WorldWideScience

Sample records for strong ionization results

  1. Atomica ionization by strong coherent radiation

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.

    1979-07-01

    The relation among the three most frequently used non-perturbative methods proposed to study the ionization of atoms by strong electromagnetic fields is established. Their range of validity is also determined. (Author) [pt

  2. Fast Atom Ionization in Strong Electromagnetic Radiation

    Science.gov (United States)

    Apostol, M.

    2018-05-01

    The Goeppert-Mayer and Kramers-Henneberger transformations are examined for bound charges placed in electromagnetic radiation in the non-relativistic approximation. The consistent inclusion of the interaction with the radiation field provides the time evolution of the wavefunction with both structural interaction (which ensures the bound state) and electromagnetic interaction. It is shown that in a short time after switching on the high-intensity radiation the bound charges are set free. In these conditions, a statistical criterion is used to estimate the rate of atom ionization. The results correspond to a sudden application of the electromagnetic interaction, in contrast with the well-known ionization probability obtained by quasi-classical tunneling through classically unavailable non-stationary states, or other equivalent methods, where the interaction is introduced adiabatically. For low-intensity radiation the charges oscillate and emit higher-order harmonics, the charge configuration is re-arranged and the process is resumed. Tunneling ionization may appear in these circumstances. Extension of the approach to other applications involving radiation-induced charge emission from bound states is discussed, like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Also, results for a static electric field are included.

  3. Multiphoton ionization processes in strong laser

    International Nuclear Information System (INIS)

    Krstic, P.

    1982-01-01

    Multiphoton ionization of hydrogen in ultrastrong laser fields is studied. The previous calculations of this process yield differing result for the transition rate. We show the relations between them and difficulties with each of them. One difficulty is that the finite spatial and time extent of the laser field has been omitted. It is also found that a laser field, which is sufficiently intense to be labeled ultrastrong, makes the electron move relativistically so that it becomes necessary to use Volkov states to describe the electron in the laser field. The transition rate is obtained, using a CO laser as an example, and it is found that the transition rate rises as the laser intensity rises. This is a consequence of the use of relativistic kinematics and is not true nonrelativistically. We also discuss the multiple peaks observed in the energy spectrum of electrons resulting from multiphoton ionization of atoms by lasers. When the laser intensity is large enough for the ponderomotive force to result in appreciable broading of the peaks we show the shape of the broadened peaks contains useful information. We show that the multiphoton ionization probability as a function of laser intensity can be obtained but that the free-free cross sections, which are in principle also obtainable, are probably not obtainable in practice. Finally, we describe the theory of the absorption of more than minimum numbers of photons needed to ionize an atom by an intense laser. The basic approximation used is that the atom is adiabatically deformed by the laser and an impulsive interaction then results in multiphoton absorption. In our first calculation we allow only one resonant excited state to be included in the adiabatic deformation. In our second we also allow the lowest energy continuum to be included. The two results are then compared

  4. Spin and Angular Momentum in Strong-Field Ionization

    Science.gov (United States)

    Trabert, D.; Hartung, A.; Eckart, S.; Trinter, F.; Kalinin, A.; Schöffler, M.; Schmidt, L. Ph. H.; Jahnke, T.; Kunitski, M.; Dörner, R.

    2018-01-01

    The spin polarization of electrons from multiphoton ionization of Xe by 395 nm circularly polarized laser pulses at 6 ×1013 W /cm2 has been measured. At this photon energy of 3.14 eV the above-threshold ionization peaks connected to Xe+ ions in the ground state (J =3 /2 , ionization potential Ip=12.1 eV ) and the first excited state (J =1 /2 , Ip=13.4 eV ) are clearly separated in the electron energy distribution. These two combs of above-threshold ionization peaks show opposite spin polarizations. The magnitude of the spin polarization is a factor of 2 higher for the J =1 /2 than for the J =3 /2 final ionic state. In turn, the data show that the ionization probability is strongly dependent on the sign of the magnetic quantum number.

  5. Dynamics of dissociation versus ionization in strong laser fields

    International Nuclear Information System (INIS)

    In this paper, experimental results are presented which clearly demonstrate the effectiveness that an external field has in altering the dissociation dynamics. The experiment examines the strong-field dissociation dynamics of molecular hydrogen ions and its deuterated isotopes. These studies involve multiphoton excitation in the intensity regime of 10 11-14 W/cm 2 with the fundamental and second harmonic of a ND:YAG or ND:YLF laser system. Measurements include energy resolved electron and mass spectroscopy which provide useful probes in elucidating the interaction dynamics predicted by existing models. The example this in this paper, examines the strong-field dissociation of H 2 + , HD + , and D 2 + at green (0.5 μm) and (1μm) frequencies. The diatomic ions are formed via multiphonon ionization of the neutral precursor which is physically separable from the dissociation process. This study provides the first observation of the dynamics associated with the above threshold dissociation (ATD) process and analogies will be made with the more familiar above threshold ionization (ATI) phenomenon

  6. Strong-field ionization of polar molecules: Stark-shift-corrected strong-field approximation

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Martiny, Christian P. J.; Madsen, Lars Bojer

    2010-01-01

    We extend the molecular strong-field approximation for ionization, in the tunneling limit, to include systematically the linear and quadratic static Stark shifts of the ionizing molecular orbital. This approach, simple to implement, is capable of describing the essential physics of the process of...

  7. Ionization cross section for a strongly coupled partially ionized hydrogen plasma: variable phase approach

    Energy Technology Data Exchange (ETDEWEB)

    Baimbetov, F B; Kudyshev, Z A [Department of Physics, Al-Farabi Kazakh National University, 050012 Almaty (Kazakhstan)], E-mail: Fazylhan.Baimbetov@kaznu.kz, E-mail: Z.Kudyshev@mail.ru

    2009-05-29

    In the present work an electron impact ionization cross section is considered. The electron impact ionization cross section is calculated with the help of a variable phase approach to potential scattering. The Calogero equation is numerically solved, based on a pseudopotential model of interaction between partially ionized plasma particles, which accounts for correlation effects. As a result, scattering phase shifts are obtained. On the basis of the scattering phase shifts, the ionization cross section is calculated.

  8. Strong eld ionization of naphthalene: angular shifts and molecular potential

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Maurer, Jochen; Christensen, Lauge

    We analyze the photoelectron momentum distributions from strong eld ionization of xed-in-space naphthalene molecules by circularly polarized laser pulses. By direct comparison between experiment and theory, we show that the angular shifts in the photoelectron momentum distributions are very...

  9. Strongly coupled stimulated Brillouin amplification in pump-ionizing plasma

    Science.gov (United States)

    Peng, H.; Wu, Z. H.; Zuo, Y. L.; Zhou, K. N.; Wang, X. D.; Li, Q.; Zhu, H. Y.; Su, J. Q.

    2018-02-01

    Laser amplification based on strongly coupled stimulated Brillouin scattering in plasma is investigated. The pump and seed are at the same wavelength of 800 nm and the same duration of 3.5 ps, but with a different intensity. The plasma is produced by the front part of the pump via tunnel ionization from hydrogen. The hydrogen is fully ionized to eliminate small-scale density fluctuations in the plasma, so the transmission level of the seed is enhanced to 22%, and a relative amplification factor of 6 is obtained.

  10. [Method on ozone generation with strong ionization discharge].

    Science.gov (United States)

    Zhang, Z; Han, H; Chu, Q; Bai, X

    2001-03-01

    This paper presents the formed methods of strong ionization discharge of dielectric barrier and plasma chemical reaction process of ozone generation. Ozone combination and decomposition are controlled by electric field intensity and electron energy. Therefore, new technologies with thinner dielectric layers (230 microns) of model alpha Al2O3 and narrow discharge gap (110 microns) are introduced, and strong ionization discharge is gained which reduced field (E) and electron average energy are more than 400Td and 10 eV respectively. Ozone concentration reaches to 200 g/m3 and ozone producing efficiency is 100 g/(kW.h). Ozone generator of big yield and miniaturization with module assembled method is realized.

  11. Virtual detector theory for strong-field atomic ionization

    Science.gov (United States)

    Wang, Xu; Tian, Justin; Eberly, J. H.

    2018-04-01

    A virtual detector (VD) is an imaginary device located at a fixed position in space that extracts information from the wave packet passing through it. By recording the particle momentum and the corresponding probability current at each time, the VDs can accumulate and build the differential momentum distribution of the particle, in a way that resembles real experiments. A mathematical proof is given for the equivalence of the differential momentum distribution obtained by the VD method and by Fourier transforming the wave function. In addition to being a tool for reducing the computational load, VDs have also been found useful in interpreting the ultrafast strong-field ionization process, especially the controversial quantum tunneling process.

  12. Spin dynamics in relativistic ionization with highly charged ions in super-strong laser fields

    International Nuclear Information System (INIS)

    Klaiber, Michael; Yakaboylu, Enderalp; Bauke, Heiko; Hatsagortsyan, Karen Z; Müller, Carsten; Paulus, Gerhard G

    2014-01-01

    Spin dynamics and induced spin effects in above-threshold ionization of hydrogenlike highly charged ions in super-strong laser fields are investigated. Spin-resolved ionization rates in the tunnelling regime are calculated by employing two versions of a relativistic Coulomb-corrected strong-field approximation (SFA). An intuitive simpleman model is developed which explains the derived scaling laws for spin flip and spin asymmetry effects. The intuitive model as well as our ab initio numerical simulations support the analytical results for the spin effects obtained in the dressed SFA where the impact of the laser field on the electron spin evolution in the bound state is taken into account. In contrast, the standard SFA is shown to fail in reproducing spin effects in ionization even at a qualitative level. The anticipated spin-effects are expected to be measurable with modern laser techniques combined with an ion storage facility. (paper)

  13. Multistage ionization of atoms in a very strong electromagnetic field

    International Nuclear Information System (INIS)

    Krajnov, V.P.; Manykin, Eh.A.

    1980-01-01

    Considered is a problem of multiple ionization of middle and heavy atoms as a function of the intensity of an electromagnetic field. The atom is considered in the Thomas -Fermi approximation. Presented are estimates of ionization degree for lead, tungsten and tantalum

  14. Direct Visualization of Laser-Driven Electron Multiple Scattering and Tunneling Distance in Strong-Field Ionization

    NARCIS (Netherlands)

    Witte, S.; Hickstein, D.D.; Ranitovic, P.; Tong, X.-M.; Huismans, Y.; Arpin, P.; Zhou, X.; Keister, K.E.; Hogle, C.W.; Zhang, B.; Ding, C.; Johnsson, P.; Toshima, N.; Vrakking, M.J.J.; Murnane, M.M.; Kapteyn, H.C.

    2012-01-01

    Using a simple model of strong-field ionization of atoms that generalizes the well-known 3-step model from 1D to 3D, we show that the experimental photoelectron angular distributions resulting from laser ionization of xenon and argon display prominent structures that correspond to electrons that

  15. Ionization of atoms in strong low-frequency electromagnetic field

    International Nuclear Information System (INIS)

    Krainov, V. P.

    2010-01-01

    The ionization of atoms in a low-frequency linearly polarized electromagnetic field (the photon energy is much lower than the ionization potential of an atom) is considered under new conditions, in which the Coulomb interaction of an electron with the atomic core in the final state of the continuum cannot be considered in perturbation theory in the interaction of the electron with the electromagnetic field. The field is assumed to be much weaker that the atomic field. In these conditions, the classical motion of the electron in the final state of the continuum becomes chaotic (so-called dynamic chaos). Using the well-known Chirikov method of averaging over chaotic variations of the phase of motion, the problem can be reduced to non-linear diffusion on the energy scale. We calculate the classical electron energy in the final state, which is averaged over fast chaotic oscillations and takes into account both the Coulomb field and the electromagnetic field. This energy is used to calculate the probability of ionization from the ground state of the atom to a lower-lying state in the continuum using the Landau-Dykhne approximation (to exponential accuracy). This ionization probability noticeably depends on the field frequency. Upon a decrease in frequency, a transition to the well-known tunnel ionization limit with a probability independent of the field frequency is considered.

  16. Modeling strong-field above-threshold ionization

    International Nuclear Information System (INIS)

    Sundaram, B.; Armstrong, L. Jr.

    1990-01-01

    Above-threshold ionization (ATI) by intense, short-pulse lasers is studied numerically, using the stretched hydrogen atom Hamiltonian. Within our model system, we isolate several mechanisms that contribute to the ATI process. These mechanisms, which involve both excited bound states and continuum states, all invoke intermediate, off-energy shell transitions. In particular, the importance of excited bound states and off-energy shell bound-free processes to the ionization mechanism are shown to relate to a simple physical criterion. These processes point to importance differences in the interpretation of ionization characteristics for short pulses from that for longer pulses. Our analysis concludes that although components of ATI admit of simple, few-state modeling, the ultimate synthesis points to a highly complex mechanism

  17. Classical trajectory perspective of atomic ionization in strong laser fields semiclassical modeling

    CERN Document Server

    Liu, Jie

    2014-01-01

    The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers...

  18. Probing strong field ionization of solids with a Thomson parabola ...

    Indian Academy of Sciences (India)

    2014-01-11

    Jan 11, 2014 ... Ion spectrometry from laser–plasma is convolved with multiple atomic systems, several charge states and a broad energy spread. Conventional mass spectrometric techniques have serious limitations to probe this ionization dynamics. We have developed an imaging ion spectrometer that measures ...

  19. Probing strong field ionization of solids with a Thomson parabola ...

    Indian Academy of Sciences (India)

    2014-01-11

    Jan 11, 2014 ... spectrometry from laser–plasma is convolved with multiple atomic systems, several charge states and a broad energy spread. Conventional mass spectrometric techniques have serious limitations to probe this ionization dynamics. We have developed an imaging ion spectrometer that measures.

  20. Time-Resolved Photoelectron Angular Distributions from Strong-Field Ionization of Rotating Naphthalene Molecules

    DEFF Research Database (Denmark)

    Hansen, Jonas Lerche; Stapelfeldt, Henrik; Dimitrovski, Darko

    2011-01-01

    A nanosecond laser pulse confines the spatial orientation of naphthalene in 1D or 3D while a femtosecond kick pulse initiates rotation of the molecular plane around the fixed long axis. Time-dependent photoelectron angular distributions (PADs), resulting from ionization by an intense femtosecond...... probe pulse, exhibit pronounced changes as the molecular plane rotates. Enhanced 3D alignment, occurring shortly after the kick pulse, provides strongly improved contrast in molecular-frame PADs. Calculations in the strong-field approximation show that the striking structures observed in the PADs...

  1. Glycerol Carbonate: A Novel Biosolvent with Strong Ionizing and Dissociating Powers

    Directory of Open Access Journals (Sweden)

    Guangnan Ou

    2012-01-01

    Full Text Available The activity of biocatalysts in nonaqueous solvents is related to the interaction of organic solvents with cells or enzymes. The behavior of proteins is strongly dependent on the protonation state of their ionizable groups, which ionization constants are greatly affected by the solvent. Due to the weak ionizing and dissociating powers of common organic solvents, the charge of the protein will change significantly when the protein is transferred from water to common organic solvents, resulting in protein denaturation. In this work, glycerol carbonate (GC was synthesized, which ionizing and dissociating abilities were very close to those of water. Transesterification activities of Candida antarctica lipase B (CALB in GC were comparable to those in water and remained constant during 4-week storage. Bacillus subtilis and Saccharomyecs cerevisiae were cultured in liquid media containing GC with test tubes. In the medium containing low GC concentration, Bacillus subtilis and Saccharomyecs cerevisiae grew well as in a medium containing no organic solvent, but, in the medium containing high GC concentration, the growth of Bacillus subtilis and Saccharomyecs cerevisiae was suppressed. The results suggested that GC is a potential biosolvent, which has great significance to biocatalysis in nonaqueous solvents.

  2. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    Science.gov (United States)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  3. Probing strong field ionization of solids with a Thomson parabola ...

    Indian Academy of Sciences (India)

    2014-01-11

    Jan 11, 2014 ... large electric field drives the electrons to a very high energy. These hot electrons quickly move out of the solid surface, long before the ions move and the electron drift creates a strong quasistatic charge separation sheath electric field. Ions are then accelerated in this sheath field preferentially along the ...

  4. Strong-field-ionization suppression by light-field control

    DEFF Research Database (Denmark)

    Räsänen, Esa; Madsen, Lars Bojer

    2012-01-01

    in the intensity and thus preventing tunneling. In contrast, at high frequencies in the extreme ultraviolet regime the optimized pulses strongly couple with the (de)-excitations of the system, which leads to different pulse characteristics. Finally, we show that the applied target functional works, to some extent...

  5. Hole dynamics and spin currents after ionization in strong circularly polarized laser fields

    International Nuclear Information System (INIS)

    Barth, Ingo; Smirnova, Olga

    2014-01-01

    We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields. (paper)

  6. Final 6D Muon Ionization Colling using Strong Focusing Quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Hart, T. L. [Mississippi U.; Acosta, J. G. [Mississippi U.; Cremaldi, L. M. [Mississippi U.; Oliveros, S. J. [Mississippi U.; Summers, D. J. [Mississippi U.; Neuffer, D. V. [Fermilab

    2016-11-15

    Abstract Low emittance muon beam lines and muon colliders are potentially a rich source of BSM physics for future exper- imenters. A muon beam normalized emittance of ax,y,z = (280, 280, 1570)µm has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to achieve a normalized transverse emittance of 100 µm and complete 6D cooling. The low beta regions, as low as 5 mm, produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam transversely. Equilibrium transverse emittance is linearly proportional to the transverse betatron function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 µm at the expense of longitudinal emittance for a high energy lepton collider. Cooling challenges include chromaticity correction, ssband overlap, quadrupole acceptance, and staying in phase with RF.

  7. Research on the degradation mechanism of dimethyl phthalate in drinking water by strong ionization discharge

    Science.gov (United States)

    Hong, ZHAO; Chengwu, YI; Rongjie, YI; Huijuan, WANG; Lanlan, YIN; I, N. MUHAMMAD; Zhongfei, MA

    2018-03-01

    The degradation mechanism of dimethyl phthalate (DMP) in the drinking water was investigated using strong ionization discharge technology in this study. Under the optimized condition, the degradation efficiency of DMP in drinking water was up to 93% in 60 min. A series of analytical techniques including high-performance liquid chromatography, liquid chromatography mass spectrometry, total organic carbon analyzer and ultraviolet-visible spectroscopy were used in the study. It was found that a high concentration of ozone (O3) produced by dielectric barrier discharge reactor was up to 74.4 mg l-1 within 60 min. Tert-butanol, isopropyl alcohol, carbonate ions ({{{{CO}}}3}2-) and bicarbonate ions ({{{{HCO}}}3}-) was added to the sample solution to indirectly prove the presence and effect of hydroxyl radicals (·OH). These analytical findings indicate that mono-methyl phthalate, phthalic acid (PA) and methyl ester PA were detected as the major intermediates in the process of DMP degradation. Finally, DMP and all products were mineralized into carbon dioxide (CO2) and water (H2O) ultimately. Based on these analysis results, the degradation pathway of DMP by strong ionization discharge technology were proposed.

  8. Peculiarities of two-electron atom ionization in strong electromagnetic field

    International Nuclear Information System (INIS)

    Ovodova, O.V.; Popov, A.M.; Tikhonova, O.V.

    1997-01-01

    One-dimensional model of helium atom in strong field of electromagnetic wave of femtosecond activity is plotted within the Hartree method frames. Comparison of 'exact' calculations with the calculations conducted within the frames of the 'frozen' and 'passive' electrons is made. The nonmonotonous dependence of one-dimensional ionization probability on the radiation intensity is found. It is shown that the ionization minima are connected with multiphoton resonances between various atomic states, originating due to the Stark effect. It is supposed that the effect of ionization suppression in this case is related to interference stabilization

  9. Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field

    Science.gov (United States)

    Luo, Sui

    Ultrastrong laser-matter interaction has direct bearing to next generation technologies including plasma acceleration, laser fusion and attosecond X-ray generation. The commonly known physics in strong field becomes different as one progress to ultrastrong field. The works presented in this dissertation theoretically study the influence of relativistic effect and magnetic component of the laser field on the ionization, photoelectron dynamics and elastic scattering processes. The influence of magnetic component (B laser) of circularly polarized (CP) ultrastrong fields (up to3 x 1022 W/cm2) on atomic bound state dynamics is investigated. The Poincare plots are used to find the changes in trajectory energies are on the order of a few percent for intensities up to1 x 1022 W/cm2. It is found that at intensities where ionization approaches 50% for the bound state, the small changes from Blaser of the circular polarized light can actually result in a several-fold decrease in ionization probability. The force on the bound electron exerted by the Lorentz force from B laser is perpendicular to the rotating plane of the circular polarized light, and this nature makes those trajectories which are aligned away from the minimum in the potential barrier stabilized against tunneling ionization. Our results provide a classical understanding for ionization in ultrastrong fields and indicate that relativistic effects in ultrastrong field ionization may most easily be seen with CP fields. The photoelectron energy spectra from elastic rescattering in ultrastrong laser fields (up to 2x1019 W/cm2) is studied by using a relativistic adaption of a semi-classical three-step recollision model. The Hartree-Fock scattering potentials are used in calculating the elastic rescattering for both hydrogenlike and noble gas species. It is found that there is a reduction in elastic rescattering for intensities beyond 6 x 1016 W/cm2 when the laser Lorentz deflection of the photoelectron exceeds its

  10. Nonadiabaticity of electron-tunneling-ionization processes in elliptical strong laser fields

    Science.gov (United States)

    Cai, Jun; Chen, Yan-jun; Xia, Qin-zhi; Ye, Di-fa; Liu, Jie; Fu, Li-bin

    2017-09-01

    We theoretically investigate the electron-tunneling process for a helium atom irradiated by an elliptical strong laser field. The momentum distribution for an electron ionized during the cycle when the laser intensity reaches its maximum is captured, such that we can ignore the interference between the wave packets ionized in different laser cycles and precisely determine the center of the momentum distribution. The quantum mechanical prediction of the center position is further compared to the semiclassical single-trajectory simulation as well as the experimental data. We find that the electron momentums along the minor axis of the laser polarization show good agreement with the nonadiabatic semiclassical calculation for a wide range of laser intensities, indicating the existence of a nonzero lateral momentum when the electron exits the barrier. On the other hand, the offset angles obtained by our quantum mechanical approach for different laser intensities are larger than the nonadiabatic semiclassical results, indicating the importance of the quantum effects during the electron's under-the-barrier dynamics.

  11. Research on killing Escherichia Coli by reactive oxygen species based on strong ionization discharging plasma

    International Nuclear Information System (INIS)

    Li, Y J; Tian, Y P; Zhang, Z T; Li, R H; Cai, L J; Gao, J Y

    2013-01-01

    Reactive oxygen species solution produced by strong ionization discharging plasma was used to kill Escherichia coli by spraying. Several effect factors such as pH value, solution temperature, spraying time and exposure time were observed in this study, and their effects on killing rate of Escherichia coli were discussed and analysed. Results show that the treating efficiency of ROS solution for Escherichia coli is higher in alkaline solution than that in acid solution. The killing rate of Escherichia coli increases while the spraying time and exposure time are longer and the temperature is lower. The effects of different factors on killing rate of Escherichia coli are as follows: spraying time > pH value > exposure time > solution temperature.

  12. Limitations of the strong field approximation in ionization of the hydrogen atom by ultrashort pulses

    International Nuclear Information System (INIS)

    Arbo, D.G.; Toekesi, K.; Miraglia, J.E.; FCEN, University of Buenos Aires

    2008-01-01

    Complete text of publication follows. We presented a theoretical study of the ionization of hydrogen atoms as a result of the interaction with an ultrashort external electric field. Doubly-differential momentum distributions and angular momentum distributions of ejected electrons calculated in the framework of the Coulomb-Volkov and strong field approximations, as well as classical calculations are compared with the exact solution of the time dependent Schroedinger equation. We have shown that the Coulomb-Volkov approximation (CVA) describes the quantum atomic ionization probabilities exactly when the external field is described by a sudden momentum transfer [1]. The velocity distribution of emitted electrons right after ionization by a sudden momentum transfer is given through the strong field approximation (SFA) within both the CVA and CTMC methods. In this case, the classical and quantum time dependent evolutions of an atom subject to a sudden momentum transfer are identical. The difference between the classical and quantum final momentum distributions resides in the time evolution of the escaping electron under the subsequent action of the Coulomb field. Furthermore, classical mechanics is incapable of reproducing the quantum angular momentum distribution due to the improper initial radial distribution used in the CTMC calculations, i.e., the microcanonical ensemble. We find that in the limit of high momentum transfer, based on the SFA, there is a direct relation between the cylindrical radial distribution dP/dρ and the final angular momentum distribution dP/dL. This leads to a close analytical expression for the partial wave populations (dP/dL) SFA-Q given by dP SFA-Q / dL = 4Z 3 L 2 / (Δp) 3 K 1 (2ZL/Δp) which, together with the prescription L = l + 1/2, reproduces quite accurately the quantum (CVA) results. Considering the inverse problem, knowing the final angular momentum distribution can lead to the inference of the initial probability distribution

  13. Ehrenfest's theorem and the validity of the two-step model for strong-field ionization

    DEFF Research Database (Denmark)

    Shvetsov-Shilovskiy, Nikolay; Dimitrovski, Darko; Madsen, Lars Bojer

    By comparison with the solution of the time-dependent Schrodinger equation we explore the validity of the two-step semiclassical model for strong-field ionization in elliptically polarized laser pulses. We find that the discrepancy between the two-step model and the quantum theory correlates...

  14. Strong-field ionization of xenon dimers: The effect of two-equivalent-center interference and of driving ionic transitions

    Science.gov (United States)

    Zhang, C.; Feng, T.; Raabe, N.; Rottke, H.

    2018-02-01

    Strong-field ionization (SFI) of the homonuclear noble gas dimer Xe2 is investigated and compared with SFI of the Xe atom and of the ArXe heteronuclear dimer by using ultrashort Ti:sapphire laser pulses and photoelectron momentum spectroscopy. The large separation of the two nuclei of the dimer allows the study of two-equivalent-center interference effects on the photoelectron momentum distribution. Comparing the experimental results with a new model calculation, which is based on the strong-field approximation, actually reveals the influence of interference. Moreover, the comparison indicates that the presence of closely spaced gerade and ungerade electronic state pairs of the Xe2 + ion at the Xe2 ionization threshold, which are strongly dipole coupled, affects the photoelectron momentum distribution.

  15. Double atom ionization by multicharged ions and strong electromagnetic field: correlation effects in a continuous spectrum

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1997-01-01

    The nonstationary theory of double ionization of two-electron atoms in collisions with multicharged ions or under the impact of intensive electromagnetic field is developed. The approach, making it possible to study both problems by uniform method, is formulated. The two-electron wave function of continuous spectrum, accounting for interaction of electrons with atomic nucleus, external ionizer and between themselves is obtained. The calculation results on the helium atoms double ionization by multicharged ions is a good quantitative agreement with available experimental data

  16. Dynamic chaos in the tunnelling ionization produced by a strong low-frequency electromagnetic field

    International Nuclear Information System (INIS)

    Krainov, V P

    2014-01-01

    Ionization of atoms by a strong low-frequency linearly polarized electromagnetic field (the photon energy is small compared to the atomic ionization potential) is considered under new conditions compared to the well known Keldysh approach. The field strength is supposed to be small in comparison to the atomic field strength. But the Coulomb interaction of an electron with atomic core is assumed to be of the same order of magnitude as the interaction between an electron and the external electromagnetic field. It was shown that then classical electron motion in the continuum becomes chaotic (this is so-called dynamic chaos). Using the averaging procedure of Chirikov about the chaotic variation of the phase of motion, the considered Newton problem is transformed into the problem of nonlinear electron diffusion over energy scale. In this work we derive the classical electron energy averaged over fast chaotic oscillations of an electron in the final continuum state which takes into account both the Coulomb field and electromagnetic field. This energy is used for analytic calculation of the ionization rate of the ground atomic state into the low lying continuum state based on the Landau–Dykhne approximation (with exponential accuracy). We found that the ionization rate depends significantly on the field frequency. When field frequency decreases, the well known tunnelling limit has been obtained, and then the ionization rate does not depend on the field frequency. (paper)

  17. Tunneling time, exit time and exit momentum in strong field tunnel ionization

    International Nuclear Information System (INIS)

    Teeny, Nicolas

    2016-01-01

    Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.

  18. Tunneling time, exit time and exit momentum in strong field tunnel ionization

    Energy Technology Data Exchange (ETDEWEB)

    Teeny, Nicolas

    2016-10-18

    Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.

  19. Gallstone ileus resulting in strong intestinal obstruction

    Directory of Open Access Journals (Sweden)

    Israel Szajnbok

    Full Text Available Mechanic intestinal obstruction, caused by the passage of biliary calculus from vesicle to intestine, through fistulization, although not frequent, deserve study due to the morbi-mortality rates. Incidence in elder people explains the association with chronic degenerative diseases, increasing complexity in terms of therapy decision. Literature discusses the need and opportunity for the one or two-phase surgical attack of the cholecystenteric fistule, in front of the resolution on the obstructive urgency and makes reference to Gallstone Ileus as an exception for strong intestinal obstruction. The more frequent intestinal obstruction observed is when it occurs a Gallstone Ileus impacting in terms of ileocecal valve. The authors submit a Gallstone Ileus manifestation as causing strong intestinal obstruction, discussing aspects regarding diagnostic and treatment.

  20. Vibrational Excitation of Diatomic Molecular Ions in Strong Field Ionization of Diatomic Molecules

    International Nuclear Information System (INIS)

    Kjeldsen, Thomas K.; Madsen, Lars Bojer

    2005-01-01

    A model based on the strong-field and Born-Oppenheimer approximations qualitatively describes the distribution over vibrational states formed in a diatomic molecular ion following ionization of the neutral molecule by intense laser pulses. Good agreement is found with a recent experiment [X. Urbain et al., Phys. Rev. Lett. 92, 163004 (2004)]. In particular, the observed deviation from a Franck-Condon-like distribution is reproduced. Additionally, we demonstrate control of the vibrational distribution by a variation of the peak intensity or a change of frequency of the laser pulse

  1. Ehrenfest's theorem and the validity of the two-step model for strong-field ionization

    DEFF Research Database (Denmark)

    Shvetsov-Shilovskiy, Nikolay; Dimitrovski, Darko; Madsen, Lars Bojer

    2013-01-01

    with situations where the ensemble average of the force deviates considerably from the force calculated at the average position of the trajectories of the ensemble. We identify the general trends for the applicability of the semiclassical model in terms of intensity, ellipticity, and wavelength of the laser pulse......By comparison with the solution of the time-dependent Schrödinger equation we explore the validity of the two-step semiclassical model for strong-field ionization in elliptically polarized laser pulses. We find that the discrepancy between the two-step model and the quantum theory correlates...

  2. Channel-closing effects in strong-field ionization by a bicircular field

    Science.gov (United States)

    Milošević, D. B.; Becker, W.

    2018-03-01

    Channel-closing effects, such as threshold anomalies and resonantlike intensity-dependent enhancements in strong-field ionization by a bicircular laser field are analyzed. A bicircular field consists of two coplanar corotating or counter-rotating circularly polarized fields having different frequencies. For the total detachment rate of a negative ion by a bicircular field we observe threshold anomalies and explain them using the Wigner threshold law and energy and angular momentum conservation. For the corotating bicircular case, these effects are negligible, while for the counter-rotating case they are pronounced and their position depends on the magnetic quantum number of the initial state. For high-order above-threshold ionization of rare-gas atoms by a counter-rotating bicircular laser field we observe very pronounced intensity-dependent enhancements. We find all four types of threshold anomalies known from collision theory. Contrary to the case of linear polarization, channel-closing effects for a bicircular field are visible also in the cutoff region of the electron energy spectrum, which is explained using quantum-orbit theory.

  3. Multiorbital effects in strong-field ionization and dissociation of aligned polar molecules CH3I and CH3Br

    Science.gov (United States)

    Luo, Sizuo; Zhou, Shushan; Hu, Wenhui; Li, Xiaokai; Ma, Pan; Yu, Jiaqi; Zhu, Ruihan; Wang, Chuncheng; Liu, Fuchun; Yan, Bing; Liu, Aihua; Yang, Yujun; Guo, Fuming; Ding, Dajun

    2017-12-01

    Controlling the molecular axis offers additional ways to study molecular ionization and dissociation in strong laser fields. We measure the ionization and dissociation yields of aligned polar CH3X (X =I , Br) molecules in a linearly polarized femtosecond laser field. The current data show that maximum ionization occurs when the laser polarization is perpendicular to the molecular C -X axis, and dissociation prefers to occur at the laser polarization parallel to the C -X axis. The observed angular distributions suggest that the parent ions are generated by ionization from the HOMO. The angular distribution of fragment ions indicates that dissociation occurs mainly from an ionic excited state produced by ionization from the HOMO-1.

  4. Strong suppression of the positronium channel in double ionization of noble gases by positron impact

    DEFF Research Database (Denmark)

    Bluhme, H.; Knudsen, H.; Merrison, J.P.

    1998-01-01

    Positron-induced double ionization of helium and neon has been studied at energies from threshold to 900 eV. A remarkable difference between the near-threshold behavior of the single and double ionization cross sections is found: Single ionization is dominated by positronium (Ps) formation, while...

  5. Bound and continuum energy distributions of nuclear fragments resulting from tunneling ionization of molecules

    Science.gov (United States)

    Svensmark, Jens; Tolstikhin, Oleg I.; Madsen, Lars Bojer

    2018-03-01

    We present the theory of tunneling ionization of molecules with both electronic and nuclear motion treated quantum mechanically. The theory provides partial rates for ionization into the different final states of the molecular ion, including both bound vibrational and dissociative channels. The exact results obtained for a one-dimensional model of H2 and D2 are compared with two approximate approaches, the weak-field asymptotic theory and the Born-Oppenheimer approximation. The validity ranges and compatibility of the approaches are identified formally and illustrated by the calculations. The results quantify that at typical field strengths considered in strong-field physics, it is several orders of magnitude more likely to ionize into bound vibrational ionic channels than into the dissociative channel.

  6. Ionization of highly excited states of a hydrogen atom by a strong low-frequency field

    International Nuclear Information System (INIS)

    Bersons, I.Y.

    1984-01-01

    The probability of ionization of highly excited states of a hydrogen atom by a low-frequency field is estimated by using the previously derived quasi-classical wave function of an electron in a Coulomb field and in a radiation field. The expression obtained predicts an ionization threshold at field intensities approximately equal to those observed experimentally, but predicts an increase in ionization probability that is approximately ten times the increase observed experimentally when the field intensity in the threshold region is increased. The approximations underlying the derivation of the equation for the ionization probability are discussed

  7. Strong enhancement of Penning ionization for asymmetric atom pairs in cold Rydberg gases: the Tom and Jerry effect

    KAUST Repository

    Efimov, D K

    2016-05-18

    We consider Penning ionization of Rydberg atom pairs as an Auger-type process induced by the dipole-dipole interaction and employ semiclassical formulae for dipole transitions to calculate the autoionization width as a function of the principal quantum numbers, n d, n i, of both atoms. While for symmetric atom pairs with the well-known increase of the autoionization width with increasing n 0 is obtained, the result for asymmetric pairs is counterintuitive - for a fixed n i of the ionizing atom of the pair, the autoionization width strongly increases with decreasing n d of the de-excited atom. For H Rydberg atoms this increase reaches two orders of magnitude at the maximum of the n d dependence, and the same type of counterintuitive behavior is exhibited also by Na, Rb and Cs atoms. This is a purely quantum-mechanical effect, which points towards existence of optimal (we call them \\'Tom\\' and \\'Jerry\\' for \\'big\\' and \\'small\\') pairs of Rydberg atoms with respect to autoionization efficiency. Building on the model of population redistribution in cold Rydberg gases proposed in [1], we demonstrate that population evolution following the initial laser excitation of Rydberg atoms in state n 0 would eventually lead to the formation of such Tom-Jerry pairs with which feature autoionization widths that are enhanced by several orders of magnitude compared to that of two atoms in the initial laser-excited state n 0. We also show that in the high-density regime of cold Rydberg gas experiments the ionization rate of Tom-Jerry pairs can be substantially larger than the blackbody radiation-induced photoionization rate. © 2016 IOP Publishing Ltd.

  8. Atomic structure dependence of nonsequential double ionization of He, Ne and Ar in strong laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, V L B de; Feuerstein, B; Zrost, K; Fischer, D; Rudenko, A; Afaneh, F; Schroeter, C D; Moshammer, R; Ullrich, J [Max-Planck-Institut fuer Kernphysik, D-69029 Heidelberg (Germany)

    2004-04-28

    The ion momentum spectra for nonsequential double ionization of rare gases (He, Ne and Ar) in 23 fs 795 nm laser pulses were measured in the intensity range 0.075-1.25 PW cm{sup -2}. In the studies published, confusing differences in the shape of momentum distributions among different targets are consistently explained within a recollision scenario: excitation during recollision plus subsequent field ionization, not implemented in most theoretical approaches, evidently plays a decisive role for He and Ar nonsequential double ionization whereas it plays only a minor role for Ne. (letter to the editor)

  9. Ionization of a two-electron atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Ovodova, O.V.; Popov, A.M.; Tikhonova, O.V.

    1997-01-01

    A one-dimensional model of a helium atom in an intense field of a femtosecond electromagnetic pulse has been constructed using the Hartree technique. 'Exact' calculations have been compared to the approximations of 'frozen' and 'passive' electrons. A nonmonotonic dependence of the single-electron ionization probability on the radiation intensity has been detected. Minima in the ionization probability are due to multiphoton resonances between different atomic states due to the dynamic Stark effect. We suggest that the ionization suppression is due to the interference stabilization in this case

  10. Collisional ionization of Na by HBr in weak to strong electric fields

    International Nuclear Information System (INIS)

    Safinya, K.A.; Gallagher, T.F.; Sandner, W.; Gounand, F.

