the possibility that they may be in either a singlet or a triplet spin state. The results for the annihilation cross section and the percentage change in the elastic cross section due to the inclusion of the strong interaction are similar to those obtained in a recent calculation (Jonsell et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 1195), using an effective range expansion. They are smaller by a factor of 2 and 3, respectively, than those obtained in an earlier calculation (Voronin and Carbonell 2001 Nucl. Phys. A 689 529c), using a coupled channel method and a complex strong interaction potential. (letter to the editor)

  16. New evaluation of thermal neutron scattering libraries for light and heavy water

    Directory of Open Access Journals (Sweden)

    Marquez Damian Jose Ignacio

    2017-01-01

    Full Text Available In order to improve the design and safety of thermal nuclear reactors and for verification of criticality safety conditions on systems with significant amount of fissile materials and water, it is necessary to perform high-precision neutron transport calculations and estimate uncertainties of the results. These calculations are based on neutron interaction data distributed in evaluated nuclear data libraries. To improve the evaluations of thermal scattering sub-libraries, we developed a set of thermal neutron scattering cross sections (scattering kernels for hydrogen bound in light water, and deuterium and oxygen bound in heavy water, in the ENDF-6 format from room temperature up to the critical temperatures of molecular liquids. The new evaluations were generated and processable with NJOY99 and also with NJOY-2012 with minor modifications (updates, and with the new version of NJOY-2016. The new TSL libraries are based on molecular dynamics simulations with GROMACS and recent experimental data, and result in an improvement of the calculation of single neutron scattering quantities. In this work, we discuss the importance of taking into account self-diffusion in liquids to accurately describe the neutron scattering at low neutron energies (quasi-elastic peak problem. To improve modeling of heavy water, it is important to take into account temperature-dependent static structure factors and apply Sköld approximation to the coherent inelastic components of the scattering matrix. The usage of the new set of scattering matrices and cross-sections improves the calculation of thermal critical systems moderated and/or reflected with light/heavy water obtained from the International Criticality Safety Benchmark Evaluation Project (ICSBEP handbook. For example, the use of the new thermal scattering library for heavy water, combined with the ROSFOND-2010 evaluation of the cross sections for deuterium, results in an improvement of the C/E ratio in 48 out of

  17. New evaluation of thermal neutron scattering libraries for light and heavy water

    Science.gov (United States)

    Marquez Damian, Jose Ignacio; Granada, Jose Rolando; Cantargi, Florencia; Roubtsov, Danila

    2017-09-01

    In order to improve the design and safety of thermal nuclear reactors and for verification of criticality safety conditions on systems with significant amount of fissile materials and water, it is necessary to perform high-precision neutron transport calculations and estimate uncertainties of the results. These calculations are based on neutron interaction data distributed in evaluated nuclear data libraries. To improve the evaluations of thermal scattering sub-libraries, we developed a set of thermal neutron scattering cross sections (scattering kernels) for hydrogen bound in light water, and deuterium and oxygen bound in heavy water, in the ENDF-6 format from room temperature up to the critical temperatures of molecular liquids. The new evaluations were generated and processable with NJOY99 and also with NJOY-2012 with minor modifications (updates), and with the new version of NJOY-2016. The new TSL libraries are based on molecular dynamics simulations with GROMACS and recent experimental data, and result in an improvement of the calculation of single neutron scattering quantities. In this work, we discuss the importance of taking into account self-diffusion in liquids to accurately describe the neutron scattering at low neutron energies (quasi-elastic peak problem). To improve modeling of heavy water, it is important to take into account temperature-dependent static structure factors and apply Sköld approximation to the coherent inelastic components of the scattering matrix. The usage of the new set of scattering matrices and cross-sections improves the calculation of thermal critical systems moderated and/or reflected with light/heavy water obtained from the International Criticality Safety Benchmark Evaluation Project (ICSBEP) handbook. For example, the use of the new thermal scattering library for heavy water, combined with the ROSFOND-2010 evaluation of the cross sections for deuterium, results in an improvement of the C/E ratio in 48 out of 65

  18. Laser-assisted electron scattering in strong-field ionization of dense water vapor by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Wilke, M; Al-Obaidi, R; Moguilevski, A; Kothe, A; Engel, N; Metje, J; Kiyan, I Yu; Aziz, E F

    2014-01-01

    We report on strong-field ionization of dense water gas in a short infrared laser pulse. By employing a unique combination of photoelectron spectroscopy with a liquid micro-jet technique, we observe how the character of electron emission at high kinetic energies changes with the increase of the medium density. This change is associated with the process of laser-assisted electron scattering (LAES) on neighboring particles, which becomes a dominant mechanism of hot electron emission at higher medium densities. The manifestation of this mechanism is found to require densities that are orders of magnitude lower than those considered for heating the laser-generated plasmas via the LAES process. The experimental results are supported by simulations of the LAES yield with the use of the Kroll–Watson theory. (paper)

  19. Measurement of Inclusive Jet Production in Deep-Inelastic Scattering at High Q$^{2}$ and Determination of the Strong Coupling

    CERN Document Server

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-01-01

    Inclusive jet production is studied in neutral current deep-inelastic positron-proton scattering at large four momentum transfer squared Q^2>150 GeV^2 with the H1 detector at HERA. Single and double differential inclusive jet cross sections are measured as a function of Q^2 and of the transverse energy E_T of the jets in the Breit frame. The measurements are found to be well described by calculations at next-to-leading order in perturbative QCD. The running of the strong coupling is demonstrated and the value of alpha_s(M_Z) is determined. The ratio of the inclusive jet cross section to the inclusive neutral current cross section is also measured and used to extract a precise value for alpha_s(M_Z)=0.1193+/-0.0014(exp.)^{+0.0047}_{-0.0030}(th.)+/-0.0016(pdf).

  20. Accuracy of the solution of the transfer equation for a plane layer of high optical thickness with strongly anisotropic scattering

    International Nuclear Information System (INIS)

    Konovalov, N.V.

    The accuracy of the calculation of the characteristics of a radiation field in a plane layer is investigated by solving the transfer equation in dependence on the error in the specification of the scattering indicatrix. It is shown that a small error in the specification of the indicatrix can lead to a large error in the solution at large optical depths. An estimate is given for the region of optical thicknesses for which the emission field can be determined with sufficient degree of accuracy from the transfer equation with a known error in the specification of the indicatrix. For an estimation of the error involved in various numerical methods, and also for a determination of the region of their applicability, the results of calculations of problems with strongly anisotropic indicatrix are given