Sample records for strong ir absorptions

  1. Stable states in a strong IR field (United States)

    Zhong, Changchun; Robicheaux, Francis


    It is found that 10% of atoms stay in the quasi-stable states after being exposed to intense laser or microwave (MW) pulses, even though the pulses' intensity is much stronger than that needed for static fields ionization. The reason why atoms survive those strong pulses has attracted growing attentions. A. Arakelyan et al. have observed the optical spectra of the surviving Lithium atoms after interaction with intense 38-GHz MW fields for more than 1000 cycles, and the spectra exhibit a periodic train of peaks 38 GHz apart. It suggests that those weakly bound Rydberg electrons seldom go back to the ionic core, where the cycle average energy exchange happens. In this study, we are interested in the electron behavior in the presence of intense infrared fields with a much shorter wavelength (1000 nm). By solving the full 3D time dependent Schrodinger equation, we calculate the spectra of the surviving atoms under intense IR fields. Our numerical calculations show atoms survive the intense field in quasi-stable states for a long time, and the optical spectra are obviously modulated by the IR frequency. Through tuning the ponderomotive energy, we see how field parameters affect the behavior of electrons. Different atoms, such as Hydrogen, Helium, Lithium, and Sodium, are tested to see how atom's energy structures influence the results.

  2. Theory of strong-field attosecond transient absorption

    International Nuclear Information System (INIS)

    Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B


    Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser–matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption


    NARCIS (Netherlands)

    Lorenzana, J.; Eder, R; Meinders, M.B J; Sawatzky, G.A


    Recent measured bands in the mid IR of parent insulating compounds of cuprate superconductors [Perkins et al. Phys. Rev. Lett. 71 1621 (1993)] are interpreted as multimagnon infrared (IR) absorption assisted by phonons. We present results for the coupling constant of light with this excitations and

  4. Investigation of IR absorption spectra of oral cavity bacteria (United States)

    Belikov, Andrei V.; Altshuler, Gregory B.; Moroz, Boris T.; Pavlovskaya, Irina V.


    The results of comparative investigation for IR and visual absorption spectra of oral cavity bacteria are represented by this paper. There are also shown the main differences in absorption spectra of such pure bacteria cultures as : E- coli, Candida, Staph, Epidermidis, and absorption spectra of bacteria colonies cultured in tooth root canals suspected to harbour several endodontical problems. The results of experimental research targeted to investigate an effect of such combined YAG:Nd and YAG:Cr; Tm; Ho laser parameters like: wavelength, energy density, average power and etc., to oral cavity bacteria deactivation are given finally.

  5. Tunable IR differential absorption lidar for remote sensing of chemicals (United States)

    Prasad, Coorg R.; Kabro, Pierre; Mathur, Savyasachee L.


    Standoff sensors for rapid remote detection of chemical emissions from either clandestine chemical production sites, chemical and biological warfare agents, concealed internal combustion engine emissions or rocket propellants from missiles are required for several DoD applications. The differential absorption lidar (DIAL) operating in the infrared wavelengths has established itself as a very effective tool for rapidly detecting many of the chemicals, with sufficient sensitivity with a range of several kilometers. The wavelengths required for this task lie within the atmospheric window regions 3 to 5 micrometers and 8 to 12 micrometers . We are currently developing a differential absorption lidar (DIAL) tunable in the 3 to 5 micrometers range for detecting low concentrations of chemical species with high sensitivity (5 ppb) and accuracy (error measurements for greater than 5 km range. We have successfully established the feasibility of an innovative frequency agile laser source which is the crucial component of the infrared DIAL. A diode-pumped ytterbium YAG laser was built for pumping and rapidly tuning an optical parametric oscillator (OPO) over the mid-infra red region. Good performance (5 mJ/pulse) of the laser and low threshold wide infra red tuning of OPO (2.2 - 3.1 micrometers ) were demonstrated. The simulated performance of the topographical IR-DIAL showed that 5 ppb concentration can be measured at 5 km range with a 35 cm telescope.

  6. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah


    Laser diagnostics are fast-response, non-intrusive and species-specific tools perfectly applicable for studying combustion processes. Quantitative measurements of species concentration and temperature require spectroscopic data to be well-known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform Infrared (FTIR) spectrometer, tunable Difference Frequency Generation laser and fixed wavelength helium-neon laser. The studied species are methane, methanol, acetylene, ethylene, ethane, ethanol, propylene, propane, 1-butene, n-butane, n-pentane, n-hexane, and n-heptane. The Fourier Transform Infrared (FTIR) spectrometer is used for the measurements of the absorption cross-sections and the integrated band intensities of the 13 hydrocarbons. The spectral region of the spectra is 2800 – 3400 cm-1 (2.9 – 3.6 μm) and the temperature range is 673 – 1100 K. These valuable data provide huge opportunities to select interference-free wavelengths for measuring time-histories of a specific species in a shock tube or other combustion systems. Such measurements can allow developing/improving chemical kinetics mechanisms by experimentally determining reaction rates. The Difference Frequency Generation (DFG) laser is a narrow line-width, tunable laser in the 3.35 – 3.53 μm wavelength region which contains strong absorption features for most hydrocarbons due to the fundamental C-H vibrating stretch. The absorption cross-sections of propylene are measured at seven different wavelengths using the DFG laser. The temperature range is 296 – 460 K which is reached using a Reflex Cell. The DFG laser is very attractive for kinetic studies in the shock tube because of its fast time response and the potential possibility of making species-specific measurements. The Fixed wavelength

  7. Strong saturable absorption of black titanium oxide nanoparticle films (United States)

    Zhang, Rong-Fang; Guo, Deng-Zhu; Zhang, Geng-Min


    Nonlinear optical materials with strong saturable absorption (SA) properties play an essential role in passive mode-locking generation of ultrafast lasers. Here we report black TiO2-x nanoparticles are promising candidate for such an application. Black TiO2-x nanoparticles are synthesized by using cathodic plasma electrolysis, and nanoparticle films are deposited on optical glass plates via natural sedimentation and post annealing. Characterization of the samples with TEM, SEM, XRD and XPS reveal that nanoparticles have diameters of 8-70 nm, and are in polycrystalline structure and co-existence of anatase, rutile and abundant oxygen-deficient phases. Optical transmittance and reflectance measurements with a UV/VIS/NIR spectrophotometer evidence an excellent wide-spectral optical absorption property. The nonlinear optical properties of the samples were measured by using open-aperture Z-scan technique with picosecond 532-nm laser, and verified by direct transmission measurements using nanosecond 1064-nm laser. Strong SA behavior was detected, and the nonlinear absorption coefficient is as high as β = - 4.9 × 10-8 m/W, at least two orders larger than most previous reports on ordinary TiO2. The strong SA behaviors are ascribed to the existence of plenty surface states and defect states within bandgap, and the relaxation rates of electrons from upper energy levels to lower ones are much slower than excitation rates.

  8. NMR and IR investigations of strong intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Spanget-Larsen, Jens


    For the purpose of this review, strong hydrogen bonds have been defined on the basis of experimental data, such as OH stretching wavenumbers, vOH, and OH chemical shifts, dOH (in the latter case after correction for ring current effects). Limits for O–H···Y systems are taken as 2800 > vOH > 1800 ...

  9. NMR and IR Investigations of Strong Intramolecular Hydrogen Bonds

    Directory of Open Access Journals (Sweden)

    Poul Erik Hansen


    Full Text Available For the purpose of this review, strong hydrogen bonds have been defined on the basis of experimental data, such as OH stretching wavenumbers, νOH, and OH chemical shifts, δOH (in the latter case, after correction for ring current effects. Limits for O–H···Y systems are taken as 2800 > νOH > 1800 cm−1, and 19 ppm > δOH > 15 ppm. Recent results as well as an account of theoretical advances are presented for a series of important classes of compounds such as β-diketone enols, β-thioxoketone enols, Mannich bases, proton sponges, quinoline N-oxides and diacid anions. The O···O distance has long been used as a parameter for hydrogen bond strength in O–H···O systems. On a broad scale, a correlation between OH stretching wavenumbers and O···O distances is observed, as demonstrated experimentally as well as theoretically, but for substituted β-diketone enols this correlation is relatively weak.

  10. Absorption, phosphorescence and Raman spectra of IrQ(ppy){sub 2} organometallic compound

    Energy Technology Data Exchange (ETDEWEB)

    Polosan, Silviu, E-mail: [National Institute of Materials Physics, R-77125 Bucharest-Magurele (Romania); Ciobotaru, Iulia Corina [National Institute of Materials Physics, R-77125 Bucharest-Magurele (Romania); Tsuboi, Taiju [Kyoto Sangyo University, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan)


    The absorption and photoluminescence (PL) spectra, PL decays, Raman spectrum, cyclic voltammetry (CV) and nuclear magnetic resonance of heteroleptic Ir-compound IrQ(ppy){sub 2} compound with two phenylpyridine (ppy) ligands and one quinoline (Q) ligand have been investigated experimentally and theoretically. Two very weak absorption bands due to the transitions to the triplet states are found at about 560 and 595 nm in IrQ(ppy){sub 2} doped in CH{sub 2}Cl{sub 2} solution. IrQ(ppy){sub 2} exhibits a dual emission of red and green phosphorescence bands. The red emission intensity is much higher than the green one in IrQ(ppy){sub 2} powder, but much lower than the green one in lightly IrQ(ppy){sub 2}-doped CH{sub 2}Cl{sub 2} solution and PMMA film. The intensity ratio of the red emission to the green emission, however, is observed to increase with increasing the IrQ(ppy){sub 2} concentration in CH{sub 2}Cl{sub 2} solution and PMMA film. The enhancement of the red emission is suggested to be caused by the Forester energy transfer from Ir-ppy component to Ir–Q components between two neighboring IrQ(ppy){sub 2} molecules. The HOMO energy is estimated to be −4.865 eV from the CV measurement, which is close to the HOMO energy of −4.844 eV calculated using the time dependent density function theory (TD-DFT). The LUMO energy is estimated as −2.856 eV from the HOMO energy and the long-wavelength absorption edge found at 617 nm in the absorption spectrum. The absorption spectrum of IrQ(ppy){sub 2} is calculated by the TD-DFT. Discussion is given on a deviation of the calculated spectrum from the measured spectrum. - Graphical abstract: Display Omitted - Highlights: • IrQ(ppy){sub 2} has red and green emissions of different ratio between film and solution. • Intensity ratio of red to green emissions increases with IrQ(ppy){sub 2} concentration. • Enhancement of red emission is due to energy transfer in two neighboring IrQ(ppy){sub 2}. • Lowest-energy absorption

  11. Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR

    KAUST Repository

    Es-sebbar, Et-touhami


    Vacuum ultraviolet (VUV) and infrared (IR) absorption cross-section measurements of 1-butene (1-C4H8; CH2=CHCH2CH3; Butylene) are reported over the temperature range of 296-529K. The VUV measurements are performed between 115 and 205nm using synchrotron radiation as a tunable VUV light source. Fourier Transform Infrared (FTIR) spectroscopy is employed to measure absorption cross-section and band strengths in the IR region between 1.54 and 25μm (~6500-400cm-1). The measured room-temperature VUV and IR absorption cross-sections are compared with available literature data and are found to be in good agreement. The oscillator strength for the electronic transition (A1A\\'→X1A\\') around 150-205nm is determined to be 0.32±0.01.The gas temperature has a strong effect on both VUV and IR spectra. Measurements made in the VUV region show that the peak value of the band cross-section decreases and the background continuum increases with increasing gas temperature. This behavior is due to a change in the rotational and vibrational population distribution of 1-butene molecule. Similar changes in rotational population are observed in the IR spectra. Moreover, variation of the IR spectra with temperature is used to measure the enthalpy difference between syn and skew conformations of 1-butene and is found to be 0.24±0.03. kcal/mol, which is in excellent agreement with values reported in the literature. The measurements reported in this work will provide the much-needed spectroscopic information for the development of high-temperature quantitative diagnostics in combustion applications and validation of atmospheric chemistry models of extra-solar planets. © 2012 Elsevier Ltd.

  12. Design of multilayered grating couplers as key elements of a fully integrated IR-absorption sensor (United States)

    Kasberger, Juergen; Jakoby, Bernhard


    For the online characterization of fluids regarding their chemical composition, the miniaturization of an IR-absorption sensor at application-specific distinguished wavelengths for the mid-IR-region promises outstanding features. Utilizing micromachining technology facilitates the integration of all required components (including thermal emitter and detector) into a complete sensor system. The absorption is sensed in the evanescent field of an appropriately designed slab mono-mode waveguide (ZnSe, n=2.42) residing on a BaF2-substrate (n=1.44), which represents the central element of the system. A typical application for such a system is, e.g., the characterization of engine oil oxidation in terms of the absorption at 5.85 μm as an indicator for deterioration. The thermal generation and detection of mid-IR-radiation is preferred over expensive and sophisticated quantum well devices. However, the spatial and non-coherent character of thermally generated IR-radiation requires an extension of the numerical methods established for coherent light sources for a proper design of the system's grating couplers, which act as key elements determining the system performance. These couplers yield efficient coupling into and out of the sensing waveguide and provide the required spectral filtering at the same time. In the actually projected implementation, a multilayer waveguide Si/BaF2/ZnSe is used, where the silicon substrate practically represents a rear-reflector in the grating region featuring several advantages compared to simpler grating couplers. In this contribution we discuss the modelling of the coupling of non-coherent, thermally generated and detected IR-radiation by means of these multilayer grating couplers in the context of a fully integrated IR-absorption sensor system.

  13. Par and IR reflectance, transmittance, and absorptance of four crop canopies

    International Nuclear Information System (INIS)

    Wanjura, D.F.; Hatfield, J.L.


    Reflectance, transmittance and absorptance of electromagnetic radiation by cotton, soybeans, grain sorghum, and sunflower was measured at three growth stages in two wavebands (PAR: 0.4 to 0.7 pun and IR: 0.7 to 1.1 yim). As leaf area increased in each crop there were increases in IR reflectance and PAR absorptance and decreases in PAR reflectance and both PAR and IR transmittance. IR radiation was concentrated at the soil surface between rows by reflectance from the sides of canopies when crop cover was less than 80%. Across all crops one parameter, leaf overlap index, explained 81 and 71% of the PAR reflectance and another, crop cover, explained 86 and 94% of IR reflectance from rows and interrows, respectively. Attenuation of PAR radiation through the canopies of cotton and sunflower was similar (K = 0.62 and 0.67) but different from that of soybeans and grain sorghum (K = 0.46 and 0.43) which were the same

  14. Detection of trans-isomers of hydrocarbon residues of lipid molecules by IR absorption (United States)

    Mikhalovsky, I. S.; Samoylov, M. V.; Wileishikova, N. P.


    IR spectroscopy is used for a comparative analysis of the trans-isomerization of double bonds in hydrocarbon residuals of lactic and hydrogenated lipids. The maximum of the absorption band of the trans-isomers for all the lipid samples is found to lie at 965 cm-1. An absorption band at 970 cm-1 is discovered in the spectra of the lactic lipids near the analytic band of the trans-isomers at 965 cm-1. Based on a gaussian approximation for their absorption spectral bands, the trans-isomer content in the lactic lipid samples is 10-11%. The absorption by lipid molecules at 970 cm-1 has to be taken into account when determining the trans-isomer content of fat and oil products.

  15. N-annulated perylene fused porphyrins with enhanced near-IR absorption and emission

    KAUST Repository

    Jiao, Chongjun


    N-Annulated perylene fused porphyrins 1 and 2 were synthesized by oxidative dehydrogenation using a Sc(OTf)3/DDQ system. These newly synthesized hybrid molecules are highly soluble in organic solvents and exhibit remarkably intense near-IR absorption, as well as detectable photoluminescence quantum yields, all of which are comparable to or even exceed those of either meso-β doubly linked porphyrin dimer/trimer or bis/tri-N-annulated rylenes. © 2010 American Chemical Society.


    International Nuclear Information System (INIS)

    Indriolo, Nick; Neufeld, D. A.; Seifahrt, A.; Richter, M. J.


    We present ground-based observations of the ν 1 and ν 3 fundamental bands of H 2 O toward the massive protostar AFGL 2136 IRS 1, identifying absorption features due to 47 different ro-vibrational transitions between 2.468 μm and 2.561 μm. Analysis of these features indicates the absorption arises in warm (T = 506 ± 25 K), very dense (n(H 2 ) > 5 × 10 9 cm –3 ) gas, suggesting an origin close to the central protostar. The total column density of warm water is estimated to be N(H 2 O) = (1.02 ± 0.02) × 10 19 cm –2 , giving a relative abundance of N(H 2 O)/N(H 2 ) ≈ 10 –4 . Our study represents the first extensive use of water vapor absorption lines in the near infrared, and demonstrates the utility of such observations in deriving physical parameters

  17. Experimental investigation of integrated refrigeration system (IRS) with gas engine, compression chiller and absorption chiller

    International Nuclear Information System (INIS)

    Sun, Z.G.


    An integrated refrigeration system (IRS) with a gas engine, a vapor-compression chiller and an absorption chiller is set up and tested. The vapor-compression refrigeration cycle is operated directly by the gas engine. The waste heat from the gas engine operates the absorption refrigeration cycle, which provides additional cooling. The performance of the IRS is described. The cooling capacity of the IRS is about 596 kW, and primary energy ratio (PER) reaches 1.84 at air-conditioning rated conditions. The refrigerating capacity of the prototype increased and PER of prototype decreased with the increase of the gas engine speed. The gas engine speed was preferably regulated at part load condition in order to operate the prototype at high-energy efficiency. The refrigerating capacity and PER of the prototype increased with the increase of the outlet temperature of chilled water or the decrease of the inlet temperature of cooling water. The integrated refrigeration chiller in this work saves running costs as compared to the conventional refrigeration system by using the waste heat

  18. The investigation of hydrogens bonds between sulphur-bearing heterocyclic and proton-donor compounds by IR absorption spectra

    International Nuclear Information System (INIS)

    Narziev, B.N.; Nurulloev, M.; Makhkambaev, D.


    In this article the results of intermolecular interaction study of sulfur-containing heterocyclic (thiophene, thiophane) and proton-donar (water, alcohol, carbonic acids, chlorophon) molecules for measuring of IR spectrum absorption of protondonar compounds in soluted shape are presented

  19. Gas phase UV and IR absorption spectra of CxF2x+1CHO (x=1-4)

    DEFF Research Database (Denmark)

    Hashikawa, Y; Kawasaki, M; Waterland, RL


    The UV and IR spectra of CxF2x+1 CHO (x = 1-4) were investigated using computational and experimental techniques. CxF2x+1CHO (x = 1-4) have broad UV absorption features centered at 300-310 nm. The maximum absorption cross-section increases significantly and shifts slightly to the red with increas...

  20. Phase-Sensitive Control Of Molecular Dissociation Through Attosecond Pump/Strong-Field Mid-IR Probe Spectroscopy (United States)


    AFRL-AFOSR-VA-TR-2016-0166 Phase-Sensitive Control Of Molecular Dissociation Through Attosecond Pump/Strong-Field Mid- IR Probe Spectroscopy Jeffery...Pump/Strong- Field Mid- IR Probe Spectroscopy 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-12-1-0080 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...sequentially controlling ionization and dissociation steps in the H2+ molecule using tightly synchronized few-fs EUV and few-cycle mid- IR pulses. We

  1. Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons

    International Nuclear Information System (INIS)

    Klingbeil, Adam E.; Jeffries, Jay B.; Hanson, Ronald K.


    Quantitative mid-IR absorption spectra (2500-3400 cm -1 ) for 12 pure hydrocarbon compounds are measured at temperatures ranging from 25 to 500 deg. C using an FTIR spectrometer. The hydrocarbons studied are n-pentane, n-heptane, n-dodecane, 2,2,4-trimethyl-pentane (iso-octane), 2-methyl-butane, 2-methyl-pentane, 2,4,4-trimethyl-1-pentene, 2-methyl-2-butene, propene, toluene, m-xylene, and ethylbenzene. Room-temperature measurements of neat hydrocarbon vapor were made with an instrument resolution of both 0.1 and 1 cm -1 (FWHM) to confirm that the high-resolution setting was required only to resolve the propene absorption spectrum while the spectra of the other hydrocarbons could be resolved with 1 cm -1 resolution. High-resolution (0.1 cm -1 ), room-temperature measurements of neat hydrocarbons were made at low pressure (∼1 Torr, 133 Pa) and compared to measurements of hydrocarbon/N 2 mixtures at atmospheric pressure to verify that no pressure broadening could be observed over this pressure range. The temperature was varied between 25 and 500 o C for atmospheric-pressure measurements of hydrocarbon/N 2 mixtures (X hydrocarbon ∼0.06-1.5%) and it was found that the absorption cross section shows simple temperature-dependent behavior for a fixed wavelength over this temperature range. Comparisons with previous FTIR data over a limited temperature range and with high-resolution laser absorption data over a wide temperature range show good agreement

  2. Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons (United States)

    Klingbeil, Adam E.; Jeffries, Jay B.; Hanson, Ronald K.


    Quantitative mid-IR absorption spectra (2500 3400 cm-1) for 12 pure hydrocarbon compounds are measured at temperatures ranging from 25 to 500 °C using an FTIR spectrometer. The hydrocarbons studied are n-pentane, n-heptane, n-dodecane, 2,2,4-trimethyl-pentane (iso-octane), 2-methyl-butane, 2-methyl-pentane, 2,4,4-trimethyl-1-pentene, 2-methyl-2-butene, propene, toluene, m-xylene, and ethylbenzene. Room-temperature measurements of neat hydrocarbon vapor were made with an instrument resolution of both 0.1 and 1 cm-1 (FWHM) to confirm that the high-resolution setting was required only to resolve the propene absorption spectrum while the spectra of the other hydrocarbons could be resolved with 1 cm-1 resolution. High-resolution (0.1 cm-1), room-temperature measurements of neat hydrocarbons were made at low pressure (˜1 Torr, 133 Pa) and compared to measurements of hydrocarbon/N2 mixtures at atmospheric pressure to verify that no pressure broadening could be observed over this pressure range. The temperature was varied between 25 and 500 °C for atmospheric-pressure measurements of hydrocarbon/N2 mixtures (Xhydrocarbon˜0.06 1.5%) and it was found that the absorption cross section shows simple temperature-dependent behavior for a fixed wavelength over this temperature range. Comparisons with previous FTIR data over a limited temperature range and with high-resolution laser absorption data over a wide temperature range show good agreement.

  3. IR intensity

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens


    Definitions, formulas, and code for producing epsilon values (molar absorption coefficients) and IR spectral curve from 'Gaussian' FREQ output.......Definitions, formulas, and code for producing epsilon values (molar absorption coefficients) and IR spectral curve from 'Gaussian' FREQ output....

  4. Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field

    International Nuclear Information System (INIS)

    Chajkovskij, I.A.


    A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers

  5. Measurement of Gas and Aerosol Phase Absorption Spectra across the Visible and Near-IR Using Supercontinuum Photoacoustic Spectroscopy. (United States)

    Radney, James G; Zangmeister, Christopher D


    We demonstrate a method to measure the absorption spectra of gas and aerosol species across the visible and near-IR (500 to 840 nm) using a photoacoustic (PA) spectrometer and a pulsed supercontinuum laser source. Measurements of gas phase absorption spectra were demonstrated using H2O(g) as a function of relative humidity (RH). The measured absorption intensities and peak shapes were able to be quantified and compared to spectra calculated using the 2012 High Resolution Transmission (HITRAN2012) database. Size and mass selected nigrosin aerosol was used to measure absorption spectra across the visible and near-IR. Spectra were measured as a function of aerosol size/mass and show good agreement to Mie theory calculations. Lastly, we measured the broadband absorption spectrum of flame generated soot aerosol at 5% and 70% RH. For the high RH case, we are able to quantifiably separate the soot and water absorption contributions. For soot, we observe an enhancement in the mass specific absorption cross section ranging from 1.5 at 500 nm (p < 0.01) to 1.2 at 840 nm (p < 0.2) and a concomitant increase in the absorption Ångström exponent from 1.2 ± 0.4 (5% RH) to 1.6 ± 0.3 (70% RH).

  6. Strong-field induced dissociation dynamics in 1,2-dibromoethane traced by femtosecond XUV transient absorption spectroscopy (United States)

    Chatterley, A. S.; Lackner, F.; Neumark, D. M.; Leone, S. R.; Gessner, O.


    Strong field induced dissociation dynamics of the small haloalkane 1,2-dibromoethane (DBE) have been explored using femtosecond XUV transient absorption spectroscopy. Dynamics are initiated by a near IR pump pulse with intensities between 75 and 220 TW cm-2, and are probed by the atomic site specific XUV absorption of the Br 3d levels. Immediately upon ionization, the spectral signatures of molecular ions appear. These molecular peaks decay in tandem with the appearance of atomic Br peaks in charge states of 0, + 1 and + 2, which are all monitored simultaneously. Neutral Br atoms are eliminated in 300 fs, presumably from statistical dissociation of vibrationally hot DBE+ ions, Br+ ions are eliminated in 70 fs from a more energetic dissociative ionization pathway, and Br++ ions are eliminated within the duration of the 35 fs pump pulse. The simultaneous recording of multiple parent molecule and fragment ion traces enables new insight into predominant dissociation pathways induced by strong field ionization of organic molecules.

  7. Metal-insulator transition in SrIrO3 with strong spin-orbit interaction. (United States)

    Wu, Fei-Xiang; Zhou, Jian; Zhang, L Y; Chen, Y B; Zhang, Shan-Tao; Gu, Zheng-Bin; Yao, Shu-Hua; Chen, Yan-Feng


    The thickness-dependent metal-insulator transition is observed in meta-stable orthorhombic SrIrO3 thin films synthesized by pulsed laser deposition. SrIrO3 films with thicknesses less than 3 nm demonstrate insulating behaviour, whereas those thicker than 4 nm exhibit metallic conductivity at high temperature, and insulating-like behaviour at low temperature. Weak/Anderson localization is mainly responsible for the observed thickness-dependent metal-insulator transition in SrIrO3 films. Temperature-dependent resistance fitting shows that electrical-conductivity carriers are mainly scattered by the electron-boson interaction rather than the electron-electron interaction. Analysis of the magneto-conductance proves that the spin-orbit interaction plays a crucial role in the magneto-conductance property of SrIrO3.

  8. Determination of the neutron flux in the reactor zones with the strong neutron absorption and leakage

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milosevic, M.


    The procedures for the numerical and experimental determination of the neutron flux in the zones with the strong neutron absorption and leakage are described in this paper. Numerical procedure is based on the SCALE-4.4a code system application with the use of Dancoff factor determined by the VEGA2DAN code. Experimental methodology consists of the irradiated foils activity measurement, and foil averaged neutron absorption cross-section determination via mentioned SCALE- 4.4a calculation procedure. The proposed procedures have been applied for the determination of the neutron flux in the internal neutron converter used with the RB reactor core configuration number 114. (author) [sr

  9. C3H2 : A wide-band-gap semiconductor with strong optical absorption (United States)

    Lu, Hong-Yan; Cuamba, Armindo S.; Geng, Lei; Hao, Lei; Qi, Yu-Min; Ting, C. S.


    Using first-principles calculations, we predict a new type of partially hydrogenated graphene system, C3H2 , which turns out to be a semiconductor with a band gap of 3.56 eV. The bands are rather flat at the band edges and thus lead to a large density of states, which further results in strong optical absorption between the valence band and the conduction band. Particularly, it shows strong optical absorption at about 4.5 eV for the light polarized along the lines connecting the nearest unhydrogenated carbon atoms. Thus, the predicted C3H2 system may have potential applications for a polarizer as well as other high-efficiency optical devices in the near ultraviolet region.

  10. The IR Spectra, Molar Absorptivity, and Integrated Molar Absorptivity of the C76-D2 and C84-D2:22 Isomers

    Directory of Open Access Journals (Sweden)

    T. Jovanovic


    Full Text Available The FT-IR spectra of the stable C76 and C84 isomers of D2 symmetry, isolated by the new, advanced extraction and chromatographic methods and processes, were recorded by the KBr technique, over the relevant region from 400 to 2000 cm−1, at room temperature. All the observed infrared bands are in excellent agreement with the semiempirical QCFF/PI, DFT, and TB potential calculations for these fullerenes, which is presented in this article, as the evidence of their validity. The molar absorptivity ε and the integrated molar absorptivity ψ of their IR absorption bands were determined and reported together with the relative intensities. Excellent agreement is found between the relative intensities of the main and characteristic absorption maxima calculated from ελ and from the ψλ values in adequate integration ranges. These results are significant for the identification and quantitative determination of the C76-D2 and C84-D2:22 fullerenes, either in natural resources on Earth and in space or in artificially synthesized biomaterials, electronic, optical, and biomedical devices, sensors, polymers, optical limiters, solar cells, organic field effect transistors, special lenses, diagnostic and therapeutic agents, pharmaceutical substances in biomedical engineering, and so forth.

  11. Intracavity upconversion for IR absorption lidar: Comparison of linear and ring cavity designs

    DEFF Research Database (Denmark)

    Meng, Lichun; Høgstedt, Lasse; Tidemand-Lichtenberg, Peter


    Upconversion detection is a promising technology for measurement of IR signals in the 1.5 μm–2 μm region used for lidar remote sensing [1-2]. In comparison to conventional InGaAs detector, the upconversion detector can achieve IR detection with better signal-to-noise ratio (SNR), not only due...

  12. Attosecond transient-absorption dynamics of xenon core-excited states in a strong driving field (United States)

    Kobayashi, Yuki; Timmers, Henry; Sabbar, Mazyar; Leone, Stephen R.; Neumark, Daniel M.


    We present attosecond transient-absorption experiments on xenon 4 d-16 p core-level states resonantly driven by intense (1.6 ×1014W/cm 2 ) few-cycle near-infrared laser pulses. In this strongly driven regime, broad induced absorption features with half-cycle (1.3-fs) delay-dependent modulation are observed over the range of 58-65 eV, predicted as a signature of the breakdown of the rotating-wave approximation in strong-field driving of Autler-Townes splitting [A. N. Pfeiffer and S. R. Leone, Phys. Rev. A 85, 053422 (2012), 10.1103/PhysRevA.85.053422]. Relevant atomic states are identified by a numerical model involving three electronic states, and the mechanism behind the broad induced absorption is discussed in the Floquet formalism. These results demonstrate that a near-infrared field well into the tunneling regime can still control the optical properties of an atomic system over a several-electron-volt spectral range and with attosecond precision.

  13. Strongly correlated quasi-one-dimensional bands: Ground states, optical absorption, and phonons

    International Nuclear Information System (INIS)

    Campbell, D.K.; Gammel, J.T.; Loh, E.Y. Jr.


    Using the Lanczos method for exact diagonalization on systems up to 14 sites, combined with a novel ''phase randomization'' technique for extracting more information from these small systems, we investigate several aspects of the one-dimensional Peierls-Hubbard Hamiltonian, in the context of trans-polyacetylene: the dependence of the ground state dimerization on the strength of the electron-electron interactions, including the effects of ''off-diagonal'' Coulomb terms generally ignored in the Hubbard model; the phonon vibrational frequencies and dispersion relations, and the optical absorption properties, including the spectrum of absorptions as a function of photon energy. These three different observables provide considerable insight into the effects of electron-electron interactions on the properties of real materials and thus into the nature of strongly correlated electron systems. 29 refs., 11 figs


    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal; Marrone, Daniel [Steward Observatory and Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Medeiros, Lia [Department of Physics, Broida Hall, University of California, Santa Barbara, Santa Barbara, CA 93106 (United States); Sadowski, Aleksander [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Narayan, Ramesh, E-mail: [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)


    We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares, which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts.

  15. Strong water absorption in the dayside emission spectrum of the planet HD 189733b. (United States)

    Grillmair, Carl J; Burrows, Adam; Charbonneau, David; Armus, Lee; Stauffer, John; Meadows, Victoria; van Cleve, Jeffrey; von Braun, Kaspar; Levine, Deborah


    Recent observations of the extrasolar planet HD 189733b did not reveal the presence of water in the emission spectrum of the planet. Yet models of such 'hot-Jupiter' planets predict an abundance of atmospheric water vapour. Validating and constraining these models is crucial to understanding the physics and chemistry of planetary atmospheres in extreme environments. Indications of the presence of water in the atmosphere of HD 189733b have recently been found in transmission spectra, where the planet's atmosphere selectively absorbs the light of the parent star, and in broadband photometry. Here we report the detection of strong water absorption in a high-signal-to-noise, mid-infrared emission spectrum of the planet itself. We find both a strong downturn in the flux ratio below 10 microm and discrete spectral features that are characteristic of strong absorption by water vapour. The differences between these and previous observations are significant and admit the possibility that predicted planetary-scale dynamical weather structures may alter the emission spectrum over time. Models that match the observed spectrum and the broadband photometry suggest that heat redistribution from the dayside to the nightside is weak. Reconciling this with the high nightside temperature will require a better understanding of atmospheric circulation or possible additional energy sources.

  16. Temperatures and Species Concentration in Propellant Dark Zones via Fitting Infrared (IR) Spectral Absorption Data

    National Research Council Canada - National Science Library

    Vanderhoff, J


    In a continuing investigation of the dark zone of double-base and nitramine propellants during self-sustained combustion, least-squares fitting has been developed and updated simulations of infrared (IR...

  17. Effect of the strong coupling on the exchange bias field in IrMn/Py/Ru/Co spin valves (United States)

    Tarazona, H. S.; Alayo, W.; Landauro, C. V.; Quispe-Marcatoma, J.


    The IrMn/Py/Ru/Co (Py = Ni81Fe19) spin valves have been produced by sputtering deposition and analyzed by magnetization measurements and a theoretical modelling of their exchange interactions, based on the macro-spin model. The Ru thickness was grown between 6 and 22 Å, which is small enough to promote strong indirect coupling between Py and Co. Results of measurements showed a large and gradual change in the shape of hysteresis loops when the Ru thickness was varied. The theoretical analysis, using numerical calculations based on the gradient conjugate method, provides the exchange coupling constants (bilinear and biquadratic), the exchange anisotropy fields and the magnetic anisotropy fields (uniaxial and rotatable). The exchange bias fields of spin valves were compared to that of a IrMn/Py bilayer. We found that the difference between these fields oscillates with Ru thickness in the same manner as the bilinear coupling constants.

  18. Atmospheric pressure and temperature profiling using near IR differential absorption lidar (United States)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.


    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  19. Spectrum of absorption of a weak signal by an atom in a strong field

    International Nuclear Information System (INIS)

    Bakaev, D.S.; Vdovin, Y.A.; Ermachenko, V.M.; Yakovlenko, S.I.


    An analysis is made of the spectrum of absorption of a weak probe electromagnetic field by two-level atoms in a strong resonant laser field, undergoing collision with buffer gas atoms. The analysis is made using an approach that allows for the direct influence of a strong electromagnetic field on the dynamics of an elastic collision between an active atom and a buffer gas atom. Rate equations are analyzed for a combined ''atom--strong electromagnetic field'' system (an atom ''dressed'' by the field) allowing for spontaneous and optical collisional transitions, and also for the interaction with the probe field. In the steady-state case, an expression is derived for the electric susceptibility of the medium at the small-signal frequency. This expression contains the rates of the optical collisional transitions that depend nontrivially on the parameters of the strong electromagnetic field. The phenomenological characteristics of optical collisional transitions generally used are only valid at low intensities and for small frequency detunings of the strong electromagnetic field, i.e., in the impact limit

  20. Quantum Chemical Design Guidelines for Absorption and Emission Color Tuning of fac-Ir(ppy)₃ Complexes. (United States)

    Natori, Yoshiki; Kitagawa, Yasutaka; Aoki, Shogo; Teramoto, Rena; Tada, Hayato; Era, Iori; Nakano, Masayoshi


    The fac -Ir(ppy)₃ complex, where ppy denotes 2-phenylpyridine, is one of the well-known luminescent metal complexes having a high quantum yield. However, there have been no specific molecular design guidelines for color tuning. For example, it is still unclear how its optical properties are changed when changing substitution groups of ligands. Therefore, in this study, differences in the electronic structures and optical properties among several substituted fac -Ir(ppy)₃ derivatives are examined in detail by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. On the basis of those results, we present rational design guidelines for absorption and emission color tuning by modifying the species of substituents and their substitution positions.

  1. Quantum Chemical Design Guidelines for Absorption and Emission Color Tuning of fac-Ir(ppy3 Complexes

    Directory of Open Access Journals (Sweden)

    Yoshiki Natori


    Full Text Available The fac-Ir(ppy3 complex, where ppy denotes 2-phenylpyridine, is one of the well-known luminescent metal complexes having a high quantum yield. However, there have been no specific molecular design guidelines for color tuning. For example, it is still unclear how its optical properties are changed when changing substitution groups of ligands. Therefore, in this study, differences in the electronic structures and optical properties among several substituted fac-Ir(ppy3 derivatives are examined in detail by density functional theory (DFT and time-dependent DFT (TD-DFT calculations. On the basis of those results, we present rational design guidelines for absorption and emission color tuning by modifying the species of substituents and their substitution positions.

  2. Nonlinear absorption and transmission properties of Ge, Te and InAs using tuneable IR FEL

    Energy Technology Data Exchange (ETDEWEB)

    Amirmadhi, F.; Becker, K.; Brau, C.A. [Vanderbilt Univ., Nashville, TN (United States)


    Nonlinear absorption properties of Ge, Te and InAs are being investigated using the transmission of FEL optical pulses through these semiconductors (z-scan method). Wavelength, intensity and macropulse dependence are used to differentiate between two-photon and free-carrier absorption properties of these materials. Macropulse dependence is resolved by using a Pockles Cell to chop the 4-{mu}s macropulse down to 100 ns. Results of these experiments will be presented and discussed.

  3. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer. (United States)

    Kim, Kilyoung; Johnson, Alan M; Powell, Amber L; Mitchell, Deborah G; Sevy, Eric T


    Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

  4. Calorimetric study of optical absorption of Suprasil W-1 fused quartz at visible, near-ir and near-uv wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Swimm, R.T.; Bass, M.; Xiao, Y.


    The surface and bulk optical absorption of Suprasil W-1 fused quartz has been measured by means of laser calorimetry at visible, near-IR and near UV-wavelengths. Measurements carried out on samples with length of the order of 1 cm have yielded absorption data in agreement with published data measured using a long fiber waveguide. Precautions necessary to avoid systematic errors in measuring absorptions as low as one part in 10/sup 5/ are discussed. 8 references, 2 figures.

  5. Absorption Spectroscopy and Imaging from the Visible through Mid-IR with 20 nm Resolution Using AFM probes (United States)

    Centrone, Andrea


    Correlated nanoscale composition and optical property maps are important to engineer nanomaterials in applications ranging from photovoltaics to sensing and therapeutics. Wavelengths (λs) from the visible to near-IR probe electronic transitions in materials, providing information regarding band gap and defects while light in mid-IR probes vibrational transitions and provide chemical composition. However, light diffraction limits the lateral resolution of conventional micro-spectroscopic techniques to approximately λ/2, which is insufficient to image nanomaterials. Additionally, the λ-dependent resolution impedes direct comparison of spectral maps from different spectral ranges. Photo Thermal Induced Resonance (PTIR) is a novel technique that circumvents light diffraction by employing an AFM tip as a local detector for measuring light absorption with λ-independent nanoscale resolution. Our PTIR setup combines an AFM microscope with three lasers providing λ-tunability from 500 nm to 16000 nm continuously. The AFM tip transduces locally the sample thermal expansion induced by light absorption into large cantilever oscillations. Local absorption spectra (electronic or vibrational) and maps are obtained recording the amplitude of the tip deflection as a function of λ and position, respectively. The working principles of the PTIR technique will be described first, and nano-patterned polymer samples will be used to evaluate its lateral resolution, sensitivity and linearity. Results show that the PTIR signal intensity is proportional to the local absorbed energy suggesting applicability of this technique for quantitative chemical analysis at nanoscale, at least for thin (less than 1000 nm thick) samples. Additionally, a λ-independent resolution as high as 20 nm is demonstrated across the whole spectral range. In the second part of the talk, PTIR will be applied to image the dark plasmonic resonance of gold Asymmetric Split Ring Resonators (A-SRRs) in the mid-IR

  6. Cryogenic Far-IR Laser Absorptivity Measurements of the Herschel Space Observatory Telescope Mirror Coatings

    NARCIS (Netherlands)

    Fischer, J.; Klaassen, T.O.; Hovenier, J.W.; Jakob, G.; Poglitsch, A.; Sternberg, O.


    Far-infrared laser calorimetry was used to measure the absorptivity, and thus the emissivity, of aluminum-coated silicon carbide mirror samples produced during the coating qualification run of the Herschel Space Observatory telescope to be launched by the European Space Agency in 2007. The samples

  7. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons in the 3-micrometers Region: Role of Periphery (United States)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan


    In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3-micrometers absorption band. To this purpose we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 per cm range. The experimental spectra are compared with standard harmonic calculations, and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3-micrometers region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive dataset of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly-condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3-micrometers band, and on features such as the two-component emission character of this band and the 3-micrometers emission plateau.

  8. Perylene-fused BODIPY dye with near-IR absorption/emission and high photostability

    KAUST Repository

    Jiao, Chongjun


    A N-annulated perylene unit was successfully fused to the meso-and β-positions of a boron dipyrromethene (BODIPY) core. The newly synthesized BODIPY dye 1b exhibits intensified near-infrared (NIR) absorption and the longest emission maximum ever observed for all BODIPY derivatives. In addition, this dye possesses excellent solubility and photostability, beneficial to practical applications. © 2011 American Chemical Society.

  9. Utilizing Near-IR Tunable Laser Absorption Spectroscopy to Study Detonation and Combustion Systems (United States)


    was the Beer - Lambert law utilized to convert the spectral data into absorption profiles, corrections to the data had to be made to account for...intensity using the Beer - Lambert Law , I = Ioe−αl, (3.2) where I is the intensity of the light after it has passed through the sample, Io is the initial...m/ s and a standard deviation of 50 m/ s . A detonation tube was studied at various equivalence ratios and initial pressures, also using an H2-air

  10. High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons in the 3 μm region: role of hydrogenation and alkylation (United States)

    Maltseva, Elena; Mackie, Cameron J.; Candian, Alessandra; Petrignani, Annemieke; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan


    Aim. We aim to elucidate the spectral changes in the 3 μm region that result from chemical changes in the molecular periphery of polycyclic aromatic hydrocarbons (PAHs) with extra hydrogens (H-PAHs) and methyl groups (Me-PAHs). Methods: Advanced laser spectroscopic techniques combined with mass spectrometry were applied on supersonically cooled 1,2,3,4-tetrahydronaphthalene, 9,10-dihydroanthracene, 9,10-dihydrophenanthrene, 1,2,3,6,7,8-hexahydropyrene, 9-methylanthracene, and 9,10-dimethylanthracene, allowing us to record mass-selective and conformationally selective absorption spectra of the aromatic, aliphatic, and alkyl CH-stretches in the 3.175 - 3.636 µm region with laser-limited resolution. We compared the experimental absorption spectra with standard harmonic calculations and with second-order vibrational perturbation theory anharmonic calculations that use the SPECTRO program for treating resonances. Results: We show that anharmonicity plays an important if not dominant role, affecting not only aromatic, but also aliphatic and alkyl CH-stretch vibrations. The experimental high-resolution data lead to the conclusion that the variation in Me- and H-PAHs composition might well account for the observed variations in the 3 μm emission spectra of carbon-rich and star-forming regions. Our laboratory studies also suggest that heavily hydrogenated PAHs form a significant fraction of the carriers of IR emission in regions in which an anomalously strong 3 μm plateau is observed.


    Energy Technology Data Exchange (ETDEWEB)

    Rapoport, Sharon; Onken, Christopher A.; Schmidt, Brian P.; Tucker, Brad E. [Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT 2611 (Australia); Wyithe, J. Stuart B. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Levan, Andrew J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)


    Sixty percent of gamma-ray bursts (GRBs) reveal strong Mg II absorbing systems, which is a factor of {approx}2 times the rate seen along lines of sight to quasars. Previous studies argue that the discrepancy in the strong Mg II covering factor is most likely to be the result of either quasars being obscured due to dust or the consequence of many GRBs being strongly gravitationally lensed. We analyze observations of quasars that show strong foreground Mg II absorption. We find that GRB lines of sight pass closer to bright galaxies than would be expected for random lines of sight within the impact parameter expected for strong Mg II absorption. While this cannot be explained by obscuration in the GRB sample, it is a natural consequence of gravitational lensing. Upon examining the particular configurations of galaxies near a sample of GRBs with strong Mg II absorption, we find several intriguing lensing candidates. Our results suggest that lensing provides a viable contribution to the observed enhancement of strong Mg II absorption along lines of sight to GRBs, and we outline the future observations required to test this hypothesis conclusively.

  12. The velocity distribution of interstellar gas observed in strong UV absorption lines (United States)

    Cowie, L. L.; York, D. G.


    Observations of three strong interstellar UV absorption lines of N I (1199 A), N II (1083 A), and Si III (1206 A) in 47 stars of widely varying distance and a variety of spectral types are analyzed to obtain a velocity distribution function for the interstellar gas. A technique based on the maximum and minimum velocities observed along a line of sight is adopted because of heavy line blending, and results are discussed for both power-law and exponential distribution functions. The expected distribution of radiative-phase supernova remnants (SNRs) in the interstellar medium is calculated as a function of SNR birthrate and of the interstellar density in which they evolve. The results are combined with observed distance estimates, and it is shown that an interstellar density in excess of 0.1 per cu cm would be required to keep the SNRs sufficiently confined so that their cross sections are consistent with the observed number of components. The alternative possibility is considered that SNRs do not enter the radiative phase before escaping from the Galaxy or colliding with neighboring remnants.

  13. Interaction of the electromagnetic precursor from a relativistic shock with the upstream flow - I. Synchrotron absorption of strong electromagnetic waves (United States)

    Lyubarsky, Yuri


    This paper is the first in the series of papers aiming to study interaction of the electromagnetic precursor waves generated at the front of a relativistic shock with the upstream flow. It is motivated by a simple consideration showing that the absorption of such an electromagnetic precursor could yield an efficient transformation of the kinetic energy of the upstream flow to the energy of accelerated particles. Taking into account that the precursor is a strong wave, in which electrons oscillate with relativistic velocities, the standard plasma-radiation interaction processes should be reconsidered. In this paper, I calculate the synchrotron absorption of strong electromagnetic waves.

  14. Thermoluminescence, optical absorption, photoluminescence, FT-IR and XRD studies on L-arginine doped orthophosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Saradha, K. [Department of Physics, Selvamm Arts and Science College, Namakkal-637002, TN (India); Bangaru, S., E-mail: [Department of Physics, Arignar Anna Government Arts College, Namakkal-637002, TN (India); Muralidharan, G. [Department of Physics, Gandhigram Rural University, Gandhigram-624302, TN (India)


    A paper report on the thermoluminescence (TL) optical absorption, photoluminescence (PL), single crystal XRD studies on L-arginine doped orthophosphoric acid confirm that a crystal belongs to the orthorhombic system with space group p2{sub 1}2{sub 1}2{sub 1}. The lattice of most of these crystals forming the composite, in spite of whatever the phase it belongs to, it is spatially coherent to each other with in the crystalline bulk. The functional groups present in the crystal confirms that using FT-IR technique optical absorbance shows meagre absorption from the entire visible region. The TL glow curve of L-arginine doped orthophosphoric acid sample marked a prominent peak at 125, 254 and 303 °C along with small peak at around 218 °C. Correlation with changes in optical absorption suggest that a peak at 125 °C to be related to process involving Z{sub 1} center. The peak follows first order kinetics with an activation energy of 0.033 eV and a frequency factor of 7.45×10{sup 2} and FWHM 61 nm. -- Highlights: • L-Arginine doped orthophosphoric acid has not been adequately studied. • A defect centre formed in L-arginine doped orthophosphoric acid system is assigned to F and Z{sub 1} centres. • The glow peaks are found to obey first order kinetics. • The Lattice parameter a=10.89 Å, b=7.91 Å, C=7.34 Å are in good agreement with the reported values. • The formation of a characteristic F- and centered at 520 nm is found. Such a detailed study and obtained results.

  15. Rapid screening and identification of illicit drugs by IR absorption spectroscopy and gas chromatography (United States)

    Mengali, Sandro; Liberatore, Nicola; Luciani, Domenico; Viola, Roberto; Cardinali, Gian Carlo; Elmi, Ivan; Poggi, Antonella; Zampolli, Stefano; Biavardi, Elisa; Dalcanale, Enrico; Bonadio, Federica; Delemont, Olivier; Esseiva, Pierre; Romolo, Francesco S.


    Analytical instruments based on InfraRed Absorption Spectroscopy (IRAS) and Gas Chromatography (GC) are today available only as bench-top instrumentation for forensic labs and bulk analysis. Within the 'DIRAC' project funded by the European Commission, we are developing an advanced portable sensor, that combines miniaturized GC as its key chemical separation tool, and IRAS in a Hollow Fiber (HF) as its key analytical tool, to detect and recognize illicit drugs and key precursors, as bulk and as traces. The HF-IRAS module essentially consists of a broadly tunable External Cavity (EC) Quantum Cascade Laser (QCL), thermo-electrically cooled MCT detectors, and an infrared hollow fiber at controlled temperature. The hollow fiber works as a miniaturized gas cell, that can be connected to the output of the GC column with minimal dead volumes. Indeed, the module has been coupled to GC columns of different internal diameter and stationary phase, and with a Vapour Phase Pre-concentrator (VPC) that selectively traps target chemicals from the air. The presentation will report the results of tests made with amphetamines and precursors, as pure substances, mixtures, and solutions. It will show that the sensor is capable of analyzing all the chemicals of interest, with limits of detection ranging from a few nanograms to about 100-200 ng. Furthermore, it is suitable to deal with vapours directly trapped from the headspace of a vessel, and with salts treated in a basic solution. When coupled to FAST GC columns, the module can analyze multi-components mixes in less than 5 minutes.

  16. IR absorption and reflectometric interference spectroscopy (RIfS) combined to a new sensing approach for gas analytes absorbed into thin polymer films (United States)

    Leopold, Nicolae; Busche, Stefan; Gauglitz, Günter; Lendl, Bernhard


    Hydrophobic polymer layers (3 μm) were spin-coated on Si or Ge plates and placed in a flow through gas chamber. FTIR reflection spectra of the layers were recorded showing the characteristic IR absorption bands of the polymer and the interference pattern generated by layered structure of the polymer film. Upon exposure of the polymer layer to gaseous analytes enrichment in the polymer film occurred. This was evidenced by the appearance of analyte specific absorption particular in the mid-IR part of the spectrum, as well as by a shift in the interference pattern across the whole spectrum. Qualitative information concerning the analyte was accessible in the mid-IR part of the spectrum, whereas quantitative assessment was obtained from the interference pattern. Polyetherurethane, polydimethylsiloxane, Makrolon ® and polyisobutylene polymer layers were tested for such IR-RIfS measurements, whereas toluene, o-dichlorobenzene, m-xylene, ethyl acetate and cyclohexane were employed as analytes. There was no influence of water vapour neither on the IR absorptions nor the interference pattern as hydrophobic polymers were used.


    NARCIS (Netherlands)



    From atomic calculations in crystal-field symmetry we find a very strong circular and linear dichroism in the 2p x-ray absorption edges of magnetically ordered 3d transition-metal ions. The spectral shape changes drastically with the character of the ground state, which is determined by the presence

  18. Strong Hydrogen Absorption at Cosmic Dawn: The Signature of a Baryonic Universe (United States)

    McGaugh, Stacy S.


    The recently reported detection of redshifted 21cm absorption at $z \\approx 17$ is a significant advance in the exploration of the cosmic dark ages. The observed signal ($T_{\\mathrm{21}} \\approx -0.5$ K with the limit $T_{\\mathrm{21}} universe.

  19. Absorption in Music: Development of a Scale to Identify Individuals with Strong Emotional Responses to Music (United States)

    Sandstrom, Gillian M.; Russo, Frank A.


    Despite the rise in research investigating music and emotion over the last decade, there are no validated measures of individual differences in emotional responses to music. We created the Absorption in Music Scale (AIMS), a 34-item measure of individuals' ability and willingness to allow music to draw them into an emotional experience. It was…

  20. The application of a high pulse repetition rate CO2 laser with high average power for isotope separation by molecular dissociation in a strong IR field

    International Nuclear Information System (INIS)

    Bagratashvili, V.N.; Kolomisky, Y.R.; Letokhov, V.S.; Ryabov, E.A.; Baranov, V.Y.; Kazakov, S.A.; Nizjev, V.G.; Pismenny, V.D.; Starodubtsev, A.I.; Velikhov, E.P.