    1985-01-01

    We report the effect of static electric fields on the collisional ionization of highly excited sodium atoms by HBr. The binding energy dependence of the collisional ionization cross section is measured at zero field and in static electric fields up to that point at which the atom field ionizes. The applied electric field lowers the ionization threshold of the atom from its zero field value. Therefore an atom near the ionization threshold in an electric field is of smaller size than a free field atom with the same binding energy. Thus measuring the binding energy dependence of the cross section at different values of the electric field allows us to study the effects of the physical size of the atom on the cross section. The effect of the electric field was to lower the measured ionization cross section. However, the binding energy dependence of the cross section remains unchanged at the level of our measurement accuracy. The measured cross sections are larger for larger atoms, exhibit a drop with increasing binding energy characteristic of rotational to electronic excitation transfer, and are of order 10 -12 --10 -11 cm 2 . A simple calculation based on dipole (J→ J-1) excitation transfer from the molecule to the atom predicts, with good agreement, the binding energy dependence of the cross section. The electric field dependence of the data however, is not shown in the theory

  11. Quantum state-resolved probing of strong-field-ionized xenon atoms using femtosecond high-order harmonic transient absorption spectroscopy.

    Science.gov (United States)

    Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E; Santra, Robin; Buth, Christian; Leone, Stephen R

    2007-04-06

    Femtosecond high-order harmonic transient absorption spectroscopy is used to resolve the complete |j,m quantum state distribution of Xe+ produced by optical strong-field ionization of Xe atoms at 800 nm. Probing at the Xe N4/5 edge yields a population distribution rhoj,|m| of rho3/2,1/2ratiorho1/2,1/2ratiorho3/2,3/2=75+/-6 :12+/-3 :13+/-6%. The result is compared to a tunnel ionization calculation with the inclusion of spin-orbit coupling, revealing nonadiabatic ionization behavior. The sub-50-fs time resolution paves the way for tabletop extreme ultraviolet absorption probing of ultrafast dynamics.

  12. Chemical changes in food packaging resulting from ionizing irradiation

    International Nuclear Information System (INIS)

    Thayer, D.W.

    1988-01-01

    Recent approvals of food irradiation processes by the U.S. Food and Drug Administration have led to a search for packaging approved for use with ionizing radiation. Though 13 packaging materials were approved several years ago as food contactants for gamma irradiation up to 10 kGy at refrigeration temperatures and 4 packaging materials were approved for up to 60 kGy at cryogenic temperatures, no currently used packaging is approved for irradiated foods. Extensive research was conducted by the U.S. Army and others on the suitability of both flexible packaging and metal cans for packaging irradiated foods. The results of the studies of packaging for irradiated foods will be described and discussed in context of currently used packaging materials for non-irradiated meats and poultry

  13. Direct observation of ring-opening dynamics in strong-field ionized selenophene using femtosecond inner-shell absorption spectroscopy

    Science.gov (United States)

    Lackner, Florian; Chatterley, Adam S.; Pemmaraju, C. D.; Closser, Kristina D.; Prendergast, David; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2016-12-01

    Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (C4H4Se). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (˜58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations. The experiments simultaneously capture the instantaneous population of stable molecular ions, the emergence and decay of excited cation states, and the appearance of atomic fragments. The experiments reveal, in particular, insight into the strong-field induced ring-opening dynamics in the selenophene cation, which are traced by the emergence of non-cyclic molecules as well as the liberation of Se+ ions within an overall time scale of approximately 170 fs. We propose that both products may be associated with dynamics on the same electronic surfaces but with different degrees of vibrational excitation. The time-dependent inner-shell absorption features provide direct evidence for a complex relaxation mechanism that may be approximated by a two-step model, whereby the initially prepared, excited cyclic cation decays within τ1 = 80 ± 30 fs into a transient molecular species, which then gives rise to the emergence of bare Se+ and ring-open cations within an additional τ2 = 80 ± 30 fs. The combined experimental and theoretical results suggest a close relationship between σ* excited cation states and the observed ring-opening reactions. The findings demonstrate that the combination of femtosecond time-resolved core-level spectroscopy with ab initio estimates of spectroscopic signatures provide new insights into complex, ultrafast photochemical reactions such as ring-opening dynamics in organic molecules in real-time and with simultaneous sensitivity for electronic and structural

  14. New results on strong-interaction effects in antiprotonic hydrogen

    CERN Document Server

    Gotta, D; Augsburger, M A; Borchert, G L; Castelli, C M; Chatellard, D; El-Khoury, P; Egger, J P; Gorke, H; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the low-energy antiproton ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using charge-coupled devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction. (33 refs).

  15. New results on strong-interaction effects in antiprotonic hydrogen

    International Nuclear Information System (INIS)

    Anagnostopoulos, D. F.; Augsburger, M.; Borchert, G.; Castelli, C.; Chatellard, D.; El-Khoury, P.; Egger, J.-P.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Schult, O. W. B.; Siems, Th.; Simons, L. M.

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the Low-Energy Antiproton Ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using Charge-Coupled Devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction

  16. Binary and Recoil Collisions in Strong Field Double Ionization of Helium

    International Nuclear Information System (INIS)

    Staudte, A.; Villeneuve, D. M.; Corkum, P. B.; Ruiz, C.; Becker, A.; Schoeffler, M.; Schoessler, S.; Meckel, M.; Doerner, R.; Zeidler, D.; Weber, Th.

    2007-01-01

    We have investigated the correlated momentum distribution of both electrons from nonsequential double ionization of helium in a 800 nm, 4.5x10 14 W/cm 2 laser field. Using very high resolution coincidence techniques, we find a so-far unobserved fingerlike structure in the correlated electron momentum distribution. The structure can be interpreted as a signature of the microscopic dynamics in the recollision process. We identify features corresponding to the binary and recoil lobe in field-free (e,2e) collisions. This interpretation is supported by analyzing ab initio solutions of a fully correlated three-dimensional helium model

  17. Exact result in strong wave turbulence of thin elastic plates

    Science.gov (United States)

    Düring, Gustavo; Krstulovic, Giorgio

    2018-02-01

    An exact result concerning the energy transfers between nonlinear waves of a thin elastic plate is derived. Following Kolmogorov's original ideas in hydrodynamical turbulence, but applied to the Föppl-von Kármán equation for thin plates, the corresponding Kármán-Howarth-Monin relation and an equivalent of the 4/5 -Kolmogorov's law is derived. A third-order structure function involving increments of the amplitude, velocity, and the Airy stress function of a plate, is proven to be equal to -ɛ ℓ , where ℓ is a length scale in the inertial range at which the increments are evaluated and ɛ the energy dissipation rate. Numerical data confirm this law. In addition, a useful definition of the energy fluxes in Fourier space is introduced and proven numerically to be flat in the inertial range. The exact results derived in this Rapid Communication are valid for both weak and strong wave turbulence. They could be used as a theoretical benchmark of new wave-turbulence theories and to develop further analogies with hydrodynamical turbulence.

  18. Numerical Detector Theory for the Longitudinal Momentum Distribution of the Electron in Strong Field Ionization

    Science.gov (United States)

    Tian, Justin; Wang, Xu; Eberly, J. H.

    2017-05-01

    The lack of analytical solutions for the exit momentum in the laser-driven tunneling theory is a well-recognized problem in strong field physics. Theoretical studies of electron momentum distributions in the neighborhood of the tunneling exit depend heavily on ad hoc assumptions. In this Letter, we apply a new numerical method to study the exiting electron's longitudinal momentum distribution under intense short-pulse laser excitation. We present the first realizations of the dynamic behavior of an electron near the so-called tunneling exit region without adopting a tunneling approximation.

  19. Probing the ionization wave packet and recollision dynamics with an elliptically polarized strong laser field in the nondipole regime

    Science.gov (United States)

    Maurer, J.; Willenberg, B.; Daněk, J.; Mayer, B. W.; Phillips, C. R.; Gallmann, L.; Klaiber, M.; Hatsagortsyan, K. Z.; Keitel, C. H.; Keller, U.

    2018-01-01

    We explore ionization and rescattering in strong mid-infrared laser fields in the nondipole regime over the full range of polarization ellipticity. In three-dimensional photoelectron momentum distributions (3D PMDs) measured with velocity map imaging spectroscopy, we observe the appearance of a sharp ridge structure along the major polarization axis. Within a certain range of ellipticity, the electrons in this ridge are clearly separated from the two lobes that commonly appear in the PMD with elliptically polarized laser fields. In contrast to the well-known lobes of direct electrons, the sharp ridge is created by Coulomb focusing of the softly recolliding electrons. These ridge electrons are directly related to a counterintuitive shift of the PMD peak opposite to the laser beam propagation direction when the dipole approximation breaks down. The ellipticity-dependent 3D PMDs give access to different ionization and recollision dynamics with appropriate filters in the momentum space. For example, we can extract information about the spread of the initial wave packet and the Coulomb momentum transfer of the rescattering electrons.

  20. Enhancement of strong-field multiple ionization in the vicinity of the conical intersection in 1,3-cyclohexadiene ring opening

    International Nuclear Information System (INIS)

    Petrovic, Vladimir S.; Kim, Jaehee; Schorb, Sebastian; White, James; Cryan, James P.; Zipp, Lucas; Glownia, J. Michael; Broege, Douglas; Miyabe, Shungo; Tao, Hongli; Martinez, Todd; Bucksbaum, Philip H.

    2013-01-01

    Nonradiative energy dissipation in electronically excited polyatomic molecules proceeds through conical intersections, loci of degeneracy between electronic states. We observe a marked enhancement of laser-induced double ionization in the vicinity of a conical intersection during a non-radiative transition. We measured double ionization by detecting the kinetic energy of ions released by laser-induced strong-field fragmentation during the ring-opening transition between 1,3-cyclohexadiene and 1,3,5-hexatriene. The enhancement of the double ionization correlates with the conical intersection between the HOMO and LUMO orbitals

  1. Stability results of a free air ionization chamber in standard mammography beams

    International Nuclear Information System (INIS)

    Silva, Natalia F.; Xavier, Marcos; Vivolo, Vitor; Caldas, Linda V.E.

    2015-01-01

    Free air ionization chambers are absolute dosimeters, because they can measure basic physical quantities directly without the need of their calibration in a standard radiation beam. They are used for measuring exposure and air kerma in X and gamma radiation beams. The Calibration Laboratory (LCI) of IPEN has a free air ionization chamber of the cylindrical type for low energies. The characterization of this ionization chamber was already performed and reported in a previous study. After a modification in the support of the micrometers used for the movement of the internal cylinder devices, the tests were redone. The objective of this work was to present the new alignment protocol of the free air ionization chamber in low energies of X-ray beams of standard mammography qualities, assuring the positioning reproducibility, and new results of stability tests performed with the application of this protocol will be presented. (author)

  2. Strongly turbulent ionizing shock wave as the mechanism for the first neutron emission in the dense plasma focus discharge

    International Nuclear Information System (INIS)

    Kobata, T.

    1987-01-01

    It is well known that high temperature thermo-nuclear plasma of several keV is very difficult to exist in the dense and small radius plasma column. So, at any time the high neutron yield from the dense plasma focus has had the tendency to be explained by the beam target mechanism based on the observation of the high energy beam emissions. However the manner of neutron emission is very complex and different among the devices and from shot to shot. Especially it is difficult to explain the first neutron emission by the beam target mechanism which is coincide with the formation of very dense plasma column. There is the ionizing shock wave in front of the plasma sheet and the gas is fully ionized after the shock wave because the Mach-number against the filling gas is very large, M--100. The thickness of the shock wave is very thin, 1≤0.5 mm for the discharge condition that the speed of the plasma sheet V/sub sh/ is 1--2 x 10/sup 7/ cm/sec and the discharge gas pressure is several Torr. The intensity of the magnetic field penetrated into the shock wave from the back side of the plasma sheet at the last converging phase will be the order of 1 kG. The plasma density in the shock wave will be n=4--9.10/sup 17//cm/sup 3/ because the density jump in the very strong shock limit is 6 times of the base gas density. Then the Alfven speed b=B/sub θ//(4πrho)/sup 1/2/ calculated from these density and magnetic field is 2.4--1.6 x 10/sup 6/ cm/sec. Similarly the sonic speed a= (γkT/m)/sup 1/2/ in the plasma is also the same order, i.e. a=2--4x10/sup 6/ cm/sec, for the temperature of 10--50 eV expected from the shock wave heating

  3. Comparison Study of Strong-Field Ionization of Molecules and Atoms by Bicircular Two-Color Femtosecond Laser Pulses.

    Science.gov (United States)

    Lin, Kang; Jia, Xinyan; Yu, Zuqing; He, Feng; Ma, Junyang; Li, Hui; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Li, Hanxiao; Lu, Peifen; Zeng, Heping; Chen, Jing; Wu, Jian

    2017-11-17

    We experimentally investigate the single and double ionization of N_{2} and O_{2} molecules in bicircular two-color femtosecond laser pulses, and compare with their companion atoms of Ar and Xe with comparable ionization thresholds. Electron recollision assisted enhanced ionization is observed in N_{2} and Ar by controlling the helicity and field ratio between the two colors, whereas the enhanced ionization via the recollision is almost absent in O_{2} and Xe. Our S-matrix simulations clearly reveal the crucial role of the detailed electronic structures of N_{2} and O_{2} on the two-dimensional recollision of the electrons driven by the bicircular two-color laser fields. As compared to Ar, the resonant multiphoton excitation dominates the double ionization of Xe.

  4. Impact of Coulomb potential on peak structures arising in momentum and low-energy photoelectron spectra produced in strong-field ionization of laser-irradiated atoms

    Science.gov (United States)

    Pyak, P. E.; Usachenko, V. I.

    2018-03-01

    The phenomenon of pronounced peak structure(s) of longitudinal momentum distributions as well as a spike-like structure of low-energy spectra of photoelectrons emitted from laser-irradiated Ar and Ne atoms in a single ionization process is theoretically studied in the tunneling and multiphoton regimes of ionization. The problem is addressed assuming only the direct above-threshold ionization (ATI) as a physical mechanism underlying the phenomenon under consideration (viz. solely contributing to observed photoelectron momentum distributions (PMD)) and using the Coulomb-Volkov (CV) ansatz within the frame of conventional strong-field approximation (SFA) applied in the length-gauge formulation. The developed CV-SFA approach also incorporates the density functional theory essentially exploited for numerical composition of initial (laser-free) atomic state(s) constructed from atomic orbitals of Gaussian type. Our presented CV-SFA based (and laser focal-volume averaged) calculation results proved to be well reproducing both the pronounced double-peak and/or ATI-like multi-peak structure(s) experimentally observed in longitudinal PMD under conditions of tunneling and/or multiphoton regime, respectively. In addition, our CV-SFA results presented for tunneling regime also suggest and remarkably reproduce a pronounced structure observed in relevant experiments as a ‘spike-like’ enhanced maximum arising in low-energy region (around the value of about 1 eV) of photoelectron spectra. The latter consistency allows to identify and interpret these results as the so-called low-energy structure (LES) since the phenomenon proved to appear as the most prominent if the influence of Coulomb potential on photoelectron continuum states is maximally taken into account under calculations (viz. if the parameter Z in CV’s functions is put equal to 1). Moreover, the calculated LES proved to correspond (viz., established as closely related) to the mentioned double-peak structure arising

  5. Recent Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    Science.gov (United States)

    Cochran, Donna J.; Buchner, Stephen P.; Irwin, Tim L.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Flanigan, Ryan J.; Cox, Stephen R.

    2005-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to- Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others. T

  6. Update of NIST half-life results corrected for ionization chamber source-holder instability.

    Science.gov (United States)

    Unterweger, M P; Fitzgerald, R

    2014-05-01

    As reported at the ICRM 2011, it was discovered that the source holder used for calibrations in the NIST 4πγ ionization chamber (IC) was not stable. This has affected a large number of half-life measurement results previously reported and used in compilations of nuclear data. Corrections have been made on all of the half-life data based on the assumption that the changes to the ionization chamber response were gradual. The corrections are energy dependent and therefore radionuclide specific. This presentation will review our results and present the recommended changes in half-life values and/or uncertainties. © 2013 Published by Elsevier Ltd.

  7. Initial test results of an ionization chamber shower detector for a LHC luminosity monitor

    CERN Document Server

    Datte, P S; Haguenauer, Maurice; Manfredi, P F; Manghisoni, M; Millaud, J E; Placidi, Massimo; Ratti, L; Riot, V J; Schmickler, Hermann; Speziali, V; Traversi, G; Turner, W C

    2003-01-01

    A novel segmented multigap pressurized gas ionization chamber is being developed for optimization of the luminosity of the Large Hadron Collider (LHC). The ionization chambers are to be installed in the front quadrupole and 0 degrees neutral particle absorbers in the high luminosity interaction regions (IRs) and sample the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The ionization chambers are instrumented with low noise, fast pulse-shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. In this paper, we report the initial results of our second test of this instrumentation in a super proton synchrotron (SPS) external proton beam. Single 300 GeV protons are used to simulate the hadronic/electromagnetic showers produced by the forward collision products from the interaction regions of the LHC. The capability of instrumentation to measure the luminosity of individual bunches in a 40 MHz bunch train is demonstrated. (10 refs) .

  8. Initial test results of an ionization chamber shower detector for a LHC luminosity monitor

    International Nuclear Information System (INIS)

    Datte, P.; Beche, J.-F.; Haguenauer, M.; Manfredi, P.F.; Manghisoni, M.; Millaud, J.; Placidi, M.; Ratti, L.; Riot, V.; Schmickler, H.; Speziali, V.; Turner, W.

    2002-01-01

    A novel, segmented, multi-gap, pressurized gas ionization chamber is being developed for optimization of the luminosity of the LHC. The ionization chambers are to be installed in the front quadrupole and zero degree neutral particle absorbers in the high luminosity IRs and sample the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. In this paper we report the initial results of our second test of this instrumentation in an SPS external proton beam. Single 300 GeV protons are used to simulate the hadronic/electromagnetic shower produced by the forward collision products from the interaction regions of the LHC. The capability of instrumentations to measure the luminosity of individual bunches in a 40 MHz bunch train is demonstrated

  9. Parametric study of the relaxation zone behind strong normal shock waves in a dusty ionized monatomic gas

    International Nuclear Information System (INIS)

    Igra, O.; Ben-Dor, G.

    1982-01-01

    The conservation equations appropriate to a steady, one-dimensional flow of dusty ionized argon were solved numerically. The specific effect of each of the physical parameters of the dust upon the flow properties in the relaxation zone is studied. It is found that increasing the dust particle mass causes an increase in both the kinematic and thermal relaxation lengths. In addition to these changes, the flow field inside the relaxation zone is also affected. An increase in the dust mass (caused either by an increase in the dust density or its diameter) causes an increase in the plasma velocity, temperature and electron number density and a decrease in its density and pressure. Similar effects are encountered when the specific heat capacity of the dust is changed. An increase in the emissivity of the dust causes an increase in the plasma density and pressure and a decrease in its velocity, temperature and electron number density. Increasing the emissivity of the dust results in a decrease in the relaxation zone length. (author)

  10. Investigations of the signal production in liquid-ionization-chambers by the passage of strongly ionizing particles and a now theoretical description of recombination

    International Nuclear Information System (INIS)

    Supper, R.

    1991-12-01

    Starting from the original Onsager-theory an extended theory is presented describing the recombination of charge carriers and of signal production in TMS (tetramethylsilane) liquid ionization chambers. The shielding by the impurities of the liquid is explicitly taken into account. By dedicated measurements various parameter dependencies of the theory are checked and the parameter values are experimentally determined. The studies comprise test procedures of the TMS chamber operation and are in context of a hadron calorimeter set up of the cosmic ray experiment KASCADE. (orig.) [de

  11. Origin of the cusp in the transverse momentum distribution for the process of strong-field ionization

    Science.gov (United States)

    Ivanov, I. A.

    2015-12-01

    We study the origin of the cusp structure in the transverse or lateral electron momentum distribution (TEMD) for the process of tunneling ionization driven by a linearly polarized laser pulse. We show that the appearance of the cusp in the TEMD can be explained as follows. Projection on the set of the Coulomb scattering states leads to the appearance of elementary cusps which have a simple structure as functions of the lateral momentum. This structure is independent of the detailed dynamics of the ionization process and can be described analytically. These elementary cusps can be used to describe the cusp structure in TEMD.

  12. Update of NIST half-life results corrected for ionization chamber source-holder instability

    International Nuclear Information System (INIS)

    Unterweger, M.P.; Fitzgerald, R.

    2014-01-01

    As reported at the ICRM 2011, it was discovered that the source holder used for calibrations in the NIST 4πγ ionization chamber (IC) was not stable. This has affected a large number of half-life measurement results previously reported and used in compilations of nuclear data. Corrections have been made on all of the half-life data based on the assumption that the changes to the ionization chamber response were gradual. The corrections are energy dependent and therefore radionuclide specific. This presentation will review our results and present the recommended changes in half-life values and/or uncertainties. - Highlights: • The NIST half-life data is corrected for sample positioning variations and refitted. • These results are reported and increased errors in the reported values are given. • Longer lived radionuclides are discussed

  13. Calibration and consistency of results of an ionization-chamber secondary standard measuring system for activity

    International Nuclear Information System (INIS)

    Schrader, Heinrich

    2000-01-01

    Calibration in terms of activity of the ionization-chamber secondary standard measuring systems at the PTB is described. The measurement results of a Centronic IG12/A20, a Vinten ISOCAL IV and a radionuclide calibrator chamber for nuclear medicine applications are discussed, their energy-dependent efficiency curves established and the consistency checked using recently evaluated radionuclide decay data. Criteria for evaluating and transferring calibration factors (or efficiencies) are given

  14. The Wafer and Diffusion Lot Dependence of Surface Effects Resulting from Ionizing Radiation,

    Science.gov (United States)

    An investigation of the wafer and diffusion lot dependence of surface effects resulting from ionizing radiation was conducted by irradiating samples...of transistors. The transistors were selected by the wafer and diffusion lot from which they were produced. Both NPN and PNP transistors were...the diffusion lot . With the PNP’s which were not effected to the same extent as the NPN’s the dependence on the wafer or diffusion lot was not

  15. Pressure of a partially ionized hydrogen gas : numerical results from exact low temperature expansions

    OpenAIRE

    Alastuey, Angel; Ballenegger, Vincent

    2010-01-01

    8 pages; International audience; We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first five leading corrections to the ideal Saha equation ...

  16. Strong Lensing Science Results from the Hyper Suprime-Cam Survey

    Science.gov (United States)

    Wong, Kenneth; HSC SSP Strong Lens Working Group

    2018-01-01

    Strong gravitational lenses are valuable objects for studying galaxy structure and cosmology. Lensing is a unique probe of the dark matter structure of galaxies, groups, and clusters, as well as an independent tool for constraining cosmological parameters. Lensing also magnifies the background source population, allowing for detailed studies of their properties at high resolution. However, strong lenses are rare and difficult to find, requiring deep wide-area high-resolution imaging surveys. With data from the ongoing Hyper Suprime-Cam (HSC) Subaru Strategic Program, we have discovered over 100 new strong lenses at the galaxy and group scale to expand the sample of lensing systems, particularly at redshifts z > 0.5, where there have previously been relatively few known lenses. We present a summary of the latest strong lensing science results from the HSC survey data taken through the S17A semester.

  17. arXiv Recent results from the strong interactions program of NA61/SHINE

    CERN Document Server

    Pulawski, Szymon

    2017-01-01

    The NA61/SHINE experiment studies hadron production in hadron+hadron, hadron+nucleus and nucleus+nucleus collisions. The strong interactions program has two main purposes: study the properties of the onset of deconfinement and search for the signatures of the critical point of strongly interacting matter. This aim is pursued by performing a two-dimensional scan of the phase diagram by varying the energy/momentum (13A-158A GeV/c) and the system size (p+p, Be+Be, Ar+Sc, Xe+La) of the collisions. This publication reviews recent results from p+p, Be+Be and Ar+Sc interactions. Measured particle spectra are discussed and compared to NA49 results from Pb+Pb collisions. The results illustrate the progress towards scanning the phase diagram of strongly interacting matter.

  18. Ionizing radiation

    International Nuclear Information System (INIS)

    Kruger, J.

    1989-01-01

    Ionizing radiation results in biological damage that differs from other hazardous substances and is highly dangerous to man. Ionizing radiation cannot be perceived by man's sense organs and the biological damage cannot be detected immediately afterwards (except in very high doses). Every human being is exposed to low doses of radiation. The structure of the atom; sources of ionizing radiation; radiation units; biological effects; norms for radiation protection; and the national control in South Africa are discussed. 1 fig., 5 refs

  19. An ionization pressure gauge with LaB6 emitter for long-term operation in strong magnetic fields

    Science.gov (United States)

    Wenzel, U.; Pedersen, T. S.; Marquardt, M.; Singer, M.

    2018-03-01

    We report here on a potentially significant improvement in the design of neutral pressure gauges of the so-called ASDEX-type which were first used in the Axially Symmetric Divertor EXperiment (ASDEX). Such gauges are considered state-of-the-art and are in wide use in fusion experiments, but they nonetheless suffer from a relatively high failure rate when operated at high magnetic field strengths for long times. This is therefore a significant concern for long-pulse, high-field experiments such as Wendelstein 7-X (W7-X) and ITER. The new design is much more robust. The improvement is to use a LaB6 crystal instead of a tungsten wire as the thermionic emitter of electrons in the gauge. Such a LaB6 prototype gauge was successfully operated for a total of 60 h in B = 3.1 T, confirming the significantly improved robustness of the new design and qualifying it for near-term operation in W7-X. With the LaB6 crystal, an order of magnitude reduction in heating current is achieved, relative to the tungsten filament based gauges, from 15-20 A to 1-2 A. This reduces the Lorenz forces and the heating power by an order of magnitude also and is presumably the reason for the much improved robustness. The new gauge design, test environment setup at the superconducting magnet, and results from test operation are described.

  20. Atmospheric Ionizing Radiation (AIR): Analysis, Results, and Lessons Learned From the June 1997 ER-2 Campaign

    Science.gov (United States)

    Wilson, J. W. (Editor); Jones, I. W. (Editor); Maiden, D. L. (Editor); Goldhagen, P. (Editor)

    2003-01-01

    The United States initiated a program to assess the technology required for an environmentally safe and operationally efficient High Speed Civil Transport (HSCT) for entrance on the world market after the turn of the century. Due to the changing regulations on radiation exposures and the growing concerns over uncertainty in our knowledge of atmospheric radiations, the NASA High Speed Research Project Office (HSRPO) commissioned a review of "Radiation Exposure and High-Altitude Flight" by the National Council on Radiation Protection and Measurements (NCRP). On the basis of the NCRP recommendations, the HSRPO funded a flight experiment to resolve the environmental uncertainty in the atmospheric ionizing radiation levels as a step in developing an approach to minimize the radiation impact on HSCT operations. To minimize costs in this project, an international investigator approach was taken to assure coverage with instrument sensitivity across the range of particle types and energies to allow unique characterization of the diverse radiation components. The present workshop is a result of the flight measurements made at the maximum intensity of the solar cycle modulated background radiation levels during the month of June 1997.

  1. Volatile sulfur compounds in foods as a result of ionizing radiation

    Science.gov (United States)

    Ionizing radiation improves food safety and extends shelf life by inactivating food-borne pathogens and spoilage microorganisms. However, irradiation may induce the development of an off-odor, particularly at high doses. The off-odor has been called “irradiation odor”. Substantial evidence suggests ...

  2. Lattice Hamiltonian approach to the Schwinger model. Further results from the strong coupling expansion

    International Nuclear Information System (INIS)

    Szyniszewski, Marcin; Manchester Univ.; Cichy, Krzysztof; Poznan Univ.; Kujawa-Cichy, Agnieszka

    2014-10-01

    We employ exact diagonalization with strong coupling expansion to the massless and massive Schwinger model. New results are presented for the ground state energy and scalar mass gap in the massless model, which improve the precision to nearly 10 -9 %. We also investigate the chiral condensate and compare our calculations to previous results available in the literature. Oscillations of the chiral condensate which are present while increasing the expansion order are also studied and are shown to be directly linked to the presence of flux loops in the system.

  3. Workers radiation protection. Occupational exposure to ionizing radiations in France: 2015 results. 2016 Mission report

    International Nuclear Information System (INIS)

    2016-06-01

    National results of the individual monitoring of occupational exposure to ionizing radiation are reported for all civilian and military activities subject to authorization or declaration (i.e. medical and veterinary activities, nuclear industry, defence, non-nuclear industry and research), as well as for activities concerned by the enhanced exposure to natural radiation. 365 830 workers within activities subject to authorization or declaration were monitored by passive dosimetry in 2015, which represents an increase by 1.7 % compared to 2014. The average individual dose in 2015 was very close to the value in 2014. Furthermore, 14 138 workers received more than 1 mSv (i.e. the legal dose limit for the public), and 2 606 workers received more than 5 mSv. 2 workers received more than 20 mSv (i.e. the dose limit for the workers in the French regulation). As a result, the collective dose increased from 56.3 to 61.9 man.Sv (10 %), thus reaching the same level as in the years 2009 to 2013. Important differences are noticed according to the occupational activities: the average dose in the medical and veterinary field (which represents 62.4 % of the monitored workers) and that in the research field (3.6 % of the monitored workers) are less than 0.4 mSv; the average doses are higher in the nuclear field and in the non-nuclear industry (representing together 30.1 % of the monitored workers), respectively 1.17 mSv and 1.38 mSv. Concerning internal dosimetry, 279 877 individual examinations have been performed in 2015, 52 % of which are radio-toxicological analysis of excreta and 48 % are direct body counting. In 2015, 2 workers had a committed effective dose greater than or equal to 1 mSv and the maximum dose was 3 mSv. Data or trends relative to workers exposed to natural radioactivity are also dealt with in this report (air crews, personnel subjected to radon exposure). In particular, results of aircrew dosimetry are reported: in 2015, the average individual dose of 19 565

  4. Workers radiation protection. Occupational exposure to ionizing radiations in France: 2015 results

    International Nuclear Information System (INIS)

    2016-06-01

    National results of the individual monitoring of occupational exposure to ionizing radiation are reported for all civilian and military activities subject to authorization or declaration (i.e. medical and veterinary activities, nuclear industry, defence, non-nuclear industry and research), as well as for activities concerned by the enhanced exposure to natural radiation. 365 830 workers within activities subject to authorization or declaration were monitored by passive dosimetry in 2015, which represents an increase by 1.7 % compared to 2014. The average individual dose in 2015 was very close to the value in 2014. Furthermore, 14 138 workers received more than 1 mSv (i.e. the legal dose limit for the public), and 2 606 workers received more than 5 mSv. 2 workers received more than 20 mSv (i.e. the dose limit for the workers in the French regulation). As a result, the collective dose increased from 56.3 to 61.9 man.Sv (10 %), thus reaching the same level as in the years 2009 to 2013. Important differences are noticed according to the occupational activities: the average dose in the medical and veterinary field (which represents 62.4 % of the monitored workers) and that in the research field (3.6 % of the monitored workers) are less than 0.4 mSv; the average doses are higher in the nuclear field and in the non-nuclear industry (representing together 30.1 % of the monitored workers), respectively 1.17 mSv and 1.38 mSv. Concerning internal dosimetry, 279 877 individual examinations have been performed in 2015, 52 % of which are radio-toxicological analysis of excreta and 48 % are direct body counting. In 2015, 2 workers had a committed effective dose greater than or equal to 1 mSv and the maximum dose was 3 mSv. Data or trends relative to workers exposed to natural radioactivity are also dealt with in this report (air crews, personnel subjected to radon exposure). In particular, results of aircrew dosimetry are reported: in 2015, the average individual dose of 19 565

  5. Ionization equilibrium in dense plasmas

    International Nuclear Information System (INIS)

    Ying, R.

    1987-01-01

    The average degree of ionization for a strongly coupled plasma is investigated and calculated. Two widely used approaches: the Saha equation method and the Thomas-Fermi (TF) statistical atomic model are adopted to determine the degree of ionization. Both methods are modified in a number of ways to include the strong-coupling effect in the plasma. In the Saha equation approach, the strong-coupling effects are introduced through: (i) a replacement of the Coulomb potential by a screened Debye potential; (ii) adoption of the Planck-Larkin partition function; (iii) description of the electron component by Fermi-Dirac statistics. The calculated degree of ionization exceeds that obtained from the original Saha equation, exhibits a minimum as a function of the density and shows an abrupt phase transition from weakly ionized to a fully ionized state. The zero-temperature TF model for compressed ions and the finite-temperature TF model for ions are investigated for the first time. In order to take into account the strong-coupling effect in a systematic way, a strong-coupling TF model is set up. Favorable results with the relatively simple approximations indicate that the newly established strong-coupling TF model is a more systematic and physically consistent approach

  6. Ionizing radiation test results for an automotive microcontroller on board the Schiaparelli Mars lander

    Science.gov (United States)

    Tapani Nikkanen, Timo; Hieta, Maria; Schmidt, Walter; Genzer, Maria; Haukka, Harri; Harri, Ari-Matti

    2016-04-01

    The Finnish Meteorological Institute (FMI) has delivered a pressure and a humidity instrument for the ESA ExoMars 2016 Schiaparelli lander mission. Schiaparelli is scheduled to launch towards Mars with the Trace Gas Orbiter on 14th of March 2016. The DREAMS-P (pressure) and DREAMS-H (Humidity) instruments are operated utilizing a novel FMI instrument controller design based on a commercial automotive microcontroller (MCU). A custom qualification program was implemented to qualify the MCU for the relevant launch, cruise and surface operations environment of a Mars lander. Resilience to ionizing radiation is one of the most critical requirements for a digital component operated in space or at planetary bodies. Thus, the expected Total Ionizing Dose accumulated by the MCU was determined and a sample of these components was exposed to a Co-60 gamma radiation source. Part of the samples was powered during the radiation exposure to include the effect of electrical biasing. All of the samples were verified to withstand the expected total ionizing dose with margin. The irradiated test samples were then radiated until failure to determine their ultimate TID.

  7. Highly ionized plasma plume generation by long-pulse CO2 laser irradiation of solid targets in strong axial magnetic fields

    International Nuclear Information System (INIS)

    Hoffman, A.L.; Crawford, E.A.

    1982-01-01

    The present work utilizes high f number optics and is directed primarily at controlling the conditions in the magnetically confined plume. Typically, fully ionized carbon plasmas have been produced with 10 18 cm -3 electron densities and 100 to 150 eV electron temperatures. These carbon plasmas have been doped with high Z atoms in order to study ionization and emission rates at the above conditions

  8. arXiv Recent results and future of the NA61/SHINE strong interactions program

    CERN Document Server

    Lysakowski, Bartosz

    2018-01-01

    NA61/SHINE is a fixed target experiment at the CERN Super-Proton- Synchrotron. The main goals of the experiment are to discover the critical point of strongly interacting matter and study the properties of the onset of deconfnement. In order to reach these goals the collaboration studies hadron production properties in nucleus-nucleus, proton-proton and proton-nucleus interactions. In this talk, recent results on particle production in p+p interactions, as well as Be+Be and Ar+Sc collisions in the SPS energy range are reviewed. The results are compared with available world data. The future of the NA61/SHINE scientifc program is also presented.

  9. Seismic Response of a Sedimentary Basin: Preliminary Results from Strong Motion Downhole Array in Taipei Basin

    Science.gov (United States)

    Young, B.; Chen, K.; Chiu, J.

    2013-12-01

    The Strong Motion Downhole Array (SMDA) is an array of 32 triggered strong motion broadband seismometers located at eight sites in Taipei Basin. Each site features three to five co-located three-component accelerometers--one at the surface and an additional two to four each down independent boreholes. Located in the center of Taipei Basin is Taipei City and the Taipei metropolitan area, the capital of Taiwan and home to more than 7 million residents. Taipei Basin is in a major seismic hazard area and is prone to frequent large earthquakes producing strong ground motion. This unique three-dimension seismic array presents new frontiers for seismic research in Taiwan and, along with it, new challenges. Frequency-dependent and site-specific amplification of seismic waves from depth to surface has been observed: preliminary results indicate that the top few tens of meters of sediment--not the entire thickness--are responsible for significant frequency-dependent amplification; amplitudes of seismic waves at the surface may be as much as seven times that at depth. Dominant amplification frequencies are interpreted as quarter-wavelength constructive interference between the surface and major interfaces in the sediments. Using surface stations with known orientation as a reference, borehole seismometer orientations in these data--which are unknown, and some of which vary considerably from event to event--have been determined using several methods. After low-pass filtering the strong motion data, iteratively rotating the two horizontal components from an individual borehole station and cross-correlating them with that from a co-located surface station has proven to be very effective. In cases where the iterative cross-correlation method does not provide a good fit, rotating both surface and borehole stations to a common axis of maximum seismic energy provides an alternative approach. The orientation-offset of a borehole station relative to the surface station may be

  10. Pressure of a partially ionized hydrogen gas: numerical results from exact low temperature expansions

    Energy Technology Data Exchange (ETDEWEB)

    Alastuey, A. [Laboratoire de Physique, ENS Lyon, CNRS, Lyon (France); Ballenegger, V. [Institut UTINAM, Universite de Franche-Comte, CNRS, Besancon (France)

    2010-01-15

    We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first.ve leading corrections to the ideal Saha equation of state have been derived[A. Alastuey, V. Ballenegger et al., J. Stat. Phys. 130, 1119 (2008)]. Those corrections account for all effects of interactions and thermal excitations up to order exp(E{sub H} /kT) included, where E{sub H} {approx_equal} -13.6 eV is the ground state energy of the hydrogen atom. Among the.ve leading corrections, three are easy to evaluate, while the remaining ones involve suitably truncated internal partition functions of H{sub 2} molecules and H{sup -} and H{sub 2}{sup +} ions, for which no analytical formulae are available in closed form. We estimate those partitions functions at.nite temperature via a simple phenomenology based on known values of rotational and vibrational energies. This allows us to compute numerically the leading deviations to the Saha pressure along several isotherms and isochores. Our values are compared with those of the OPAL tables (for pure hydrogen) calculated within the ACTEX method (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Study of the ionization of H{sup +}{sub 2} ions in strong laser fields; Untersuchung der Ionisation von H{sup +}{sub 2}-Ionen in starken Laserfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Odenweller, Matthias

    2010-07-01

    In the framework of this thesis it has been succeeded to develop a worldwide unique measurement apparatur, by which hydrogen-molecule ions can be ionized by means of short laser pulses and the reaction product kinematically completely measured. For this a detection method following the Coltrims technique, in which both protons and electrons can be detected over the complete spatial angle. The H{sup +}{sub 2} ions origin from a high-frequency ion source and are accelerated to 400 keV. This ion beam is overlapped with a 780-nm laser pulse othe pulse length 40 fs. After the reaction the molecule ions fragments either via the dissociation channel H{sup +}{sub 2}+nh{nu}{yields}H+H{sup +} or via an ionization followed by a Coulomb explosion: H{sup +}{sub 2}+nh{nu}{yields}H{sup +}+H{sup +}+e{sup -}. The projectiles are detected after a drift path of about 3 m on an ion detector. For the detection of the electrons a special spectrometer was concipated. In the reaction it comes by the comparatively long pulse length already at low intensities to dissociation processes. The dissociating molecule reaches still during the increasing side of the laser pulse in this way distances, in which the charge-resonance-enhanced-ionization (CREI) can take place. Also the angular distribution of the measured protons lying in a very small angular range around the polarization direction of the laser suggests that CREI is the dominant ionization process. At circular polarization however a netto-acceleration of the electrons perpendicularly to the direction of the electric field at the ionization time takes place, so that the measurement of the electron momenta represents a suited measurement quantity for the study of the ionization process. By this way angular distributions of the electrons relatively to the internuclear axis within the polarization plane could be measured.

  12. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum

    International Nuclear Information System (INIS)

    Thijs, Lore; Montero Sistiaga, Maria Luz; Wauthle, Ruben; Xie, Qingge; Kruth, Jean-Pierre; Van Humbeeck, Jan

    2013-01-01

    Selective laser melting (SLM) makes use of a high energy density laser beam to melt successive layers of metallic powders in order to create functional parts. The energy density of the laser is high enough to melt refractory metals like Ta and produce mechanically sound parts. Furthermore, the localized heat input causes a strong directional cooling and solidification. Epitaxial growth due to partial remelting of the previous layer, competitive growth mechanism and a specific global direction of heat flow during SLM of Ta result in the formation of long columnar grains with a 〈1 1 1〉 preferential crystal orientation along the building direction. The microstructure was visualized using both optical and scanning electron microscopy equipped with electron backscattered diffraction and the global crystallographic texture was measured using X-ray diffraction. The thermal profile around the melt pool was modeled using a pragmatic model for SLM. Furthermore, rotation of the scanning direction between different layers was seen to promote the competitive growth. As a result, the texture strength increased to as large as 4.7 for rotating the scanning direction 90° every layer. By comparison of the yield strength measured by compression tests in different orientations and the averaged Taylor factor calculated using the viscoplastic self-consistent model, it was found that both the morphological and crystallographic texture observed in SLM Ta contribute to yield strength anisotropy

  13. THE PRECISION ARRAY FOR PROBING THE EPOCH OF RE-IONIZATION: EIGHT STATION RESULTS

    International Nuclear Information System (INIS)

    Parsons, Aaron R.; Backer, Donald C.; Foster, Griffin S.; Wright, Melvyn C. H.; Bradley, Richard F.; Gugliucci, Nicole E.; Parashare, Chaitali R.; Benoit, Erin E.; Aguirre, James E.; Jacobs, Daniel C.; Carilli, Chris L.; Herne, David; Lynch, Mervyn J.; Manley, Jason R.; Werthimer, Daniel J.

    2010-01-01

    We are developing the Precision Array for Probing the Epoch of Re-ionization (PAPER) to detect 21 cm emission from the early universe, when the first stars and galaxies were forming. We describe the overall experiment strategy and architecture and summarize two PAPER deployments: a four-antenna array in the low radio frequency interference (RFI) environment of Western Australia and an eight-antenna array at a prototyping site at the NRAO facilities near Green Bank, WV. From these activities we report on system performance, including primary beam model verification, dependence of system gain on ambient temperature, measurements of receiver and overall system temperatures, and characterization of the RFI environment at each deployment site. We present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 sr at 156 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. We calculate angular power spectra (C l ) in a cold patch and determine them to be dominated by point sources, but with contributions from galactic synchrotron emission at lower radio frequencies and angular wavemodes. Although the sample variance of foregrounds dominates errors in these power spectra, we measure a thermal noise level of 310 mK at l = 100 for a 1.46 MHz band centered at 164.5 MHz. This sensitivity level is approximately 3 orders of magnitude in temperature above the level of the fluctuations in 21 cm emission associated with re-ionization.

  14. Unimodal tree size distributions possibly result from relatively strong conservatism in intermediate size classes.

    Directory of Open Access Journals (Sweden)

    Yue Bin

    Full Text Available Tree size distributions have long been of interest to ecologists and foresters because they reflect fundamental demographic processes. Previous studies have assumed that size distributions are often associated with population trends or with the degree of shade tolerance. We tested these associations for 31 tree species in a 20 ha plot in a Dinghushan south subtropical forest in China. These species varied widely in growth form and shade-tolerance. We used 2005 and 2010 census data from that plot. We found that 23 species had reversed J shaped size distributions, and eight species had unimodal size distributions in 2005. On average, modal species had lower recruitment rates than reversed J species, while showing no significant difference in mortality rates, per capita population growth rates or shade-tolerance. We compared the observed size distributions with the equilibrium distributions projected from observed size-dependent growth and mortality. We found that observed distributions generally had the same shape as predicted equilibrium distributions in both unimodal and reversed J species, but there were statistically significant, important quantitative differences between observed and projected equilibrium size distributions in most species, suggesting that these populations are not at equilibrium and that this forest is changing over time. Almost all modal species had U-shaped size-dependent mortality and/or growth functions, with turning points of both mortality and growth at intermediate size classes close to the peak in the size distribution. These results show that modal size distributions do not necessarily indicate either population decline or shade-intolerance. Instead, the modal species in our study were characterized by a life history strategy of relatively strong conservatism in an intermediate size class, leading to very low growth and mortality in that size class, and thus to a peak in the size distribution at intermediate sizes.

  15. New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, A. J.; Aramaki, T.; Asai, M.; Baker, W.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Calkins, R.; Cerdeno, D. G.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Ghaith, M.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; Mandic, V.; Mast, N.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Rogers, H. E.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Underwood, R.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2016-02-01

    The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Results are presented from the second CDMSlite run with an exposure of 70 kg day, which reached an energy threshold for electron recoils as low as 56 eV. A fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded for WIMP masses between 1.6 and 5.5 GeV/c^2.

  16. An easy way to obtain strong duality results in linear, linear semidefinite and linear semi-infinite programming

    NARCIS (Netherlands)

    Pop, P.C.; Still, Georg J.

    1999-01-01

    In linear programming it is known that an appropriate non-homogeneous Farkas Lemma leads to a short proof of the strong duality results for a pair of primal and dual programs. By using a corresponding generalized Farkas lemma we give a similar proof of the strong duality results for semidefinite

  17. Theoretical basal Ca II fluxes for late-type stars: results from magnetic wave models with time-dependent ionization and multi-level radiation treatments

    Science.gov (United States)

    Fawzy, Diaa E.; Stȩpień, K.

    2018-03-01

    In the current study we present ab initio numerical computations of the generation and propagation of longitudinal waves in magnetic flux tubes embedded in the atmospheres of late-type stars. The interaction between convective turbulence and the magnetic structure is computed and the obtained longitudinal wave energy flux is used in a self-consistent manner to excite the small-scale magnetic flux tubes. In the current study we reduce the number of assumptions made in our previous studies by considering the full magnetic wave energy fluxes and spectra as well as time-dependent ionization (TDI) of hydrogen, employing multi-level Ca II atomic models, and taking into account departures from local thermodynamic equilibrium. Our models employ the recently confirmed value of the mixing-length parameter α=1.8. Regions with strong magnetic fields (magnetic filling factors of up to 50%) are also considered in the current study. The computed Ca II emission fluxes show a strong dependence on the magnetic filling factors, and the effect of time-dependent ionization (TDI) turns out to be very important in the atmospheres of late-type stars heated by acoustic and magnetic waves. The emitted Ca II fluxes with TDI included into the model are decreased by factors that range from 1.4 to 5.5 for G0V and M0V stars, respectively, compared to models that do not consider TDI. The results of our computations are compared with observations. Excellent agreement between the observed and predicted basal flux is obtained. The predicted trend of Ca II emission flux with magnetic filling factor and stellar surface temperature also agrees well with the observations but the calculated maximum fluxes for stars of different spectral types are about two times lower than observations. Though the longitudinal MHD waves considered here are important for chromosphere heating in high activity stars, additional heating mechanism(s) are apparently present.

  18. Study of the strongly ionized medium in active galactic n ('Warm Absorber'): multi-wavelength modelling and plasma diagnostics in the X-ray spectral range

    International Nuclear Information System (INIS)

    Porquet, Delphine

    1999-01-01

    The so-called 'Warm Absorber' medium is observed in the central region of Active Galactic Nuclei and particularly in Seyfert l galaxies. lt is mainly characterized by O(VII) and O(VIII) absorption edges detected in the soft X-rays. Its study (modelization and observation) is an important key tool to understand Active Galactic Nuclei. The work presented here consists in modelling the Warm Absorber, and in developing X-ray spectroscopy diagnostics to constrain the physical parameters of any hot medium such as the Warm Absorber. The physical parameters of the Warm Absorber (density, temperature, ionization processes..) are difficult to determine only on the basis of present X-ray data. In particular, the value of the density cannot be derived only from the modelling of the resonance lines and of the soft X-ray absorption edges since there are almost insensitive to the density in the range of values expected for the Warm Absorber. lt is why we have developed diagnostic methods based on a multi-wavelength approach. The modelling is made with two complementary computational codes: PEGAS, and IRIS which takes into account the most accurate atomic data. With these two codes, we have modelled several types of plasma ionisation processes (photoionized plasmas and/or collisional). Results for the Warm Absorber were compared to multi-wavelength observations (mainly the optical iron coronal lines [Fe X] 6375 Angstroms, [Fe XI] 7892 Angstroms, and [Fe XIV] 5303 Angstroms). The proposed method has allowed to show that the Warm Absorber could be responsible of the emission of these lines totally or partially. All models of the Warm Absorber producing coronal line equivalent widths larger than observed were ruled out. This strongly constrains the physical parameters of the Warm Absorber, and particularly its density (n H ≥10 10 cm -3 ). The new generation of X-ray satellites (Chandra/AXAF, XMM...) will produce spectra at high spectral resolution and high sensitivity

  19. Particle production in field theories coupled to strong external sources, I: Formalism and main results

    International Nuclear Information System (INIS)

    Gelis, Francois; Venugopalan, Raju

    2006-01-01

    We develop a formalism for particle production in a field theory coupled to a strong time-dependent external source. An example of such a theory is the color glass condensate. We derive a formula, in terms of cut vacuum-vacuum Feynman graphs, for the probability of producing a given number of particles. This formula is valid to all orders in the coupling constant. The distribution of multiplicities is non-Poissonian, even in the classical approximation. We investigate an alternative method of calculating the mean multiplicity. At leading order, the average multiplicity can be expressed in terms of retarded solutions of classical equations of motion. We demonstrate that the average multiplicity at next-to-leading order can be formulated as an initial value problem by solving equations of motion for small fluctuation fields with retarded boundary conditions. The variance of the distribution can be calculated in a similar fashion. Our formalism therefore provides a framework to compute from first principles particle production in proton-nucleus and nucleus-nucleus collisions beyond leading order in the coupling constant and to all orders in the source density. We also provide a transparent interpretation (in conventional field theory language) of the well-known Abramovsky-Gribov-Kancheli (AGK) cancellations. Explicit connections are made between the framework for multi-particle production developed here and the framework of reggeon field theory

  20. Volume nanograting formation in laser-silica interaction as a result of the 1D plasma-resonance ionization instability

    Energy Technology Data Exchange (ETDEWEB)

    Gildenburg, V. B., E-mail: gil@appl.sci-nnov.ru; Pavlichenko, I. A. [University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation)

    2016-08-15

    The initial stage of the small-scale ionization-induced instability developing inside the fused silica volume exposed to the femtosecond laser pulse is studied as a possible initial cause of the self-organized nanograting formation. We have calculated the spatial spectra of the instability with the electron-hole diffusion taken into account for the first time and have found that it results in the formation of some hybrid (diffusion-wave) 1D structure with the spatial period determined as the geometrical mean of the laser wavelength and characteristic diffusion length of the process considered. Near the threshold of the instability, this period occurs to be approximately equal to the laser half-wavelength in the silica, close to the one experimentally observed.

  1. Improving quantitative gas chromatography-electron ionization mass spectrometry results using a modified ion source: demonstration for a pharmaceutical application.

    Science.gov (United States)

    D'Autry, Ward; Wolfs, Kris; Hoogmartens, Jos; Adams, Erwin; Van Schepdael, Ann

    2011-07-01

    Gas chromatography-mass spectrometry is a well established analytical technique. However, mass spectrometers with electron ionization sources may suffer from signal drifts, hereby negatively influencing quantitative performance. To demonstrate this phenomenon for a real application, a static headspace-gas chromatography method in combination with electron ionization-quadrupole mass spectrometry was optimized for the determination of residual dichloromethane in coronary stent coatings. Validating the method, the quantitative performance of an original stainless steel ion source was compared to that of a modified ion source. Ion source modification included the application of a gold coating on the repeller and exit plate. Several validation aspects such as limit of detection, limit of quantification, linearity and precision were evaluated using both ion sources. It was found that, as expected, the stainless steel ion source suffered from signal drift. As a consequence, non-linearity and high RSD values for repeated analyses were obtained. An additional experiment was performed to check whether an internal standard compound would lead to better results. It was found that the signal drift patterns of the analyte and internal standard were different, consequently leading to high RSD values for the response factor. With the modified ion source however, a more stable signal was observed resulting in acceptable linearity and precision. Moreover, it was also found that sensitivity improved compared to the stainless steel ion source. Finally, the optimized method with the modified ion source was applied to determine residual dichloromethane in the coating of coronary stents. The solvent was detected but found to be below the limit of quantification. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Quantum dot DNA bioconjugates: attachment chemistry strongly influences the resulting composite architecture.

    Science.gov (United States)

    Boeneman, Kelly; Deschamps, Jeffrey R; Buckhout-White, Susan; Prasuhn, Duane E; Blanco-Canosa, Juan B; Dawson, Philip E; Stewart, Michael H; Susumu, Kimihiro; Goldman, Ellen R; Ancona, Mario; Medintz, Igor L

    2010-12-28

    The unique properties provided by hybrid semiconductor quantum dot (QD) bioconjugates continue to stimulate interest for many applications ranging from biosensing to energy harvesting. Understanding both the structure and function of these composite materials is an important component in their development. Here, we compare the architecture that results from using two common self-assembly chemistries to attach DNA to QDs. DNA modified to display either a terminal biotin or an oligohistidine peptidyl sequence was assembled to streptavidin/amphiphilic polymer- or PEG-functionalized QDs, respectively. A series of complementary acceptor dye-labeled DNA were hybridized to different positions on the DNA in each QD configuration and the separation distances between the QD donor and each dye-acceptor probed with Förster resonance energy transfer (FRET). The polyhistidine self-assembly yielded QD-DNA bioconjugates where predicted and experimental separation distances matched reasonably well. Although displaying efficient FRET, data from QD-DNA bioconjugates assembled using biotin-streptavidin chemistry did not match any predicted separation distances. Modeling based upon known QD and DNA structures along with the linkage chemistry and FRET-derived distances was used to simulate each QD-DNA structure and provide insight into the underlying architecture. Although displaying some rotational freedom, the DNA modified with the polyhistidine assembles to the QD with its structure extended out from the QD-PEG surface as predicted. In contrast, the random orientation of streptavidin on the QD surface resulted in DNA with a wide variety of possible orientations relative to the QD which cannot be controlled during assembly. These results suggest that if a particular QD biocomposite structure is desired, for example, random versus oriented, the type of bioconjugation chemistry utilized will be a key influencing factor.

  3. Quantum Dot DNA Bioconjugates: Attachment Chemistry Strongly Influences the Resulting Composite Architecture

    Science.gov (United States)

    Boeneman, Kelly; Deschamps, Jeffrey R.; Buckhout-White, Susan; Prasuhn, Duane E.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Stewart, Michael H.; Susumu, Kimihiro; Goldman, Ellen R.; Ancona, Mario; Medintz, Igor L.

    2010-01-01

    The unique properties provided by hybrid semiconductor quantum dot- (QD) bioconjugates continue to stimulate interest for many applications ranging from biosensing to energy harvesting. Understanding both the structure and function of these composite materials is an important component in their development. Here, we compare the architecture that results from using two common self-assembly chemistries to attach DNA to QDs. DNA modified to display either a terminal biotin or an oligohistidine peptidyl sequence was assembled to streptavidin/amphiphilic polymer- or PEG-functionalized QDs, respectively. A series of complementary acceptor dye-labeled DNA were hybridized to different positions on the DNA in each QD configuration and the separation distances between the QD donor and each dye-acceptor probed with Förster resonance energy transfer (FRET). The polyhistidine self-assembly yielded QD-DNA bioconjugates where predicted and experimental separation distances matched reasonably well. Although displaying efficient FRET, data from QD-DNA bioconjugates assembled using biotin-streptavidin chemistry did not match any predicted separation distances. Modeling based upon known QD and DNA structures along with the linkage chemistry and FRET-derived distances was used to simulate each QD-DNA structure and provide insight into the underlying architecture. Although displaying some rotational freedom, the DNA modified with the polyhistidine assembles to the QD with its structure extended out from the QD-PEG surface as predicted. In contrast, the random orientation of streptavidin on the QD surface resulted in DNA with a wide variety of possible orientations relative to the QD which cannot be controlled during assembly. These results suggest that if a particular QD-biocomposite structure is desired, for example, random versus oriented, the type of bioconjugation chemistry utilized will be a key influencing factor. PMID:21082822

  4. First Results of the Beam Gas Ionization Profile Monitor (BGIP) Tested in the SPS Ring

    CERN Document Server

    Arauzo-Garcia, A; Koopman, J; Variola, A

    2000-01-01

    The BGIP is a proposal for a new, non-destructive beam profile monitor for the future Large Hadron Collider (LHC). This device provides the rms beam size value by means of the analysis of the velocity spectrum of the rest gas ions created and accelerated by the beam itself. After a thorough computer simulation study of the related physics, a first prototype of the BGIP has been conceived, built up and installed in the SPS main ring during 1999. This paper contains a short presentation of the simulation work and a description of the test set-up. The first experimental results are presented and compared with theoretical computations.

  5. Application of the MCMC Method for the Calibration of DSMC Parameters to NASA EAST Results for Ionizing, Radiating Hypersonic Flows

    Data.gov (United States)

    National Aeronautics and Space Administration — The reentry of a vehicle into a planetary atmosphere creates extreme Mach number conditions which produce a weakly ionized plasma and radiation. The greatest...

  6. Convergence of high-intensity expansions for atomic ionization

    International Nuclear Information System (INIS)

    Antunes Neto, H.S.; Davidovich, L.

    1984-01-01

    It is shown that a frequently used nonperturbative approximation for atomic ionization rates is cancelled out when corrections are taken into account. This explains the strong gauge dependence of previous results. A convergent and gauge invariant expansion is obtained. Numerical results show that its first term, which may be calculated analytically in many cases, describes very well the time-dependent behaviour of the ionization probability, for very strong fields. (Author) [pt

  7. Near-threshold electron impact ionization of Ne and Xe

    International Nuclear Information System (INIS)

    Yates, B R; Khakoo, M A; Keane, K

    2009-01-01

    Doubly differential cross-sections for the single electron impact ionization of Ne and Xe have been measured at several energies below the second ionization energy. The results indicate that the ionization of Ne is strongly influenced by the polarization of the ionized 2 2 P 3/2,1/2 core, where as this influence is significantly reduced for Xe. Single differential cross-sections are derived from the doubly differential cross-sections and for Xenon these show profiles similar to Helium ('smile'), whereas for Neon they show a dissimilar profile ('frown').

  8. Collision-Induced Dissociation Study of Strong Hydrogen-Bonded Cluster Ions Y-(HF) n (Y=F, O2) Using Atmospheric Pressure Corona Discharge Ionization Mass Spectrometry Combined with a HF Generator.

    Science.gov (United States)

    Sakamoto, Kenya; Sekimoto, Kanako; Takayama, Mitsuo

    2017-01-01

    Hydrogen fluoride (HF) was produced by a homemade HF generator in order to investigate the properties of strong hydrogen-bonded clusters such as (HF) n . The HF molecules were ionized in the form of complex ions associated with the negative core ions Y - produced by atmospheric pressure corona discharge ionization (APCDI). The use of APCDI in combination with the homemade HF generator led to the formation of negative-ion HF clusters Y - (HF) n (Y=F, O 2 ), where larger clusters with n ≥4 were not detected. The mechanisms for the formation of the HF, F - (HF) n , and O 2 - (HF) n species were discussed from the standpoints of the HF generator and APCDI MS. By performing energy-resolved collision-induced dissociation (CID) experiments on the cluster ions F - (HF) n ( n =1-3), the energies for the loss of HF from F - (HF) 3 , F - (HF) 2 , and F - (HF) were evaluated to be 1 eV or lower, 1 eV or higher, and 2 eV, respectively, on the basis of their center-of-mass energy ( E CM ). These E CM values were consistent with the values of 0.995, 1.308, and 2.048 eV, respectively, obtained by ab initio calculations. The stability of [O 2 (HF) n ] - ( n =1-4) was discussed on the basis of the bond lengths of O 2 H-F - (HF) n and O 2 - H-F(HF) n obtained by ab initio calculations. The calculations indicated that [O 2 (HF) 4 ] - separated into O 2 H and F - (HF) 3 .

  9. Thermodynamics of atomic and ionized hydrogen: analytical results versus equation-of-state tables and Monte Carlo data.

    Science.gov (United States)

    Alastuey, A; Ballenegger, V

    2012-12-01

    We compute thermodynamical properties of a low-density hydrogen gas within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential. Our calculations are done using the exact scaled low-temperature (SLT) expansion, which provides a rigorous extension of the well-known virial expansion-valid in the fully ionized phase-into the Saha regime where the system is partially or fully recombined into hydrogen atoms. After recalling the SLT expansion of the pressure [A. Alastuey et al., J. Stat. Phys. 130, 1119 (2008)], we obtain the SLT expansions of the chemical potential and of the internal energy, up to order exp(-|E_{H}|/kT) included (E_{H}≃-13.6 eV). Those truncated expansions describe the first five nonideal corrections to the ideal Saha law. They account exactly, up to the considered order, for all effects of interactions and thermal excitations, including the formation of bound states (atom H, ions H^{-} and H_{2}^{+}, molecule H_{2},⋯) and atom-charge and atom-atom interactions. Among the five leading corrections, three are easy to evaluate, while the remaining ones involve well-defined internal partition functions for the molecule H_{2} and ions H^{-} and H_{2}^{+}, for which no closed-form analytical formula exist currently. We provide accurate low-temperature approximations for those partition functions by using known values of rotational and vibrational energies. We compare then the predictions of the SLT expansion, for the pressure and the internal energy, with, on the one hand, the equation-of-state tables obtained within the opacity program at Livermore (OPAL) and, on the other hand, data of path integral quantum Monte Carlo (PIMC) simulations. In general, a good agreement is found. At low densities, the simple analytical SLT formulas reproduce the values of the OPAL tables up to the last digit in a large range of temperatures, while at higher densities (ρ∼10^{-2} g/cm^{3}), some

  10. Main results of the standardization through anti-coincident from the Brazilian Laboratory for Metrology of Ionizing Radiations - LNMRI/IRD/CNEN-RJ in the last 8 years

    International Nuclear Information System (INIS)

    Silva, Carlos J. da

    2014-01-01

    The LNMRI implemented in 2006 a system of time keeping in anticoincidence live in this time and dead time extensible today 18 radionuclides were standardized. To store the results of these primary standardization the LNMRI/IRD reference with ionization chamber were calibrated with these standards. In this work will be discussed the main operational difficulties and components of uncertainty and the main results. (author)

  11. D-IMRT verification with a 2D pixel ionization chamber: dosimetric and clinical results in head and neck cancer

    Science.gov (United States)

    Stasi, M.; Giordanengo, S.; Cirio, R.; Boriano, A.; Bourhaleb, F.; Cornelius, I.; Donetti, M.; Garelli, E.; Gomola, I.; Marchetto, F.; Porzio, M.; Sanz Freire, C. J.; Sardo, A.; Peroni, C.

    2005-10-01

    Dynamic intensity-modulated radiotherapy (D-IMRT) using the sliding-window technique is currently applied for selected treatments of head and neck cancer at Institute for Cancer Research and Treatment of Candiolo (Turin, Italy). In the present work, a PiXel-segmented ionization Chamber (PXC) has been used for the verification of 19 fields used for four different head and neck cancers. The device consists of a 32 × 32 matrix of 1024 parallel-plate ionization chambers arranged in a square of 24 × 24 cm2 area. Each chamber has 0.4 cm diameter and 0.55 cm height; a distance of 0.75 cm separates the centre of adjacent chambers. The sensitive volume of each single ionization chamber is 0.07 cm3. Each of the 1024 independent ionization chambers is read out with a custom microelectronics chip. The output factors in water obtained with the PXC at a depth of 10 cm were compared to other detectors and the maximum difference was 1.9% for field sizes down to 3 × 3 cm2. Beam profiles for different field dimensions were measured with the PXC and two other types of ionization chambers; the maximum distance to agreement (DTA) in the 20-80% penumbra region of a 3 × 3 cm2 field was 0.09 cm. The leaf speed of the multileaf collimator was varied between 0.07 and 2 cm s-1 and the detector response was constant to better than 0.6%. The behaviour of the PXC was measured while varying the dose rate between 0.21 and 1.21 Gy min-1; the mean difference was 0.50% and the maximum difference was 0.96%. Using fields obtained with an enhanced dynamic wedge and a staircase-like (step) IMRT field, the PXC has been tested for simple 1D modulated beams; comparison with film gave a maximum DTA of 0.12 cm. The PXC was then used to check four different IMRT plans for head and neck cancer treatment: cervical chordoma, parotid, ethmoid and skull base. In the comparison of the PXC versus film and PXC versus treatment planning system, the number of pixels with γ parameter <=1 was 97.7% and 97

  12. Multiphoton ionization of Uracil

    Science.gov (United States)

    Prieto, Eladio; Martinez, Denhi; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2016-05-01

    Multiphoton ionization and dissociation of Uracil using a Reflectron time of flight spectrometer was performed along with radiation from the second harmonic of a Nd:YAG laser. Uracil is one of the four nitrogen bases that belong to RNA. The last years special interest has been concentrated on the study of the effects under UV radiation in nucleic acids1 and also in the role that this molecule could have played in the origin and development of life on our planet.2 The MPI mass spectra show that the presence and intensity of the resulting ions strongly depend on the density power. The identification of the ions in the mass spectra is presented. The results are compared with those obtained in other laboratories under different experimental conditions and some of them show partial agreement.3 The present work was supported by CONACYT-Mexico Grant 165410 and DGAPA UNAM Grant IN101215 and IN102613.

  13. A strong association between non-musculoskeletal symptoms and musculoskeletal pain symptoms: results from a population study

    Directory of Open Access Journals (Sweden)

    Tschudi-Madsen Hedda

    2011-12-01

    Full Text Available Abstract Background There is a lack of knowledge about the pattern of symptom reporting in the general population as most research focuses on specific diseases or symptoms. The number of musculoskeletal pain sites is a strong predictor for disability pensioning and, hence, is considered to be an important dimension in symptom reporting. The simple method of counting symptoms might also be applicable to non-musculoskeletal symptoms, rendering further dimensions in describing individual and public health. In a general population, we aimed to explore the association between self-reported non-musculoskeletal symptoms and the number of pain sites. Methods With a cross-sectional design, the Standardised Nordic Questionnaire and the Subjective Health Complaints Inventory were used to record pain at ten different body sites and 13 non-musculoskeletal symptoms, respectively, among seven age groups in Ullensaker, Norway (n = 3,227. Results Results showed a strong, almost linear relationship between the number of non-musculoskeletal symptoms and the number of pain sites (r = 0.55. The number and type of non-musculoskeletal symptoms had an almost equal explanatory power in the number of pain sites reported (27.1% vs. 28.2%. Conclusion The linear association between the number of non-musculoskeletal and musculoskeletal symptoms might indicate that the symptoms share common characteristics and even common underlying causal factors. The total burden of symptoms as determined by the number of symptoms reported might be an interesting generic indicator of health and well-being, as well as present and future functioning. Research on symptom reporting might also be an alternative pathway to describe and, possibly, understand the medically unexplained multisymptom conditions.

  14. Effect of two-center interference on molecular ionization in multiphoton ionization regime.

    Science.gov (United States)

    Hu, Shilin; Chen, Jing; Hao, Xiaolei; Li, Weidong; Guo, Li; Han, Shensheng

    2017-09-18

    Using solution of the full three-dimensional time-dependent Schrödinger equation (TDSE) in prolate spheroidal coordinates, we investigate the orientation dependence of ionization of H2+ in near-infrared laser fields. It is found that, the ionization probability decreases as a function of the alignment angle in tunneling ionization regime, while it ascends with the increase of orientation angle in multiphoton ionization regime for the internuclear distance R=2 a.u. Furthermore, the result obtained by the length gauge strong-field approximation theory is in qualitative agreement with that calculated by the TDSE but the radiation gauge strong-field approximation and molecular ADK theories fail to reproduce the TDSE result. Analysis indicates that the above intriguing feature can be ascribed to the interference between the partial electron wave packets emitted from different molecular cores, which becomes evident at low laser intensity due to increased width of the initial mechanical momentum of the photoelectron at ionization moment. In addition, when the internuclear distance increases to R=4 a.u., the ionization yields decrease vs alignment angle in both tunneling and multiphoton regimes since the electron wavefunction of the 1σg orbit is more concentrated in the molecular axis than that of R=2 a.u.

  15. Quantum-fluid-dynamics approach for strong-field processes: Application to the study of multiphoton ionization and high-order harmonic generation of He and Ne atoms in intense laser fields

    International Nuclear Information System (INIS)

    Roy, Amlan K.; Chu, Shih-I

    2002-01-01

    We explore the feasibility of extending the quantum-fluid dynamics (QFD) approach for quantitative investigation of nonlinear optical processes of many-electron quantum systems in intense laser fields. Through the amalgamation of the QFD and density-functional theory (DFT), a single time-dependent hydrodynamical equation of motion can be derived. This equation has the form of a generalized nonlinear Schroedinger equation (GNLSE) but includes the many-body effects through a local time-dependent exchange-correlation potential. The time-dependent generalized pseudospectral method is extended to the solution of the GNLSE in spherical coordinates, allowing nonuniform spatial discretization and efficient, accurate solution of the hydrodynamical density and wave function in space and time. The procedure is applied to the study of multiphoton ionization (MPI) and high-order harmonic generation (HHG) of He and Ne atoms in intense laser fields. Excellent agreement with other recent self-interaction-free time-dependent DFT calculations is obtained for He, while for Ne, good agreement is achieved. Four different exchange-correlation energy functionals are used in the study with an aim to explore the roles of exchange and correlation on MPI/HHG processes in details. The method offers a conceptually appealing and computationally practical approach for nonperturbative treatment of strong-field processes of many-electron systems beyond the time-dependent Hartree-Fock level

  16. Quantum-fluid-dynamics approach for strong-field processes: Application to the study of multiphoton ionization and high-order harmonic generation of He and Ne atoms in intense laser fields

    Science.gov (United States)

    Roy, Amlan K.; Chu, Shih-I.

    2002-04-01

    We explore the feasibility of extending the quantum-fluid dynamics (QFD) approach for quantitative investigation of nonlinear optical processes of many-electron quantum systems in intense laser fields. Through the amalgamation of the QFD and density-functional theory (DFT), a single time-dependent hydrodynamical equation of motion can be derived. This equation has the form of a generalized nonlinear Schrödinger equation (GNLSE) but includes the many-body effects through a local time-dependent exchange-correlation potential. The time-dependent generalized pseudospectral method is extended to the solution of the GNLSE in spherical coordinates, allowing nonuniform spatial discretization and efficient, accurate solution of the hydrodynamical density and wave function in space and time. The procedure is applied to the study of multiphoton ionization (MPI) and high-order harmonic generation (HHG) of He and Ne atoms in intense laser fields. Excellent agreement with other recent self-interaction-free time-dependent DFT calculations is obtained for He, while for Ne, good agreement is achieved. Four different exchange-correlation energy functionals are used in the study with an aim to explore the roles of exchange and correlation on MPI/HHG processes in details. The method offers a conceptually appealing and computationally practical approach for nonperturbative treatment of strong-field processes of many-electron systems beyond the time-dependent Hartree-Fock level.

  17. Photometric and fluorometric detection of radiolytic changes to selected animal foods as a result of treatment with ionizing rays

    International Nuclear Information System (INIS)

    Chory, C.

    1993-01-01

    The methods specified in the heading were tested for their suitability to detect any previous irradiation treatment of shrimps, chickens or mock salmon. Shrimps and chickens are among those foods that are already routinely irradiated for commercial reasons and have therefore been included in the most recent version of the provisional guidelines of the EC commission on the irradiation of foodstuffs. Parameters like radiation-induced formation of carbonyl compounds, changes to radiation-responsive sulfhydryl groups of proteins and DNA strand breaks caused by ionizing radiation offered useful approaches to the detection of any such irradiation. One decisive factor for the choice of the chemical methods of analysis to be used was their straightforwardness. (orig./HP) [de

  18. Tunneling Ionization of Diatomic Molecules

    DEFF Research Database (Denmark)

    Svensmark, Jens Søren Sieg

    2016-01-01

    When a molecule is subject to a strong laser field, there is a probability that an electron can escape, even though the electrons are bound by a large potential barrier. This is possible because electrons are quantum mechanical in nature, and they are therefore able to tunnel through potential...... of tunneling ionizaion of molecules is presented and the results of numerical calculations are shown. One perhaps surprising result is, that the frequently used Born-Oppenheimer approximation breaks down for weak fields when describing tunneling ionization. An analytic theory applicable in the weak-field limit...

  19. Reducing biases on H0 measurements using strong lensing and galaxy dynamics: results from the EAGLE simulation

    Science.gov (United States)

    Tagore, Amitpal S.; Barnes, David J.; Jackson, Neal; Kay, Scott T.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2018-03-01

    Cosmological parameter constraints from observations of time-delay lenses are becoming increasingly precise. However, there may be significant bias and scatter in these measurements due to, among other things, the so-called mass-sheet degeneracy. To estimate these uncertainties, we analyse strong lenses from the largest EAGLE hydrodynamical simulation. We apply a mass-sheet transformation to the radial density profiles of lenses, and by selecting lenses near isothermality, we find that the bias on H0 can be reduced to 5 per cent with an intrinsic scatter of 10 per cent, confirming previous results performed on a different simulation data set. We further investigate whether combining lensing observables with kinematic constraints helps to minimize this bias. We do not detect any significant dependence of the bias on lens model parameters or observational properties of the galaxy, but depending on the source-lens configuration, a bias may still exist. Cross lenses provide an accurate estimate of the Hubble constant, while fold (double) lenses tend to be biased low (high). With kinematic constraints, double lenses show bias and intrinsic scatter of 6 per cent and 10 per cent, respectively, while quad lenses show bias and intrinsic scatter of 0.5 per cent and 10 per cent, respectively. For lenses with a reduced χ2 > 1, a power-law dependence of the χ2 on the lens environment (number of nearby galaxies) is seen. Lastly, we model, in greater detail, the cases of two double lenses that are significantly biased. We are able to remove the bias, suggesting that the remaining biases could also be reduced by carefully taking into account additional sources of systematic uncertainty.

  20. Photoelectron angular distributions from the ionization of xenon Rydberg states by midinfrared radiation

    NARCIS (Netherlands)

    Huismans, Y.; Rouzee, A.; Gijsbertsen, A.; Logman, Pswm; Lepine, F.; Cauchy, C.; Zamith, S.; Stodolna, A. S.; Jungmann, J. H.; Bakker, J. M.; G. Berden,; Redlich, B.; van der Meer, A. F. G.; Schafer, K. J.; Vrakking, M. J. J.

    2013-01-01

    Angle-resolved photoelectron spectra, resulting from the strong-field ionization of atoms or molecules, carry a rich amount of information on ionization pathways, electron dynamics, and the target structure. We have investigated angle-resolved photoelectron spectra arising from the nonresonant

  1. Investigations of multiphoton excitation and ionization in a short range potential

    Energy Technology Data Exchange (ETDEWEB)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a delta-function potential. 9 refs., 3 figs.

  2. Investigations of multiphoton excitation and ionization in a short range potential

    International Nuclear Information System (INIS)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a δ-function potential. 9 refs., 3 figs

  3. Attosecond Electron Wave Packet Dynamics in Strong Laser Fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.

    2005-01-01

    We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (∼20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes

  4. Ionization chambers

    International Nuclear Information System (INIS)

    Boag, J.W.

    1987-01-01

    Although a variety of solid-state and chemical methods for measuring radiation dose have been developed in recent decades and calorimetry can now provide an absolute standard of reference, ionization dosimetry retains its position as the most widely used, most convenient, and, in most situations, most accurate method of measuring either exposure or absorbed dose. The ionization chamber itself is the central element in this system of dosimetry. In this chapter the principles governing the construction and operation of ionization chambers of various types are examined. Since the ionization chambers now in general use are nearly all of commercial manufacture, the emphasis is on operating characteristics and interpretation of measurements rather than on details of construction, although some knowledge of the latter is often required when applying necessary corrections to the measured quantities. Examples are given of the construction of typical chambers designed for particular purposes, and the methods of calibrating them are discussed

  5. Collisional ionization

    International Nuclear Information System (INIS)

    Arnaud, M.