    Considering a SF 6 molecule we demonstrate feasibility of using high pulse repetition rate CO 2 laser for isotope separation by selective molecular dissociation in a strong IR field. Dependences of dissociation efficiency as well as separation selectivity on pulse repetition rate up to 150 Hz are investigated. The inherent thermal effects are discussed. (orig.) [de

  1. Rigidly linking cyclometallated Ir(iii) and Pt(ii) centres: an efficient approach to strongly absorbing and highly phosphorescent red emitters. (United States)

    Turnbull, Graeme; Williams, J A Gareth; Kozhevnikov, Valery N


    The synthesis and photophysical properties of an unprecedented tetranuclear complex are described, in which a fac-tris-cyclometallated Ir(iii) centre is rigidly connected to three cyclometallated Pt(ii) centres. The complex absorbs strongly up to ∼600 nm and emits red light with unusually high efficiency.

  2. Role of Bi promotion and solvent in platinum-catalyzed alcohol oxidation probed by in situ X-ray absorption and ATR-IR spectroscopy

    DEFF Research Database (Denmark)

    Mondelli, C.; Grunwaldt, Jan-Dierk; Ferri, D.


    the catalysts under working conditions using in situ X-ray absorption spectroscopy (XAS) and attenuated total reflection infrared spectroscopy (ATR-IR), aiming at uncovering the roles of the metal promoter and the reaction medium. XAS confirms that Bi is oxidized more easily than Pt, maintaining the catalytic....... This behaviour is not observed in the presence of Bi, whose geometric effect (site blocking) is interpreted as additionally limiting the adsorption of toluene and the premature deactivation of Pt. ATR-IR spectroscopy during CO adsorption on Pt and during reaction indicates that Bi is located rather on extended...

  3. Strong two-photon absorption of Mn-doped CsPbCl3 perovskite nanocrystals (United States)

    He, Tingchao; Li, Junzi; Ren, Can; Xiao, Shuyu; Li, Yiwen; Chen, Rui; Lin, Xiaodong


    Emerging CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) have been demonstrated to be efficient emitters with a high fluorescence quantum yield, making these materials interesting for optical applications as well as for fundamental physics. Interestingly, doping with transition metal ions has been extensively explored as a way of introducing new optical, electronic, and magnetic properties, making perovskite NCs much more functional than their undoped counterparts. However, there have been no reports regarding the nonlinear optical properties of transition metal ion doped perovskite NCs. Herein, by using femtosecond-transient absorption spectroscopy, we have determined the one-photon linear absorption cross-section (˜1.42 × 10-14 cm2) of Mn-doped CsPbCl3 NCs (˜11.7 ± 1.8 nm size, ˜0.2% doping concentration, and ˜600 nm emission wavelength). More importantly, their nonlinear optical properties—in particular, the two-photon absorption (TPA) and resultant emission—were investigated. Notably, the NCs exhibit wavelength-dependent TPA with a maximum value up to ˜3.18 × 105 GM at a wavelength of 720 nm. Our results indicate that Mn-doped CsPbCl3 NCs show promise in nonlinear optical devices and multiphoton fluorescence lifetime imaging.

  4. Analytical modeling of light transport in scattering materials with strong absorption

    NARCIS (Netherlands)

    Meretska, M. L.; Uppu, R.; Vissenberg, Gilles; Lagendijk, A.; Ijzerman, W. L.; Vos, W. L.


    We have investigated the transport of light through slabs that both scatter and strongly absorb, a situation that occurs in diverse application fields ranging from biomedical optics, powder technology, to solid-state lighting. In particular, we study the transport of light in the visible wavelength

  5. An overview on the research of Sr2IrO4-based system probed by X-ray absorption spectroscopy (United States)

    Cheng, Jie; Zhu, Chaomin; Ma, Jingyuan; Wang, Yu; Liu, Shengli


    Investigations of materials with 5d transition metal ions have opened up new paradigms in condensed-matter physics because of their large spin-orbit coupling (SOC) interactions. The typical compound is Sr2IrO4, which attracted much attention due to its similarities to the parent compound of high-Tc cuprate superconductor La2CuO4. Theoretical calculations predicted that the unconventional superconductivity can occur in carrier doped-Sr2IrO4 system. Until now, hundreds of experimental methods were devoted to investigate the carrier doping effect on Sr2IrO4. Synchrotron radiation-based X-ray absorption spectroscopy (XAS) made great contributions to the local lattice and electronic structure, and also the intimate relationship between the local structure and physical properties induced by carrier doping. The aim of this review is a short introduction to the progress of research on Sr2IrO4-based system probed by the unique technique — XAS, including the strength of the SOC, valence changes upon doping and even local lattice structure with atomic level for this Sr2IrO4-based family.

  6. Simultaneous measurement of thermal diffusivity and effective infrared absorption coefficient in IR semitransparent and semiconducting n-CdMgSe crystals using photothermal radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M., E-mail: [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, Toruń (Poland); Maliński, M. [Department of Electronics and Computer Science, Koszalin University of Technology, 2 Śniadeckich St., Koszalin 75-453 (Poland)


    Highlights: • The new method of determination of the effective infrared absorption coefficient is presented. • The method can be used for transparent samples for the excitation radiation. • The effect of aluminum foil on the PTR signal in a transmission configuration is discussed. - Abstract: In this paper we propose a new procedure of simultaneous estimation of the effective infrared optical absorption coefficient and the thermal diffusivity of solid state samples using the photothermal infrared radiometry method in the transmission configuration. The proposed procedure relies on the analysis of the frequency dependent signal obtained from the samples covered with thin aluminum foil. This method can be applied for both optically opaque and transparent samples. The proposed method is illustrated with the results of the thermal diffusivity and the effective IR absorption coefficient obtained for several Cd{sub 1−x}Mg{sub x}Se crystals.

  7. Resonance enhancement of two photon absorption by magnetically trapped atoms in strong rf-fields (United States)

    Chakraborty, A.; Mishra, S. R.


    Applying a many mode Floquet formalism for magnetically trapped atoms interacting with a polychromatic rf-field, we predict a large two photon transition probability in the atomic system of cold 87Rb atoms. The physical origin of this enormous increase in the two photon transition probability is due to the formation of avoided crossings between eigen-energy levels originating from different Floquet sub-manifolds and redistribution of population in the resonant intermediate levels to give rise to the resonance enhancement effect. Other exquisite features of the studied atom-field composite system include the splitting of the generated avoided crossings at the strong field strength limit and a periodic variation of the single and two photon transition probabilities with the mode separation frequency of the polychromatic rf-field. This work can find applications to characterize properties of cold atom clouds in the magnetic traps using rf-spectroscopy techniques.

  8. Effects of strong inter-hydrogen bond dynamical couplings in the polarized IR spectra of adipic acid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Flakus, Henryk T., E-mail: [Institute of Chemistry, University of Silesia, 9 Szkolna Street, Pl-40-006 Katowice (Poland); Tyl, Aleksandra; Jablonska, Magdalena [Institute of Chemistry, University of Silesia, 9 Szkolna Street, Pl-40-006 Katowice (Poland)


    This paper presents the results of the re-investigation of polarized IR spectra of adipic acid and of its d{sub 2}, d{sub 8} and d{sub 10} deuterium derivative crystals. The spectra were measured at 77 K by a transmission method using polarized light for two different crystalline faces. Theoretical analysis concerned linear dichroic effects and H/D isotopic effects observed in the spectra of the hydrogen and deuterium bonds in adipic acid crystals at the frequency ranges of the {nu}{sub O-H} and the {nu}{sub O-D} bands. The two-branch fine structure pattern of the {nu}{sub O-H} and {nu}{sub O-D} bands and the basic linear dichroic effects characterizing them were ascribed to the vibronic mechanism of vibrational dipole selection rule breaking for IR transitions in centrosymmetric hydrogen bond dimers. It was proved that for isotopically diluted crystalline samples of adipic acid, a non-random distribution of protons and deuterons occurs in the dimers (H/D isotopic 'self-organization' effect). This effect results from the dynamical co-operative interactions involving the dimeric hydrogen bonds.

  9. Effects of strong inter-hydrogen bond dynamical couplings in the polarized IR spectra of adipic acid crystals (United States)

    Flakus, Henryk T.; Tyl, Aleksandra; Jablońska, Magdalena


    This paper presents the results of the re-investigation of polarized IR spectra of adipic acid and of its d2, d8 and d10 deuterium derivative crystals. The spectra were measured at 77 K by a transmission method using polarized light for two different crystalline faces. Theoretical analysis concerned linear dichroic effects and H/D isotopic effects observed in the spectra of the hydrogen and deuterium bonds in adipic acid crystals at the frequency ranges of the νO-H and the νO-D bands. The two-branch fine structure pattern of the νO-H and νO-D bands and the basic linear dichroic effects characterizing them were ascribed to the vibronic mechanism of vibrational dipole selection rule breaking for IR transitions in centrosymmetric hydrogen bond dimers. It was proved that for isotopically diluted crystalline samples of adipic acid, a non-random distribution of protons and deuterons occurs in the dimers (H/D isotopic " self-organization" effect). This effect results from the dynamical co-operative interactions involving the dimeric hydrogen bonds.

  10. Fermi resonance and strong anharmonic effects in the absorption spectra of the ν-OH ( ν-OD) vibration of solid H- and D-benzoic acid (United States)

    Yaremko, A. M.; Ratajczak, H.; Barnes, A. J.; Baran, J.; Durlak, P.; Latajka, Z.


    The vibrational spectra of polycrystalline benzoic acid (BA) and its deuterated derivative were studied over the wide frequency region 4000-10 cm -1 by IR and Raman methods. A theoretical analysis of the hydrogen bond frequency region and calculations at the B3LYP/6-311++G(2d, 2p) level for the benzoic acid cyclic dimer in the gas phase were made. In order to study the dynamics of proton transfer two formalisms were applied: Car-Parrinello Molecular Dynamics (CPMD) and Path Integrals Molecular Dynamics (PIMD). It was shown that the experimentally observed very broad ν-OH band absorption is the result of complex anharmonic interaction: Fermi resonance between the OH-stretching and bending vibrations and strong interaction of the ν-OH stretching with the low frequency phonons. The theoretical analysis in the framework of such an approach gave a good correlation with experiment. From the CPMD calculations it was confirmed that the O-H⋯O bridge is not rigid, with the O⋯O distance being described by a large amplitude motion. For the benzoic acid dimer we observed stepwise (asynchronous) proton transfer.

  11. Optical Parametric Amplification Techniques for the Generation of High-Energy Few-Optical-Cycles IR Pulses for Strong Field Applications

    Directory of Open Access Journals (Sweden)

    Anna G. Ciriolo


    Full Text Available Over the last few decades, the investigation of ultrafast phenomena occurring in atoms, molecules and solid-state systems under a strong-field regime of light-matter interaction has attracted great attention. The increasing request for a suitable optical technology is significantly boosting the development of powerful ultrafast laser sources. In this framework, Optical Parametric Amplification (OPA is currently becoming a leading solution for applications in high-power ultra-broadband light burst generation. The main advantage provided by the OPA scheme consists of the possibility of exploring spectral ranges that are inaccessible by other laser technologies, as the InfraRed (IR window. In this paper, we will give an overview on recent progress in the development of high-power few-optical-cycle parametric amplifiers in the near-IR and in the mid-IR spectral domain. In particular, the design of the most advanced OPA implementations is provided, containing a discussion on the key technical aspects. In addition, a review on their application to the study of strong-field ultrafast physical processes is reported.

  12. Direct observation of ring-opening dynamics in strong-field ionized selenophene using femtosecond inner-shell absorption spectroscopy (United States)

    Lackner, Florian; Chatterley, Adam S.; Pemmaraju, C. D.; Closser, Kristina D.; Prendergast, David; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver


    Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (C4H4Se). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (˜58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations. The experiments simultaneously capture the instantaneous population of stable molecular ions, the emergence and decay of excited cation states, and the appearance of atomic fragments. The experiments reveal, in particular, insight into the strong-field induced ring-opening dynamics in the selenophene cation, which are traced by the emergence of non-cyclic molecules as well as the liberation of Se+ ions within an overall time scale of approximately 170 fs. We propose that both products may be associated with dynamics on the same electronic surfaces but with different degrees of vibrational excitation. The time-dependent inner-shell absorption features provide direct evidence for a complex relaxation mechanism that may be approximated by a two-step model, whereby the initially prepared, excited cyclic cation decays within τ1 = 80 ± 30 fs into a transient molecular species, which then gives rise to the emergence of bare Se+ and ring-open cations within an additional τ2 = 80 ± 30 fs. The combined experimental and theoretical results suggest a close relationship between σ* excited cation states and the observed ring-opening reactions. The findings demonstrate that the combination of femtosecond time-resolved core-level spectroscopy with ab initio estimates of spectroscopic signatures provide new insights into complex, ultrafast photochemical reactions such as ring-opening dynamics in organic molecules in real-time and with simultaneous sensitivity for electronic and structural

  13. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.; Campillay, Abdo; Contreras, Carlos [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Simon, Joshua D.; Burns, Christopher R.; Persson, Sven E.; Thompson, I. B.; Freedman, Wendy L. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Cox, Nick L. J. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D bus 2401, 3001 Leuven (Belgium); Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Karakas, Amanda I. [Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611 (Australia); Patat, F. [European Southern Observatory (ESO), Karl Schwarschild Strasse 2, D-85748, Garching bei München (Germany); Sternberg, A. [Max Planck Institute for Astrophysics, Karl Schwarzschild Strasse 1, D-85741 Garching bei München (Germany); Williams, R. E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gal-Yam, A. [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Leonard, D. C. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Folatelli, Gastón, E-mail: [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8583 (Japan); and others


    High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with the progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.

  14. Strong two-photon absorption and its saturation of a self-organized dimer of an ethynylene-linked porphyrin tandem. (United States)

    Kamada, Kenji; Hara, Chihiro; Ogawa, Kazuya; Ohta, Koji; Kobuke, Yoshiaki


    The two-photon absorption properties of a self-organized dimer of a free-base and zinc(II) porphyrins tandem linked with an ethynylene group and terminated by imidazolyl and phenylethynyl groups were investigated. The self-organized dimer was found to exhibit strong two-photon absorption and furthermore the saturation of the two-photon absorption owing to the intense transition.

  15. IR absorption spectrum (4200-3100 cm-1) of H2O and (H2O)2 in CCl4. Estimates of the equilibrium constant and evidence that the atmospheric water absorption continuum is due to the water dimer

    International Nuclear Information System (INIS)

    Nicolaisen, Flemming M.


    IR absorption spectra, 4200-3100 cm -1 , of water in CCl 4 solutions are presented. It is shown that for saturated solutions significant amounts of water are present as dimer (ca. 2%). The IR spectra of the monomer and dimer are retrieved. The integrated absorption coefficients of the monomer absorption are significantly enhanced relative to the gas phase values. The dimer spectrum consists of 5 bands, of which 4 were expected from data from cold beams and cold matrices. The origin of the 'extra' band is discussed. In addition it is argued that the dimer absorption bands intensities must be enhanced relative to the gas phase values. Based on recent calculations of band strengths, and observed frequency shifts relative to the gas phase, the intensity enhancement factors are estimated as well as the monomer/dimer equilibrium constant in CCl 4 solution at T=296 K (K c =1.29 mol -1 L). It is noted that the observed dimer spectrum has a striking resemblance with the water vapour continuum determined by Burch in 1985 which was recently remeasured by Paynter et al. and it is concluded that the atmospheric water absorption continuum in the investigated spectral region must be due to water dimer. Based on the newly published spectral data a revised value of the gas phase equilibrium constant is suggested (K p =0.035 atm -1 at T=296 K) as well as a value for the standard enthalpy of formation, ΔH 0 =15.4 kJ mol -1 .

  16. Study on IR Properties of Reduced Graphene Oxide (United States)

    Ma, Deyue; Li, Xiaoxia; Guo, Yuxiang; Zeng, Yurun


    Firstly, the reduced graphene oxide was prepared by modified hummer method and characterized. Then, the complex refractive index of reduced graphene oxide in IR band was tested and its IR absorption and radiation properties were researched by correlated calculation. The results show that reduced graphene oxide prepared by hummer method are multilayered graphene with defects and functional groups on its surface. Its absorption in near and far IR bands is strong, but it’s weaker in middle IR band. At the IR atmosphere Window, its normal spectral emissivity decreases with wavelength increasing, and its total normal spectral emissivity in 3 ∼ 5μm and 8 ∼ 14μm are 0.75 and 0.625, respectively. Therefore, reduced graphene oxide can be used as IR absorption and coating materials and have a great potential in microwave and infrared compatible materials.

  17. Evaluation of V, Ir, Ru, V-Ir, V-Ru, and W-V as permanent chemical modifiers for the determination of cadmium, lead, and zinc in botanic and biological slurries by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Acar, Orhan


    Permanent modifiers (V, Ir, Ru, V-Ir, V-Ru, and W-V) thermally coated on to platforms of pyrolytic graphite tubes were employed for the determination of Cd, Pb, and Zn in botanic and biological slurries by electrothermal atomic absorption spectrometry (ETAAS). Conventional Pd + Mg(NO 3 ) 2 modifier mixture was also used for the determination of analytes in slurries and digested samples. Optimum masses and mass ratios of permanent modifiers for Cd, Pb, and Zn in slurry sample solutions were investigated. The 280 μg of V, 280 μg of V + 200 μg of Ir, 280 μg of V + 200 μg of Ru or 240 μg of W + 280 μg of V in 0.2% (v/v) Triton X-100 plus 0.5% (v/v) HNO 3 mixture was found as efficient as 5 μg of Pd + 3 μg of Mg(NO 3 ) 2 modifier mixture for obtaining thermal stabilization, and for obtaining best recoveries. Optimization conditions of analytes, such as pyrolysis and atomization temperature, characteristic masses and detection limits, and atomization and background peak profiles were studied with permanent and 5 μg of Pd + 3 μg of Mg(NO 3 ) 2 conventional modifiers and compared with each other. The permanent V-Ir, V-Ru, and W-V modifiers remained stable for approximately 250-300 firings when 20 μl of slurries and digested samples were delivered into the atomizer. In addition, the mixed permanent modifiers increase the tube lifetime by 50-95% when compared with untreated platforms. The characteristic masses and detection limits of analytes (dilution factor of 125 ml g -1 ) obtained with V-Ir based on integrated absorbance as example for 0.8% (m/v) slurries were 1.0 pg and 3 ng g -1 for Cd, 18 pg and 17 ng g -1 for Pb, and 0.7 pg and 4 ng g -1 for Zn, respectively. The results of analytes obtained by employing V-Ir, V-Ru, and W-V permanent modifier mixtures in botanic and biological certified and standard reference materials were in agreement with the certified values of reference materials

  18. Non-Destructive and Discriminating Identification of Illegal Drugs by Transient Absorption Spectroscopy in the Visible and Near-IR Wavelength Range (United States)

    Sato, Chie; Furube, Akihiro; Katoh, Ryuzi; Nonaka, Hidehiko; Inoue, Hiroyuki


    We have tested the possibility of identifying illegal drugs by means of nanosecond transient absorption spectroscopy with a 10-ns UV-laser pulse for the excitation light and visible-to-near-IR light for the probe light. We measured the transient absorption spectra of acetonitrile solutions of d-methamphetamine, dl-3,4-methylenedioxymethamphetamine hydrochloride (MDMA), and dl-N-methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine hydrochloride (MBDB), which are illegal drugs widely consumed in Japan. Transient absorption signals of these drugs were observed between 400 and 950 nm, a range in which they are transparent in the ground state. By analyzing the spectra in terms of exponential and Gaussian functions, we could identify the drugs and discriminate them from chemical substances having similar structures. We propose that transient absorption spectroscopy will be a useful, non-destructive method of inspecting for illegal drugs, especially when they are dissolved in liquids. Such a method may even be used for drugs packed in opaque materials if it is further extended to utilize intense femtosecond laser pulses.

  19. Validation of visible/near-IR atmospheric absorption and solar emission spectroscopic models at 1 cm-1 resolution (United States)

    Lubin, Dan; Vogelmann, Andrew; Lehr, Pamela J.; Kressin, Ann; Ehramjian, James; Ramanathan, V.


    A Fourier transform infrared (FTIR) spectrometer, operating at 1 cm-1 resolution between 9000 and 24,669 cm-1 (0.405-1.111 μm) has been used to check the spectral composition of databases that form the basis for most atmospheric absorption parameterizations used in climate models, remote sensing, and other radiative transfer simulations. The spectrometer, operating near sea level under clear skies, obtained relative atmospheric transmission measurements of the direct solar beam by means of a heliostat. The spectroscopic data were compared with a line-by-line radiative transfer model (LBLRTM) calculation of direct solar beam flux, which used a input data a monochromatic model extraterrestrial solar flux spectrum currently in common use. This intercomparison revealed that the extraterrestrial solar flux spectrum contains 266 solar absorption features that do not appear in the data, resulting in an excess of approximately 1.92 W m-2 in the model's solar constant. The intercomparison also revealed 97 absorption features in the data that do not appear in the HITRAN-96 database as used by LBLRTM, resulting in a model underestimate of shortwave absorption of ˜0.23 W m-2 for a solar zenith angle of 42°. These small discrepancies revealed by the intercomparison indicate that current extraterrestrial solar irradiance models and spectroscopic databases used by shortwave atmospheric radiative transfer models are nearly entirely complete for purposes of atmospheric energy budget calculation. Thus clear or cloudy sky `excess absorption' is unlikely to be related to an incomplete identification of atmospheric absorbing gases and their spectroscopic features, at 1 cm-1 resolution, for a clean troposphere of normal composition.

  20. IR study of Pb–Sr titanate borosilicate glasses

    Indian Academy of Sciences (India)


    to study their structure systematically. IR spectrum of each glass composition shows a number of absorption bands. These bands are strongly influenced by the increasing substitution of SrO for PbO. Various bands shift with composition. Absorption peaks occur due to the vibrational mode of the borate network in these ...

  1. Infrared absorption of methanol-water clusters (CH3OH)n(H2O), n = 1-4, recorded with the VUV-ionization/IR-depletion technique. (United States)

    Lee, Yu-Fang; Kelterer, Anne-Marie; Matisz, Gergely; Kunsági-Máté, Sándor; Chung, Chao-Yu; Lee, Yuan-Pern


    We recorded infrared (IR) spectra in the CH- and OH-stretching regions of size-selected clusters of methanol (M) with one water molecule (W), represented as M n W, n = 1-4, in a pulsed supersonic jet using the photoionization/IR-depletion technique. Vacuum ultraviolet emission at 118 nm served as the source of ionization in a time-of-flight mass spectrometer to detect clusters M n W as protonated forms M n-1 WH + . The variations in intensities of M n-1 WH + were monitored as the wavelength of the IR laser light was tuned across the range 2700-3800 cm -1 . IR spectra of size-selected clusters were obtained on processing of the observed action spectra of the related cluster-ions according to a mechanism that takes into account the production and loss of each cluster due to IR photodissociation. Spectra of methanol-water clusters in the OH region show significant variations as the number of methanol molecules increases, whereas those in the CH region are similar for all clusters. Scaled harmonic vibrational wavenumbers and relative IR intensities predicted with the M06-2X/aug-cc-pVTZ method for the methanol-water clusters are consistent with our experimental results. For dimers, absorption bands of a structure WM with H 2 O as a hydrogen-bond donor were observed at 3570, 3682, and 3722 cm -1 , whereas weak bands of MW with methanol as a hydrogen-bond donor were observed at 3611 and 3753 cm -1 . For M 2 W, the free OH band of H 2 O was observed at 3721 cm -1 , whereas a broad feature was deconvoluted to three bands near 3425, 3472, and 3536 cm -1 , corresponding to the three hydrogen-bonded OH-stretching modes in a cyclic structure. For M 3 W, the free OH shifted to 3715 cm -1 , and the hydrogen-bonded OH-stretching bands became much broader, with a weak feature near 3179 cm -1 corresponding to the symmetric OH-stretching mode of a cyclic structure. For M 4 W, the observed spectrum agrees unsatisfactorily with predictions for the most stable cyclic structure

  2. Modulation of intersubband light absorption and interband photoluminescence in double GaAs/AlGaAs quantum wells under strong lateral electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Balagula, R. M., E-mail:; Vinnichenko, M. Ya., E-mail:; Makhov, I. S.; Firsov, D. A.; Vorobjev, L. E. [Peter the Great Saint-Petersburg Polytechnic University (Russian Federation)


    The effect of a lateral electric field on the mid-infrared absorption and interband photoluminescence spectra in double tunnel-coupled GaAs/AlGaAs quantum wells is studied. The results obtained are explained by the redistribution of hot electrons between quantum wells and changes in the space charge in the structure. The hot carrier temperature is determined by analyzing the intersubband light absorption and interband photoluminescence modulation spectra under strong lateral electric fields.

  3. IR and UV gas absorption measurements during NOx reduction on an industrial natural gas fired power plant

    DEFF Research Database (Denmark)

    Stamate, Eugen; Chen, Weifeng; Jørgensen, L.


    NOx reduction of flue gas by plasma-generated ozone was investigated in pilot test experiments on an industrial power plant running on natural gas. Reduction rates higher than 95% have been achieved for a molar ratio O3:NOx slightly below two. Fourier transform infrared and ultraviolet absorption...... spectroscopy were used for spatial measurements of stable molecules and radicals along the reduction reactor. Reactions of O3 injected in the flue gas in the reduction reactor were also modeled. Experiments are in good agreement with numerical simulations. The operation costs for NOx reduction were estimated...

  4. Thermal behavior of J-aggregates in a Langmuir-Blodgett film of pure merocyanine dye investigated by UV-visible and IR absorption spectroscopy. (United States)

    Hirano, Yoshiaki; Tateno, Shinsuke; Maio, Ari; Ozaki, Yukihiro


    We have characterized the structure of J-aggregate in a Langmuir-Blodgett film of pure merocyanine dye (MS18) fabricated under an aqueous subphase containing a cadmium ion (Cd2+) and have investigated its thermal behavior by UV-visible and IR absorption spectroscopy in the range from 25 to 250 degrees C with a continuous scan. The results of both UV-visible and IR absorption spectra indicate that temperature-dependent changes in the MS18 aggregation state in the pure MS18 system are closely and mildly linked with the MS18 intramolecular charge transfer and the behavior of the packing, orientation, conformation, and thermal mobility of MS18 hydrocarbon chain, respectively. The J-aggregate in the pure MS18 system dissociates from 25 to 150 degrees C, and the dissociation temperature at 150 degrees C is higher by 50 degrees C than that in the previous MS18- arachidic acid (C20) binary system. The lower dissociation temperature in the binary system originates from the fact that temperature-dependent structural disorder of cadmium arachidate (CdC20), being phase-separated from MS18, has an influence on the dissociation of J-aggregate. From 160 to 180 degrees C, thermally induced blue-shifted bands, caused by the oligomeric MS18 aggregation, appear at around 520 nm in the pure MS18 system by contraries, regardless of the lack of driving force by the melting phenomenon of CdC20. The temperature at which the 520 nm bands occur is in good agreement with the melting point (160 degrees C) of hydrocarbon chain in MS18 with Cd2+, whereas its chromophore part is clearly observed to melt near 205 degrees C by UV-visible spectra. Therefore, it is suggested that the driving force that induces the 520 nm band in the pure MS18 system arises from the partial melting of hydrocarbon chain in MS18 with Cd2+.

  5. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, B. A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Forrest, W.; Watson, Dan M.; Kim, K. H.; Richter, I.; Tayrien, C. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); D' Alessio, P.; Calvet, N. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Building, Ann Arbor, MI 48109 (United States); Furlan, E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Green, J. [Department of Astronomy, University of Texas, 1 University Station, Austin, TX 78712 (United States); Pontoppidan, K., E-mail: [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)


    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.

  6. Microporous Co@C Nanoparticles Prepared by Dealloying CoAl@C Precursors: Achieving Strong Wideband Microwave Absorption via Controlling Carbon Shell Thickness. (United States)

    Li, Da; Liao, Haoyan; Kikuchi, Hiroaki; Liu, Tong


    Excellent magnetic features make Co-based materials promising candidates as high-performance microwave absorbers. However, it is still a significant challenge for Co-based absorbers to possess high-intensity and broadband absorption simultaneously, owing to the lack of dielectric loss and impedance matching. Herein, microporous Co@C nanoparticles (NPs) with carbon shell thicknesses ranging from 1.8-4.9 nm have been successfully synthesized by dealloying CoAl@C precursors. All of the samples exhibit high microwave absorption performance. The microporous Co@C sample possessing a carbon shell of 1.8 nm exhibits the highest absorption intensity among these samples with a minimum reflection loss (RL) of -141.1 dB, whose absorption bandwidth for RL ≤ -10 dB is 7.3 GHz. As the thickness of the carbon shell increases, the absorption bandwidth of the NPs becomes wider. For the sample with the carbon shell thickness of 4.9 nm, the absorption bandwidth for RL ≤ -10 dB reaches a record high of 13.2 GHz. The outstanding microwave attenuation properties are attributed to the dielectric loss of the carbon shell, the magnetic loss of the Co core, and the cooperation of the core-shell structure and microporous morphology. The strong wideband microwave absorption of the carbon-coated microporous Co NPs highlights their potential applications in microwave absorbing systems.

  7. Ion exchange removal of chromium (iii) from tannery wastes by using a strong acid cation exchange resin amberlite ir-120 h+ and its hybrids

    International Nuclear Information System (INIS)

    Ahmad, T.


    A strong acid cation exchange resin Amberlite IR-120 H+ and its hybrids with Mn(OH)/sub 2/, Cu(OH)/sub 2/ and Fe(OH)/sub 3/ are used for the removal of chromium (III) from spent tannery bath. The experimental data give good fits with the Langmuir sorption model. The thermodynamic parameters entropy (delta S), enthalpy (delta H) and free energy (delta G) changes are computed, which reveal that the chromium removal from tannery wastes by ion exchangers is an endothermic, physical sorption and entropically driven process. The rate of sorption is found to increase with the increase of resin dosage, stirring speed and temperature. Different kinetic models such as film diffusion, particle diffusion and Lagergren pseudo first order are used to evaluate the mechanism of the process. It is found that the hybrid ion exchange resins have better removal capacity as compared to the parent ion exchanger. The increase in the removal capacity is found to be in the order of the corresponding PZC values of the hybrid ion exchangers. Further, it is suggested that the higher exchange capacity is the result of Donnan effect and specific adsorption of chromium by the oxides / hydroxides present inside the matrix of the organic cation exchanger. (author)

  8. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X =Ge , Sn, Ga, Ir, Rh, and Pt) (United States)

    Zhang, Yang; Sun, Yan; Yang, Hao; Železný, Jakub; Parkin, Stuart P. P.; Felser, Claudia; Yan, Binghai


    We have carried out a comprehensive study of the intrinsic anomalous Hall effect and spin Hall effect of several chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh and Pt) by ab initio band structure and Berry phase calculations. These studies reveal large and anisotropic values of both the intrinsic anomalous Hall effect and spin Hall effect. The Mn3X materials exhibit a noncollinear antiferromagnetic order which, to avoid geometrical frustration, forms planes of Mn moments that are arranged in a Kagome-type lattice. With respect to these Kagome planes, we find that both the anomalous Hall conductivity (AHC) and the spin Hall conductivity (SHC) are quite anisotropic for any of these materials. Based on our calculations, we propose how to maximize AHC and SHC for different materials. The band structures and corresponding electron filling, that we show are essential to determine the AHC and SHC, are compared for these different compounds. We point out that Mn3Ga shows a large SHC of about 600 (ℏ /e ) (Ωcm) -1 . Our work provides insights into the realization of strong anomalous Hall effects and spin Hall effects in chiral antiferromagnetic materials.

  9. Computational design of small organic dyes with strong visible absorption by controlled quinoidization of the thiophene unit (United States)

    Tan, Yi Yin; Tu, Wei Han; Manzhos, Sergei


    We present rational design of phenothiazine dyes by controlled quinoidization of the thiophene unit. We systematically study the effect of electron-withdrawing functional groups including pseudo- and super-halogens. We propose a new dye where a fumaronitrile unit induces an increase in the bond length alternation and a concurrent red shift in the absorption spectrum vs. the parent dye. The visible absorption peak is predicted at 520 nm, in CH2Cl2 vs. 450 nm for the parent dye. The LUMO and HOMO levels of the new dye are suitable for injection into TiO2 and regeneration by available redox shuttles, respectively.

  10. High-accuracy measurements of OH reaction rate constants and IR absorption spectra: CH2=CF-CF3 and trans-CHF=CH-CF3. (United States)

    Orkin, Vladimir L; Martynova, Larissa E; Ilichev, Alexander N


    Rate constants for the gas phase reactions of OH radicals with two isomers of tetrafluoropropene, CH(2)=CF-CF(3) (k(1)) and trans-CHF=CH-CF(3) (k(2)); were measured using a flash photolysis resonance-fluorescence technique over the temperature range 220 to 370 K. The Arrhenius plots were found to exhibit a noticeable curvature. The temperature dependences of the rate constants are very weak and can be represented by the following expressions over the indicated temperature intervals: k(1)(220-298 K) = 1.145 x 10(-12) x exp{13/T} cm(3) molecule(-1) s(-1), k(1)(298-370 K) = 4.06 x 10(-13) x (T/298)(1.17) x exp{+296/T} cm(3) molecule(-1) s(-1), k(2)(220-370 K) = 1.115 x 10(-13) x (T/298)(2.03) x exp{+522/T} cm(3) molecule(-1) s(-1). The overall accuracy of the rate constant measurements is estimated to be ca. 2% to 2.5% at the 95% confidence level. The uncertainty of the measured reaction rate constants is discussed in detail. The atmospheric lifetimes due to reactions with tropospheric OH were estimated to be 12 and 19 days respectively under the assumption of a well mixed atmosphere. IR absorption cross-sections were measured for both compounds and their global warming potentials were estimated.

  11. Sensing properties of multiwalled carbon nanotubes grown in MW plasma torch: electronic and electrochemical behavior, gas sensing, field emission, IR absorption. (United States)

    Majzlíková, Petra; Sedláček, Jiří; Prášek, Jan; Pekárek, Jan; Svatoš, Vojtěch; Bannov, Alexander G; Jašek, Ondřej; Synek, Petr; Eliáš, Marek; Zajíčková, Lenka; Hubálek, Jaromír


    Vertically aligned multi-walled carbon nanotubes (VA-MWCNTs) with an average diameter below 80 nm and a thickness of the uniform VA-MWCNT layer of about 16 µm were grown in microwave plasma torch and tested for selected functional properties. IR absorption important for a construction of bolometers was studied by Fourier transform infrared spectroscopy. Basic electrochemical characterization was performed by cyclic voltammetry. Comparing the obtained results with the standard or MWCNT‑modified screen-printed electrodes, the prepared VA-MWCNT electrodes indicated their high potential for the construction of electrochemical sensors. Resistive CNT gas sensor revealed a good sensitivity to ammonia taking into account room temperature operation. Field emission detected from CNTs was suitable for the pressure sensing application based on the measurement of emission current in the diode structure with bending diaphragm. The advantages of microwave plasma torch growth of CNTs, i.e., fast processing and versatility of the process, can be therefore fully exploited for the integration of surface-bound grown CNTs into various sensing structures.

  12. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies. (United States)

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming


    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Strong Impact of an Axial Ligand on the Absorption by Chlorophyll a and b Pigments Determined by Gas-Phase Ion Spectroscopy Experiments

    DEFF Research Database (Denmark)

    Kjaer, Christina; Stockett, Mark H.; Pedersen, Bjarke Møller


    The microenvironments in photosynthetic proteins affect the absorption by chlorophyll (Chl) pigments. It is, however, a challenge to disentangle the impact on the transition energies of different perturbations, for example, the global electrostatics of the protein (nonbonded environmental effects......), exciton coupling between Chl's, conformational variations, and binding of an axial ligand to the magnesium center. This is needed to distinguish between the two most commonly proposed mechanisms for energy transport in photosynthetic proteins, relying on either weakly or strongly coupled pigments. Here...

  14. Strong super-superphyperfine and quadrupole interations by RPE in divalent Co,RH,IR complexes in NaCl, KCl and RbCl lattices

    International Nuclear Information System (INIS)

    Pinhal, N.M.


    The M(CN) 4 Cl 2 4- :NaCl, M = Co, Rh and Ir paramagnetic complexes obtained by irradiation are analysed by ESR spectroscopy. These complexes present a superhyperfine structure due to the interaction of the unpaired electron with the host lattice Na nearest-neighbors atoms. This structure is explained by overlap and covalent effects in a molecular orbital approach. ESR quadrupolar interaction measurements of the Ir(CN) 5 3- , Ir(CN) 5 Cl 4- and Ir(CN) 4 Cl 2 4- complexes in NaCl, KCl and RbCl host lattices indicate that the origin of the electron field gradient at the iridium nucleus is correlated to the Π and δ bonds ailities of the ligands. (author) [pt

  15. Increase in homeostasis model assessment of insulin resistance (HOMA-IR) had a strong impact on the development of type 2 diabetes in Japanese individuals with impaired insulin secretion: the Saku study. (United States)

    Morimoto, Akiko; Tatsumi, Yukako; Soyano, Fumie; Miyamatsu, Naomi; Sonoda, Nao; Godai, Kayo; Ohno, Yuko; Noda, Mitsuhiko; Deura, Kijyo


    Our aim was to assess the impact of increase in homeostasis model assessment of insulin resistance (HOMA-IR) on the development of type 2 diabetes in Japanese individuals with impaired insulin secretion (IIS). This study included 2,209 participants aged 30-69 without diabetes at baseline who underwent comprehensive medical check-ups between April 2006 and March 2007 at Saku Central Hospital. Participants were classified into eight groups according to the combination of baseline IIS status (non-IIS and IIS) and category of HOMA-IR change between the baseline and follow-up examinations (decrease, no change/small increase, moderate increase, and large increase). Type 2 diabetes was determined from fasting and 2 h post-load plasma glucose concentrations at the follow-up examination between April 2009 and March 2011. At baseline, 669 individuals (30.3%) were classified as having IIS. At follow-up, 74 individuals developed type 2 diabetes. After adjusting for confounding factors including baseline HOMA-IR values, the multivariable-adjusted odds ratios (95% confidence intervals) for type 2 diabetes in the non-IIS with a decrease (mean change in HOMA-IR: -0.47), non-IIS with a moderate increase (mean change in HOMA-IR: 0.28), non-IIS with a large increase (mean change in HOMA-IR: 0.83), IIS with a decrease (mean change in HOMA-IR: -0.36), IIS with no change/small increase (mean change in HOMA-IR: 0.08), IIS with a moderate increase (mean change in HOMA-IR: 0.27), and IIS with a large increase (mean change in HOMA-IR: 0.73) groups, relative to the non-IIS with no change/small increase (mean change in HOMA-IR: 0.08) group were 0.23 (0.04, 1.11), 1.22 (0.26, 5.72), 2.01 (0.70, 6.46), 1.37 (0.32, 4.28), 3.60 (0.83, 15.57), 5.24 (1.34, 20.52), and 7.01 (1.75, 24.18), respectively. Moderate and large increases in HOMA-IR had a strong impact on the development of type 2 diabetes among individuals with IIS in this Japanese population.

  16. Increase in homeostasis model assessment of insulin resistance (HOMA-IR had a strong impact on the development of type 2 diabetes in Japanese individuals with impaired insulin secretion: the Saku study.

    Directory of Open Access Journals (Sweden)

    Akiko Morimoto

    Full Text Available Our aim was to assess the impact of increase in homeostasis model assessment of insulin resistance (HOMA-IR on the development of type 2 diabetes in Japanese individuals with impaired insulin secretion (IIS. This study included 2,209 participants aged 30-69 without diabetes at baseline who underwent comprehensive medical check-ups between April 2006 and March 2007 at Saku Central Hospital. Participants were classified into eight groups according to the combination of baseline IIS status (non-IIS and IIS and category of HOMA-IR change between the baseline and follow-up examinations (decrease, no change/small increase, moderate increase, and large increase. Type 2 diabetes was determined from fasting and 2 h post-load plasma glucose concentrations at the follow-up examination between April 2009 and March 2011. At baseline, 669 individuals (30.3% were classified as having IIS. At follow-up, 74 individuals developed type 2 diabetes. After adjusting for confounding factors including baseline HOMA-IR values, the multivariable-adjusted odds ratios (95% confidence intervals for type 2 diabetes in the non-IIS with a decrease (mean change in HOMA-IR: -0.47, non-IIS with a moderate increase (mean change in HOMA-IR: 0.28, non-IIS with a large increase (mean change in HOMA-IR: 0.83, IIS with a decrease (mean change in HOMA-IR: -0.36, IIS with no change/small increase (mean change in HOMA-IR: 0.08, IIS with a moderate increase (mean change in HOMA-IR: 0.27, and IIS with a large increase (mean change in HOMA-IR: 0.73 groups, relative to the non-IIS with no change/small increase (mean change in HOMA-IR: 0.08 group were 0.23 (0.04, 1.11, 1.22 (0.26, 5.72, 2.01 (0.70, 6.46, 1.37 (0.32, 4.28, 3.60 (0.83, 15.57, 5.24 (1.34, 20.52, and 7.01 (1.75, 24.18, respectively. Moderate and large increases in HOMA-IR had a strong impact on the development of type 2 diabetes among individuals with IIS in this Japanese population.

  17. Amorphization-induced strong localization of electronic states in CsPbBr3 and CsPbCl3 studied by optical absorption measurements (United States)

    Kondo, S.; Sakai, T.; Tanaka, H.; Saito, T.


    Optical absorption spectra of amorphous CsPbX3 films (X=Br,Cl) are characterized by two Gaussian bands near the fundamental edge, with the optical energy gap largely blueshifted and the absorption intensity strongly reduced as compared with the crystalline films. The peak energies of the bands are close to those of the A and C bands of Pb-doped alkali halides. The spectral features are discussed in terms of a molecular orbital theory based on a quasicomplex Pb2+(X-)6 model similar to the complex model for the doped alkali halides. It is shown that not only Pb2+ 6s and 6p extended states near the band edges but also X- p states contributing to upper valence bands are localized by amorphization. The transitions from the localized Pb2+ 6s to 6p states produce the spin-orbit allowed 3P1 and dipole allowed 1P1 states responsible for the two Gaussians. The localized X- p states lie deeper in energy than the localized Pb2+ 6s state and only contribute to higher-energy absorption above the Gaussian bands, giving the reason for the reduced absorption near the fundamental edge. The blueshift of the optical energy gap is attributed to the disappearance of k dispersions for these one-electron states.

  18. Quantum state-resolved probing of strong-field-ionized xenon atoms using femtosecond high-order harmonic transient absorption spectroscopy. (United States)

    Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E; Santra, Robin; Buth, Christian; Leone, Stephen R


    Femtosecond high-order harmonic transient absorption spectroscopy is used to resolve the complete |j,m quantum state distribution of Xe+ produced by optical strong-field ionization of Xe atoms at 800 nm. Probing at the Xe N4/5 edge yields a population distribution rhoj,|m| of rho3/2,1/2ratiorho1/2,1/2ratiorho3/2,3/2=75+/-6 :12+/-3 :13+/-6%. The result is compared to a tunnel ionization calculation with the inclusion of spin-orbit coupling, revealing nonadiabatic ionization behavior. The sub-50-fs time resolution paves the way for tabletop extreme ultraviolet absorption probing of ultrafast dynamics.

  19. Spectroscopic (FT-IR, FT-Raman, UV absorption, 1H and 13C NMR) and theoretical (in B3LYP/6-311++G** level) studies on alkali metal salts of caffeic acid. (United States)

    Świsłocka, Renata


    The effect of some metals on the electronic system of benzoic and nicotinic acids has recently been investigated by IR, Raman and UV spectroscopy [1-3]. Benzoic and nicotinic acids are regarded model systems representing a wide group of aromatic ligands which are incorporated into enzymes. In this work the FT-IR (in solid state and in solution), FT-Raman, UV absorption and (1)H and (13)C NMR spectra of caffeic acid (3,4-dihydroxycinnamic acid) and its salts with lithium, sodium, potassium, rubidium and caesium were registered, assigned and analyzed. The effect of alkali metals on the electronic system of ligands was discussed. Studies of differences in the number and position of bands from the IR, Raman, UV absorption spectra and chemical shifts from NMR spectra allowed to conclude on the distribution of electronic charge in the molecules, the delocalization energy of π electrons and the reactivity of ligands in metal complexes. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G** basis set. Bond lengths, angles and dipole moments for the optimized structures of caffeic acid and lithium, sodium, potassium caffeinates were also calculated. The theoretical wavenumbers and intensities of IR spectra were obtained. The calculated parameters were compared to the experimental characteristics of investigated compounds. Microbial activity of studied compounds was tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. SN 2011A: A Low-luminosity Interacting Transient with a Double Plateau and Strong Sodium Absorption (United States)

    de Jaeger, T.; Anderson, J. P.; Pignata, G.; Hamuy, M.; Kankare, E.; Stritzinger, M. D.; Benetti, S.; Bufano, F.; Elias-Rosa, N.; Folatelli, G.; Förster, F.; González-Gaitán, S.; Gutiérrez, C. P.; Inserra, C.; Kotak, R.; Lira, P.; Morrell, N.; Taddia, F.; Tomasella, L.


    We present optical photometry and spectroscopy of the optical transient SN 2011A. Our data span 140 days after discovery including {BVRI} u\\prime g\\prime r\\prime i\\prime z\\prime photometry and 11 epochs of optical spectroscopy. Originally classified as a type IIn supernova (SN IIn) due to the presence of narrow Hα emission, this object shows exceptional characteristics. First, the light curve shows a double plateau, a property only observed before in the impostor SN 1997bs. Second, SN 2011A has a very low luminosity ({M}V=-15.72), placing it between normal luminous SNe IIn and SN impostors. Third, SN 2011A shows low velocity and high equivalent width absorption close to the sodium doublet, which increases with time and is most likely of circumstellar origin. This evolution is also accompanied by a change in line profile; when the absorption becomes stronger, a P Cygni profile appears. We discuss SN 2011A in the context of interacting SNe IIn and SN impostors, which appears to confirm the uniqueness of this transient. While we favor an impostor origin for SN 2011A, we highlight the difficulty in differentiating between terminal and non-terminal interacting transients. This paper includes data obtained with the 6.5 m Magellan Telescopes and du Pont telescope; the Gemini-North Telescope, Mauna Kea, USA (Gemini Program GN-2010B-Q67, PI: Stritzinger); the PROMPT telescopes at Cerro Tololo Inter-American Observatory in Chile; with the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council; based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias; the NTT from ESO Science Archive

  1. Optical properties of reduced graphene oxide and CuFe2O4 composites in the IR region (United States)

    Ma, De-yue; Li, Xiao-xia; Guo, Yu-xiang; Zeng, Yu-run


    The complex refractive index of reduced graphene oxide and CuFe2O4 composites prepared by hydrothermal method was calculated using infrared Micro-reflective spectra and K-K relation, and the calculation errors were analyzed according to its IR transmission and spectral reflectivity calculated by Fresnel formula. And then normal emissivity of the composite in IR atmospheric window was calculated by means of Fresnel formula and modified refraction angle formula. The calculation accuracy was verified by comparing measured normal total emissivity with the calculated one. The results show that complex refractive index and normal emissivity calculated by the formulas have a high accuracy. It has been found that the composite has a good absorption and radiation characteristics in IR atmospheric window and a strong scattering ability in middle IR region by analyzing its extinction, absorption and radiation properties in IR region. Therefore, it may be used as IR absorption, extinction and radiation materials in some special fields.

  2. Erythritol reduces small intestinal glucose absorption, increases muscle glucose uptake, improves glucose metabolic enzymes activities and increases expression of Glut-4 and IRS-1 in type 2 diabetic rats. (United States)

    Chukwuma, Chika Ifeanyi; Mopuri, Ramgopal; Nagiah, Savania; Chuturgoon, Anil Amichund; Islam, Md Shahidul


    Studies have reported that erythritol, a low or non-glycemic sugar alcohol possesses anti-hyperglycemic and anti-diabetic potentials but the underlying mode of actions is not clear. This study investigated the underlying mode of actions behind the anti-hyperglycemic and anti-diabetic potentials of erythritol using different experimental models (experiment 1, 2 and 3). Experiment 1 examined the effects of increasing concentrations (2.5-20%) of erythritol on glucose absorption and uptake in isolated rat jejunum and psoas muscle, respectively. Experiments 2 and 3 examined the effects of a single oral dose of erythritol (1 g/kg bw) on intestinal glucose absorption, gastric emptying and postprandial blood glucose increase, glucose tolerance, serum insulin level, muscle/liver hexokinase and liver glucose-6 phosphatase activities, liver and muscle glycogen contents and mRNA and protein expression of muscle Glut-4 and IRS-1 in normal and type 2 diabetic animals. Experiment 1 revealed that erythritol dose dependently enhanced muscle glucose ex vivo. Experiment 2 demonstrated that erythritol feeding delayed gastric emptying and reduced small intestinal glucose absorption as well as postprandial blood glucose rise, especially in diabetic animals. Experiment 3 showed that erythritol feeding improved glucose tolerance, muscle/liver hexokinase and liver glucose-6 phosphatase activities, glycogen storage and also modulated expression of muscle Glut-4 and IRS-1 in diabetic animals. Data suggest that erythritol may exert anti-hyperglycemic effects not only via reducing small intestinal glucose absorption, but also by increasing muscle glucose uptake, improving glucose metabolic enzymes activity and modulating muscle Glut-4 and IRS-1 mRNA and protein expression. Hence, erythritol may be a useful dietary supplement for managing hyperglycemia, particularly for T2D.

  3. Surface studies on graphite furnace platforms covered with Pd, Rh and Ir as modifiers in graphite furnace atomic absorption spectrometry of tellurium

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, Juana [Area de Química Analítica, Departamento de Química, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829 (S3000GL.N), Santa Fe (Argentina); Stripekis, Jorge [Laboratorio de Análisis de Trazas, Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires (Argentina); Departamento de Ingeniería Química, Instituto Tecnológico de Buenos Aires, Av. Eduardo Madero 399 (1106), Buenos Aires (Argentina); Bonivardi, Adrian [Area de Química Analítica, Departamento de Química, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829 (S3000GL.N), Santa Fe (Argentina); Tudino, Mabel, E-mail: [Laboratorio de Análisis de Trazas, Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires (Argentina)


    The main objective of this work is the study of correlations between the efficiency of the distribution of the permanent platinum group modifiers Pd, Rh and Ir over the graphite surface with the aim of improving analytical signal of tellurium. Modifier solution was deposited onto the platform and pyrolysed after drying. In the case of Pd, the physical vaporization/deposition technique was also tested. In order to analyze the differences amongst coverings (morphology, topology and distribution), the graphite surfaces were studied with scanning electron microscopy and energy dispersive X-ray microscopy. Micrographs for physical vaporization and pyrolytic deposition of Pd were also analyzed in order to explain the lack of signal obtained for tellurium with the first alternative. Similar micrographs were obtained for pyrolytic deposition of Ir and Rh and then, compared to those of Pd. Ir showed the most homogeneous distribution on the graphite surface and the tallest and sharpest transient. With the aim of improving the analytical signal of tellurium, the correlation between the surface studies and the tellurium transient signal (height, area and shape) is discussed. - Highlights: • Distribution of Rh, Pd and Ir onto graphite furnaces is evaluated by SEM and EDX • Micrographs and spectra showed that surface distribution could influence Te signal. • Ir showed the best signal together with the most homogeneous surface distribution. • Pd-PVD micrographs revealed the absence of graphite and no signal for Te.

  4. Enhancement of Near-IR Photoelectric Conversion in Dye-Sensitized Solar Cells Using an Osmium Sensitizer with Strong Spin-Forbidden Transition. (United States)

    Kinoshita, Takumi; Fujisawa, Jun-Ichi; Nakazaki, Jotaro; Uchida, Satoshi; Kubo, Takaya; Segawa, Hiroshi


    A new osmium (Os) complex of the [Os(tcterpy)-(4,4'-bis(p-butoxystyryl)-2,2'-bipyridine)Cl]PF6 (Os-stbpy) has been synthesized and characterized for dye-sensitized solar cells (DSSCs). The Os-stbpy dye shows enhanced spin-forbidden absorptions around 900 nm. The DSSCs with Os-stbpy show a wide-band spectral response up to 1100 nm with high overall conversion efficiency of 6.1% under standard solar illumination.

  5. Development and Characterization of a High Speed Mid-IR Tunable Diode Laser Absorption Spectrometer for CO and CO2 Detection in Detonation Events (United States)


    fundamental equation for absorption spectroscopy follows from the Beer - Lambert Law , ( It I0 )v = e− S PxiφνL, (2.1) where S is the line-strength of in frequency space, the Beer - Lambert law was applied in order to express the data in terms of absorption coefficient. This task was accomplished...according to an intensity where no absorption occurs according to Beer’s Law . Furthermore, the plots now focus on the regions of interest. For an

  6. Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy

    NARCIS (Netherlands)

    van Veen, R. L. P.; Sterenborg, H. J. C. M.; Pifferi, A.; Torricelli, A.; Chikoidze, E.; Cubeddu, R.