    1985-07-01

    In low density, thin plasmas (such as stellar coronae, interstellar medium, intracluster medium) the ionization process is governed by collision between electrons and ions in their ground state. In view of the recent improvements we thought an updating of ionization rates was really needed. The work is based on both experimental data and theoretical works and give separate estimates for the direct and autoionization rates

  6. Single photon simultaneous K-shell ionization and K-shell excitation. I. Theoretical model applied to the interpretation of experimental results on H2O

    International Nuclear Information System (INIS)

    Carniato, S.; Selles, P.; Andric, L.; Palaudoux, J.; Penent, F.; Lablanquie, P.; Žitnik, M.; Bučar, K.; Nakano, M.; Hikosaka, Y.; Ito, K.

    2015-01-01

    We present in detail a theoretical model that provides absolute cross sections for simultaneous core-ionization core-excitation (K −2 V ) and compare its predictions with experimental results obtained on the water molecule after photoionization by synchrotron radiation. Two resonances of different symmetries are assigned in the main K −2 V peak and comparable contributions from monopolar (direct shake-up) and dipolar (conjugate shake-up) core-valence excitations are identified. The main peak is observed with a much greater width than the total experimental resolution. This broadening is the signature of nuclear dynamics

  7. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    International Nuclear Information System (INIS)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit

    2016-01-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed

  8. Ionization and Coulomb explosion of small uranium oxide clusters

    International Nuclear Information System (INIS)

    Ross, Matt W; Castleman, A W Jr

    2012-01-01

    Femtosecond pulses are used to study the strong-field ionization and subsequent Coulomb explosion of small uranium oxide clusters. The resulting high atomic charge states are explored as a function of laser intensity and compared to ionization rates calculated using semi-classical tunneling theory with sequential ionization potential values. The gap in laser intensity between saturation intensity values for the 7s, 6d, and 5f orbitals are identified and quantified. Extreme charge states of oxygen up to O 4+ are observed indicating multiple ionization enhancement processes occurring within the clusters. The peak splittings of the atomic charge states are explored and compared to previous results on transition metal oxide species. Participation of the 5f orbitals in bonding is clearly identified based on the saturation intensity dependence of oxygen to uranium metal.

  9. EDF - 2015 full-year results: all targets reached, Strong operating performance in adverse market conditions, 2018 ambition reiterated

    International Nuclear Information System (INIS)

    2016-01-01

    A key player in energy transition, the EDF Group is an integrated electricity company, active in all areas of the business: generation, transmission, distribution, energy supply and trading, energy services. A global leader in low-carbon energies, the Group has developed a diversified generation mix based on nuclear power, hydropower, new renewable energies and thermal energy. The Group is involved in supplying energy and services to approximately 37.6 million customers, of which 27.8 million in France. The Group generated consolidated sales of Euro 75 billion in 2015, of which 47.2% outside of France. EDF is listed on the Paris Stock exchange. EDF achieved all its targets in 2015. The year was marked by strong operational performance, reflecting the significant efforts the teams made. With the end of the regulated Yellow and Green Tariffs, most clients turned to EDF. Nuclear output reached its highest level, since 2011 in France, and since 2005 in the United Kingdom. EDF is also continuing its significant development in renewable energy, with an additional 1 GW of net installed capacity. The transformation of EDF Group is essential in the unfavourable market conditions. EDF has embarked on this transformation, and is accelerating innovation to serve the energy transition

  10. Increased ionization rate in laser enrichment

    International Nuclear Information System (INIS)

    Janes, G.S.; Pike, G.T.

    1977-01-01

    A system employing multiple, upper excitation levels in a technique for isotopically selective ionization to improve the ionization efficiency is described. Laser radiation is employed to excite particles with isotopic selectivity. Excitation is produced to a plurality of excited states below the ionization level with the result of increasing the number of available excited particles for ionization and thereby increasing the ionization cross section for improved system efficiency

  11. Compendium of Single-Event Latchup and Total Ionizing Dose Test Results of Commercial Analog to Digital Converters

    Science.gov (United States)

    Irom, Farokh; Agarwal, Shri G.

    2012-01-01

    This paper reports single-event latchup and total dose results for a variety of analog to digital converters targeted for possible use in NASA spacecraft's. The compendium covers devices tested over the last 15 years.

  12. Perceived Incidence and Importance of Lay-Ideas on Ionizing Radiation: Results of a Delphi-Study among Radiation-Experts.

    Science.gov (United States)

    Eijkelhof, H. M. C.; And Others

    1990-01-01

    Described are lay-ideas which may exist about ionizing radiation, the importance of these ideas for risk management, and the relationships between various lay-ideas. Lay-ideas were used to gain a better insight into the problems of learning about ionizing radiation and to construct appropriate teaching materials and strategies. (KR)

  13. Nonlinear excitation of electron cyclotron waves by a monochromatic strong microwave: computer simulation analysis of the MINIX results

    International Nuclear Information System (INIS)

    Matsumoto, H.; Kimura, T.

    1986-01-01

    Triggered by the experimental results of the MINIX, a computer simulation study was initiated on the nonlinear excitation of electrostatic electron cyclotron waves by a monochromatic electromagnetic wave such as the transmitted microwave in the MINIX. The model used assumes that both of the excited waves and exciting (pumping) electromagnetic wave as well as the idler electromagnetic wave propagate in the direction perpendicular to the external magnetic field. The simulation code used for this study was the one-and-two-half dimensional electromagnetic particle code named KEMPO. The simulation result shows the high power electromagnetic wave produces both the backscattered electromagnetic wave and electrostatic electron cyclotron waves as a result of nonlinear parametric instability. Detailed nonlinear microphysics related to the wave excitation is discussed in terms of the nonlinear wave-wave couplings and associated ponderomotive force produced by the high power electromagnetic waves. 2 references, 4 figures

  14. Procalcitonin is a strong predictor of urine culture results in patients with obstructing ureteral stones: A prospective, pilot study

    Directory of Open Access Journals (Sweden)

    Dimitri Papagiannopoulos

    2016-01-01

    Conclusions: This proof-of-concept pilot study gives encouraging results, in that PCT was a good predictor of positive cultures (P = 0.02, AUC 0.812. Given, the small sample size, one cannot directly compare PCT to other markers of infection. However, PCT shows promise in this arena and warrants future investigation.

  15. Ionization effects in three-dimensional solar granulation simulations

    Science.gov (United States)

    Rast, Mark P.; Nordlund, Ake; Stein, Robert F.; Toomre, Juri

    1993-01-01

    These numerical studies show that ionization influences both the transport and dynamical properties of compressible convection near the surface of the Sun. About two-thirds of the enthalpy transported by convective motions in the region of partial hydrogen ionization is carried as latent heat. The role of fast downflow plumes in total convective transport is substantially elevated by this contribution. Instability of the thermal boundary layer is strongly enhanced by temperature sensitive variations in the radiative properties of the fluid, and this provides a mechanism for plume initiation and cell fragmentation in the surface layers. As the plumes descend, temperature fluctuations and associated buoyancy forces are maintained because of the increased specific heat of the partially ionized material. This can result is supersonic vertical flows. At greater depths, ionization effects diminish, and the plumes are decelerated by significant entrainment of surrounding fluid.

  16. Ionization efficiency calculations for cavity thermoionization ion source

    International Nuclear Information System (INIS)

    Turek, M.; Pyszniak, K.; Drozdziel, A.; Sielanko, J.; Maczka, D.; Yuskevich, Yu.V.; Vaganov, Yu.A.

    2009-01-01

    The numerical model of ionization in a thermoionization ion source is presented. The review of ion source ionization efficiency calculation results for various kinds of extraction field is given. The dependence of ionization efficiency on working parameters like ionizer length and extraction voltage is discussed. Numerical simulations results are compared to theoretical predictions obtained from a simplified ionization model

  17. Ionization cross section of partially ionized hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Baimbetov, F B; Kudyshev, Z A [Department of Physics, al - Farabi Kazakh National University, Almaty (Kazakhstan)], E-mail: Bfb77@kazsu.kz, E-mail: Z.Kudyshev@mail.ru

    2008-05-01

    In present work the electron impact ionization cross section is considered. The electron impact ionization cross section is calculated, based on pseudopotential model of interaction between plasma particles which accounts correlation effects. It is calculated with help of two methods: classical and quantum - mechanical (Born approximation). The ionization cross section is compared with corresponding results of other authors and experimental data. It has been shown that it is very important to take into account an influence of the surrounding during consideration of ionization processes.

  18. Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux

    DEFF Research Database (Denmark)

    Andersen, Heidi Winterberg; Solem, Christian; Hammer, Karin

    2001-01-01

    reduced. Surprisingly, the mutants still showed homolactic fermentation, which indicated that the limitation was different from standard glucose-limited conditions, One explanation could be that the reduced activity of phosphofructokinase resulted in the accumulation of sugar-phosphates. Indeed, when one...... kinase and lactate dehydrogenase remained closer to the wild-type level. In defined medium supplemented with glucose, the growth rate of the mutants was reduced to 57 to 70% of wild-type levels and the glycolytic flux was reduced to 62 to 76% of wild-type levels. In complex medium growth was even further...... of the mutants was starved for glucose in glucose-limited chemostat, the growth rate could gradually be increased to 195% of the growth fate observed in glucose-saturated batch culture, suggesting that phosphofructokinase does affect the concentration of upstream metabolites. The pools of glucose-6- phosphate...

  19. Low-dose ionizing radiation limitations to seed germination: Results from a model linking physiological characteristics and developmental-dynamics simulation strategy.

    Science.gov (United States)

    Liu, Hui; Hu, Dawei; Dong, Chen; Fu, Yuming; Liu, Guanghui; Qin, Youcai; Sun, Yi; Liu, Dianlei; Li, Lei; Liu, Hong

    2017-08-01

    There is much uncertainty about the risks of seed germination after repeated or protracted environmental low-dose ionizing radiation exposure. The purpose of this study is to explore the influence mechanism of low-dose ionizing radiation on wheat seed germination using a model linking physiological characteristics and developmental-dynamics simulation. A low-dose ionizing radiation environment simulator was built to investigate wheat (Triticum aestivum L.) seeds germination process and then a kinetic model expressing the relationship between wheat seed germination dynamics and low-dose ionizing radiation intensity variations was developed by experimental data, plant physiology, relevant hypotheses and system dynamics, and sufficiently validated and accredited by computer simulation. Germination percentages were showing no differences in response to different dose rates. However, root and shoot lengths were reduced significantly. Plasma governing equations were set up and the finite element analysis demonstrated H 2 O, CO 2 , O 2 as well as the seed physiological responses to the low-dose ionizing radiation. The kinetic model was highly valid, and simultaneously the related influence mechanism of low-dose ionizing radiation on wheat seed germination proposed in the modeling process was also adequately verified. Collectively these data demonstrate that low-dose ionizing radiation has an important effect on absorbing water, consuming O 2 and releasing CO 2 , which means the risk for embryo and endosperm development was higher. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Low-frequency ac electroporation shows strong frequency dependence and yields comparable transfection results to dc electroporation.

    Science.gov (United States)

    Zhan, Yihong; Cao, Zhenning; Bao, Ning; Li, Jianbo; Wang, Jun; Geng, Tao; Lin, Hao; Lu, Chang

    2012-06-28

    Conventional electroporation has been conducted by employing short direct current (dc) pulses for delivery of macromolecules such as DNA into cells. The use of alternating current (ac) field for electroporation has mostly been explored in the frequency range of 10kHz-1MHz. Based on Schwan equation, it was thought that with low ac frequencies (10Hz-10kHz), the transmembrane potential does not vary with the frequency. In this report, we utilized a flow-through electroporation technique that employed continuous 10Hz-10kHz ac field (based on either sine waves or square waves) for electroporation of cells with defined duration and intensity. Our results reveal that electropermeabilization becomes weaker with increased frequency in this range. In contrast, transfection efficiency with DNA reaches its maximum at medium frequencies (100-1000Hz) in the range. We postulate that the relationship between the transfection efficiency and the ac frequency is determined by combined effects from electrophoretic movement of DNA in the ac field, dependence of the DNA/membrane interaction on the ac frequency, and variation of transfection under different electropermeabilization intensities. The fact that ac electroporation in this frequency range yields high efficiency for transfection (up to ~71% for Chinese hamster ovary cells) and permeabilization suggests its potential for gene delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Evaluation of Radiation Exposure Pattern and Radiation Absorbed Dose Resulting from Occupational Exposure of Anesthesiologists to Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Maghsoudi B.

    2017-09-01

    Full Text Available Introduction: Little information is available concerning the radiation exposure of anesthesiologists, and no such data have previously been collected in Iran. This prospective study was performed to determine the amount of radiation exposure of anesthesiologists for the purpose of assessing whether or not dangerous levels of radiation exposures were being reached, and to identify factors that correlate with excessive risk. Participants and Methods: The radiation exposure of all anesthesiology residents and the attending of Shiraz University of Medical Sciences during a 3-month period (from June to August 2016 was measured using a film badge with monthly readings. Physicians were divided into two groups: group 1 (the ones assigned to ORs with radiation exposure, and group 2 (the ones assigned to ORs with no or minimal radiation exposure. Results: A total number of 10744 procedures were performed in 3 major university hospitals including 353 cases of pediatric angiography, 251 cases of percutaneous nephrolithotomy, 43 cases of chronic pain palliation and 672 cases of orthopedic surgeries with C-arm application. In all 3 months, there were statistically significant differences in the amount of radiation exposure between the two groups. Conclusion: Anesthesiologists working in the cardiac catheterization laboratory, pain treatment service, orthopedic and urologic ORs are exposed to statistically significantly higher radiation levels compared to their colleagues in other ORs. The radiation exposure to anesthesiologists can rise to high levels; therefore, they should get proper teaching, shielding and periodic evaluations.

  2. Surface ionization theory

    International Nuclear Information System (INIS)

    Bonnal, J.-F.; Pelissier, Andre

    1974-01-01

    After a brief theoretical review, the relationship existing between the ionization rate in the vicinity of a metallic plate in thermodynamic equilibrium with a cesium plasma and the density of electron current issued from the same plate is presented. The evolution of this density of current is represented by the Langmuir S-curves. It is shown that knowledge of the S-curves leads to that of the critical temperatures and of the ionization rates when the generated ions are extracted by an electric field. The influence of the principal parameters (the nature and temperature of the plate and the cesium flow supplying it) is analyzed using the Rasor theory. The theoretical results obtained using a model of the flat plate represent fairly closely the operations observed experimentally on porous tungstem ionizers [fr

  3. Relativistic soliton-like collisionless ionization wave

    Science.gov (United States)

    Arefiev, Alexey; McCormick, Matthew; Quevedo, Hernan; Bengtson, Roger; Ditmire, Todd

    2014-10-01

    It has been observed in recent experiments with laser-irradiated gas jets that a plasma filament produced by the laser and containing energetic electrons can launch a relativistic ionization wave into ambient gas. Here we present a self-consistent theory that explains how a collisionless ionization wave can propagate in a self-sustaining regime. A population of hot electrons necessarily generates a sheath electric field at the plasma boundary. This field penetrates the ambient gas, ionizing the gas atoms and thus causing the plasma boundary to expand. We show that the motion of the newly generated electrons can form a potential well adjacent to the plasma boundary. The outwards motion of the well causes a bunch of energetic electrons to become trapped, while allowing the newly generated electrons to escape into the plasma without retaining much energy. The resulting soliton-like ionizing field structure propagates outwards with a bunch of hot electrons that maintain a strong sheath field despite significant plasma expansion. We also present 1D and 2D particle-in-cell simulations that illustrate the described mechanism. The simulations were performed using HPC resources provided by the Texas Advanced Computing Center. This work was supported by NNSA Contract No. DE-FC52-08NA28512 and U.S. DOE Contract No. DE-FG02-04ER54742.

  4. Dynamics of tunneling ionization using Bohmian mechanics

    Science.gov (United States)

    Douguet, Nicolas; Bartschat, Klaus

    2018-01-01

    Recent attoclock experiments and theoretical studies regarding the strong-field ionization of atoms by few-cycle infrared pulses revealed features that have attracted much attention. Here we investigate tunneling ionization and the dynamics of the electron probability using Bohmian mechanics. We consider a one-dimensional problem to illustrate the underlying mechanisms of the ionization process. It is revealed that in the major part of the below-the-barrier ionization regime, in an intense and short infrared pulse, the electron does not tunnel through the entire barrier, but rather starts already from the classically forbidden region. Moreover, we highlight the correspondence between the probability of locating the electron at a particular initial position and its asymptotic momentum. Bohmian mechanics also provides a natural definition of mean tunneling time and exit position, taking account of the time dependence of the barrier. Finally, we find that the electron can exit the barrier with significant kinetic energy, thereby corroborating the results of a recent study [N. Camus et al., Phys. Rev. Lett. 119, 023201 (2017), 10.1103/PhysRevLett.119.023201].

  5. Upper Hybrid Effects in Artificial Ionization

    Science.gov (United States)

    Papadopoulos, K.; Eliasson, B. E.

    2014-12-01

    A most fascinating result of recent ionospheric experiments has been the discovery of artificial ionization by Pedersen et al. (GRL, 37, L02106, 2010). The Artificial Ionospheric Layers (AIL) were the result of F-region O-mode HF irradiation using the HAARP ionospheric heater operating at 3.6 MW power. As demonstrated by Eliasson et al. (JGR, 117, A10321, 2012) the physics controlling the observed phenomenon and its threshold can be summarized as: " Collisional ionization due to high energy (~ 20 eV) electron tails generated by the interaction of strong Langmuir turbulence with plasma heated at the upper hybrid resonance and transported at the reflection height". The objective of the current presentation is to explore the role of the upper hybrid heating in the formation of AIL and its implications to future experiments involving HF heaters operating in middle and equatorial latitudes.

  6. A liquid ionization chamber using tetramethylsilane

    International Nuclear Information System (INIS)

    Engler, J.; Keim, H.

    1983-12-01

    First results with a liquid ionization chamber using tetramethylsilane (TMS) are presented. A stack of iron plates was tested with cosmic ray muons and the charge output for minimum ionizing particles was measured. (orig.) [de

  7. Ionization loss in BGO

    International Nuclear Information System (INIS)

    Bakken, J.A.; Denes, P.; Piroue, P.A.; Stickland, D.P.; Sumner, R.L.; Taylor, C.; Barone, L.; Borgia, B.; Diemoz, M.; Dionisi, C.; Falciano, S.; Ferroni, F.; Gratta, G.; Longo, E.; Luminari, L.; Morganti, S.; Valente, E.; Blaising, J.J.; Boutigny, D.; Coignet, G.; Karyotakis, Y.; Sauvage, G.; Schneegans, M.; Vivargent, M.; Extermann, P.; Morand, G.; Ossmann, J.; Ruckstuhl, W.; Schaad, T.P.; Lecoq, P.; Walk, W.; Li, P.J.; Micke, M.; Micke, U.; Schmitz, D.

    1988-01-01

    We report on a precise measurement of the energy loss through ionization by pions in bismuth germanate performed at several values of the incident particles momentum with a prototype of the L3 electromagnetic calorimeter. The experimental results are in good agreement with theoretical predictions showing the relativistic rise modified by density effect. (orig.)

  8. [Results of statistical analysis of the dynamics of ionizing radiation dose fields in the service module of the International Space Station in 2000-2012].

    Science.gov (United States)

    Mitrikas, V G

    2014-01-01

    The on-going 24th solar cycle (SC) is distinguished from the previous ones by low activity. On the contrary, levels of proton fluxes from galactic cosmic rays (GCR) are high, which increases the proton flow striking the Earth's radiation belts (ERB). Therefore, at present the absorbed dose from ERB protons should be calculated with consideration of the tangible increase of protons intensity built into the model descriptions based on experimental measurements during the minimum between cycles 19 and 20, and the cycle 21 maximum. The absorbed dose from GCR and ERB protons copies galactic protons dynamics, while the ERB electrons dose copies SC dynamics. The major factors that determine the absorbed dose value are SC phase, ISS orbital altitude and shielding of the dosimeter readings of which are used in analysis. The paper presents the results of dynamic analysis of absorbed doses measured by a variety of dosimeters, namely, R-16 (2 ionization chambers), DB8-1, DB8-2, DB8-3, DB8-4 as a function of ISS orbit altitude and SC phase. The existence of annual variation in the absorbed dose dynamics has been confirmed; several additional variations with the periods of 17 and 52 months have been detected. Modulation of absorbed dose variations by the SC and GCR amplitudes has been demonstrated.

  9. Ionizing radiations

    International Nuclear Information System (INIS)

    2009-01-01

    After having recalled some fundamental notions and measurement units related to ionizing radiations, this document describes various aspects of natural and occupational exposures: exposure modes and sources, exposure levels, biological effects, health impacts. Then, it presents prevention principles aimed at, in an occupational context of use of radiation sources (nuclear industry excluded), reducing and managing these exposures: risk assessment, implementation of safety from the front end. Some practical cases illustrate the radiation protection approach. The legal and regulatory framework is presented: general notions, worker exposure, measures specific to some worker categories (pregnant and breast feeding women, young workers, temporary workers). A last part describes what is to be done in case of incident or accident (dissemination of radioactive substances from unsealed sources, anomaly occurring when using a generator or a sealed source, post-accident situation)

  10. Diffusion mechanism of ionization of highly excited atoms in an alternating electromagnetic field

    International Nuclear Information System (INIS)

    Delone, N.B.; Zon, B.A.; Krajnov, V.P.

    1978-01-01

    A new mechanism is proposed to describe the ionization of highly excited atomic states by a strong low frequency electromagnetic field. It consists in electron diffusion along atomic states strongly perturbed by the field. The diffusion time is calculated. The range of field intensities for which the mechanism is predominant is estimated. The results are compared with the experimental data

  11. Penning ionization cross sections of excited rare gas atoms

    International Nuclear Information System (INIS)

    Ukai, Masatoshi; Hatano, Yoshihiko.

    1988-01-01

    Electronic energy transfer processes involving excited rare gas atoms play one of the most important roles in ionized gas phenomena. Penning ionization is one of the well known electronic energy transfer processes and has been studied extensively both experimentally and theoretically. The present paper reports the deexcitation (Penning ionization) cross sections of metastable state helium He(2 3 S) and radiative He(2 1 P) atoms in collision with atoms and molecules, which have recently been obtained by the authors' group by using a pulse radiolysis method. Investigation is made of the selected deexcitation cross sections of He(2 3 S) by atoms and molecules in the thermal collisional energy region. Results indicate that the cross sections are strongly dependent on the target molecule. The deexcitation probability of He(2 3 S) per collision increases with the excess electronic energy of He(2 3 S) above the ionization potential of the target atom or molecule. Another investigation, made on the deexcitation of He(2 1 P), suggests that the deexcitation cross section for He(2 1 P) by Ar is determined mainly by the Penning ionization cross section due to a dipole-dipole interaction. Penning ionization due to the dipole-dipole interaction is also important for deexcitation of He(2 1 P) by the target molecules examined. (N.K.)

  12. Ionization detection system for aerosols

    International Nuclear Information System (INIS)

    Jacobs, M.E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber. 8 claims, 7 figures

  13. CALCULATION OF IONIZATION RATE COEFFICIENTS OF ...

    African Journals Online (AJOL)

    We use a simple numerical method to generate the ionization rates starting from the cross sections. These last are obtained by code FAC (Flexible Atomic Code). Our computation results will be compared with those published. Key words: Atomic data, radiative collisional Models, Ionization rate, cross Sections of ionization.

  14. Progress on untargeted effects of ionizing irradiation

    International Nuclear Information System (INIS)

    Liu Jing; Chen Jihong; Li Wenjian

    2010-01-01

    The side effect of ionizing irradiation has been paid more attention with its widely using in tumor treating and mutation breeding. In recent years, untargeted effects induced by ionizing irradiation have become a hotspot of radiobiology. Here, according to reported results, we reviewed the types (genomic instability, bystander effect and adaptive response) and mechanisms of untargeted effects of ionizing irradiation in this paper. (authors)

  15. Ionization and fragmentation of isomeric van der Waals complexes embedded in helium nanodroplets

    Science.gov (United States)

    Lewis, William K.; Lindsay, C. Michael; Miller, Roger E.

    2008-11-01

    The ionization and charge transfer processes, which occur when a doped helium droplet undergoes electron impact, are studied for droplets doped with van der Waals complexes with various structures and electrostatic moments. The mass spectra of the two isomers of hydrogen cyanide complexed with either cyanoacetylene or acetylene in helium droplets were obtained using optically selected mass spectrometry, and show that the structure of the complex has a large effect on the fragmentation pattern. The resulting fragmentation pattern is consistent with an ionization process in which charge steering strongly influences the site of initial ionization. The observed dissociation products may also be subject to caging by the helium matrix.

  16. Ionization effects in electronic inner-shells of ionized atoms

    International Nuclear Information System (INIS)

    Shchornak, G.

    1983-01-01

    A review of the atomic physics of ionization atoms has been presented. Interaction and structure effects in atomic shells, correlated to the occurrence of vacancies in several subshells of the atom have been considered. The methods of calculations of atomic states and wave functions have been reviewed. The energy shift of characteristic X-rays is discussed as a function of the ionization stage of the atom. The influence of inner and outer-shell vacancies on the energy of the X-rays is shown in detail. The influence of chemical effects on the parameters of X-rays is also taken into account. Further on, the change of transition probabilities in radiative and non-radiative transitions by changing stage of ionization is discussed; and among them the leading part of Auger and Coster-Kronig transitions by the arearrangement of the atomic states is shown. The influence of non-radiative electronic transitions on ionization cross-sections for multiple ionization is discussed. Using these results, ionization cross-sections for direct and indirect processes for several ionization stages are given

  17. Influence of Dust Loading on Atmospheric Ionizing Radiation on Mars

    Science.gov (United States)

    Norman, Ryan B.; Gronoff, Guillaume; Mertens, Christopher J.

    2014-01-01

    Measuring the radiation environment at the surface of Mars is the primary goal of the Radiation Assessment Detector on the NASA Mars Science Laboratory's Curiosity rover. One of the conditions that Curiosity will likely encounter is a dust storm. The objective of this paper is to compute the cosmic ray ionization in different conditions, including dust storms, as these various conditions are likely to be encountered by Curiosity at some point. In the present work, the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety model, recently modified for Mars, was used along with the Badhwar & O'Neill 2010 galactic cosmic ray model. In addition to galactic cosmic rays, five different solar energetic particle event spectra were considered. For all input radiation environments, radiation dose throughout the atmosphere and at the surface was investigated as a function of atmospheric dust loading. It is demonstrated that for galactic cosmic rays, the ionization depends strongly on the atmosphere profile. Moreover, it is shown that solar energetic particle events strongly increase the ionization throughout the atmosphere, including ground level, and can account for the radio blackout conditions observed by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on the Mars Express spacecraft. These results demonstrate that the cosmic rays' influence on the Martian surface chemistry is strongly dependent on solar and atmospheric conditions that should be taken into account for future studies.

  18. Photoionization effects in ionization fronts

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, Manuel [Departamento de Electromagnetismo, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain); Fontelos, Marco A [Departamento de Matematicas, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, C/Serrano 123, 28006 Madrid (Spain); Trueba, Jose L [Departamento de Electromagnetismo, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2006-12-21

    In this paper we study the effects of photoionization processes on the propagation of both negative and positive ionization fronts in streamer discharge. We show that negative fronts accelerate in the presence of photoionization events. The appearance and propagation of positive ionization fronts travelling with constant velocity is explained as the result of the combined effects of photoionization and electron diffusion. The photoionization range plays an important role in the selection of the velocity of the ionization front as we show in this work.

  19. Model predictions of the results of interferometric observations for stars under conditions of strong gravitational scattering by black holes and wormholes

    International Nuclear Information System (INIS)

    Shatskiy, A. A.; Kovalev, Yu. Yu.; Novikov, I. D.

    2015-01-01

    The characteristic and distinctive features of the visibility amplitude of interferometric observations for compact objects like stars in the immediate vicinity of the central black hole in our Galaxy are considered. These features are associated with the specifics of strong gravitational scattering of point sources by black holes, wormholes, or black-white holes. The revealed features will help to determine the most important topological characteristics of the central object in our Galaxy: whether this object possesses the properties of only a black hole or also has characteristics unique to wormholes or black-white holes. These studies can be used to interpret the results of optical, infrared, and radio interferometric observations

  20. Model predictions of the results of interferometric observations for stars under conditions of strong gravitational scattering by black holes and wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Shatskiy, A. A., E-mail: shatskiy@asc.rssi.ru; Kovalev, Yu. Yu.; Novikov, I. D. [Russian Academy of Sciences, Astro Space Center, Lebedev Physical Institute (Russian Federation)

    2015-05-15

    The characteristic and distinctive features of the visibility amplitude of interferometric observations for compact objects like stars in the immediate vicinity of the central black hole in our Galaxy are considered. These features are associated with the specifics of strong gravitational scattering of point sources by black holes, wormholes, or black-white holes. The revealed features will help to determine the most important topological characteristics of the central object in our Galaxy: whether this object possesses the properties of only a black hole or also has characteristics unique to wormholes or black-white holes. These studies can be used to interpret the results of optical, infrared, and radio interferometric observations.

  1. Electron impact ionization of heavy ions: some surprises

    International Nuclear Information System (INIS)

    Younger, S.M.

    1986-01-01

    This paper reports the results of calculations of electron impact ionization cross sections for a variety of heavy ions using a distorted wave Born-exchange approximation. The target is described by a Hartree-Fock wavefunction. The scattering matrix element is represented by a triple partial wave expansion over incident, scattered, and ejected (originally bound) continuum states. These partial waves are computed in the potentials associated with the initial target (incident and scattered waves) and the residual ion (ejected waves). A Gauss integration was performed over the distribution of energy between the two final state continuum electrons. For ionization of closed d- and f-subshells, the ejected f-waves were computed in frozen-core term-dependent Hartree-Fock potentials, which include the strong repulsive contribution in singlet terms which arises from the interaction of an excited orbital with an almost closed shell. Ground state correlation was included in some calculations of ionization of d 10 subshells

  2. X-RAY SIGNATURES OF NON-EQUILIBRIUM IONIZATION EFFECTS IN GALAXY CLUSTER ACCRETION SHOCK REGIONS

    International Nuclear Information System (INIS)

    Wong, Ka-Wah; Sarazin, Craig L.; Ji Li

    2011-01-01

    The densities in the outer regions of clusters of galaxies are very low, and the collisional timescales are very long. As a result, heavy elements will be under-ionized after they have passed through the accretion shock. We have studied systematically the effects of non-equilibrium ionization for relaxed clusters in the ΛCDM cosmology using one-dimensional hydrodynamic simulations. We found that non-equilibrium ionization effects do not depend on cluster mass, but depend strongly on redshift which can be understood by self-similar scaling arguments. The effects are stronger for clusters at lower redshifts. We present X-ray signatures such as surface brightness profiles and emission lines in detail for a massive cluster at low redshift. In general, soft emission (0.3-1.0 keV) is enhanced significantly by under-ionization, and the enhancement can be nearly an order of magnitude near the shock radius. The most prominent non-equilibrium ionization signature we found is the O VII and O VIII line ratio. The ratios for non-equilibrium ionization and collisional ionization equilibrium models are different by more than an order of magnitude at radii beyond half of the shock radius. These non-equilibrium ionization signatures are equally strong for models with different non-adiabatic shock electron heating efficiencies. We have also calculated the detectability of the O VII and O VIII lines with the future International X-ray Observatory (IXO). Depending on the line ratio measured, we conclude that an exposure of ∼130-380 ks on a moderate-redshift, massive regular cluster with the X-ray Microcalorimeter Spectrometer (XMS) on the IXO will be sufficient to provide a strong test for the non-equilibrium ionization model.

  3. Pregnancy and ionizing radiation

    International Nuclear Information System (INIS)

    Plataniotis, Th.N.; Nikolaou, K.I.; Syrgiamiotis, G.V.; Dousi, M.; Panou, Th.; Georgiadis, K.; Bougias, C.

    2008-01-01

    Full text: In this report there will be presented the effects of ionizing radiation at the fetus and the necessary radioprotection. The biological results on the fetus, caused by the irradiation, depend on the dose of ionizing radiation that it receives and the phase of its evolution. The imminent effects of the irradiation can cause the fetus death, abnormalities and mental retardation, which are the result of overdose. The effects are carcinogenesis and leukemia, which are relative to the acceptable irradiating dose at the fetus and accounts about 0,015 % per 1 mSv. The effects of ionizing radiation depend on the phase of the fetus evolution: 1 st phase (1 st - 2 nd week): presence of low danger; 2 nd phase (3 rd - 8 th week): for doses >100 mSv there is the possibility of dysplasia; 3 rd phase (8 th week - birth): this phase concerns the results with a percentage 0,015 % per 1 mSv. We always must follow some rules of radioprotection and especially at Classical radiation use of necessary protocols (low dose), at Nuclear Medicine use of the right radioisotope and the relative field of irradiation for the protection of the adjacent healthy tissues and at Radiotherapy extreme caution is required regarding the dose and the treatment. In any case, it is forbidden to end a pregnancy when the pregnant undergoes medical exams, in which the uterus is in the beam of irradiation. The radiographer must always discuss the possibility of pregnancy. (author)

  4. The ionization state in a gas with a non-Maxwellian electron distribution

    Science.gov (United States)

    Owocki, S. P.; Scudder, J. D.

    1981-01-01

    The inferred degree of ionization of a gas is often used in astrophysics as a diagnostic of the gas temperature. In the solar transition region and corona, in the outer atmospheres of cool stars, and in some portions of the interstellar medium), photoionization can be neglected, and the ionization state is fixed by the balance between ion-electron collisional ionization and dielectronic and/or radiative recombination. Under these conditions, higher degrees of ionization result from higher energy ion-electron collisions which are common in a high temperature gas. Actually, ionization occurs through collisions with electrons that have kinetic energies greater than the ionization potential of the given ion, and so the ionization rate depends on to the number of such high-energy electrons in the tail of the electron velocity distribution. High-velocity electrons move across large distances between effective coulomb collisions, and, in a strong temperature or density gradient, the tail can be overpopulated relative to Maxwell-Boltzmann distribution of equivalent energy density. Thus, the ionization rate can also be greatly increased. These effects for a parameterized form of the electron distribution function with an enhanced high-velocity tail, namely the kappa distribution are illustrated.

  5. Ionization of nitrogen cluster beam

    International Nuclear Information System (INIS)

    Yano, Katsuki; Be, S.H.; Enjoji, Hiroshi; Okamoto, Kosuke

    1975-01-01

    A nitrogen cluster beam (neutral particle intensity of 28.6 mAsub(eq)) is ionized by electron collisions in a Bayard-Alpert gauge type ionizer. The extraction efficiency of about 65% is obtained at an electron current of 10 mA with an energy of 50 eV. The mean cluster size produced at a pressure of 663 Torr and temperature of 77.3 K is 2x10 5 molecules per cluster. By the Coulomb repulsion force, multiply ionized cluster ions are broken up into smaller fragments and the cluster ion size reduces to one-fourth at an electron current of 15 mA. Mean neutral cluster sizes depend strongly on the initial degree of saturation PHI 0 and are 2x10 5 , 7x10 4 and 3x10 4 molecules per cluster at PHI 0 's of 0.87, 0.66 and 0.39, respectively. (auth.)

  6. RILIS-ionized mercury and tellurium beams at ISOLDE CERN

    Energy Technology Data Exchange (ETDEWEB)

    Day Goodacre, T., E-mail: thomas.day.goodacre@cern.ch [CERN (Switzerland); Billowes, J. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Chrysalidis, K. [CERN (Switzerland); Fedorov, D. V. [Petersburg Nuclear Physics Institute (Russian Federation); Fedosseev, V. N.; Marsh, B. A. [CERN (Switzerland); Molkanov, P. L. [Petersburg Nuclear Physics Institute (Russian Federation); Rossel, R. E.; Rothe, S.; Seiffert, C. [CERN (Switzerland); Wendt, K. D. A. [Johannes Gutenberg Universität, Institut für Physik (Germany)

    2017-11-15

    This paper presents the results of ionization scheme development for application at the ISOLDE Resonance Ionization Laser Ion Source (RILIS). Two new ionization schemes for mercury are presented: a three-step three-resonance ionization scheme, ionizing via an excitation to a Rydberg level and a three-step two-resonance ionization scheme, with a non-resonant final step to the ionization continuum that corresponded to a factor of four higher ionization efficiency. The efficiency of the optimal mercury ionization scheme was measured, together with the efficiency of a new three-step three resonance ionization scheme for tellurium. The efficiencies of the mercury and tellurium ionization schemes were determined to be 6 % and >18 % respectively.

  7. Resonance ionization for analytical spectroscopy

    Science.gov (United States)

    Hurst, George S.; Payne, Marvin G.; Wagner, Edward B.

    1976-01-01

    This invention relates to a method for the sensitive and selective analysis of an atomic or molecular component of a gas. According to this method, the desired neutral component is ionized by one or more resonance photon absorptions, and the resultant ions are measured in a sensitive counter. Numerous energy pathways are described for accomplishing the ionization including the use of one or two tunable pulsed dye lasers.