    In-vivo optical spectroscopy and the determination of tissue absorption and scattering properties have a central role in the development of novel optical diagnostic and therapeutic modalities in medicine. A number of techniques are available for the optical characterization of tissue in the visible

  7. Characterization and dating of blue ballpoint pen inks using principal component analysis of UV-Vis absorption spectra, IR spectroscopy, and HPTLC. (United States)

    Senior, Samir; Hamed, Ezzat; Masoud, Mamdouh; Shehata, Eman


    The ink of pens and ink extracted from lines on white photocopier paper of 10 blue ballpoint pens were subjected to ultraviolet-visible (UV-Vis) spectroscopy, infrared (IR), and high-performance thin-layer liquid chromatography (HPTLC). The R(f) values and color tones of the bands separated by thin-layer chromatography (TLC) analysis used to classify the writing inks into three groups. The principal component analysis (PCA) investigates the pen responsible for a piece of writing, and how time affects spectroscopy of written ink. PCA can differentiate between pen ink and ink line indicates the influence of solvent extraction process on the results. The PCA loadings are useful in individualization of a questioned ink from a database. The PCA of ink lines extracted at different times can be used to estimate the time at which a questioned document was written. The results proved that the UV-Vis spectra are effective tool to separate blue ballpoint pen ink in most cases rather than IR and HPTLC. © 2012 American Academy of Forensic Sciences.

  8. Observation of the long-lived triplet excited state of perylenebisimide (PBI) in C^N cyclometalated Ir(III) complexes and application in photocatalytic oxidation. (United States)

    Sun, Jifu; Zhong, Fangfang; Zhao, Jianzhang


    Perylenebisimide (PBI) was used to prepare C^N cyclometalated Ir(III) complexes that show strong absorption of visible light and it is the first time the long-lived triplet excited state of PBI chromophore was observed in a transition metal complex (τT = 22.3 μs). Previously, the lifetime of the triplet state of PBI in transition metal complexes was usually shorter than 1.0 μs. Long-lived triplet excited states are useful for applications in photocatalysis or other photophysical processes concerning triplet-triplet-energy-transfer. PBI and amino-PBI were used for preparation of cyclometalated Ir(III) complexes (Ir-2 and Ir-3), in which the PBI chromophore was connected to the coordination center via C≡C π-conjugation bond. The new complexes show strong absorption in visible region (ε = 34,200 M(-1) cm(-1) at 541 nm for Ir-2, and ε = 19,000 at 669 nm for Ir-3), compared to the model complex Ir(ppy)(bpy)[PF6] Ir-1 (ε PBI-localized long-lived (3)IL states were populated for Ir-2 and Ir-3 upon photoexcitation. The complexes were used as triplet photosensitizers for (1)O2-mediated photooxidation of 1,5-dihydronaphthalene to produce juglone, an important intermediate for preparation of anti-cancer compounds. (1)O2 quantum yields (Φ(Δ)) up to 91% were observed for the new Ir(III) complexes and the overall photosensitizing ability is much higher than the conventional Ir(III) complex Ir-1, which shows the typical weak visible light absorption in visible region. Our results are useful for preparation of transition metal complexes that show strong absorption of visible light and long-lived triplet excited state and for the application of these complexes in photocatalysis.

  9. Global sampling of the photochemical reaction paths of bromoform by ultrafast deep-UV through near-IR transient absorption and ab initio multiconfigurational calculations. (United States)

    Pal, S K; Mereshchenko, A S; Butaeva, E V; El-Khoury, P Z; Tarnovsky, A N


    Ultrafast deep-ultraviolet through near infrared (210-950 nm) transient absorption spectroscopy complemented by ab initio multiconfigurational calculations offers a global description of the photochemical reaction pathways of bromoform following 255-nm excitation in methylcyclohexane and acetonitrile solutions. Photoexcitation of CHBr3 leads to the ground-state iso-CHBr3 product in a large quantum yield (∼35%), formed through two different mechanisms: concerted excited-state isomerization and cage-induced isomerization through the recombination of the nascent radical pair. These two processes take place on different time scales of tens of femtoseconds and several picoseconds, respectively. The novel ultrafast direct isomerization pathway proposed herein is consistent with the occurrence of a conical intersection between the first excited singlet state of CHBr3 and the ground electronic state of iso-CHBr3. Complete active space self-consistent field calculations characterize this singularity in the vicinity of a second order saddle point on the ground state which connects the two isomer forms. For cage-induced isomerization, both the formation of the nascent radical pair and its subsequent collapse into ground-state iso-CHBr3 are directly monitored through the deep-ultraviolet absorption signatures of the radical species. In both mechanisms, the optically active (i.e., those with largest Franck-Condon factors) C-Br-Br bending and Br-Br stretching modes of ground-state iso-CHBr3 have the largest projection on the reaction coordinate, enabling us to trace the structural changes accompanying vibrational relaxation of the non-equilibrated isomers through transient absorption dynamics. The iso-CHBr3 photoproduct is stable in methylcyclohexane, but undergoes either facile thermal isomerization to the parent CHBr3 structure through a cyclic transition state stabilized by the polar acetonitrile medium (∼300-ps lifetime), and hydrolysis in the presence of water.

  10. The effect of interligand energy transfer on the emission spectra of heteroleptic Ir complexes. (United States)

    Cho, Yang-Jin; Kim, So-Yoen; Son, Ho-Jin; Cho, Dae Won; Kang, Sang Ook


    In order to understand the causes of the emission shape and colour changes of heteroleptic Ir 3+ complexes containing 2-(2,4-difluorophenyl)pyridine (dfppy) as the main ligands, we introduced two types of ancillary ligands: (1) non-luminescent ancillary ligands, namely tetrakis(pyrazolyl)borate (bor) and picolinate (pic), which were employed for the preparation of Ir(dfppy) 2 (bor) and Ir(dfppy) 2 (pic), respectively, and (2) luminescent ancillary ligands, namely 1,10-phenanthroline (phen), bipyridine (bpy), and 2,3-dipyridylpyrazine (dpp), which were employed for the preparation of Ir(dfppy) 2 (phen), Ir(dfppy) 2 (bpy), and Ir(dfppy) 2 (dpp), respectively. In a glassy matrix at 77 K, the Ir complexes showed well-structured emission spectra, except Ir(dfppy) 2 (dpp). The vibronic structures in the emission spectra of Ir(dfppy) 2 (bor) and Ir(dfppy) 2 (pic) were maintained even at 300 K. However, Ir(dfppy) 2 (phen), Ir(dfppy) 2 (bpy), and Ir(dfppy) 2 (dpp) showed markedly red-shifted and broad emission spectra. The anomalous rigidochromism was attributed to an interligand energy transfer (ILET), and showed a strong temperature dependence. The excited states of dfppy are higher than those of phen, bpy, and dpp; thus, ILET occurs from dfppy to the other ligands lying in lower energy states. The ILET dynamics were probed directly using femtosecond transient absorption (TA) spectroscopy after the excitation of dfppy. As the time delay increased, the intensity of the TA band of dfppy decreased, while those of the bands related to the phen, bpy, and dpp ancillary ligands increased. On the other hand, no changes in the TA spectra were observed for Ir(dfppy) 2 (bor) and Ir(dfppy) 2 (pic). The TA spectral behaviours can be explained in terms of the relative ordering of the emissive states for cyclometalating and ancillary ligands.

  11. Amberlite IR-120 modified with 8-hydroxyquinoline as efficient adsorbent for solid-phase extraction and flame atomic absorption determination of trace amounts of some metal ions. (United States)

    Daneshfar, Ali; Ghaedi, M; Vafafard, S; Shiri, L; Sahrai, R; Soylak, M


    In this study, a solid-phase extraction method combined with atomic absorption spectrometry for extraction, preconcentration, and determination of iron (Fe(3+)), copper (Cu(2+)), and lead (Pb(2+)) ions at trace levels in water samples has been reported. The influences of effective parameters such as flow rate, pH, eluent conditions (type, volume, and concentration), sample volumes, and interference of matrix ions on metal ions recoveries were studied. Under optimized conditions, the limits of detection were found in the range of 0.7-2.2 μg L(-1), while preconcentration factors for Fe(3+), Cu(2+), and Pb(2+) ions were found to be 166, 200, and 250, respectively, and loading half time (t (1/2)) values were less than 2 min for all analyte ions. The proposed procedure was applied for the determination of metal ions in different water samples with recovery of >94.4% and relative standard deviation less than 4.4% for N = 5.

  12. Strong far-infrared intersubband absorption under normal incidence in heavily n-type doped nonalloy GaSb-AlSb superlattices (United States)

    Samoska, L. A.; Brar, Berinder; Kroemer, H.


    We report on long-wavelength intersubband absorption under normal incidence in heavily doped binary-binary GaSb-AlSb superlattices. Due to a small energy difference between the ellipsoidal L valleys in GaSb and the low-density-of-states Gamma minimum, electrons spill over from the first Gamma subband into the higher-energy L subband in GaSb wells, where they are allowed to make an intersubband transition under normally incident radiation. A peak fractional absorption per quantum well of 6.8 x 10 exp 3 (absorption coefficient alpha of about 8500/cm) is observed at about 15 microns wavelength for a sheet concentration of 1.6 x 10 exp 12 sq cm/well.

  13. Absorption and Scattering by Molecules and Particles (United States)

    Lenoble, Jacqueline; Mishchenko, Michael I.; Herman, Maurice


    The Earth's atmosphere absorbs, scatters, and emits electromagnetic radiation. Although air molecules are the primary actors in these processes, aerosol particles are also present ubiquitously and modify the radiation field. In fact, this modification constitutes the very physical basis of aerosol remote sensing. Whenever clouds are present, they have a much larger influence on radiation which largely overshadows the aerosol impact. Therefore, in aerosol remote sensing, one often has to limit observations to cloudless conditions and screen cloudy pixels. In the solar part of the spectrum, molecular absorption is mostly limited to ultraviolet (UV; ozone) and near-infrared (near-IR; carbon dioxide, water vapor) wavelengths and is characterized by strong and narrow oxygen bands. A brief description of atmospheric molecular absorption is presented in Section 2.2. Shortwave aerosol remote sensing is usually performed outside the absorption bands, but some instruments also have channels capturing absorption bands with the objective of quantifying gaseous components.

  14. Thermal behavior of H-aggregate in a mixed Langmuir-Blodgett film of merocyanine dye, arachidic acid, and n-octadecane ternary system investigated by UV-visible and IR absorption spectroscopy. (United States)

    Hirano, Yoshiaki; Tateno, Shinsuke; Yamashita, Yoshihide; Ozaki, Yukihiro


    We have investigated the thermal behavior of H-aggregate in a mixed Langmuir-Blodgett (LB) film of the merocyanine dye (MS18)-arachidic acid (C20)- n-octadecane (AL18) ternary system by means of UV-visible and IR absorption spectroscopy in the range from 25 to 250 degrees C with a continuous scan. The results of both UV-visible and IR spectra indicate that the temperature-dependent variation in MS 18 aggregation state is linked not only with the degree of intramolecular charge transfer and the behavior of packing, orientation, conformation, and thermal mobility of the MS18 hydrocarbon chain but also with the presence and absence of AL18. The H-aggregate dissociates from 25 up to 50 degrees C, which is caused by the AL18 evaporation from the mixed LB film and the increment of thermal mobility of the MS18 hydrocarbon chain. From 110 to 160 degrees C, blue-shifted bands, attributed to the oligomeric MS18 aggregation, appear near 515 nm in the MS18-C 20-AL18 ternary system as well. The temperature at which the 515 nm band occurs is identical for both present ternary system and previously investigated MS18-deuterated arachidic acid (C20- d) binary system, and it is in good agreement with the melting point (110 degrees C) of cadmium arachidate (CdC20). Therefore, it is indicated that the driving force which induces the 515 nm band comes from the melting phenomenon of CdC20 molecules which are phase-separated from MS 18 molecules in as-deposited LB films.

  15. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument (United States)

    Kristin Lewis; William P. Arnott; Hans Moosmuller; Cyle E. Wold


    A dual-wavelength photoacoustic instrument operating at 405 and 870 nm was used during the 2006 Fire Lab at Missoula Experiment to measure light scattering and absorption by smoke from the combustion of a variety of biomass fuels. Simultaneous measurements of aerosol light scattering by reciprocal nephelometry within the instrument's acoustic resonator accompany...

  16. The effect of threading dislocations on optical absorption and electron scattering in strongly mismatched heteroepitaxial III-V compound semiconductors on silicon

    CERN Document Server

    Peiner, E; Wehmann, H H


    The effect of threading dislocations on the optical and electrical properties of InP and GaAs heteroepitaxial layers on (001) silicon was investigated. Charged deep states act as scattering centres for electrons, thus affecting the electron mobility at low temperatures. The electric field arising from charged dislocations causes enhanced optical absorption at wavelengths near the fundamental absorption edge. The mean charge of the threading dislocations in GaAs/Si was found to be considerably higher than that for InP/Si. A model is described relating this effect to a regular arrangement of alpha-type 60 deg. dislocations at extended twin defects which were observed in InP/Si but were absent in GaAs/Si.

  17. Inyang, IR

    African Journals Online (AJOL)

    Inyang, IR. Vol 5, No 4 (2009) - Articles Changes in Total Protein and Transaminase Activities in Clarias Gariepinus Exposed to Diazinon Abstract. ISSN: 0794-4721. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and ...

  18. Direct determination of lead in produced waters from petroleum exploration by electrothermal atomic absorption spectrometry X-ray fluorescence using Ir-W permanent modifier combined with hydrofluoric acid

    International Nuclear Information System (INIS)

    Oliveira, Eliane P.; Santelli, Ricardo E.; Cassella, Ricardo J.


    The present work reports the development of a methodology for the direct determination of lead in high saline waters derived from petroleum exploration employing electrothermal atomic absorption spectrometry with permanent Ir-W and HF as modifiers. These waters, so-called produced waters, have complex composition containing several types of organic and inorganic substances. In order to attain best conditions (highest analytical signal besides lowest background) for the methodology studies about the effect of several variables and the convenient calibration strategy were performed. Also, the efficiency of other modification approaches was evaluated. At best conditions, pyrolysis and atomization temperature were 800 and 2200 deg. C, respectively, when the modifiers cited above were utilized. Obtained results indicate that, in this kind of sample, lead can be determined by standard addition method or employing external calibration with standard solutions prepared in 0.8 mol l -1 NaCl medium. In order to evaluate the accuracy of the procedure, a recovery test was performed with six spiked samples of produced waters. The detection limit, quantification limit and the relative standard deviation in 0.8 mol l -1 NaCl were also calculated and the values are 1.5 μg l -1 , 5.0 μg l -1 and 5.0% (at 10 μg l -1 level), respectively

  19. Doubly and triply linked porphyrin-perylene monoimides as near IR dyes with large dipole moments and high photostability

    KAUST Repository

    Jiao, Chongjun


    Doubly and triply linked porphyrin-perylene monoimides 3 and 4, with extraordinary stability, large dipole moments, and strong near IR absorption, were prepared by means of one-pot oxidative cyclodehydrogenation promoted by FeCl 3. © 2010 American Chemical Society.

  20. First remote sensing measurements of ClOOCl along with ClO and ClONO2 in activated and deactivated Arctic vortex conditions using new ClOOCl IR absorption cross sections

    Directory of Open Access Journals (Sweden)

    M. Birk


    Full Text Available Active chlorine species play a dominant role in the catalytic destruction of stratospheric ozone in the polar vortices during the late winter and early spring seasons. Recently, the correct understanding of the ClO dimer cycle was challenged by the release of new laboratory absorption cross sections (Pope et al., 2007 yielding significant model underestimates of observed ClO and ozone loss (von Hobe et al., 2007. Under this aspect, nocturnal Arctic stratospheric limb emission measurements carried out by the balloon version of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B from Kiruna (Sweden on 11 January 2001 and 20/21 March 2003 have been reanalyzed with regard to the chlorine reservoir species ClONO2 and the active species, ClO and ClOOCl (Cl2O2. New laboratory measurements of IR absorption cross sections of ClOOCl for various temperatures and pressures allowed for the first time the retrieval of ClOOCl mixing ratios from remote sensing measurements. High values of active chlorine (ClOx of roughly 2.3 ppbv at 20 km were observed by MIPAS-B in the cold mid-winter Arctic vortex on 11 January 2001. While nighttime ClOOCl shows enhanced values of nearly 1.1 ppbv at 20 km, ClONO2 mixing ratios are less than 0.1 ppbv at this altitude. In contrast, high ClONO2 mixing ratios of nearly 2.4 ppbv at 20 km have been observed in the late winter Arctic vortex on 20 March 2003. No significant ClOx amounts are detectable on this date since most of the active chlorine has already recovered to its main reservoir species ClONO2. The observed values of ClOx and ClONO2 are in line with the established polar chlorine chemistry. The thermal equilibrium constants between the dimer formation and its dissociation, as derived from the balloon measurements, are on the lower side of reported data and in good agreement with values recommended by von Hobe et al. (2007. Calculations with the ECHAM/MESSy Atmospheric Chemistry model (EMAC using

  1. Mid-IR Plasmonics, Cavity Coupled Excitations, and IR Spectra of Individual Airborne Particulate Matter (United States)

    Luthra, Antriksh

    With the advances in plasmonics, new fields have evolved involving the mixing of light with various states like Surface Plasmons (SPs), Surface Phonons (SPh), molecular emitters or resonators, and wavelength scale cavities. This work concentrates on the interaction of infrared (IR) light with SPs, cavity modes, and molecular vibrations. In the first chapter, the field of Plasmonics is introduced from a classical and a quantum mechanical perspective and a comparison of both is presented. In Chapter 2, the interaction of cavity modes with vibrations is discussed. Briefly, when IR light is illuminated upon an etalon, its fringes disperse as function of angle. If there is a dielectric in a cavity having a vibrational transition in the fringe region, it leads to a strong interaction that gives rise to a Rabi splitting. Data was obtained from collaborators at the U.S. Naval Research Laboratory (NRL) and a derivation for the dispersion of etalon cavity modes was carried out to model the peak positions of the fringes. In Chapter 3, the excitation of Surface Plasmons Polaritons (SPPs) on metal bi-gratings is discussed. The resonance condition occurs when the momentum of the IR light parallel to the surface plus the grating vector match the momentum of the SPP. Experiments were performed in the GammaX space (ky=0) and the resonance peak positions were modeled with SPP momentum matching equations. In Chapter 4, the application of plasmonics in the mid-IR frequency range that overlaps with the frequencies of molecular vibrations is explored. The plasmonic mesh has interesting optical properties, it focuses more light in the holes and that leads to an enhancement of the IR spectra of a particle trapped in the mesh hole. In this work, plasmonic mesh is used to study airborne particles that are usually difficult to study using FTIR spectroscopy due to strong Mie scattering effect. Respiring dust particles of 4 microns size has significant negative health consequences. Different

  2. Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, Sound-absorption and thermal Insulation. (United States)

    Wang, Chao; Xiong, Ye; Fan, Bitao; Yao, Qiufang; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng


    The lignin aerogels that are both high porosity and compressibility would have promising implications for bioengineering field to sound-adsorption and damping materials; however, creating this aerogel had a challenge to adhesive lignin. Here we reported cellulose as green adhesion agent to synthesize the aerogels with strong mechanical performance. Our approach-straightforwardly dissolved in ionic liquids and simply regenerated in the deionized water-causes assembly of micro-and nanoscale and even molecule level of cellulose and lignin. The resulting lignin aerogels exhibit Young's modulus up to 25.1 MPa, high-efficiency sound-adsorption and excellent thermal insulativity. The successful synthesis of this aerogels developed a path for lignin to an advanced utilization.

  3. Removal of Thin Cirrus Path Radiances in the 0.4-1.0 micron Spectral Region Using the 1.375-micron Strong Water Vapor Absorption Channel (United States)

    Gao, Bo-Cai; Kaufman, Yoram J.; Han, Wei; Wiscombe, Warren J.


    Through analysis of spectral imaging data acquired with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) from an ER-2 aircraft at 20 km altitude during several field programs, it was found that narrow channels near the center of the strong 1.38-micron water vapor band are very sensitive in detecting thin cirrus clouds. Based on this observation from AVIRIS data, a channel centered at 1.375 microns with a width of 30 nm was selected for the Moderate Resolution Imaging Spectrometer (MODIS) for remote sensing of cirrus clouds from space. The sensitivity of the 1.375-micron MODIS channel to detect thin cirrus clouds during the day time is expected to be one to two orders of magnitude better than the current infrared emission techniques. As a result, a larger fraction of the satellite data will likely be identified as containing cirrus clouds. In order to make better studies of surface reflectance properties, thin cirrus effects must be removed from satellite images. We have developed an empirical approach for removing/correcting thin cirrus effects in the 0.4 - 1.0 micron region using channels near 1.375 microns. This algorithm will be incorporated into the present MODIS atmospheric correction algorithms for ocean color and land applications and will yield improved MODIS atmospheric aerosol, land surface, and ocean color products.

  4. X-ray magnetic circular dichroism at IrL 2,3 edges in Fe 100- Ir

    Indian Academy of Sciences (India)

    3, 10 and 17) and Co100-Ir (=5, 17, 25 and 32) alloys has been investigated by X-ray magnetic circular dichroism (XMCD) at Ir L2,3 absorption edges. Sum rule analysis of the XMCD data show that the orbital moment of Ir is in the range of ...

  5. An infrared metamaterial selective absorber with emitter considering atmospheric absorption for low observability (Conference Presentation) (United States)

    Kim, Jagyeong; Han, Kiwook; Hahn, Jae W.


    Advancement in stealth technology is very crucial for the protection from enemy. Detection of IR electromagnetic wave is performed by detecting the IR radiation from aircraft fuselage or reflected laser by using laser guided missile. In this research, we designed the metamaterial selective absorber with emitter considering atmospheric absorption to minimize observability from these detecting system. The model is designed as T-asymmetric structure for dual-band absorption or emission, and these two parts can be independently tuned. One part is designed as emitter which emit the radiation in the wavelength region where atmospheric absorption is strong. In order to select the target wavelength region, we used the MODTRAN database to calculate the molecular absorption in the atmosphere and strong absorptions occurs at 2μm, 4μm and 5-8μm wavelength regions. The other part is designed as an absorber which absorbs the IR signal from laser guided missile at 1.064μm. Selective emission or absorption at these wavelength region can be achieved by tuning the geometry of the structure. These mechanisms suppose the thermal equilibrium state so that the Kirchhoff law is satisfied. FDTD simulations of the designed structure was conducted to confirm the electromagnetic resonance. Also, we calculated the detected energy from the designed structure and compared with that from conventional aircraft surface. According to the calculation results, the measured signal from the suggested structure decreases to 1/10 of the signal from conventional surface.

  6. A strong steric hindrance effect on ground state, excited state, and charge separated state properties of a CuI-diimine complex captured by X-ray transient absorption spectroscopy

    DEFF Research Database (Denmark)

    Huang, J.; Mara, M.W.; Stickrath, A.B.


    Photophysical and structural properties of a CuI diimine complex with very strong steric hindrance, [CuI(dppS)2]+ (dppS = 2,9-diphenyl-1,10-phenanthroline disulfonic acid disodium salt), are investigated by optical and X-ray transient absorption (OTA and XTA) spectroscopy. The bulky phenylsulfonic...... dynamics and structures as well as those of the charge separated state resulting from the interfacial electron injection from the MLCT state to TiO2 nanoparticles (NPs). The OTA results show the absence of the sub-picosecond component previously assigned as the time constant for flattening, while the two...... of metal complex/semiconductor NP hybrids but also provide guidance for designing efficient CuI diimine complexes with optimized structures for application in solar-to-electricity conversion. This journal is...

  7. Polarization and Strong Infra-Red Activity in Compressed Solid Hydrogen


    Souza, Ivo; Martin, Richard M.


    Under a pressure of ~150 GPa solid molecular hydrogen undergoes a phase transition accompanied by a dramatic rise in infra-red absorption in the vibron frequency range. We use the Berry's phase approach to calculate the electric polarization in several candidate structures finding large, anisotropic dynamic charges and strongly IR-active vibron modes. The polarization is shown to be greatly affected by the overlap between the molecules in the crystal, so that the commonly used Clausius-Mossot...

  8. Critical Dispersion-Theory Tests of Silicon's IR Refractive Index (United States)

    Karstens, William; Smith, D. Y.

    Silicon strongly absorbs both visible and UV light, but is highly transparent in the IR. Hence, it is a common choice for infrared windows and lenses. However, optical design is hindered by literature index values that disagree by up to 1%. In contrast optical-glass indices are known to 0.01% or better. The most widely available silicon IR indices are based on bulk measurements using either Snell's-Law refraction by a prism or channel-spectra interference of front- and backsurface reflections from a planar sample. To test the physical acceptability of these data, we have developed criteria based on a Taylor expansion of the Kramers-Kronig relation for the index at energies below strong inter-band transitions. These tests require that the coefficients of the series in powers of energy squared must be positive within the region of transparency. This is satisfied by essentially all prism measurements; their small scatter arises primarily from impurities and doping. In contrast, channel-spectra data fail in the second and third coefficients. A review of the experimental analysis indicates three problems besides purity: incorrect channel number arising from a channel-spectra model that neglects spectrum distortion by the weak lattice absorption; use of a series expansion of mixed parity in photon energy to describe the even-parity index; and use of an incorrect absorption energy in the Li-Sellmeier dispersion formula. Recommendations for IR index values for pure silicon will be discussed. Supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC02-06CH11357.

  9. Local structural displacements across the structural phase transition in IrTe2: Order-disorder of dimers and role of Ir-Te correlations (United States)

    Joseph, B.; Bendele, M.; Simonelli, L.; Maugeri, L.; Pyon, S.; Kudo, K.; Nohara, M.; Mizokawa, T.; Saini, N. L.


    We have studied local structure of IrTe2 by Ir L3-edge extended x-ray absorption fine structure (EXAFS) measurements as a function of temperature to investigate origin of the observed structural phase transition at Ts˜270 K. The EXAFS results show an appearance of longer Ir-Te bond length (ΔR ˜0.05 Å) at T Ir-Ir dimerization, characterized by distinct Ir-Ir bond lengths (ΔR ˜0.13 Å), existing both above and below Ts. The results suggest that the phase transition in IrTe2 should be an order-disorder-like transition of Ir-Ir dimers assisted by Ir-Te bond correlations, thus indicating important role of the interaction between the Ir 5d and Te 5p orbitals in this transition.

  10. DFT Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters (United States)


    these clusters is important for understanding the scattering and absorption of radiation transmitted through ambient environments, which is for...associated with different types of ambient molecules, e.g., H2O, in order to apply background subtraction or spectral-signature-correlation algorithms

  11. Microstructures as IR-sensors with Staphylococcus aureus bacteria (United States)

    Baikova, T. V.; Danilov, P. A.; Gonchukov, S. A.; Yermachenko, V. M.; Ionin, A. A.; Khmelnitskii, R. A.; Kudryashov, S. I.; Nguyen, T. T. H.; Rudenko, A. A.; Saraeva, I. N.; Svistunova, T. S.; Zayarny, D. A.


    Using a micro-hole grating in a supported silver film as a laser-fabricated novel optical platform for surface-enhanced IR absoprtion/reflection spectroscopy, characteristic absorption bands of Staphylococcus aureus, especially - its buried carotenoid fragments - were detected in FT-IR spectra with 10-fold analytical enhancement, paving the way to spectral express-identification of the pathogenic microorganisms.

  12. Infrared Absorption Band Assignment in Benzanilide and Some of its p

    African Journals Online (AJOL)



    nitrobenzanilide only. However, no absorption band(s) that can be readily attributed to Amide VI mode was observed for all the benzanilides. Keywords: Benzanilide, IR Absorption Band. INTRODUCTION. The infrared absorption spectra ...

  13. Visualizing Infrared (IR) Spectroscopy with Computer Animation (United States)

    Abrams, Charles B.; Fine, Leonard W.


    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  14. Sodium iron EDTA and ascorbic acid, but not polyphenol oxidase treatment, counteract the strong inhibitory effect of polyphenols from brown sorghum on the absorption of fortification iron in young women. (United States)

    Cercamondi, Colin I; Egli, Ines M; Zeder, Christophe; Hurrell, Richard F


    In addition to phytate, polyphenols (PP) might contribute to low Fe bioavailability from sorghum-based foods. To investigate the inhibitory effects of sorghum PP on Fe absorption and the potential enhancing effects of ascorbic acid (AA), NaFeEDTA and the PP oxidase enzyme laccase, we carried out three Fe absorption studies in fifty young women consuming dephytinised Fe-fortified test meals based on white and brown sorghum varieties with different PP concentrations. Fe absorption was measured as the incorporation of stable Fe isotopes into erythrocytes. In study 1, Fe absorption from meals with 17 mg PP (8·5%) was higher than that from meals with 73 mg PP (3·2%) and 167 mg PP (2·7%; P< 0·001). Fe absorption from meals containing 73 and 167 mg PP did not differ (P= 0·9). In study 2, Fe absorption from NaFeEDTA-fortified meals (167 mg PP) was higher than that from the same meals fortified with FeSO₄ (4·6 v. 2·7%; P< 0·001), but still it was lower than that from FeSO₄-fortified meals with 17 mg PP (10·7%; P< 0·001). In study 3, laccase treatment decreased the levels of PP from 167 to 42 mg, but it did not improve absorption compared with that from meals with 167 mg PP (4·8 v. 4·6%; P= 0·4), whereas adding AA increased absorption to 13·6% (P< 0·001). These findings suggest that PP from brown sorghum contribute to low Fe bioavailability from sorghum foods and that AA and, to a lesser extent, NaFeEDTA, but not laccase, have the potential to overcome the inhibitory effect of PP and improve Fe absorption from sorghum foods.

  15. Secondary structure and lipid interactions of the N-terminal segment of pulmonary surfactant SP-C in Langmuir films: IR reflection-absorption spectroscopy and surface pressure studies

    DEFF Research Database (Denmark)

    Bi, Xiaohong; Flach, Carol R; Pérez-Gil, Jesus


    reflection-absorption spectroscopy (IRRAS) to determine peptide conformation and the effects of S-palmitoylation on the lipid interactions of a synthetic 13 residue N-terminal peptide [SP-C13(palm)(2)] of SP-C, in mixtures with 1,2-dipalmitoylphosphatidylcholine (DPPC) or 1,2-dipalmitoylphosphatidylglycerol...... (DPPG). Two Amide I' features, at approximately 1655 and approximately 1639 cm(-1) in the peptide IRRAS spectra, are assigned to alpha-helical peptide bonds in hydrophobic and aqueous environments, respectively. In binary DPPC/SP-C13(palm)(2) films, the proportion of hydrated/hydrophobic helix increases...

  16. Ultrasonic absorption

    International Nuclear Information System (INIS)

    Beyer, R.T.


    The paper reviews studies of ultrasonic absorption in liquid alkali metals. The experimental methods to measure the absorption coefficients are briefly described. Experimental results reported for the liquid metals: sodium, potassium, rubidium and caesium, at medium temperatures, are presented, as well as data for liquid alloys. Absorption losses due to the presence of an external magnetic field, and the effects of viscosity on the absorption in metals, are both discussed. (U.K.)

  17. Photochemical Properties of CH2═CH-CFCl-CF2Br (4-Bromo-3-chloro-3,4,4-trifluoro-1-butene) and CH3-O-CH(CF3)2(Methyl Hexafluoroisopropyl Ether): OH Reaction Rate Constants and UV and IR Absorption Spectra. (United States)

    Orkin, Vladimir L; Martynova, Larissa E; Kurylo, Michael J


    Rate constants for the reactions of hydroxyl radicals (OH) with 1,1,1,3,3,3-hexafluoroisopropyl methyl ether (CH 3 -O-CH(CF 3 ) 2 ) and 4-bromo-3-chloro-3,4,4-trifluoro-1-butene (CH 2 ═CH-CFCl-CF 2 Br) have been measured over the temperature range 230-370 K to give the following Arrhenius expressions: k CH3OCH(CF3)2 (T) = 7.69 × 10 -14 × (T/298) 2.99 × exp(+342/T), cm 3 molecule -1 s -1 , and k CH2CHCFClCF2Br (T) = (6.45 ± 0.72) × 10 -13 × exp{+(424 ± 32)/T}, cm 3 molecule -1 s -1 . Atmospheric lifetimes of compounds were estimated to be 67 days and 4.5 days, respectively. UV absorption spectrum of CH 2 ═CH-CFCl-CF 2 Br between 164 and 260 nm and IR absorption spectra of both compounds between 450 and 1600 cm -1 were measured at room temperature.

  18. Supercontinuum based mid-IR imaging spectroscopy for cancer detection

    DEFF Research Database (Denmark)

    Bang, Ole; Møller, Uffe Visbech; Kubat, Irnis


    The mid-infrared (IR) spectral region is of significant technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinct spectral fingerprints. To date, the limitations of mid-IR light sources, such as thermal emitters, low-powe...... cancer detection with mid-IR imaging] DTU Fotonik has now demonstrated the first optical fiber based broadband so-called supercontinuum light souce, which covers 1.4-13.3 μm and thereby most of the molecular fingerprint region [1]. This ultra-fast light source is the basic component in the mid-IR camera developed in MINERVA for early...

  19. Moderately strong pump-induced ultrafast dynamics in solution

    Energy Technology Data Exchange (ETDEWEB)

    Shen, H.F. [Shanghai Advanced Research Institute, Chinese Academy of Sciences (China); School of Physical Science and Technology, ShanghaiTech University (China); University of Chinese Academy of Sciences (China); Zhang, Yizhu, E-mail: [Shanghai Advanced Research Institute, Chinese Academy of Sciences (China); Yan, T.-M., E-mail: [Shanghai Advanced Research Institute, Chinese Academy of Sciences (China); Wang, Z.Y. [Shanghai Advanced Research Institute, Chinese Academy of Sciences (China); School of Physical Science and Technology, ShanghaiTech University (China); Jiang, Y.H., E-mail: [Shanghai Advanced Research Institute, Chinese Academy of Sciences (China); School of Physical Science and Technology, ShanghaiTech University (China)


    Graphical abstract: Moderately strong pump pulse is applied to the transient absorption spectrum. The pump and dump processes (resonant impulsive stimulated Raman scattering) finished in one single pump pulse in moderately strong regime make the observation of high-lying excited state dynamics possible. - Highlights: • The pulse intensity in transient absorption spectrum are experimentally studied. • The higher nonlinear susceptibility responses are observed. • The resonant impulsive stimulated Raman scattering. • New dynamics information in strong pump field. - Abstract: The transient transmittance spectra of laser dye IR144 in methanol were investigated experimentally in the moderately strong pump-probe field. Observed emission spectra in the red edge of the incident-field bandwidth, created by resonant impulsive stimulated Raman scattering (RISRS), display significant nonlinear intensity dependence as the pulse intensity increases. Dynamic perspectives of RISRS spectra can be understood well in a wavepacket picture. The excitation of high vibrational levels in the ground electronic state leading to the redshift of emissions presents high dependence of the pump-pulse intensity and ultrafast dynamical features, mapping the spatial overlap and separation of ground and excited wave functions and resolving the ultrafast vibrational relaxation in the femtosecond regime.

  20. Magnetic feature and near-infrared absorption of a [Pt(mnt)2]-based H-bond supramolecular crystal

    International Nuclear Information System (INIS)

    Li, Cui-Ping; Nie, Li; Pei, Wen-Bo; Li, Li; Tian, Zheng-Fang; Liu, Jian-Lan; Gao, Xu-Sheng; Ren, Xiao-Ming


    A new salt [H 2 DABCO][Pt(mnt) 2 ] 2 (1) (mnt 2- =maleonitriledithiolate and H 2 DABCO 2+ is diprotonated 1,4-diazabicyclo[2.2.2]octane) has been synthesized; its crystal structure, magnetic and near-IR absorption properties have been investigated. Two different [Pt(mnt) 2 ] - anions form the strong π-dimers, labeled as Pt(1)-dimer and Pt(2)-dimer, with quite shorter Pt…Pt and S…S distances and molecular plane-to-plane distance (<3.5 Å) within a dimer. The [Pt(mnt) 2 ] 2 2- π-dimers are connected through the cations in the strong H-bond manner to form three-dimensional H-bond supramolecular crystal. The salt shows weak paramagnetism in 1.99–300 K and this is due to the existence of strong antiferromagnetic coupling within a π-dimer. In addition, a small thermal hysteresis loop is observed at ca. 120 K, indicating that a phase transition probably occurs that is further confirmed by variable-temperature IR spectra. Another fascinating functionality of 1 is the intense near-IR absorption in the region of 750–2500 nm, and this near-IR absorption feature makes it to be a promising optical material. - Graphical abstract: A H-bond supramolecular crystal of [H 2 DABCO][Pt(mnt) 2 ] 2 shows a magnetic phase transition at ca. 120 K with sizable thermal hysteresis loop and intense near-IR absorption in the region of 750–2500 nm.

  1. IOT Overview: IR Instruments (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  2. Far IR spectra of Th(IV) halide complexes of some heterocyclic bases

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Agarwal, R.K.; Srivastava, M.; Kapoor, V.; Srivastava, T.N.


    The synthesis and IR spectra of Th(IV) perchlorato, nitrato and thiocyanato complexes of some heterocyclic bases have been reported. Halogens are common ligands in coordination chemistry forming coordinate bonds with metals readily. Metal halogen (M-X) stretching bands show a strong absorption in the far-IR region. Very little information is available on Th-X stretching frequencies. In the present communication, adducts of Th(IV) halide with certain nitrogen heterocyclic bases such as pyridine, α-picoline, 2-amino pyridine, 2:4-lutidine, 2:6-lutidine, quinoline, 2,2'-bipyridine and 1,10-phenanthroline were synthesised and characterised. Experimental details are given. Results are presented and discussed. (author)

  3. ZnIr2O4: An efficient photocatalyst with Rashba splitting

    KAUST Repository

    Singh, Nirpendra


    Semiconductor-based photocatalysts nowadays are of central interest for the splitting of water into hydrogen and oxygen. However, the efficiency of the known materials is small for direct utilization of the solar energy. Using first-principles calculations, we show that ZnIr2O4 can overcome this shortage. Modified Becke-Johnson calculations give an indirect band of 2.25 eV, which can be reduced to the visible energy range by S doping. For 25% S doping we find a direct band gap of 1.25 eV and a Rashba spin splitting of 220 meV Å. The valence band edge potential is 2.89 V against the standard hydrogen electrode, which is sufficient for photocatalytic water oxidation and pollutant degradation. The optical absorption of S-doped ZnIr2O4 is strongly enhanced, making the material an efficient photocatalyst for visible light. © 2013 EPLA.

  4. IR Hot Wave

    Energy Technology Data Exchange (ETDEWEB)

    Graham, T. B.


    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  5. Optical absorption of sodium copper chlorophyllin thin films in UV-vis-NIR region. (United States)

    Farag, A A M


    The optical absorption studies of sodium copper chlorophyllin thin films (SCC), prepared by spray pyrolysis, in the UV-vis-NIR region was reported for the first time. Several new discrete transitions are observed in the UV-vis region of the spectra in addition to a strong continuum component in the IR region. The spectra of the infrared absorption allow characterization of vibration modes for the powder and thin films of SCC. The absorption spectrum recorded in the UV-vis region showed different absorption bands, namely the Soret (B) in the region 340-450 nm and Q-band in the region 600-700 nm and other band labeled N in the 240-320 region. Some important spectral parameters namely optical absorption coefficient (alpha), molar extinction coefficient (epsilon(molar)), oscillator strength (f), electric dipole strength (q(2)) and absorption half bandwidth (Deltalambda) of the principle optical transitions were evaluated. The analysis of the absorption coefficient in the absorption region revealed direct transitions and the energy gap was estimated as 1.63 eV. Discussion of the obtained results and their comparison with the previous published data are also given.

  6. Absorption studies

    International Nuclear Information System (INIS)

    Ganatra, R.D.


    Absorption studies were once quite popular but hardly anyone does them these days. It is easier to estimate the blood level of the nutrient directly by radioimmunoassay (RIA). However, the information obtained by estimating the blood levels of the nutrients is not the same that can be obtained from the absorption studies. Absorption studies are primarily done to find out whether some of the essential nutrients are absorbed from the gut or not and if they are absorbed, to determine how much is being absorbed. In the advanced countries, these tests were mostly done to detect pernicious anaemia where vitamin B 12 is not absorbed because of the lack of the intrinsic factor in the stomach. In the tropical countries, ''malabsorption syndrome'' is quire common. In this condition, several nutrients like fat, folic acid and vitamin B 12 are not absorbed. It is possible to study absorption of these nutrients by radioisotopic absorption studies

  7. Folate absorption

    International Nuclear Information System (INIS)

    Baker, S.J.


    Folate is the generic term given to numerous compounds of pteroic acid with glutamic acid. Knowledge of absorption is limited because of the complexities introduced by the variety of compounds and because of the inadequacy of investigational methods. Two assay methods are in use, namely microbiological and radioactive. Techniques used to study absorption include measurement of urinary excretion, serum concentration, faecal excretion, intestinal perfusion, and haematological response. It is probably necessary to test absorption of both pteroylmonoglutamic acid and one or more polyglutamates, and such tests would be facilitated by availability of synthesized compounds labelled with radioactive tracers at specifically selected sites. (author)

  8. Nonlinear effects in collective absorption

    International Nuclear Information System (INIS)

    Uenoyama, Takeshi; Mima, Kunioki; Watanabe, Tsuguhiro.


    The collective absorption of high intensity laser radiation is analyzed numerically. Density profile modification due to the ponderomotive force associating laser radiation and the excited electron plasma waves is self-consistently taken into account, and the intensity dependences of the absorption efficiency are obtained. In the high intensity regime, the absorption efficiency is found to be strongly enhanced in the plasma without flow, but reduced with supersonic flow. (author)

  9. Narrative absorption

    DEFF Research Database (Denmark)

    Narrative Absorption brings together research from the social sciences and Humanities to solve a number of mysteries: Most of us will have had those moments, of being totally absorbed in a book, a movie, or computer game. Typically we do not have any idea about how we ended up in such a state. Nor...... do we fully realize how we might have changed as we return for the fictional worlds we have visited. The feeling of being absorbed is one of the most illusive and transient feelings, but also one that motivates audiences to spend considerable amounts of time in narrative worlds, and one...... that is central to our understanding of the effects of narratives on beliefs and behavior. Key specialists inform the reader of this book about the nature of the peculiar state of consciousness during episodes of absorption, the perception of absorption in history, the role of absorption in meaningful experiences...

  10. Structural characterization of a mixed Langmuir-Blodgett film of a merocyanine dye derivative-deuterated arachidic acid binary system and the influence of successive hydrothermal treatment in the liquid phase on the film as investigated by polarized UV-visible and IR absorption spectroscopy. (United States)

    Hirano, Yoshiaki; Yamazaki, Asuka; Maio, Ari; Kitahama, Yasutaka; Ozaki, Yukihiro


    We have investigated the structure of the mixed Langmuir-Blodgett (LB) film of a merocyanine dye derivative (MO(18))-deuterated arachidic acid (C(20)-d) binary system and the influence of successive hydrothermal treatment in the liquid phase (HTTL) on the mixed LB film by means of polarized UV-visible and IR absorption spectroscopy. The visible absorption band with in-plane anisotropy at 503 nm before HTTL transforms into an absorption band with in-plane isotropy at 557 nm after HTTL for 16-18 min through a peak maximum near 520 nm after HTTL for 2-12 min. The degree of total MO(18) intramolecular charge transfer for the 503 nm band is the largest among those for all of the bands. Therefore, the 503 nm band is ascribed to the MO(18) H-like aggregation, based on its shape, peak height, and in-plane anisotropy, the subsequent change to two kinds of visible peaks by successive HTTL, and the most degree of MO(18) intramolecular charge transfer among all of the aggregation states. While the MO(18) hydrocarbon chain takes the all-trans conformation before HTTL, its conformation and orientation are most disarranged after HTTL for 2 min. Subsequently, the original conformation and orientation are recovered by degrees with successive HTTL, except after final HTTL for 18 min, when the orientation is again changed. On the other hand, the C(20)-d hydrocarbon chain maintains the all-trans conformation before and after HTTL. The orientation of the C(20)-d hydrocarbon chain after HTTL for 2 min is more ordered than that before HTTL, with the nature of the C(20)-d subcell packing changing from hexagonal to orthorhombic. During successive HTTL from 2 to 18 min, the C(20)-d orientation is gradually disorganized but with the orthorhombic nature remaining constant. Thus, the variations in the conformation and orientation of the MS(18) hydrocarbon chain and in the orientation of the C(20)-d hydrocarbon chain tend to change from ordered and disordered structures and turn to more

  11. Room temperature mid-IR single photon spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian


    Spectral imaging and detection of mid-infrared (mid-IR) wavelengths are emerging as an enabling technology of great technical and scientific interest; primarily because important chemical compounds display unique and strong mid-IR spectral fingerprints revealing valuable chemical information. Whi...... 20 % for polarized incoherent light at 3 \\mum. The proposed method is relevant for existing and new mid-IR applications like gas analysis and medical diagnostics....

  12. Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.; Martínez-Lope, M. J.; van Veenendaal, M.; Choi, Y.; Haskel, D.


    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5)) and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure

  13. Magnetic feature and near-infrared absorption of a [Pt(mnt){sub 2}]{sup -}based H-bond supramolecular crystal

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cui-Ping; Nie, Li [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Pei, Wen-Bo, E-mail: [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Li, Li [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Tian, Zheng-Fang [Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000 (China); Liu, Jian-Lan [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Gao, Xu-Sheng [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); Ren, Xiao-Ming, E-mail: [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China)


    A new salt [H{sub 2}DABCO][Pt(mnt){sub 2}]{sub 2} (1) (mnt{sup 2-}=maleonitriledithiolate and H{sub 2}DABCO{sup 2+} is diprotonated 1,4-diazabicyclo[2.2.2]octane) has been synthesized; its crystal structure, magnetic and near-IR absorption properties have been investigated. Two different [Pt(mnt){sub 2}]{sup -} anions form the strong π-dimers, labeled as Pt(1)-dimer and Pt(2)-dimer, with quite shorter Pt…Pt and S…S distances and molecular plane-to-plane distance (<3.5 Å) within a dimer. The [Pt(mnt){sub 2}]{sub 2}{sup 2-} π-dimers are connected through the cations in the strong H-bond manner to form three-dimensional H-bond supramolecular crystal. The salt shows weak paramagnetism in 1.99–300 K and this is due to the existence of strong antiferromagnetic coupling within a π-dimer. In addition, a small thermal hysteresis loop is observed at ca. 120 K, indicating that a phase transition probably occurs that is further confirmed by variable-temperature IR spectra. Another fascinating functionality of 1 is the intense near-IR absorption in the region of 750–2500 nm, and this near-IR absorption feature makes it to be a promising optical material. - Graphical abstract: A H-bond supramolecular crystal of [H{sub 2}DABCO][Pt(mnt){sub 2}]{sub 2} shows a magnetic phase transition at ca. 120 K with sizable thermal hysteresis loop and intense near-IR absorption in the region of 750–2500 nm.

  14. Two-color-absorption sensor for time-resolved measurements of gasoline concentration and temperature. (United States)

    Pyun, Sung Hyun; Porter, Jason M; Jeffries, Jay B; Hanson, Ronald K; Montoya, Juan C; Allen, Mark G; Sholes, Kevin R


    A midinfrared absorption sensor for crank-angle-resolved in-cylinder measurements of gasoline concentration and gas temperature for spark-ignition internal-combustion engines is reported, and design considerations and validation testing in the controlled environments of a heated cell and shock-heated gases are discussed. Mid-IR laser light was tuned to transitions in the strong absorption bands associated with C-H stretching vibration near 3.4 microm, and time-resolved fuel vapor concentration and gas temperature were determined simultaneously from the absorption at two different wavelengths. These two infrared laser wavelengths were simultaneously produced by difference-frequency generation, which combines a near-IR signal laser with two near-IR pump lasers in a periodically poled lithium niobate crystal. Injection current modulation of the pump lasers produced intensity modulation of the mid-IR, which allowed the transmitted signals from the two laser wavelengths to be detected on a single detector and separated by frequency demultiplexing. Injection current modulation produced a wavelength modulation synchronous with the intensity modulation for each of the laser wavelengths, and accurate measurement of the gasoline absorption signal required the effects of wavelength modulation to be considered. Validation experiments were conducted for a single-component hydrocarbon fuel (2,2,4-trimethyl-pentane, commonly known as iso-octane) and a gasoline blend in a heated static cell (300 < or = T < or = 600 K) and behind planar shock waves (600 < T < 1100 K) in a shock tube. With a bandwidth of 10 kHz, the measured fuel concentrations agreed within 5% RMS and the measured temperature agreed within 3% RMS to the known values. The 10 kHz bandwidth is sufficient to resolve 1 crank-angle degree at 1600 RPM.

  15. IR Spectroscopy. An introduction

    International Nuclear Information System (INIS)

    Guenzler, H.; Gremlich, H.U.


    The following topics are dealt with: absorption and molecular design, spectrometers, sample preparation, qualitative spectral interpretation and assertions, near-infrared and far-infrared spectroscopy, reference spectra and expert systems

  16. Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures

    KAUST Repository

    Alrefae, Majed


    Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800-3400 cm-1 (2.9-3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging 296-1100 K and pressures near atmospheric. As temperature increases, the peak cross-sections decrease but the wings of the bands increase as higher rotational lines appear. Integrated band intensity is also calculated over the measured spectral region and is found to be a very weak function of temperature. The absorption cross-sections of the relatively small fuels studied here show dependence on the bath gas. This effect is investigated by studying the variation of absorption cross-sections at 3.392 μm using a HeNe laser in mixtures of fuel and nitrogen, argon, or helium. Mixtures of fuel with He have the highest value of absorption cross-sections followed by Ar and N2. Molecules with narrow absorption lines, such as methane and methanol, show strong dependence on bath gas than molecules with relatively broader absorption features i.e. ethane and ethylene. © 2014 Elsevier Inc. All rights reserved.

  17. Infrared absorption of human breast tissues in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenglin [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Physics Department of Yancheng Teachers' College, Yancheng 224002 (China); Zhang Yuan [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Yan Xiaohui [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Zhang Xinyi [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China) and Shanghai Research Center of Acupuncture and Meridian, Pudong, Shanghai 201203 (China)]. E-mail:; Li Chengxiang [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Yang Wentao [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China); Shi Daren [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China)


    The spectral characteristics of human breast tissues in normal status and during different cancerous stages have been investigated by synchrotron radiation based Fourier transform infrared (SR-FTIR) absorption spectroscopy. Thanks to the excellent synchrotron radiation infrared (IR) source, higher resolving power is achieved in SR-FTIR absorption spectra than in conventional IR absorption measurements. Obvious variations in IR absorption spectrum of breast tissues were found as they change from healthy to diseased, or say in progression to cancer. On the other hand, some specific absorption peaks were found in breast cancer tissues by SR-FTIR spectroscopic methods. These spectral characteristics of breast tissue may help us in early diagnosis of breast cancer.

  18. IR spectroscopy on jet-cooled isolated two-station rotaxanes

    NARCIS (Netherlands)

    Rijs, A.M.; Kay, E.R.; Leigh, D.A.; Buma, W.J.


    High-resolution IR spectroscopy has been employed to study isolated, switchable [2]rotaxanes. IR absorption spectra of two-station rotaxanes, their separate thread, and macrocycle components, as well as those of the individual stations incorporated into the thread, have been measured in the

  19. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley


    politics and offers an account of how this builds on older ways in which the natural world has made up part of the stuff of international politics. Second, it surveys the main traditions and approaches to studying International Relations of the environment, painting a picture of diversification in two......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  20. X-ray absorption of N{sub 2} accompanied by infrared-induced transitions between the ungerade and gerade core levels

    Energy Technology Data Exchange (ETDEWEB)

    Velkov, Yasen; Liu Jicai; Wang Chuankui; Gel' mukhanov, Faris [Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, S-10691 Stockholm (Sweden)], E-mail:


    We study a two-colour pump-probe scheme of x-ray absorption accompanied by core-hole hopping in the field of a strong IR laser. The process is exemplified for fixed-in-space and randomly oriented homonuclear diatomic molecules N{sub 2} near the 1{sigma}{sub u} {yields} 1{pi}{sub g} x-ray absorption transition. The laser field mixes the core holes of opposite parities and causes Rabi splitting of the core-excited states. The IR field results in spectral broadening and shifts of the x-ray resonances as well as decrease of x-ray photoabsorption. The Stark broadening of the x-ray absorption spectrum depends on the orientation of the molecule and the angle between the polarization vectors of the x-ray and IR fields. The spectral changes caused by the IR field are weaker for randomly oriented molecules in comparison with fixed-in-space molecules.

  1. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department


    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  2. Near-IR imaging of demineralization under sealants (United States)

    Tom, Henry; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel


    Previous studies have shown that near-IR reflectance and transillumination imaging can be used to acquire high contrast images of early caries lesions and composite restorative materials. The aim of the study was to determine the optimum near-IR wavelengths for imaging demineralized areas under dental sealants. Fifteen natural human premolars and molars with occlusal lesions were used in this in vitro study. Images before and after application of sealants were acquired using near-IR reflectance and near-IR transillumination at wavelengths of 1300 nm, 1460 nm, and 1500 - 1700 nm. Images were also acquired using polarization sensitive optical coherence tomography for comparison. The highest contrast for near- IR reflectance was at 1460 nm and 1500 - 1700 nm. These near-IR wavelengths are coincident with higher water absorption. The clear Delton sealant investigated was not visible in either co-polarization or crosspolarization OCT images. The wavelength region between 1500-1700-nm yielded the highest contrast of lesions under sealants for near-IR reflectance measurements.

  3. Infrared absorption spectroscopic study of Nd substituted Zn–Mg ...

    Indian Academy of Sciences (India)


    results from IR absorption study can be used to interpret the electrical and magnetic properties of the ferrites. (Braber 1969). The absorption bands, from which the details regarding functional groups and their linkages can be explored, are found to be dependent on atomic mass, cationic radius, cation–anion bond distances, ...

  4. Analysis of Spitzer-IRS spectra of hyperluminous infrared galaxies (United States)

    Ruiz, A.; Risaliti, G.; Nardini, E.; Panessa, F.; Carrera, F. J.


    Context. Hyperluminous infrared galaxies (HLIRG) are the most luminous persistent objects in the Universe. They exhibit extremely high star formation rates, and most of them seem to harbour an active galactic nucleus (AGN). They are unique laboratories for investigating the most extreme star formation and its connection to super-massive black hole growth. Aims: The relative AGN and starburst (SB) contributions to the total output in these objects is still debated. Our aim is to disentangle the AGN and SB emission of a sample of thirteen HLIRG. Methods: We studied the MIR low-resolution spectra of a sample of thirteen HLIRG obtained with the Infrared Spectrograph on board Spitzer. The 5-8 μm range is an optimal window for detecting AGN activity even in a heavily obscured environment. We performed an SB/AGN decomposition of the continuum using templates, which has been successfully applied for ULIRG in previous works. Results: The MIR spectra of all sources is largely dominated by AGN emission. By converting the 6 μm luminosity into IR luminosity, we found that ~80% of the sample shows an IR output dominated by the AGN emission. However, the SB activity is significant in all sources (mean SB contribution ~30%), showing star formation rates ~300-3000 M⊙ yr-1. With X-ray and MIR data we estimated the dust covering factor (CF) of these HLIRG, finding that a significant fraction presents a CF consistent with unity. Along with the high X-ray absorption shown by these sources, this suggests that large amounts of dust and gas enshroud the nucleus of these HLIRG, as also observed in ULIRG. Conclusions: Our results agree with previous studies of the IR SED of HLIRG using radiative transfer models, and we find strong evidence that all HLIRG harbour an AGN. Moreover, this work provides further support for the idea that AGN and SB are both crucial to understanding the properties of HLIRG. Our study of the CF supports the hypothesis that HLIRG can be divided into two

  5. Controlling THz and far-IR waves with chiral and bianisotropic metamaterials

    Directory of Open Access Journals (Sweden)

    Kenanakis George


    Full Text Available Chiral and bianisotropic metamaterials, where coupling of magnetic and electric phenomena plays an important role, offer advanced possibilities for the control and manipulation of electromagnetic waves. Such a control is particularly useful in the THz and far-IR region where natural materials do not show strong response and thus they are not offered as components for a direct realization of electromagnetic wave manipulation. Among the most useful and important capabilities of chiral and bianisotropic metamaterials is the advanced control of the wave polarization that they offer, including giant polarization rotation, conversion, filtering, absorption, etc. In this paper we review our recent work demonstrating some of those capabilities, in a variety of structures, both planar and 3D-bulk ones. The structures presented show, among others, large optical activity, tunable/switchable wave ellipticity, and polarization-dependent asymmetric transmission.

  6. The IRS-1 signaling system. (United States)

    Myers, M G; Sun, X J; White, M F


    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  7. Spitzer IRS Observations of FU Orionis Objects (United States)

    Green, J. D.; Hartmann, L.; Calvet, N.; Watson, D. M.; Ibrahimov, M.; Furlan, E.; Sargent, B.; Forrest, W. J.


    We present 5-35 μm spectra, taken with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope, of five FU Orionis objects: FU Ori, V1515 Cyg, V1057 Cyg, BBW 76, and V346 Nor. All but V346 Nor reveal amorphous silicate grains in emission at 10 and 20 μm, and show water-vapor absorption bands at 5.8 and 6.8 μm and SiO or possibly methane absorption at 8 μm. These absorption features closely match these bands in model stellar photospheres-signs of the gaseous photospheres of the inner regions of these objects' accretion disks. The continuum emission at 5-8 μm is also consistent with such disks, and, for FU Orionis and BBW 76, longer wavelength emission may be fit by a model that includes moderate disk flaring. V1057 Cyg and V1515 Cyg have much more emission at longer wavelengths than the others, perhaps evidence of a substantial remnant of their natal, infalling envelopes.

  8. Development of pixellated Ir-TESs

    International Nuclear Information System (INIS)

    Zen, Nobuyuki; Takahashi, Hiroyuki; Kunieda, Yuichi; Dayanthi, Rathnayaka M.T.; Mori, Fumiakira; Fujita, Kaoru; Nakazawa, Masaharu; Fukuda, Daiji; Ohkubo, Masataka


    We have been developing Ir-based pixellated superconducting transition edge sensors (TESs). In the area of material or astronomical applications, the sensor with few eV energy resolution and over 1000 pixels imaging property is desired. In order to achieve this goal, we have been analyzing signals from pixellated TESs. In the case of a 20 pixel array of Ir-TESs, with 45 μmx45 μm pixel sizes, the incident X-ray signals have been classified into 16 groups. We have applied numerical signal analysis. On the one hand, the energy resolution of our pixellated TES is strongly degraded. However, using pulse shape analysis, we can dramatically improve the resolution. Thus, we consider that the pulse signal analysis will lead this device to be used as a practical photon incident position identifying TES

  9. <strong>PRAYER INDUCED ANALGESIAstrong>

    DEFF Research Database (Denmark)

    Jegindø, Else-Marie Elmholdt

    moderators (personality, absorption and coping) and mediators (expectations, desire for pain relief and anxiety) were included in the study design in order to explore the influence of psychological mechanisms involved in the potential analgesic effect of prayer as a coping strategy. RESULTS: TBA (it...

  10. Coherence and quasistable states in a strong infrared field (United States)

    Zhong, Changchun; Robicheaux, F.


    We study the quasistability of UV-pulse-train-excited H atoms in a strong infrared (IR) laser as a function of the phase delay of the UV pulse train relative to the IR laser. The UV pulse train contains two frequency components. When the two components have frequencies separated by two IR photons, the population of surviving electrons is modulated by up to ten percent. When electrons are excited to right above or below the threshold, the survival probabilities have inverted phase delay dependence, which can be explained classically. When the two frequencies are one IR photon apart, the angular symmetry of the quasistable electrons is broken, and the asymmetry is also controlled by the phase delay. The asymmetrical distribution can be observed while the IR is on and smoothly evolves to a nonzero asymmetry that only weakly depends on the duration of the IR field.

  11. New infrared observations of IRS1, IRS3, and the adjacent nebula in the OMC-2 cluster (United States)

    Pendleton, Y.; Werner, M.; Capps, R.; Dinerstein, H. L.


    Observations of the infrared cluster of low luminosity protostars in Orion Molecular Cloud 2 (OMC2) are reported. Results show that the asymmetric distribution of the extended emission seen about IRS1 is another infrared reflection nebula. Energy distributions show that the spectral shape is fairly constant throughout the nebula which indicates there is little internal extinction within this region. Integrated surface brightness values show that the nebula is 5 times brighter than IRS1 at K. Energy distributions show that IRS1 has a more pronounced ice band absorption feature at 3.1 micron; suggesting that there is more extinction along the direct line of sight to IRS1 than along a line from IRS1 to the scattering grains and then to the observer. The distribution of the extended emission around IRS1 is similar to the reflection nebula seen in NGC 7538 (Werner et al. 1979). The asymmetric shapes of the two nebulae are similar and in each case there is excess extinction along line of sight to the illuminating source.

  12. Attosecond Electron Wave Packet Dynamics in Strong Laser Fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.


    We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (∼20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes

  13. IR seeker simulator and IR scene generation to evaluate IR decoy effectiveness; 2005BU1-EO

    NARCIS (Netherlands)

    Jong, W. de; Dam, F.A.M.; Kunz, G.J.; Schleijpen, H.M.A.


    IR decoys can be an effective countermeasure against IR guided anti ship missiles. However, it's not so easy to determine how the decoys should be deployed to get maximum effectiveness. A limitation of trials is that results are obtained for the specific trial condition only. Software tools have

  14. Study on seasonal IR signature change of a ship by considering seasonal marine environmental conditions (United States)

    Kim, Do-Hwi; Han, Kuk-Il; Choi, Jun-Hyuk; Kim, Tae-Kuk


    Infrared (IR) signal emitted from objects over 0 degree Kelvin has been used to detect and recognize the characteristics of those objects. Recently more delicate IR sensors have been applied for various guided missiles and they affect a crucial influence on object's survivability. Especially, in marine environment it is more vulnerable to be attacked by IR guided missiles since there are nearly no objects for concealment. To increase the survivability of object, the IR signal of the object needs to be analyzed properly by considering various marine environments. IR signature of a naval ship consists of the emitted energy from ship surface and the reflected energy by external sources. Surface property such as the emissivity and the absorptivity on the naval ship varies with different paints applied on the surface and the reflected IR signal is also affected by the surface radiative property, the sensor's geometric position and various climatic conditions in marine environment. Since the direct measurement of IR signal using IR camera is costly and time consuming job, computer simulation methods are developing rapidly to replace those experimental tasks. In this study, we are demonstrate a way of analyzing the IR signal characteristics by using the measured background IR signals using an IR camera and the estimated target IR signals from the computer simulation to find the seasonal trends of IR threats of a naval ship. Through this process, measured weather data are used to analyze more accurate IR signal conditions for the naval ship. The seasonal change of IR signal contrast between the naval ship and the marine background shows that the highest contrast radiant intensity (CRI) value is appeared in early summer.

  15. Spectroscopic properties of neuroleptics: IR and Raman spectra of Risperidone (Risperdal) and of its mono- and di-protonated forms (United States)

    Alparone, Andrea


    Structures and IR and Raman spectra of Risperidone in its neutral, mono- and di-protonated forms were calculated in gas phase by DFT-B3LYP/6-31G* level. Mono-protonation occurs at the nitrogen atom of the piperidine ring, while nitrogen atom of the pyrimidine ring is the preferred site for the second protonation. The lowest-energy structure of the mono-protonated Risperidone is characterized by formation of a strong seven-membered O(pyrimidine ring)⋯ +H-N(piperidine ring) intramolecular hydrogen-bonded cycle. In the high-energy spectral region (3500-2500 cm -1), the bands of the N-H + stretches and the changes in wavenumbers and IR intensities of the C-H stretches near to the piperidine nitrogen atom (Bohlmann effect) are potentially useful to discriminate conformations and protonation states. Di-protonated structures can be identified by the presence of an isolated absorption peak located in the low-energy IR region (660-690 cm -1), attributed to the out-of-plane N-H +(pyrimidine ring) bending deformation. The most intense Raman band of neutral Risperidone placed at ca. 1500 cm -1, assigned to C dbnd C(pyrimidine ring) stretch + C dbnd N(pyrimidine ring) stretch, can be a useful vibrational marker to distinguish the neutral from the protonated forms.

  16. Nanomechanical IR spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials

    DEFF Research Database (Denmark)

    Andersen, Alina Joukainen; Yamada, Shoko; Ek, Pramod Kumar


    The proliferated use of engineered nanomaterials (ENMs), e.g. in nanomedicine, calls for novel techniques allowing for fast and sensitive analysis of minute samples. Here we present nanomechanical IR spectroscopy (NAM-IR) for chemical analysis of picograms of ENMs. ENMs are nebulized directly from...... dispersion and efficiently collected on nanomechanical string resonators through a non-diffusion limited sampling method. Even very small amounts of sample can convert absorbed IR light into a measurable frequency detuning of the string through photothermal heating. An IR absorption spectrum is thus readily...... obtained by recording this detuning of the resonator over a range of IR wavelengths. Results recorded using NAM-IR agree well with corresponding results obtained through ATR-FTIR, and remarkably, measurement including sample preparation takes only a few minutes, compared to ∼2 days sample preparation...

  17. Near-IR Spectroscopy of Luminous LoBAL Quasars at 1 < z < 2.5 (United States)

    Schulze, Andreas; Schramm, Malte; Zuo, Wenwen; Wu, Xue-Bing; Urrutia, Tanya; Kotilainen, Jari; Reynolds, Thomas; Terao, Koki; Nagao, Tohru; Izumiura, Hideyuki


    We present near-IR spectroscopy of 22 luminous low-ionization broad absorption line quasars (LoBAL QSOs) at redshift 1.3BAL quasar sample. We do not find any statistically significant difference between LoBAL QSOs and non-BAL QSOs in their black hole mass or Eddington ratio distributions. The mean UV to mid-IR SED of the LoBAL QSOs is consistent with non-BAL QSOs, apart from their stronger reddening. At z> 1 there is no clear difference in their optical emission line properties. We do not see particularly weak [O III] or strong Fe II emission. The LoBAL QSOs do not show a stronger prevalence of ionized gas outflows as traced by the [O III] line, compared to normal QSOs of similar luminosity. We conclude that the optical-MIR properties of LoBAL QSOs are consistent with the general quasar population and do not support them to constitute a special phase of active galactic nucleus evolution.

  18. Ultrafast 2D IR microscopy. (United States)

    Baiz, Carlos R; Schach, Denise; Tokmakoff, Andrei


    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear "one beam" geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments.

  19. Ultrasonic absorption in solid specimens

    International Nuclear Information System (INIS)

    Siwabessy, P.J. W.; Stewart, G.A.


    As part of a project to measure the absorption of high frequency (50 - 500 kHz) sonar signals in warm sea-water, a laboratory apparatus has been constructed and tested against room temperature distilled water and various solutions of MgSO 4 (chemical relaxation of MgSO 4 is the major contribution to absorption below 200 kHz). The technique involves monitoring the decay of an acoustic signal for different sizes of vessels of water suspended in an evacuated chamber. So far, all containing vessels used have been spherical in shape. Extrapolation of the results to infinite volume yields the absorption due to the water alone. In order to accommodate variations in temperature and pressure, and to make the system more robust (e.g. for ship deck usage), it is desirable to employ stainless steel vessels. However, it was found that the quality of the data was greatly improved when pyrex glass spheres were used. The stainless steel spheres were manufactured by welding together mechanically spun hemispheres. The linear frequency dependence characteristic of acoustic absorption in solids was observed (in contrast to the quadratic frequency dependence of acoustic absorption in water), and the acoustic absorption was found to depend strongly on the thermal history of the steel

  20. A Modified Harris Corner Detection for Breast IR Image

    Directory of Open Access Journals (Sweden)

    Chia-Yen Lee


    Full Text Available Harris corner detectors, which depend on strong invariance and a local autocorrelation function, display poor detection performance for infrared (IR images with low contrast and nonobvious edges. In addition, feature points detected by Harris corner detectors are clustered due to the numerous nonlocal maxima. This paper proposes a modified Harris corner detector that includes two unique steps for processing IR images in order to overcome the aforementioned problems. Image contrast enhancement based on a generalized form of histogram equalization (HE combined with adjusting the intensity resolution causes false contours on IR images to acquire obvious edges. Adaptive nonmaximal suppression based on eliminating neighboring pixels avoids the clustered features. Preliminary results show that the proposed method can solve the clustering problem and successfully identify the representative feature points of IR breast images.

  1. Angular absorption of iridium - ICW12 needles: practical considerations

    International Nuclear Information System (INIS)

    Szymczyk, W.; Lesiak, J.


    An analysis was made of two potential sources of error in Ir 192 dosimetry: the effect of angular absorption and the differences in the ionization constants found in literature. Corrections for selfabsorption in the ICW12 iridium source were determined from measurements and calculations. It was found that the decrease in the dose caused by the angular absorption in the central therapeutic area of a typical implantation can exceed 5 percent. The need for employing the concept of ''constant exposure rate'' is stressed as well as that for using angular absorption in the form of absorption. 13 refs., 6 figs., 1 tab. (author)

  2. Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process

    International Nuclear Information System (INIS)

    Xu, Shuwu; Yao, Yunhua; Jia, Tianqing; Ding, Jingxin; Zhang, Shian; Sun, Zhenrong; Huang, Yunxia


    We theoretically and experimentally demonstrate the control of the intermediate state absorption in an (n + m) resonance-mediated multi-photon absorption process by the polarization-modulated femtosecond laser pulse. An analytical solution of the intermediate state absorption in a resonance-mediated multi-photon absorption process is obtained based on the time-dependent perturbation theory. Our theoretical results show that the control efficiency of the intermediate state absorption by the polarization modulation is independent of the laser intensity when the transition from the intermediate state to the final state is coupled by the single-photon absorption, but will be affected by the laser intensity when this transition is coupled by the non-resonant multi-photon absorption. These theoretical results are experimentally confirmed via a two-photon fluorescence control in (2 + 1) resonance-mediated three-photon absorption of Coumarin 480 dye and a single-photon fluorescence control in (1 + 2) resonance-mediated three-photon absorption of IR 125 dye. (paper)

  3. Near-IR spectral evolution of dusty starburst galaxies (United States)

    Lançon, Ariane; Rocca-Volmerange, Brigitte


    We propose a multicomponent analysis of starburst galaxies, based on a model that takes into account the young and evolved stellar components and the gas emission, with their respective extinction, in the frame of a coherent dust distribution pattern. Near-IR signatures are preferentially investigated, in order to penetrate as deep as possible into the dusty starburst cores. We computed the 1.4-2.5 μm spectra of synthetic stellar populations evolving through strong, short timescale bursts of star formation (continuum and lines, R ≃ 500). The evolution model is specifically sensitive to cool stellar populations (AGB and red supergiant stars). It takes advantage of the stellar library of Lançon & Rocca-Volmerange (1992) [A&ASS, 96, 593], observed with the same instrument (FTS/CFHT) as the analysed galaxy sample, so that the instrumental effects are minimised. The main near-IR observable constraints are the molecular signatures of CO and H2O and the slope of the continuum, observed over a range exceptionally broad for spectroscopic data. The H - K colour determined from the spectra measures the intrinsic stellar energy distribution but also differential extinction, which is further constrained by optical emission line ratios. Other observational constraints are the near-IR emission lines (Brγ, He I 2.06 μm, [Fe II] 1.64 μm, H2 2.12 μm) and the far-IR luminosity. The coherence of the results relies on the interpretation in terms of stellar populations from which all observable properties are derived, so that the link between the various wavelength ranges is secured. The luminosity LK is used for the absolute calibration. We apply this approach to the typical spectrum of the core of NGC 1614. Consistent solutions for the starburst characteristics (star-formation rate, IMF, burst age, morphology) are found and the role of each observational constraint in deriving satisfactory models is extensively discussed. The acceptable contamination of the K band light by the

  4. MMI-based MOEMS FT spectrometer for visible and IR spectral ranges (United States)

    Al-Demerdash, Bassem M.; Medhat, Mostafa; Sabry, Yasser M.; Saadany, Bassam; Khalil, Diaa


    MEMS spectrometers have very strong potential in future healthcare and environmental monitoring applications, where Michelson interferometers are the core optical engine. Recently, MEMS Michelson interferometers based on using silicon interface as a beam splitter (BS) has been proposed [7, 8]. This allows having a monolithically-integrated on-chip FTIR spectrometer. However silicon BS exhibits high absorption loss in the visible range and high material dispersion in the near infrared (NIR) range. For this reason, we propose in this work a novel MOEMS interferometer allowing operation over wider spectral range covering both the infrared (IR) and the visible ranges. The proposed architecture is based on spatial splitting and combining of optical beams using the imaging properties of Multi-Mode Interference MMI waveguide. The proposed structure includes an optical splitter for spatial splitting an input beam into two beams and a combiner for spatial combining the two interferometer beams. A MEMS moveable mirror is provided to produce an optical path difference between the two beams. The new interferometer is fabricated using DRIE technology on an SOI wafer. The movable mirror is metalized and attached to a comb-drive actuator fabricated in the same lithography step in a self-aligned manner on chip. The novel interferometer is tested as a Fourier transform spectrometer. Red laser, IR laser and absorption spectra of different materials are measured with a resolution of 2.5 nm at 635-nm wavelength. The structure is a very compact one that allows its integration and fabrication on a large scale with very low cost.

  5. Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures

    DEFF Research Database (Denmark)

    Jensen, P.S.; Bak, J.; Andersson-Engels, S.


    Near- and mid-infrared absorption spectra of pure water and aqueous 1.0 g/dL glucose solutions in the wavenumber range 8000-950 cm(-1) were measured in the temperature range 30-42 C in steps of 2 degreesC. Measurements were carried out with an FT-IR spectrometer and a variable pathlength...... degreesC water spectrum from the spectra measured at other temperatures. The difference spectra reveal that the effect of temperature is highest in the vicinity of the strong absorption bands, with a number of isosbestic points with no temperature dependence and relatively flat plateaus in between....... The change in water absorption associated with the addition of glucose has also been studied. An estimate of these effects is given and is related to the expected level of infrared signals from glucose in humans....

  6. CCD and IR array controllers (United States)

    Leach, Robert W.; Low, Frank J.


    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  7. Absorption properties of identical atoms

    International Nuclear Information System (INIS)

    Sancho, Pedro


    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas. -- Highlights: •The absorption rates of a pair of identical atoms in product and (anti)symmetrized states are different. •The modifications of the optical properties are essentially determined by the overlapping between the atoms. •The absorption properties differ, in some cases, for bosons and fermions

  8. Observational Evidence Linking Interstellar UV Absorption to PAH Molecules

    International Nuclear Information System (INIS)

    Blasberger, Avi; Behar, Ehud; Perets, Hagai B.; Brosch, Noah; Tielens, Alexander G. G. M.


    The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorption and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μ m IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ∼15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ∼15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.

  9. Fusion of Ultraviolet-Visible and Infrared Transient Absorption Spectroscopy Data to Model Ultrafast Photoisomerization. (United States)

    Debus, Bruno; Orio, Maylis; Rehault, Julien; Burdzinski, Gotard; Ruckebusch, Cyril; Sliwa, Michel


    Ultrafast photoisomerization reactions generally start at a higher excited state with excess of internal vibrational energy and occur via conical intersections. This leads to ultrafast dynamics which are difficult to investigate with a single transient absorption spectroscopy technique, be it in the ultraviolet-visible (UV-vis) or infrared (IR) domain. On one hand, the information available in the UV-vis domain is limited as only slight spectral changes are observed for different isomers. On the other hand, the interpretation of vibrational spectra is strongly hindered by intramolecular relaxation and vibrational cooling. These limitations can be circumvented by fusing UV-vis and IR transient absorption spectroscopy data in a multiset multivariate curve resolution analysis. We apply this approach to describe the spectrodynamics of the ultrafast cis-trans photoisomerization around the C-N double bond observed for aromatic Schiff bases. Twisted intermediate states could be elucidated, and isomerization was shown to occur through a continuous complete rotation. More broadly, data fusion can be used to rationalize a vast range of ultrafast photoisomerization processes of interest in photochemistry.

  10. Perforated SiN membrane resonators for nanomechanical IR spectroscopy poster

    DEFF Research Database (Denmark)

    Kurek, Maksymilian; Carnoy, Matthias; Boisen, Anja

    Constant progress in micro- and nanofabrication provides a great opportunity in development of micro- and nanomechanical resonatorsthat can be used for sensing purposes. These sensors usually consist of singly-clamped cantilever beams, doubly-clamped bridges ormembranes that exhibit resonant......, lateral dimension of1×1 mm2 and 2 µm perforation grid pitch were used instead of strings which makes the IR beam alignment significantly simpler whilemaintaining similar sampling efficiency and photothermal IR absorption sensitivity....

  11. HI Absorption in Merger Remnants (United States)

    Teng, Stacy H.; Veileux, Sylvain; Baker, Andrew J.


    It has been proposed that ultraluminous infrared galaxies (ULIRGs) pass through a luminous starburst phase, followed by a dust-enshrouded AGN phase, and finally evolve into optically bright "naked" quasars once they shed their gas/dust reservoirs through powerful wind events. We present the results of our recent 21- cm HI survey of 21 merger remnants with the Green Bank Telescope. These remnants were selected from the QUEST (Quasar/ULIRG Evolution Study) sample of ULIRGs and PG quasars; our targets are all bolometrically dominated by AGN and sample all phases of the proposed ULIRG -> IR-excess quasar -> optical quasar sequence. We explore whether there is an evolutionary connection between ULIRGs and quasars by looking for the occurrence of HI absorption tracing neutral gas outflows; our results will allow us to identify where along the sequence the majority of a merger's gas reservoir is expelled.

  12. #Occupy IR: Exposing the Orthodoxy

    Directory of Open Access Journals (Sweden)

    Ivan Manokha


    Full Text Available The #occupy IR/IPE initiative was created in response to the #occupy movement, whose own roots can be traced backed to the latest crisis of global finance. In this contribution, we link #occupy and the crisis in a different way. We argue that we must occupy IR/IPE because of the discipline’s failure to apprehend and acknowledge the crisis itself, just as the Occupy movement is calling for their overarching authorities to notice and help address the social and economic inequalities produced by this crisis. More precisely, we argue that the dominant academic orthodoxy, via a series of continuously reproduced dichotomies, has rendered IR/IPE incapable of dealing with a phenomenon as complex as the financial crisis...

  13. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko


    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  14. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/--IRS-1+/-Double Heterozygous (IR-IRS1dh) Mice. (United States)

    Franko, Andras; Kunze, Alexander; Böse, Marlen; von Kleist-Retzow, Jürgen-Christoph; Paulsson, Mats; Hartmann, Ursula; Wiesner, Rudolf J


    Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR) +/- -insulin receptor substrate-1 (IRS-1) +/- double heterozygous (IR-IRS1dh) mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  15. Gluon scattering amplitudes at strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States)


    We describe how to compute planar gluon scattering amplitudes at strong coupling in N = 4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.

  16. The IR spectra, hydrogen bonding and conformations of aliphatic and aromatic epoxy carbamates (United States)

    Furer, V. L.


    The IR spectra of hexamethylene-bis (methyl) glycidyl carbamate, toluene-2,4-bis (methyl) glycidyl carbamate in the crystalline state and in the melt were studied. The absorption curves for the most stable molecular conformations were compared with experimental IR spectra. The IR spectra of toluene-2,4-bis (methyl) glycidyl carbamate and methyl- N-methyl carbamate clusters were calculated. The spectral features of the different molecular structures were revealed. The results obtained can be used for the analysis of the chemical and physical transformations in polyurethanes.

  17. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.


    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  18. Structure and linear spectroscopic properties of near IR polymethine dyes

    International Nuclear Information System (INIS)

    Webster, Scott; Padilha, Lazaro A.; Hu Honghua; Przhonska, Olga V.; Hagan, David J.; Van Stryland, Eric W.; Bondar, Mikhail V.; Davydenko, Iryna G.; Slominsky, Yuriy L.; Kachkovski, Alexei D.


    We performed a detailed experimental investigation and quantum-chemical analysis of a new series of near IR polymethine dyes with 5-butyl-7,8-dihydrobenzo[cd]furo[2,3-f]indolium terminal groups. We also synthesized and studied two neutral dyes, squaraine and tetraone, with the same terminal groups and performed a comparison of the spectroscopic properties of this set of 'near IR' dyes (polymethine, squaraine, and tetraone) with an analogous set of 'visible' dyes with simpler benzo[e]indolium terminal groups. From these measurements, we find that the dyes with dihydrobenzo[cd]furo[2,3-f]indolium terminal groups are characterized by a remarkably large shift ∼300 nm (∼200 nm for tetraone) of their absorption bands towards the red region. We discuss the difference in electronic structure for these molecules and show that the 'near IR' dyes are characterized by an additional weak fluorescence band from the higher lying excited states connected with the terminal groups. Absorption spectra for the longest polymethines are solvent-dependent and are characterized by a broadening of the main band in polar solvents, which is explained by ground state symmetry breaking and reduced charge delocalization within the polymethine chromophore. The results of these experiments combined with the agreement of quantum chemical calculations moves us closer to a predictive capability for structure-property relations in cyanine-like molecules

  19. Spin orientations of the spin-half Ir{sup 4+} ions in Sr{sub 3}NiIrO{sub 6}, Sr{sub 2}IrO{sub 4}, and Na{sub 2}IrO{sub 3}: Density functional, perturbation theory, and Madelung potential analyses

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Elijah E.; Whangbo, Myung-Hwan, E-mail: [Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204 (United States); Xiang, Hongjun [Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, Collaborative Innovation Center of Advanced Microstructures, and Department of Physics, Fudan University, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 (China); Köhler, Jürgen [Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart (Germany)


    The spins of the low-spin Ir{sup 4+} (S = 1/2, d{sup 5}) ions at the octahedral sites of the oxides Sr{sub 3}NiIrO{sub 6}, Sr{sub 2}IrO{sub 4}, and Na{sub 2}IrO{sub 3} exhibit preferred orientations with respect to their IrO{sub 6} octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of density functional theory (DFT) calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr{sub 3}NiIrO{sub 6} and Sr{sub 2}IrO{sub 4} are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na{sub 2}IrO{sub 3}, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir{sup 4+} spin orientation of Na{sub 2}IrO{sub 3} should have nonzero components along the c- and a-axis directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir{sup 4+} ions are taken into consideration. There are indications implying that the 5d electrons of Na{sub 2}IrO{sub 3} are less strongly localized compared with those of Sr{sub 3}NiIrO{sub 6} and Sr{sub 2}IrO{sub 4}. This implication was confirmed by showing that the Madelung potentials of the Ir{sup 4+} ions are less negative in Na{sub 2}IrO{sub 3} than in Sr{sub 3}NiIrO{sub 6} and Sr{sub 2}IrO{sub 4}. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. The

  20. Ice absorption features in the 5-8 mu m range

    NARCIS (Netherlands)

    Keane, JV; Tielens, AGGM; Boogert, ACA; Whittet, DCB; Cox, P; Kessler, MF


    ISO-SWS spectra (2 - 45 mu m) have been obtained towards a large number of luminous young stellar objects. Here, we present a study of absorption features towards the two objects NGC: 7538:IRS9 and Mon R2:IRS3, for the spectral region 5 - 8 mu m. The shape of these features changes dramatically from

  1. Nutrition and magnesium absorption


    Brink, E.J.


    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true magnesium absorption was neither affected by soybean protein in the diet nor by supplemental phytate. The inhibitory influence of soybean protein and phytate on apparent magnesium absorption was found ...

  2. Absorption and excretion tests

    International Nuclear Information System (INIS)

    Berberich, R.


    The absorption and excretion of radiopharmaceuticals is still of interest in diagnostic investigations of nuclear medicine. In this paper the most common methods of measuring absorption and excretion are described. The performance of the different tests and their standard values are discussed. More over the basic possibilities of measuring absorption and excretion including the needed measurement equipments are presented. (orig.) [de

  3. Field Measurements of Water Continuum and Water Dimer Absorption by Active Long Path Differential Optical Absorption Spectroscopy (DOAS)


    Lotter, Andreas


    Water vapor plays an important role in Earth's radiative budget since water molecules strongly absorb the incoming solar shortwave and the outgoing thermal infrared radiation. Superimposed on the water monomer absorption, a water continuum absorption has long been recognized, but its true nature still remains controversial. On the one hand, this absorption is explained by a deformation of the line shape of the water monomer absorption lines as a consequence of a molecular collision. One the o...

  4. Optical absorption characteristics of neutron irradiated heavy metal fluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, S.S.; Banerjee, P.K.; Pereira, J.M.T.; Gedam, S.G.


    Samples of ZBLA and HBLA glasses were subjected to various fluences of neutron irradiation, and the spectral dependence of optical absorption was measured before and after irradiation. The IR edge was found to be unaffected by neutron irradiation for the fluences used. However, a red shift occurred at the UV edge which slightly recovered after three weeks.

  5. Shaped Ir-Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction. (United States)

    Lim, Jinkyu; Yang, Sungeun; Kim, Chanyeon; Roh, Chi-Woo; Kwon, Yongwoo; Kim, Yong-Tae; Lee, Hyunjoo


    Shaped Ir-Ni bimetallic nanoparticles were synthesized and used for electrocatalytic oxygen evolution reaction (OER). The obtained bimetallic nanoparticles showed significantly enhanced Ir mass activity and durability compared with Ir nanoparticles.

  6. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Recker, R.R.


    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  7. Relationship between HOMA-IR and serum vitamin D in Chinese children and adolescents. (United States)

    Wang, Lingli; Wang, Huiyan; Wen, Huaikai; Tao, Hongqun; Zhao, Xiaowei


    The objective of this study was to examine the cross-sectional relationship between homeostasis model assessment for insulin resistance (HOMA-IR) and serum 25-hydroxyvitamin D (25-OHD) level in Chinese children and adolescents. Anthropometric indices, lipid metabolic profile, and serum levels of glucose, insulin and 25-OHD were determined among 278 healthy prepubertal and pubertal, normal and overweight/obese children and adolescents aged 8-18 years between March 2014 and February 2015. HOMA-IR was significantly different across vitamin D statuses (pHOMA-IR negatively correlated with serum 25-OHD level for all subjects (R2=0.148, pHOMA-IR and BMI and serum 25-OHD level (R2=0.654, pHOMA-IR. Our findings supported that lower vitamin D status is strongly associated with worse HOMA-IR.

  8. Absorption by water vapour in the 1 to 2 μm region

    International Nuclear Information System (INIS)

    Smith, K.M.; Ptashnik, I.; Newnham, D.A.; Shine, K.P.


    The near-IR (in the range 5000-10 000 cm -1 , 1-2 μm) bands of water vapour have been measured in absorption in the laboratory at sub-Doppler spectral resolution (up to 0.0054 cm -1 after numerical apodisation) by Fourier transform spectroscopy. Measurements have been made at 296 K on pure water vapour (at pressures between 2 and 20 hPa) and mixtures of water and air (at total pressures of 100 and 1000 hPa), at optical path lengths in the range 0.26-9.75 m. Measured absorption intensities have been compared with values calculated using the HITRAN 2000 molecular database. These comparisons indicate that the intensities of the 2ν(1.4 μm) and 2ν+δ(1.14 μm) bands are underestimated in HITRAN 2000 by approximately 15% and 20%, respectively, for pure water vapour measurements, and 12% for both bands in the case of water-air mixtures. The ν+δ (1.86 μm) band is in good agreement (0.4% for pure water vapour and less than 6% for mixtures with air) with HITRAN 2000. For typical atmospheric conditions, these absorption bands are sufficiently strong that radiation is fully absorbed at wavelengths in the region of the band centres. Hence the extra absorption that has been identified has only a modest impact (0.16 W m -2 or about 0.2%) on the global-mean clear-sky absorption of solar radiation. The impact in the upper troposphere is several times larger

  9. Measured Wavelength-Dependent Absorption Enhancement of Internally Mixed Black Carbon with Absorbing and Nonabsorbing Materials. (United States)

    You, Rian; Radney, James G; Zachariah, Michael R; Zangmeister, Christopher D


    Optical absorption spectra of laboratory generated aerosols consisting of black carbon (BC) internally mixed with nonabsorbing materials (ammonium sulfate, AS, and sodium chloride, NaCl) and BC with a weakly absorbing brown carbon surrogate derived from humic acid (HA) were measured across the visible to near-IR (550 to 840 nm). Spectra were measured in situ using a photoacoustic spectrometer and step-scanning a supercontinuum laser source with a tunable wavelength and bandwidth filter. BC had a mass-specific absorption cross section (MAC) of 7.89 ± 0.25 m(2) g(-1) at λ = 550 nm and an absorption Ångström exponent (AAE) of 1.03 ± 0.09 (2σ). For internally mixed BC, the ratio of BC mass to the total mass of the mixture was chosen as 0.13 to mimic particles observed in the terrestrial atmosphere. The manner in which BC mixed with each material was determined from transmission electron microscopy (TEM). AS/BC and HA/BC particles were fully internally mixed, and the BC was both internally and externally mixed for NaCl/BC particles. The AS/BC, NaCl/BC, and HA/BC particles had AAEs of 1.43 ± 0.05, 1.34 ± 0.06, and 1.91 ± 0.05, respectively. The observed absorption enhancement of mixed BC relative to the pure BC was wavelength dependent for AS/BC and decreased from 1.5 at λ = 550 nm with increasing wavelength while the NaCl/BC enhancement was essentially wavelength independent. For HA/BC, the enhancement ranged from 2 to 3 and was strongly wavelength dependent. Removal of the HA absorption contribution to enhancement revealed that the enhancement was ≈1.5 and independent of wavelength.

  10. WFC3 IR subarray anomaly (United States)

    Bushouse, Howard


    Certain combinations of WFC3 IR subarray size and sample sequence yield images that show a sharp change in background level that exactly bi-sects each detector amplifier quadrant. The change in level has an amplitude of a few DN per pixel. The cause of this anomaly and its apparent correlation with subarray size and sample sequence is not understood. Given the 4 available subarray sizes and 11 available readout sample sequences, there are a total of 44 possible subarray mode readout combinations. To date, 14 of those combinations have been used on-orbit in either calibration and GO programs. Of those, 3 combinations show the anomaly. This program will obtain IR dark exposures in the remaining 30 readout combinations that have not yet been explored. This will add to our knowledge of which combinations show the anomaly and will therefore help us to understand its origin.

  11. Oferta ir akceptas vartojimo sutartyse


    Ežerskytė, Ramunė


    Sutarčiai sudaryti paprastai reikia, kad viena šalis pasiūlytų sudaryti sutartį (oferta), o kita šalis sutiktų su pasiūlymu (akceptas). Sutarčių įvairovėje išskiriamos vartojimo sutartys, kurios dėl silpnesnės šalies apsaugos principo įgyvendinimo pasižymi tam tikrais ypatumais. Vartojimo sutarčių sudarymas pateikiant ofertą ir akceptą yra šio magistro baigiamojo darbo objektas. Magistro baigiamąjį darbą sudaro trys dalys. Pirmojoje darbo dalyje analizuojama vartojimo sutarties sąvoka ir spec...

  12. Hidroenergijos panaudojimo raida ir perspektyvos


    Vizbaras, Andrius


    Ilgą laiko tarpą hidroenergetika vertinta kaip sėkminga žmonijos vystimosi ir akivaizdžios naudos išraiška, pastaruoju metu siejama su reikšmingu poveikiu gamtinei aplinkai bei įtaka klimato kaitai. Lygumų šalyse, net ir mažos galios hidroelektrinių statyba pareikalauja didelių užliejamų žemės plotų. Šiame darbe atlikome aštuoniasdešimties iki 2007 metų pastatytų hidroelektrinių poveikio aplinkai analizę bei aptarėme galimą „Lietuvos hidroenergetinių išteklių schemoje„ numatytų statyti HE pov...

  13. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry]. (United States)

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng


    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  14. Photoacoustic Experimental System to Confirm Infrared Absorption Due to Greenhouse Gases (United States)

    Kaneko, Fumitoshi; Monjushiro, Hideaki; Nishiyama, Masayoshi; Kasai, Toshio; Harris, Harold H.


    An experimental system for detecting infrared absorption using the photoacoustic (PA) effect is described. It is aimed for use at high-school level to illustrate the difference in infrared (IR) absorption among the gases contained in the atmosphere in connection with the greenhouse effect. The experimental system can be built with readily…

  15. Conformational Heterogeneity of Methyl 4-Hydroxycinnamate: A Gas-Phase UV-IR Spectroscopic Study

    NARCIS (Netherlands)

    Tan, E.M.M.; Amirjalayer, S.; Smolarek, S.; Vdovin, A.; Rijs, A.M.; Buma, W.J.


    UV excitation and IR absorption spectroscopy on Jet cooled molecules is used to study the conformational heterogeneity of methyl 4-hydroxycinnamate, a model chromophore of the Photoactive Yellow Protein (PYP), and to determine the spectroscopic properties of the various conformers UV-UV depletion

  16. Complementary online aerosol mass spectrometry and offline FT-IR spectroscopy measurements: Prospects and challenges for the analysis of anthropogenic aerosol particle emissions (United States)

    Faber, Peter; Drewnick, Frank; Bierl, Reinhard; Borrmann, Stephan


    The aerosol mass spectrometer (AMS) is well established in investigating highly time-resolved dynamics of submicron aerosol chemical composition including organic aerosol (OA). However, interpretation of mass spectra on molecular level is limited due to strong fragmentation of organic substances and potential reactions inside the AMS ion chamber. Results from complementary filter-based FT-IR absorption measurements were used to explain features in high-resolution AMS mass spectra of different types of OA (e.g. cooking OA, cigarette smoking OA, wood burning OA). Using this approach some AMS fragment ions were validated in this study as appropriate and rather specific markers for a certain class of organic compounds for all particle types under investigation. These markers can therefore be used to get deeper insights in the chemical composition of OA based on AMS mass spectra in upcoming studies. However, the specificity of other fragment ions such as C2H4O2+ (m/z 60.02114) remains ambiguous. In such cases, complementary FT-IR measurements allow the interpretation of highly time-resolved AMS mass spectra at the level of molecular functional groups. Furthermore, this study discusses the challenges in reducing inorganic interferences (e.g. from water and ammonium salts) in FT-IR spectra of atmospheric aerosols to decrease spectral uncertainties for better comparisons and, thus, to get more robust results.

  17. Spectral interferences in atomic absorption spectrometry, (5)

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro


    Spectral interferences were observed in trace element analysis of concentrated solutions by atomic absorption spectrometry. Molecular absorption and emission spectra for strontium chloride and nitrate, barium chloride and nitrate containing 12 mg/ml of metal ion in airacetylene flame were measured in the wavelength range from 200 to 700 nm. The absorption and emission spectra of SrO were centered near 364.6 nm. The absorption spectra of SrOH around 606.0, 671.0 and 682.0 nm were very strong. And, emission spectrum of BaOH in the wavelength range from 480 to 550 nm was stronger. But, the absorption of this band spectrum was very weak. In the wavelength range from 200 to 400 nm, some unknown bands of absorption were observed for strontium and barium. Absorption spectra of SrCl and BaCl were observed in the argon-hydrogen flame. Also, in the carbon tube atomizer, the absorption spectra of SrCl and BaCl were detected clearly in the wavelength range from 185 to 400 nm. (author)

  18. Climate Prediction Center IR 4km Dataset (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CPC IR 4km dataset was created from all available individual geostationary satellite data which have been merged to form nearly seamless global (60N-60S) IR...

  19. IR-Driven Ultrafast Transfer of Plasmonic Hot Electrons in Nonmetallic Branched Heterostructures for Enhanced H2Generation. (United States)

    Zhang, Zhenyi; Jiang, Xiaoyi; Liu, Benkang; Guo, Lijiao; Lu, Na; Wang, Li; Huang, Jindou; Liu, Kuichao; Dong, Bin


    The ultrafast transfer of plasmon-induced hot electrons is considered an effective kinetics process to enhance the photoconversion efficiencies of semiconductors through strong localized surface plasmon resonance (LSPR) of plasmonic nanostructures. Although this classical sensitization approach is widely used in noble-metal-semiconductor systems, it remains unclear in nonmetallic plasmonic heterostructures. Here, by combining ultrafast transient absorption spectroscopy with theoretical simulations, IR-driven transfer of plasmon-induced hot electron in a nonmetallic branched heterostructure is demonstrated, which is fabricated through solvothermal growth of plasmonic W 18 O 49 nanowires (as branches) onto TiO 2 electrospun nanofibers (as backbones). The ultrafast transfer of hot electron from the W 18 O 49 branches to the TiO 2 backbones occurs within a timeframe on the order of 200 fs with very large rate constants ranging from 3.8 × 10 12 to 5.5 × 10 12 s -1 . Upon LSPR excitation by low-energy IR photons, the W 18 O 49 /TiO 2 branched heterostructure exhibits obviously enhanced catalytic H 2 generation from ammonia borane compared with that of W 18 O 49 nanowires. Further investigations by finely controlling experimental conditions unambiguously confirm that this plasmon-enhanced catalytic activity arises from the transfer of hot electron rather than from the photothermal effect. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. FT-IR reflection spectra of single crystals: resolving phonons of different symmetry without using polarised radiation

    Directory of Open Access Journals (Sweden)



    Full Text Available Fourier-transform infrared (FT-IR reflection spectra, asquired at nearnormal incidence, were recorded from single crystals belonging to six crystal systems: CsCr(SO42.12H2O (alum, cubic, K2CuCl2·2H2O (Mitscherlichite, tetragonal, CaCO3 (calcite, hexagonal, KHSO4 (mercallite, orthorhombic, CaSO4·2H2O (gypsum, monoclinic and CuSO4·5H2O (chalcantite, triclinic. The acquired IR reflection spectra were further transformed into absorption spectra, employing the Kramers-Kronig transformation. Except for the cubic alums, the spectra strongly depend on the crystal face from which they were recorded; this is a consequence of anisotropy. Phonons of a given symmetry (E-species, in tetragonal/hexagonal and B-species, in monoclinic crystals may be resolved without using a polariser. The spectrum may be simplified in the case of an orthorhombic crystal, as well. The longitudinal-optical (LO and transversal-optical (TO mode frequencies were calculated in the case of optically isotropic and the simplified spectra of optically uniaxial crystals.

  1. Spectral absorption studies of visible materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bass, M.; Swimm, R.T.


    Results of studies of optical absorption in twelve thin-film optical coatings at 482 nm wavelength, surface and bulk absorption in sapphire throughout the visible and near IR, and initial measurements in KDP are described. Laser calorimetry was carried out at room temperature, using an unfocused laser beam at normal incidence. All thin-film absorption data yielded values of P/sub abs//P/sub inc/ in the range 3 x 10 U to 3 x 10 T at a wavelength of 482 nm. Sapphire absorption showed Urbach-tail behavior at 350 nm to 1300 nm. The range of absorption, being far lower than usual, extends the range of application of Urbach's rule. Finally, KDP measurements were attempted, but surface degradation due to the hydroscopic nature of the samples resulted in excessive light scatter.

  2. Patterns of Strong Coupling for LHC Searches

    CERN Document Server

    Liu, Da; Rattazzi, Riccardo; Riva, Francesco


    Even though the Standard Model (SM) is weakly coupled at the Fermi scale, a new strong dynamics involving its degrees of freedom may conceivably lurk at slightly higher energies, in the multi TeV range. Approximate symmetries provide a structurally robust context where, within the low energy description, the dimensionless SM couplings are weak, while the new strong dynamics manifests itself exclusively through higher-derivative interactions. We present an exhaustive classification of such scenarios in the form of effective field theories, paying special attention to new classes of models where the strong dynamics involves, along with the Higgs boson, the SM gauge bosons and/or the fermions. The IR softness of the new dynamics suppresses its effects at LEP energies, but deviations are in principle detectable at the LHC, even at energies below the threshold for production of new states. Our construction provides the so far unique structurally robust context where to motivate several searches in Higgs physics, d...

  3. Radiation-resistance assessment of IR fibres for ITER thermography diagnostic system

    International Nuclear Information System (INIS)

    Brichard, B.; Ierschot, S. van; Ooms, H.; Berghmans, F.; Reichle, R.; Pocheau, C.; Decreton, M.


    The actively cooled target plates in the divertor of ITER will be subjected to high thermal fluxes (∼ 10 MW/m 2 ). These target plates are compound structures of an armour material at the surface - either carbon fibre reinforced carbon (CFC) or tungsten - and a water cooled CuCrZr structure inside or below. The thermal limit of the interface between the two materials must not exceed 550 o C. Therefore, the temperature must be carefully monitored to prevent structural damages of the divertor plates. Non contact measurements of the temperature offer the advantage to avoid weakening of the cooling plate structure which is already quite complex to manufacture. Infrared thermography of the target surface is therefore considered as a possible solution. Recently a diagnostic concept for spectrally resolved ITER divertor thermography using optical fibres has been proposed by CEA-Cadarache. However, the divertor region will have to face high-radiation flux and the radiation-resistance of InfraRed (IR)-fibres must be evaluated. In collaboration with CEA-Cadarache, an irradiation program has been started at SCK-CEN (Mol, Belgium) with the aim to measure the radiation-induced absorption of different IR fibre candidates operating in the 1-5 μm range. We selected various commercially available IR technologies: ZrF 4 , Hollow-Waveguide, Sapphire and Chalcogenide. For wavelengths below 2 μm we also tested low-OH silica fibres. We carried out a gamma irradiation at a maximum dose-rate of 0.42 Gy/s up to a total dose of about 5000 Gy. We showed that the optical transmission of ZrF 4 fibres strongly decreased under gamma radiation, primarily for wavelengths below 2 μm. In this type of fibre typical optical losses can reach 50 % at 5000 Gy around 3 μm. Nevertheless, the optical transmission can be significantly recovered by performing a thermal annealing treatment at a temperature of 100 o C. We also irradiated a Silver-coated hollow waveguide fibre at the same dose-rate but up

  4. Absorption heat pumps

    International Nuclear Information System (INIS)

    Formigoni, C.


    A brief description of the difference between a compression and an absorption heat pump is made, and the reasons why absorption systems have spread lately are given. Studies and projects recently started in the field of absorption heat pumps, as well as criteria usually followed in project development are described. An outline (performance targets, basic components) of a project on a water/air absorption heat pump, running on natural gas or LPG, is given. The project was developed by the Robur Group as an evolution of a water absorption refrigerator operating with a water/ammonia solution, which has been on the market for a long time and recently innovated. Finally, a list of the main energy and cost advantages deriving from the use of absorption heat pumps is made [it

  5. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    NARCIS (Netherlands)

    Rijs, A. M.; Kabelac, M.; Abo-Riziq, A.; Hobza, P.; de Vries, M. S.


    We report double-resonant IR/UV ion-dip spectroscopy of neutral gramicidin peptides in the gas phase. The IR spectra of gramicidin A and C, recorded in both the 1000 cm(-1) to 1800 cm(-1) and the 2700 to 3750 cm(-1) region, allow structural analysis. By studying this broad IR range, various local

  6. Diffraction-limited IR Microspectroscopy with IRENI (United States)

    J. Sedlmair; B. Illman; M. Unger; C. Hirschmugl


    In a unique way, IRENI (Infrared environmental Imaging), operated at the Synchrotron Radiation Center in Madison, combines IR spectroscopy and IR imaging, revealing the chemical morphology of a sample. Most storage ring based IR confocal microscopes have to overcome a trade-off between spatial resolution versus...

  7. Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor (United States)

    Kurtz, Joe; Huffman, Donald R.


    Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

  8. Strongly Correlated Topological Insulators (United States)


    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  9. Strong Cosmic Censorship (United States)

    Isenberg, James


    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  10. A Sensitivity Study on the Effects of Particle Chemistry, Asphericity and Size on the Mass Extinction Efficiency of Mineral Dust in the Earth's Atmosphere: From the Near to Thermal IR (United States)

    Hansell, R. A., Jr.; Reid, J. S.; Tsay, S. C.; Roush, T. L.; Kalashnikova, O. V.


    To determine a plausible range of mass extinction efficiencies (MEE) of terrestrial atmospheric dust from the near to thermal IR, sensitivity analyses are performed over an extended range of dust microphysical and chemistry perturbations. The IR values are subsequently compared to those in the near-IR, to evaluate spectral relationships in their optical properties. Synthesized size distributions consistent with measurements, model particle size, while composition is defined by the refractive indices of minerals routinely observed in dust, including the widely used OPAC/Hess parameterization. Single-scattering properties of representative dust particle shapes are calculated using the T-matrix, Discrete Dipole Approximation and Lorenz-Mie light-scattering codes. For the parameterizations examined, MEE ranges from nearly zero to 1.2 square meters per gram, with the higher values associated with non-spheres composed of quartz and gypsum. At near-IR wavelengths, MEE for non-spheres generally exceeds those for spheres, while in the thermal IR, shape-induced changes in MEE strongly depend on volume median diameter (VMD) and wavelength, particularly for MEE evaluated at the mineral resonant frequencies. MEE spectral distributions appear to follow particle geometry and are evidence for shape dependency in the optical properties. It is also shown that non-spheres best reproduce the positions of prominent absorption peaks found in silicates. Generally, angular particles exhibit wider and more symmetric MEE spectral distribution patterns from 8-10 micrometers than those with smooth surfaces, likely due to their edge-effects. Lastly, MEE ratios allow for inferring dust optical properties across the visible-IR spectrum. We conclude the MEE of dust aerosol are significant for the parameter space investigated, and are a key component for remote sensing applications and the study of direct aerosol radiative effects.