  8. Physics of Strongly Coupled Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kraeft, Wolf-Dietrich [Universitat Rostock (Germany)

    2007-07-15

    Strongly coupled plasmas (or non-ideal plasmas) are multi-component charged many-particle systems, in which the mean value of the potential energy of the system is of the same order as or even higher than the mean value of the kinetic energy. The constituents are electrons, ions, atoms and molecules. Dusty (or complex) plasmas contain still mesoscopic (multiply charged) particles. In such systems, the effects of strong coupling (non-ideality) lead to considerable deviations of physical properties from the corresponding properties of ideal plasmas, i.e., of plasmas in which the mean kinetic energy is essentially larger than the mean potential energy. For instance, bound state energies become density dependent and vanish at higher densities (Mott effect) due to the interaction of the pair with the surrounding particles. Non-ideal plasmas are of interest both for general scientific reasons (including, for example, astrophysical questions), and for technical applications such as inertially confined fusion. In spite of great efforts both experimentally and theoretically, satisfactory information on the physical properties of strongly coupled plasmas is not at hand for any temperature and density. For example, the theoretical description of non-ideal plasmas is possible only at low densities/high temperatures and at extremely high densities (high degeneracy). For intermediate degeneracy, however, numerical experiments have to fill the gap. Experiments are difficult in the region of 'warm dense matter'. The monograph tries to present the state of the art concerning both theoretical and experimental attempts. It mainly includes results of the work performed in famous Russian laboratories in recent decades. After outlining basic concepts (chapter 1), the generation of plasmas is considered (chapter 2, chapter 3). Questions of partial (chapter 4) and full ionization (chapter 5) are discussed including Mott transition and Wigner crystallization. Electrical and

  9. Cross section data for ionization of important cyanides

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jaspreet; Antony, Bobby, E-mail: bka.ism@gmail.com

    2015-11-15

    Highlights: • Multi centre spherical complex optical potential formalism used to find the CS. • Effective method (CSP-ic) to derive ionization contribution from inelastic CS. • Result shows excellent accord with previous results and consistent behaviour. • Maiden attempt to find CS for many cyanide molecules. • Strong correlation observed between peak of ionization with target properties. - Abstract: This article presents cross section calculations for interactions of important cyanides with electrons possessing energies beginning from ionization threshold of the target molecule to 5 keV. These data are pursued to meet the ever increasing demand for cross sections by the relevant atomic and molecular community for modelling astrophysical, atmospheric and technological domains. The calculations have been executed using an amalgam of multi centre spherical complex optical potential (MSCOP) formalism and complex scattering potential-ionization contribution (CSP-ic) method. Cross sections are compared with experimental and theoretical data wherever available. Strong correlations are observed for the cross sections which affirms consistent and reliable cross sections. Isomeric effect has been interpreted using variation of cross section with structure and target properties. Our cross sections will be tabulated in atomic collision database for use in modelling various statistical and dynamical quantities.

  10. Signature of charge migration in modulations of double ionization

    Science.gov (United States)

    Mauger, François; Abanador, Paul M.; Bruner, Adam; Sissay, Adonay; Gaarde, Mette B.; Lopata, Kenneth; Schafer, Kenneth J.

    2018-04-01

    We present a theoretical investigation of charge migration following strong-field ionization in a multielectron system. We study a model homonuclear molecule with two electrons, each restricted to one dimension (1 +1 D ), interacting with a strong, static electric field. We show that in this system charge migration results from the interplay between multiple ionization channels that overlap in space, creating a coherent electron-hole wave packet in the cation. We also find that, in our case, charge migration following the first ionization manifests as a modulation of the subsequent double-ionization signal. We derive a parametrized semiclassical model from the full multielectron system and we discuss the importance of the choice of cation electronic-structure basis for the efficacy of the semiclassical representation. We use the ab initio solution of the full 1 +1 D system as a reference for the qualitative and quantitative results of the parametrized semiclassical model. We discuss the extension of our model to long-wavelength time-dependent fields with full-dimension, many-electron targets.

  11. Heating and ionization in MHD shock waves propagating into partially ionized plasma

    International Nuclear Information System (INIS)

    Bighel, L.; Collins, A.R.; Cramer, N.F.; Watson-Munro, C.N.

    1975-09-01

    A model of the structure of MHD switch-on shocks propagating in a partially ionized plasma, in which the primary dissipation mechanism is friction between ions and neutrals, is here compared favourably with experimental results. Four degrees of upstream ionization were studied, ranging from almost complete to very small ionization. (author)

  12. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    International Nuclear Information System (INIS)

    Stoyanov, D G

    2007-01-01

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained

  13. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-08-15

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.

  14. results

    Directory of Open Access Journals (Sweden)

    Salabura Piotr

    2017-01-01

    Full Text Available HADES experiment at GSI is the only high precision experiment probing nuclear matter in the beam energy range of a few AGeV. Pion, proton and ion beams are used to study rare dielectron and strangeness probes to diagnose properties of strongly interacting matter in this energy regime. Selected results from p + A and A + A collisions are presented and discussed.

  15. MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    International Nuclear Information System (INIS)

    Soler, Roberto; Ballester, Jose Luis; Carbonell, Marc

    2013-01-01

    Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given

  16. MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Roberto; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, Marc, E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2013-11-01

    Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given.

  17. Molecular single photon double K-shell ionization

    International Nuclear Information System (INIS)

    Penent, F.; Nakano, M.; Tashiro, M.; Grozdanov, T.P.; Žitnik, M.; Carniato, S.; Selles, P.; Andric, L.; Lablanquie, P.; Palaudoux, J.; Shigemasa, E.; Iwayama, H.; Hikosaka, Y.; Soejima, K.; Suzuki, I.H.; Kouchi, N.; Ito, K.

    2014-01-01

    We have studied single photon double K-shell ionization of small molecules (N 2 , CO, C 2 H 2n (n = 1–3), …) and the Auger decay of the resulting double core hole (DCH) molecular ions thanks to multi-electron coincidence spectroscopy using a magnetic bottle time-of-flight spectrometer. The relative cross-sections for single-site (K −2 ) and two-site (K −1 K −1 ) double K-shell ionization with respect to single K-shell (K −1 ) ionization have been measured that gives important information on the mechanisms of single photon double ionization. The spectroscopy of two-site (K −1 K −1 ) DCH states in the C 2 H 2n (n = 1–3) series shows important chemical shifts due to a strong dependence on the C-C bond length. In addition, the complete cascade Auger decay following single site (K −2 ) ionization has been obtained

  18. Carrier-envelope phase-dependent ionization of Xe in intense, ultrafast (two-cycle) laser fields

    Science.gov (United States)

    Vasa, Parinda; Dharmadhikari, Aditya K.; Mathur, Deepak

    2018-01-01

    We report an experimental study that shows the dependence of the tunnel ionization of Xe by two-cycle, intense, near infrared light on the carrier-envelope-phase (CEP) of incident laser pulses. At low values of the optical field (E), the ionization yield is found to be maximum for cos-like pulses; the CEP dependence of the ion yield becomes stronger for higher charge states. At higher E-values, the CEP dependence either washes out or flips. A simple phenomenological model is used to confirm that our results fall within the ambit of the current understanding of ionization dynamics in strong, ultrashort optical fields. In the observed tunnel ionization of Xe, CEP effects appear to persist for longer, eight-cycle, pulses. Electron rescattering is observed to play a relatively unimportant role in the observed CEP dependence. These results provide fresh perspectives in the ionization mechanisms of multielectron systems in the few-cycle regime.

  19. Ionization of oriented carbonyl sulfide molecules by intense circularly polarized laser pulses

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We present combined experimental and theoretical results on strong-field ionization of oriented carbonyl sulfide molecules by circularly polarized laser pulses. The obtained molecular frame photoelectron angular distributions show pronounced asymmetries perpendicular to the direction...... of the molecular electric dipole moment. These findings are explained by a tunneling model invoking the laser-induced Stark shifts associated with the dipoles and polarizabilities of the molecule and its unrelaxed cation. The focus of the present article is to understand the strong-field ionization of one......-dimensionally-oriented polar molecules, in particular asymmetries in the emission direction of the photoelectrons. In the following article [Phys. Rev. A 83, 023406 (2011)] the focus is to understand strong-field ionization from three-dimensionally-oriented asymmetric top molecules, in particular the suppression of electron...

  20. Ionization potentials of seaborgium

    International Nuclear Information System (INIS)

    Johnson, E.; Pershina, V.; Fricke, B.

    1999-01-01

    Multiconfiguration relativistic Dirac-Fock values were calculated for the first six ionization potentials of seaborgium and of the other group 6 elements. No experimental ionization potentials are available for seaborgium. Accurate experimental values are not available for all of the other ionization potentials. Ionic radii for the 4+ through 6+ ions of seaborgium are also presented. The ionization potentials and ionic radii obtained will be used to predict some physiochemical properties of seaborgium and its compounds

  1. Ionization of food products

    International Nuclear Information System (INIS)

    Vasseur, J.P.

    1991-01-01

    After general remarks on foods preservation, on international works and on ionization future prospects, main irradiation sources are described. Recalls on radioactivity, on radiation-matter interaction, on toxicology of ionized foods and on ionized foods detection are given. Ionization applications to various products are reviewed, especially in: - Poultry meat - Fishing products - Fresh fruits and vegetables - Dry fruits and vegetables - spices, tea, infusion - prepacked products... An evaluation of economics and sociocultural impacts is presented in connection with recent experiments [fr

  2. DNA repair activity in children exposed to small doses of ionizing radiation as a result of the breakdown at the Chernobyl nuclear power station

    International Nuclear Information System (INIS)

    Unzhakov, S.V.; L'vova, G.N.; Semyachkina, A.N.

    1995-01-01

    The repair activity of DNA was studied by variolovaccine virus reactivation and induced mutagenesis tests in the peripheral blood lymphocytes of children living in areas with an increased level of ionizing radiation, due to the breakdown at the Chernobyl nuclear power station. A more profound repair disturbance was revealed in children living on strictly controlled territories and born after the disaster, compared to those born before it, and to those living in areas where the radiation level does not exceed background values. The disturbances were characterized by increased induced mutagenesis and decreased reactivation of the variolovaccine virus. No changes in the degree of DNA repair synthesis were registered in any of the groups studied. 8 refs., 1 fig., 3 tabs

  3. Doubly resonant multiphoton ionization

    International Nuclear Information System (INIS)

    Crance, M.

    1978-01-01

    A particular case of doubly resonant multiphoton ionization is theoretically investigated. More precisely, two levels quasi-resonant with two successive harmonics of the field frequency are considered. The method used is based on the effective operator formalism first introduced for this problem by Armstrong, Beers and Feneuille. The main result is to show the possibility of observing large interference effects on the width of the resonances. Moreover this treatment allows us to make more precise the connection between effective operator formalism and standard perturbation theory

  4. How periodic orbit bifurcations drive multiphoton ionization

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S [Center for Nonlinear Science, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430 (United States); Chandre, C [Centre de Physique Theorique, CNRS Luminy, Case 907, 13288 Marseille cedex 09 (France); Uzer, T [Center for Nonlinear Science, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430 (United States)

    2007-06-14

    The multiphoton ionization of hydrogen by a strong bichromatic microwave field is a complex process prototypical for atomic control research. Periodic orbit analysis captures this complexity: through the stability of periodic orbits we can match qualitatively the variation of experimental ionization rates with a control parameter, the relative phase between the two modes of the field. Moreover, an empirical formula reproduces quantum simulations to a high degree of accuracy. This quantitative agreement shows how short periodic orbits organize the dynamics in multiphoton ionization. (fast track communication)

  5. Periodic orbit bifurcations as an ionization mechanism: the bichromatically driven hydrogen atom

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S [Center for Nonlinear Science, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430 (United States); Chandre, C [Centre de Physique Theorique -CNRS, Luminy-Case 907, 13288 Marseille Cedex 09 (France); Uzer, T [Center for Nonlinear Science, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430 (United States)

    2008-02-14

    We investigate the multiphoton ionization of hydrogen driven by a strong bichromatic microwave field. In a regime where classical and quantum simulations agree, periodic orbit analysis captures the mechanism: through the linear stability of periodic orbits we match qualitatively the variation of experimental ionization rates with control parameters such as the amplitudes of the two modes of the field or their relative phases. Moreover, we discuss an empirical formula which reproduces quantum simulations to a high degree of accuracy. This quantitative agreement shows the mechanism by which short periodic orbits organize the dynamics in multiphoton ionization. We also analyse the effect of longer pulse durations. Finally, we compare our results with those based on the peak amplitude rule. Both qualitative and quantitative analyses are implemented for different mode-locked fields. In parameter space, the localization of the period doubling and halving allows one to predict the set of parameters (amplitudes and phase lag) where ionization occurs.

  6. Resonance ionization spectroscopy in dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D., E-mail: dstuder@uni-mainz.de; Dyrauf, P.; Naubereit, P.; Heinke, R.; Wendt, K. [Johannes Gutenberg-Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    We report on resonance ionization spectroscopy (RIS) of high-lying energy levels in dysprosium. We developed efficient excitation schemes and re-determined the first ionization potential (IP) via analysis of Rydberg convergences. For this purpose both two- and three-step excitation ladders were investigated. An overall ionization efficiency of 25(4) % could be demonstrated in the RISIKO mass separator of Mainz University, using a three-step resonance ionization scheme. Moreover, an extensive analysis of the even-parity 6sns- and 6snd-Rydberg-series convergences, measured via two-step excitation was performed. To account for strong perturbations in the observed s-series, the approach of multichannel quantum defect theory (MQDT) was applied. Considering all individual series limits we extracted an IP-value of 47901.76(5) cm{sup −1}, which agrees with the current literature value of 47901.7(6) cm{sup −1}, but is one order of magnitude more precise.

  7. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.

    2002-01-01

    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  8. Ionizing radiations and cancer

    Directory of Open Access Journals (Sweden)

    Süleyman Daşdağ

    2010-06-01

    Full Text Available The aim of this study is to evaluate the biologic effects of ionizing radiation and relation between medical diagnosticradiation exposure and cancer risk. Many unnecessary ionizing radiation applications are performed in the medicalcenters and hospitals. Therefore the health staff and the patients expose to serious risks of radiation. On the other hand, recently some studies, which suggested relationshipsbetween low dose ionizing radiation and some cancers, have been published. The relationship between low dose ionizing radiation and cancer can be more understandablewhen the stochastic effects of ionizing radiationtake into consideration. This presented review calls attention to the fact that low dose ionizing radiation may be an important factor for increased cancer risk. Therefore,physicians, health workers and patients have to pay maximum attention to avoid hazards of low dose ionizing radiation.

  9. Atomic and free electrons in a strong light field

    CERN Document Server

    Fedorov, Mikhail V

    1997-01-01

    This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated bremsstrahlung, free-electron lasers, wave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described too, and their results are compared with those of the existing theoretical models.An extensive ge

  10. Electron-Nuclear Energy Sharing in Above-Threshold Multiphoton Dissociative Ionization of H2

    DEFF Research Database (Denmark)

    Wu, J.; Kunitski, M.; Pitzer, M.

    2013-01-01

    We report experimental observation of the energy sharing between electron and nuclei in above-threshold multiphoton dissociative ionization of H2 by strong laser fields. The absorbed photon energy is shared between the ejected electron and nuclei in a correlated fashion, resulting in multiple...... diagonal lines in their joint energy spectrum governed by the energy conservation of all fragment particles....

  11. K-shell ionization by antiprotons

    International Nuclear Information System (INIS)

    Mehler, G.; Mueller, B.; Greiner, W.; Soff, G.

    1987-01-01

    We present first calculations for the impact parameter dependence of K-shell ionization rates in anti pCu and in anti pAg collisions at various projectile energies. We show that the effect of the attractive Coulomb potential on the Rutherford trajectory and the anti-binding effect caused by the negative charge of the antiproton result in a considerable increase of the ionization probability. Total ionization cross-sections for proton and antiproton projectiles are compared with each other and with experimental ionization cross-sections for protons. (orig.)

  12. Interference Effects in Strong-Field Dissociative Ionization

    DEFF Research Database (Denmark)

    Yue, Lun; Madsen, Lars Bojer

    2015-01-01

    with simple energy conservation arguments. We explain the structures as interferences between wave packets released during different optical cycles, and during the same optical cycle, respectively. Both inter- and intracycle interference structures are clearly visible in the joint energy spectra. The shapes...

  13. Storing strong spent ionizing-radiation sources in metal matrices

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Arustamov, A.E.; Ozhovan, M.I.; Poluektov, P.P.; Polyakov, A.S.; Semenov, K.N.; Timofeev, E.M.; Tret'yak, S.A.; Shiryaev, V.V.

    1989-01-01

    The Moscow Radon Cooperative has collaborated with the Bochvar Research Institute since 1986 in a new method of handling spent sources for placing in undergound stores. The spent sources are mounted in metal matrices. Each batch of sources after discharge from the containers is enclosed in a layer of metal. This produces firstly uniform activity distribution, which reduces the radiation and thermal loads, and secondly isolates the sources reliably from the environment. Metals are used for the matrices because of the high activity, as metals have good radiation stability and adequate corrosion resistance, while providing good cooling and preventing local overheating. The best matrices are based on lead alloys, which have low melting points, low corrosion rates, low cost, and general availability. Calculations and experience show that the lead consumption is very low and constitutes only 1.35 x 10 -14 cm 3 · Bq -1 (5 x 10 -4 dm 3 ·Ci -1 for 60 Co). The equipment and storage method is described

  14. Tapentadol prolonged release versus strong opioids for severe, chronic low back pain: results of an open-label, phase 3b study.

    Science.gov (United States)

    Gálvez, Rafael; Schäfer, Michael; Hans, Guy; Falke, Dietmar; Steigerwald, Ilona

    2013-03-01

    This open-label, phase 3b study evaluated the effectiveness and tolerability of oral tapentadol prolonged release (PR; 50-250 mg twice daily [b.i.d.]) for managing severe, chronic low back pain in patients responding to World Health Organization (WHO) step III opioids but tolerating treatment poorly. Equianalgesic ratios for tapentadol to prior strong opioids were calculated. Patients rotated directly from prior WHO step III opioids to tapentadol. Patients received tapentadol PR (50-250 mg b.i.d.) during 5-week titration and 7-week maintenance periods. Tapentadol immediate release (IR) 50 mg (≤ twice/day, ≥ 4 h apart) was allowed (total daily dose of tapentadol PR and IR ≤ 500 mg/day). The primary endpoint was responder rate 1 at week 6 (percentage of patients with the same or less pain intensity [11-point numerical rating scale (NRS; 3-day average)] vs week -1). Responder rate 1 at week 6 (last observation carried forward [LOCF]) was 80.9% (76/94; P pain intensity and neuropathic pain symptoms were observed at weeks 6 and 12 with tapentadol PR (P comparable pain relief and improved tolerability versus prior strong opioids in patients with severe, chronic low back pain responding to WHO step III therapy. Conversion from strong opioids to tapentadol PR, with its two mechanisms of action, went smoothly considering overall effectiveness and tolerability outcomes. Equianalgesic ratios of tapentadol to oxycodone and other strong opioids were in line with other phase 3/3b studies.

  15. Insertion of Argos sequences into the B-loop of epidermal growth factor results in a low-affinity ligand with strong agonistic activity.

    Science.gov (United States)

    van de Poll, M L; van Vugt, M J; Lenferink, A E; van Zoelen, E J

    1997-06-17

    Recently, it has been shown that the activation of the Drosophila EGF receptor (DER) by its natural ligand Spitz is inhibited by Argos [Schweitzer, R., et al. (1995) Nature 376, 699-702]. Argos and Spitz both have an EGF-like domain which in the case of Argos differs from that of Spitz and other EGF receptor agonists in that it has an extended B-loop of 20 amino acids instead of 10 amino acids which in addition contains an unusual cluster of charged residues. To investigate whether B-loop sequences are an important determinant for receptor activation and play a causal role in the antagonistic activity of Argos, three human (h)EGF mutants were constructed in which amino acids derived from the Argos B-loop were introduced. In one mutant (E3A4E/B10), replacement of four amino acids in the B-loop of hEGF (123, E24, D27, and K28) by the corresponding Argos residues neither altered the binding affinity of the growth factor for the hEGF receptor nor did it change its ability to induce a mitogenic response. Insertion of 2 additional Argos residues (E3A4E/B12) or extension of the B-loop by 10 amino acids (E3A4E/B20) resulted, however, in a significant loss of binding affinity. In spite of this, both E3A4E/B12 and E3A4E/B20 appeared to be strong agonists for the hEGF receptor with similar dose-response curves for mitogenic activity and MAPK activation as wild-type hEGF. These data show that several nonconservative substitutions in the hEGF B-loop are tolerated without affecting receptor binding or activation. Furthermore, they show that receptor binding and receptor signaling efficiency can be uncoupled which is a prerequisite for the development of receptor antagonists.

  16. Laser ionization of molecular clusters

    International Nuclear Information System (INIS)

    Desai, S.; Feigerle, C.S.

    1995-01-01

    Multiphoton ionization coupled with mass spectrometry was used to investigate molecular cluster distributions. Three examples will be discussed in this presentation. First, in studies of neat nitric oxide clusters, (NO) m , an interesting odd-even intensity alternation was observed and will be discussed in terms of electron-pairing considerations. In a separate study, the binary clusters comprising nitric oxide and methane preferentially form a stoichiometric cluster made up of repeating units of (NO) 2 CH 4 . These presumably represent a particularly strongly bound open-quotes van der Waalsclose quotes subunit. Finally, in similar studies of neat carbon disulfide clusters, (CS 2 ) m , additional photon absorption after the two-photon ionization step stimulates a series of intracluster ion-molecular reactions leading to formation of S m + and (CS) m + polymers, as well as intermediate species such as S m + (CS 2 ). This molecular cluster analogue of open-quotes laser snowclose quotes will be described in detail

  17. Ionizing radiation in environment

    International Nuclear Information System (INIS)

    Jandl, J.; Petr, I.

    1988-01-01

    The basic terms are explained such as the atom, radioactivity, nuclear reaction, interaction of ionizing radiation with matter, etc. The basic dosimetric variables and units and properties of radionuclides and ionizing radiation are given. Natural and artificial sources of ionizing radiation are discussed with regard to the environment and the propagation and migration of radionuclides is described in the environment to man. The impact is explained of ionizing radiation on the cell and the somatic and genetic effects of radiation on man are outlined. Attention is devoted to protection against ionizing radiation and to radiation limits, also to the detection, dosimetry and monitoring of ionizing radiation in the environment. (M.D.). 92 figs., 40 tabs. 74 refs

  18. Ionizing radiation in hospitals

    International Nuclear Information System (INIS)

    Blok, K.; Ginkel, G. van; Leun, K. van der; Muller, H.; Oude Elferink, J.; Vesseur, A.

    1985-10-01

    This booklet dels with the risks of the use of ionizing radiation for people working in a hospital. It is subdivided in three parts. Part 1 treats the properties of ionizing radiation in general. In part 2 the various applications are discussed of ionizing radiation in hospitals. Part 3 indicates how a not completely safe situation may be improved. (H.W.). 14 figs.; 4 tabs

  19. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  20. Effect of negative ions on current growth and ionizing wave propagation in air

    International Nuclear Information System (INIS)

    Kline, L.E.

    1975-01-01

    The spatiotemporal development of electron and ion densities, electric fields, and luminosity are calculated for electron pulse experiments in overvolted parallel-plane gaps by numerically solving continuity equations together with Poisson's equation. Experimental coefficients for primary ionization, cathode photoemission, photoionization, and luminosity are used. Unambiguous determination of the coefficients for attachment, detachment, and charge transfer is not possible from available experimental results. Therefore, the calculations are repeated for three sets of coefficients for these processes, corresponding to the following assumptions: unstable negative ions, stable negative ions, and no negative ions. The results of the calculations show, in each case, that the electron pulse initiates an avalanche which grows exponentially until the onset of space-charge effects. The calculated growth rate is strongly affected by the assumed attachment, detachment, and charge-transfer coefficients. When the total number of electrons in the avalanche reaches approx.10 8 , anode- and cathode-directed ionizing waves, or streamers, develop from the avalanche and produce a weakly ionized filamentary plasma. The calculated ionizing wave velocities are strongly increasing functions of the space-charge--enhanced electric field within the waves and are insensitive to the assumed attachment, detachment, and charge-transfer coefficients. The numerically calculated ionizing wave velocities are in approximate agreement with a simple analytical theory

  1. Effects of ionizing radiations on insects

    International Nuclear Information System (INIS)

    Goyffon, Max.

    1978-01-01

    The most traditional effects caused by irradiation are development and morphogenesis disorders since on the whole the sensitivity of the developing organism to ionizing radiations is all the greater as the growth rate is faster. During the development of higher insects two categories of cell divide: larval cells on the one hand, which differentiate immediately after segmentation and give rise to larval organisms, and embryonic cells on the other which divide actively to form various islets or imaginal discs destined, each to its own extent, to provide the organs of the adult. Two cell categories thus coexist in the larva, one undergoing differentiation and the other multiplication, the radiosensitivity of which will be quite different for this very reason and will account at least partly, where the lethal effect of ionizing radiations is concerned, for the results observed. Three chapters deal in turn with effects on longevity, on regeneration and restoration and on morphogenesis and development. Strong doses give rise beyond a certain threshold to the appearance of acute radiodermatitis; their clinical signs and different degrees of seriousness liken them to burns of a special type [fr

  2. <strong>Relative Biological Effect of Antiprotonsstrong>> strong>

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael

    purpose/objective The AD-4/ACE collaboration has recently performed experiments to directly measure the RBE of antiprotons. Antiprotons have very similar stopping power compared to protons, but when they come to rest, antiprotons will annihilate on a target nucleus and thereby release almost 2 Ge......V of energy. About 30 MeV of this energy is deposited in the vicinity of the Bragg-peak, thereby significantly enhancing it. It is furthermore expected that this additional energy is deposited by radiation which carries a high-LET component. This will have a significant influence on the radiobiological...... nuclear research facility CERN. A beam of 126 MeV antiprotons, corresponding to about 12 cm range in water, was spread out to a SOBP with a width of 1 cm. Dosimetry experiments were carried out with ionization chambers, alanine pellets and radiochromic film, and the results were used for benchmarking...

  3. Ionization of one- and three-dimensionally-oriented asymmetric-top molecules by intense circularly polarized femtosecond laser pulses

    DEFF Research Database (Denmark)

    Hansen, Jonas Lerche; Holmegaard, Lotte; Kalhøj, Line

    2011-01-01

    are quantum-state selected using a deflector and three-dimensionally (3D) aligned and oriented adiabatically using an elliptically polarized laser pulse in combination with a static electric field. A characteristic splitting in the molecular frame photoelectron momentum distribution reveals the position......We present a combined experimental and theoretical study on strong-field ionization of a three-dimensionally-oriented asymmetric top molecule, benzonitrile (C7H5N), by circularly polarized, nonresonant femtosecond laser pulses. Prior to the interaction with the strong field, the molecules...... of the nodal planes of the molecular orbitals from which ionization occurs. The experimental results are supported by a theoretical tunneling model that includes and quantifies the splitting in the momentum distribution. The focus of the present article is to understand strong-field ionization from 3D...

  4. Improvements in ionization chambers

    International Nuclear Information System (INIS)

    Whetten, N.R.; Zubal, C.

    1980-01-01

    A method of reducing mechanical vibrations transmitted to the parallel plate electrodes of ionization chamber x-ray detectors, commonly used in computerized x-ray axial tomography systems, is described. The metal plate cathodes and anodes are mounted in the ionizable gas on dielectric sheet insulators consisting of a composite of silicone resin and glass fibres. (UK)

  5. Dual ionization chamber

    International Nuclear Information System (INIS)

    Mallory, J.; Turlej, Z.

    1981-01-01

    Dual ionization chambers are provided for use with an electronic smoke detector. The chambers are separated by electrically-conductive partition. A single radiation source extends through the partition into both chambers, ionizing the air in each. The mid-point current of the device may be balanced by adjusting the position of the source

  6. ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Nicholas A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lukin, Vyacheslav S., E-mail: namurphy@cfa.harvard.edu [National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230 (United States)

    2015-06-01

    Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection, the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase.

  7. Computation of local exchange coefficients in strongly interacting one-dimensional few-body systems: local density approximation and exact results

    DEFF Research Database (Denmark)

    Marchukov, O. V.; Eriksen, E. H.; Midtgaard, J. M.

    2016-01-01

    One-dimensional multi-component Fermi or Bose systems with strong zero-range interactions can be described in terms of local exchange coefficients and mapping the problem into a spin model is thus possible. For arbitrary external confining potentials the local exchanges are given by highly non...... to the computational complexity of the high-dimensional integrals involved. An approach using the local density approximation would therefore be a most welcome approximation due to its simplicity. Here we assess the accuracy of the local density approximation by going beyond the simple harmonic oscillator that has...... been the focus of previous studies and consider some double-wells of current experimental interest. We find that the local density approximation works quite well as long as the potentials resemble harmonic wells but break down for larger barriers. In order to explore the consequences of applying...

  8. Plasma potential of a moving ionization zone in DC magnetron sputtering

    Science.gov (United States)

    Panjan, Matjaž; Anders, André

    2017-02-01

    Using movable emissive and floating probes, we determined the plasma and floating potentials of an ionization zone (spoke) in a direct current magnetron sputtering discharge. Measurements were recorded in a space and time resolved manner, which allowed us to make a three-dimensional representation of the plasma potential. From this information we could derive the related electric field, space charge, and the related spatial distribution of electron heating. The data reveal the existence of strong electric fields parallel and perpendicular to the target surface. The largest E-fields result from a double layer structure at the leading edge of the ionization zone. We suggest that the double layer plays a crucial role in the energization of electrons since electrons can gain several 10 eV of energy when crossing the double layer. We find sustained coupling between the potential structure, electron heating, and excitation and ionization processes as electrons drift over the magnetron target. The brightest region of an ionization zone is present right after the potential jump, where drifting electrons arrive and where most local electron heating occurs. The ionization zone intensity decays as electrons continue to drift in the Ez × B direction, losing energy by inelastic collisions; electrons become energized again as they cross the potential jump. This results in the elongated, arrowhead-like shape of the ionization zone. The ionization zone moves in the -Ez × B direction from which the to-be-heated electrons arrive and into which the heating region expands; the zone motion is dictated by the force of the local electric field on the ions at the leading edge of the ionization zone. We hypothesize that electron heating caused by the potential jump and physical processes associated with the double layer also apply to magnetrons at higher discharge power, including high power impulse magnetron sputtering.

  9. Dark Matter Detection Using Helium Evaporation and Field Ionization

    Science.gov (United States)

    Maris, Humphrey J.; Seidel, George M.; Stein, Derek

    2017-11-01

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV /c2 .

  10. Dark Matter Detection Using Helium Evaporation and Field Ionization.

    Science.gov (United States)

    Maris, Humphrey J; Seidel, George M; Stein, Derek

    2017-11-03

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1  MeV/c^{2}.

  11. Introduction to ionizing radiation physics

    International Nuclear Information System (INIS)

    Musilek, L.

    1979-01-01

    Basic properties are described of the atom, atomic nucleus and of ionizing radiation particles; nuclear reactions, ionizing radiation sources and ionizing radiation interaction with matter are explained. (J.P.)

  12. A four-component Dirac theory of ionization of a hydrogen molecular ion in a super-intense laser field

    International Nuclear Information System (INIS)

    Faisal, F H M

    2009-01-01

    In this communication, a four-component Dirac theory of ionization of a hydrogen molecular ion, H + 2 , in a super-intense laser field is presented. Analytic expressions for the spin-specific as well as the total ionization currents emitted from the ground state of the ion are derived. The results are given for arbitrary intensity, frequency, wavenumber and polarization of the field, and for the up or down spin of the bound and ionized states of the electron. They also apply for the case of inner-shell ionization of analogous heavier diatomic molecular ions. The presence of molecular two-slit interference effect, first found in the non-relativistic case, the spin-flip ionization current, and an asymmetry of the up- and down-spin currents similar to that predicted in the atomic case, is found to hold for the present relativistic molecular ionic case as well. The possibility of controlling the spin of the dominant ionization current in any direction by simply selecting the handedness of a circularly polarized incident laser field is pointed out. Finally, we note that the present results obtained within the strong field 'KFR' ansatz open up the way for an analogous fully relativistic four-component treatment for ionization of polyatomic molecules and clusters in super-intense laser fields. (fast track communication)

  13. Many-body Hamiltonian with screening parameter and ionization ...

    Indian Academy of Sciences (India)

    We prove the existence of a Hamiltonian with ionization energy as part of the eigenvalue, which can be used to study strongly correlated matter. This eigenvalue consists of total energy at zero temperature (0) and the ionization energy (). We show that the existence of this total energy eigenvalue, 0 ± , does not violate ...

  14. Exciton ionization in multilayer transition-metal dichalcogenides

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Latini, Simone; Thygesen, Kristian Sommer

    2016-01-01

    Photodetectors and solar cells based on materials with strongly bound excitons rely crucially on field-assisted exciton ionization. We study the ionization process in multilayer transition-metal dichalcogenides (TMDs) within the Mott-Wannier model incorporating fully the pronounced anisotropy...

  15. Many-body Hamiltonian with screening parameter and ionization ...

    Indian Academy of Sciences (India)

    Abstract. We prove the existence of a Hamiltonian with ionization energy as part of the eigenvalue, which can be used to study strongly correlated matter. This eigenvalue consists of total energy at zero temperature (E0) and the ionization energy (ξ). We show that the existence of this total energy eigenvalue, E0 ±ξ, does not ...

  16. An innovative ionization chamber based on conducting polymer electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Luiz Antonio P. [Centro Regional de Ciencias Nucleares (CRCN), Recife, PE (Brazil)]. E-mail: lasantos@cnen.gov.br; Araujo, Elmo S.; Amazonas, Irami B. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear]. E-mail: esa@ufpe.br; Azevedo, Walter M. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Quimica Fundamental]. E-mail: wma@ufpe.br

    2005-07-01

    A parallel-plate ionization chamber was developed to be used as detector for X-ray radiation measurements. The innovation here is the fact that there are no graphite or metallic electrodes as usually, but the proposed radiation detector was built with polyaniline (PANI) conducting polymer instead. A PANI thin film was chemically deposited on the surface of poly(methyl methacrylate) (PMMA) substrate. The PMMA layer can minimize the radiation beam attenuation effects and make the detector more robust. An HF-160 PANTAK unit was used to generate X-ray beam from 40 kV to 140 kV potentials. A Flip-flop electrometer was used as current read-out system. The results from proposed ionization chamber were compared with a PTW2532 standard ionization chamber. Preliminary results such as energy dependence and saturation curves have already been presented recently and here is presented additional results: angular dependence and some results concerning repeatability of the device under working circumstance and its response when the dose rate is changed. The results strongly indicate that the developed ion chamber can be used in diagnostic X-ray range for dosimetry applications. (author)

  17. Apparatus for reading and recharging condenser ionization chambers

    International Nuclear Information System (INIS)

    McCall, R.C.

    1977-01-01

    A metering circuit for a condenser ionization chamber is disclosed for simultaneously recharging the ionization chamber and reading out the amount of charge required to recharge the chamber. During the recharging process, the amount of charge necessary to recharge the ionization chamber capacitor is placed on an integrating capacitor in the metering apparatus. The resultant voltage across the integrating capacitor is a measure of the radiation to which the ionization chamber was exposed. 9 claims, 1 figure

  18. Calculation of Ionization Rate Coefficients of Heliumoide Iron | Dilmi ...

    African Journals Online (AJOL)

    We use a simple numerical method to generate the ionization rates starting from the cross sections. These last are obtained by code FAC (Flexible Atomic Code). Our computation results will be compared with those published. Keywords: Atomic data, radiative collisional Models, Ionization rate, cross Sections of ionization.

  19. Method and apparatus to monitor a beam of ionizing radiation

    Science.gov (United States)

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  20. Measurement of indoor background ionizing radiation in some ...

    African Journals Online (AJOL)

    Certain types of building materials are known to be radioactive. Exposure to indoor ionizing radiation like exposure to any other type of ionizing radiation results in critical health challenges. Measurement of the background ionizing radiation profile within the Chemistry Research Laboratory and Physics Laboratory III all of ...

  1. Single and double ionization of gallium by electron impact

    Indian Academy of Sciences (India)

    It is concluded that the ionization of 3d shell contributes partly to single ionization and partly to double ionization. The results so obtained show reasonably good agreement with the experimental data. Author Affiliations. L K Jha1. Department of Physics, L N T College, Muzaffarpur 842 002, India. Dates. Manuscript received ...

  2. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  3. RAYLEIGH-TAYLOR INSTABILITY IN PARTIALLY IONIZED COMPRESSIBLE PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, A. J. [Instituto de Astrofisica de Canarias, 38205, C/ Via Lactea, s/n, La Laguna, Tenerife (Spain); Soler, R. [Centre for Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Ballester, J. L., E-mail: tdiaz@iac.es, E-mail: roberto.soler@wis.kuleuven.be, E-mail: dfsjlb0@uib.es [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2012-07-20

    We study the modification of the classical criterion for the linear onset and growing rate of the Rayleigh-Taylor instability (RTI) in a partially ionized plasma in the two-fluid description. The plasma is composed of a neutral fluid and an electron-ion fluid, coupled by means of particle collisions. The governing linear equations and appropriate boundary conditions, including gravitational terms, are derived and applied to the case of the RTI in a single interface between two partially ionized plasmas. The limits of collisionless, no gravity, and incompressible fluids are checked before addressing the general case. We find that both compressibility and ion-neutral collisions lower the linear growth rate, but do not affect the critical threshold of the onset of the RTI. The configuration is always unstable when a lighter plasma is below a heavier plasma regardless the value of the magnetic field strength, the ionization degree, and the ion-neutral collision frequency. However, ion-neutral collisions have a strong impact on the RTI growth rate, which can be decreased by an order of magnitude compared to the value in the collisionless case. Ion-neutral collisions are necessary to accurately describe the evolution of the RTI in partially ionized plasmas such as prominences. The timescale for the development of the instability is much longer than in the classical incompressible fully ionized case. This result may explain the existence of prominence fine structures with life times of the order of 30 minutes. The timescales derived from the classical theory are about one order of magnitude shorter and incompatible with the observed life times.

  4. Characteristics of a Dry Fog Ionizer

    International Nuclear Information System (INIS)

    Murata, Y; Kudo, Y; Yonezawa, M

    2008-01-01

    The newly developed 'Dry Fog Ionizer' generates charged dry fog. The dry fog consists of very fine water droplets 8μm in mean diameter. This system consists of a dry fog nozzle (H.Ikeuchi and Co., LTD.), a ring electrode for induction charging (50mm outside diameter, and 10mm thick) in front of the nozzle, and a fan for dissipating charged dry fog. The ring electrode is DC or AC-biased and fine droplets ejected from the nozzle are electrified by induction charging. The particle size of the charged water droplets are reduced through evaporation during the transporting process by air flow, and completely evaporate approximately 2m from the nozzle under normal atmospheric conditions (25 deg. C, 60%R.H.) leaving high density ions. Using this system, high density ionic space charge can be realized in a remote spot from the ionizer. By this principle, the Dry Fog Ionizer shows strong charge-eliminating ability in the region away from the ionizer. When a dc bias of 5kV was applied to a ring electrode with the rate of water flow from the nozzle being 21/h, an ionic space-charge density of 1200nC /m 3 was able to be obtained at a distance 2m away from the ionizer, which was 10 2 times the value produced by an ordinary corona-type ionizer with an air blower.

  5. Kelvin spray ionization.

    Science.gov (United States)

    Özdemir, Abdil; Lin, Jung-Lee; Gillig, Kent J; Chen, Chung-Hsuan

    2013-11-21

    A novel self-powered dual spray ionization source has been developed for applications in mass spectrometry. This new source does not use any power supply and produces both positive and negative ions simultaneously. The idea behind this ionization source comes from the Kelvin water dropper. The source employs one or two syringes, two pneumatic sprays operated over a range of flow rates (0.15-15 μL min(-1)) and gas pressures (0-150 psi), and two double layered metal screens for ion formation. A variable electrostatic potential from 0 to 4 kV can be produced depending on solvent and gas flow rates that allow gentle ionization of compounds. There are several parameters that affect the performance during ionization of molecules including the flow rate of solvent, gas pressure, solvent acidity, position of spray and metal screens with respect to each other and distance between metal screens and the counter electrode. This ionization method has been successfully applied to solutions of peptides, proteins and non-covalent complexes. In comparison with ESI, the charge number of the most populated state is lower than that from ESI. It indicates that this is a softer ionization technique and it produces more protein ions with folded structures. The unique features of Kelvin spray ionization (KeSI) are that the method is self-powered and ionization occurs at very low potentials by providing very low internal energy to the ions. This advantage can be used for the ionization of very fragile molecules and investigation of non-covalent interactions.

  6. Multiple ionization and coupling effects in L-subshell ionization of heavy atoms by oxygen ions

    International Nuclear Information System (INIS)

    Pajek, M.; Banas, D.; Semaniak, J.; Braziewicz, J.; Majewska, U.; Chojnacki, S.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Glombik, A.; Kretschmer, W.; Trautmann, D.; Lapicki, G.; Mukoyama, T.

    2003-01-01

    The multiple-ionization and coupling effects in L-shell ionization of atoms by heavy-ion impact have been studied by measuring the L x-ray production cross sections in solid targets of Au, Bi, Th, and U bombarded by oxygen ions in the energy range 6.4-70 MeV. The measured L x-ray spectra were analyzed using the recently proposed method accounting for the multiple-ionization effects, such as x-ray line shifting and broadening, which enables one to obtain the ionization probabilities for outer shells. The L-subshell ionization cross sections have been obtained from measured x-ray production cross sections for resolved Lα 1,2 , Lγ 1 , and Lγ 2,3 transitions using the L-shell fluorescence and Coster-Kronig yields being substantially modified by the multiple ionization in the M and N shells. In particular, the effect of closing of strong L 1 -L 3 M 4,5 Coster-Kronig transitions in multiple-ionized atoms was evidenced and discussed. The experimental ionization cross sections for the L 1 , L 2 , and L 3 subshells have been compared with the predictions of the semiclassical approximation (SCA) and the ECPSSR theory that includes the corrections for the binding-polarization effect within the perturbed stationary states approximation, the projecticle energy loss, and Coulomb deflection effects as well as the relativistic description of inner-shell electrons. These approaches were further modified to include the L-subshell couplings within the ''coupled-subshell model'' (CSM). Both approaches, when modified for the coupling effects, are in better agreement with the data. Particularly, the predictions of the SCA-CSM calculations reproduce the experimental L-subshell ionization cross section reasonably well. Remaining discrepancies are discussed qualitatively, in terms of further modifications of the L-shell decay rates caused by a change of electronic wave functions in multiple-ionized atoms

  7. Effects of Ionization Feedback in Massive Star Formation

    Science.gov (United States)

    Peters, Thomas; Banerjee, R.; Klessen, R. S.; Mac Low, M.

    2009-01-01

    We present 3D high-resolution radiation-hydrodynamical simulations of massive star formation. We model the collapse of a massive molecular cloud core forming a high-mass star in its center. We use a version of the FLASH code that has been extended by including sink particles which are a source of both ionizing and non-ionizing radiation. The sink particles evolve according to a prestellar model which determines the stellar and accretion luminosities. Radiation transfer is done using the hybrid characteristics raytracing approach on the adaptive mesh developed by Rijkhorst et al. (2006). The radiative transfer module has been augmented to allow simulations with arbitrarily high resolution. Our highest resolution models resolve the disk scale height by at least 16 zones. Opacities for non-ionizing radiation have been added to account for the accretion heating, which is expected to be strong at the initial stage of star formation and believed to prevent fragmentation. Studies of collapsing massive cores show the formation of a gravitationally highly unstable disk. The accretion heating is not strong enough to suppress this instability. The ionizing radiation builds up an H II region around the protostar, which destroys the accretion disk close to it. We describe preliminary results, with a focus on how long the H II region remains confined by the accretion flow, and whether it can ever cut off accretion entirely. Thomas Peters acknowledges support from a Kade Fellowship for his visit to the American Museum of Natural History. He is a fellow of the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg and the Heidelberg Graduate School of Fundamental Physics. We also thank the DFG for support via the Emmy Noether Grant BA 3607/1 and the individual grant KL1358/5.

  8. Strong Cosmic Censorship

    Science.gov (United States)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  9. Electromagnetic modes in cold magnetized strongly coupled plasmas

    OpenAIRE

    Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.

    1999-01-01

    The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.

  10. Efficient generation of high beam-quality attosecond pulse with polarization-gating Bessel-Gauss beam from highly-ionized media.

    Science.gov (United States)

    Li, Yang; Zhang, Qingbin; Hong, Weiyi; Wang, Shaoyi; Wang, Zhe; Lu, Peixiang

    2012-07-02

    Single attosecond pulse generation with polarization gating Bessel-Gauss beam in relatively strongly-ionized media is investigated. The results show that Bessel-Gauss beam has the ability to suppress the spatial plasma dispersion effects caused by high density of free electrons, thus the laser field can maintain its spatial profile through highly-ionized medium. This indicates the use of Bessel-Gauss beam has advantages over Gaussian beam in high harmonic generation under high ionization conditions. In our scheme, significant improvement of spatiotemporal properties of harmonics is achieved and an isolated attosecond pulse with high beam quality is filtered out using polarization gating.

  11. Miniature ionization chamber

    International Nuclear Information System (INIS)

    Alexeev, V.I.; Emelyanov, I.Y.; Ivanov, V.M.; Konstantinov, L.V.; Lysikov, B.V.; Postnikov, V.V.; Rybakov, J.V.

    1976-01-01

    A miniature ionization chamber having a gas-filled housing which accommodates a guard electrode made in the form of a hollow perforated cylinder is described. The cylinder is electrically associated with the intermediate coaxial conductor of a triaxial cable used as the lead-in of the ionization chamber. The gas-filled housing of the ionization chamber also accommodates a collecting electrode shaped as a rod electrically connected to the center conductor of the cable and to tubular members. The rod is disposed internally of the guard electrode and is electrically connected, by means of jumpers passing through the holes in the guard electrode, to the tubular members. The tubular members embrace the guard electrode and are spaced a certain distance apart along its entire length. Arranged intermediate of these tubular members are spacers secured to the guard electrode and fixing the collecting electrode throughout its length with respect to the housing of the ionization chamber

  12. Atomic and Free Electrons in a Strong Light Field

    International Nuclear Information System (INIS)

    Fedorov, Mikhail V.

    1998-02-01

    This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated Bremsstrahlung, free-electron lasers, ave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described oo, and their results are compared with those of the existing theoretical models. An extensive general theoretical introduction gives a good basis for subsequent parts of the book and is an independent and self-sufficient description of the most efficient theoretical methods of the strong-field and multiphoton physics. This book can serve as a textbook for graduate students

  13. Ionization particle detector

    International Nuclear Information System (INIS)

    Ried, L.

    1982-01-01

    A new device is claimed for detecting particles in a gas. The invention comprises a low cost, easy to assemble, and highly accurate particle detector using a single ionization chamber to contain a reference region and a sensing region. The chamber is designed with the radioactive source near one electrode and the second electrode located at a distance less than the distance of maximum ionization from the radioactive source

  14. Directed Field Ionization

    Science.gov (United States)

    Gregoric, Vincent C.; Kang, Xinyue; Liu, Zhimin Cheryl; Rowley, Zoe A.; Carroll, Thomas J.; Noel, Michael W.

    2017-04-01

    Selective field ionization is an important experimental technique used to study the state distribution of Rydberg atoms. This is achieved by applying a steadily increasing electric field, which successively ionizes more tightly bound states. An atom prepared in an energy eigenstate encounters many avoided Stark level crossings on the way to ionization. As it traverses these avoided crossings, its amplitude is split among multiple different states, spreading out the time resolved electron ionization signal. By perturbing the electric field ramp, we can change how the atoms traverse the avoided crossings, and thus alter the shape of the ionization signal. We have used a genetic algorithm to evolve these perturbations in real time in order to arrive at a target ionization signal shape. This process is robust to large fluctuations in experimental conditions. This work was supported by the National Science Foundation under Grants No. 1607335 and No. 1607377 and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number OCI-1053575.

  15. Centro de Proteccion e Higiene de las Radiaciones (CPHR) Holguin Territorial Office Scientific Technical Co-operation in the field of ionizing radiation metrology: Results and perspectives

    International Nuclear Information System (INIS)

    Morales, J.A.; Bravo, R.

    1993-01-01

    This paper presents an overview of the activities carried out in order to organic a dosimetric calibration territorial service to be performed mainly with Secretaria Ejecutiva Para Asuntos Nucleares (SEAN) personnel and model facilities. This paper emphasizes the results of the calibration which will performed this service in joint association with CPHR specialist and Holguin Territorial Office (june 1993). The perspective of co-operation in this field starting up the CPHR dosimetric calibration secondary laboratory are presented

  16. Ionization of atoms by high energy photons

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Ioffe, A.F.

    1994-01-01

    Photoionization of atoms by high energy photons is considered. It is emphasized that in this frequency region the cross section and other characteristics of the process are strongly effected by electron shell polarization and rearrangement effects, including that due to inner vacancy Auger decay. In the effects of nuclear structure could be important and noticeable, i.e. of virtual or real excitation of the nucleus degrees of freedom and of the Quantum Electrodynamics vacuum. Ionization accompanied by secondary photon emission (Compton ionization) is analyzed in the considered domain of energies

  17. Fundamental studies of molecular multiphoton ionization

    International Nuclear Information System (INIS)

    Miller, J.C.; Compton, R.N.

    1984-04-01

    For several years the authors have performed fundamental studies of molecular multiphoton ionization (MPI). We will present a potpourri of techniques and results chosen to illustrate the interesting complexities of molecular MPI. Techniques used include time-of-flight mass spectroscopy, photoelectron spectroscopy, supersonic expansion cooling of molecular beams, harmonic generation, two-color laser MPI, and polarization spectroscopy. Whenever possible the relevance of these results to resonance ionization spectroscopy schemes will be delineated. 23 references, 10 figures

  18. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. V. ALFVÉN IONIZATION

    International Nuclear Information System (INIS)

    Stark, C. R.; Helling, Ch.; Rimmer, P. B.; Diver, D. A.

    2013-01-01

    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbor localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfvén ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization (≥10 –7 ) that they constitute plasmas. We outline the criteria required for Alfvén ionization and demonstrate its applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs, and M dwarfs with both solar and sub-solar metallicities. We find that Alfvén ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization of 10 –6 -1 can be obtained as a result of Alfvén ionization. Observable consequences include continuum bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g., He, Mg, H 2 , or CO lines). Forbidden lines are also expected from the metastable population. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models. The occurrence of Alfvén ionization may also be applicable to other astrophysical environments such as protoplanetary disks

  19. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.

    1992-01-01

    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  20. Health effects models for nuclear power plant accident consequence analysis: Modifications of models resulting from recent reports on health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Abrahamson, S.; Bender, M.A.; Boecker, B.B.; Scott, B.R.

    1991-08-01

    The Nuclear Regulatory Commission has sponsored several studies to identify and quantify the potential health effects of accidental releases of radionuclides from nuclear power plants. The most recent health effects models resulting from these efforts were published in two reports, NUREG/CR-4214, Rev. 1, Part 1 (1990) and Part 2 (1989). Several major health effects reports have been published recently that may impact the health effects models presented in these reports. This addendum to the Part 2 (1989) report, provides a review of the 1986 and 1988 reports by the United Nations Scientific Committee on the Effects of Atomic Radiation, the National Academy of Sciences/National Research Council BEAR 5 Committee report and Publication 60 of the International Commission on Radiological Protection as they relate to this report. The three main sections of this addendum discuss early occurring and continuing effects, late somatic effects, and genetic effects. The major changes to the NUREG/CR-4214 health effects models recommended in this addendum are for late somatic effects. These changes reflect recent changes in cancer risk factors that have come from longer followup and revised dosimetry in major studies like that on the Japanese A-bomb survivors. The results presented in this addendum should be used with the basic NUREG/CR-4214 reports listed above to obtain the most recent views on the potential health effects of radionuclides released accidentally from nuclear power plants. 48 refs., 4 figs., 24 tabs

  1. Health effects models for nuclear power plant accident consequence analysis: Modifications of models resulting from recent reports on health effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamson, S. (Wisconsin Univ., Madison, WI (United States)); Bender, M.A. (Brookhaven National Lab., Upton, NY (United States)); Boecker, B.B.; Scott, B.R. (Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States). Inhalation Toxicology Research Inst.); Gilbert, E.S. (Pacific Northwest Lab., Richland, WA (United States))

    1991-08-01

    The Nuclear Regulatory Commission has sponsored several studies to identify and quantify the potential health effects of accidental releases of radionuclides from nuclear power plants. The most recent health effects models resulting from these efforts were published in two reports, NUREG/CR-4214, Rev. 1, Part 1 (1990) and Part 2 (1989). Several major health effects reports have been published recently that may impact the health effects models presented in these reports. This addendum to the Part 2 (1989) report, provides a review of the 1986 and 1988 reports by the United Nations Scientific Committee on the Effects of Atomic Radiation, the National Academy of Sciences/National Research Council BEAR 5 Committee report and Publication 60 of the International Commission on Radiological Protection as they relate to this report. The three main sections of this addendum discuss early occurring and continuing effects, late somatic effects, and genetic effects. The major changes to the NUREG/CR-4214 health effects models recommended in this addendum are for late somatic effects. These changes reflect recent changes in cancer risk factors that have come from longer followup and revised dosimetry in major studies like that on the Japanese A-bomb survivors. The results presented in this addendum should be used with the basic NUREG/CR-4214 reports listed above to obtain the most recent views on the potential health effects of radionuclides released accidentally from nuclear power plants. 48 refs., 4 figs., 24 tabs.

  2. Ionization of liquids

    International Nuclear Information System (INIS)

    Gregg, E.C.; Bakale, G.

    1976-01-01

    Application of pulsed-conductivity techniques to ionization phenomena in liquids has yielded new results on electron transport and electron reactions in nonpolar liquids which we have extrapolated to biological systems to develop a novel model of direct radiation damage to mammalian cells that involves the unsolvated electron as the key reactant. Among these new results are electron attachment rate constants of thirty-five substituted nitrobenzene compounds measured in nonpolar solvents which when combined with product anion lifetimes are correlated with cellular radiosensitization efficiencies. From this study we found that electron attachment rates are dependent upon the electron mobility in the solvents and upon the dipole moment of the electron-accepting nitrobenzene compounds. The model also drawn upon energy-dependent electron attachment rates which we have measured in cryogenic liquids, and we have measured in the same solvents associative detachment rate constants and electron momentum transfer cross sections. In addition to these studies of electronic processes in liquids, we have measured ion mobilities of lecithin and chlorophyll in nonpolar solvents and conclude that these solutes form inverse micelles under certain conditions. Formation of these micelles permits electron transport through the lipid micellar walls and electron attachment to electron-accepting polar solutes inside the lipid vesicles to be studied

  3. The grain size dependency of vesicular particle shapes strongly affects the drag of particles. First results from microtomography investigations of Campi Flegrei fallout deposits

    Science.gov (United States)

    Mele, Daniela; Dioguardi, Fabio

    2018-03-01

    Acknowledging the grain size dependency of shape is important in volcanology, in particular when dealing with tephra produced and emplaced during and after explosive volcanic eruptions. A systematic measurement of the tridimensional shape of vesicular pyroclasts of Campi Flegrei fallout deposits (Agnano-Monte Spina, Astroni 6 and Averno 2 eruptions) varying in size from 8.00 to 0.016 mm has been carried out by means of X-Ray Microtomography. Data show that particle shape changes with size, especially for juvenile vesicular clasts, since it is dependent on the distribution and size of vesicles that contour the external clast outline. Two drag laws that include sphericity in the formula were used for estimating the dependency of settling velocity on shape. Results demonstrate that it is not appropriate to assume a size-independent shape for vesicular particles, in contrast with the approach commonly employed when simulating the ash dispersion in the atmosphere.

  4. Alignment-dependent ionization of molecular hydrogen in intense laser fields

    International Nuclear Information System (INIS)

    Vanne, Yulian V.; Saenz, Alejandro

    2010-01-01

    The alignment dependence of the ionization behavior of H 2 exposed to intense ultrashort laser pulses is investigated on the basis of solutions of the full time-dependent Schroedinger equation within the fixed-nuclei and dipole approximation. The total ionization yields as well as the energy-resolved electron spectra have been calculated for a parallel and a perpendicular orientation of the molecular axis with respect to the polarization axis of linear polarized laser pulses. For most, but not all considered laser peak intensities, the parallel aligned molecules are easier to ionize. Furthermore, it is shown that the velocity formulation of the strong-field approximation predicts a simple interference pattern for the ratio of the energy-resolved electron spectra obtained for the two orientations, but this is not confirmed by the full ab initio results.

  5. <strong>OPTIMIZATION OF IMMOBILIZED METAL strong>>ION AFFINITYstrong>> strong>>CHROMATOGRAPHY strong>>FOR strong>>PHOSPHOPEPTIDE ENRICHMENT  PRIOR TO strong>>MASS SPECTROMETRYstrong>

    DEFF Research Database (Denmark)

    Ye, Juanying; Zhang, Xumin; Young, Clifford

    simple procedures.     Methods Tryptic digests of standard phosphoproteins (bovine α,β- casein) and 3 non-phosphoproteins (bovine serum albumin, bovine β-lactoglobulin, and bovine carbonic anhydrase) with different ratios (1:50, 1:200, 1:500, 1:1000) were used for Fe(III)-IMAC (Qiagen Ni-NTA) enrichment.......   Results Fe(III)-IMAC using NTA-silica from Qiagen  showed a better performance than two other commercially available resins under the testing conditions. Increase of the acetonitrile content to 60% in loading and washing buffer significantly improved the specificity of IMAC enrichment. It was demonstrated...

  6. Publication of new results from the INWORKS epidemiological study about the risk of cancer among nuclear industry workers chronically exposed to low ionizing radiation doses

    International Nuclear Information System (INIS)

    2015-01-01

    In this cohort study, 308297 workers in the nuclear industry from France, the United Kingdom, and the United States with detailed monitoring data for external exposure to ionising radiation were linked to death registries. Excess relative rate per Gy of radiation dose for mortality from cancer was estimated. Follow-up encompassed 8.2 million person years. Of 66632 known deaths by the end of follow-up, 17?957 were due to solid cancers. Results suggest a linear increase in the rate of cancer with increasing radiation exposure. The average cumulative colon dose estimated among exposed workers was 20.9 mGy (median 4.1 mGy). The estimated rate of mortality from all cancers excluding leukaemia increased with cumulative dose by 48% per Gy (90% confidence interval 20% to 79%), lagged by 10 years. Similar associations were seen for mortality from all solid cancers (47% (18% to 79%)), and within each country. The estimated association over the dose range of 0-100 mGy was similar in magnitude to that obtained over the entire dose range but less precise. Smoking and occupational asbestos exposure are potential confounders; however, exclusion of deaths from lung cancer and pleural cancer did not affect the estimated association. Despite substantial efforts to characterise the performance of the radiation dosimeters used, the possibility of measurement error remains. The study provides a direct estimate of the association between protracted low dose exposure to ionising radiation and solid cancer mortality. Although high dose rate exposures are thought to be more dangerous than low dose rate exposures, the risk per unit of radiation dose for cancer among radiation workers was similar to estimates derived from studies of Japanese atomic bomb survivors. Quantifying the cancer risks associated with protracted radiation exposures can help strengthen the foundation for radiation protection standards

  7. Cell fusion by ionizing radiation

    International Nuclear Information System (INIS)

    Khair, M.B.

    1993-08-01

    The relevance and importance of cell fusion are illustrated by the notion that current interest in this phenomenon is shared by scientists in quite varied disciplines. The diversity of cellular membrane fusion phenomena could provoke one to think that there must be a multitude of mechanisms that can account for such diversity. But, in general, the mechanism for the fusion reaction itself could be very similar in many, or even all, cases. Cell fusion can be induced by several factors such as virus Sendai, polyethylene glycol, electric current and ionizing radiation. This article provides the reader with short view of recent progress in research on cell fusion and gives some explanations about fusion mechanisms. This study shows for the first time, the results of the cell fusion induced by ionizing radiations that we have obtained in our researches and the work performed by other groups. (author). 44 refs

  8. Matter in strong fields: from molecules to living cells

    International Nuclear Information System (INIS)

    Mathur, D

    2007-01-01

    Strong optical fields induce multiple ionization in irradiated molecules. The ionization dynamics are governed by optical-field-induced distortions of molecular potential energy surfaces and molecular dissociation is the expected by-product. Recent experiments have even shown, quite counter-intuitively, that strong optical fields may even induce bond formation processes in molecules. All such processes are all manifestations of how intense light affects matter. In turn, matter also affects intense light. A visually dramatic manifestation of matter affecting light is obtained when ultrashort pulses of intense light propagate though condensed matter. The temporal and spatial properties of the incident light pulse are modified, and such modifications manifest themselves in an enlarged optical frequency sweep, resulting in the generation of broadband radiation (white light) known as supercontinuum production. Although the physics that governs supercontinuum generation is not properly understood, some recent progress is summarized. Novel applications of strong field phenomena are reported that are of relevance in the biomedical and life sciences

  9. Ionization in liquids

    International Nuclear Information System (INIS)

    Bakale, G.

    1990-01-01

    During the 1987--1990 reporting period, studies were conducted that entailed the direct measurement of the transport and reaction properties of excess electrons in nonpolar liquids through the use of pulse-conductivity techniques. The results obtained from these studies should be applicable toward the development of a better understanding of the primary ionizing event in liquids as well as to providing physico-chemical information that is pertinent to electron-transfer processes that are ubiquitous in biological systems. Progress was also made in developing a better understanding of electron attachment reactions in liquids through measurements of the electron attachment rate constants, k e s, of a variety of electron-attaching solutes. The effects of several functional groups substituted at different positions on benzene were studied in liquid cyclohexane and isooctane. The electron-attaching properties of chemicals having well characterized carcinogenic properties were studied in cyclohexane to determine if the measure of electron-accepting potential that k e provides can elucidate the role that electrons play in the initiation step of carcinogenesis. The k e s that were measured indicate that the k e -carcinogenicity correlation that was observed can be used to complement short-term carcinogen-screening bioassays to identify potential carcinogens. 115 refs., 6 tabs

  10. Effects of ionizing radiation

    International Nuclear Information System (INIS)

    Tadmor, J.

    1984-05-01

    A sound evaluation of the consequences of releases of radioactivity into the environment, especially of those large amounts, and of the effectiveness of different protective measures, requires thorough concern of the various aspects of the radiological effects. The effects of ionizing radiation were reviewed according to the following characterization: Affected subject (somatic, genetic and psychological effects); Duration of irradiation (acute and chronic irradiation); Latent period (early and late effects); Dose-effect relationship (stochastic and non-stochastic effects); Population affected (e.g. children, pregnant women). In addition to the lethal effects which are generally considered extensively in all the evaluations of the consequences of radioactivity releases, such effects as early symptoms and morbidity are emphasized in this review. The dependence of the effects on dose rates, repair mechanism and medical treatment is discussed, and the uncertainties involved with their evaluation is highlighted. The differences between QF (quality factor) and RBE (relative biological effectiveness) of different radiation sources are interpreted. Synergystic effects and the effectiveness of various means of medication are discussed. It is suggested that all radiological effects, including those resulting from relatively low radiation doses, e.g. foetus deformations, fertility impairment, prodomal - leading to psychological effects, should be considered within the evaluation of the consequences of radioactivity releases and of the effectiveness of protective measures. Limits of the repair factors to be considered within the evaluation of the effects of chronic exposures are proposed

  11. Guided ionization waves: Theory and experiments

    International Nuclear Information System (INIS)

    Lu, X.; Naidis, G.V.; Laroussi, M.; Ostrikov, K.

    2014-01-01

    This review focuses on one of the fundamental phenomena that occur upon application of sufficiently strong electric fields to gases, namely the formation and propagation of ionization waves–streamers. The dynamics of streamers is controlled by strongly nonlinear coupling, in localized streamer tip regions, between enhanced (due to charge separation) electric field and ionization and transport of charged species in the enhanced field. Streamers appear in nature (as initial stages of sparks and lightning, as huge structures—sprites above thunderclouds), and are also found in numerous technological applications of electrical discharges. Here we discuss the fundamental physics of the guided streamer-like structures—plasma bullets which are produced in cold atmospheric-pressure plasma jets. Plasma bullets are guided ionization waves moving in a thin column of a jet of plasma forming gases (e.g., He or Ar) expanding into ambient air. In contrast to streamers in a free (unbounded) space that propagate in a stochastic manner and often branch, guided ionization waves are repetitive and highly-reproducible and propagate along the same path—the jet axis. This property of guided streamers, in comparison with streamers in a free space, enables many advanced time-resolved experimental studies of ionization waves with nanosecond precision. In particular, experimental studies on manipulation of streamers by external electric fields and streamer interactions are critically examined. This review also introduces the basic theories and recent advances on the experimental and computational studies of guided streamers, in particular related to the propagation dynamics of ionization waves and the various parameters of relevance to plasma streamers. This knowledge is very useful to optimize the efficacy of applications of plasma streamer discharges in various fields ranging from health care and medicine to materials science and nanotechnology

  12. Some recent results on strong interactions

    International Nuclear Information System (INIS)

    Diebold, R.

    1978-01-01

    A preview of a rapporteur talk is given on the three active fields of high energy hadron reactions with high multiplicity, charm searches and related topics, and ultrahigh energy events and exotic phenomena of cosmic radiation. 53 references

  13. Comparison among different CT ionization chambers

    International Nuclear Information System (INIS)

    Castro, Maysa C. de; Xavier, Marcos; Caldas, Linda V.E.

    2015-01-01

    The dosimetry in computed tomography (CT) is carried out by the use of a pencil type ionization-chamber, because it has a uniform response at all angles relative to the incident beam of radiation, which is essential for CT equipment since the X-ray tube executes a circular movement around the table during irradiation. The commercial ionization chamber used to perform quality control procedures of this kind of equipment has a length of the sensitive volume of 10 cm. In the Calibration Laboratory of Instruments (LCI) of the IPEN there were already developed some prototypes with small differences in construction, when compared to commercially available ionization chambers. They have been used in previous studies and showed results within internationally acceptable limits. The ionization chambers tested in this study present the sensitive volume lengths of 1 cm, 3 cm and 10 cm. The objective of this study was to present results on the stability test of the three homemade ionization chambers and a commercial chamber, as well to obtain the calibration coefficients for each of them in CT standard X radiation beams. The obtained results for both characterization tests are within the recommended limits, except for the homemade ionization chambers with sensitive volume lengths of 3 cm and 1 cm in the case of the stability test. (author)

  14. The critical ionization velocity

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1980-06-01

    The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (author)

  15. The ionizing treatment of food

    International Nuclear Information System (INIS)

    1998-01-01

    This book of proceedings contains the talks given by the members of the Society of chemical experts of France (SECF) and by various specialists of the ionizing treatment during the scientific days of September 25-26, 1997. The aim of this meeting was to reconsider the effects of ionization from a scientific point of view and apart from the polemics generated by this domain. The following topics were discussed successively: source and characterization of a ionizing treatment, biological effects of ionization on food and the expected consequences, the ionizing treatment and the reduction of the vitamin C content of fruits and vegetables, is it safe to eat irradiated food?, the organoleptic modifications of food after ionization, quality assurance of dosimetry measurements in an industrial installation of food ionization, the French and European regulations in food ionization, the detection of irradiated foodstuffs, processed food and complex lipid matrices, sterilization of dishes for immuno-depressed patients using ionization. (J.S.)

  16. Resonantly enhanced inner-orbital ionization in molecular iodine

    Science.gov (United States)

    Smith, Dale L.; Gibson, George N.

    2018-02-01

    We present a wavelength study of the strong-field single-electron ionization of molecular iodine near its one-photon B -state resonance at 530 nm. We have previously identified two ionization channels [Phys. Rev. A 95, 013410 (2017), 10.1103/PhysRevA.95.013410]: ionization of the high-lying molecular orbitals and ionization of the deep orbitals in I2. We find a resonant enhancement of both channels, although the peak enhancement occurs at different wavelengths for the different channels. Moreover, the branching ratio of the ionization of the deep orbitals shows a dispersion-like function, with the branching ratio of the deep orbitals reaching over 98% at 519 nm. Finally, the branching ratio of double ionization into an excited state of I22+ as a function of wavelength closely matches the branching ratio of the single ionization of deep orbitals, implying that excitation of molecular ions generally comes about through inner orbital ionization. These findings are inconsistent with current molecular ionization theory.

  17. Study on the influences of ionization region material arrangement on Hall thruster channel discharge characteristics

    Science.gov (United States)

    Xiang, HU; Ping, DUAN; Jilei, SONG; Wenqing, LI; Long, CHEN; Xingyu, BIAN

    2018-02-01

    There exists strong interaction between the plasma and channel wall in the Hall thruster, which greatly affects the discharge performance of the thruster. In this paper, a two-dimensional physical model is established based on the actual size of an Aton P70 Hall thruster discharge channel. The particle-in-cell simulation method is applied to study the influences of segmented low emissive graphite electrode biased with anode voltage on the discharge characteristics of the Hall thruster channel. The influences of segmented electrode placed at the ionization region on electric potential, ion number density, electron temperature, ionization rate, discharge current and specific impulse are discussed. The results show that, when segmented electrode is placed at the ionization region, the axial length of the acceleration region is shortened, the equipotential lines tend to be vertical with wall at the acceleration region, thus radial velocity of ions is reduced along with the wall corrosion. The axial position of the maximal electron temperature moves towards the exit with the expansion of ionization region. Furthermore, the electron-wall collision frequency and ionization rate also increase, the discharge current decreases and the specific impulse of the Hall thruster is slightly enhanced.

  18. Self-sustaining relativistic ionization wave launched by a sheath field

    Science.gov (United States)

    Arefiev, Alexey; McCormick, Matt; Quevedo, Hernan; Bengtson, Roger; Ditmire, Todd

    2013-10-01

    We present experimental evidence supported by particle-in-cell (PIC) simulations of a self-sustaining relativistic ionization wave launched into a surrounding gas by the sheath field of a high energy density plasma. We create a plasma filament with hot electrons by irradiating a supersonic clustering gas jet with a short pulse laser (115 fs) at an intensity of 5 ×1017 W/cm2. In contrast with a single atom, a cluster of atoms produces super-ponderomotive electrons in the field of the laser. These electrons generate a sheath field at the edge of the plasma filament strong enough to ionize the gas atoms in the sheath. We observe that a collisionless ionization wave is launched in this regime, propagating radially through the gas at up to 0.5 c after the laser has passed. The expansion of the resulting plasma filament due to the ionization wave occurs in about 2 ps, more than doubling the initial radius of the filament. The remarkable longevity of the wave without continuous energy deposition into the electron population is explained by a moving field structure that traps the hot electrons near the boundary. 2D PIC simulations confirm that the trapped hot electrons maintain a sheath field required for the ionization despite the significant expansion of the filament.

  19. Contact ionization ion source

    International Nuclear Information System (INIS)

    Hashmi, N.; Van Der Houven Van Oordt, A.J.

    1975-01-01

    An ion source in which an apertured or foraminous electrode having a multiplicity of openings is spaced from one or more active surfaces of an ionisation electrode, the active surfaces comprising a material capable of ionising by contact ionization a substance to be ionized supplied during operation to the active surface or surfaces comprises means for producing during operation a magnetic field which enables a stable plasma to be formed in the space between the active surface or surfaces and the apertured electrode, the field strength of the magnetic field being preferably in the range between 2 and 8 kilogauss. (U.S.)

  20. Ionizing Radiation Processing Technology

    International Nuclear Information System (INIS)

    Rida Tajau; Kamarudin Hashim; Jamaliah Sharif; Ratnam, C.T.; Keong, C.C.

    2017-01-01

    This book completely brief on the basic concept and theory of ionizing radiation in polymers material processing. Besides of that the basic concept of polymerization addition, cross-linking and radiation degradation also highlighted in this informative book. All of the information is from scientific writing based on comprehensive scientific research in polymerization industry which using the radiation ionizing. It is very useful to other researcher whose study in Nuclear Sciencea and Science of Chemical and Material to use this book as a guideline for them in future scientific esearch.

  1. Liquid ionizing radiaion detector

    International Nuclear Information System (INIS)

    deGaston, A.N.

    1979-01-01

    A normally nonconducting liquid such as liquid hydrocarbon is encased between a pair of electrodes in an enclosure so that when the liquid is subjected to ionizing radiation, the ion pairs so created measurably increase the conductivity of the fluid. The reduced impedance between the electrodes is detectable with a sensitive ohm-meter and indicates the amount of ionizing radiation. The enclosure, the electrodes and the fluid can be constructed of materials that make the response of the detector suitable for calibrating a large range of radiation energy levels. The detector is especially useful in medical applications where tissue equivalent X ray detectors are desired

  2. Intercomparison of radar meteor velocity corrections using different ionization coefficients

    Science.gov (United States)

    Williams, E. R.; Wu, Y.-J.; Chau, J.; Hsu, R.-R.

    2017-06-01

    Sensitive long-wavelength radar observations of absolute velocity never previously published from Jicamarca are brought to bear on the long-standing problem of radar detection of slow-moving meteors. Attention is devoted to evaluating the ionization coefficient β(V) in the critically important velocity range of 11-20 km/s in recent laboratory measurements of Thomas et al. (2016). Theoretical predictions for β(V) based on the laboratory data, on Jones (1997), on Janches et al. (2014), and on Verniani and Hawkins (1964) are used to correct the incoming meteor velocities measured with the sensitive Jicamarca high-power, large-aperture radar operating at 6 m wavelength. All corrected distributions are consistent with the predictions of the Nesvorný model in showing pronounced monotonic increases down to the escape velocity (11 km/s). Such distributions may be essential to explaining the pronounced ledge in nighttime electron density and the rapid disappearance of electrons in meteor trails in the altitude range of 80-85 km.Plain Language SummaryIncoming meteors from space cannot be detected with radars unless the medium around the meteor is strongly ionized. In this study, the distribution of meteor velocities that are detected by the sensitive Jicamarca radar is corrected following theoretical models for the ionization coefficient, a measure of what fraction of the ablated meteor atoms are ionized. The results show that when the distribution of velocities is corrected, one is left with a large population of meteors that are entering the Earth's atmosphere close to the escape speed for the solar system which is 11 km/s.

  3. Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Sophie Le Caër

    2011-02-01

    Full Text Available The radiolysis of water due to ionizing radiation results in the production of electrons, H· atoms, ·OH radicals, H3O+ ions and molecules (dihydrogen H2 and hydrogen peroxide H2O2. A brief history of the development of the understanding of water radiolysis is presented, with a focus on the H2 production. This H2 production is strongly modified at oxide surfaces. Different parameters accounting for this behavior are presented.

  4. Screening of ionic cores in partially ionized plasmas within linear response

    International Nuclear Information System (INIS)

    Gericke, D. O.; Vorberger, J.; Wuensch, K.; Gregori, G.

    2010-01-01

    We employ a pseudopotential approach to investigate the screening of ionic cores in partially ionized plasmas. Here, the effect of the tightly bound electrons is condensed into an effective potential between the (free) valence electrons and the ionic cores. Even for weak electron-ion coupling, the corresponding screening clouds show strong modifications from the Debye result for elements heavier than helium. Modifications of the theoretically predicted x-ray scattering signal and implications on measurements are discussed.

  5. Ionizing radiation in hospitals

    International Nuclear Information System (INIS)

    This booklet is concerned with radiation safety of radiologist and other hospital personnel. Part 1 deals with properties of radiation in general (especially of ionizing radiation). In part 2, different applications of radiation in hospitals are discussed. Part 3 indicates what to do to make improvements to not totally safe situations in hospitals. (Auth./G.J.P.)

  6. Ionization beam scanner

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Inner structure of an ionization beam scanner, a rather intricate piece of apparatus which permits one to measure the density distribution of the proton beam passing through it. On the outside of the tank wall there is the coil for the longitudinal magnetic field, on the inside, one can see the arrangement of electrodes creating a highly homogeneous transverse electric field.

  7. Detection of ionized foods

    International Nuclear Information System (INIS)

    Beerens, H.