  11. A sensitivity study on the effects of particle chemistry, asphericity and size on the mass extinction efficiency of mineral dust in the earth's atmosphere: from the near to thermal IR

    Directory of Open Access Journals (Sweden)

    R. A. Hansell Jr.


    Full Text Available To determine a plausible range of mass extinction efficiencies (MEE of terrestrial atmospheric dust from the near to thermal IR, sensitivity analyses are performed over an extended range of dust microphysical and chemistry perturbations. The IR values are subsequently compared to those in the near-IR, to evaluate spectral relationships in their optical properties. Synthesized size distributions consistent with measurements, model particle size, while composition is defined by the refractive indices of minerals routinely observed in dust, including the widely used OPAC/Hess parameterization. Single-scattering properties of representative dust particle shapes are calculated using the T-matrix, Discrete Dipole Approximation and Lorenz-Mie light-scattering codes. For the parameterizations examined, MEE ranges from nearly zero to 1.2 m2 g−1, with the higher values associated with non-spheres composed of quartz and gypsum. At near-IR wavelengths, MEE for non-spheres generally exceeds those for spheres, while in the thermal IR, shape-induced changes in MEE strongly depend on volume median diameter (VMD and wavelength, particularly for MEE evaluated at the mineral resonant frequencies. MEE spectral distributions appear to follow particle geometry and are evidence for shape dependency in the optical properties. It is also shown that non-spheres best reproduce the positions of prominent absorption peaks found in silicates. Generally, angular particles exhibit wider and more symmetric MEE spectral distribution patterns from 8–10 μm than those with smooth surfaces, likely due to their edge-effects. Lastly, MEE ratios allow for inferring dust optical properties across the visible-IR spectrum. We conclude the MEE of dust aerosol are significant for the parameter space investigated, and are a key component for remote sensing applications and the study of direct aerosol radiative effects.

  12. Plasmonics-Nanofluidics Hydrid Metamaterial: An Ultrasensitive Platform for Infrared Absorption Spectroscopy and Quantitative Measurement of Molecules. (United States)

    Le, Thu H H; Tanaka, Takuo


    One of the most attractive potentials of plasmonic metamaterials is the amplification of intrinsically weak signals such as molecular infrared absorption or Raman scattering for detection applications. This effect, however, is only effective when target molecules are located at the enhanced electromagnetic field of the plasmonic structures (i.e., hot-spots). It is thus of significance to control the spatial overlapping of molecules and hot-spots, yet it is a long-standing challenge, since it involves the handling of molecules in nanoscale spaces. Here a metamaterial consisting of a nanofluidic channel with a depth of several tens of nanometers sandwiched between plasmonic resonators and a metal film enables the controllable delivery of small molecules into the most enhanced field arising from the quadrupole mode of the structures, forming a plasmon-molecular coupled system. It offers an ultrasensitive platform for detection of IR absorption and molecular sensing. Notably, the precise handling of molecules in a fixed and ultrasmall (10-100 nm) gap also addressed some critical issues in IR spectroscopy such as quantitative measurement and measurement in aqueous solution. Moreover, a drastic change in the reflectance characteristic resulting from the strong coupling between molecules and plasmonic structures indicates that molecules can also be utilized as triggers for actively switching the optical property of metamaterials.

  13. Hybrid nanomaterial and its applications: IR sensing and energy harvesting (United States)

    Tseng, Yi-Hsuan

    In this dissertation, a hybrid nanomaterial, single-wall carbon nanotubes-copper sulfide nanoparticles (SWNTs-CuS NPs), was synthesized and its properties were analyzed. Due to its unique optical and thermal properties, the hybrid nanomaterial exhibited great potential for infrared (IR) sensing and energy harvesting. The hybrid nanomaterial was synthesized with the non-covalent bond technique to functionalize the surface of the SWNTs and bind the CuS nanoparticles on the surface of the SWNTs. For testing and analyzing the hybrid nanomaterial, SWNTs-CuS nanoparticles were formed as a thin film structure using the vacuum filtration method. Two conductive wires were bound on the ends of the thin film to build a thin film device for measurements and analyses. Measurements found that the hybrid nanomaterial had a significantly increased light absorption (up to 80%) compared to the pure SWNTs. Moreover, the hybrid nanomaterial thin film devices exhibited a clear optical and thermal switching effect, which could be further enhanced up to ten times with asymmetric illumination of light and thermal radiation on the thin film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials was demonstrated, indicating a new route for achieving thermoelectricity. In addition, CuS nanoparticles have great optical absorption especially in the near-infrared region. Therefore, the hybrid nanomaterial thin films also have the potential for IR sensing applications. The first application to be covered in this dissertation is the IR sensing application. IR thin film sensors based on the SWNTs-CuS nanoparticles hybrid nanomaterials were fabricated. The IR response in the photocurrent of the hybrid thin film sensor was significantly enhanced, increasing the photocurrent by 300% when the IR light illuminates the thin film device asymmetrically. The detection limit could be as low as 48mW mm-2. The dramatically enhanced

  14. Solar absorption surface panel (United States)

    Santala, Teuvo J.


    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  15. Nutrition and magnesium absorption

    NARCIS (Netherlands)

    Brink, E.J.


    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true

  16. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.


    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  17. Strong Arcwise Connectedness


    Espinoza, Benjamin; Gartside, Paul; Kovan-Bakan, Merve; Mamatelashvili, Ana


    A space is `n-strong arc connected' (n-sac) if for any n points in the space there is an arc in the space visiting them in order. A space is omega-strong arc connected (omega-sac) if it is n-sac for all n. We study these properties in finite graphs, regular continua, and rational continua. There are no 4-sac graphs, but there are 3-sac graphs and graphs which are 2-sac but not 3-sac. For every n there is an n-sac regular continuum, but no regular continuum is omega-sac. There is an omega-sac ...

  18. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio


    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally......'s scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims....

  19. Coprates Chasma Landslides in IR (United States)


    [figure removed for brevity, see original site] Today's daytime IR image is of a portion of Coprates Chasma, part of Valles Marineris. As with yesterday's image, this image shows multiple large landslides. Image information: IR instrument. Latitude -8.2, Longitude 300.2 East (59.8 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Micronutrient interactions: effects on absorption and bioavailability. (United States)

    Sandström, B


    A potential risk of interactions between micronutrients affecting absorption and bioavailability has to be considered in any supplementation or fortification strategy. At levels of essential micronutrients present in foods, most micronutrients appear to utilise specific absorptive mechanisms and not be vulnerable to interactions. In aqueous solutions and at higher intake levels competition between elements with similar chemical characteristics and uptake by non-regulated processes can take place. These interactions have clearly been demonstrated in experimental absorption studies and to some extent have been confirmed in supplementation studies. Negative effects of iron supplementation on indices of zinc and copper status and of zinc supplementation on iron and copper status have been reported. In contrast, the negative effect of calcium on iron absorption has not been confirmed in long-term supplementation studies. Ascorbic acid has a strong iron absorption promoting potential and in iron deficient populations ascorbic acid supplementation improves iron status. Thus, ascorbic acid supplements or an increased intake of ascorbic acid rich foods could have important public health implications, especially in populations subsisting on a mainly plant food based diet. The effect of poor status of a given micronutrient on absorption and utilisation of other micronutrients should also be considered while developing strategies to improve micronutrient status in a population. Awareness of these interactions, combined with a balanced evaluation of the dietary intake of the population with regard to absorption promoting and inhibiting substances and the risk for multiple deficiencies, could lead to more effective strategies to improve micronutrient status.

  1. Characterization of additives typically employed in EPDM formulations by using FT-IR of gaseous pyrolyzates

    Directory of Open Access Journals (Sweden)

    Natália Beck Sanches


    Full Text Available In this study, Fourier transform infrared spectroscopy (FT-IR was employed to investigate the gaseous pyrolysis products of ethylene - propylene - diene rubber (EPDM. The objective was to evaluate the potential of FT-IR analysis of gaseous pyrolyzates (PY-G/FT-IR for characterization of EPDM additives. Two EPDM formulations, containing additives typically employed in EPDM rubbers, were analyzed. Initially, gaseous pyrolysis products from paraffin oil, stearic acid, 2,2,4-trimethyl-1,2-dihydroquinoline, tetramethylthiuram monosulfide (TMTM, tetramethylthiuram disulfide (TMTD, and 2-mercaptobenzothiazole (MBT were characterized separately, and their main absorptions were identified. Subsequently, the gaseous pyrolysis products of raw, unvulcanized, and vulcanized EPDM formulations were analyzed. The similarities observed in the FT-IR spectra of unvulcanized and vulcanized EPDM show that the vulcanization process does not interfere with the pyrolysis products. The identification of the functional groups of the studied additives was possible in both unvulcanized and vulcanized EPDM samples, without solvent extraction. Results also demonstrate that the PY-G/FT-IR technique can identify additives containing sulfur in concentrations as low as 1.4 phr (1.26% in both unvulcanized and vulcanized EPDM. However, the method showed some limitation due to overlapping and to similarities of TMTM and TMTD PY-G/FT-IR spectra, which could not be distinguished from each other. The PY-G/FT-IR technique is a faster and cheaper alternative to the sophisticated techniques usually applied to detection of additives in rubbers.

  2. M-M bond-stretching energy landscapes for M2(dimen)4(2+) (M = Rh, Ir; dimen = 1,8-diisocyanomenthane) complexes. (United States)

    Hunter, Bryan M; Villahermosa, Randy M; Exstrom, Christopher L; Hill, Michael G; Mann, Kent R; Gray, Harry B


    Isomers of Ir(2)(dimen)(4)(2+) (dimen = 1,8-diisocyanomenthane) exhibit different Ir-Ir bond distances in a 2:1 MTHF/EtCN solution (MTHF = 2-methyltetrahydrofuran). Variable-temperature absorption data suggest that the isomer with the shorter Ir-Ir distance is favored at room temperature [K = ∼8; ΔH° = -0.8 kcal/mol; ΔS° = 1.44 cal mol(-1) K(-1)]. We report calculations that shed light on M(2)(dimen)(4)(2+) (M = Rh, Ir) structural differences: (1) metal-metal interaction favors short distances; (2) ligand deformational-strain energy favors long distances; (3) out-of-plane (A(2u)) distortion promotes twisting of the ligand backbone at short metal-metal separations. Calculated potential-energy surfaces reveal a double minimum for Ir(2)(dimen)(4)(2+) (∼4.1 Å Ir-Ir with 0° twist angle and ∼3.6 Å Ir-Ir with ±12° twist angle) but not for the rhodium analogue (∼4.5 Å Rh-Rh with no twisting). Because both the ligand strain and A(2u) distortional energy are virtually identical for the two complexes, the strength of the metal-metal interaction is the determining factor. On the basis of the magnitude of this interaction, we obtain the following results: (1) a single-minimum (along the Ir-Ir coordinate), harmonic potential-energy surface for the triplet electronic excited state of Ir(2)(dimen)(4)(2+) (R(e,Ir-Ir) = 2.87 Å; F(Ir-Ir) = 0.99 mdyn Å(-1)); (2) a single-minimum, anharmonic surface for the ground state of Rh(2)(dimen)(4)(2+) (R(e,Rh-Rh) = 3.23 Å; F(Rh-Rh) = 0.09 mdyn Å(-1)); (3) a double-minimum (along the Ir-Ir coordinate) surface for the ground state of Ir(2)(dimen)(4)(2+) (R(e,Ir-Ir) = 3.23 Å; F(Ir-Ir) = 0.16 mdyn Å(-1)).

  3. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.


    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  4. Absorptive coating for aluminum solar panels (United States)

    Desmet, D.; Jason, A.; Parr, A.


    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  5. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn. (United States)

    Galceran, R; Fina, I; Cisneros-Fernández, J; Bozzo, B; Frontera, C; López-Mir, L; Deniz, H; Park, K-W; Park, B-G; Balcells, Ll; Martí, X; Jungwirth, T; Martínez, B


    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

  6. Uranium absorption study pile

    International Nuclear Information System (INIS)

    Raievski, V.; Sautiez, B.


    The report describes a pile designed to measure the absorption of fuel slugs. The pile is of graphite and comprises a central section composed of uranium rods in a regular lattice. RaBe sources and BF 3 counters are situated on either side of the center. A given uranium charge is compared with a specimen charge of about 560 kg, and the difference in absorption between the two noted. The sensitivity of the equipment will detect absorption variations of about a few ppm boron (10 -6 boron per gr. of uranium) or better. (author) [fr

  7. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin


    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  8. Innovations in IR projector arrays (United States)

    Cole, Barry E.; Higashi, B.; Ridley, Jeff A.; Holmen, J.; Newstrom, K.; Zins, C.; Nguyen, K.; Weeres, Steven R.; Johnson, Burgess R.; Stockbridge, Robert G.; Murrer, Robert Lee; Olson, Eric M.; Bergin, Thomas P.; Kircher, James R.; Flynn, David S.


    In the past year, Honeywell has developed a 512 X 512 snapshot scene projector containing pixels with very high radiance efficiency. The array can operate in both snapshot and raster mode. The array pixels have near black body characteristics, high radiance outputs, broad band performance, and high speed. IR measurements and performance of these pixels will be described. In addition, a vacuum probe station that makes it possible to select the best die for packaging and delivery based on wafer level radiance screening, has been developed and is in operation. This system, as well as other improvements, will be described. Finally, a review of the status of the present projectors and plans for future arrays is included.

  9. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.


    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  10. Strong Electron Correlation in the High-Temperature Phase of (EDO-TTF)2PF6 as a Quasi-One-Dimensional Molecular Conductor (United States)

    Iwano, Kaoru; Shimoi, Yukihiro


    We focus on the electronic property of the high-temperature phase of (EDO-TTF)2PF6. Applying a cluster-based density-functional theory (DFT) calculation augmented by a self-consistent environment, we recognize a strong electron-electron repulsion in a dimer-Mott-type ground state. On the basis of this ground state, we obtain an absorption spectrum that takes a form of a single peak in the mid-infrared (mid-IR) region. We next analyze a Hubbard model with alternate transfers, of which the values are determined by the DFT calculations. The obtained absorption peak energy is comparable to the mid-IR peak energy observed in the experiment. Finally, we also investigate other one-dimensional conductors, (TMTSF)2PF6 and (TMTTF)2PF6, which are known as correlated metals, and conclude that (EDO-TTF)2PF6 also falls in this category, in spite of its unique (0110)-type charge ordering observed in the low-temperature phase.

  11. IR Thermography NDE of ISS Radiator Panels (United States)

    Koshti, Ajay; Winfree, William; Morton, Richard; Wilson, Walter; Reynolds, Gary


    The presentation covers an active and a passive infrared (IR) thermography for detection of delaminations in the radiator panels used for the International Space Station (ISS) program. The passive radiator IR data was taken by a NASA astronaut in an extravehicular activity (EVA) using a modified FLIR EVA hand-held camera. The IR data could be successfully analyzed to detect gross facesheet disbonds. The technique used the internal hot fluid tube as the heat source in analyzing the IR data. Some non-flight ISS radiators were inspected using an active technique of IR flash thermography to detect disbond of face sheet with honeycomb core, and debonds in facesheet overlap areas. The surface temperature and radiated heat emission from flight radiators is stable during acquisition of the IR video data. This data was analyzed to detect locations of unexpected surface temperature gradients. The flash thermography data was analyzed using derivative analysis and contrast evolutions. Results of the inspection are provided.

  12. IR spectral analysis for the diagnostics of crust earthquake precursors (United States)

    Umarkhodgaev, R. M.; Liperovsky, V. A.; Mikhailin, V. V.; Meister, C.-V.; Naumov, D. Ju


    In regions of future earthquakes, a few days before the seismic shock, the emanation of radon and hydrogen is being observed, which causes clouds of increased ionisation in the atmosphere. In the present work the possible diagnostics of these clouds using infrared (IR) spectroscopy is considered, which may be important and useful for the general geophysical system of earthquake prediction and the observation of industrial emissions of radioactive materials into the atmosphere. Some possible physical processes are analysed, which cause, under the condition of additional ionisation in a pre-breakdown electrical field, emissions in the IR interval. In doing so, the transparency region of the IR spectrum at wavelengths of 7-15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analysed. The laboratory equipment for the investigation of the IR absorption spectrum is constructed for the cases of normal and decreased atmospheric pressures. The syntheses of ozone and nitrous oxides are performed in the barrier discharge. It is studied if the products of the syntheses may be used to model atmospheric processes where these components take part. Spectra of products of the syntheses in the wavelength region of 2-10 μm are observed and analysed. A device is created for the syntheses and accumulation of nitrous oxides. Experiments to observe the IR-spectra of ozone and nitrous oxides during the syntheses and during the further evolution of these molecules are performed. For the earthquake prediction, practically, the investigation of emission spectra is most important, but during the laboratory experiments, the radiation of the excited molecules is shifted by a

  13. Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper


    We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption.......We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption....

  14. Feminist Challenge to the Mainstream IR


    Aydın, Gülşen


    This study deals with the Feminist challenge to the Mainstream International Relations Discipline (IR) - rationalist theories, especially Realism - and the mainstream's responses to this challenge. It addresses the issue in five steps. Firstly, it sheds light on how Feminism is related to International Relations. Secondly, it examines how Feminist IR theorists criticize the Mainstream IR due to its state-centric approach and argue that being obsessed with anarchic international system prevent...

  15. Measuring Collimator Infrared (IR) Spectral Transmission (United States)


    TECHNICAL REPORT RDMR-WD-16-15 MEASURING COLLIMATOR INFRARED ( IR ) SPECTRAL TRANSMISSION Christopher L. Dobbins Weapons...AND DATES COVERED Final 4. TITLE AND SUBTITLE Measuring Collimator Infrared ( IR ) Spectral Transmission 5. FUNDING NUMBERS 6. AUTHOR(S) Christopher L...release; distribution is unlimited. 12b. DISTRIBUTION CODE A 13. ABSTRACT (Maximum 200 Words) Several Infrared ( IR ) imaging systems have been measured

  16. How to remedy Eurocentrism in IR?

    DEFF Research Database (Denmark)

    Bilgin, Pinar


    While IR's Eurocentric limits are usually acknowledged, what those limits mean for theorizing about the international is seldom clarified. In The Global Transformation, Buzan and Lawson offer a 'composite approach' that goes some way towards addressing IR's Eurocentrism, challenging existing myths...... helps us recognize what is missing from IR theorizing - conceptions of the international by 'others' who also constitute the international. I illustrate this point by focussing on a landmark text on Ottoman history, Ortayll's The Longest Century of the Empire....

  17. Reentrant spin glass behavior and magnetodielectric coupling of an Ir-based double perovskite compound, La2CoIrO6. (United States)

    Song, Jiyue; Zhao, Bangchuan; Yin, Lihua; Qin, Yanfeng; Zhou, Jiafeng; Wang, Dong; Song, Wenhai; Sun, Yuping


    The structural, magnetic, electrical and dielectric properties of an Ir-based double perovskite compound, La 2 CoIrO 6 , have been investigated. The sample undergoes a paramagnetic-ferromagnetic transition at T C , followed by a reentrant spin-glass transition at lower temperatures. The reentrant spin glass state in La 2 CoIrO 6 is associated with the competitions of the antiferromagnetic coupling between Ir 4+ and Co 2+ ions and the ferromagnetic clusters. La 2 CoIrO 6 shows a semiconducting transport behavior in the temperature range 65 to 360 K and the transport behavior can be well described by the three-dimensional Mott variable range hopping conduction mechanism. Moreover, a strong frequency dependence of dielectric constant behavior for La 2 CoIrO 6 is observed and the dielectric relaxation can be ascribed to the electron hopping between different transition metal ions. In addition, the isothermal magnetic field dependent dielectric constant measurements show that a clear magnetodielectric coupling effect exists in La 2 CoIrO 6 at low temperatures.

  18. Revisiting Absorptive Capacity

    DEFF Research Database (Denmark)

    de Araújo, Ana Luiza Lara; Ulhøi, John Parm; Lettl, Christopher

    learning processes of absorptive capacity, which comprise combinative and adaptive capabilities. Drawing on survey data (n=169), the study concludes that combinative capabilities primarily enhance transformative and exploratory learning processes, while adaptive capabilities strengthen all three learning......Absorptive capacity has mostly been perceived as a 'passive' outcome of R&D investments. Recently, however, a growing interest into its 'proactive' potentials has emerged. This paper taps into this development and proposes a dynamic model for conceptualizing the determinants of the complementary...

  19. Infrared differential absorption lidar for stand-off detection of ...

    Indian Academy of Sciences (India)


    Feb 14, 2014 ... S VEERABUTHIRAN, M K JINDAL and R K SHARMA. Lidar and Beam Diagnostics Division, Laser Science & Technology Centre, Delhi ... was tested successfully with diethyl ether (DEE) (a toxic industrial chemical (TIC)) and differential absorption signals at λon (strong absorption, 9R16) and λoff (weak ...

  20. Unshifted Metastable He I* Mini-broad Absorption Line System in the Narrow-line Type 1 Quasar SDSS J080248.18+551328.9 (United States)

    Ji, Tuo; Zhou, Hongyan; Jiang, Peng; Wang, Tinggui; Ge, Jian; Wang, Huiyuan; Komossa, S.; Hamann, Fred; Zuther, Jens; Liu, Wenjuan; Lu, Honglin; Zuo, Wenwen; Yang, Chenwei; Yuan, Weimin


    We report the identification of an unusual absorption-line system in the quasar SDSS J080248.18+551328.9 and present a detailed study of the system, incorporating follow-up optical and near-IR spectroscopy. A few tens of absorption lines are detected, including He I*, Fe II*, and Ni II*, which arise from metastable or excited levels, as well as resonant lines in Mg I, Mg II, Fe II, Mn II, and Ca II. All of the isolated absorption lines show the same profile of width Δv ~ 1500 km s-1 centered at a common redshift as that of the quasar emission lines, such as [O II], [S II], and hydrogen Paschen and Balmer series. With narrow Balmer lines, strong optical Fe II multiplets, and weak [O III] doublets, its emission-line spectrum is typical for that of a narrow-line Seyfert 1 galaxy (NLS1). We have derived reliable measurements of the gas-phase column densities of the absorbing ions/levels. Photoionization modeling indicates that the absorber has a density of n H ~ (1.0-2.5) × 105 cm-3 and a column density of N H ~ (1.0-3.2) × 1021 cm-2 and is located at R ~100-250 pc from the central supermassive black hole. The location of the absorber, the symmetric profile of the absorption lines, and the coincidence of the absorption- and emission-line centroid jointly suggest that the absorption gas originates from the host galaxy and is plausibly accelerated by stellar processes, such as stellar winds and/or supernova explosions. The implications for the detection of such a peculiar absorption-line system in an NLS1 are discussed in the context of coevolution between supermassive black hole growth and host galaxy buildup.

  1. IR spectroscopic study of the effect of ionizing radiation on the structure of polyacrylonitrile

    International Nuclear Information System (INIS)

    Platonova, N.V.; Klimenko, I.B.; Majburov, S.P.


    Based on an IR spectroscopic analysis, it is shown that the treatment of polyacrylonitrile films and fibers by gamma-irradiation leads to the cleavage of polymer chains, forming carbonyl-containing functional groups. The composition of these groups is found to depend on the treatment conditions. The presence of terminal methyl groups in the treated polymer is detected in its IR spectra only in the presence of residual basic solvent. The behaviour of the absorption bands in the range 1350-1380 cm -1 and at 970 cm -1 points to the occurrence of conformational changes in the polymer

  2. Multispectral absorptance from large-diameter InAsSb nanowire arrays in a single epitaxial growth on silicon (United States)

    Robson, Mitchell; Azizur-Rahman, Khalifa M.; Parent, Daniel; Wojdylo, Peter; Thompson, David A.; LaPierre, Ray R.


    Vertical III-V nanowires are capable of resonant absorption at specific wavelengths by tuning the nanowire diameter, thereby exceeding the absorption of equivalent thin films. These properties may be exploited to fabricate multispectral infrared (IR) photodetectors, directly integrated with Si, without the need for spectral filters or vertical stacking of heterostructures as required in thin film devices. In this study, multiple InAsSb nanowire arrays were grown simultaneously on Si by molecular beam epitaxy with nanowire diameter controlled by the nanowire period (spacing between nanowires). This is the first such study of patterned InAsSb nanowires where control of nanowire diameter and multispectral absorption are demonstrated. The antimony flux was used to control axial and radial growth rates using a selective-area catalyst-free growth method, achieving large diameters, spanning 440–520 nm, which are necessary for optimum IR absorption. Fourier transform IR spectroscopy revealed IR absorptance peaks due to the HE11 resonance of the nanowire arrays in agreement with optical simulations. Due to the dependence of the HE11 resonance absorption on nanowire diameter, multispectral absorption was demonstrated in a single material system and a single epitaxial growth step without the need for bandgap tuning. This work demonstrates the potential of InAsSb nanowires for multispectral photodetectors and sensor arrays in the short-wavelength IR region.

  3. Absorption fluids data survey (United States)

    Macriss, R. A.; Zawacki, T. S.

    Development of improved data for the thermodynamic, transport and physical properties of absorption fluids were studied. A specific objective of this phase of the study is to compile, catalog and coarse screen the available US data of known absorption fluid systems and publish it as a first edition document to be distributed to manufacturers, researchers and others active in absorption heat pump activities. The methodology and findings of the compilation, cataloguing and coarse screening of the available US data on absorption fluid properties and presents current status and future work on this project are summarized. Both in house file and literature searches were undertaken to obtain available US publications with pertinent physical, thermodynamic and transport properties data for absorption fluids. Cross checks of literature searches were also made, using available published bibliographies and literature review articles, to eliminate secondary sources for the data and include only original sources and manuscripts. The properties of these fluids relate to the liquid and/or vapor state, as encountered in normal operation of absorption equipment employing such fluids, and to the crystallization boundary of the liquid phase, where applicable. The actual data were systematically classified according to the type of fluid and property, as well as temperature, pressure and concentration ranges over which data were available. Data were sought for 14 different properties: Vapor-Liquid Equilibria, Crystallization Temperature, Corrosion Characteristics, Heat of Mixing, Liquid-Phase-Densities, Vapor-Liquid-Phase Enthalpies, Specific Heat, Stability, Viscosity, Mass Transfer Rate, Heat Transfer Rate, Thermal Conductivity, Flammability, and Toxicity.

  4. Increasing Medical Student Exposure to IR through Integration of IR into the Gross Anatomy Course. (United States)

    DePietro, Daniel M; Kiefer, Ryan M; Redmond, Jonas W; Workman, Alan D; Nadolski, Gregory J; Gade, Terence P; Trerotola, Scott O; Hunt, Stephen J


    To compare medical student knowledge of and interest in interventional radiology (IR) before and after the integration of an IR lecture series within the gross anatomy course. Four elective IR lectures were scheduled to coincide with the relevant anatomy dissection curriculum. Anonymous surveys were distributed to 146 students before and after the lectures regarding students' knowledge of and interest in IR, responsibilities of an IR physician, and IR training pathways. Those who did not attend served as controls. Response rates were 67% (n = 98) in the prelecture group, 55% (n = 22) in the group who attended the lecture, and 28% (n = 30) in the control group. A total of 73% of the prelecture group reported little knowledge of IR compared with other specialties. This decreased to 27% in those who attended the lecture (P IR than any other specialty, compared with 7% of controls (P value not significant) and 2% of the prelecture group (P IR procedures (mean, 1.82) than the prelecture group (mean, 0.57; P IR, compared with 24% in the prelecture group and 33% in the control group (P IR residency, compared with 5% in the prelecture group and 33% in the control group (P IR education into the gross anatomy course proved to be a highly effective way of teaching preclinical students about IR and generating interest in the field. Copyright © 2017 SIR. All rights reserved.

  5. Silver electrodeposition over an Ir/Ir oxide electrode

    International Nuclear Information System (INIS)

    Lezna, R.O.; Tacconi, N.R. de; Arvia, A.J.


    Changes in electrochemical response brought about by the electrodeposition of small amounts of silver on oxide covered iridium electrodes are examined in relation to the semiconducting properties of the oxide. The charge involved in both silver and hydrogen atoms was found to remain practically constant and independent of the oxide thickness which was gradually increased by potentiodynamic cycling up to greater anodic switching potentials. This result suggests that the charge transfer for both processes takes place at the bare metal. The considerable increase in the film conductivity when the potential is above ductivity when the potential is above oV (MSE) is shown by the fact that under certain controlled conditions the silver electroreduction/ electroxidation reactions are shifted to a more anodic potential region where the oxide becomes conductor and participates in the charge transfer process. Silver loading increases the electrical conductivity of the oxide providing a large cross section for the electroxidation of Ir, particularly in a region where the oxide conductivity is poor (E [pt

  6. FT-IR spectroscopic studies of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Salisbury, D.W.; Allen, J.E. Jr.; Donn, B.; Moore, W.J.; Khanna, R.K.


    Proper assessment of the hypothesis which correlates polycyclic aromatic hydrocarbons (PAHs) with the unidentified infrared emission bands requires additional experimental laboratory data. In order to address this need, thermal infrared emission studies were performed on a subset of PAHs suggested to be of astrophysical importance. It was proposed that infrared emission from interstellar PAHs occurs following absorption of an ultraviolet photon. Since energy transfer to the ground electronic state can be rapid for a species in which intersystem crossing is negligible, the emission spectrum may be viewed as resulting from an equilibrium vibrational temperature (Leger and d'Hendecourt, 1987). This has been the basis for using infrared absorption spectra to calculate the corresponding emission spectra at various temperatures. These calculations were made using room temperature infrared absorption coefficients instead of those at the temperature of interest because of the latter's unavailability. The present studies are designed to address the differences between the calculated and experimental thermal emission spectra and to provide information which will be useful in future ultraviolet induced infrared fluorescence studies. The emission spectra have been obtained for temperatures up to 825K using an emission cell designed to mount against an external port of an FT-IR spectrometer. These spectra provide information concerning relative band intensities and peak positions which is unavailable from previous calculations

  7. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.


    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  8. Strong interaction and QFD

    International Nuclear Information System (INIS)

    Ebata, T.


    With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)

  9. Atmospheric Entry Experiments at IRS (United States)

    Auweter-Kurtz, M.; Endlich, P.; Herdrich, G.; Kurtz, H.; Laux, T.; Löhle, S.; Nazina, N.; Pidan, S.


    Entering the atmosphere of celestial bodies, spacecrafts encounter gases at velocities of several km/s, thereby being subjected to great heat loads. The thermal protection systems and the environment (plasma) have to be investigated by means of computational and ground facility based simulations. For more than a decade, plasma wind tunnels at IRS have been used for the investigation of TPS materials. Nevertheless, ground tests and computer simulations cannot re- place space flights completely. Particularly, entry mission phases encounter challenging problems, such as hypersonic aerothermodynamics. Concerning the TPS, radiation-cooled materials used for reuseable spacecrafts and ablator tech- nologies are of importance. Besides the mentioned technologies, there is the goal to manage guidance navigation, con- trol, landing technology and inflatable technologies such as ballutes that aim to keep vehicles in the atmosphere without landing. The requirement to save mass and energy for planned interplanetary missions such as Mars Society Balloon Mission, Mars Sample Return Mission, Mars Express or Venus Sample Return mission led to the need for manoeuvres like aerocapture, aero-breaking and hyperbolic entries. All three are characterized by very high kinetic vehicle energies to be dissipated by the manoeuvre. In this field flight data are rare. The importance of these manoeuvres and the need to increase the knowledge of required TPS designs and behavior during such mission phases point out the need of flight experiments. As result of the experience within the plasma diagnostic tool development and the plasma wind tunnel data base, flight experiments like the PYrometric RE-entry EXperiment PYREX were developed, fully qualified and successfully flown. Flight experiments such as the entry spectrometer RESPECT and PYREX on HOPE-X are in the conceptual phase. To increase knowledge in the scope of atmospheric manoeuvres and entries, data bases have to be created combining both

  10. Absorption cooling device. Absorptions-Kuehlvorrichtung

    Energy Technology Data Exchange (ETDEWEB)

    Bourne, J.; Vardi, I.; Kimchi, Y.; Ben-Dror, J.


    The invention concerns improvements of absorption refrigerators, where a lithium chloride or lithium bromide/water cycle is used. According to the invention an inner separating or dividing structure between different functional parts of a machine of this type is provided. The structure contains two sections of wall, which are separated from one another by a suitable space, in order to achieve thermal insulation. This air space is provided with an opening in the direction towards the inside of the container and the opening is shielded to prevent the entry of liquids (in liquid or spray form).

  11. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia


    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  12. Teaching IR to Medical Students: A Call to Action. (United States)

    Lee, Aoife M; Lee, Michael J


    Interventional radiology (IR) has grown rapidly over the last 20 years and is now an essential component of modern medicine. Despite IR's increasing penetration and reputation in healthcare systems, IR is poorly taught, if taught at all, in most medical schools. Medical students are the referrers of tomorrow and potential IR recruits and deserve to be taught IR by expert IRs. The lack of formal IR teaching curricula in many medical schools needs to be addressed urgently for the continued development and dissemination of, particularly acute, IR services throughout Europe. We call on IRs to take up the baton to teach IR to the next generation of doctors.

  13. IR-laser assisted additive freeform optics manufacturing. (United States)

    Hong, Zhihan; Liang, Rongguang


    Computer-controlled additive manufacturing (AM) processes, also known as three-dimensional (3D) printing, create 3D objects by the successive adding of a material or materials. While there have been tremendous developments in AM, the 3D printing of optics is lagging due to the limits in materials and tight requirements for optical applicaitons. We propose a new precision additive freeform optics manufacturing (AFOM) method using an pulsed infrared (IR) laser. Compared to ultraviolet (UV) curable materials, thermally curable optical silicones have a number of advantages, such as strong UV stability, non-yellowing, and high transmission, making it particularly suitable for optical applications. Pulsed IR laser radiation offers a distinct advantage in processing optical silicones, as the high peak intensity achieved in the focal region allows for curing the material quickly, while the brief duration of the laser-material interaction creates a negligible heat-affected zone.

  14. THz induced nonlinear absorption in ZnTe

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Jepsen, Peter Uhd


    Absorption spectra of ZnTe during strong-field THz interaction are investigated. Bleaching of the difference phonon modes below the fundamental TO mode is observed when field strengths higher than 4 MV/cm are applied.......Absorption spectra of ZnTe during strong-field THz interaction are investigated. Bleaching of the difference phonon modes below the fundamental TO mode is observed when field strengths higher than 4 MV/cm are applied....

  15. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso


    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  16. Strongly interacting photons and atoms

    International Nuclear Information System (INIS)

    Alge, W.


    This thesis contains the main results of the research topics I have pursued during the my PhD studies at the University of Innsbruck and partly in collaboration with the Institut d' Optique in Orsay, France. It is divided into three parts. The first and largest part discusses the possibility of using strong standing waves as a tool to cool and trap neutral atoms in optical cavities. This is very important in the field of nonlinear optics where several successful experiments with cold atoms in cavities have been performed recently. A discussion of the optical parametric oscillator in a regime where the nonlinearity dominates the evolution is the topic of the second part. We investigated mainly the statistical properties of the cavity output of the three interactive cavity modes. Very recently a system has been proposed which promises fantastic properties. It should exhibit a giant Kerr nonlinearity with negligible absorption thus leading to a photonic turnstile device based on cold atoms in cavity. We have shown that this model suffers from overly simplistic assumptions and developed several more comprehensive approaches to study the behavior of this system. Apart from the division into three parts of different contents the thesis is divided into publications, supplements and invisible stuff. The intention of the supplements is to reach researchers which work in related areas and provide them with more detailed information about the concepts and the numerical tools we used. It is written especially for diploma and PhD students to give them a chance to use the third part of our work which is actually the largest one. They consist of a large number of computer programs we wrote to investigate the behavior of the systems in parameter regions where no hope exists to solve the equations analytically. (author)

  17. Premier's imaging IR limb sounder (United States)

    Kraft, Stefan; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi


    The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetre-wave Emitted Radiation. PREMIER went recently through the process of a feasibility study (Phase A) within the Earth Observation Envelope Program. Emerging from recent advanced instrument technologies IRLS shall, next to a millimetre-wave limb sounder (called STEAMR), explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3D imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with high vertical and horizontal resolution. PREMIER shall fly in a tandem formation looking backwards to METOP's swath and thereby improve meteorological and environmental analyses.

  18. Atom condensation on an atomically smooth surface: Ir, Re, W, and Pd on Ir(111)

    International Nuclear Information System (INIS)

    Wang, S.C.; Ehrlich, G.


    The distribution of condensing metal atoms over the two types of sites present on an atomically smooth Ir(111) has been measured in a field ion microscope. For Ir, Re, W, and Pd from a thermal source, condensing on Ir(111) at ∼20 K, the atoms are randomly distributed, as expected if they condense at the first site struck

  19. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.


    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  20. Status Of Sofradir IR-CCD Detectors (United States)

    Tribolet, Philippe; Radisson, Patrick


    The topics of this paper deal with the IR-CCD detectors manufactured by SOFRADIR the new French joint venture. Description of the IRCCD technology and the advantages of this approach are given. In conclusion, some IR-CCD typical results are given.

  1. Vitamin A absorption

    International Nuclear Information System (INIS)

    Baker, S.J.


    Investigation of the absorption of vitamin A and related substances is complicated by the multiplicity of forms in which they occur in the diet and by the possibility that they may be subject to different mechanisms of absorption. Present knowledge of these mechanisms is inadequate, especially in the case of carotenoids. Numerous tests of absorption have been developed. The most common has been the biochemical measurement of the rise in plasma vitamin A after an oral dose of retinol or retinyl ester, but standardization is inadequate. Radioisotope tests based upon assay of serum or faecal activity following oral administration of tritiated vitamin A derivaties hold considerable promise, but again standardization is inadequate. From investigations hitherto performed it is known that absorption of vitamin A is influenced by several diseases, although as yet the consistency of results and the correlation with other tests of intestinal function have often been poor. However, the test of vitamin A absorption is nevertheless of clinical importance as a specialized measure of intestinal function. (author)

  2. Boosting Vis/NIR Charge-Transfer Absorptions of Iron(II) Complexes by N-Alkylation and N-Deprotonation in the Ligand Backbone. (United States)

    Mengel, Andreas K C; Bissinger, Christian; Dorn, Matthias; Back, Oliver; Förster, Christoph; Heinze, Katja


    Reversing the metal-to-ligand charge transfer ( 3 MLCT)/metal-centered ( 3 MC) excited state order in iron(II) complexes is a challenging objective, yet would finally result in long-sought luminescent transition-metal complexes with an earth-abundant central ion. One approach to achieve this goal is based on low-energy charge-transfer absorptions in combination with a strong ligand field. Coordinating electron-rich and electron-poor tridentate oligopyridine ligands with large bite angles at iron(II) enables both low-energy MLCT absorption bands around 590 nm and a strong ligand field. Variations of the electron-rich ligand by introducing longer alkyl substituents destabilizes the iron(II) complex towards ligand substitution reactions while hardly affecting the optical properties. On the other hand, N-deprotonation of the ligand backbone is feasible and reversible, yielding deep-green complexes with charge-transfer bands extending into the near-IR region. Time-dependent density functional theory calculations assign these absorption bands to transitions with dipole-allowed ligand-to-ligand charge transfer character. This unique geometric and electronic situation establishes a further regulating screw to increase the energy gap between potentially emitting charge-transfer states and the non-radiative ligand field states of iron(II) dyes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Gastrointestinal absorption of plutonium

    International Nuclear Information System (INIS)

    Larsen, R.P.; Oldham, R.D.; Bhattacharyya, M.H.; Moretti, E.S.; Austin, D.J.


    An investigation has been made of the effect of the oxidation state of plutonium on its absorption from the gastrointestinal tract. For mice and rats that have been starved prior to gastrointestinal administration, there is no significant difference between the absorption factors for Pu(IV) and Pu(VI). The value obtained for Pu(VI) is an order of magnitude lower than that reported previously. The value obtained for Pu(IV) is two orders of magnitude higher than those reported previously for nitrate solutions and the same as those reported for citrate solutions

  4. Quantum Absorption Refrigerator (United States)

    Levy, Amikam; Kosloff, Ronnie


    A quantum absorption refrigerator driven by noise is studied with the purpose of determining the limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously to hot, cold, and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics. The third law is quantified; the cooling power Jc vanishes as Jc∝Tcα, when Tc→0, where α=d+1 for dissipation by emission and absorption of quanta described by a linear coupling to a thermal bosonic field, where d is the dimension of the bath.

  5. John Strong (1941 - 2006)

    CERN Multimedia

    Wickens, F

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

  6. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim


    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  7. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.


    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  8. Ultrafast Coherent Absorption in Diamond Metamaterials. (United States)

    Karvounis, Artemios; Nalla, Venkatram; MacDonald, Kevin F; Zheludev, Nikolay I


    Diamond is introduced as a material platform for visible/near-infrared photonic metamaterials, with a nanostructured polycrystalline diamond metasurface only 170 nm thick providing an experimental demonstration of coherent light-by-light modulation at few-optical-cycle (6 fs) pulse durations. "Coherent control" of absorption in planar (subwavelength-thickness) materials has emerged recently as a mechanism for high-contrast all-optical gating, with a speed of response that is limited only by the spectral width of the absorption line. It is shown here that a free-standing diamond membrane structured by focused ion beam milling can provide strong, spectrally near-flat absorption over a visible to near-infrared wavelength range that is wide enough (wider than is characteristically achievable in plasmonic metal metasurfaces) to facilitate coherent modulation of ultrashort optical pulses comprising only a few oscillations of electromagnetic field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L


    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  10. Multi-pollutants sensors based on near-IR telecom lasers and mid-IR difference frequency generation: development and applications

    International Nuclear Information System (INIS)

    Cousin, J.


    At present the detection of VOC and other anthropic trace pollutants is an important challenge in the measurement of air quality. Infrared spectroscopy, allowing spectral regions rich in molecular absorption to be probed, is a suitable technique for in-situ monitoring of the air pollution. Thus the aim of this work was to develop instruments capable of detecting multiple pollutants for in-situ monitoring by IR spectroscopy. A first project benefited from the availability of the telecommunications lasers emitting in near-IR. This instrument was based on an external cavity diode laser (1500 - 1640 nm) in conjunction with a multipass cell (100 m). The detection sensitivity was optimised by employing a balanced detection and a sweep integration procedure. The instrument developed is deployable for in-situ measurements with a sensitivity of -8 cm -1 Hz -1/2 and allowed the quantification of chemical species such as CO 2 , CO, C 2 H 2 , CH 4 and the determination of the isotopic ratio 13 CO 2 / 12 CO 2 in combustion environment The second project consisted in mixing two near-IR fiber lasers in a non-linear crystal (PPLN) in order to produce a laser radiation by difference frequency generation in the middle-IR (3.15 - 3.43 μm), where the absorption bands of the molecules are the most intense. The first studies with this source were carried out on detection of ethylene (C 2 H 4 ) and benzene (C 6 H 6 ). Developments, characterizations and applications of these instruments in the near and middle IR are detailed and the advantages of the 2 spectral ranges is highlighted. (author)

  11. Properties of half-Heusler compounds TaIrGe by using first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wei, JunHong [Henan Normal University, College of Physics and Information Engineering, Xinxiang, Henan (China); Henan Institute of Science and Technology, School of Mechanical and Electrical Engineering, Xinxiang, Henan (China); Wang, Guangtao [Henan Normal University, College of Physics and Information Engineering, Xinxiang, Henan (China)


    The electronic structures, optical and thermoelectric properties of ternary half-Heusler compound TaIrGe were investigated by using the first-principles and Boltzmann transport theory. Spin-orbit coupling (SOC) removed the degeneracy of VBM, and then decreased the Seebeck coefficients and power factor. From the compressive to tensile strain, the band gap gradually increases from 0.96 to 1.11 eV, accompanied by the absorption coefficient peak red-shift. The effective mass (m{sup *}{sub DOS}) of VBM and CBM gradually increases from the compressive to tensile strain, which enhances the Seebeck coefficient and power factor. Our results indicate that the electronic structures, optical and thermoelectric properties of TaIrGe can be effectively tuned by the strain and TaIrGe can be used as an important photoelectric and thermoelectric material in the future. (orig.)

  12. Structure and Absolute Configuration of Ginkgolide B Characterized by IR- and VCD Spectroscopy

    DEFF Research Database (Denmark)

    Andersen, Niels Højmark; Christensen, N.J.; Lassen, Peter Rygaard


    Experimental and calculated (B3LYP/6-31G(d)) vibrational Circular dichroism (VCD) and IR spectra are compared, illustrating that the structure and absolute configuration of ginkgolide B (GB) may be characterized directly in solution. A conformational search for GB using MacroModel and subsequent ....... This is the first detailed investigation of the spectroscopic fingerprint region (850-1300 cm(-1)) of the natural product GB employing infrared absorption and VCD spectroscopy. Chirality 22:217-223, 2010....

  13. YSO inner disk chemistry - pushing the IRS limits (United States)

    Lahuis, Fred; Blake, Geoffrey; Boogert, Adwin; Dullemond, Cornelis; Evans, Neal; Hogerheijde, Michiel; Pontoppidan, Klaus; van Dishoeck, Ewine


    The aim of this proposal is to observe molecular absorption bands at 13-15 micron of gaseous acetylene (C2H2), hydrogen cyanide (HCN), and carbon dioxide (CO2) in the planet-forming zones of a sample of nearly edge-on disk sources. These molecules are predicted to be among the most abundant organic molecules in hot gas and the precursors of much more complex, prebiotic species. In addition to being unique probes of inner disk chemistry, the molecular bands also provide a direct measure of the temperature and density of the warm gas in the planet-forming zones of disks. The presence of warm C2H2, HCN, and CO2 gas has already been reported in two proto-planetary disks. However, in existing IRS observations of other disks, the bands of these molecules are expected to lie just below the detection limit allowed by the achieved dynamic range. We have designed a new observing strategy designed to push the achievable dynamic range of the SH module by at least a factor of 3-5 to conduct the most sensitive search possible in sixteen disks. The targets have been selected on basis of deep absorption at 4.7 micron due to warm CO gas in the inner disk. The data will most certainly be the driving force for further development of optimal extraction algorithms (developed as part of the c2d legacy program) to obtain the highest S/N spectra of which the IRS is capable.

  14. Chemical Absorption Materials

    DEFF Research Database (Denmark)

    Thomsen, Kaj


    Chemical absorption materials that potentially can be used for post combustion carbon dioxide capture are discussed. They fall into five groups, alkanolamines, alkali carbonates, ammonia, amino acid salts, and ionic liquids. The chemistry of the materials is discussed and advantages and drawbacks...

  15. Neutron resonance absorption theory

    International Nuclear Information System (INIS)

    Reuss, P.


    After some recalls on the physics of neutron resonance absorption during their slowing down, this paper presents the main features of the theoretical developments performed by the french school of reactor physics: the effective reaction rate method so called Livolant-Jeanpierre theory, the generalizations carried out by the author, and the probability table method [fr

  16. Polynorbornene as a low loss matrix material for IR metamaterial applications.

    Energy Technology Data Exchange (ETDEWEB)

    Arrington, Christian Lew; Sinclair, Michael B.; Ginn, James Cleveland, III; Lee, Yun-Ju; Sanchez, Andrea E.; Clem, Paul Gilbert; Hines, Paul; Dirk, Shawn M.; Rasberry, Roger D.


    Novel low loss photopatternable matrix materials for IR metamaterial applications were synthesized using the ring opening metathesis polymerization reaction (ROMP) of norbornene followed by a partial hydrogenation to remove most of the IR absorbing olefin groups which absorb in the 8-12 {micro}m range. Photopatterning was achieved via crosslinking of the remaining olefin groups with alpha, omega-dithiols via the thiol-ene coupling reaction. Since ROMP is a living polymerization the molecular weight of the polymer can be controlled simply by varying the ratio of catalyst to monomer. In order to determine the optimum photopattenable IR matrix material we varied the amount of olefin remaining after the partial hydrogenation. Hydrogenation was accomplished using tosyl hydrazide. The degree of hydrogenation can be controlled by altering the reaction time or reaction stoichiometry and the by-products can be easily removed during workup by precipitation into ethanol. Several polymers have been prepared using this reduction scheme including two polymers which had 54% and 68% olefin remaining. Free standing films (approx. 12 {micro}m) were prepared from the 68% olefin material using draw-down technique and subsequently irradiated with a UV lamp (365 nm) for thirty minutes to induce crosslinking via thiol-ene reaction. After crosslinking, the olefin IR-absorption band disappeared and the Tg of the matrix material increased; both desirable properties for IR metamaterial applications. The polymer system has inherent photopatternable behavior primarily because of solubility differences between the pre-polymer and cross-linked matrix. Photopatterned structures using the 54% as well as the 68% olefin material were easily obtained. The synthesis, processing, and IR absorption data and the ramifications to dielectric metamaterials will be discussed.

  17. Electromagnetic and thermal effects of IR-UWB wireless implant systems on the human head. (United States)

    Thotahewa, Kasun M S; Redouté, Jean-Michel; Yuce, Mehmet R


    The usage of implanted wireless transmitting devices inside the human body has become widely popular in recent years. Applications such as multi-channel neural recording systems require high data rates in the wireless transmission link. Because of the inherent advantages provided by Impulse-Radio Ultra Wide Band (IR-UWB) such as high data rate capability, low power consumption and small form factor, there has been an increased research interest in using IR-UWB for bio-medical implant applications. Hence it has become imperative to analyze the electromagnetic effects caused by the use of IR-UWB when it is operated in or near the human body. This paper reports the electromagnetic effects of head implantable transmitting devices operating based on Impulse Radio Ultra Wide Band (IR-UWB) wireless technology. Simulations illustrate the performance of an implantable UWB antenna tuned to operate at 4 GHz with an -10 dB bandwidth of approximately 1 GHz when it is implanted in a human head model. Specific Absorption Rate (SAR), Specific Absorption (SA) and temperature increase are analyzed to compare the compliance of the transmitting device with international safety regulations.

  18. Monitoring combat wound healing by IR hyperspectral imaging (United States)

    Howle, Chris R.; Spear, Abigail M.; Gazi, Ehsan; Crane, Nicole J.


    In recent conflicts, battlefield injuries consist largely of extensive soft injuries from blasts and high energy projectiles, including gunshot wounds. Repair of these large, traumatic wounds requires aggressive surgical treatment, including multiple surgical debridements to remove devitalised tissue and to reduce bacterial load. Identifying those patients with wound complications, such as infection and impaired healing, could greatly assist health care teams in providing the most appropriate and personalised care for combat casualties. Candidate technologies to enable this benefit include the fusion of imaging and optical spectroscopy to enable rapid identification of key markers. Hence, a novel system based on IR negative contrast imaging (NCI) is presented that employs an optical parametric oscillator (OPO) source comprising a periodically-poled LiNbO3 (PPLN) crystal. The crystal operates in the shortwave and midwave IR spectral regions (ca. 1.5 - 1.9 μm and 2.4 - 3.8 μm, respectively). Wavelength tuning is achieved by translating the crystal within the pump beam. System size and complexity are minimised by the use of single element detectors and the intracavity OPO design. Images are composed by raster scanning the monochromatic beam over the scene of interest; the reflection and/or absorption of the incident radiation by target materials and their surrounding environment provide a method for spatial location. Initial results using the NCI system to characterise wound biopsies are presented here.

  19. Infrared (IR) photon-sensitive spectromicroscopy in a cryogenic environment (United States)

    Pereverzev, Sergey


    A system designed to suppress thermal radiation background and to allow IR single-photon sensitive spectromicroscopy of small samples by using both absorption, reflection, and emission/luminescence measurements. The system in one embodiment includes: a light source; a plurality of cold mirrors configured to direct light along a beam path; a cold or warm sample holder in the beam path; windows of sample holder (or whole sample holder) are transparent in a spectral region of interest, so they do not emit thermal radiation in the same spectral region of interest; a cold monochromator or other cold spectral device configured to direct a selected fraction of light onto a cold detector; a system of cold apertures and shields positioned along the beam path to prevent unwanted thermal radiation from arriving at the cold monochromator and/or the detector; a plurality of optical, IR and microwave filters positioned along the beam path and configured to adjust a spectral composition of light incident upon the sample under investigation and/or on the detector; a refrigerator configured to maintain the detector at a temperature below 1.0K; and an enclosure configured to: thermally insulate the light source, the plurality of mirrors, the sample holder, the cold monochromator and the refrigerator.

  20. Impact effects of gamma irradiation on the optical and FT infrared absorption spectra of some Nd3+-doped soda lime phosphate glasses (United States)

    Marzouk, M. A.; Elkashef, I. M.; Elbatal, H. A.


    The main aim of the present work is to study by two collective optical and FTIR spectral measurements some prepared Nd2O3-doped soda lime phosphate glasses before and after gamma irradiation with dose (9 Mrad). The spectral data reveal two strong UV absorption peaks which are correlated with unavoidable trace iron impurities beside extended additional characteristic bands due to Nd3+ ions. Gamma irradiation on the undoped glass produces slight decrease of the intensity of the UV absorption and the generation of an induced visible band and these effects are controlled with two photochemical reduction of some Fe3+ ions to Fe2+ ions together with the formation of nonbridging oxygen hole center (NBOHC) or phosphorous oxygen hole center (POHC). The impact effect of gamma irradiation on the spectra of Nd2O3-doped glasses is limited due to suggested shielding behavior of neodymium ions. FT-infrared spectra show vibrational modes due to main Q2-Q3 phosphate groups and the response of gamma irradiation of the IR spectra is low and the limited variations are related to suggested changes in some bond angles and bond lengths which cause the observed decrease to the intensities of some IR bands.

  1. Corrosion inhibitor for aqueous ammonia absorption system (United States)

    Phillips, B.A.; Whitlow, E.P.


    A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

  2. Adsorbed or intercalated: Na on graphene/Ir(111) (United States)

    Pervan, Petar; Lazić, Predrag


    Interaction of sodium with graphene (Gr) on Ir(111) was studied with the aim to resolve the issue of Na adsorption/intercalation kinetics. The system Na/Gr/Ir(111) was studied by means of angle-resolved photoemission spectroscopy, low-energy electron diffraction, and ab initio density functional theory (DFT) calculation. It has been found that at room temperature (RT) and low concentrations Na is dominantly adsorbed on graphene. At higher concentrations, an intercalation process sets in so that it is possible to observe the coexistence of these two states. Eventually, all Na atoms are found in the intercalated state as determined by exposure to oxygen. While adsorption of Na on graphene already intercalated by Na [Na/Gr/Na/Ir(111) system] at RT was not possible, we could observe Li adsorption through the increase of Dirac point binding energy. Li coadsorption strongly affects the binding energy of the iridium surface state as well. This finding was supported by DFT calculations of adsorption energy of Na and Li on bare and fully Na intercalated graphene.

  3. Media handling for visual information retrieval in VizIR (United States)

    Eidenberger, Horst


    This paper describes how the handling of visual media objects is implemented in the visual information retrieval project VizIR. Essentially, four areas are concerned: media access, media representation in user interfaces, visualisation of media-related data and media transport over the network. The paper offers detailed technical descriptions of the solutions developed in VizIR for these areas. Unified media access for images and video is implemented through class MediaContent. This class contains methods to access the view on a media object at any point in time as well as methods to change the colour model and read/write format parameters (size, length, frame-rate). Based on this low-level-API class VisualCube allows accessing spatio-temporal areas in temporal media randomly. Transformer-classes allow to modify visual objects in a very simple but effective way. Visualisation of media object is implemented in class MediaRenderer. Each MediaRenderer represents one media object and is responsible for any aspect of its visualisation. In the paper examples for reasonable implementations of MediaRenderer-classes are presented. Visualisation of media-related data is strongly connected to MediaRenderer. MediaRenderer is to a large extent responsible for displaying visual panels created by other framework components. Finally, media object transport in VizIR is based on the Realtime Transfer Protocol (for media objects) and XML-messaging (for XML-data).

  4. Effective mie-scattering and CO2 absorption in the dust-laden Martian atmosphere and its impact on radiative-convective temperature changes in the lower scale heights (United States)

    Pallmann, A. J.


    A time dependent computer model of radiative-convective-conductive heat transfer in the Martian ground-atmosphere system was refined by incorporating an intermediate line strength CO2 band absorption which together with the strong-and weak-line approximation closely simulated the radiative transmission through a vertically inhomogeneous stratification. About 33,000 CO2 lines were processed to cover the spectral range of solar and planetary radiation. Absorption by silicate dust particulates, was taken into consideration to study its impact on the ground-atmosphere temperature field as a function of time. This model was subsequently attuned to IRIS, IR-radiometric and S-band occultation data. Satisfactory simulations of the measured IRIS spectra were accomplished for the dust-free condition. In the case of variable dust loads, the simulations were sufficiently fair so that some inferences into the effect of dust on temperature were justified.

  5. IR Spectra of Different O2-Content Hemoglobin from Computational Study: Promising Detector of Hemoglobin Variant in Medical Diagnosis. (United States)

    Zhou, Su-Qin; Chen, Tu-Nan; Ji, Guang-Fu; Wang, En-Ren


    IR spectra of heme and different O 2 -content hemoglobin were studied by the quantum computation method at the molecule level. IR spectra of heme and different O 2 -content hemoglobin were quantificationally characterized from 0 to 100 THz. The IR spectra of oxy-heme and de-oxy-heme are obviously different at the frequency regions of 9.08-9.48, 38.38-39.78, 50.46-50.82, and 89.04-91.00 THz. At 24.72 THz, there exists the absorption peak for oxy-heme, whereas there is not the absorption peak for de-oxy-heme. Whether the heme contains Fe-O-O bond or not has the great influence on its IR spectra and vibration intensities of functional groups in the mid-infrared area. The IR adsorption peak shape changes hardly for different O 2 -content hemoglobin. However, there exist three frequency regions corresponding to the large change of IR adsorption intensities for containing-O 2 hemoglobin in comparison with de-oxy-hemoglobin, which are 11.08-15.93, 44.70-50.22, and 88.00-96.68 THz regions, respectively. The most differential values with IR intensity of different O 2 -content hemoglobin all exceed 1.0 × 10 4  L mol -1  cm -1 . With the increase of oxygen content, the absorption peak appears in the high-frequency region for the containing-O 2 hemoglobin in comparison with de-oxy-hemoglobin. The more the O 2 -content is, the greater the absorption peak is at the high-frequency region. The IR spectra of different O 2 -content hemoglobin are so obviously different in the mid-infrared region that it is very easy to distinguish the hemoglobin variant by means of IR spectra detector. IR spectra of hemoglobin from quantum computation can provide scientific basis and specific identification of hemoglobin variant resulting from different O 2 contents in medical diagnosis.

  6. A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases (United States)

    Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.


    A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.

  7. Enhanced dual-band infrared absorption in a Fabry-Perot cavity with subwavelength metallic grating. (United States)

    Kang, Guoguo; Vartiainen, Ismo; Bai, Benfeng; Turunen, Jari


    The performance of infrared (IR) dual-band detector can be substantially improved by simultaneously increasing IR absorptions for both sensor bands. Currently available methods only provide absorption enhancement for single spectral band, but not for the dual-band. The Fabry-Perot (FP) cavity generates a series of resonances in multispectral bands. With this flexibility, we introduced a novel type of dual-band detector structure containing a multilayer FP cavity with two absorbing layers and a subwavelength-period grating mirror, which is capable of simultaneously enhancing the middle wave infrared (MWIR) and the long wave infrared (LWIR) detection. Compared with the bare-absorption-layer detector (common dual-band detector), the optimized FP cavity can provide about 13 times and 17 times absorption enhancement in LWIR and MWIR bands respectively.

  8. PKCδ-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    International Nuclear Information System (INIS)

    Greene, Michael W.; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.


    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCδ on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCδ-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCδ catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1

  9. Electrical manipulation of ferromagnetic NiFe by antiferromagnetic IrMn (United States)

    Tshitoyan, V.; Ciccarelli, C.; Mihai, A. P.; Ali, M.; Irvine, A. C.; Moore, T. A.; Jungwirth, T.; Ferguson, A. J.


    We demonstrate that an antiferromagnet can be employed for a highly efficient electrical manipulation of a ferromagnet. In our study, we use an electrical detection technique of the ferromagnetic resonance driven by an in-plane ac current in a NiFe/IrMn bilayer. At room temperature, we observe antidampinglike spin torque acting on the NiFe ferromagnet, generated by an in-plane current driven through the IrMn antiferromagnet. A large enhancement of the torque, characterized by an effective spin-Hall angle exceeding most heavy transition metals, correlates with the presence of the exchange-bias field at the NiFe/IrMn interface. It highlights that, in addition to the strong spin-orbit coupling, the antiferromagnetic order in IrMn governs the observed phenomenon.

  10. Morphologies of Mid-IR Variability-Selected AGN Host Galaxies (United States)

    Polimera, Mugdha; Sarajedini, Vicki; Ashby, Matthew L. N.; Willner, S. P.; Fazio, Giovanni G.


    We use multi-epoch 3.6 and 4.5 {μ m} data from the Spitzer Extended Deep Survey (SEDS) to probe the AGN population among galaxies to redshifts ˜3 via their mid-IR variability. About 1% of all galaxies in our survey contain varying nuclei, 80% of which are likely to be AGN. Twenty-three percent of mid-IR variables are also X-ray sources. The mid-IR variables have a slightly greater fraction of weakly disturbed morphologies compared to a control sample of normal galaxies. The increased fraction of weakly distorted hosts becomes more significant when we remove the X-ray emitting AGN, while the frequency of strongly disturbed hosts remains similar to the control galaxy sample. These results suggest that mid-IR variability identifies a unique population of obscured, Compton-thick AGN revealing elevated levels of weak distortion among their host galaxies.

  11. Implementing GPS into Pave-IR. (United States)


    To further enhance the capabilities of the Pave-IR thermal segregation detection system developed at the Texas Transportation Institute, researchers incorporated global positioning system (GPS) data collection into the thermal profiles. This GPS capa...

  12. Joint IAEA/NEA IRS guidelines

    International Nuclear Information System (INIS)


    The Incident Reporting System (IRS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The fundamental objective of the IRS is to contribute to improving the safety of commercial nuclear power plants (NPPs) which are operated worldwide. This objective can be achieved by providing timely and detailed information on both technical and human factors related to events of safety significance which occur at these plants. The purpose of these guidelines, which supersede the previous IAEA Safety Series No. 93 (Part II) and the NEA IRS guidelines, is to describe the system and to give users the necessary background and guidance to enable them to produce IRS reports meeting a high standard of quality while retaining the high efficiency of the system expected by all Member States operating nuclear power plants

  13. Novel Wavelength Standards in the Near IR

    National Research Council Canada - National Science Library

    Corwin, Kristan L


    .... This research has three major components, consisting of spectroscopy in hollow fiber, the development of a near-IR optical frequency comb with which to characterize the transitions inside the fiber...

  14. IR aperture measurement at β*=40 cm

    CERN Document Server

    Bruce, Roderik; Hermes, Pascal Dominik; Kwee-Hinzmann, Regina; Mereghetti, Alessio; Mirarchi, Daniele; Redaelli, Stefano; Salvachua Ferrando, Belen Maria; Skowronski, Piotr Krzysztof; Valentino, Gianluca; Valloni, Alessandra; CERN. Geneva. ATS Department


    This note summarizes MD 307, performed on August 27 2015, during which we measured with beam the global apertures at 6.5 TeV with IR1 and IR5 squeezed to β* =40 cm and a half crossing angle of 205 rad. The measurement technique involved opening collimators in steps, while inducing beam losses at each step, until the main loss location moved from the collimators to the global bottleneck in one of the triplets. Measurements were performed in both beams and planes, and each measurement gave the minimum triplet aperture over IR1 and IR5. The results are in very good agreement with theoretical predictions. At the end of the MD, an asynchronous beam dump test was performed with all collimators moved in to so-called 2-σ retraction settings. This MD is one in a series meant to address various open points for the reach in β* in Run II.

  15. Activity uniformity of Ir-192 seeds

    International Nuclear Information System (INIS)

    Ling, C.C.; Gromadzki, Z.C.


    A simple device that uses materials and apparatus commonly available in a radiotherapy department has been designed, fabricated and used in routine quality control relative to the activity uniformity of clinical Ir-192 seeds in ribbons. Detailed evaluation indicated that this system is easy to use and can yield relative activity measurements of individual Ir-192 seeds accurate to within 2%. With this device, activity uniformity of commercial Ir-192 seeds from two manufacturers has been assessed. For the seven shipments of Ir-192 seeds studied, the root mean square variations of individual seed strength from the average of each shipment ranged from 3.4 to 7.1%. Variation in seed activity by more than +- 10% from the average is not uncommon

  16. Infrared (IR) remote sensing of gases


    López Martínez, Fernando


    The IR Imaging and Remote Sensing Laboratory – LIR-UC3M of Universidad Carlos III, has developed Multi and Hyper spectral Infrared (IR) analysis techniques for gas remote sensing. Design of specific sensors for the determination of gases and their concentration are proposed. Almost all gases (CO2, CO, NO2, O3, HC o NH, …) related to industrial, environmental or military safety can be detected. Companies or centres with interest in the use of specific application sensors are required.

  17. Absorptive Capacity and Diversity

    DEFF Research Database (Denmark)

    Kristinsson, Kári

    international business, organizational economics, strategic management, technology management and last but not least neo-Schumpeterian economics. The goal of this dissertation is to examine what many consider as neglected arguments from the work by Cohen and Levinthal and thereby illuminate an otherwise......One of the most influential contributions to neo-Schumpeterian economics is Cohen and Levinthal‘s papers on absorptive capacity. Since their publication in the late 1980s and early 1990s the concept absorptive capacity has had substantial impact on research in economics and management, including...... overlooked area of research. Although research based on Cohen and Levinthal‘s work has made considerable impact, there is scarcity of research on certain fundamental points argued by Cohen and Levinthal. Among these is the importance of employee diversity as well as the type and nature of interaction between...

  18. Intensities and strong interaction attenuation of kaonic x-rays

    CERN Document Server

    Backenstoss, Gerhard; Koch, H; Povel, H P; Schwitter, A; Tauscher, Ludwig


    Relative intensities of numerous kaonic X-ray transitions have been measured for the elements C, P, S, and Cl, from which level widths due to the strong K-nucleus absorption have been determined. From these and earlier published data, optical potential parameters have been derived and possible consequences on the nuclear matter distribution are discussed. (10 refs).

  19. Sound absorption of snow


    Maysenhölder, W.; Schneebeli, M.; Zhou, X.; Zhang, T.; Heggli, M.


    Recently fallen snow possesses good sound-absorbing properties. This fact is well-known and confirmed by measurements. Is the filigree structure of snowflakes decisive? In principle we know that the sound-absorbing capacity of a porous material is dependent on its structure. But until now the question as to which structural characteristics are significant has been insufficiently answered. Detailed investigations of snow are to explain this fact by precise measurements of the sound absorption,...

  20. Iron absorption studies

    International Nuclear Information System (INIS)

    Ekenved, G.


    The main objective of the present work was to study iron absorption from different iron preparations in different types of subjects and under varying therapeutic conditions. The studies were performed with different radioiron isotope techniques and with a serum iron technique. The preparations used were solutions of ferrous sulphate and rapidly-disintegrating tablets containing ferrous sulphate, ferrous fumarate and ferrous carbonate and a slow-release ferrous sulphate tablet of an insoluble matrix type (Duroferon Durules). The serum iron method was evaluated and good correlation was found between the serum iron response and the total amount of iron absorbed after an oral dose of iron given in solution or in tablet form. New technique for studying the in-vivo release properties of tablets was presented. Iron tablets labelled with a radio-isotope were given to healthy subjects. The decline of the radioactivity in the tablets was followed by a profile scanning technique applied to different types of iron tablets. The release of iron from the two types of tablets was shown to be slower in vivo than in vitro. It was found that co-administration of antacids and iron tablets led to a marked reduction in the iron absorption and that these drugs should not be administered sumultaneously. A standardized meal markedly decreased the absorbability of iron from iron tablets. The influence of the meal was more marked with rapidly-disintegrating than with slow-release ferrous sulphate tablets. The absorption from rapidly-disintegrating and slow-release ferrous sulphate tablets was compared under practical clinical conditions during an extended treatment period. The studies were performed in healthy subjects, blood donors and patients with iron deficiency anaemia and it was found that the absorption of iron from the slow-release tablets was significantly better than from the rapidly-disintegrating tablets in all three groups of subjects. (author)

  1. Total Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Rubio, B.; Gelletly, W.


    The problem of determining the distribution of beta decay strength (B(GT)) as a function of excitation energy in the daughter nucleus is discussed. Total Absorption Spectroscopy is shown to provide a way of determining the B(GT) precisely. A brief history of such measurements and a discussion of the advantages and disadvantages of this technique, is followed by examples of two recent studies using the technique. (authors)

  2. Relic Neutrino Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, b


    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  3. Fabrication of flexible Ir and Ir-Rh wires and application for thermocouple (United States)

    Murakami, Rikito; Kamada, Kei; Shoji, Yasuhiro; Yokota, Yuui; Yoshino, Masao; Kurosawa, Shunsuke; Ohashi, Yuji; Yamaji, Akihiro; Yoshikawa, Akira


    The fabrication and thermal electromotive force characteristics of Ir/Ir-Rh thermocouples capable of repeated bending deformation are described. Ir and Ir-Rh wires with a diameter of 0.5 mm were fabricated using the alloy-micro-pulling-down method. Scanning electron microscopy and electron backscattering diffraction of the radial cross section of the grown wires were performed to investigate the microstructure and orientation of the crystal grains. At the start of growth, the microstructure was polycrystalline with diameters of several hundred micrometers, while at the 8-m growth point it was found to be monocrystalline. The observed single crystals of pure Ir and Ir-Rh alloy were oriented in the 〈1 1 3〉 and 〈1 1 2〉 directions, respectively, whereas the polycrystalline Ir-Rh samples showed preferential growth in the 〈1 0 0〉 direction. The thermal electromotive force of the fabricated Ir/Ir-Rh thermocouple was measured by the comparison technique and the fixed-point technique, and the thermoelectric power was estimated to be 5.9 μV/°C in the range from 600°C to 1100°C.

  4. UV laser long-path absorption spectroscopy (United States)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf


    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  5. High-resolution TNG spectra of T Tauri stars. Near-IR GIANO observations of the young variables XZ Tauri and DR Tauri (United States)

    Antoniucci, S.; Nisini, B.; Biazzo, K.; Giannini, T.; Lorenzetti, D.; Sanna, N.; Harutyunyan, A.; Origlia, L.; Oliva, E.


    Aims: We aim to characterise the star-disk interaction region in T Tauri stars that show photometric and spectroscopic variability. Methods: We used the GIANO instrument at the Telescopio Nazionale Galileo to obtain near-infrared high-resolution spectra (R 50 000) of XZ Tau and DR Tau, which are two actively accreting T Tauri stars classified as EXors. Equivalent widths and profiles of the observed features are used to derive information on the properties of the inner disk, the accretion columns, and the winds. Results: Both sources display composite H I line profiles, where contributions from both accreting gas and high-velocity winds can be recognised. These lines are progressively more symmetric and narrower with increasing upper energy which may be interpreted in terms of two components with different decrements or imputed to self-absorption effects. XZ Tau is observed in a relatively high state of activity with respect to literature observations. The variation of the He I 1.08 μm line blue-shifted absorption, in particular, suggests that the inner wind has undergone a dramatic change in its velocity structure, connected with a recent accretion event. DR Tau has a more stable wind as its He I 1.08 μm absorption does not show variations with time in spite of strong variability of the emission component. The IR veiling in the two sources can be interpreted as due to blackbody emission at temperatures of 1600 K and 2300 K for XZ Tau and DR Tau, respectively, with emitting areas 30 times larger than the central star. While for XZ Tau these conditions are consistent with emission from the inner rim of the dusty disk, the fairly high temperature inferred for DR Tau might suggest that its veiling originates from a thick gaseous disk located within the dust sublimation radius. Strong and broad metallic lines, mainly from C I and Fe I, are detected in XZ Tau, similar to those observed in other EXor sources during burst phases. At variance, DR Tau shows weaker and

  6. Photothermal deflection mapping of variations in the optical absorption in IR windows

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Nesládek, M.; Meykens, K.; Pickles, C. S. J.; Sussman, R. S.


    Roč. 181, - (2000), s. 115-119 ISSN 0031-8965 R&D Projects: GA ČR GA202/99/0403 Institutional research plan: CEZ:AV0Z1010914 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.035, year: 2000

  7. Aerosol optical absorption measurements with photoacoustic spectroscopy (United States)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming


    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  8. Absorption of solar radiation in broken clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.E.; Titov, G.A.; Zhuravleva, T.B. [Institute of Atmospheric Optics, Tomsk (Russian Federation)


    It is recognized now that the plane-parallel model unsatisfactorily describes the transfer of radiation through broken clouds and that, consequently, the radiation codes of general circulation models (GCMs) must be refined. However, before any refinement in a GCM code is made, it is necessary to investigate the dependence of radiative characteristics on the effects caused by the random geometry of cloud fields. Such studies for mean fluxes of downwelling and upwelling solar radiation in the visible and near-infrared (IR) spectral range were performed by Zuev et al. In this work, we investigate the mean spectral and integrated absorption of solar radiation by broken clouds (in what follows, the term {open_quotes}mean{close_quotes} will be implied but not used, for convenience). To evaluate the potential effect of stochastic geometry, we will compare the absorption by cumulus (0.5 {le} {gamma} {le} 2) to that by equivalent stratus ({gamma} <<1) clouds; here {gamma} = H/D, H is the cloud layer thickness and D the characteristic horizontal cloud size. The equivalent stratus clouds differ from cumulus only in the aspect ratio {gamma}, all the other parameters coinciding.

  9. Investigation of influence of electronic irradiation on photoluminescence spectrum and ir-spectrum of porous silicon

    International Nuclear Information System (INIS)

    Daineko, E.A.; Dihanbayev, K.K.; Akhtar, P.; Hussain, A.


    In this article we study the influence of 2-Mev electron irradiation on porous silicon (PS). Photoluminescence (PL) spectrum and IR-spectrum have been done on both newly-prepared PS samples and samples prepared a year ago after the irradiation. We analyzed PL spectrum for both types of PS samples. The experimental results suggest that the peak position in PL spectrum decreases for newly-prepared PS samples. The size of the nanocrystals calculated by the method of singling out of spectrum components was equal to 3.0-3.2 nm. Porosity of the samples was 60-75%. From IR-spectrum of newly-prepared PS samples wide absorption band was observed at 1100 cm/sup -1/ (Si-O-Si bond). Another peak of Si-O-Si group was observed at 850 cm/sub -1/. Also hydrogen absorption bands were appearing from 2000 to 2200 cm/sup -1/, corresponding to vibration modes SiH, SiH/sub 2/, SiH/sub 3/. As a result of electron irradiation the PL intensity of newly-prepared PS samples decreases abruptly by a factor of 30 without peak shifting. As for the samples prepared a year ago we observed a decrease in the PL intensity by 25-30%. From IR-spectrum of PS samples prepared a year ago it was shown that the intensity of bridge bonds corresponding to absorption band 850 cm/sup -1/, decreases gradually. Our experimental data shows that PS samples stored for longer time have better radiation resistant properties than the newly-prepared PS samples due to the replacement of Si-H bonds with more resistant Si-O bonds. Porous silicon, electrochemical anodizing, photoluminescence spectrum, IR-spectrum, electronic irradiation. (author)

  10. Effect of iron status on iron absorption in different habitual meals in young south Indian women

    Directory of Open Access Journals (Sweden)

    Suneeta Kalasuramath


    Full Text Available Background & objectives: Iron deficiency (ID affects a large number of women in India. An inverse relationship exists between iron (Fe status and Fe absorption. Dietary inhibitory and enhancing factors exert a profound influence on bioavailability of Fe. Although the current recommended dietary allowance (RDA for Fe is based on 8 per cent bioavailability, it is not clear if this holds good for the usual highly inhibitory Indian diet matrix. This study was aimed to determine Fe absorption from several habitually consumed south Indian food and to evaluate the interaction of Fe status with absorption. Methods: Four Fe absorption studies were performed on 60 apparently healthy young women, aged 18-35 years. Based on blood biochemistry, 45 of them were ID and 15 were iron replete (IR. The habitual meals assessed were rice, millet and wheat based meals in the ID subjects and rice based meal alone in the IR subjects. Each subject received the test meal labelled with 3 mg of [57] Fe and Fe absorption was measured based on erythrocyte incorporation of isotope label 14 days following administration. Results: Mean fractional Fe absorption from the rice, wheat and millet based meals in the ID subjects were 8.3, 11.2 and 4.6 per cent, respectively. Fe absorption from the rice-based meals was 2.5 per cent in IR subjects. Interpretation & conclusions: Fe absorption is dictated by Fe status from low bioavailability meals. Millet based meals have the lowest bioavailability, while the rice and wheat based meals had moderate to good bioavailability. In millet based meals, it is prudent to consider ways to improve Fe absorption.

  11. Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy (United States)

    Zhang, Fang-Da; Xu, Chang-Hua; Li, Ming-Yu; Huang, An-Min; Sun, Su-Qin


    Since Pterocarpus santalinus and Dalbergia louvelii, which are of precious Rosewood, are very similar in their appearance and anatomy characteristics, cheaper Hongmu D. louvelii is often illegally used to impersonate valuable P. santalinus, especially in Chinese furniture manufacture. In order to develop a rapid and effective method for easy confused wood furniture differentiation, we applied tri-step identification method, i.e., conventional infrared spectroscopy (FT-IR), second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2DCOS-IR) spectroscopy to investigate P. santalinus and D. louvelii furniture. According to FT-IR and SD-IR spectra, it has been found two unconditional stable difference at 848 cm-1 and 700 cm-1 and relative stable differences at 1735 cm-1, 1623 cm-1, 1614 cm-1, 1602 cm-1, 1509 cm-1, 1456 cm-1, 1200 cm-1, 1158 cm-1, 1055 cm-1, 1034 cm-1 and 895 cm-1 between D. louvelii and P. santalinus IR spectra. The stable discrepancy indicates that the category of extractives is different between the two species. Besides, the relative stable differences imply that the content of holocellulose in P. santalinus is more than that of D. louvelii, whereas the quantity of extractives in D. louvelii is higher. Furthermore, evident differences have been observed in their 2DCOS-IR spectra of 1550-1415 cm-1 and 1325-1030 cm-1. P. santalinus has two strong auto-peaks at 1459 cm-1 and 1467 cm-1, three mid-strong auto-peaks at 1518 cm-1, 1089 cm-1 and 1100 cm-1 and five weak auto-peaks at 1432 cm-1, 1437 cm-1, 1046 cm-1, 1056 cm-1 and 1307 cm-1 while D. louvelii has four strong auto-peaks at 1465 cm-1, 1523 cm-1, 1084 cm-1 and 1100 cm-1, four mid-strong auto-peaks at 1430 cm-1, 1499 cm-1, 1505 cm-1 and 1056 cm-1 and two auto-peaks at 1540 cm-1 and 1284 cm-1. This study has proved that FT-IR integrated with 2DCOS-IR could be applicable for precious wood furniture authentication in a direct, rapid and holistic manner.

  12. New horizons for Supercontinuum light sources: from UV to mid-IR

    DEFF Research Database (Denmark)

    Thomsen, Carsten L.; Nielsen, Frederik Donbæk; Johansen, Jeppe


    Commercially available supercontinuum sources continue to experience a strong growth in a wide range of industrial and scientific applications. In addition, there is a significant research effort focused on extending the wavelength coverage both towards UV and Mid-IR. Broadband sources covering t...

  13. Novel charge density wave transition in crystals of R5Ir4Si10

    Indian Academy of Sciences (India)

    The well-localized Er3 moments are antiferromagnetically ordered below 2.8 K which results in the coexistence of strongly coupled CDW with local moment antiferromagnetism in Er5Ir4Si10. Unlike conventional CDW systems, extremely sharp transition (width ∼ 1.5 K) in all bulk properties along with huge heat capacity ...

  14. Synthesis of Iridium(III) Carboxamides via the Bimetallic Reaction between Cp(PMe(3))IrPh(OH) and [Cp(PMe(3))Ir(Ph)NCR](+). (United States)

    Tellers, David M.; Ritter, Joachim C. M.; Bergman, Robert G.


    Reaction of Cp(PMe(3))IrPh(OH) (1) with nitriles is undetectably slow in benzene solution at room temperature. However, in the presence of Cp(PMe(3))IrPh(OTf) (2) (OTf = O(3)SCF(3)), the reaction is strongly catalyzed, leading to iridium(III) carboxamides Cp(PMe(3))IrPh[NHC(O)R] (6a-d) [R = C(6)H(4)CH(3) (6a), C(6)H(5) (6b), C(6)H(4)CF(3) (6c), CH(3) (6d)]. We propose that these transformations occur by initial displacement of the trifluoromethanesulfonate ("triflate") anion of 2 by a molecule of nitrile, leading to a nitrile-substituted iridium cation, [Cp(PMe(3))IrPh(NCR)](+) (10). Following this, the nucleophilic hydroxide group of 1 attacks the (activated) nitrile molecule bound in 10, leading (after proton transfer) to the iridium carboxamide complex. In the case of nitriles possessing hydrogens alpha to the cyano group, competitive loss of one of these protons is observed, leading to iridium C-bound cyanoenolates such as Cp(PMe(3))(Ph)Ir(CH(2)CN) (7). Protonolysis of carboxamides 6a-d with HCl yields Cp(PMe(3))IrPh(Cl) (9) and the free amides. A pronounced solvent effect is observed when the reaction between 1 and nitriles catalyzed by 2 is carried out in THF solution. The basic hydroxide ligand of 1 induces an overall dehydration/cyclization reaction of the coordinated aromatic nitrile. For example, the reaction of 1 with p-trifluorotolunitrile and a catalytic amount of 2 leads to the formation of 6c, water, [Ph(PMe(3))Ir[C(5)Me(4)CH(2)C(C(6)H(4)CF(3))N

  15. Absorption heat pumps (United States)

    Huhtinen, M.; Heikkilae, M.; Andersson, R.


    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  16. Calculation of effective absorption coefficient for aerosols of internal mixture

    International Nuclear Information System (INIS)

    Xu Bo; Huang Yinbo; Fan Chengyu; Qiao Chunhong


    The effective absorption coefficient with time of strong absorbing aerosol made of carbon dusts and water of internal mixture is analyzed, and the influence of different wavelengths and radius ratios on it is discussed. The shorter the wavelength is, the larger the effective absorption coefficient is , and more quickly it increases during 1-100 μs, and the largest increase if 132.65% during 1-100 μs. Different ratios between inner and outer radius have large influence on the effective absorption coefficient. The larger the ratio is, the larger the effective absorption coefficient is, and more quickly it increases during 1-100 μs. The increase of the effective absorption coefficient during 1-100 μs is larger than that during 100-1000 μs, and the largest increase is 138.66% during 1-100 μs. (authors)

  17. Rapidly variable relatvistic absorption (United States)

    Parker, M.; Pinto, C.; Fabian, A.; Lohfink, A.; Buisson, D.; Alston, W.; Jiang, J.


    I will present results from the 1.5Ms XMM-Newton observing campaign on the most X-ray variable AGN, IRAS 13224-3809. We find a series of nine absorption lines with a velocity of 0.24c from an ultra-fast outflow. For the first time, we are able to see extremely rapid variability of the UFO features, and can link this to the X-ray variability from the inner accretion disk. We find a clear flux dependence of the outflow features, suggesting that the wind is ionized by increasing X-ray emission.

  18. Geospatial Absorption and Regional Effects

    Directory of Open Access Journals (Sweden)



    Full Text Available The geospatial absorptions are characterized by a specific complexity both in content and in their phenomenological and spatial manifestation fields. Such processes are differentiated according to their specificity to pre-absorption, absorption or post-absorption. The mechanisms that contribute to absorption are extremely numerous: aggregation, extension, diffusion, substitution, resistivity (resilience, stratification, borrowings, etc. Between these mechanisms frequent relations are established determining an amplification of the process and of its regional effects. The installation of the geographic osmosis phenomenon in a given territory (a place for example leads to a homogenization of the geospatial state and to the installation of the regional homogeneity.

  19. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G ...

    Indian Academy of Sciences (India)


    Mar 2, 2017 ... Abstract. Polycystic ovary syndrome (PCOS) is the most common and a complex female endocrine disorder, and is one of the leading cause of female infertility. Here, we aimed to investigate the association of single-nucleotide polymorphism of INS, INSR,. IRS1, IRS2, PPAR-G and CAPN10 gene in the ...

  20. Effects of changing the amount of absorption in a computer model of Queen's Hall, Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Vigeant, Michelle C.; Wang, Lily M.; Rindel, Jens Holger


    of modelling the source directivity. A new method to incorporate source directivity is multi-channel auralizations. An omni-directional source is divided into the number of recording channels and the impulse response (IR) for each channel is calculated. Each individual IR is then convolved with the appropriate...... recording, and a final auralization is created by mixing all individual channel auralizations together. This study evaluates the objective and subjective effects of using four and thirteen channel IRs in an ODEON model of Queen’s Hall, a hall located in Copenhagen with variable absorption. Analyses...... of the results reveal great differences in the objective parameters of reverberation time (T30), clarity index (C50), sound pressure level (SPL) and lateral energy fraction (LF80) for each channel’s impulse response across the room absorption variations. Subjective studies were conducted to see the effect...

  1. Ba3M Ir2O9 hexagonal perovskites in the light of spin-orbit coupling and local structural distortions (United States)

    Nag, Abhishek; Bhowal, Sayantika; Bert, F.; Hillier, A. D.; Itoh, M.; Carlomagno, Ilaria; Meneghini, C.; Sarkar, T.; Mathieu, R.; Dasgupta, I.; Ray, Sugata


    Spin-orbit coupling (SOC) is found to be crucial for understanding the magnetic and electronic properties of 5 d transition metal oxides. In 5 d systems, with Ir5 + ions, where ideally a nonmagnetic J =0 ground state is expected to be stabilized in the presence of strong SOC, often spontaneous moments are generated due to hopping induced superexchange. This effect is more pronounced when the Ir atoms are close by, as in systems with Ir2O9 dimers in 6 H Ba3M Ir2O9 compounds where magnetism is an outcome of complex Ir-O-Ir exchange paths, and is strongly influenced by the presence of local distortions. We find that subtle variations in the local structure of Ba3M Ir2O9 (M = Mg, Sr, and Ca) lead to markedly different magnetic properties. While SOC plays a pivotal role in explaining the insulating ground states of these systems, it is seen that Ba3MgIr2O9 , having a P 63 /m m c symmetry, does not order down to low temperature despite having antiferromagnetic exchange interactions, while Ba3CaIr2O9 shows weak dimer-like features and stabilizes in C 2 /c' magnetic configuration with no net moment, and Ba3SrIr2O9 possesses a ground state corresponding to the magnetic space group C 2'/c' and exhibits ferromagnet-like features.

  2. Intelligent multi-spectral IR image segmentation (United States)

    Lu, Thomas; Luong, Andrew; Heim, Stephen; Patel, Maharshi; Chen, Kang; Chao, Tien-Hsin; Chow, Edward; Torres, Gilbert


    This article presents a neural network based multi-spectral image segmentation method. A neural network is trained on the selected features of both the objects and background in the longwave (LW) Infrared (IR) images. Multiple iterations of training are performed until the accuracy of the segmentation reaches satisfactory level. The segmentation boundary of the LW image is used to segment the midwave (MW) and shortwave (SW) IR images. A second neural network detects the local discontinuities and refines the accuracy of the local boundaries. This article compares the neural network based segmentation method to the Wavelet-threshold and Grab-Cut methods. Test results have shown increased accuracy and robustness of this segmentation scheme for multi-spectral IR images.

  3. Study of water adsorption and capillary bridge formation for SiO(2) nanoparticle layers by means of a combined in situ FT-IR reflection spectroscopy and QCM-D set-up. (United States)

    Torun, B; Kunze, C; Zhang, C; Kühne, T D; Grundmeier, G


    Water adsorption and capillary bridge formation within a layer of SiO2-nanoparticles were studied in situ by means of a combination of quartz crystal microbalance (QCM-D) with dissipation analysis and Fourier transformation infrared reflection absorption spectroscopy (FT-IRRAS). FT-IR data were employed to distinguish the "ice-like" and "liquid-like" contributions and to support the analysis of the QCM-D data concerning mass change and dissipation. Combined measurements show that for SiO2-nanoparticles with a diameter of about 250 nm, the formation of two adsorbed monolayers of water as well as bulk water leads to a rather linear increase in the dissipation for relative humidity values of up to 60% which is followed by a strong increase in dissipation during the actual liquid bridge formation. Subsequently, the dissipation drops again when the relative humidity is further increased to values >90%.

  4. Ultraviolet and infrared absorption spectra of Cr2O3 doped-sodium metaphosphate, lead metaphosphate and zinc metaphosphate glasses and effects of gamma irradiation: a comparative study. (United States)

    Marzouk, M A; ElBatal, F H; Abdelghany, A M


    The effects of gamma irradiation on spectral properties of Cr2O3-doped phosphate glasses of three varieties, namely sodium metaphosphate, lead metaphosphate and zinc metaphosphate have been investigated. Optical spectra of the undoped samples reveal strong UV absorption bands which are attributed to the presence of trace iron impurities in both the sodium and zinc phosphate glasses while the lead phosphate glass exhibits broad UV near visible bands due to combined absorption of both trace iron impurities and divalent lead ions. The effect of chromium oxide content has been investigated. The three different Cr2O3-doped phosphate glasses reveal spectral visible bands varying in their position and intensity and splitting due to the different field strengths of the Na(+), Pb(2+), Zn(2+) cations, together with the way they are housed in the network and their effects on the polarisability of neighboring oxygens ligands. The effects of gamma irradiation on the optical spectral properties of the various glasses have been compared. The different effects for lead and zinc phosphate are related to the ability of Pb(2+), and Zn(2+) to form additional structural units causing stability of the network towards gamma irradiation. Also, the introduction of the transition metal chromium ions reveals some shielding behavior towards irradiation. Infrared absorption spectra of the three different base phosphate glasses show characteristic vibrations due to various phosphate groups depending on the type of glass and Cr2O3 is observed to slightly affect the IR spectra. Gamma irradiation causes minor variations in some of the intensities of the IR spectra but the main characteristic bands due to phosphate groups remain in their number and position. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Extraordinary absorption of sound in porous lamella-crystals. (United States)

    Christensen, J; Romero-García, V; Picó, R; Cebrecos, A; de Abajo, F J García; Mortensen, N A; Willatzen, M; Sánchez-Morcillo, V J


    We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support. Experimental measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases the wave interaction time and is responsible for the enhancement of intrinsic material dissipation, making the system more absorptive with less material.

  6. Extraordinary absorption of sound in porous lamella-crystals

    DEFF Research Database (Denmark)

    Christensen, Johan; Romero-García, V.; Picó, R.


    We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support....... Experimental measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases the wave interaction time and is responsible for the enhancement of intrinsic material...... dissipation, making the system more absorptive with less material....

  7. Near-IR imaging and imaging polarimetry of OMC 2 (United States)

    Rayner, John; Mclean, Ian; Aspin, Colin; Mccaughrean, Mark


    NIR and 2.2-micron imaging polarimetry of the molecular cloud region OMC 2, reveals a cluster of low- to intermediate-mass premain-sequence stars embedded in circumstellar disks. The 2.2-micron imaging polarimetry indicates that the compact NIR sources OMC 2 IRS1, IRS2, IRS3 and IRS4 N, are illumination centers for the surrounding extended emission. By application of Hubble's relation to the nebulae illuminated by IRS1, IRS2 and IRS4 N, the illuminating geometry is explained and the intrinsic NIR colors of these objects are estimated.

  8. Investigation of pollutant gases with molecular absorption spectroscopy

    International Nuclear Information System (INIS)

    Izairi, N; Ajredini, F.; Shehabi, M.


    This paper contains the molecular absorption spectroscopic investigation on environmental pollution by many pollutants. For this purpose a laser absorption spectroscopy at 630 nm wavelength has been applied to excite the molecular spectra in order to identify the presence of main gas pollutants. The following was the experimental procedure. Preliminary the presence of pollutants was identified. The gas champions were taken in live environment, in Tetovo streets where cars moved, and in some points in Tetovo suburbia, during different periods of the day. A special civet, part of the apparatus, has been filled by environmental air, and latter, put into the apparatus. A laser beam pulse passes throughout absorbing gas medium in the civet to excite the gas, and the absorbing spectra were automatically registered. The molecular band spectra registration has been performed by an FT-IR Spectrometer (Spectrum BX FT-IR Perkin Elmer). For this purpose the measurements were focused in spectral region of 2075 cm -1 to 2384 cm -1 for CO 2 and CO bands investigation. The importance of such measurements is to investigate the spectral properties of absorption spectra and molecular structure, and for monitoring the environmental pollution. (Author)

  9. Synthesis and microwave absorption properties of PPy/Co nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Juhua, E-mail: [School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051 (China); Gao, Duoduo [School of Material Science and Engineering, Changzhou University, Changzhou 213164 (China)


    Polypyrrole (PPy)/cobalt (Co) nanocomposites were successfully prepared by an in-situ polymerization of pyrrole in the presence of synthesized Co nanoparticles. Characterization of the product was accomplished by XRD, TEM, FT-IR, VSM, and vector network analyzer techniques. XRD analysis revealed that characteristic diffraction peaks of polypyrrole and Co appeared at the same time in nanocomposites. FT-IR analysis indicated a successful conjugation of Co particles with polypyrrole. TEM confirmed the formation of a core-shell structure with a wide particle size distribution. Magnetization measurements showed that polypyrrole coating decreased the saturation magnetization of Co significantly. With the increase of the matching thickness, the absorption peak varied towards low frequency direction. When the matching thickness was 3.0 mm, the value of the maximum reflection loss (RL) was −20.0 dB at 13.8 GHz with the 7.2 GHz bandwidth. - Highlights: • The influence of PPy on the structure of Co is discussed. • The influence of PPy on the magnetic properties of Co is discussed. • The influence of PPy on the absorption property of Co is discussed. • PPy/Co possessed the excellent absorption property.

  10. IR Thermometer with Automatic Emissivity Correction

    Directory of Open Access Journals (Sweden)

    A. Dobesch


    Full Text Available The paper describes the design and implementation of an infrared (IR thermometer with automatic emissivity correction. The temperature measurement is carried out by the simple digital thermopile sensor MLX90614. The emissivity correction is based on benefits of diffuse reflecting materials and it uses an IR laser diode in conjunction with a selective amplifier. Moreover, the paper includes the design of the control interface with a graphics LCD. Furthermore, this paper describes the power supply unit with a Li-ion cell controlled by basic integrated circuits.

  11. Kas netilpo tarp politikos ir diplomatijos?


    Streikus, Arūnas


    The review analyzes A. Kasparavičius’s monograph “Tarp Politikos ir Diplomatijos: Šventasis Sostas ir Lietuvos Respublika” (Vilnius, 2008). The historiographic value of the study is undisputed. A. Kasperavičius had an opportunity to use a broad spectrum of sources, among which two sets of archive documents stand out: the funds of the archives of Ministry of Foreign Affairs of Lithuania and the Lithuanian Embassy under the Holy See in Rome. A. Kasparavičius managed to avoid the arid scientific...

  12. Elecciones Legislativas en Irán

    Directory of Open Access Journals (Sweden)

    José Antonio Sainz de la Peña


    Full Text Available Las elecciones legislativas en Irán, una vez eliminados los reformistas se han celebrado en un clima de rivalidad. Las elecciones tenían que dejar claro quién mandaba en Irán, si los clérigos y el Guía el ayatolá Seyed Ali Jamenei o, el Presidente de la República, el laico Mahmud Ahmadineyad, apoyado en el Cuerpo de Guardias Revolucionarios. La realidad ha sido que las facciones conservadoras encabezadas por el Frente Unido Principalista, apoyados por el Guía Supremo, han obtenido el triunfo.

  13. Replacing lactose from calf milk replacers : effects on digestion and post-absorptive metabolism

    NARCIS (Netherlands)

    Gilbert, M.S.


    <strong>Summary PhD thesis Myrthe S. Gilbertstrong>

    <strong>Replacing lactose from calf milk replacers – Effects on digestion and post-absorptive metabolismstrong>

    Veal calves are fed milk replacer (MR) and solid feed. The largest part of the energy provided to veal calves

  14. Replacing lactose from calf milk replacers : effects on digestion and post-absorptive metabolism

    NARCIS (Netherlands)

    Gilbert, M.S.


    <strong>Summary PhD thesis Myrthe S. Gilbertstrong> <strong>Replacing lactose from calf milk replacers – Effects on digestion and post-absorptive metabolismstrong> Veal calves are fed milk replacer (MR) and solid feed. The largest part of the energy provided to veal calves originates from

  15. IGF-IR cooperates with ERα to inhibit breast cancer cell aggressiveness by regulating the expression and localisation of ECM molecules

    DEFF Research Database (Denmark)

    Afratis, Nikolaos A; Bouris, Panagiotis; Skandalis, Spyros S


    and syndecan-4 triggered by IGF-IR inhibition, regulate adhesion and invasion. Cell function assays that were performed in MCF-7 cells as well as their ERα-suppressed counterparts indicate that ER status is a major determinant of IGF-IR regulatory role on cell adhesion and invasion. The strong inhibitory role...

  16. Particle emission from polymer-doped water ice matrices induced by non-linear absorption of laser light at 1064 nm

    DEFF Research Database (Denmark)

    Purice, A.; Schou, Jørgen; Dinescu, M.


    though linear absorption in defect-free water ice is two orders of magnitude larger at 1064 ran than 355 nm, the deposition rate and ion current density are much smaller for IR than for ultraviolet laser light. The similarity of results for both wavelengths indicates that non-linear absorption...

  17. Synthesis and microwave absorption properties of PPy/Co nanocomposites (United States)

    Luo, Juhua; Gao, Duoduo


    Polypyrrole (PPy)/cobalt (Co) nanocomposites were successfully prepared by an in-situ polymerization of pyrrole in the presence of synthesized Co nanoparticles. Characterization of the product was accomplished by XRD, TEM, FT-IR, VSM, and vector network analyzer techniques. XRD analysis revealed that characteristic diffraction peaks of polypyrrole and Co appeared at the same time in nanocomposites. FT-IR analysis indicated a successful conjugation of Co particles with polypyrrole. TEM confirmed the formation of a core-shell structure with a wide particle size distribution. Magnetization measurements showed that polypyrrole coating decreased the saturation magnetization of Co significantly. With the increase of the matching thickness, the absorption peak varied towards low frequency direction. When the matching thickness was 3.0 mm, the value of the maximum reflection loss (RL) was -20.0 dB at 13.8 GHz with the 7.2 GHz bandwidth.


    The absorption spectrum of MnF2 at 4.2K in the 3900A region was measured in zero external fields and in high fields. Exciton lines with magnon ...sidebands are observed, accompanied by a large number of weak satellite lines. Results on the exciton and magnon absorptions are similar to those of...McClure et al. The satellite lines are interpreted as being multi- magnon absorptions, and it is possible to fit the energy of all the absorptions with

  19. Single-particle absorption spectroscopy by photothermal contrast. (United States)

    Yorulmaz, Mustafa; Nizzero, Sara; Hoggard, Anneli; Wang, Lin-Yung; Cai, Yi-Yu; Su, Man-Nung; Chang, Wei-Shun; Link, Stephan


    Removing effects of sample heterogeneity through single-molecule and single-particle techniques has advanced many fields. While background free luminescence and scattering spectroscopy is widely used, recording the absorption spectrum only is rather difficult. Here we present an approach capable of recording pure absorption spectra of individual nanostructures. We demonstrate the implementation of single-particle absorption spectroscopy on strongly scattering plasmonic nanoparticles by combining photothermal microscopy with a supercontinuum laser and an innovative calibration procedure that accounts for chromatic aberrations and wavelength-dependent excitation powers. Comparison of the absorption spectra to the scattering spectra of the same individual gold nanoparticles reveals the blueshift of the absorption spectra, as predicted by Mie theory but previously not detectable in extinction measurements that measure the sum of absorption and scattering. By covering a wavelength range of 300 nm, we are furthermore able to record absorption spectra of single gold nanorods with different aspect ratios. We find that the spectral shift between absorption and scattering for the longitudinal plasmon resonance decreases as a function of nanorod aspect ratio, which is in agreement with simulations.

  20. Infrared Light Absorption Computed Tomography Measurements for Gaseous Hydrocarbon Fuel Concentration (United States)

    Kawazoe, Hiromitsu; Emi, Yasuyuki; Nakamura, Yoshiaki

    A system to measure gaseous fuel distribution was devised, which is based on infra-red light absorption by carbon-hydrogen stretch mode of vibration and the computed tomography method (IR-CT method). Since the incident light intensity from an infra-red laser fluctuated temporally, the effect was diminished by dividing the beam to two, one of which was monitored for better measurement accuracy. It was found that the error due to the laser fluctuation was within 0.8% and the feasibility of the IR-CT method was confirmed by applying the system to the measurements of the methane fuel concentration in an internal combustion engine model and a burner with diffusion flame. Furthermore, calibration to determine absorptivity was undertaken, which was used for the conversions from the measured line absorption coefficients to spatial fuel concentration in the combustion field.

  1. Comparison of Genetic Parameters Estimation of Fatty Acids from Gas Chromatography and FT-IR in Holsteins

    DEFF Research Database (Denmark)

    Poulsen, Nina Aagaard; Eskildsen, C E A; Skov, Thomas

    Fourier transform infrared (FT-IR) is routinely used in the milk recording system and IR-based solutions are therefore attractive to ensure the full potential of genomic selection data in future breeding programs. Today, IR-based models can be used to predict a wide range of milk traits, and thei......Fourier transform infrared (FT-IR) is routinely used in the milk recording system and IR-based solutions are therefore attractive to ensure the full potential of genomic selection data in future breeding programs. Today, IR-based models can be used to predict a wide range of milk traits......, and their genetic parameters. However, IR-predicted phenotypes for detailed milk composition are often based on their correlation to other traits in a given data set rather than on direct predictions. Here, genetic parameters for individual milk fatty acids were estimated based on either IR-predicted phenotypes...... or on fatty acids data measured from gas chromatography in 371 Danish Holstein cows. Results showed similar heritability estimates and strong genomic correlations for most of the fatty acids. However, for some fatty acids, the choice of data affected the genetic parameter estimation, which may be due...

  2. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.


    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  3. Analyzing Water's Optical Absorption (United States)


    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  4. Atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Haswell, S.J.


    Atomic absorption spectroscopy is now well established and widely used technique for the determination of trace and major elements in a wide range analyte types. There have been many advances in the atomic spectroscopy over the last decade and for this reason and to meet the demand, it was felt that there was a need for an updated book. Whilst interest in instrumental design has tended to dominate the minds of the spectrocopist, the analyst concerned with obtaining reliable and representative data, in diverse areas of application, has been diligently modifying and developing sample treatment and instrumental introduction techniques. Such methodology is de fundamental part of analysis and form the basis of the fourteen application chapters of this book. The text focuses in the main on AAS; however, the sample handling techniques described are in many cases equally applicable to ICP-OES and ICP-MS analysis. (author). refs.; figs.; tabs

  5. A new technique of measuring trace absorption of optical thin films

    International Nuclear Information System (INIS)

    Apparao, K.V.S.R.; Sahoo, N.K.


    An instrument to measure trace absorption of optical thin films is indigenously developed using a novel technique. The instrument based on calorimetric principle measures the temperature rise and absorption of a sample simultaneously by two independent techniques. Such a dual technique feature enables one to measure the sample absorption with the first technique and simultaneously check the result with the second technique. The instrument can be used to measure trace absorption of dielectric optical thin films in UV, visible and near-IR spectral regions. Using the new instrument the absorption constant β and extinction coefficient k of Sb 2 O 3 and ZrO 2 films at 308 and 337 nm are measured successfully and reported for the first time. (author). 16 refs., 6 figs., 3 tabs

  6. Demonstration and information center on the basis of the research reactor IR-50

    International Nuclear Information System (INIS)

    Krupenina, F.


    Many problems exist in the nuclear field, but the most significant one is the public's mistrust of Nuclear Energy. Strong downfalls of the radiological culture affect public perception, the main paradox being the situation after Chernobyl. The task of creating a Demonstration and-Information Center (Minatom RF) on the basis of the research reactor IR-50 is conducted by Research and Development Institute of Power Engineering (ENTEK). The IR-50 is situated on the grounds of the institute. It will be a unique event when the functional reactor is situated in the center of the city (about 5 km from Kremlin). (author)

  7. Demonstration-informative center based on research reactor IR-50 in heat regime

    International Nuclear Information System (INIS)

    Krupenina, Ph.


    Many problems exist in the nuclear field, but the most significant one is the public's mistrust of Nuclear Energy. Strong downfalls of the radiological culture affect public perception, the main paradox being the situation after Chernobyl. The task of creating a Demonstration-Informative Center (Minatom RF) on reactor IR-50 research is conducted by Research and Development Institute of Power Engineering (ENTEK). The IR-50 is situated on the grounds of the institute. It will be a unique event when the functional reactor is situated in the center of the city. The purposes of the Demonstration-Informative Center are discussed. (authors)

  8. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rijs, A. M.; Kabeláč, Martin; Abo-Riziq, A.; Hobza, Pavel; de Vries, M. S.


    Roč. 12, č. 10 (2011), s. 1816-1821 ISSN 1439-4235 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550808 Institutional research plan: CEZ:AV0Z40550506 Keywords : density functional calculations * gramicidin * IR spectroscopy * protein folding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.412, year: 2011

  9. IR and OLAP in XML document warehouses

    DEFF Research Database (Denmark)

    Perez, Juan Manuel; Pedersen, Torben Bach; Berlanga, Rafael


    In this paper we propose to combine IR and OLAP (On-Line Analytical Processing) technologies to exploit a warehouse of text-rich XML documents. In the system we plan to develop, a multidimensional implementation of a relevance modeling document model will be used for interactively querying...