    1986-01-01

    Irradiated foods and feed might be identified with two kinds of tests: 1. biochemical: detection of specific products are not yet available 2. microbiological: when a microbial species dissapears from a sample of food i.e. it is not detectable after enrichment (for instance Coliforms in hamburgers) it is likely that the sample has been ionized [fr

  8. Ionization chamber smoke detectors

    International Nuclear Information System (INIS)

    1988-03-01

    One kind of smoke detector, the ionization-type, is regulated by the Atomic Energy Control Board (AECB) because it uses a radioactive substance in its mechanism. Radioactivity and radiation are natural phenomena, but they are not very familiar to the average householder. This has led to a number of questions being asked of the AECB. These questions and AECB responses are outlined

  9. Ionizing radiation from tobacco

    International Nuclear Information System (INIS)

    Westin, J.B.

    1987-01-01

    Accidents at nuclear power facilities seem inevitably to bring in their wake a great deal of concern on the part of both the lay and medical communities. Relatively little attention, however, is given to what may be the largest single worldwide source of effectively carcinogenic ionizing radiation: tobacco. The risk of cancer deaths from the Chernobyl disaster are tobacco smoke is discussed

  10. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  11. Atom ionization in a nonclassical intense electromagnetic field

    International Nuclear Information System (INIS)

    Popov, A.M.; Tikhonova, O.V.

    2002-01-01

    The atoms ionization process in the intense nonclassical electromagnetic field is considered. It is shown that depending on the field quantum state the probability of ionization may essentially change even by one and the same average quantum number in the radiation mode, whereby the difference in the ionization rates is especially significant in the case, when the ionization process is of a multiphoton character. It is demonstrates in particular, that the nonclassical field may be considerably more intensive from the viewpoint of the atoms ionization, than the classical field with the same intensity. The peculiarities of the decay, related to the atomic system state in the strong nonclassical field beyond the perturbation theory frames are studied [ru

  12. Orientation and impact-parameter dependence of dissociative ionization of H2 by slow ion impact

    International Nuclear Information System (INIS)

    Afaneh, F; Schmidt, L Ph H; Schoeffler, M; Stiebing, K E; Al-Jundi, J; Schmidt-Boecking, H; Doerner, R

    2007-01-01

    We have used the cold target recoil ion momentum spectroscopy imaging technique to investigate dissociative ionization of H 2 by 25 keV proton impact. A kinematically complete picture of the dissociative ionization dynamics for slow proton collision has been obtained. The results show a strong impact-parameter dependence of the fragmentation process of H 2 . This clearly emerged in the energy distributions of the H + ions generated for different impact parameters. At large impact parameters the H + ions equally share the energy liberated in the collision whereas at small impact parameters, the energy sharing is quite asymmetric. We also observed a strong dependence of the electron emission on molecular alignment. The momentum distribution of the emitted electron generated for a fixed-in-space H 2 molecule displays that the electrons are more likely to be emitted perpendicular to the molecular axis

  13. Chemical data on ionizing and non-ionizing angiographic contrast materials

    International Nuclear Information System (INIS)

    Bonati, F.

    1980-01-01

    The cardiovascular effects of ionizing and non-ionizing contrast media are compared in experimental animals and in isolated heart preparations. The following parameters were recorded: peripheric arterial diastolic pressure, heart rate, duration of asystolic period, respiratory rate, contractility of the myocardium (dp/dt, LVSP, Vsub(max), EDV, ESV, SV). The observed changes are mainly due to the higher osmotic activity of the contrast media, as similar alterations were recorded after the injection of hyperosmotic glucose solution. It is concluded that administration of non-ionizing contrast media results in significantly less cardiovascular side effects. (L.E.)

  14. First ionization potential of the heaviest actinide lawrencium, element 103

    Directory of Open Access Journals (Sweden)

    Sato Tetsuya K.

    2016-01-01

    Full Text Available The first ionization potential (IP1 of element 103, lawrencium (Lr, has been successfully determined for the first time by using a newly developed method based on a surface ionization process. The measured IP1 value is 4.9630.080.07 eV. This value is the smallest among those of actinide elements and is in excellent agreement with the value of 4.963(15 eV predicted by state-of-the-art relativistic calculations also performed in this work. Our results strongly support that the Lr atom has an electronic configuration of [Rn]7s25f147p11/2, which is influenced by strong relativistic effects. The present work provides a reliable benchmark for theoretical calculations and also opens the way for studies on atomic properties of heavy elements with atomic number Z > 100. Moreover, the present achievement has triggered a controversy on the position of lutetium (Lu and Lr in the Periodic Table of Elements.

  15. Coherent combs in ionization by intense and short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Krajewska, K., E-mail: Katarzyna.Krajewska@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland); Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588-0299 (United States); Kamiński, J.Z., E-mail: Jerzy.Kaminski@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)

    2016-03-22

    Photoionization of positive ions by a train of intense, short laser pulses is investigated within the relativistic strong field approximation, using the velocity gauge. The formation of broad peak structures in the high-energy domain of photoelectrons is observed and interpreted. The emergence of coherent photoelectron energy combs within these structures is demonstrated, and it is interpreted as the consequence of the Fraunhofer-type interference/diffraction of probability amplitudes of ionization from individual pulses comprising the train. Extensions to the coherent angular combs are also studied, and effects related to the radiation pressure are presented. - Highlights: • We develop relativistic Strong-Field Approximation for ionization by intense and short laser pulses of arbitrary spectral compositions. • We show that the consistent interpretation of results is provided by the Keldysh-type saddle point analysis of probability amplitudes. • We derive a general Fraunhofer-type interference/diffraction formula for finite train of pulses. • We study the coherent combs in photoelectron probability distributions.

  16. Possible ionization ''ignition'' in laser-driven clusters

    International Nuclear Information System (INIS)

    Rose-Petruck, C.; Schafer, K.J.; Barty, C.P.J.

    1995-01-01

    The authors use Classical Trajectory Monte Carlo (CTMC) simulations to study the ionization of small rare gas clusters in short pulse, high intensity laser fields. They calculate, for a cluster of 25 neon atoms, the ionization stage reached and the average kinetic energy of the ionized electrons as functions of time and peak laser intensity. The CTMC calculations mimic the results of the much simpler barrier suppression model in the limit of isolated atoms. At solid density the results give much more ionization in the cluster than that predicted by the barrier suppression model. They find that when the laser intensity reaches a threshold value such that on average one electron is ionized from each atom, the cluster atoms rapidly move to higher ionization stages, approaching Ne +8 in a few femtoseconds. This ignition process creates an ultrafast pulse of energetic electrons in the cluster at quite modest laser intensities

  17. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  18. Intense Shock Waves and Strongly Coupled Plasmas

    Science.gov (United States)

    Fortov, Vladimir

    2005-07-01

    The report presents the recent results of experimental investigations of equations of state, compositions, thermodynamical and transport properties, electrical conductivity and opacity of strongly coupled plasmas generated by intense shock and rarefaction waves. The experimental methods for generation of high energy densities in matter, drivers for shock waves and fast diagnostic tools are discussed. Application of intense shock waves to solid and porous targets generates nonideal plasmas in megabar-gigabar pressure range. Compression of plasma by a series of reverberating shock waves allows us to decrease irreversible heating effects. To increase the irreversibility effects and to generate high temperature plasma states the experiments on shock compression of porous samples (fine metal powder, aerogels) were performed. The adiabatic expansion of matter initially compressed by intense shocks up to megabars allows investigating the intermediate region between the solid and vapor phase of nonideal plasmas, including the metal-insulator transition phase and the high temperature saturation curve with critical points of metals. The shock-wave-induced non-equilibrium phenomena at fast melting, spallation and adiabatic condensation are analyzed in the framework of the interspinodal decomposition model. The spall strength of single and polycrystal metals at extremely fast deformation produced by fast shock waves is discussed. The ``pressure ionization'' phenomena in hydrogen, helium, argon, xenon, krypton, neon, iodine, silica, sulfur, fullerenes, and some metals are analyzed on the base of multiple shock compression experiments. For some simple metals (Li, Na, Ca) the effect of ``dielectrization'' as a result of multiple shock compression are discussed.

  19. Epidemiology and ionizing radiations

    International Nuclear Information System (INIS)

    Bourguignon, M.; Masse, R.; Slama, R.; Spira, A.; Timarche, M.; Laurier, D.; Billon, S.; Rogel, A.; Telle Lamberton, M.; Catelinois, O.; Thierry, I.; Grosche, B.; Ron, E.; Vathaire, F. de; Cherie Challine, L.; Donadieu, J.; Pirard, Ph.; Bloch, J.; Setbon, M.

    2004-01-01

    The ionizing radiations have effects on living being. The determinist effects appear since a threshold of absorbed dose of radiation is reached. In return, the stochastic effects of ionizing radiations are these ones whom apparition cannot be described except in terms of probabilities. They are in one hand, cancers and leukemia, on the other hand, lesions of the genome potentially transmissible to the descendants. That is why epidemiology, defined by specialists as the science that studies the frequency and distribution of illness in time and space, the contribution of factors that determine this frequency and this distribution among human populations. This issue gathers and synthesizes the knowledge and examines the difficulties of methodologies. It allows to give its true place to epidemiology. (N.C.)

  20. Ionizing radiation and neoplasia

    International Nuclear Information System (INIS)

    Fajardo, L.F.

    1986-01-01

    Among the well accepted causes of neoplasia, ionizing radiation is quite prominent. Its oncogenic role was suspected by a few pioneers in the field of radiation biology, and some evidence for its oncogenicity has been available for almost 80 years. Since then unquestionable and abundant proof, statistical and experimental, has linked radiation with multiple tumors in mammals. Other forms of radiation (e.g., ultraviolet) are also causally related to neoplasia. This review, however, refers only to the tumors associated with ionizing radiation, either electromagnetic (i.e., gamma and x-rays) or particulate (alpha particles, neutrons, etc.). The field of radiation oncogenesis can be compared to a sea of hypotheses, with a few solid islands of facts. This paper considers the facts (specific radiation-induced neoplasms, risk data, etc.) and then considers some of the hypotheses (possible mechanisms of radiation oncogenesis)

  1. Ionization by nuclear transitions

    International Nuclear Information System (INIS)

    Freedman, M.S.

    1975-01-01

    A phenomenological description of ionization events is given that applies to both shaking transitions of the composite nucleus-atom system and the process in which the charged particles emitted in a nuclear decay transfer energy by a relatively slow ''direct collision'' final state interaction with atomic electrons. Specific areas covered include shakeoff in internal conversion, shakeoff in electron capture, shakeoff in beta decay, and inner electron ejection in alpha decay. (5 figs., 1 table)

  2. Gridded Ionization Chamber

    International Nuclear Information System (INIS)

    Manero Amoros, F.

    1962-01-01

    In the present paper the working principles of a gridded ionization chamber are given, and all the different factors that determine its resolution power are analyzed in detail. One of these devices, built in the Physics Division of the JEN and designed specially for use in measurements of alpha spectroscopy, is described. finally the main applications, in which the chamber can be used, are shown. (Author) 17 refs

  3. Non-ionizing radiation

    International Nuclear Information System (INIS)

    Fischer, P.G.

    1983-01-01

    The still growing use of non-ionizing radiation such as ultraviolet radiation laser light, ultrasound and infrasound, has induced growing interest in the effects of these types of radiation on the human organism, and in probable hazards emanating from their application. As there are up to now no generally approved regulations or standards governing the use of non-ionizing radiation and the prevention of damage, it is up to the manufacturers of the relevant equipment to provide for safety in the use of their apparatus. This situation has led to a feeling of incertainty among manufacturers, as to how which kind of damage should be avoided. Practice has shown that there is a demand for guidelines stating limiting values, for measuring techniques clearly indicating safety thresholds, and for safety rules providing for safe handling. The task group 'Non-ionizing radiation' of the Radiation Protection Association started a programme to fulfill this task. Experts interested in this work have been invited to exchange their knowledge and experience in this field, and a collection of loose leaves will soon be published giving information and recommendations. (orig./HP) [de

  4. Thin films deposited by laser ablation for the measurement of the ionizing and non-ionizing radiation

    International Nuclear Information System (INIS)

    Villarreal B, J.E.; Escobar A, L.; Camps, E.; Romero, S.; Gonzalez, P.; Salinas, B.

    2001-01-01

    In this work the obtained results to synthesize thin films of amorphous carbon with incorporated nitrogen and hydrogen are presented, as well as thin films of aluminium oxide using the laser ablation technique. The thin films were exposed to ionizing radiation (gamma rays of a 60 Co source, beta radiation of a 90 Sr source) and a non-ionizing radiation (UV radiation). The obtained results show that it is possible to obtain materials in thin film form with thickness of hundreds of nanometers, which present thermoluminescent response when being irradiated with ionizing radiation and non-ionizing radiation. (Author)

  5. Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering

    Science.gov (United States)

    Walt, Samuel G.; Bhargava Ram, Niraghatam; Atala, Marcos; Shvetsov-Shilovski, Nikolay I; von Conta, Aaron; Baykusheva, Denitsa; Lein, Manfred; Wörner, Hans Jakob

    2017-01-01

    Strong-field photoelectron holography and laser-induced electron diffraction (LIED) are two powerful emerging methods for probing the ultrafast dynamics of molecules. However, both of them have remained restricted to static systems and to nuclear dynamics induced by strong-field ionization. Here we extend these promising methods to image purely electronic valence-shell dynamics in molecules using photoelectron holography. In the same experiment, we use LIED and photoelectron holography simultaneously, to observe coupled electronic-rotational dynamics taking place on similar timescales. These results offer perspectives for imaging ultrafast dynamics of molecules on femtosecond to attosecond timescales. PMID:28643771

  6. Smart ionization chamber for gamma-ray monitoring

    Directory of Open Access Journals (Sweden)

    Drndarević Vujo R.

    2014-01-01

    Full Text Available A design and implementation of a smart ionization chamber suitable for connection into gamma radiation monitoring networks is presented in this paper. The smart ionization chamber consists of air-equivalent one liter ionization chamber with associated electronics and a built-in memory for storage of electronic data specifications. Generally, operating and measurement characteristics of the used ionization chamber are written into the memory chip attached to the chamber. A microcontroller-based data acquisition system with a mixed-mode interface has been implemented for the purpose of reading electronic data specifications from the memory chip, and for configuration and interfacing of the ionization chamber to the monitoring network using plug-and-play concept. The details of smart ionization chamber implementation and test results are included in the paper. [Projekat Ministarstva nauke Republike Srbije, br. TR36047 i br. TR32043

  7. Which downstream signal transduction pathway(s) of H-ras are necessary for the cellular response(s) to ionizing radiation? (Results of an astro research fellowship year)

    International Nuclear Information System (INIS)

    Rudoltz, Marc S.; Muschel, Ruth J.; McKenna, W. Gillies

    1996-01-01

    Purpose/Background: The H-ras oncogene encodes a protein which is an essential component of multiple downstream effector pathways required for induction of proliferation and differentiation. Ras plays a role in the control some of these signal transduction pathways, such as the MAP kinase pathway which controls gene expression and the Rac-Rho pathway which controls cell morphology. Previous work from our laboratory has associated H-ras expression with radiation resistance, a prolonged delay in G2 following exposure to ionizing radiation, and suppression of radiation-induced apoptosis. In addition, H-ras cooperates with myc in transformation. Recent work by White et al. (Cell 80:533-541, 1995) and Joneson et al. (Science 271: 810-812, 1996) describes three mutations in H-ras which were engineered to eliminate different downstream signal transduction pathways of H-ras. T35S contains a serine in place of threonine at amino acid 35 and is defective for ras-induced cytoskeletal changes and initiation of DNA synthesis. E37G contains a glutamic acid in place of glycine at amino acid 37 which eliminates interaction of H-ras with a GDP/GTP exchange factor. C40 contains a substitution of cysteine for tyrosine at amino acid 40 and is defective for H-ras induction of the MAP kinase pathway. We propose that by expressing these mutant H-ras proteins in immortalized cells the downstream pathways of H-ras which regulate the cellular response(s) to ionizing radiation may be determined. Materials and Methods: pHP-5 plasmids encoding these H-ras mutant genes (see White et al.) were transfected by calcium phosphate precipitation into MR4 cells, rat embryo fibroblasts immortalized by expression of v-myc. In this vector, the cDNA for H-ras is placed under the control of a CMV constitutive promoter, and selection is provided by hygromycin. The transfections performed were as follows: V12Ras (no mutation), T35S, E37G, C40, T35S + E37G, and T35S + C40. Twenty four hours after transfection

  8. Dressed-state perturbation theory for multiphoton ionization of atoms

    International Nuclear Information System (INIS)

    Pan, L.; Sundaram, B.; Armstrong, L. Jr.

    1987-01-01

    We introduce a perturbation theory using dressed bound states to include higher-order transition processes in the calculation of atomic multiphoton ionization. We calculate the ionization probability of hydrogen atoms using this theory and compare the results with the lowest-order perturbation result. We also calculate the shift of the hydrogen atom's ground state that is due to the external field

  9. Structure of electron tracks in water. 2. Distribution of primary ionizations and excitations in water radiolysis

    International Nuclear Information System (INIS)

    Pimblott, S.M.; Mozumder, A.

    1991-01-01

    A procedure for the calculation of entity-specific ionization and excitation probabilities for water radiolysis at low linear energy transfer (LET) has been developed. The technique pays due attention to the effects of the ionization threshold and the energy dependence of the ionization efficiency. The numbers of primary ionizations and excitations are not directly proportional to the spur energy. At a given spur energy, ionization follows a binomial distribution subject to an energetically possible maximum. The excitation distribution for a spur of given energy and with a given number of ionizations is given by a geometric series. The occurrence probabilities depend upon the cross sections of ionization, excitation, and other inferior processes. Following the low-LET radiolysis of liquid water the most probable spurs contain one ionization, two ionizations, or one ionization and one excitation, while in water vapor they contain either one ionization or one excitation. In liquid water the most probable outcomes for spurs corresponding to the most probable energy loss (22 eV) and to the mean energy loss (38 eV) are one ionization and one excitation, and two ionizations and one excitation, respectively. In the vapor, the most probable energy loss is 14 eV which results in one ionization or one excitation and the mean energy loss is 34 eV for which the spur of maximum probability contains one ionization and two excitations. The total calculated primary yields for low-LET radiolysis are in approximate agreement with experiment in both phases

  10. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  11. A prototype ionization profile monitor for RHIC

    International Nuclear Information System (INIS)

    Connolly, R.; Cameron, P.; Ryan, W.

    1997-01-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM's). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests

  12. A prototype ionization profile monitor for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Cameron, P.; Ryan, W. [and others

    1997-07-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM`s). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests.

  13. Formation and metastable decomposition of unprotonated ammonia cluster ions upon femtosecond ionization

    International Nuclear Information System (INIS)

    Buzza, S.A.; Wei, S.; Purnell, J.; Castleman, A.W. Jr.

    1995-01-01

    The formation and metastable dissociation mechanism of unprotonated ammonia cluster ions, (NH 3 ) + n , produced by multiphoton ionization (MPI) at 624 nm and a nominal pulse width of 350 fs, are investigated through a reflectron time-of-flight (TOF) mass spectrometric technique. Detection of the unprotonated ions after femtosecond and nanosecond multiphoton ionization under various intensity conditions is explained. The role of the energy of the ionizing photons, and the observation of these ions after femtosecond MPI is examined. The formation of the unprotonated series is found to be a function of intensity in the case of ionization on the nanosecond time scale, but not so for the femtosecond time domain. The results can be explained in terms of ionization mechanisms and ionizing pulse durations. The findings of the present study suggest that the unprotonated ions are trapped behind the barrier to intracluster proton transfer and/or concomitant NH 2 loss. The studies of metastable decomposition also reveal that the unprotonated ammonia cluster ions dissociate in the field-free region of the TOF by losing an NH 2 radical rather than via the evaporative loss of NH 3 as occurs for protonated clusters. Additionally, isotopic investigations of the unimolecular decay reveal a strong dependence on the conditions of cluster formation. The cluster formation condition dependence of the unimolecular decay is further investigated by altering formation temperatures and observing the consequences reflected by changes in the spontaneous metastable decay rate constant. This is a unique example of a cluster system whose metastable dissociation does not obey an evaporative ensemble model

  14. The requirements for low-temperature plasma ionization support miniaturization of the ion source.

    Science.gov (United States)

    Kiontke, Andreas; Holzer, Frank; Belder, Detlev; Birkemeyer, Claudia

    2018-04-13

    Ambient ionization mass spectrometry (AI-MS), the ionization of samples under ambient conditions, enables fast and simple analysis of samples without or with little sample preparation. Due to their simple construction and low resource consumption, plasma-based ionization methods in particular are considered ideal for use in mobile analytical devices. However, systematic investigations that have attempted to identify the optimal configuration of a plasma source to achieve the sensitive detection of target molecules are still rare. We therefore used a low-temperature plasma ionization (LTPI) source based on dielectric barrier discharge with helium employed as the process gas to identify the factors that most strongly influence the signal intensity in the mass spectrometry of species formed by plasma ionization. In this study, we investigated several construction-related parameters of the plasma source and found that a low wall thickness of the dielectric, a small outlet spacing, and a short distance between the plasma source and the MS inlet are needed to achieve optimal signal intensity with a process-gas flow rate of as little as 10 mL/min. In conclusion, this type of ion source is especially well suited for downscaling, which is usually required in mobile devices. Our results provide valuable insights into the LTPI mechanism; they reveal the potential to further improve its implementation and standardization for mobile mass spectrometry as well as our understanding of the requirements and selectivity of this technique. Graphical abstract Optimized parameters of a dielectric barrier discharge plasma for ionization in mass spectrometry. The electrode size, shape, and arrangement, the thickness of the dielectric, and distances between the plasma source, sample, and MS inlet are marked in red. The process gas (helium) flow is shown in black.

  15. Ionizing radiation effects on floating gates

    International Nuclear Information System (INIS)

    Cellere, G.; Paccagnella, A.; Visconti, A.; Bonanomi, M.

    2004-01-01

    Floating gate (FG) memories, and in particular Flash, are the dominant among modern nonvolatile memory technologies. Their performance under ionizing radiation was traditionally studied for the use in space, but has become of general interest in recent years. We are showing results on the charge loss from programmed FG arrays after 10 keV x-rays exposure. Exposure to ionizing radiation results in progressive discharge of the FG. More advanced devices, featuring smaller FG, are less sensitive to ionizing radiation that older ones. The reason is identified in the photoemission of electrons from FG, since at high doses it dominates over charge loss deriving from electron/hole pairs generation in the oxides

  16. Stable states in a strong IR field

    Science.gov (United States)

    Zhong, Changchun; Robicheaux, Francis

    2015-05-01

    It is found that 10% of atoms stay in the quasi-stable states after being exposed to intense laser or microwave (MW) pulses, even though the pulses' intensity is much stronger than that needed for static fields ionization. The reason why atoms survive those strong pulses has attracted growing attentions. A. Arakelyan et al. have observed the optical spectra of the surviving Lithium atoms after interaction with intense 38-GHz MW fields for more than 1000 cycles, and the spectra exhibit a periodic train of peaks 38 GHz apart. It suggests that those weakly bound Rydberg electrons seldom go back to the ionic core, where the cycle average energy exchange happens. In this study, we are interested in the electron behavior in the presence of intense infrared fields with a much shorter wavelength (1000 nm). By solving the full 3D time dependent Schrodinger equation, we calculate the spectra of the surviving atoms under intense IR fields. Our numerical calculations show atoms survive the intense field in quasi-stable states for a long time, and the optical spectra are obviously modulated by the IR frequency. Through tuning the ponderomotive energy, we see how field parameters affect the behavior of electrons. Different atoms, such as Hydrogen, Helium, Lithium, and Sodium, are tested to see how atom's energy structures influence the results.

  17. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    CERN Document Server

    Rothe, S; Antalic, S; Borschevsky, A; Capponi, L; Cocolios, T E; De Witte, H; Eliav, E; Fedorov, D V; Fedosseev, V N; Fink, D A; Fritzsche, S; Ghys, L; Huyse, M; Imai, N; Kaldor, U; Kudryavtsev, Yu; Köster, U; Lane, J; Lassen, J; Liberati, V; Lynch, K M; Marsh, B A; Nishio, K; Pauwels, D; Pershina, V; Popescu, L; Procter, T J; Radulov, D; Raeder, S; Rajabali, M M; Rapisarda, E; Rossel, R E; Sandhu, K; Seliverstov, M D; Sjödin, A M; Van den Bergh, P; Van Duppen, P; Venhart, M; Wakabayashi, Y; Wendt K D A

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of smallest quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.317510(8) eV. New ab initio calculations were performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of super-heavy element 117, the heaviest homologue of astatine.

  18. Estimation of the contribution of ionization and excitation to the lethal effect of ionizing radiation

    International Nuclear Information System (INIS)

    Petin, V.G.; Komarov, V.P.

    1982-01-01

    A simple theoretical model is proposed for estimating the differential contribution of ionization and excitation to the lethal effect of ionizing radiation. Numerical results were obtained on the basis of published experimental data on the ability of bacterial cells Escherichia coli to undergo photoreactivation of radiation-induced damage. It was shown that inactivation by excitation may be highly significant for UV-hypersensitive cells capable of photoreactivation; inactivation by excitation increased with the energy of ionizing radiation and the volume of irradiated suspensions. The data are in qualitative agreement with the assumption of a possible contribution of the UV-component of Cerenkov radiation to the formation of excitations responsible for the lethal effect and the phenomenon of photoreactivation after ionizing radiation. Some predictions from the model are discussed. (orig.)

  19. Wavelength dependent photoelectron circular dichroism of limonene studied by femtosecond multiphoton laser ionization and electron-ion coincidence imaging

    Science.gov (United States)

    Rafiee Fanood, Mohammad M.; Janssen, Maurice H. M.; Powis, Ivan

    2016-09-01

    Enantiomers of the monoterpene limonene have been investigated by (2 + 1) resonance enhanced multiphoton ionization and photoelectron circular dichroism employing tuneable, circularly polarized femtosecond laser pulses. Electron imaging detection provides 3D momentum measurement while electron-ion coincidence detection can be used to mass-tag individual electrons. Additional filtering, by accepting only parent ion tagged electrons, can be then used to provide discrimination against higher energy dissociative ionization mechanisms where more than three photons are absorbed to better delineate the two photon resonant, one photon ionization pathway. The promotion of different vibrational levels and, tentatively, different electronic ion core configurations in the intermediate Rydberg states can be achieved with different laser excitation wavelengths (420 nm, 412 nm, and 392 nm), in turn producing different state distributions in the resulting cations. Strong chiral asymmetries in the lab frame photoelectron angular distributions are quantified, and a comparison made with a single photon (synchrotron radiation) measurement at an equivalent photon energy.

  20. Pressing problems of measurement of ionizing radiations

    International Nuclear Information System (INIS)

    Fominykh, V.I.; Yudin, M.F.

    1993-01-01

    The current system for ensuring the unity of measurements in the Russian Federation and countries of the former Soviet Union ensures a high quality of dosimetric, radiometric, and spectrometric measurements in accordance with the recommendations of the Consulative Committee on Standards for Measurements of Ionizing Radiations of the International Bureau of Weights and Measures (IBWM), International Organization on Radiological Units (ICRU), International Commission on Radiological Protection (ICRP), International Organization on Legislative Metrology (IOLM), International Atomic Energy Agency (IAEA), World Health Organization (WHO), etc. Frequent collation of the national primary and secondary standards of Russia with those of IBWM and the leading national laboratories of the world facilitate mutual verification of the measurements of ionizing radiations. The scope of scientific and scientific-technical problems that can be solved by using ionizing radiations has expanded significantly in recent years. In this paper the authors consider some pressing problems of the metrology of ionizing radiations which have arisen as a result of this expansion. These include the need for unity and reliability of measurements involved in radiation protection, the measurement of low doses involving low dose rates, ensuring the unity of measurements when monitoring the radiological security of the population, the need for more uniformity on an international scale regarding the basic physical quantities and their units for characterizing radiation fields, determination of the accuracy of measurement of the radiation dose absorbed by an irradiated tissue or organ, and the development of complex standards for ionizing radiations. 5 refs., 1 tab

  1. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    International Nuclear Information System (INIS)

    Stoyanov, D G

    2007-01-01

    The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed

  2. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-11-15

    The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed.

  3. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  4. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1982-01-01

    An ionization smoke detector employs a single radiation source in a construction comprising at least two chambers with a center or node electrode. The radioactive source is associated with this central electrode, and its positioning may be adjusted relative to the electrode to alter the proportion of the source that protrudes into each chamber. The source may also be mounted in the plane of the central electrode, and positioned relative to the center of the electrode. The central electrode or source may be made tiltable relative to the body of the detector

  5. Ionization of anisothermal plasmas

    International Nuclear Information System (INIS)

    Dennery, F.M.

    1994-01-01

    During this last mid-century, only the temperature of electrons has been involved in the Saha's mass action law, whatever be the other ionic and neutral ones in any isothermal or anisothermal plasma. In order to set aside this underlying paradox in the case of argon ionization, it is necessary to improve this equation of partial equilibrium after having defined: - the basic Gibbs-Duhem's relations for such a polythermal mixture, - the inhomogeneous equilibrium issued from chemical reactions according to Le Chatelier's principle. (author). 3 refs

  6. Ionization detectors, ch. 3

    International Nuclear Information System (INIS)

    Sevcik, J.

    1976-01-01

    Most measuring devices used in gas chromatography consist of detectors that measure the ionization current. The process is based on the collision of a moving high-energy particle with a target particle that is ionised while an electron is freed. The discussion of the conditions of the collision reaction, the properties of the colliding particles, and the intensity of the applied field point to a unified classification of ionisation detectors. Radioactive sources suitable for use in these detectors are surveyed. The slow-down mechanism, recombination and background current effect are discussed

  7. First measurement of the ionization potential of astatine

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Sebastian [CERN, Geneva (Switzerland); Institut fuer Physik, Univ. Mainz (Germany); Andreyev, Andrei N. [University of the West of Scotland, Paisley (United Kingdom); Antalic, Stano [Comenius University, Bratislava (Slovakia); Cocolios, Thomas E.; Marsh, Bruce A.; Sjoedin, A. Marica; Fedosseev, Valentin N. [CERN, Geneva (Switzerland); Fedorov, Dimitry V. [PNPI, Gatchina (Russian Federation); Ghys, Lars; Huyse, Mark; Kudryavtsev, Yuri; Pauwels, Dieter; Radulov, Deyan; Duppen, Piet van [IKS, KU Leuven (Belgium); Lassen, Jens [TRIUMF, Vancouver (Canada); Raeder, Sebastian; Wendt, Klaus [Institut fuer Physik, Univ. Mainz (Germany); Seliverstov, Maxim [PNPI, Gatchina (Russian Federation); IKS, KU Leuven (Belgium); Venhart, Martin [Slovak Academy of Sciences, Bratislava (Slovakia)

    2011-07-01

    Since the discovery of element 85 in the year 1940 by D. R. Corson et al., the binding energy of the outer electron of astatine had not been determined. At the on-line isotope separator facility ISOLDE at CERN, Geneva radioactive isotopes of At were produced by impinging 1.4 GeV protons on a uranium carbide target, ionized using the Resonance Ionization Laser Ion Source (RILIS) and detected using alpha decay spectroscopy. In-source laser spectroscopy was performed in order to develop a multi-step ionization scheme for an efficient and highly selective At ion production, as requested by ISOLDE users. Two atomic transitions, previously observed by absorption spectroscopy were confirmed and assigned as first steps of the excitation and ionization scheme. A second laser beam was applied to non-resonantly ionize the excited At atoms. A wavelength scan of the ionizing step was performed to search for the ionization limit. From the observed ionization onset the first ionization potential of At was preliminary determined to be 9.3 eV. Results from these studies at CERN and consecutive measurements at TRIUMF, Canada and IKS, Belgium are presented.

  8. Effects of ionizing radiation and steady magnetic field on erythrocytes

    International Nuclear Information System (INIS)

    Ivanov, S. P.; Galutzov, B. P.; Kuzmanova, M. A.; Markov, M. S.

    1996-01-01

    A complex biophysical test for studying the effects of ionizing and non-ionizing radiation has been developed. The following cell and membrane parameters have been investigated: cell size, cell shape, cell distribution by size, electrophoretic mobility, extent of hemolysis, membrane transport and membrane impedance. Gamma ray doses of 2.2 Gy and 3.3 Gy were used as ionizing radiation and steady (DC) magnetic field of 5-90 mT representing the non-ionizing radiation. Erythrocytes from humans and rats were exposed in vitro to both ionizing and non-ionizing radiation. In some experiments ionizing radiation was applied in vivo as well. Each of the simultaneously studied parameters have been found to change as a function of applied radiation. The proposed test allows an estimation of the changes in the elastic, rheological and electrical parameters of cells and biological membranes. Results indicate that ionizing radiation is significantly more effective in an in vivo application, while magnetic fields are more effective when applied in vitro. Surprisingly, steady magnetic fields were found to act as protector against some harmful effects of ionizing radiation. (authors)

  9. Positron ionization mass spectrometry: An organic mass spectrometrist's view

    International Nuclear Information System (INIS)

    Glish, G.L.; Donohue, D.L.; McLuckey, S.A.; Eckenrode, B.A.; Hulett, L.D. Jr.

    1990-01-01

    We are currently engaged in a research program to study the ionization of polyatomic molecules by positrons. We refer to the technique herein as positron ionization mass spectrometry which includes all of the possible ionization mechanisms. In the course of this work we will attempt to characterize each of the important ionization mechanisms. Our ultimate objective is to explore the use of positron ionization mass spectrometry for chemical analysis. Several other groups have also begun to pursue aspects of positron ionization in parallel with our efforts although with somewhat different approaches and, perhaps with slightly different emphases. Recently, for example, Passner et al. have acquired mass spectra in a Penning trap resulting from the ionization of several different polyatomic molecules by near thermal kinetics energy positrons. Our research involves studying the different types of ionizing interactions of positrons with organic molecules, as a function of positron kinetic energy. For ionization of polyatomic molecules by positrons, several possible mechanisms are apparent from lifetime and scattering cross-section data. These mechanisms are discussed

  10. Fragmentation pathways of ethylene after core ionization

    Science.gov (United States)

    Gaire, B.; Bocharova, I.; Sturm, F. P.; Gehrken, N.; Haxton, D. J.; Belkacem, A.; Weber, Th.; Zohrabi, M.; Ben-Itzhak, I.; Gatton, A.; Williams, J.; Reedy, D.; Nook, C.; Landers, A.; Gassert, H.; Zeller, S.; Voigtsberger, J.; Jahnke, T.; Doerner, R.

    2014-05-01

    We have measured the Auger electrons in coincidence with the recoil ions, resulting from the core ionization of ethylene molecules, by employing the COLd Target Recoil Ion Momentum Spectroscopy (COLTRIMS) method. The Auger-electron and recoil-ion energy maps are used to identify the fragmentation pathways and they are compared to the valence photo-double-ionization of ethylene. The dicationic electronic states favored by the propensity rules are identified and their role on the fragmentation pathways is discussed. The molecular-frame Auger electron angular distribution provides further insight into the breakup of this molecule after core ionization. Supported by the Director, Office of Science, Office of Basic Energy Sciences, and by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231.

  11. Plasma production via field ionization

    Directory of Open Access Journals (Sweden)

    C. L. O’Connell

    2006-10-01

    Full Text Available Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch, or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam’s bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  12. Electron Impact Ionization of C60

    International Nuclear Information System (INIS)

    Duenser, B.; Lezius, M.; Scheier, P.; Deutsch, H.; Maerk, T.D.

    1995-01-01

    Absolute partial and total cross sections for the electron impact ionization of C 60 have been measured using a novel approach for the absolute calibration. The results obtained reveal not only an anomalous large parent ion cross section (as compared to the other ionization channels), but also anomalies for the production of multiply charged parent and fragment ions. This special behavior has its origin in the specific electronic and geometric structure of C 60 . Semiclassical calculations for singly charged ions support the measured data

  13. Ionizing energy in food processing and pest control. 1. Wholesomeness of food treated with ionizing energy

    International Nuclear Information System (INIS)

    Congressional concerns about the use of ionizing energy for food preservation and to control pests in food products for export and domestic use promoted the preparation of this report by a special task force of the Council for Agricultural Science and Technology (CAST). An overview surveys research conducted on the toxicological safety, nutritional quality, and microbiological safety of foods treated with ionizing energy. Background information is provided on various types of electromagnetic radiation, effects of ionizing energy level and dose, sources of natural background radiation and induced radioactivity, and the nature and safety of various radiolytic products. Objectives, methodologies, and problems associated with feeding studies of toxicological safety are outlined; results of scientific studies, U.S. government wholesomeness studies, and international feeding studies are summarized. Studies on the nutritional value of food products processed using ionized energy have examined the effects of ionizing energy on 1) composite diets, 2) carbohydrates, 3) fats, 4) proteins and amino acids, 5) vitamins (potatoes, onions, fruits, meat, seafood, cereals, vegetables, dairy products, oils), 6) antivitamins, and 7) minerals. The report concludes that currently available scientific evidence indicates that foods exposed to ionizing energy under the conditions proposed for commercial application are 1) wholesome (safe to eat) and 2) comparable in nutritional adequacy to fresh or conventionally processed foods

  14. News about ionized food identification

    International Nuclear Information System (INIS)

    Raffi, J.

    1995-01-01

    The ionizing radiations are used to clean food and increase their preservation life. If a lot of countries permits ionized products commercialization, others are opposed to it. To control the commercial exchanges, check the applied treatment aim and give to the consumers a better information, several ionized food identification methods were perfected and several are about to be recognized as european standards. 4 refs. 3 figs, 1 tab

  15. Biology of ionizing radiation effects

    International Nuclear Information System (INIS)

    Ferradini, C.; Pucheault, J.