  10. Column Stores as an IR Prototyping Tool

    NARCIS (Netherlands)

    H.F. Mühleisen (Hannes); T. Samar (Thaer); J.J.P. Lin (Jimmy); A.P. de Vries (Arjen)


    textabstract. We make the suggestion that instead of implementing custom index structures and query evaluation algorithms, IR researchers should simply store document representations in a column-oriented relational database and write ranking models using SQL. For rapid prototyping, this is

  11. TIJAH: embracing IR methods in XML databases

    NARCIS (Netherlands)

    J.A. List; V. Mihajlovic; G. Ramirez Camps (Georgina); A.P. de Vries (Arjen); D. Hiemstra; H.E. Blok


    textabstractThis paper discusses our participation in INEX (the Initiative for the Evaluation of XML Retrieval) using the TIJAH XML-IR system. TIJAH's system design follows a `standard' layered database architecture, carefully separating the conceptual, logical and physical levels. At the conceptual

  12. Electrodynamics of a hydrogenlike atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Kovarskij, V.A.; Perel'man, N.F.


    The quasienergy spectrum of the hydrogen atom in strong electromagnetic radiation is studied, the luminescence of the atom under these conditions is considered. It is shown that in a strong field the atom, being even in the ground state, radiates a spectrum of frequencies corresponding to transitions from the ground state into excited states, the strong field photons being involved. The intensity of such a luminescence is basically a non-linear function of the strong field. The exposure of the atom to two strong electromagnetic fields Ω and ω (Ω>>ω) is considered, the Ω coinciding with one of the natural frquencies of the atom. The effct of modulation of the resonance shift for an atomic level by the ω-field strength is predicted. The dependence of Ω-absorption in the ω-field on the statistic properties of the latter is investigated. (author)

  13. Ice contamination on satellite IR sensors: the MIPAS case (United States)

    Niro, F.; Fehr, T.; Kleinert, A.; Laur, H.; Lecomte, P.; Perron, G.


    MIPAS on board the ENVISAT platform is a Michelson Interferometer measuring the atmospheric limb emission in the mid-infrared (IR), from 4.15 µm to 14.5 µm [1]. The calibrated MIPAS measurements are radiance spectra as a function of wavenumber. The radiometric and spectral calibrations of the raw data are part of the Level 1 processing in the Ground Segment [2]. The accuracy of the radiometric calibration is essential in order to ensure precise temperature and trace gas retrieval in the Level 2 processing. This calibration process requires a set of cold space measurements and a series of measurements of a black body source to determine the radiometric gain function and to correct for instrument self-emission. The deep space measurements are repeated every four limb scanning sequences with the purpose of compensating the variation of instrument's temperature along the orbit. The radiometric gain function is updated every week to correct for a degraded transmission at the detector due to ice contamination. The ice contamination leads to a decrease of the signal, mainly due to ice absorption of the incoming IR radiation. This paper presents an analysis of the effect of ice contamination during the MIPAS mission; in particular we will study its impact on the radiometric accuracy and on the Level 2 retrieval precision. We will highlight the importance of the ice monitoring for the MIPAS mission and we will show that this type of monitoring allows improving the stability and the overall performances of the MIPAS instrument. The effect of ice in other ENVISAT instruments will be also mentioned (e.g., AATSR). The lessons learned during the mission about ice contamination are very important, especially for IR sensors that are the most affected by this type of problem. These lessons will be useful in order to improve the in-flight operations of present and future satellite missions. [1] H. Fischer, M. Birk, C. Blom, B. Carli, M. Carlotti, T. von Clarmann, L. Delbouille, A

  14. Dual emitter IrQ(ppy){sub 2} for OLED applications: Synthesis and spectroscopic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ciobotaru, I.C. [National Institute of Materials Physics, R-77125 Bucharest-Magurele (Romania); Polosan, S., E-mail: [National Institute of Materials Physics, R-77125 Bucharest-Magurele (Romania); Ciobotaru, C.C. [Advanced Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 149 Calea Victoriei, 010072 (Romania)


    The synthesis of organometallic compound with iridium and two types of ligands, quinoline and phenylpyridine, was done successfully. The absorption spectra of this compound have shown broad peaks in a visible region assigned to metal-to-ligands charge transfer and in UV region assigned to intraligand absorptions. The photoluminescence spectra exhibit dual character in which the red emission is more intense than the green one. In cathodoluminescence measurements, under electron beam, the powder obtained after recrystallization from dichloromethane, shows similar behaviors with photoluminescence spectra. The cathodoluminescence images have shown a luminescent crystalline powder with triclinic structure. This compound exhibits combined vibrational modes, which proves the presence in the same molecule of both ligands. Density Functional Theory calculation was involved in order to identify the main vibrations of this compound. Highlights: • Mixed-ligand of IrQ(ppy){sub 2} synthesis which gives green and red phosphorescence due to the MCLT processes coming from two types of ligands. • Absorption, photoluminescence, infrared spectroscopy and cathodoluminescence measurements for characterization of IrQ(ppy){sub 2} organometallic compound. • Experimental results have been compared with the output files obtained from Density Functional Theory by using the Gaussian 03W software.

  15. New IR-UV gas sensor to energy and transport sector

    Energy Technology Data Exchange (ETDEWEB)

    Fateev, A.; Clausen, S.


    In situ simultaneous measurements of gas temperature and gas composition are of great interest in combustion research and give useful information about conditions, chemical reactions and gas mixing in many industrial processes. An optically based technique is beneficial because it is non-intrusive, accurate, fast and can be performed in situ for various extremely hard conditions. In humid and hot gas flows UV technique is more sensitive than FTIR one for fast gas concentration measurements of NO and SO{sub 2} and gives a great opportunity for simultaneous measurements of O{sub 2} concentration. Analysis of the fine structure of the UV absorption bands of, for example, NO, SO{sub 2} or O{sub 2} allows also to determine a value of the gas temperature. Absorption cross sections of CO{sub 2}, H{sub 2}O and SO{sub 2} measured using Risoe DTU's hot gas cell facility at elevated temperatures up to 1500 deg. C are reported. Design of a new developed 9-m long water-cooled fiber-optic probe with removable optical head suitable for fast IR/UV local gas absorption/emission measurements is described. The probe performance was successfully tested in several trial measurements on full scale multi-fuel fired boiler. A concept of fast time/spectralresolved measurements has been used in measurements on a large ship engine based on IR and UV broad band spectroscopy. (Author)

  16. Atomic absorption spectrophotometry in perspective

    International Nuclear Information System (INIS)

    Soffiantini, V.


    Atomic absorption spectrophotometry is essentially an analytical technique used for quantitative trace metal analysis in a variety of materials. The speed and specificity of the technique is its greatest advantage over other analytical techniques. What atomic absorption spectrophotometry can and cannot do and its advantages and disadvantages are discussed, a summary of operating instructions are given, as well as a summary of analytical interferences. The applications of atomic absorption spectrophotometry are also shortly discussed

  17. Photoluminescence and magnetic circular dichroism of IrQ(ppy){sub 2}-5Cl

    Energy Technology Data Exchange (ETDEWEB)

    Polosan, S., E-mail: [National Institute of Materials Physics, Bucharest-Magurele 077125 (Romania); Faculty of Engineering, Kyoto Sangyo University, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Radu, I.C. [National Institute of Materials Physics, Bucharest-Magurele 077125 (Romania); Tsuboi, T. [Faculty of Engineering, Kyoto Sangyo University, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan)


    Photoluminescence and magnetic circular dichroism of the IrQ(ppy){sub 2}-5Cl compound were investigated between 15 and 295 K. These results have been compared with the output files obtained from Density Functional Theory by using the Gaussian 03W software and some additional packages. The experimental results confirm the first triplet state absorption which arises from d to {pi}{sub Q} transition. The temperature dependence photoluminescence have shown a small interaction with the polystyrene, used for dispersion of IrQ(ppy){sub 2}-5Cl compound. The green and red phosphorescence have the same temperature dependence. The MCD spectra, especially at 15 K, reveals the main transitions involved in the Metal-to-Ligand Charge Transfer processes from the Ir towards the two ligands, phenylpyridine and quinoline, respectively. - Highlights: Black-Right-Pointing-Pointer Mixed-ligand of IrQ(ppy){sub 2}-5Cl synthesis with green and red phosphorescence. Black-Right-Pointing-Pointer Photoluminescence and magnetic circular dichroism measurements from 15 to 295 K. Black-Right-Pointing-Pointer Experimental results have been compared with DFT theoretical calculations. Black-Right-Pointing-Pointer Triplet state which arises from d to {pi}{sub Q} transition was experimentally confirmed. Black-Right-Pointing-Pointer Green and red phosphorescence have the same temperature dependence.

  18. An FT-Raman, FT-IR, and Quantum Chemical Investigation of Stanozolol and Oxandrolone

    Directory of Open Access Journals (Sweden)

    Tibebe Lemma


    Full Text Available We have studied the Fourier Transform Infrared (FT-IR and the Fourier transform Raman (FT-Raman spectra of stanozolol and oxandrolone, and we have performed quantum chemical calculations based on the density functional theory (DFT with a B3LYP/6-31G (d, p level of theory. The FT-IR and FT-Raman spectra were collected in a solid phase. The consistency between the calculated and experimental FT-IR and FT-Raman data indicates that the B3LYP/6-31G (d, p can generate reliable geometry and related properties of the title compounds. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compounds, which show agreement with the observed spectra.

  19. Strong WW Interaction at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, Jose R


    We present a brief pedagogical introduction to the Effective Electroweak Chiral Lagrangians, which provide a model independent description of the WW interactions in the strong regime. When it is complemented with some unitarization or a dispersive approach, this formalism allows the study of the general strong scenario expected at the LHC, including resonances.

  20. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.


    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  1. Strong-back safety latch

    International Nuclear Information System (INIS)

    DeSantis, G.N.


    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch

  2. Strong-back safety latch

    Energy Technology Data Exchange (ETDEWEB)

    DeSantis, G.N.


    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch.

  3. Research on Electrochemical Behavior of Ti-Ir-Ru Anode Coating in Electrolytic Antifouling of Flowing Brine (United States)

    Liang, Chenghao; Huang, Naibao


    By electrochemical techniques, the electrochemical behavior of Ti-Ir-Ru anode coating was studied in electrolytic antifouling of flowing brine. The effect of the brine’s flow rate and the anode/cathode interval on electrolysis was also considered. The results indicated that the brine’s flow rate had remarkable effect on the characteristic of the Ti-Ir-Ru anode. The electrolytic voltage and the evolved active chlorine concentration of Ti-Ir-Ru anode increased with increasing flow rate. Its energy consumption displayed the same variable rule as the electrolytic voltage. But the current density reduced with increasing flow rate. Increasing flow rate favored attenuation of the thickness of mass-transfer control layer and expediting the oxygen’s mass transfer, which accelerated the cathode polarization and the oxygen absorption reaction. The maximal current efficiency for Ti-Ir-Ru anode was obtained at the anode/cathode interval of 5 cm with the current density of 60 mA/cm2. At this point, Ti-Ir-Ru anode also had relatively low electrolytic voltage. The above operating procedure was ideal for electrolyzing flowing brine using Ti-Ir-Ru anode coating.

  4. IrO2-SiO2 binary oxide films: Preparation, physiochemical characterization and their electrochemical properties

    International Nuclear Information System (INIS)

    Wang Xiaomei; Hu Jiming; Zhang Jianqing


    Mixed IrO 2 -SiO 2 oxide films were prepared on titanium substrate by the thermo-decomposition of hexachloroiridate (H 2 IrCl 6 ) and tetraethoxysilane (TEOS) mixed precursors in organic solvents. The solution chemistry and thermal decomposition kinetics of the mixed precursors were investigated by ultra violet/visible (UV/vis) spectroscopy and thermogravimetry (TGA) and differential thermal analysis (DTA), respectively. The physiochemical characterization of the resulting materials was conducted by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. It is shown from the UV/vis spectra that the electronic absorption intensity of IrCl 6 2- complexes in the precursors decreases in the presence of TEOS, indicating the interaction between these two components. Thermal analysis shows the decomposition reaction of H 2 IrCl 6 is inhibited by TEOS in the low temperature range, but the further oxidation reaction at high temperatures of formed intermediates is independent of the presence of silane component. Physical measurements show a restriction effect of silica on the crystallization and crystal growth processes of IrO 2 , leading to the formation of finer oxide particles and the porous morphology of the binary oxide films. The porous composite films exhibit high apparent electrocatalytic activity toward the oxygen evolution reaction. In addition, the long-term stability of Ti-supported IrO 2 electrodes is found to apparently improve with appropriate amount of SiO 2 incorporation, as tested under galvanostatic electrolysis.

  5. Powerful visible (530???770 nm) luminescence in Yb,Ho:GGG with IR diode pumping. (United States)

    Kir'yanov, Alexander; Aboites, V; Belovolov, A; Timoshechkin, M; Belovolov, M; Damzen, M; Minassian, A


    Powerful visible luminescence in a Gadolinium Gallium Garnet (GGG) crystal, co-activated with Yb3+ (~15 at.%) and Ho3+ (~0.1 at.%) ions, is investigated under CW laser diode pumping (lambda = 938 and 976 nm). The main visible emission band is observed in the green with its peak at lambda ~540 nm) and measured to be about 10% with respect to Yb3+ IR luminescence (lambda ~1000 nm). Red (lambda ~650 nm) and near-IR (lambda ~755 nm) emission bands are also observed but are weaker (about 3-5%). Analysis of the crystal absorption and luminescence spectra allows one to conclude that Yb3+ - Ho3+ stepwise up-conversion is the mechanism explaining the phenomenon. Ho3+ ions embedded in the crystal in small concentration are shown to form an effective reservoir for energy transferred from the excited Yb3+ subsystem and to be an efficient source of the visible emission.

  6. Oil absorption in mesoporous silica particles

    Directory of Open Access Journals (Sweden)

    Radislav Filipović


    Full Text Available Mesoporous silica particles were prepared from highly basic sodium silicate solutions, having different silica modulus and SiO2 concentrations, by adding sulphuric acid at different temperatures. Pore structure of prepared silica particles (aggregates is strongly influenced by processing conditions and easy controllable in broad range of the specific surface area, pore size, pore volume and size distribution. It is shown that there is a clear correlation between volume of absorbed oil and processing parameters used in preparation of silica aggregates. Thus, oil absorption is higher in the samples prepared from sodium silicate solution with higher SiO2 concentration and at higher synthesis temperature.

  7. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter, Phase I (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a method of fabrication of far IR and THZ range multilayer metal-mesh filters. This type of filter consists of alternative...

  8. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter Project (United States)

    National Aeronautics and Space Administration — The innovative, high transmission band-pass filter technology proposed here is an improvement in multilayer metal-mesh filter design and manufacture for the far IR...

  9. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter, Phase II (United States)

    National Aeronautics and Space Administration — The innovative, high transmission band-pass filter technology proposed here is an improvement in multilayer metal-mesh filter design and manufacture for the far IR...

  10. 55 Tesla coercive magnetic field in frustrated Sr3NiIrO6 (United States)

    Singleton, John; Kim, Jae-Wook; Topping, Craig; Hansen, Anders; Mun, Eun-Deok; Ghannadzadeh, Saman; Goddard, Paul; Luo, Xuan; Oh, Yoon Seok; Cheong, Sang-Wook; Zapf, Vivien


    We have measured extremely large coercive magnetic fields of up to 55 T in Sr3NiIrO6, with a switched magnetic moment ~ 0 . 8μB per formula unit. As far as we are aware, this is the largest coercive field observed thus far. This extraordinarily hard magnetism has a completely different origin from that found in conventional ferromagnets. Instead, it is due to the evolution of a frustrated antiferromagnetic state in the presence of strong magnetocrystalline anisotropy due to the overlap of spatially-extended Ir4+ 5 d orbitals with oxygen 2 p and Ni2+ 3 d orbitals. This work highlights the unusual physics that can result from combining the extended 5 d orbitals in Ir4+ with the frustrated behaviour of triangular lattice antiferromagnets. Supported by DOE BES program ``Science in 100 T''.

  11. The nature of IRS 13N: YSOs in the central parsec of the galaxy?

    Energy Technology Data Exchange (ETDEWEB)

    Muzic, K; Eckart, A [I. Physikalisches Institut, Universitaet zu Koln, Zuelpicher Str. 77, 50937 Koeln (Germany); Schoedel, R [Instituto de AstrofIsica de AndalucIa, Camino Bajo de Huetor 50, 18008 Granada (Spain); Meyer, L [University of California, Division of Astronomy and Astrophysics, Los Angeles, CA 90095-4705 (United States); Zensus, A [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany)], E-mail:


    IRS13N is a small ({approx}0.25'' projected diameter), compact group of sources located {approx}3.5'' from Sgr A* and {approx}0.5'' north from the well known IRS 13E cluster. The sources exhibit strong infrared excess due to warm dust, with colors that are consistent with colors of extremely young objects. We present proper motion measurements for the IRS 13N cluster based on multi-epoch 3.8 {mu}m observations of the Galactic Center with NACO/VLT. Our measurements reveal a new co-moving group of stars, whose dynamical youth speaks in favor of the YSO hypothesis. The confirmation of the existence of such young stars in the Galactic Center would have profound implications on our understanding of star formation close to Sgr A* and to massive black holes in general.

  12. Time-reversal symmetry breaking hidden order in Sr2(Ir,Rh)O4 (United States)

    Jeong, Jaehong; Sidis, Yvan; Louat, Alex; Brouet, Véronique; Bourges, Philippe


    Layered 5d transition iridium oxides, Sr2(Ir,Rh)O4, are described as unconventional Mott insulators with strong spin-orbit coupling. The undoped compound, Sr2IrO4, is a nearly ideal two-dimensional pseudospin-1/2 Heisenberg antiferromagnet, similarly to the insulating parent compound of high-temperature superconducting copper oxides. Using polarized neutron diffraction, we here report a hidden magnetic order in pure and doped Sr2(Ir,Rh)O4, distinct from the usual antiferromagnetic pseudospin ordering. We find that time-reversal symmetry is broken while the lattice translation invariance is preserved in the hidden order phase. The onset temperature matches that of the odd-parity hidden order recently highlighted using optical second-harmonic generation experiments. The novel magnetic order and broken symmetries can be explained by the loop-current model, previously predicted for the copper oxide superconductors.

  13. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia

    DEFF Research Database (Denmark)

    Rung, Johan; Cauchi, Stéphane; Albrechtsen, Anders


    previously reported T2D risk loci, which predominantly associate with impaired beta cell function, the C allele of rs2943641 was associated with insulin resistance and hyperinsulinemia in 14,358 French, Danish and Finnish participants from population-based cohorts; this allele was also associated...... sample of 4,977 French individuals. We then selected the 28 best hits for replication in 7,698 Danish subjects and identified 4 SNPs showing strong association with T2D, one of which (rs2943641, P = 9.3 x 10(-12), OR = 1.19) was located adjacent to the insulin receptor substrate 1 gene (IRS1). Unlike...... with reduced basal levels of IRS1 protein and decreased insulin induction of IRS1-associated phosphatidylinositol-3-OH kinase activity in human skeletal muscle biopsies....

  14. Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves. (United States)

    Kume, Atsushi


    Terrestrial green plants absorb photosynthetically active radiation (PAR; 400-700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO 2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density distribution and leaf anatomical structures.

  15. Titanium: light, strong, and white (United States)

    Woodruff, Laurel; Bedinger, George


    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  16. Unusual Coexistence of Nickel(II) and Nickel(IV) in the Quadruple Perovskite Ba4Ni2Ir2O12 Containing Ir2NiO12 Mixed-Metal-Cation Trimers. (United States)

    Ferreira, Timothy; Heald, Steve M; Smith, Mark D; Zur Loye, Hans-Conrad


    The crystal chemistry and magnetic properties of two hexagonal nickel(IV)-containing perovskites, Ba 4 Ni 1.94 Ir 2.06 O 12 and BaNiO 3 , are reported. The 12R perovskite, Ba 4 Ni 1.94 Ir 2.06 O 12 , possesses an unexpected coexistence of nickel(II) and nickel(IV). This quadruple perovskite structure contains Ir 2 NiO 12 mixed-metal-cation units in which direct metal-metal bonding between nickel(IV) and iridium(V) is inferred. X-ray absorption near-edge spectroscopy and X-ray photoelectron spectroscopy measurements were conducted to confirm the simultaneous presence of nickel(II) and nickel(IV).

  17. Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs (United States)

    Wu, Xiaohu; Fu, Ceji


    The wavevector of electromagnetic wave propagation in a hexagonal boron nitride (hBN) slab can be controlled by tilting its optical axis. This property can be used to manipulate the absorption in a hBN slab. By carefully analyzing the dependence of the absorptivity of a thin hBN slab on the tilted angle of its optical axis, we propose a structure that can realize great absorptivity enhancement in a band by stacking hBN slabs of different tilted angles. Our numerical results show that the absorptivity of a structure made of 91 stacked hBN slabs can be achieved higher than 0.94 in the wavenumber range from 1367 to 1580 cm-1 when the tilted angles of the slabs are properly arranged. The strong absorption is attributed to the combination of impedance matching at the slab interfaces and enlarged wavevectors in the slabs. This work reveals a novel way to realize strong absorption with anisotropic materials for applications in areas such as thermal radiative energy harvesting and conversion.

  18. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.


    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  19. Two Photon Absorption Cross-Section Of New Fluophore Compounds (United States)

    El-Nadi, Lotfia; Farag, Ahmad M.; El-Sherbiny, Ashraf; Gamal, Yosr E.


    This study is a continuation of previous work carried by our group to synthesize and develop new fluophore compounds that could be used in fluorescence light microscopy for imaging biological molecules. Marking biological cells by such fluophores allow real time observation of single molecules. We synthesized and determined the absorption and emission spectra of the following new fluophores: ( L1 ) 4-Amino-2-oxo-2H-pyrido[1,2-a]pyrimidine-3-carbothioic phenyl-amide. ( L9 ) 3-(2-benzenesulfonyl-3-dimethylamino acryloyl) coumarine. ( L11 ) 1-(4-bromophenyle)-4-(coumarin-3-carbonyl)-1H-pyrazole- 3 - carboxylic acid ethyl ester. The absorption spectra are found to peak at wavelengths 285, 358 and 370 nm. [for (L1)], 285, 320 and 360 nm. [for (L9)] and 285 and 360 nm. [for (L11)] Emission lines are observed at 486 nm., 430 nm. and 470 nm for ( L1 ), (L9) and (L11), respectively. These emission lines peaked when (L1), (L9) and (L11) were excited by 370,366 and 360 nm, respectively. This means that all three fluophores could be excited by two photon absorption (TPA) from IR laser of wavelength 730+- 10 nm. or three photon absorption (THPA) of IR laser at 1064+-20 nm. nearly without tuning. Multiphoton excitation of fluophors marking biological samples is advantageous over single photon excitation. The (TPA) and (THPA) fluorescent intensities have been measured for the three fluophors in DMF solution at different concentrations using both 90 femtosecond Ti-sapphire laser at powers up to 250 MW and 7 nanosecond Nd:YAG laser up to 10 MW. The estimated (TPA) cross-sections are of the order of 10-39 cm2 / photon and the (THPA) cross-sections are less by a factor more than 10 times that of (TPA).

  20. Phytases for improved iron absorption

    DEFF Research Database (Denmark)

    Nielsen, Anne Veller Friis; Meyer, Anne S.


    Phytase enzymes present an alternative to iron supplements, because they have been shown to improve iron absorption by means of catalysing the degradation of a potent iron absorption inhibitor: phytic acid. Phytic acid is a hexaphosphate of inositol and is particularly prevalent in cereal grains...

  1. Atomic absorption instrument functional description

    International Nuclear Information System (INIS)

    Bystroff, R.I.; Boyle, W.G. Jr.; Barton, G.W. Jr.


    This report describes a proposed system for automating atomic absorption analysis. The system consists of two atomic absorption instruments and an automatic sampler that can be attached to either instrument. A computer program controls the sampling and gathers data. The program then uses the data to perform bookkeeping, data processing, and report writing

  2. Multifunctional hybrids for electromagnetic absorption

    Energy Technology Data Exchange (ETDEWEB)

    Huynen, I. [Research Center in Micro and Nanoscopic Materials and Electronic Devices, CeRMiN, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Quievy, N. [Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Bailly, C. [Research Center in Micro and Nanoscopic Materials and Electronic Devices, CeRMiN, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Mechanics, Materials and Civil Engineering (iMMC), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Bollen, P. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Mechanics, Materials and Civil Engineering (iMMC), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Detrembleur, C. [Center for Education and Research on Macromolecules (CERM), University of Liege, Sart-Tilman B6a, 4000 Liege (Belgium); Eggermont, S.; Molenberg, I. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Thomassin, J.M.; Urbanczyk, L. [Center for Education and Research on Macromolecules (CERM), University of Liege, Sart-Tilman B6a, 4000 Liege (Belgium)


    Highlights: > EM absorption requires low dielectric constant and {approx}1 S/m electrical conductivity. > New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. > The EM absorption in the GHz range is superior to any known material. > A closed form model is used to guide the design of the hybrid. > The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  3. Optical absorption of irradiated carbohydrates

    International Nuclear Information System (INIS)

    Supe, A.A.; Tiliks, Yu.E.


    The optical absorption spectra of γ-irradiated carbohydrates (glucose, lactose, sucrose, maltose, and starch) and their aqueous solutions were studied. The comparison of the data obtained with the determination of the concentrations of molecular and radical products of radiolysis allows the absorption bands with maxima at 250 and 310 nm to be assigned to the radicals trapped in the irradiated carbohydrates

  4. Water absorption in brick masonry

    NARCIS (Netherlands)

    Brocken, H.J.P.; Smolders, H.R.


    The water absorption in brick, mortar that was cured separately, and masonry samples was studied using NMR. Models of the moisture transport are usually formulated on the basis of a diffusion equation. In the case of water absorption in separate brick and mortar samples, the moisture diffusivity in

  5. Multifunctional hybrids for electromagnetic absorption

    International Nuclear Information System (INIS)

    Huynen, I.; Quievy, N.; Bailly, C.; Bollen, P.; Detrembleur, C.; Eggermont, S.; Molenberg, I.; Thomassin, J.M.; Urbanczyk, L.


    Highlights: → EM absorption requires low dielectric constant and ∼1 S/m electrical conductivity. → New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. → The EM absorption in the GHz range is superior to any known material. → A closed form model is used to guide the design of the hybrid. → The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  6. Atmospheric absorption of sound - Update (United States)

    Bass, H. E.; Sutherland, L. C.; Zuckerwar, A. J.


    Best current expressions for the vibrational relaxation times of oxygen and nitrogen in the atmosphere are used to compute total absorption. The resulting graphs of total absorption as a function of frequency for different humidities should be used in lieu of the graph published earlier by Evans et al (1972).

  7. Intestinal Absorption of Thyroid Hormone

    NARCIS (Netherlands)

    N. Kelderman-Bolk (Nienke)


    textabstractIn this thesis the treatment of hypothyroidism and absorption of T4 is described from a clinical and basic point of view. Put together the thesis gives insight in the factors influencing LT4 absorption and its results have influenced the timing of LT4 intake.

  8. Mid-IR Spectra of Refractory Minerals Relevant to Comets (United States)

    Jauhari, Shekeab


    On 4 July 2005 the Spitzer Space Telescope obtained mid-IR ( 5-40 µm) spectra of the ejecta from the hypervelocity impact of the Deep Impact projectile with comet 9P/Tempel 1. Spectral modeling demonstrates that there are abundant minerals present in the ejecta including Ca/Fe/Mg-rich silicates, carbonates, phyllosilicates, water ice, amorphous carbon, and sulfides [1]. However, precise mineralogical identifications are hampered by the lack of comprehensive 5 - 40 µm spectral measurements of the emissivity for a broad compositional range of these materials. Here, we present our initial results for 2 - 50 µm transmission spectra and absorption constants for materials relevant to comets, including pyrrhotite, pyrite, and several phyllosilicate (clay) minerals. Measuring the transmission of materials over the full spectral range sensitive by Spitzer requires grinding the minerals into submicron powders and then mixing them with KBr (for the 1-25 um region) and polyethylene (16-50 um region) to form pellets. Transmission measurements of sub-micron sulfides are particularly difficult to obtain because the minerals oxidize rapidly upon grinding and subsequent handling unless special care is taken. A detailed description of our sample preparation and measurement technique will be provided to assist other researchers in their attempts to acquire similar spectra. References: [1] Lisse, C.M. et al., Science 313, 635 - 640 (2006)

  9. IGF-IR cooperates with ERα to inhibit breast cancer cell aggressiveness by regulating the expression and localisation of ECM molecules (United States)

    Afratis, Nikolaos A.; Bouris, Panagiotis; Skandalis, Spyros S.; Multhaupt, Hinke A.; Couchman, John R.; Theocharis, Achilleas D.; Karamanos, Nikos K.


    IGF-IR is highly associated with the behaviour of breast cancer cells. In ERα-positive breast cancer, IGF-IR is present at high levels. In clinical practice, prolonged treatment with anti-estrogen agents results in resistance to the therapy with activation of alternative signaling pathways. Receptor Tyrosine Kinases, and especially IGF-IR, have crucial roles in these processes. Here, we report a nodal role of IGF-IR in the regulation of ERα-positive breast cancer cell aggressiveness and the regulation of expression levels of several extracellular matrix molecules. In particular, activation of IGF-IR, but not EGFR, in MCF-7 breast cancer cells results in the reduction of specific matrix metalloproteinases and their inhibitors. In contrast, IGF-IR inhibition leads to the depletion by endocytosis of syndecan-4. Global important changes in cell adhesion receptors, which include integrins and syndecan-4 triggered by IGF-IR inhibition, regulate adhesion and invasion. Cell function assays that were performed in MCF-7 cells as well as their ERα-suppressed counterparts indicate that ER status is a major determinant of IGF-IR regulatory role on cell adhesion and invasion. The strong inhibitory role of IGF-IR on breast cancer cells aggressiveness for which E2-ERα signaling pathway seems to be essential, highlights IGF-IR as a major molecular target for novel therapeutic strategies. PMID:28079144

  10. Infrared Measurements of Possible IR Filter Materials

    Energy Technology Data Exchange (ETDEWEB)

    Koller,D.; Ediss, G.; Mihaly, L.; Carr, G.


    A Fourier Transform Infrared Spectrometer (FTS) was used to obtain the transmission spectra of candidate materials for use as infrared (IR) filters in cryogenic receivers. The data cover the range from 50 cm-1 ({approx}1.5 THz), well below the peak of the 300 K black body spectrum, to 5000 cm-1 ({approx}150 THz), Z-cut quartz, Gore-Tex, Zitex G and Zitex A, High Density Polyethylene (HDPE), Teflon (PTFE), Fluorogold and Black Polyethylene were measured. The relative effectiveness of each material as a filter is determined by integrating the transmission spectrum multiplied by the Planck distribution to obtain a normalized attenuation for the mid-IR band. Measurements at both room temperature and 8 K are compared.

  11. Near-IR transillumination and reflectance imaging at 1,300 nm and 1,500-1,700 nm for in vivo caries detection. (United States)

    Simon, Jacob C; Lucas, Seth A; Staninec, Michal; Tom, Henry; Chan, Kenneth H; Darling, Cynthia L; Cozin, Matthew J; Lee, Robert C; Fried, Daniel


    Several studies suggest that near-IR imaging methods at wavelengths longer than 1,300 nm have great potential for caries detection. In this study, the diagnostic performance of both near-IR transillumination and near-IR reflectance was assessed on teeth scheduled for extraction due to orthodontic treatment (n = 109 teeth on 40 test subjects). Three intra-oral near-IR imaging probes were fabricated for the acquisition of in vivo images using a high definition InGaAs camera and near-IR broadband light sources. Two transillumination probes provided occlusal and approximal images using 1,300 nm light which manifests the highest transparency in enamel. A third reflectance probe utilized cross-polarization and operated at wavelengths greater than 1,500 nm where water absorption is higher which reduces the reflectivity of sound tissues, significantly increasing lesion contrast. Teeth were collected after extraction and sectioned and examined with polarized light microscopy and microradiography which served as the gold standard. In addition, radiographs were taken of the teeth and the diagnostic performance of near-IR imaging was compared with radiography. Near-IR imaging was significantly more sensitive (P IR imaging methods are ideally suited for screening all tooth surfaces for carious lesions. Lasers Surg. Med. 48:828-836, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Optical absorption of silicon nanowires

    International Nuclear Information System (INIS)

    Xu, T.; Lambert, Y.; Krzeminski, C.; Grandidier, B.; Stiévenard, D.; Lévêque, G.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.


    We report on simulations and measurements of the optical absorption of silicon nanowires (NWs) versus their diameter. We first address the simulation of the optical absorption based on two different theoretical methods: the first one, based on the Green function formalism, is useful to calculate the scattering and absorption properties of a single or a finite set of NWs. The second one, based on the finite difference time domain (FDTD) method, is well-adapted to deal with a periodic set of NWs. In both cases, an increase of the onset energy for the absorption is found with increasing diameter. Such effect is experimentally illustrated, when photoconductivity measurements are performed on single tapered Si nanowires connected between a set of several electrodes. An increase of the nanowire diameter reveals a spectral shift of the photocurrent intensity peak towards lower photon energies that allow to tune the absorption onset from the ultraviolet radiations to the visible light spectrum.

  13. Relation with HOMA-IR and thyroid hormones in obese Turkish women with metabolic syndrome. (United States)

    Topsakal, S; Yerlikaya, E; Akin, F; Kaptanoglu, B; Erürker, T


    The aim of this study was to investigate the relationship between insulin resistance and thyroid function in obese pre- and postmenopausal women with or without metabolic syndrome (MetS). 141 obese women were divided into two groups, HOMA-IRHOMA-IR>2.7, to evaluate relation with HOMA-IR and fatness, hormone and blood parameters. They were then divided into four groups as pre- and postmenopausal with or without MetS. Various fatness, hormone and blood parameters were examined. Statistically significant difference was found in weight, body mass index (BMI), waist circumference, fat%, fasting insulin, TSH, FT3, FT4, FSH, Anti-microsomal antibody (ANTIM) and triglycerides levels in HOMA-IRHOMA-IR>2.7 obese Turkish women. This study showed that age, weight, BMI, waist circumference, fat%, fasting insulin, FT3, ANTIM, FSH, LH, total cholesterol, triglycerides, HDL, HOMA-IR, systolic and diastolic blood pressure levels were related in preand post menopausal status in obese women with or without MetS. Obesity may influence the levels of thyroid hormones and increases the risk of MetS in women. Postmenopausal status with MetS is associated with an increased TSH, FT3 and FT4 levels and HOMA-IR in obese women. Strong relation was observed with MetS and TSH and FT3 levels.

  14. Structure-Acidity-IR Spectra Correlations for p-Substituted N-Phenylsulfonylbenzamidesâ€

    Directory of Open Access Journals (Sweden)

    Zora Sustekova


    Full Text Available The wavenumbers of the IR absorption bands of the C=O, S=O and N-H stretching vibrations for a series of p-substituted N-phenylsulfonylbenzamides were measured in trichloromethane. The bond orders, Mulliken charges, charge densities and heats of formation were calculated using the PM3 method. Fifty significant mutual mono parameter (MP and six dual parameter (DP correlations were found for the IR spectral, theoretical structural data, substituent constants and previously reported dissociation constants in five polar organic solvents. The transmission of the substituent effects has been discussed and the solvent effect on the slopes of some linear correlations was evaluated using different solvent parameters. The results showed that the factors describing the electronic structure and controlling the dissociation equilibrium and the IR spectra properties of p-substituted N-phenylsulfonylbenzamides must be the same

  15. Advances in handheld FT-IR instrumentation (United States)

    Arnó, Josep; Cardillo, Len; Judge, Kevin; Frayer, Maxim; Frunzi, Michael; Hetherington, Paul; Levy, Dustin; Oberndorfer, Kyle; Perec, Walter; Sauer, Terry; Stein, John; Zuidema, Eric


    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. The challenges of ConOps (Concepts of Operation) in emergency response and military field applications require a significant redesign of the stationary FT-IR bench-top instruments typically used in laboratories. Specifically, field portable units require high levels of resistance against mechanical shock and chemical attack, ease of use in restrictive gear, quick and easy interpretation of results, and reduced size. In the last 20 years, FT-IR instruments have been re-engineered to fit in small suitcases for field portable use and recently further miniaturized for handheld operation. This article introduces the advances resulting from a project designed to overcome the challenges associated with miniaturizing FT-IR instruments. The project team developed a disturbance-corrected permanently aligned cube corner interferometer for improved robustness and optimized opto-mechanical design to maximize optical throughput and signal-to-noise ratios. Thermal management and heat flow were thoroughly modeled and studied to isolate sensitive components from heat sources and provide the widest temperature operation range. Similarly, extensive research on mechanical designs and compensation techniques to protect against shock and vibration will be discussed. A user interface was carefully created for military and emergency response applications to provide actionable information in a visual, intuitive format. Similar to the HazMatID family of products, state-of-the-art algorithms were used to quickly identify the chemical composition of complex samples based on the spectral information. This article includes an overview of the design considerations, tests results, and performance validation of the mechanical ruggedness, spectral, and thermal performance.

  16. Optical Salisbury screen with design-tunable resonant absorption bands (United States)

    Nath, Janardan; Smith, Evan; Maukonen, Douglas; Peale, Robert E.


    A thin-film selective absorber at visible and near infra-red wavelengths is demonstrated. The structure consists of an optically thick layer of gold, a SiO2 dielectric spacer and a partially transparent gold film on top. The optical cavity so formed traps and absorbs light at a resonance wavelength determined by the film thicknesses. Observed fundamental-resonance absorption strengths are in the range 93%-97%. The absorption red-shifts and broadens as the thickness of the top gold layer is decreased with little change in absorption strength. Thus, strong absorption with design-tunable wavelength and width is achieved easily by unstructured blanket depositions. Observed angle-dependent spectra agree well with the recent three-layer analytical model of Shu et al. [Opt. Express 21, 25307 (2013)], if effective medium approximation is used to calculate the permittivity of the top gold film when it becomes discontinuous at the lowest thicknesses.

  17. Absorption of femtosecond laser pulses by atomic clusters

    International Nuclear Information System (INIS)

    Lin Jingquan; Zhang Jie; Li Yingjun; Chen Liming; Lu Tiezheng; Teng Hao


    Energy absorption by Xe, Ar, He atomic clusters are investigated using laser pulses with 5 mJ energy in 150 fs duration. Experimental results show that the size of cluster and laser absorption efficiency are strongly dependent on several factors, such as the working pressure of pulse valve, atomic number Z of the gas. Absorption fraction of Xe clusters is as high as 45% at a laser intensity of 1 x 10 15 W/cm 2 with 20 x 10 5 Pa gas jet backing pressure. Absorption of the atomic clusters is greatly reduced by introducing pre-pulses. Ion energy measurements confirm that the efficient energy deposition results in a plasma with very high ion temperature

  18. Rapid Quantitative Analysis of the Major Components in Soymilk Using Fourier-Transform Infrared Spectroscopy (FT-IR)


    NAKASATO, Katsuhiko; ONO, Tomotada; ISHIGURO, Takahiro; TAKAMATSU, Michihiko; TSUKAMOTO, Chigen; MIKAMI, Masayuki


    Fourier-transform infrared spectroscopy (FT-IR) on attenuated total reflectance (ATR) sampling was used for the quantitative analysis of the major components (protein, lipid, and sugar) in soymilk. Since mid-infrared spectroscopy shows specific absorption of each functional group of each molecule, it is possible to determine the amount of each component without complicated statistical computation. The determination of protein content was performed by using amide II absorbance at wavenumber 15...

  19. Enhancement in BC absorption under varying hygroscopic conditions (United States)

    Shamjad, P.; Tripathi, S. N.; Aggarwal, S.; Mishra, S. K.; Joshi, M.; Khan, A.; Sapra, B. K.; Ram, K.


    The estimation of radiative impact of BC strongly depends on the accurate measurement of its absorption coefficient, mass concentration and its mixing state. Mixing of BC with other inorganic species induce changes in optical properties. Models that consider Internal mixing of BC provide more realistic absorption estimates as compared to external mixing models. Absorption by BC increases when BC particles are mixed and/or coated with other less absorbing materials, which are hygroscopic in nature. We quantified the hygroscopic growth of aerosols during winter season over an urban site (Kanpur) in the Indo-Gangetic Plane (IGP) and thereby explain the enhancement in BC absorption coefficient observed for the same period. From the calculated hygroscopic growth factor we derived a model to predict the chemical composition of particles during the experimental period. Absorption and scattering coefficients are calculated using a core-shell assumption based on Mie theory. These derived optical parameters are compared with experimental values and the closure is found to be very good. The estimated optical properties agree within 7% for absorption coefficient and 30% for scattering coefficient with that of measured values. The enhancement of absorption is found to vary according to the thickness of the shell and BC mass, with a maximum of 2.3 for a shell thickness of 18 nm for the particles.

  20. Refractory sulfides as IR window materials (United States)

    White, William B.


    The development of sulfide materials as infrared-transmitting optical ceramics is limited by intrinsic optical properties, thermomechanical properties, and considerations of chemical stability. Screening procedures with respect to band gap, electronic absorption, chemical stability, and refractory character reduced the set of all sulfides to about a dozen structural families. Systematic relationships were developed between crystal chemistry and phonon absorption edge, vibrational modes frequencies, and coefficient of thermal expansion which allow possible ranges of properties to be estimated. It is concluded that improved materials are possible but that radically improved new materials are unlikely.

  1. Dynamics of Molecular Gyroscopes Created by Strong Optical Fields (United States)

    Mullin, Amy


    We explore the behavior of molecules in ultra-high angular momentum states prepared in an optical centrifuge and detected with transient IR absorption spectroscopy. In the optical centrifuge, the polarizable electron cloud of molecules interacts with the electric field of linearly polarized light that angularly accelerates over the time of the optical pulse. The centrifuge pulse is generated by combining oppositely chirped pulsed of light. Trapped molecules are driven into high angular momentum states that are spatially oriented with the optical field and have energies far above the average at 300 K. High resolution transient IR spectroscopy reveals the dynamics of collisional energy transfer for the super-rotors. Polarization-dependent studies show that the initial angular momentum orientation persists for many collisions, indicating that molecules in an optical centrifuge behave as quantum gyroscopes. Time-dependent population and energy profiles for individual J- states give information about the dynamics of super-rotors. Research support provided by NSF and the University of Maryland.

  2. Photothermal and photodynamic activity of polymeric nanoparticles based on α-tocopheryl succinate-RAFT block copolymers conjugated to IR-780. (United States)

    Palao-Suay, Raquel; Martín-Saavedra, Francisco M; Rosa Aguilar, María; Escudero-Duch, Clara; Martín-Saldaña, Sergio; Parra-Ruiz, Francisco J; Rohner, Nathan A; Thomas, Susan N; Vilaboa, Nuria; San Román, Julio


    The aim of this work was the generation of a multifunctional nanopolymeric system that incorporates IR-780 dye, a near-infrared (NIR) imaging probe that exhibits photothermal and photodynamic properties; and a derivate of α-tocopheryl succinate (α-TOS), a mitochondria-targeted anticancer compound. IR-780 was conjugated to the hydrophilic segment of copolymer PEG-b-polyMTOS, based on poly(ethylene glycol) (PEG) and a methacrylic derivative of α-tocopheryl succinate (MTOS), to generate IR-NP, self-assembled nanoparticles (NPs) in aqueous media which exhibit a hydrophilic shell and a hydrophobic core. During assembly, the hydrophobic core of IR-NP could encapsulate additional IR-780 to generate derived subspecies carrying different amount of probe (IR-NP-eIR). Evaluation of photo-inducible properties of IR-NP and IR-NP-eIR were thoroughly assessed in vitro. Developed nanotheranostic particles showed distinct fluorescence and photothermal behavior after excitation by a laser light emitting at 808nm. Treatment of MDA-MB-453 cells with IR-NP or IR-NP-eIR resulted in an efficient internalization of the IR-780 dye, while subsequent NIR-laser irradiation led to a severe decrease in cell viability. Photocytoxicity conducted by IR-NP, which could not be attributed to the generation of lethal hyperthermia, responded to an increase in the levels of intracellular reactive oxygen species (ROS). Therefore, the fluorescence imaging and inducible phototoxicity capabilities of NPs derived from IR-780-PEG-b-polyMTOS copolymer confer high value to these nanotheranostics tools in clinical cancer research. Multifunctional polymeric nanoparticles (NPs) that combine imaging and therapeutic properties are highly valuable in cancer treatment. In this paper we describe the development of NPs that are fluorescent in the near-infrared (NIR). This is important for their visualization in living tissues that present low absorption and low autofluorescence in this wavelength region (between 700

  3. Magnetic and solar effects on ionospheric absorption at high latitude

    Directory of Open Access Journals (Sweden)

    M. Pietrella


    Full Text Available Some periods of intense solar events and of strong magnetic storms have been selected and their effects on the ionospheric D region have been investigated on the basis of ionospheric absorption data derived from riometer measurements made at the Italian Antarctic Base of Terra Nova Bay (geographic coordinates: 74.69 S, 164.12 E; geomagnetic coordinates: 77.34 S, 279.41 E. It was found that sharp increases in ionospheric absorption are mainly due to solar protons emission with an energy greater than 10 MeV. Moreover, the day to night ratios of the ionospheric absorption are greater than 2 in the case of strong events of energetic protons emitted by the Sun, while during magnetic storms, these ratios range between 1 and 2.

  4. Critical discussion on the UV absorption properties of Earth's atmosphere (United States)

    Döhring, Thorsten


    Sun's ultraviolet radiation is classified into UV-A, UV-B, and UV-C bands. Thereby UV-A passes through Earth's atmosphere, while UV-B is partially absorbed by ozone. The limitations of the commonly accepted statement, that UV-C is always completely absorbed by Earth's atmosphere, are discussed critically. Below 200 nm the solar spectrum is strongly absorbed by molecular oxygen. The stratospheric ozone layer has strong absorption between 200 nm and 300 nm. However, the "ozone hole" increases UV-B radiation just below 300 nm and may also open a transmitting atmospheric window for harmful UV-C at the overlap region between oxygen absorption and ozone absorption.

  5. Supplemental Security Income (SSI) / Internal Revenue Service (IRS) 1099 (United States)

    Social Security Administration — A finder file from SSA's Title XVI database is provided to the IRS. The IRS discloses 1099 information to SSA for use in verifying eligibility, amount, and benefits...

  6. ODYSSEY THEMIS IR PBT V2.0 (United States)

    National Aeronautics and Space Administration — The THEMIS IR-PBT data set contains the spatially registered, infrared brightness temperature images derived from the projected radiance (IR-GEO) products. Each...

  7. Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle near- to mid-IR pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin


    Through cascaded second-harmonic generation, few-cycle solitons can form that resonantly emit strongly red-shifted optical Cherenkov radiation. Numerical simulations show that such dispersive waves can be an efficient source of near- to mid-IR few-cycle broadband pulses.......Through cascaded second-harmonic generation, few-cycle solitons can form that resonantly emit strongly red-shifted optical Cherenkov radiation. Numerical simulations show that such dispersive waves can be an efficient source of near- to mid-IR few-cycle broadband pulses....

  8. [Quantitative determination of glass content in monazite glass-ceramics by IR technique]. (United States)

    He, Yong; Zhang, Bao-min


    Monazite glass-ceramics consist of both monazite and metaphoshate glass phases. The absorption bands of both phases do not overlap each other, and the absorption intensities of bands 1,275 and 616 cm-1 vary with the glass contents. The correlation coefficient between logarithmic absorbance ratio of the two bands and glass contents was r = 0.9975 and its regression equation was y = 48.356 + 25.93x. The absorbance ratio of bands 952 and 616 cm-1 also varied with different ratios of Ce2O3/La2O3 in synthetic monazites, with r = 0.9917 and a regression equation y = 0.2211 exp (0.0221x). High correlation coefficients show that the IR technique could find new application in the quantitative analysis of glass content in phosphate glass-ceramics.

  9. Acquisition of Infrared Variable Angle Spectroscopic Ellipsometer (IR-VASE) (United States)


    SECURITY CLASSIFICATION OF: This award was used to acquire a J.A. Woollam Infrared Variable Angle Spectroscopic Ellipsometer ( IR -VASE). The IR -VASE...unit is capable of obtaining crucial IR information of ultrathin films whilst being complemented with ellipsometry data. This powerful and versatile...Unlimited UU UU UU UU 22-04-2016 1-Feb-2015 31-Jan-2016 Final Report: Acquisition of Infrared Variable Angle Spectroscopic Ellipsometer ( IR -VASE) The

  10. Magnetic properties and microwave absorption properties of short ...

    Indian Academy of Sciences (India)

    materials and carbon fibres have received steadily grow- ing interest as microwave absorbing and shielding materi- als in the high-frequency range owing to their ... CuO/Co/CF composites exhibited strong electromagnetic wave absorption, the strongest reflection loss (RL) of the composites reaches maxima of −29.6 dB at ...

  11. Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption (United States)

    Ma, Qiancheng


    The water-vapor continuum absorption plays an important role in the radiative balance in the Earth's atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the far-wings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.

  12. Enhanced index and negative dispersion without absorption in driven cascade media

    International Nuclear Information System (INIS)

    Hu Xiangming; Xu Jun


    In this paper we investigate the dispersive and absorptive properties of a system of three-level cascade atoms driven by a strong coherent field. Three characteristic features are found. First, for the same set of atom-light interaction parameters, the indices of refraction are large at three different frequencies where the absorption vanishes. These three frequencies are determined by the resonance transition frequencies between dressed states produced by the strong driving field. Second, negative dispersion without absorption, which leads to superluminal light propagation, is achievable in the central resonance structure of the dispersion spectrum. Third, the whole absorption spectrum displays, in general, three pairs of absorption peaks and three pairs of gain (negative absorption) peaks. The minimal spacing between dressed states determines whether the outer adjacent gain peaks are separated from each other

  13. The equine herpesvirus-1 IR3 gene that lies antisense to the sole immediate-early (IE) gene is trans-activated by the IE protein, and is poorly expressed to a protein

    International Nuclear Information System (INIS)

    Ahn, Byung Chul; Breitenbach, Jonathan E.; Kim, Seong K.; O'Callaghan, Dennis J.


    The unique IR3 gene of equine herpesvirus 1 (EHV-1) is expressed as a late 1.0-kb transcript. Previous studies confirmed the IR3 transcription initiation site and tentatively identified other cis-acting elements specific to IR3 such as a TATA box, a 443 base pair 5'untranslated region (UTR), a 285 base pair open reading frame (ORF), and a poly adenylation (A) signal [Holden, V.R., Harty, R.N., Yalamanchili, R.R., O'Callaghan, D.J., 1992. The IR3 gene of equine herpesvirus type 1: a unique gene regulated by sequences within the intron of the immediate-early gene. DNA Seq. 3, 143-152]. Transient transfection assays revealed that the IR3 promoter is strongly trans-activated by the IE protein (IEP) and that coexpression of the IEP with the early EICP0 and IR4 regulatory proteins results in maximal trans-activation of the IR3 promoter. Gel shift assays revealed that the IEP directly binds to the IR3 promoter region. Western blot analysis showed that the IR3 protein produced in E. coli was detected by antibodies to IR3 synthetic peptides; however, the IR3 protein was not detected in EHV-1 infected cell extracts by these same anti-IR3 antibodies, even though the IR3 transcript was detected by northern blot. These findings suggest that the IR3 may not be expressed to a protein. Expression of an IR3/GFP fusion gene was not observed, but expression of a GFP/IR3 fusion gene was detected by fluorescent microscopy. In further attempts to detect the IR3/GFP fusion protein using anti-GFP antibody, western blot analysis showed that the IR3/GFP fusion protein was not detected in vivo. Interestingly, a truncated form of the GFP/IR3 protein was synthesized from the GFP/IR3 fusion gene. However, GFP/IR3 and IR3/GFP fusion proteins of the predicted sizes were synthesized by in vitro coupled transcription and translation of the fusion genes, suggesting poor expression of the IR3 protein in vivo. The possible role of the IR3 transcript in EHV-1 infection is discussed

  14. Subgap Absorption in Conjugated Polymers (United States)

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.


    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  15. Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho


    into random incidence absorption coefficients for porous absorbers are investigated. Two optimization-based conversion methods are suggested: the surface impedance estimation for locally reacting absorbers and the flow resistivity estimation for extendedly reacting absorbers. The suggested conversion methods...

  16. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy (United States)

    Bennett, Jacqueline; Forster, Tabetha


    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  17. IGF-IR targeted therapy: Past, present and future

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); A.J. Varewijck (Aimee)


    textabstractThe IGF-I receptor (IGF-IR) has been studied as an anti-cancer target. However, monotherapy trials with IGF-IR targeted antibodies or with IGF-IR specific tyrosine kinase inhibitors have, overall, been very disappointing in the clinical setting. This review discusses potential reasons

  18. Comparison of simple and chelated amberlite IR-120 for ...

    African Journals Online (AJOL)

    In the present study, the efficiency of simple and chelating Amberlite IR-120 with α-nitroso β-naphthol (IR-αNβN) and with 8-hydroxy quinoline (IR-8HQ) has been compared for the removal of Cu(II) from aqueous solutions. The chelation was confirmed using different characterization techniques like SEM, TGA and FTIR.

  19. Infrared upconversion spectrometer for the mid-ir range

    DEFF Research Database (Denmark)


    The invention provides an infrared upconversion spectrometer for determining a mid-IR spectrum of received infrared light with a high resolution. The spectrometer applies upconversion to transform light in the mid-IR to the near-IR range where efficient detectors are available. The upconversion...

  20. The SNAP Strong Lens Survey

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, P.


    Basic considerations of lens detection and identification indicate that a wide field survey of the types planned for weak lensing and Type Ia SNe with SNAP are close to optimal for the optical detection of strong lenses. Such a ''piggy-back'' survey might be expected even pessimistically to provide a catalogue of a few thousand new strong lenses, with the numbers dominated by systems of faint blue galaxies lensed by foreground ellipticals. After sketching out our strategy for detecting and measuring these galaxy lenses using the SNAP images, we discuss some of the scientific applications of such a large sample of gravitational lenses: in particular we comment on the partition of information between lens structure, the source population properties and cosmology. Understanding this partitioning is key to assessing strong lens cosmography's value as a cosmological probe.

  1. Strong coupling phase in QED

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi


    Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

  2. Ambiguities in strong absorption S-functions and corresponding potentials for heavy ion collisions

    International Nuclear Information System (INIS)

    Steward, C.; Fiedeldey, H.; Amos, K.; Allen, L.J.


    A semiclassical (WKB) method within fixed energy inverse scattering theory has been used to analyse the differential cross section from the elastic scattering of 1449 MeV 12 C ions off of 208 Pb. Excellent, statistically significant, fits to the experimental data have been found using a McIntyre form for the scattering function but with diverse sets of parameter values. Inversion of those scattering functions resulted in interaction potentials for this system that are also quite diverse. In addition, conventional optical model potentials have been obtained with which direct solution of the Schroedinger equations result in similar excellent fits to the data. It is shown that these large ambiguities in the potentials are due, in the main, to the limited angular range of the cross-section data and although the corresponding cross-section shapes beyond the measured scattering angle range vary over many orders of magnitude, it is unlikely that experiments can be made sensitive enough to select from among them because those cross sections are so small. 23 refs., 3 tabs., 6 figs

  3. Absorption factor for cylindrical samples

    International Nuclear Information System (INIS)

    Sears, V.F.


    The absorption factor for the scattering of X-rays or neutrons in cylindrical samples is calculated by numerical integration for the case in which the absorption coefficients of the incident and scattered beams are not equal. An extensive table of values having an absolute accuracy of 10 -4 is given in a companion report [Sears (1983). Atomic Energy of Canada Limited, Report No. AECL-8176]. In the present paper an asymptotic expression is derived for the absorption factor which can be used with an error of less than 10 -3 for most cases of interest in both neutron inelastic scattering and neutron diffraction in crystals. (Auth.)

  4. Morphological and light-absorption characteristics of individual BC particles collected in an urban seaside area at Tokaimura, eastern central Japan

    International Nuclear Information System (INIS)

    Fu Fengfu; Watanabe, Kazuo; Shinohara, Nobuo; Xu Xueqin; Xu Liangjun; Akagi, Tasuku


    To observe surface morphology and light-absorption property of different black carbon (BC) particles, different-sized aerosols were collected in Tokaimura (36.27 o N, 140.36 o E), an urban seaside area of eastern central Japan, using a high-volume Andersen type sampler during a whole year (Jan. to Dec. in 2004). The morphology of individual BC particle separated from different-sized aerosols was observed with Scanning Electron Microscope with Energy Dispersive X-ray Spectrometer (SEM-EDX) and four types of morphology were observed: 50 nm spherical particles, micrometer-sized plates with homogeneous surfaces, micrometer-sized spherical particles with homogeneous surfaces and micrometer-sized spherical particles with small holes on surfaces. The light-absorption property of BC particles with different morphology has been determined by infrared spectrometry (IRS) with a photoacoustic technique in a region of 400-4000 wavenumbers (cm -1 ). All morphology BC particles showed a strong light-absorption during 500-3000 wavenumbers (cm -1 ) with two strong broad peaks in 750-1100 and 1200-2200 wavenumbers (cm -1 ), implying that all morphology BC particles can absorb a significant part of thermal infrared emitted from the earth (wavelength 4000-50,000 nm). The seasonal variation and the size-distribution of aerosols and its chemical components (e.g. C, Na, Cl, NH 4 + , NO 3 - , SO 4 2- , Al, Ca, Mg and Fe) were also measured in this study. More than 55% of non-inorganic carbon (OC + BC) in the atmosphere was detected in the aerosols with a size smaller than 1.1 μm and the concentration of non-inorganic carbon in the atmosphere showed only a faint variation during a whole year, although the concentrations of total aerosols and its chemical components exhibited a distinct variation

  5. Morphological and light-absorption characteristics of individual BC particles collected in an urban seaside area at Tokaimura, eastern central Japan. (United States)

    Fu, Feng Fu; Watanabe, Kazuo; Shinohara, Nobuo; Xu, Xueqin; Xu, Liangjun; Akagi, Tasuku


    To observe surface morphology and light-absorption property of different black carbon (BC) particles, different-sized aerosols were collected in Tokaimura (36.27 degrees N, 140.36 degrees E), an urban seaside area of eastern central Japan, using a high-volume Andersen type sampler during a whole year (Jan. to Dec. in 2004). The morphology of individual BC particle separated from different-sized aerosols was observed with Scanning Electron Microscope with Energy Dispersive X-ray Spectrometer (SEM-EDX) and four types of morphology were observed: 50 nm spherical particles, micrometer-sized plates with homogeneous surfaces, micrometer-sized spherical particles with homogeneous surfaces and micrometer-sized spherical particles with small holes on surfaces. The light-absorption property of BC particles with different morphology has been determined by infrared spectrometry (IRS) with a photoacoustic technique in a region of 400-4000 wavenumbers (cm(-1)). All morphology BC particles showed a strong light-absorption during 500-3000 wavenumbers (cm(-1)) with two strong broad peaks in 750-1100 and 1200-2200 wavenumbers (cm(-1)), implying that all morphology BC particles can absorb a significant part of thermal infrared emitted from the earth (wavelength 4000-50,000 nm). The seasonal variation and the size-distribution of aerosols and its chemical components (e.g. C, Na, Cl, NH(4)(+), NO(3)(-), SO(4)(2-), Al, Ca, Mg and Fe) were also measured in this study. More than 55% of non-inorganic carbon (OC+BC) in the atmosphere was detected in the aerosols with a size smaller than 1.1 microm and the concentration of non-inorganic carbon in the atmosphere showed only a faint variation during a whole year, although the concentrations of total aerosols and its chemical components exhibited a distinct variation.

  6. Strong Decomposition of Random Variables

    DEFF Research Database (Denmark)

    Hoffmann-Jørgensen, Jørgen; Kagan, Abram M.; Pitt, Loren D.


    A random variable X is stongly decomposable if X=Y+Z where Y=Φ(X) and Z=X-Φ(X) are independent non-degenerated random variables (called the components). It is shown that at least one of the components is singular, and we derive a necessary and sufficient condition for strong decomposability...

  7. Strong interaction at finite temperature

    Indian Academy of Sciences (India)

    Abstract. We review two methods discussed in the literature to determine the effective parameters of strongly interacting particles as they move through a heat bath. The first one is the general method of chiral perturbation theory, which may be readily applied to this problem. The other is the method of thermal QCD sum rules ...

  8. Energy Efficient Clothes Dryer with IR Heating and Electrostatic Precipitator

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Stanton [GE Global Research, Niskayuna, NY (United States)


    The project goal was to develop a revolutionary energy saving technology for residential clothes drying. The team developed an IR (infrared) heating system and NESP (Nebulizer and Electro-Static Precipitator) for integration into a ventless clothes dryer. The proposed technology addresses two of the major inefficiencies in current electric vented dryers by providing effective energy transfer for the removal of the water and recapture of the vapor latent heat. The IR heaters operating in the mid wave (2.5-10um) are very efficient as they target the 3-micron peak absorption of the water molecule. This allows direct energy absorption, unlike conventional element heaters where heat is transferred by convection. The low power NESP removes water vapor from the exhausted stream and recaptures the latent heat in the ESP (Electro-Static Precipitator) exchanger section. This allows the warm dry air to be recirculated back into the drum for additional efficiency savings. The remaining majority of the dryer hardware stays the same. Summing the efficiency gain from the two subcomponents we anticipated the EF (Efficiency Factor) to exceed the goal of 4.04. EF is obtained by dividing the weight (lbs) of water removed by the energy (kWhr) used, where the test load size is 8.45 lbs of bone dry clothing wetted to 57.5% or 4.8lbs of water, and dried to a remaining moisture content of 2.5-5%. Additional benefits include not having to recondition (heat or cool) the large amounts of make-up air to replace the air exhausted by a vented dryer. It was anticipated that the NESP/heat exchanger would be the most challenging and highest risk element in the program. Therefore, the team focused their efforts during Phase 1 of the program on the design, construction, testing, and optimization of the NESP/heat exchanger. At the end Phase 1, the team compared the performance of the NESP/heat exchanger with the system level requirements and made a Go/No-Go decision on proceeding with the second

  9. Strong-strong beam-beam simulation on parallel computer

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji


    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders.

  10. Strong-strong beam-beam simulation on parallel computer

    International Nuclear Information System (INIS)

    Qiang, Ji


    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders

  11. Investigation into the absorptivity change in metals with increased laser power

    DEFF Research Database (Denmark)

    Blidegn, Kristian; Olsen, Flemmming Ove


    At a first glance the low absorptivity of metals in the infrared (IR) makes the use of YAG and CO2 lasers in metal processing very inefficient. However industrial inert gas cutting abilities demonstrates that the absorptivity can reach significantly higher levels during the high power laser...... interaction. An increase which can not be explained by the increase in temperature only. The interaction between laser light and metals is a major physical phenomena in laser material processing. The Drude free electron model or simplifications like the Hagen-Rubens relation has often been used to model...... the processes.This paper discuss the need to extend the Drude mode taking into account interband transitions and anormal skin effect in order to describe in increase in absorptivity seen at high intensities. The absorption model will be used in a cut front simulation and results are compared with cutting...

  12. Ultraviolet absorption spectra of cis and trans potassium peroxynitrite (KOONO) in solid argon (United States)

    Lo, Wen-Jui; Lee, Yuan-Pern; Tsai, Jyh-Hsin M.; Beckman, Joseph S.


    Two conformers (cis and trans) of potassium peroxynitrite (KOONO) were produced in an argon matrix containing potassium nitrate (KNO 3) at 13 K by means of in situ photolysis with an ArF excimer laser at 193 nm. Photoconversion among cis- and trans-KOONO, and KNO 3, was achieved on irradiation of the matrix with a laser at varied wavelengths. With the aid of the relative intensities of IR absorption lines observed for each species at each stage of photolysis, the UV absorption spectra of cis- and trans-KOONO were determined. The absorption maxima, near 325 and 375 nm for cis- and trans-KOONO, respectively, agree with theoretical calculations by Krauss. The photolytic behavior of both conformers at varied wavelengths can be understood in relation to the observed UV absorptions.

  13. IR Spectroscopic signs of malignant neoplasms in the thyroid gland (United States)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Butra, V. A.


    We use Fourier transform IR spectroscopy to study thyroid tumor tissues which were removed during surgery. The IR spectra of the tissues with pathological foci are compared with data from histologic examination. In the region of N-H, C-H, and C = O stretching vibrations, the IR spectra of the tissues for thyroid cancer are different from the IR spectra of tissues without malignant formations. We identify the spectral signs of thyroid cancer. We show that IR analysis is promising for identification of thyroid pathology at the molecular level.

  14. Defense Strategy of Aircraft Confronted with IR Guided Missile


    Huang, Hesong; Tong, Zhongxiang; Li, Taorui; Jia, Lintong; Li, Shenbo


    Surface-type infrared (IR) decoy can simulate the IR characteristics of the target aircraft, which is one of the most effective equipment to confront IR guided missile. In the air combat, the IR guided missile poses a serious threat to the aircraft when it comes from the front of target aircraft. In this paper, firstly, the model of aircraft and surface-type IR decoy is established. To ensure their authenticity, the aircraft maneuver and radiation models based on real data of flight and exhau...

  15. The IR spectra and hydrogen bonding of toluene-2,6-bis(methyl) and 4,4'-diphenylmethane-bis(methyl) carbamates (United States)

    Furer, V. L.


    The IR spectroscopy has been used to study models of polyurethanes containing different hard segments. The spectra of toluene-2,6-bis(methyl) and 4,4'-diphenylmethane-bis(methyl) carbamates at different temperatures were studied. The absorption curves of the free and associated carbamate molecules were compared with experimental IR spectra. The characteristic features of toluene-2,6-bis(methyl) carbamate and methyl- N-methyl carbamate clusters were revealed. The IR spectra for the two most stable toluene-2,6-bis(methyl) carbamate conformations were compared. The origin of the multiplet structure of bands in the experimental IR spectra of polyurethanes was discussed. The results obtained can be used for the analysis of the chemical and physical transformations in urethanes and polyurethanes.

  16. Evaluation of MidIR fibre optic reflectance: detection limit, reproducibility and binary mixture discrimination. (United States)

    Sessa, Clarimma; Bagán, Héctor; García, José Francisco


    MidIR fibre optic reflectance (MidIR-FORS) is a promising analytical technique in the field of science conservation, especially because it is non-destructive. Another advantage of MidIR-FORS is that the obtained information is representative, as a large amount of spectral data can be collected. Although the technique has a high potential and is almost routinely applied, its quality parameters have not been thoroughly studied in the specific application of analysis of artistic materials. The objective of this study is to evaluate the instrumental capabilities of MidIR-FORS for the analysis of artwork materials in terms of detection limit, reproducibility, and mixture characterisation. The study has been focused on oil easel painting and several paints of known composition have been analysed. Paint layers include blue pigments not only because of their important role along art history, but also because their physical and spectroscopic characteristics allow a better evaluation of the MidIR-FORS capabilities. The results of the analysis indicate that MidIR-FORS supplies a signal affected by different factors, such as the optical, morphological and physical properties of the surface, in addition to the composition of materials analysed. Consequently, the detection limits established are relatively high for artistic objects (Prussian blue - PB 2.1-6.5%; Phthalocyanine blue - Pht 6.3-10.2%; synthetic Ultramarine blue - UM 12.1%) and may therefore lead to an incomplete description of the artwork. Reproducibility of the technique over time and across surface has been determined. The results show that the major sources of dispersion are the heterogeneity of the pigments distribution, physical features, and band shape distortions. The total dispersion is around 4% for the most intense bands (oil) and increases up to 26% when weak or overlapped bands are considered (PB, Pht, UM). The application of different pre-treatments (cutoff of fibres absorption, Savizky-Golay smoothing

  17. Evaluation of MidIR fibre optic reflectance: Detection limit, reproducibility and binary mixture discrimination (United States)

    Sessa, Clarimma; Bagán, Héctor; García, José Francisco


    MidIR fibre optic reflectance (MidIR-FORS) is a promising analytical technique in the field of science conservation, especially because it is non-destructive. Another advantage of MidIR-FORS is that the obtained information is representative, as a large amount of spectral data can be collected. Although the technique has a high potential and is almost routinely applied, its quality parameters have not been thoroughly studied in the specific application of analysis of artistic materials. The objective of this study is to evaluate the instrumental capabilities of MidIR-FORS for the analysis of artwork materials in terms of detection limit, reproducibility, and mixture characterisation. The study has been focused on oil easel painting and several paints of known composition have been analysed. Paint layers include blue pigments not only because of their important role along art history, but also because their physical and spectroscopic characteristics allow a better evaluation of the MidIR-FORS capabilities. The results of the analysis indicate that MidIR-FORS supplies a signal affected by different factors, such as the optical, morphological and physical properties of the surface, in addition to the composition of materials analysed. Consequently, the detection limits established are relatively high for artistic objects (Prussian blue - PB 2.1-6.5%; Phthalocyanine blue - Pht 6.3-10.2%; synthetic Ultramarine blue - UM 12.1%) and may therefore lead to an incomplete description of the artwork. Reproducibility of the technique over time and across surface has been determined. The results show that the major sources of dispersion are the heterogeneity of the pigments distribution, physical features, and band shape distortions. The total dispersion is around 4% for the most intense bands (oil) and increases up to 26% when weak or overlapped bands are considered (PB, Pht, UM). The application of different pre-treatments (cutoff of fibres absorption, Savizky-Golay smoothing

  18. IR and OLAP in XML document warehouses

    DEFF Research Database (Denmark)

    Perez, Juan Manuel; Pedersen, Torben Bach; Berlanga, Rafael


    In this paper we propose to combine IR and OLAP (On-Line Analytical Processing) technologies to exploit a warehouse of text-rich XML documents. In the system we plan to develop, a multidimensional implementation of a relevance modeling document model will be used for interactively querying...... the warehouse by allowing navigation in the structure of documents and in a concept hierarchy of query terms. The facts described in the relevant documents will be ranked and analyzed in a novel OLAP cube model able to represent and manage facts with relevance indexes....

  19. The Near-IR Extinction Law (United States)

    Stead, Joseph J.; Hoare, Melvin G.


    We show that the power-law slope of the near-IR extinction law is significantly steeper than previously thought. Simulated colour-colour diagrams including a stellar population synthesis, realistic extinction distribution along the line-of-sight and synthesis through the filter profiles are compared to data from the UKIDSS Galactic Plane Survey. The slope of extinction with wavelength is found to be 2.14 ± 0.05 for total visual extinctions up to about 25 magnitudes and for a number of locations.

  20. Controlling Hydrogenation of Graphene on Ir(111)

    DEFF Research Database (Denmark)

    Balog, Richard; Andersen, Mie; Jørgensen, Bjarke


    Combined fast X-ray photoelectron spectroscopy and density functional theory calculations reveal the presence of two types of hydrogen adsorbate structures at the graphene/ Ir(111) interface, namely, graphane-like islands and hydrogen dimer structures. While the former give rise to a periodic...... pattern, dimers tend to destroy the periodicity. Our data reveal distinctive growth rates and stability of both types of structures, thereby allowing one to obtain well-defined patterns of hydrogen clusters. The ability to control and manipulate the formation and size of hydrogen structures on graphene...... facilitates tailoring of its properties for a wide range of applications by means of covalent functionalization....

  1. Fast IR diodes thermometer for tokamak

    International Nuclear Information System (INIS)

    Chen Xiangbo


    A 30 channel fast IR pyrometry array has been constructed for tokamak, which has 0.5 μs time response, 10 mm diameter spatial resolution and 5 degree C temperature resolution. The temperature measuring range is from 250 degree C to 1200 degree C. The two dimensional temperature profiles of the first wall during both major and minor disruptions can be measured with an accuracy of about 1% measuring temperature, which is adequate for tokamak experiments. This gives a very useful tool for the disruption study, especially for the divertor physics and edge heat flux research on tokamak and other magnetic confinement devices

  2. Atsiskaitymai e. versle: ypatumai ir naujos tendencijos


    Vyšniauskas, Jonas


    Alternatyvių atsiskaitymų e. versle sistemos pradeda kelti rimtą grėsmę tradiciniams atsiskaitymams elektronine bankininkyste, mokėjimo kortelėmis ar grynaisiais pinigais. Todėl būtina detaliau išsiaiškinti kokie yra alternatyvių atsiskaitymų ypatumai, kurie veiksniai vartotojams yra svarbiausi ir kokie yra alternatyvūs atsiskaitymo būdai. Tai siekiama padaryti išanalizuojant mokslinę literatūrą, pateikiant pagrindines alternatyvių atsiskaitymų sistemas, atliekant alternatyvių atsiskaitymų pa...

  3. Mid-IR band gap engineering of CdxPb1−xS nanocrystals by mechanochemical reaction

    Directory of Open Access Journals (Sweden)

    Guo-Long Tan


    Full Text Available Composition-tunable ternary CdxPb1−xS nanocrystals (NCs are very important materials for remote sensing and detecting in the infrared (IR wavelength region. They are, however, almost exclusively prepared by wet chemical routes which lead to surface-capped nanoparticles. The surface capping molecules could move their absorption peaks from mid-IR to near IR wavelength region. However, surface clean CdxPb1−xS nanocrystals (NCs would demonstrate intrinsic optical spectrum in the mid-IR region. Herein, we present a physical mechanical alloying (MA process being applied to prepare tens of grams of surface clean CdxPb1−xS nanocrystals within the composition range of x = 0.0 to 0.4. The average particle size is smaller than 9 nm. The as-milled nanocrystals are chemically homogenous. The CdxPb1−xS nanocrystals show a continuous lattice contraction with Cd content. There is an exponential indirect band gap-composition relationship. This MA method shows the ability to continuously and precisely tune the band gap energies of ternary CdxPb1−xS semiconductor nanocrystals from mid-IR region (2638 nm to NIR wavelength region (1240 nm through chemical composition.

  4. PREFACE: Strongly correlated electron systems Strongly correlated electron systems (United States)

    Saxena, Siddharth S.; Littlewood, P. B.


    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which

  5. Nonequilibrium absorption in semiconductors and the dynamical Franz-Keldysh effect

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Jauho, Antti-Pekka


    We theoretically study free electron light absorption for a sample which is placed in a strong, time-dependent uniform electric field. In the case of static fields one observes the Franz-Keldysh effect: finite absorption for photon energies below the band gap. We refer to this phenomenon as the F...

  6. Pondermotive absorption of a short intense laser pulse in a non-uniform plasma

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.A.; Platonov, K.Yu. [Inst. for Laser Physics, SC `Vavilov State Optical Inst.` 12, Birzhevaya line, St Petersburg (Russian Federation); Tanaka, K.A.


    An analytical description of the pondermotive absorption mechanism at a short high intense laser pulse interaction with a strong inhomogeneous plasma is presented. The optimal conditions for the maximum of resonance absorption of laser pulse interaction with non-uniform plasma at normal incidence are founded. (author)

  7. Role of diet in absorption and toxicity of oral cadmium- A review of ...

    African Journals Online (AJOL)

    The role of diet or its components in the absorption, distribution and toxicity of cadmium (Cd) has received attention in recent times. Experimental evidence in literature strongly suggests that the absorption of Cd is dependent on factors such as age, pH, diet and intestinal metallothionein (MT) production. The chemical forms ...

  8. On the multiphoton emission during U.V. and X-ray absorption by atoms in intense laser fields

    International Nuclear Information System (INIS)

    Miranda, L.C.M.


    A discussion of the u.v. and x-ray absorption cross section by a hydrogen atom in the presence of an intense i.r. laser field is presented, taking into account the influence of laser field on the electronic states. (Author) [pt

  9. Coherence and quasi-stable states in a strong infrared field (United States)

    Zhong, Changchun; Robicheaux, Francis


    We study the quasi-stability of UV-pulse-train-excited H atoms in a strong infrared (IR) laser as a function of the phase delay of the UV-pulse-train relative to the IR laser. The UV-pulse-train contains two frequency components. When the two components have frequencies separated by two IR photons, the population of surviving electrons is modulated by up to ten percent. When electrons are excited to right above or below the threshold, the survival probabilities have inverted phase delay dependence which can be explained classically. When the two frequencies are one IR-photon apart, the angular symmetry of the quasi-stable electrons is broken, and the asymmetry is also controlled by the phase delay. The asymmetrical distribution can be observed while the IR is on and smoothly evolves to a nonzero asymmetry that only weakly depends on the duration of the IR field. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0012193.

  10. Heat exchanger bypass system for an absorption refrigeration system (United States)

    Reimann, Robert C.


    A heat exchanger bypass system for an absorption refrigeration system is disclosed. The bypass system operates to pass strong solution from the generator around the heat exchanger to the absorber of the absorption refrigeration system when strong solution builds up in the generator above a selected level indicative of solidification of strong solution in the heat exchanger or other such blockage. The bypass system includes a bypass line with a gooseneck located in the generator for controlling flow of strong solution into the bypass line and for preventing refrigerant vapor in the generator from entering the bypass line during normal operation of the refrigeration system. Also, the bypass line includes a trap section filled with liquid for providing a barrier to maintain the normal pressure difference between the generator and the absorber even when the gooseneck of the bypass line is exposed to refrigerant vapor in the generator. Strong solution, which may accumulate in the trap section of the bypass line, is diluted, to prevent solidification, by supplying weak solution to the trap section from a purge system for the absorption refrigeration system.

  11. Strongly correlated systems experimental techniques

    CERN Document Server

    Mancini, Ferdinando


    The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...

  12. Strongly Correlated Systems Theoretical Methods

    CERN Document Server

    Avella, Adolfo


    The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as po...

  13. Strongly correlated systems numerical methods

    CERN Document Server

    Mancini, Ferdinando


    This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...

  14. Strongly nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija


    This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...

  15. The Effect of Heat on Structural Characteristics and Water Absorption Behavior of Agave Fibers (United States)

    Saikia, Dip


    The structural characteristics and water absorptions behavior agave fibers were investigated over a range of temperature by using XRD, IR, TG and gravimetric methods. Three distinct thermal processes were observed during heating the fiber in the temperature range 310-760 K in air, oxygen and nitrogen invariably. The cellulose structures of the fibers were unaffected on heating up to 450 K. The samples showed thermal decomposition processes beyond 500 K. Fibers displayed a two-stage diffusion behavior. The structural parameters and kinetic of water absorption of the fibers at specific temperatures were analyzed.

  16. Investigation into the absorptivity change in metals with increased laser power

    DEFF Research Database (Denmark)

    Blidegn, Kristian; Olsen, Flemmming Ove


    interaction. An increase which can not be explained by the increase in temperature only. The interaction between laser light and metals is a major physical phenomena in laser material processing. The Drude free electron model or simplifications like the Hagen-Rubens relation has often been used to model......At a first glance the low absorptivity of metals in the infrared (IR) makes the use of YAG and CO2 lasers in metal processing very inefficient. However industrial inert gas cutting abilities demonstrates that the absorptivity can reach significantly higher levels during the high power laser...

  17. Flavour Democracy in Strong Unification

    CERN Document Server

    Abel, S A; Abel, Steven; King, Steven


    We show that the fermion mass spectrum may naturally be understood in terms of flavour democratic fixed points in supersymmetric theories which have a large domain of attraction in the presence of "strong unification". Our approach provides an alternative to the approximate Yukawa texture zeroes of the Froggatt-Nielsen mechanism. We discuss a particular model based on a broken gauged $SU(3)_L\\times SU(3)_R$ family symmetry which illustrates our approach.

  18. The low-ion QSO absorption-line systems

    International Nuclear Information System (INIS)

    Lanzetta, K.M.


    Various techniques are used to investigate the class of QSO absorption-line systems that exhibit low-ion absorption lines. Four separate investigations are conducted as follows: Spectroscopy of 32 QSOs at red wavelengths is presented and used to investigate intermediate-redshift MgII absorption. A total of 22 Mg II doublets are detected, from which properties of the Mg II absorbers are derived. Marginal evidence for intrinsic evolution of the number density of the Mg II absorbers with redshift is found. The data are combined with previous observations of C IV and C II seen in the same QSOs at blue wavelengths, and the properties of Mg II- and C IV-selected systems are compared. A sample is constructed of 129 QSOs for which are available published data suitable for detecting absorption-line systems that are optically thick to Lyman continuum radiation. A total of 53 such Lyman-limit systems are found, from which properties of the Lyman-limit systems are derived. It is found that the rate of incidence of the systems does not strongly evolved with redshift. This result is contrasted with the evolution found previously for systems selected on the basis of Mg II absorption. Spectroscopy at red wavelengths of eight QSOs with known damped Lyα absorption systems is presented. Spectroscopic and spectrophotometric observations aimed at detecting molecular hydrogen and dust in the z = 2.796 damped Lyα absorber toward Q1337 + 113 are presented

  19. An optical-near-IR study of a triplet of super star clusters in the starburst core of M82

    Energy Technology Data Exchange (ETDEWEB)

    Westmoquette, M. S. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Bastian, N. [Excellence Cluster Universe, Boltzmannstrasse 2, D-85748 Garching bei München (Germany); Smith, L. J. [Space Telescope Science Institute and European Space Agency, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Seth, A. C. [University of Utah, Salt Lake City, UT 84112 (United States); Gallagher III, J. S.; Ryon, J. E. [Department of Astronomy, University of Wisconsin-Madison, 5534 Sterling, 475 North Charter Street, Madison, WI 53706 (United States); O' Connell, R. W. [Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Silich, S.; Mayya, Y. D.; González, D. Rosa [Instituto Nacional de Astrofísica, Optica y Electronica, Luis Enrique Erro 1, Tonantzintla, C.P. 72840, Puebla (Mexico); Muñoz-Tuñón, C., E-mail: [Instituto de Astrofísica de Canarias, C/vía Láctea s/n, E-38200 La Laguna, Tenerife (Spain)


    We present HST/STIS optical and Gemini/NIFS near-IR IFU spectroscopy and archival Hubble Space Telescope (HST) imaging of the triplet of super star clusters (A1, A2, and A3) in the core of the M82 starburst. Using model fits to the Space Telescope Imaging Spectrograph (STIS) spectra and the weakness of red supergiant CO absorption features (appearing at ∼6 Myr) in the NIFS H-band spectra, the ages of A2 and A3 are 4.5 ± 1.0 Myr. A1 has strong CO bands, consistent with our previously determined age of 6.4 ± 0.5 Myr. The photometric masses of the three clusters are 4-7 × 10{sup 5} M{sub ☉}, and their sizes are R{sub eff} = 159, 104, 59 mas (∼2.8, 1.8, 1.0 pc) for A1, A2, and A3. The STIS spectra yielded radial velocities of 320 ± 2, 330 ± 6, and 336 ± 5 km s{sup –1} for A1, A2, and A3, placing them at the eastern end of the x{sub 2} orbits of M82's bar. Clusters A2 and A3 are in high-density (800-1000 cm{sup –3}) environments, and like A1, are surrounded by compact H II regions. We suggest the winds from A2 and A3 have stalled, as in A1, due to the high ISM ambient pressure. We propose that the three clusters were formed in situ on the outer x{sub 2} orbits in regions of dense molecular gas subsequently ionized by the rapidly evolving starburst. The similar radial velocities of the three clusters and their small projected separation of ∼25 pc suggest that they may merge in the near future unless this is prevented by velocity shearing.

  20. An IR Navigation System for Pleural PDT

    Directory of Open Access Journals (Sweden)

    Timothy C Zhu


    Full Text Available Pleural photodynamic therapy (PDT has been used as an adjuvant treatment with lung-sparing surgical treatment for malignant pleural mesothelioma (MPM. In the current pleural PDT protocol, a moving fiber-based point source is used to deliver the light. The light fluences at multiple locations are monitored by several isotropic detectors placed in the pleural cavity. To improve the delivery of light fluence uniformity, an infrared (IR navigation system is used to track the motion of the light source in real-time at a rate of 20 - 60 Hz. A treatment planning system uses the laser source positions obtained from the IR camera to calculate light fluence distribution to monitor the light dose uniformity on the surface of the pleural cavity. A novel reconstruction algorithm is used to determine the pleural cavity surface contour. A dual-correction method is used to match the calculated fluences at detector locations to the detector readings. Preliminary data from a phantom shows superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown with and without the correction method.

  1. Perception range prediction for IR pilot sight (United States)

    Weiss, A. Robert; Großmann, Peter; Repasi, Endre; Ritt, Gunnar; Wittenstein, Wolfgang


    The increasing use of IR pilot sight in helicopters calls for a reliable prediction of perception ranges for a variety of objects, especially those needed for orientation and those posing as a potential hazard, like power poles, masts, isolated trees etc. Since the visibility of objects in the IR depends mainly on the temperature differences between those objects and a given background and only marginally on illumination, range prediction techniques used for the visual range or light-amplified vision are only of very limited use. While range predictions based on the Johnson criterion do offer some insight into expected ranges, the inherently nominal nature of distance estimates thus obtained hampers their use for an actual field-deployable pre-flight consulting procedure. In order to overcome those limitations, long-term simultaneous measurements of relevant objects and background temperatures and weather data were carried out and used for temperature prediction from prevalent weather conditions. Together with a perception model derived from extensive observer experiments based on synthetic images of the UH Tiger Pilot Sight Unit we developed a perception range prediction package which is currently evaluated by the weather service of the Bundeswehr. We will present results from the observer experiments together with the derived perception models. These are then compared to actual perception ranges as obtained from flight experiments.

  2. Enhancing image quality produced by IR cameras (United States)

    Dulski, R.; Powalisz, P.; Kastek, M.; Trzaskawka, P.


    Images produced by IR cameras are a specific source of information. The perception and interpretation of such image greatly depends on thermal properties of observed object and surrounding scenery. In practice, the optimal settings of the camera as well as automatic temperature range control do not guarantee the displayed images is optimal from observer's point of view. The solution to this could be the methods and algorithms of digital image processing implemented in the camera. Such solution should provide intelligent, dynamic contrast control applied not only across entire image but also selectively to specific areas in order to maintain optimal visualization of observed scenery. The paper discusses problems dealing with improvement of the visibility of low-contrast objects and presents method of image enhancement. The algorithm is based on adaptive histogram equalization. The image enhancement algorithm was tested on real IR images. The algorithm significantly improves the image quality and the effectiveness of object detection for the majority of thermal images. Due to its adaptive nature it should be effective for any given thermal image. The application of such algorithm is promising alternative to more expensive opto-electronic components like improved optics and detectors.

  3. Qualification tests for 192Ir sealed sources (United States)

    Iancso, Georgeta; Iliescu, Elena; Iancu, Rodica


    This paper describes the results of qualification tests for 192Ir sealed sources, available in Testing and Nuclear Expertise Laboratory of National Institute for Physics and Nuclear Engineering "Horia Hulubei" (I.F.I.N.-HH), Romania. These sources had to be produced in I.F.I.N.-HH and were tested in order to obtain the authorization from The National Commission for Nuclear Activities Control (CNCAN). The sources are used for gammagraphy procedures or in gammadefectoscopy equipments. Tests, measurement methods and equipments used, comply with CNCAN, AIEA and International Quality Standards and regulations. The qualification tests are: 1. Radiological tests and measurements: dose equivalent rate at 1 m; tightness; dose equivalent rate at the surface of the transport and storage container; external unfixed contamination of the container surface. 2. Mechanical and climatic tests: thermal shock; external pressure; mechanic shock; vibrations; boring; thermal conditions for storage and transportation. Passing all tests, it was obtained the Radiological Security Authorization for producing the 192Ir sealed sources. Now IFIN-HH can meet many demands for this sealed sources, as the only manufacturer in Romania.

  4. Wafer level test solutions for IR sensors (United States)

    Giessmann, Sebastian; Werner, Frank-Michael


    Wafer probers provide an established platform for performing electrical measurements at wafer level for CMOS and similar process technologies. For testing IR sensors, the requirements are beyond the standard prober capabilities. This presentation will give an overview about state of the art IR sensor probing systems reaching from flexible engineering solutions to automated production needs. Cooled sensors typically need to be tested at a target temperature below 80 K. Not only is the device temperature important but also the surrounding environment is required to prevent background radiation from reaching the device under test. To achieve that, a cryogenic shield is protecting the movable chuck. By operating that shield to attract residual gases inside the chamber, a completely contamination-free test environment can be guaranteed. The use of special black coatings are furthermore supporting the removal of stray light. Typically, probe card needles are operating at ambient (room) temperature when connecting to the wafer. To avoid the entrance of heat, which can result in distorted measurements, the probe card is fully embedded into the cryogenic shield. A shutter system, located above the probe field, is designed to switch between the microscope view to align the sensor under the needles and the test relevant setup. This includes a completely closed position to take dark current measurements. Another position holds a possible filter glass with the required aperture opening. The necessary infrared sources to stimulate the device are located above.

  5. Plasma thruster development program at the IRS (United States)

    Auweter-Kurtz, Monika

    Since the early eighties the development of plasma thrusters has been an important research topic at the IRS, where a broad spectrum of stationary plasma thrusters has been investigated experimentally as well as theoretically. High power MPD thrusters (50 kW-1 MW) and a wide range of thermal arcjets (0.5-150 kW) are developed under contracts with ESA, NASA, USAF, USNAVY and with German funding. The IRS has excellent installations for continuous tests of high power accelerators. The high current power supply is a current regulated d.c. thyristor rectifier of 6 MW. The maximum current is 48 kA with a ripple less than 1%. The vacuum system is a roots pump system consisting of four stages with a total suction power of about 250,000 m 3/h at 1 Pa. Eight vacuum tanks of different sizes are connected to this system; six of them are used for plasma thruster development and two serve as plasma wind tunnels. For low power arcjet development and basic cathode erosion experiments four additional independent test stands are available.

  6. Irène Jacob visits CERN

    CERN Multimedia

    CERN Bulletin


    French actress Irène Jacob, the daughter of physicist Maurice Jacob, visited the ATLAS and CMS control rooms on Monday 17 May together with Italian theatre actor-director Pippo Delbono, in search of inspiration for a short film. The film will be screened at the “nuit des particules” event accompanying this year’s ICHEP.   Pippo Delbono et Irène Jacob discussing their project. “La nuit des particules” (night of the particles) is an event open to the general public that is being organised for the evening of Tuesday, 27 July, to accompany the 35th International Conference on High Energy Physics (ICHEP). ICHEP is a major highlight in every physicist’s calendar, and this year’s edition is being held in Paris from 22 to 28 July. The short film will be screened during the evening, which will include a lecture and a show at the legendary Parisian cinema Le Grand Rex, with a colossal seating capacity of 2 700 spe...

  7. An IR Navigation System for Pleural PDT (United States)

    Zhu, Timothy; Liang, Xing; Kim, Michele; Finlay, Jarod; Dimofte, Andreea; Rodriguez, Carmen; Simone, Charles; Friedberg, Joseph; Cengel, Keith


    Pleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for malignant pleural mesothelioma (MPM). In the current pleural PDT protocol, a moving fiber-based point source is used to deliver the light. The light fluences at multiple locations are monitored by several isotropic detectors placed in the pleural cavity. To improve the delivery of light fluence uniformity, an infrared (IR) navigation system is used to track the motion of the light source in real-time at a rate of 20 - 60 Hz. A treatment planning system uses the laser source positions obtained from the IR camera to calculate light fluence distribution to monitor the light dose uniformity on the surface of the pleural cavity. A novel reconstruction algorithm is used to determine the pleural cavity surface contour. A dual-correction method is used to match the calculated fluences at detector locations to the detector readings. Preliminary data from a phantom shows superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown with and without the correction method.

  8. IR spectral similarity studies of geothermal silica-bentonite based geopolymer (United States)

    Olvianas, Muhammad; Widiyatmoko, Achmad; Petrus, Himawan Tri Bayu Murti


    The geopolymer structures are formed through polymerization of silicate and aluminate species. The resulted structure is predicted to be similar with zeolite. In this study, geopolymer samples were made from mix powder of geothermal silica and bentonite, then activated with sodium hydroxide and sodium silicate. The effect of silica content, NaOH molarity and curing temperature effect were investigated on geopolymer IR spectra and compared with 3A zeolite IR spectra. Pearson correlation value (r) and spectral similarity correlation (Corr) were used to assess spectra similarity between geopolymer samples and zeolite. The development of geopolymer bond and microstructure of samples were then investigated by FTIR technique. IR spectra of geopolymer samples show that Si-O-Al absorption bands are formed around 900-1300 cm-1 and 400-800 cm-1. The optimum of silica contents, NaOH molarity and curing temperature obtained from the experiment were 140 grams, 10 M and 80°C with Corr value of 922 and compressive strength of 7,59 MPa. Corr value is proven to have relation with material strength. Higher Corr value is identified to have higher aluminosilicate species which contributes to higher compressive strength.

  9. Luminescent chiral ionic Ir(III) complexes: Synthesis and photophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, Loredana, E-mail: [CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, 87036 Arcavacata di Rende (CS) (Italy); La Deda, Massimo; Ionescu, Andreea; Godbert, Nicolas; Aiello, Iolinda; Ghedini, Mauro [MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM and CR INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende (CS) (Italy); Fusè, Marco, E-mail: [Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Golgi 19, 20133 Milano (Italy); Rimoldi, Isabella; Cesarotti, Edoardo [Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Golgi 19, 20133 Milano (Italy)


    Three homologous series of luminescent octahedral ionic Ir(III) complexes (1–12) with a dual stereogenic center of general formula {sup Δ,Λ} {sup (R,S)}[(ppy){sub 2}Ir(R-campy)]X, where ppy=2-phenylpyridine, R-campy=2-methyl-5,6,7,8-tetrahydroquinolin-8-amine (Me-campy) or 8-amino-5,6,7,8-tetrahydroquinolines (H-campy) and as counterions X{sup −}=Cl{sup −} or CH{sub 3}COO{sup −} have been synthesized and characterized. The NMR characterization of each complex highlighted the diastereoisomeric purity and the absolute configuration has been confirmed by Electronic Circular Dichroism spectroscopy. The absorption and the luminescence properties of the compounds in solution and in solid state have been investigated by UV–vis, steady-state emission and time-correlated single-photon counting spectroscopy. The obtained results from the 12 compounds highlight the difficult to correlate photophysical properties in solution to the stereochemistry, while excited states decay studies of the solid state samples indicate a correlation between photophysics and packing mode which is affected by the different stereochemistry. - Highlights: • Luminescent chiral ionic Ir(III) complexes have been synthesized and characterized. • Presence in the same structure of two stereogenic centers. • Use of camphorsulfonate as resolving anion to obtain enantiomerically pure samples. • Stereoisomers produce aggregates with different emitting properties. • Lifetimes from solid samples show the presence of AIPE.

  10. Detection Limits for Blood on Fabrics Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy and Derivative Processing. (United States)

    Lu, Zhenyu; DeJong, Stephanie A; Cassidy, Brianna M; Belliveau, Raymond G; Myrick, Michael L; Morgan, Stephen L


    Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) was used to detect blood stains based on signature protein absorption in the mid-IR region, where intensity changes in the spectrum can be related to blood concentration. Partial least squares regression (PLSR) was applied for multivariate calibrations of IR spectra of blood dilutions on four types of fabric (acrylic, nylon, polyester, and cotton). Gap derivatives (GDs) were applied as a preprocessing technique to optimize the performance of calibration models. We report a much improved IR detection limit (DL) for blood on cotton (2700× in dilution factor units) and the first IR DL reported for blood on nylon (250×). Due to sample heterogeneity caused by fabric hydrophobicity, acrylic fabric produced variable ATR FT-IR spectra that caused poor DLs in concentration units compared to previous work. Polyester showed a similar problem at low blood concentrations that lead to a relatively poor DL as well. However, the increased surface sensitivity and decreased penetration depth of ATR FT-IR make it an excellent choice for detection of small quantities of blood on the front surface of all fabrics tested (0.0010 µg for cotton, 0.0077 µg for nylon, 0.011 µg for acrylic, and 0.0066 µg for polyester).

  11. Experimental determination of the absolute infrared absorption intensities of formyl radical HCO. (United States)

    Ryazantsev, Sergey V; Tyurin, Daniil A; Feldman, Vladimir I


    Formyl radical HCO is an important reactive intermediate in combustion, atmospheric and extraterrestrial chemistry. Like in the case of other transients, the lack of knowledge of the absolute IR intensities limits the quantitative spectroscopic studies on this species. We report the first experimental determination of the absorption intensities for the fundamental vibrational bands of HCO. The measurements have been performed using matrix-isolation FTIR spectroscopy. Determination of the values was based on the repeated photodissociation and thermal recovery of the HCO radical using the known value of the absorption coefficient of CO. The experimentally determined values (93.2±6.0, 67.2±4.5, and 109.2±6.6kmmol -1 for the ν 1 , ν 2 , and ν 3 modes, respectively) have been compared to the calculated IR intensities obtained by DFT and UCCSD(T) computations. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS). (United States)

    Geloneze, Bruno; Vasques, Ana Carolina Junqueira; Stabe, Christiane França Camargo; Pareja, José Carlos; Rosado, Lina Enriqueta Frandsen Paez de Lima; Queiroz, Elaine Cristina de; Tambascia, Marcos Antonio


    To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 90th percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. In the healthy group, HOMA-IR indexes were associated with central obesity, triglycerides and total cholesterol (p 2.7 and HOMA2-IR > 1.8; and, for MS were: HOMA1-IR > 2.3 (sensitivity: 76.8%; specificity: 66.7%) and HOMA2-IR > 1.4 (sensitivity: 79.2%; specificity: 61.2%). The cut-off values identified for HOMA1-IR and HOMA2-IR indexes have a clinical and epidemiological application for identifying IR and MS in Westernized admixtured multi-ethnic populations.

  13. Cirrus Cloud Optical and Microphysical Property Retrievals from eMAS During SEAC4RS Using Bi-Spectral Reflectance Measurements Within the 1.88 micron Water Vapor Absorption Band (United States)

    Meyer, K.; Platnick, S.; Arnold, G. T.; Holz, R. E.; Veglio, P.; Yorks, J.; Wang, C.


    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or midwave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASAs SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 micron water vapor absorption band, namely the 1.83 and 1.93 micron channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below cloud water vapor absorption minimizes the surface contribution to measured cloudy TOA reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption, as well as reduces the frequency of retrieval failures for thin cirrus clouds.

  14. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    DEFF Research Database (Denmark)

    Gritti, Claudia; Raza, Søren; Kadkhodazadeh, Shima


    Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique......, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface...

  15. Influence of TiO2 Nanocrystals Fabricating Dye-Sensitized Solar Cell on the Absorption Spectra of N719 Sensitizer

    Directory of Open Access Journals (Sweden)

    Puhong Wen


    Full Text Available The absorption spectra of N719 sensitizer anchored on the films prepared by TiO2 nanocrystals with different morphology and size were investigated for improving the performance of dye-sensitized solar cell (DSC. We find that the morphology and size of TiO2 nanocrystals can affect the UV-vis and FT-IR spectra of the sensitizer anchored on their surfaces. In particular, the low-energy metal-to-ligand charge-transfer transitions (MLCT band in the visible absorption spectra of N719 is strongly affected, and locations of these MLCT bands revealed larger differences. The results indicate that there is a red shift of MLCT band in the spectra obtained by using TiO2 nanocrystals with long morphology and large size compared to that in solution. And it produced a larger red-shift on the MLCT band after TiO2 nanocrystals with small size mixed with some long nanocrystals. Accordingly, the utilization rate to visible light is increased. This is a reason why the DSC prepared by using such film as a photoelectrode has better performance than before mixing.

  16. Study on the extraction of Am(III) and Eu(III) with amido podands. Pt.2: extraction thermodynamics and absorption spectra

    International Nuclear Information System (INIS)

    Ye Guoan; He Jianyu; Luo Fangxiang


    By using n-octanol and kerosene as diluent, the extraction behavior of Am(III) and Eu(III) from nitric acid solution is studied with N,N,N',N'-tetrabutyl-3-oxa-pentanediamide (TBOPDA), N,N,N',N'-tetra-isobutyl-3-oxa-pentanediamide (TiBOPDA) and N,N,N',N'-tetrabutyl-3,6-dioxa-octane diamide (TBDOODA). The extraction equilibrium is an exothermic reaction and the extraction enthalpy of americium is -80.54, -81.99 and -75.88 kJ/mol for TBOPDA, TiBOPDA and TBDOODA, respectively. It is found that the remarkable variation of HNO 3 concentration is equilibrium only slightly changes the shape and position of the visible absorption peak of the loaded organic phase. It implies that the variation of HNO 3 concentration does not affect the extraction mechanism. In IR spectrum the carboxyl absorption peaks of both TBDOPDA and TBDOODA shift strongly to long wavelength after extracting HNO 3 or Eu(III), at the same time the peak of carbon-oxygen-carbon has 6 cm -1 and 3 cm -1 shift for TBOPDA and TBDOODA, respectively

  17. Constraining Cometary Crystal Shapes from IR Spectral Features (United States)

    Wooden, D. H.; Lindsay, S.; Harker, D. E.; Kelley, M. S.; Woodward, C. E.; Murphy, J. R.


    A major challenge in deriving the silicate mineralogy of comets is ascertaining how the anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and 33 μm [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to compute IR spectral energy distributions (SEDs, λFλ vs. λ) and constrain the silicate mineralogy of comets. Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-, b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need models that account for crystal shape. The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline spectral features is the relative lengths of the crystallographic axes. The second significant grain shape characteristic is breaking the symmetry of all three axes [17]. Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the spectral fits. Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk temperatures where the cometary crystalline forsterite formed. The

  18. The Introduction of an Undergraduate Interventional Radiology (IR) Curriculum: Impact on Medical Student Knowledge and Interest in IR

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, M. [Bradford Royal Infirmary, Department of Radiology, Bradford Teaching Hospital Foundation Trust (United Kingdom); Shaygi, B. [Royal Devon and Exeter Hospital, Interventional Radiology Department (United Kingdom); Asadi, H., E-mail:; Thanaratnam, P.; Pennycooke, K.; Mirza, M.; Lee, M., E-mail: [Beaumont Hospital, Interventional Radiology Service, Department of Radiology (Ireland)


    IntroductionInterventional radiology (IR) plays a vital role in modern medicine, with increasing demand for services, but with a shortage of experienced interventionalists. The aim of this study was to determine the impact of a recently introduced IR curriculum on perception, knowledge, and interest of medical students regarding various aspects of IR.MethodsIn 2014, an anonymous web-based questionnaire was sent to 309 4th year medical students in a single institution within an EU country, both before and after delivery of a 10-h IR teaching curriculum.ResultsSeventy-six percent (236/309) of the respondents participated in the pre-IR module survey, while 50 % (157/309) responded to the post-IR module survey. While 62 % (147/236) of the respondents reported poor or no knowledge of IR compared to other medical disciplines in the pre-IR module survey, this decreased to 17 % (27/157) in the post-IR module survey. The correct responses regarding knowledge of selected IR procedures improved from 70 to 94 % for venous access, 78 to 99 % for uterine fibroid embolization, 75 to 97 % for GI bleeding embolization, 60 to 92 % for trauma embolization, 71 to 92 % for tumor ablation, and 81 to 94 % for angioplasty and stenting in peripheral arterial disease. With regard to knowledge of IR clinical roles, responses improved from 42 to 59 % for outpatient clinic review of patients and having inpatient beds, 63–76 % for direct patient consultation, and 43–60 % for having regular ward rounds. The number of students who would consider a career in IR increased from 60 to 73 %.ConclusionDelivering an undergraduate IR curriculum increased the knowledge and understanding of various aspects of IR and also the general enthusiasm for pursuing this specialty as a future career choice.

  19. Neutron absorption constraints on the composition of 4 Vesta (United States)

    Prettyman, Thomas H.; Mittlefehldt, David W.; Yamashita, Naoyuki; Beck, Andrew W.; Feldman, William C.; Hendricks, John S.; Lawrence, David J.; McCoy, Timothy J.; McSween, Harry Y.; Paplowski, Patrick N.; Reedy, Robert C.; Toplis, Michael J.; Le Corre, Lucille; Mizzon, Hugau; Reddy, Vishnu; Titus, Timothy N.; Raymond, Carol A.; Russell, Christopher T.


    Global maps of the macroscopic thermal neutron absorption cross section of Vesta's regolith by the Gamma Ray and Neutron Detector (GRaND) on board the NASA Dawn spacecraft provide constraints on the abundance and distribution of Fe, Ca, Al, Mg, and other rock-forming elements. From a circular, polar low-altitude mapping orbit, GRaND sampled the regolith to decimeter depths with a spatial resolution of about 300 km. At this spatial scale, the variation in neutron absorption is about seven times lower than that of the Moon. The observed variation is consistent with the range of absorption for howardite whole-rock compositions, which further supports the connection between Vesta and the howardite, eucrite, and diogenite meteorites. We find a strong correlation between neutron absorption and the percentage of eucritic materials in howardites and polymict breccias, which enables petrologic mapping of Vesta's surface. The distribution of basaltic eucrite and diogenite determined from neutron absorption measurements is qualitatively similar to that indicated by visible and near infrared spectroscopy. The Rheasilvia basin and ejecta blanket has relatively low absorption, consistent with Mg-rich orthopyroxene. Based on a combination of Fe and neutron absorption measurements, olivine-rich lithologies are not detected on the spatial scales sampled by GRaND. The sensitivity of GRaND to the presence of mantle material is described and implications for the absence of an olivine signature are discussed. High absorption values found in Vesta's “dark” hemisphere, where exogenic hydrogen has accumulated, indicate that this region is richer in basaltic eucrite, representative of Vesta's ancient upper crust.

  20. The growth of academic spin-offs : the management team’s absorptive capacity and facilitator support

    NARCIS (Netherlands)

    Khodaei, H.


    <strong>The Growth of Academic Spin-offsstrong> <strong>The Management Team’s Absorptive Capacity and Facilitator Supportstrong> Academic spin-offs are defined as new start-up firms that commercially exploit research developed within an academic environment to the benefit of economic,