    1983-01-01

    The present trends in biology of ionizing radiation are reviewed. The following topics are investigated: interaction of ionizing radiations with matter; the radiolysis of water and aqueous solutions; properties of the free radicals intervening in the couples O 2 /H 2 O and H 2 O/H 2 ; radiation chemistry of biological compounds; biological effects of ionizing radiations; biochemical mechanisms involving free radicals as intermediates; applications (biotechnological applications, origins of life) [fr

  16. In-Source Laser Resonance Ionization at ISOL Facilities

    CERN Document Server

    Marsh, Bruce; Feddosseev, Valentin

    Resonance ionization laser ion source development has been carried out at two radioactive ion beam facilities: ISOLDE (CERN, Switzerland) and the IGISOL facility (Jyvaskyla, Finland). The scope of the Resonance Ionization Laser Ion Source has been extended to 27 elements with the development of new three-step ionization schemes for Sb, Sc, Dy, Y and Au. The efficiencies were determined to be in the range of 2 - 20 %. Additionally, a new two-step ionization scheme has been developed for bismuth in an off-line atomic beam unit. The scheme relies on ionization via a strong and broad auto-ionizing resonance at an energy of 63196.79 cm$^{−1}$. This scheme may offer an improvement over the existing RILIS efficiency and will be more convenient for use during resonance ionization spectroscopy of Bi isotopes. The RILIS can be used as a spectroscopic tool to probe features such as the hyperfine structures and the isotope-shifts of radioisotopes with low production rates. By coupling a laser scanning process that dire...

  17. DYNAMICS OF CORONAL RAIN AND DESCENDING PLASMA BLOBS IN SOLAR PROMINENCES. II. PARTIALLY IONIZED CASE

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, R.; Soler, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Zaqarashvili, T. V., E-mail: ramon.oliver@uib.es [Institute of Physics, IGAM, University of Graz, Universitätsplatz 5, 8010, Graz (Austria)

    2016-02-20

    Coronal rain clumps and prominence knots are dense condensations with chromospheric to transition region temperatures that fall down in the much hotter corona. Their typical speeds are in the range 30–150 km s{sup −1} and of the order of 10–30 km s{sup −1}, respectively, i.e., they are considerably smaller than free-fall velocities. These cold blobs contain a mixture of ionized and neutral material that must be dynamically coupled in order to fall together, as observed. We investigate this coupling by means of hydrodynamic simulations in which the coupling arises from the friction between ions and neutrals. The numerical simulations presented here are an extension of those of Oliver et al. to the partially ionized case. We find that, although the relative drift speed between the two species is smaller than 1 m s{sup −1} at the blob center, it is sufficient to produce the forces required to strongly couple charged particles and neutrals. The ionization degree has no discernible effect on the main results of our previous work for a fully ionized plasma: the condensation has an initial acceleration phase followed by a period with roughly constant velocity, and, in addition, the maximum descending speed is clearly correlated with the ratio of initial blob to environment density.

  18. Auto-ionizing states in MgI

    International Nuclear Information System (INIS)

    El-Sherbini, Th.M.; Rahman, A.A.

    1982-01-01

    Hartree-Fock calculations have been performed for the auto-ionizing levels of the 3pns, 3pnp, 4snp (n=4 to 7) and 3pnd (n=3 to 7) series in MgI. The calculated energies of the auto-ionizing states are compared with the available results from photo-absorption measurements and ejected-electron experiments. (author)

  19. Modeling of the bipolar transistor under different pulse ionizing radiations

    Science.gov (United States)

    Antonova, A. M.; Skorobogatov, P. K.

    2017-01-01

    This paper describes a 2D model of the bipolar transistor 2T312 under gamma, X-ray and laser pulse ionizing radiations. Both the Finite Element Discretization and Semiconductor module of Comsol 5.1 are used. There is an analysis of energy deposition in this device under different radiations and the results of transient ionizing current response for some different conditions.

  20. Antiproton impact ionization of atomic hydrogen and helium

    Energy Technology Data Exchange (ETDEWEB)

    McGovern, M; Walters, H R J [Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast BT7 INN (United Kingdom); Assafrao, D; Mohallem, J R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O Box 702, 30123-970 Belo Horizonte, MG (Brazil); Whelan, Colm T, E-mail: mmcgovern06@qub.ac.u [Department of Physics, Old Dominion University, Norfolk, VA 23529-0116 (United States)

    2009-11-01

    We shall present results for antiproton ionization of H and He ranging from fully differential cross sections to total ionization. The calculations have been made in a coupled pseudostate impact parameter approximation. It will be shown that the interaction between the antiproton and the target nucleus is very important at low energies.

  1. Hygiene of ionizing radiations

    International Nuclear Information System (INIS)

    Legare, I.-M.; Conceicao Cunha, M. da

    1976-01-01

    The concepts of quality factor and rem are introduced and a table of biological effects of external ionizing radiation sources is presented. Natural exposures, with tables of background radiation sources and of doses due to cosmic rays on high altitude areas and their populations are treated, as well as medical exposures; artificial background; fallout; scientific, industrial and other sources. The maximum and limit doses for man are given and tables of maximum admissible doses of ionizing radiations for 16-18 year old workers professionaly exposed, for professionals eventually subjected to radiation in their work and for people eventually exposed. Professional protection is discussed and tables are given of half-value layer of water, concrete, iron and lead for radiations of different energies, as well as the classification of exposure zones to the radiations and of maximum acceptable contamination for surfaces. The basic safety standards for radiation protection are summarized; tables are given also with emergency references for internal irradiation. Procedures with patients which received radioisotopes are discussed. At last, consideration is given to the problem of radioactive wastes in connection with the medical use of radionuclides [pt

  2. Surface ionization mass spectrometry of opiates

    International Nuclear Information System (INIS)

    Usmanov, D.T.

    2009-07-01

    Key words: surface ionization, adsorption, heterogeneous reactions, surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy, thermoemitter, opiates, extracts of biosamples. Subjects of study. The mass - spectrometric study of thermal - ion emission: surface ionization of opiates by on the surface of oxidized refractory metals. Purpose of work is to establish the regularities of surface ionization (SI) of multi-atomic molecule opiates and their mixtures develop the scientific base of SI methods for high sensitive and selective detection and analysis of these substances in the different objects, including biosamples. Methods of study: surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy. The results obtained and their novelty. For the first time, SI of molecule opiates on the oxidized tungsten surface has been studied and their SI mass-spectra and temperature dependences of ion currents have been obtained, the characteristic heterogeneous reactions of an adsorbed molecules and the channels of monomolecular decays vibrationally-excited ions on their way in mass-spectrometry have been revealed, sublimation energy has been defined, the activation energy of E act , of these decays has been estimated for given period of time. Additivity of the SI mass-spectra of opiate mixtures of has been established under conditions of joint opiate adsorption. High selectivity of SI allows the extracts of biosamples to be analyzed without their preliminary chromatographic separation. The opiates are ionized by SI with high efficiency (from 34 C/mol to 112 C/mol), which provides high sensitivity of opiate detection by SI/MS and APTDSIS methods from - 10 -11 g in the samples under analysis. Practical value. The results of these studies create the scientific base for novel SI methods of high sensitive detection and analysis of the trace amounts of opiates in complicated mixtures, including biosamples without their preliminary

  3. Foundations of ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Denisenko, O.N.; Pereslegin, I.A.

    1985-01-01

    Foundations of dosimetry in application to radiotherapy are presented. General characteristics of ionizing radiations and main characteristics of ionizing radiation sources, mostly used in radiotherapy, are given. Values and units for measuring ionizing radiation (activity of a radioactive substance, absorbed dose, exposure dose, integral dose and dose equivalent are considered. Different methods and instruments for ionizing radiation dosimetry are discussed. The attention is paid to the foundations of clinical dosimetry (representation of anatomo-topographic information, choice of radiation conditions, realization of radiation methods, corrections for a configuration and inhomogeneity of a patient's body, account of biological factors of radiation effects, instruments of dose field formation, control of irradiation procedure chosen)

  4. Sodium ionization detector and sensor

    International Nuclear Information System (INIS)

    Hrizo, J.; Bauerle, J.E.

    1979-01-01

    Work conducted on a basic technology development effort with the Westinghouse Sodium Ionization Detector (SID) sensor is reported. Included are results obtained for three task areas: (1) On-line operational response testing - in-situ calibration techniques; (2) Performance-reliability characteristics of aged filaments; and (3) Evaluation of chemical interference effects. The results showed that a calibrator filament coated with a sodium compound, when activated, does supply the necessary sodium atoms to provide a valid operational in-situ test. The life time of new Cr 2 0 3 -protected SID sensor filaments can be extended by operating at a reduced temperature. However, there also is a reduction in the sensitivity. Non-sodium species, such as products from a smoldering fire and organic aerosols, produce an interference response from the sensor comparable to a typical sodium response

  5. Neutral Atom Diffusion in a Partially Ionized Prominence Plasma

    Science.gov (United States)

    Gilbert, Holly

    2010-01-01

    The support of solar prominences is normally described in terms of a magnetic force on the prominence plasma that balances the solar gravitational force. Because the prominence plasma is only partially ionized. it is necessary to consider in addition the support of the neutral component of the prominence plasma. This support is accomplished through a frictional interaction between the neutral and ionized components of the plasma, and its efficacy depends strongly on the degree of ionization of the plasma. More specifically, the frictional force is proportional to the relative flow of neutral and ion species, and for a sufficiently weakly ionized plasma, this flow must be relatively large to produce a frictional force that balances gravity. A large relative flow, of course, implies significant draining of neutral particles from the prominence. We evaluate the importance of this draining effect for a hydrogen-helium plasma, and consider the observational evidence for cross-field diffusion of neutral prominence material,

  6. Epicyclic helical channels for parametric resonance ionization cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johson, Rolland Paul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Muons, Inc., Batavia, IL (United States)

    2015-08-23

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  7. Two-step laser ionization schemes for in-gas laser ionization and spectroscopy of radioactive isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, Yu., E-mail: yuri.kudryavtsev@fys.kuleuven.be; Ferrer, R.; Huyse, M.; Van den Bergh, P.; Van Duppen, P. [Instituut voor Kern- en Stralingsfysica, KU Leuven, 3001 Leuven (Belgium); Vermeeren, L. [SCK-CEN, Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium)

    2014-02-15

    The in-gas laser ionization and spectroscopy technique has been developed at the Leuven isotope separator on-line facility for the production and in-source laser spectroscopy studies of short-lived radioactive isotopes. In this article, results from a study to identify efficient optical schemes for the two-step resonance laser ionization of 18 elements are presented.

  8. Two-step laser ionization schemes for in-gas laser ionization and spectroscopy of radioactive isotopes.

    Science.gov (United States)

    Kudryavtsev, Yu; Ferrer, R; Huyse, M; Van den Bergh, P; Van Duppen, P; Vermeeren, L

    2014-02-01

    The in-gas laser ionization and spectroscopy technique has been developed at the Leuven isotope separator on-line facility for the production and in-source laser spectroscopy studies of short-lived radioactive isotopes. In this article, results from a study to identify efficient optical schemes for the two-step resonance laser ionization of 18 elements are presented.

  9. Ionized cluster beam technology for material science

    International Nuclear Information System (INIS)

    Takagi, Toshinori

    1997-01-01

    The most suitable kinetic energy range of ionized materials in film formation and epitaxial growth is from a few eV to a few hundreds eV, especially, less than about 100eV, when ions are used as a host. The main roles of ions in film formation are the effects due to their kinetic energy and the electronic charge effects which involve the effect to active film formation and the effect acceleration of chemical reactions. Therefore, it is important to develope the technology to transport large volume of a flux of ionized particles with an extremely low incident energy without any troubles due to the space charge effects and charge up problems on the surface. This is the exact motivation for us to have been developing the Ionized Cluster Beam (ICB) technology since 1972. By ICB technology materials (actually wide varieties of materials such as metal, semiconductor, magnetic material, insulator, organic material, etc.) are vaporized and ejected through a small hole nozzle into a high vacuum, where the vaporized material condenses into clusters with loosely coupled atoms with the sizes about from 100 to a few 1000 atoms (mainly 100-2000 atoms) by supercondensation phenomena due to the adiabatic expansion in this evaporation process through a small hole nozzle. In the ICB technology an atom in each cluster is ionized by irradiated by electron shower, and the ionized clusters are accelerated by electric field onto a substrate. The ionized clusters with neutral clusters impinged onto a substrate are spreaded separately into atoms migrating over the substrate, so that the surface migration energy of the impinged atoms, that is, surface diffusion energy are controlled by an incident energy of a cluster. In this report the theoretical and also experimental results of ICB technology are summarized

  10. Coulomb frustration of the multiphoton ionization of metallic clusters under intense EUV FEL evidenced by ion spectrometry

    International Nuclear Information System (INIS)

    Mazza, T; Devetta, M; Milani, P; Motomura, K; Liu, X-J; Fukuzawa, H; Yamada, A; Nagaya, K; Iwayama, H; Sugishima, A; Mizoguchi, Y; Saito, N; Coreno, M; Nagasono, M; Tono, K; Togashi, T; Kimura, H; Okunishi, M; Fennel, Th; Senba, Y

    2015-01-01

    Free electron laser light sources delivering high intensity pulses of short wavelength radiation are opening novel possibilities for the investigation of matter at the nanoscale and for the discovery and understanding of new physical processes occurring at the exotic transient states they make accessible. Strong ionization of atomic constituents of a nano-sized sample is a representative example of such processes and the understanding of ionization dynamics is crucial for a realistic description of the experiments. We report here on multiple ionization experiments on free clusters of titanium, a high cohesive energy metal. The time of flight ion spectra reveal a saturation of the cluster ionization at ∼10 16 photons per pulse per cm 2 . Our results also show a clear lack of any explosion process, opposite to what is observed for a rare-gas cluster under similar conditions. A simple and generalized multi-step ionization model including Coulomb frustration of the photoemission process effectively reproduces with a good agreement the main features of the experimental observation and points to an interpretation of the data involving a substantial energy deposition into the cluster through electronic system heating upon scattering events within photoemission. (paper)

  11. [Ionizing and non-ionizing radiation (comparative risk estimations)].

    Science.gov (United States)

    Grigor'ev, Iu G

    2012-01-01

    The population has widely used mobile communication for already more than 15 years. It is important to note that the use of mobile communication has sharply changed the conditions of daily exposure of the population to EME We expose our brain daily for the first time in the entire civilization. The mobile phone is an open and uncontrollable source of electromagnetic radiation. The comparative risk estimation for the population of ionizing and non-ionizing radiation was carried out taking into account the real conditions of influence. Comparison of risks for the population of ionizing and non-ionizing radiation leads us to a conclusion that EMF RF exposure in conditions of wide use of mobile communication is potentially more harmful than ionizing radiation influence.

  12. <strong>Neuroeconomics and behavioral health economicsstrong>/>

    DEFF Research Database (Denmark)

    Larsen, Torben

    2009-01-01

    dissemination of relaxation procedures is evident in industrialized countries since about 1970 both inside the medical healthcare system and as NGO-settings in a market-alike competition. However, a serious barrier to the dissemination of meditative de-stressing is the lack of general knowledge of the action...... for explanation of the neural dynamics of normal decision making. Secondly, the literature is reviewed for evidence on hypothesized applications of NeM in behavioral health. Results I. The present bias as documented by neuroeconomic game-trials is explained by NeM as rooted in the basal activation of Amygdala...... - a key center in our emotional arousal (limbic system) - as shaped in the elder stone-age with many acute threats. II. In general, the Hawthorne-effect of human-relations management is explained as the result of supportive job-relations relaxing Amygdala for better emotional integration...

  13. Explosives vapour identification in ion mobility spectrometry using a tunable laser ionization source: a comparison with conventional 63Ni ionization

    International Nuclear Information System (INIS)

    Clark, A.; Deas, R.M.; Kosmidis, C.; Ledingham, K.W.D.; Marshall, A.; Singhal, R.P.

    1995-01-01

    Laser multiphoton ionization (MPI) is used to produce ions from explosive vapours at atmospheric pressure in air for analysis by ion mobility spectrometry (IMS). In the positive ion mode of detection, NO + ions, generated directly by multiphoton dissociation/ionization of the explosive compounds, show strong variation with laser wavelength. This provides a means of identifying the presence of nitro-containing compounds. Moreover, electrons formed in the MPI of gaseous components in the air carrier stream, primarily O 2 , are transferred via neutral molecular oxygen (O 2 ) to trace explosive vapour, forming negative ions which give rise to characteristic and identifiable ion mobility spectra. Further, negative ion mobility spectra of several explosive vapours are presented using conventional 63 Ni ionization and are compared qualitatively with the laser ionization approach. (author)

  14. Ionization of pyridine: Interplay of orbital relaxation and electron correlation

    Science.gov (United States)

    Trofimov, A. B.; Holland, D. M. P.; Powis, I.; Menzies, R. C.; Potts, A. W.; Karlsson, L.; Gromov, E. V.; Badsyuk, I. L.; Schirmer, J.

    2017-06-01

    The valence shell ionization spectrum of pyridine was studied using the third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green's function and the outer-valence Green's function method. The results were used to interpret angle resolved photoelectron spectra recorded with synchrotron radiation in the photon energy range of 17-120 eV. The lowest four states of the pyridine radical cation, namely, 2A2(1 a2 -1), 2A1(7 a1 -1), 2B1(2 b1 -1), and 2B2(5 b2 -1), were studied in detail using various high-level electronic structure calculation methods. The vertical ionization energies were established using the equation-of-motion coupled-cluster approach with single, double, and triple excitations (EOM-IP-CCSDT) and the complete basis set extrapolation technique. Further interpretation of the electronic structure results was accomplished using Dyson orbitals, electron density difference plots, and a second-order perturbation theory treatment for the relaxation energy. Strong orbital relaxation and electron correlation effects were shown to accompany ionization of the 7a1 orbital, which formally represents the nonbonding σ-type nitrogen lone-pair (nσ) orbital. The theoretical work establishes the important roles of the π-system (π-π* excitations) in the screening of the nσ-hole and of the relaxation of the molecular orbitals in the formation of the 7a1(nσ)-1 state. Equilibrium geometric parameters were computed using the MP2 (second-order Møller-Plesset perturbation theory) and CCSD methods, and the harmonic vibrational frequencies were obtained at the MP2 level of theory for the lowest three cation states. The results were used to estimate the adiabatic 0-0 ionization energies, which were then compared to the available experimental and theoretical data. Photoelectron anisotropy parameters and photoionization partial cross sections, derived from the experimental spectra, were compared to predictions obtained with the continuum

  15. Charge states of high Z atoms in a strong laser field

    International Nuclear Information System (INIS)

    Susskind, S.M.; Valeo, E.J.; Oberman, C.R.; Bernstein, I.B.

    1989-11-01

    We present a numerical solution of the Thomas-Fermi atom in the presence of a static electric field as a model of the adiabatic response of a heavy atom in the presence of a strong laser field. In this semiclassical approach, we calculate the resulting charge state of the atom and its induced dipole moment after the field is turned on. Due to the scaling properties of the Thomas-Fermi approach, the resulting total atomic charge and dipole moment can be expressed as a universal function of the field. We compare our results with recent ionization experiments performed on noble gases using laser fields. 7 refs., 5 figs

  16. <strong>Neuroeconomics and Health Economicsstrong>/>

    DEFF Research Database (Denmark)

    Larsen, Torben

    2009-01-01

    activation of Amygdala - a key center in our emotional arousal (limbic system) - as shaped in the elder stone-age with many acute threats. II. In general, the Hawthorne-effect of management is explained as the result of supportive job-relations reinforcing the homeostatic properties of the limbic system...... with de-stressing benefits as reduced anxiety, less use of stimulants and a reduction of blood pressure which in all increase life-expectancy. Conclusion: Neuroeconomics helps economists to identify dominant health economic interventions that may be overlooked by traditional discipålines   [i] This part...

  17. Ionizing radiation detector

    Science.gov (United States)

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  18. Applications of ionizing radiations

    International Nuclear Information System (INIS)

    2014-01-01

    Developments in standard applications and brand new nuclear technologies, with high impact on the future of the agriculture, medicine, industry and the environmental preservation. The Radiation Technology Center (CTR) mission is to apply the radiation and radioisotope technologies in Industry, Health, Agriculture, and Environmental Protection, expanding the scientific knowledge, improving human power resources, transferring technology, generating products and offering services for the Brazilian society. The CTR main R and D activities are in consonance with the IPEN Director Plan (2011-2013) and the Applications of Ionizing Radiation Program, with four subprograms: Irradiation of Food and Agricultural Products; Radiation and Radioisotopes Applications in Industry and Environment; Radioactive Sources and Radiation Applications in Human Health; and Radioactive Facilities and Equipment for the Applications of Nuclear Techniques

  19. On the Saha Ionization Equation

    Indian Academy of Sciences (India)

    On the Saha Ionization Equation. Sushanta Dattagupta. General Article Volume 23 Issue 1 January 2018 pp 41-55. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/023/01/0041-0055. Keywords. Ionization, astrophysics, spectroscopy, chemical reaction, transition state. Abstract.

  20. <strong>Neuroeconomics and behavioral health economicsstrong>/>

    DEFF Research Database (Denmark)

    Larsen, Torben

    2009-01-01

    - a key center in our emotional arousal (limbic system) - as shaped in the elder stone-age with many acute threats. II. In general, the Hawthorne-effect of human-relations management is explained as the result of supportive job-relations relaxing Amygdala for better emotional integration...... some are rooted in the religious tradition while other aim to be post-religious. Medical meditation across settings combines savings on health care costs with de-stressing benefits as reduced anxiety, less use of stimulants and a reduction of blood pressure which in all increase life...... is met by a meso-strategy aiming the formation of an international, multidisciplinary network which might organize regional workshops for representatives for all involved parties in order to prepare local implementation projects.   Regarding de-stressing by medical meditation a relatively fast...

  1. Titanium: light, strong, and white

    Science.gov (United States)

    Woodruff, Laurel; Bedinger, George

    2013-01-01

    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  2. Social trust and ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Meadd, E. [Faculty of Environmental Studies, York University, Toronto, Ontario (Canada)

    2002-07-01

    The linkages that exist between the environmental risks associated with nuclear energy production (both perceived and real) and the myriad of social and political issues and processes that influence social trust are a current issue in literature, but are not well explored, particularly for the Canadian context. This paper will examine one particular issue and its relationship with social trust: ionizing radiation and public health. Social trust is defined for this paper as including interpersonal trust, but having a much broader focus, extending to public trust in governments, institutions, corporations, and the power elite, and across whole societies. Of particular interest for the nuclear energy issue is how waning social trust may impact the functioning of democratic decision-making processes, particularly those associated with the siting of waste facilities. Social trust is a central issue in the management of environmental risks, particularly those related to high technology; its absence is seen as a major cause of intractable conflict in decisions related to nuclear power generation and waste disposal. Understanding the dynamics of social trust is important if a resolution is to be found to the nuclear waste management debate in Canada, that is, one that involves broad public, or social, support. For instance, what factors cause distrust to emerge, and when distrust emerges, what authorities do members of affected communities seek out for information and support? This paper begins to examine social trust in relation to human health and ionizing radiation, particularly low dose radiation from radioactive wastes resulting from uranium and radium processing activities in Port Hope, Ontario. These activities date back to the 1930s and are of great concern to community members. This paper looks at some of the roots of public concern, for example, scientific uncertainty around whether or not human health is compromised by exposure to low dose ionizing radiation

  3. Social trust and ionizing radiation

    International Nuclear Information System (INIS)

    Meadd, E.

    2002-01-01

    The linkages that exist between the environmental risks associated with nuclear energy production (both perceived and real) and the myriad of social and political issues and processes that influence social trust are a current issue in literature, but are not well explored, particularly for the Canadian context. This paper will examine one particular issue and its relationship with social trust: ionizing radiation and public health. Social trust is defined for this paper as including interpersonal trust, but having a much broader focus, extending to public trust in governments, institutions, corporations, and the power elite, and across whole societies. Of particular interest for the nuclear energy issue is how waning social trust may impact the functioning of democratic decision-making processes, particularly those associated with the siting of waste facilities. Social trust is a central issue in the management of environmental risks, particularly those related to high technology; its absence is seen as a major cause of intractable conflict in decisions related to nuclear power generation and waste disposal. Understanding the dynamics of social trust is important if a resolution is to be found to the nuclear waste management debate in Canada, that is, one that involves broad public, or social, support. For instance, what factors cause distrust to emerge, and when distrust emerges, what authorities do members of affected communities seek out for information and support? This paper begins to examine social trust in relation to human health and ionizing radiation, particularly low dose radiation from radioactive wastes resulting from uranium and radium processing activities in Port Hope, Ontario. These activities date back to the 1930s and are of great concern to community members. This paper looks at some of the roots of public concern, for example, scientific uncertainty around whether or not human health is compromised by exposure to low dose ionizing radiation

  4. Effects of Strong CYP3A Inhibition and Induction on the Pharmacokinetics of Ixazomib, an Oral Proteasome Inhibitor: Results of Drug-Drug Interaction Studies in Patients With Advanced Solid Tumors or Lymphoma and a Physiologically Based Pharmacokinetic Analysis.

    Science.gov (United States)

    Gupta, Neeraj; Hanley, Michael J; Venkatakrishnan, Karthik; Bessudo, Alberto; Rasco, Drew W; Sharma, Sunil; O'Neil, Bert H; Wang, Bingxia; Liu, Guohui; Ke, Alice; Patel, Chirag; Rowland Yeo, Karen; Xia, Cindy; Zhang, Xiaoquan; Esseltine, Dixie-Lee; Nemunaitis, John

    2018-02-01

    At clinically relevant ixazomib concentrations, in vitro studies demonstrated that no specific cytochrome P450 (CYP) enzyme predominantly contributes to ixazomib metabolism. However, at higher than clinical concentrations, ixazomib was metabolized by multiple CYP isoforms, with the estimated relative contribution being highest for CYP3A at 42%. This multiarm phase 1 study (Clinicaltrials.gov identifier: NCT01454076) investigated the effect of the strong CYP3A inhibitors ketoconazole and clarithromycin and the strong CYP3A inducer rifampin on the pharmacokinetics of ixazomib. Eighty-eight patients were enrolled across the 3 drug-drug interaction studies; the ixazomib toxicity profile was consistent with previous studies. Ketoconazole and clarithromycin had no clinically meaningful effects on the pharmacokinetics of ixazomib. The geometric least-squares mean area under the plasma concentration-time curve from 0 to 264 hours postdose ratio (90%CI) with vs without ketoconazole coadministration was 1.09 (0.91-1.31) and was 1.11 (0.86-1.43) with vs without clarithromycin coadministration. Reduced plasma exposures of ixazomib were observed following coadministration with rifampin. Ixazomib area under the plasma concentration-time curve from time 0 to the time of the last quantifiable concentration was reduced by 74% (geometric least-squares mean ratio of 0.26 [90%CI 0.18-0.37]), and maximum observed plasma concentration was reduced by 54% (geometric least-squares mean ratio of 0.46 [90%CI 0.29-0.73]) in the presence of rifampin. The clinical drug-drug interaction study results were reconciled well by a physiologically based pharmacokinetic model that incorporated a minor contribution of CYP3A to overall ixazomib clearance and quantitatively considered the strength of induction of CYP3A and intestinal P-glycoprotein by rifampin. On the basis of these study results, the ixazomib prescribing information recommends that patients should avoid concomitant administration of

  5. Kinematics of 3-body in Ionization Collision

    International Nuclear Information System (INIS)

    Della Picca, Renata

    2003-01-01

    In this thesis we study three body problems in the frame of the collision theory. First, we deal with the process of autoionization by ion impact where the line profile of the electron emitted is strongly affected by the post-collision interaction with the Coulomb field of the outgoing projectile.Here we analyze how these effects are modified when the projectile velocity is in the close vicinity of the resonant electron velocity.In this energy range, the analysis of the resonance contribution is hindered by the characteristic 'electron capture to the continuum' divergence in the direct term.Here we present a detailed theoretical study of the interplay between both contributions, based on a generalization of the Final-State Interaction model.Finally we propose a modified parameterization of the autoionization line shape in the vicinity of the ECC cusp.Secondly, we study the direct ionization of an atomic target by the impact of a charge projectile, through analysis of the quintuple differential cross section (QDCS) which gives the most complete information about a ionization collision.Its study, without any approximation on the mass ratios can unveil new, not previously observed, structures.In particular, in this work the ionization of Hydrogen molecules by the impact of positrons and muons was studied and a new structure that has not been identified until now was found. Its main characteristics and a possible explanation are presented

  6. Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields

    International Nuclear Information System (INIS)

    Markevitch, Alexei N.; Levis, Robert J.; Romanov, Dmitri A.; Smith, Stanley M.; Schlegel, H. Bernhard; Ivanov, Misha Yu.

    2004-01-01

    Electronic processes leading to dissociative ionization of polyatomic molecules in strong laser fields are investigated experimentally, theoretically, and numerically. Using time-of-flight ion mass spectroscopy, we study the dependence of fragmentation on laser intensity for a series of related molecules and report regular trends in this dependence on the size, symmetry, and electronic structure of a molecule. Based on these data, we develop a model of dissociative ionization of polyatomic molecules in intense laser fields. The model is built on three elements: (i) nonadiabatic population transfer from the ground electronic state to the excited-state manifold via a doorway (charge-transfer) transition; (ii) exponential enhancement of this transition by collective dynamic polarization of all electrons, and (iii) sequential energy deposition in both neutral molecules and resulting molecular ions. The sequential nonadiabatic excitation is accelerated by a counterintuitive increase of a large molecule's polarizability following its ionization. The generic theory of sequential nonadiabatic excitation forms a basis for quantitative description of various nonlinear processes in polyatomic molecules and ions in strong laser fields

  7. Impact ionization in GaAs: A screened exchange density-functional approach

    International Nuclear Information System (INIS)

    Picozzi, S.; Asahi, R.; Geller, C.B.; Continenza, A.; Freeman, A.J.

    2001-01-01

    Results are presented of a fully ab initio calculation of impact ionization rates in GaAs within the density functional theory framework, using a screened-exchange formalism and the highly precise all-electron full-potential linearized augmented plane wave method. The calculated impact ionization rates show a marked orientation dependence in k space, indicating the strong restrictions imposed by the conservation of energy and momentum. This anisotropy diminishes as the impacting electron energy increases. A Keldysh type fit performed on the energy-dependent rate shows a rather soft edge and a threshold energy greater than the direct band gap. The consistency with available Monte Carlo and empirical pseudopotential calculations shows the reliability of our approach and paves the way to ab initio calculations of pair production rates in new and more complex materials

  8. Endoergic chemi-ionization in N-O collisions

    International Nuclear Information System (INIS)

    Nielsen, S.E.; Dahler, J.S.

    1979-01-01

    A semiclassical theory of endoergic chemi-ionization is developed and applied to the ionizing events that occur when ground state oxygen atoms collide with nitrogen atoms in the ground and first excited states. The approach used is an adaptation and extension of earlier theories due to Bardsley, Nakamura, and Miller. The theory relates the experimental associative (AI) and Penning ionization (PI) cross sections to the following events: formation of a stable diatomic ion (AI), neutral and ionized atomic fragments (PI), or of a metastable diatomic rotational resonance (DI, delayed ionization). The heavy particle motions are treated classically in terms of adiabatic potential energy functions, while localized nonadiabatic transitions also are taken into account by using the Landau-Zener approximation. Finally, the theoretical predictions compare well with the results of Ringer and Gentry's (1978) merged beam experiments

  9. Ionization fronts in coupled MHD-gas simulations

    Science.gov (United States)

    Wilson, A. D.; Diver, D. A.

    2017-09-01

    Partially ionized plasmas are ubiquitous in both nature and the laboratory, and their behaviour is best described by models which take into account the interactions between the neutral and charged species. We present a new non-linear, 3-dimensional, finite difference Gas-MHD Interactions Code designed to solve simultaneously the time evolution of fluid equations of both species in the conservation form as well as collisional interactions between them via appropriate choices of source term; in particular, we present results from this code in simulating Alfvén ionization in a partially ionized plasma. In this fashion, larger changes in the ionization fraction than were addressable in the linear limit are possible. Alfvén ionization is shown to impart plasmas with an inherent resistance to rapid recombination, where the recombination itself is significant enough to drive relative motion between the ionised and neutral species at speeds in excess of the critical velocity.

  10. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    CERN Document Server

    Bergmann, Benedikt; Caicedo, Ivan; Kierstead, James; Takai, Helio; Frojdh, Erik

    2016-01-01

    In this study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated. The data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.

  11. Physiological benefits from low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Luckey, T.D.

    1982-01-01

    Extensive literature indicates that minute doses of ionizing radiation benefit animal growth and development, fecundity, health and longevity. Specific improvements appear in neurologic function, growth rate and survival of young, wound healing, immune competence, and resistance to infection, radiation morbidity, and tumor induction and growth. Decreased mortality from these debilitating factors results in increased average life span following exposure to minute doses of ionizing radiation. The above phenomena suggest the possibility that ionizing radiation may be essential for life. Limited data with protozoa suggest that reproduction rates decrease when they are maintained in subambient radiation environments. This may be interpreted to be a radiation deficiency. Evidence must now be obtained to determine whether or not ionizing radiation is essential for growth, development, nutrient utilization, fecundity, health and longevity of higher animals. Whether or not ionizing radiation is found to be essential for these physiologic functions, the evidence reviewed indicates that the optimal amount of this ubiquitous agent is imperceptibly above ambient levels. (author)

  12. Laser ablation/ionization studies in a glow discharge

    International Nuclear Information System (INIS)

    Hess, K.R.; Harrison, W.W.

    1985-01-01

    The pin cathode glow discharge is used in the laboratory as an atomization/ionization source for a variety of applications, including solids mass spectrometry. Coupled with a tunable dye laser, the glow discharge may also serve as an atom reservoir for resonance ionization mass spectrometry in which the laser ionizes the discharge sputtered atoms. By tightly focusing the laser onto solid samples, various ablation effects may also be investigated. The laser may be used to generate an ionized plasma which may be directly analyzed by mass spectrometry. Alternatively, the ablated neutral atoms may be used in post-ablation excitation/ionization processes, in this case the glow discharge. The results of these investigations are the basis of this paper

  13. Strongly Correlated Topological Insulators

    Science.gov (United States)

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  14. Is ionizing radiation regulated more stringently than chemical carcinogens

    International Nuclear Information System (INIS)

    Travis, C.C.; Pack, S.R.; Hattemer-Frey, H.A.

    1989-01-01

    It is widely believed that United States government agencies regulate exposure to ionizing radiation more stringently than exposure to chemical carcinogens. It is difficult to verify this perception, however, because chemical carcinogens and ionizing radiation are regulated using vastly different strategies. Chemical carcinogens are generally regulated individually. Regulators consider the risk of exposure to one chemical rather than the cumulative radiation exposure from all sources. Moreover, standards for chemical carcinogens are generally set in terms of quantities released or resultant environmental concentrations, while standards for ionizing radiation are set in terms of dose to the human body. Since chemicals and ionizing radiation cannot be compared on the basis of equal dose to the exposed individual, standards regulating chemicals and ionizing radiation cannot be compared directly. It is feasible, however, to compare the two sets of standards on the basis of equal risk to the exposed individual, assuming that standards for chemicals and ionizing radiation are equivalent if estimated risk levels are equitable. This paper compares risk levels associated with current standards for ionizing radiation and chemical carcinogens. The authors do not attempt to determine whether either type of risk is regulated too stringently or not stringently enough but endeavor only to ascertain if ionizing radiation is actually regulated more strictly than chemical carcinogens

  15. Bystander Effects of Ionizing Radiation

    International Nuclear Information System (INIS)

    Little, John B.

    2017-01-01

    The objectives of this grant renewal are to provide administrative support and travel funds to allow the continued participation of the principal investigator (Dr. John B. Little) as an advisor to research initiated by several research fellows from his laboratory. The actual research will be carried out under the direction of Dr. Hatsumi Nagasawa with the collaboration of Dr. Joel Bedford at the Colorado State University, and by Drs. Edouard Azzam and Sonia de Toledo at the University of Medicine and Dentistry of New Jersey. Dr. Little will advise on the planning of experiments and development of experimental protocols, the analysis of data, and the preparation of manuscripts for publication. The Specific Aims for several of the planned experiments include: 1) to extend studies of the role of recombinational repair in the bystander effect by examining other genes in this pathway and cell lines deficient in excision repair; 2) to continue studies to determine the nature of the damage signal transmitted to bystander cells including the expression of several connexins in the bystander response, and the extent to which the enhanced oxidative metabolism observed in bystander cells may relate to the nature of the transmitted bystander signal; 3) to utilize a genome-wide approach to examine the genetic basis for the hypersensitivity to ionization we have observed in unaffected parents of patients with hereditary retinoblastoma, as well as from a group of apparently normal individuals that show similar radiosensitivity; 4) to complete studies concerning the induction of high frequencies of cells with massive chromosome damage in clonal derivatives of p53 and p21 knockout mouse cell lines; in particular to examine the role of telomere changes in this phenomenon. Overall, the results of these studies should enhance our understanding of the risk of low-dose exposures to ionizing radiation, including human populations to residential radon as well as occupational exposures.

  16. Bystander Effects of Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Little, John B. [Harvard T.H. Chan School of Public Health, Boston, MA (United States). Dept. of Genetics and Complex Diseases

    2017-01-17

    The objectives of this grant renewal are to provide administrative support and travel funds to allow the continued participation of the principal investigator (Dr. John B. Little) as an advisor to research initiated by several research fellows from his laboratory. The actual research will be carried out under the direction of Dr. Hatsumi Nagasawa with the collaboration of Dr. Joel Bedford at the Colorado State University, and by Drs. Edouard Azzam and Sonia de Toledo at the University of Medicine and Dentistry of New Jersey. Dr. Little will advise on the planning of experiments and development of experimental protocols, the analysis of data, and the preparation of manuscripts for publication. The Specific Aims for several of the planned experiments include: 1) to extend studies of the role of recombinational repair in the bystander effect by examining other genes in this pathway and cell lines deficient in excision repair; 2) to continue studies to determine the nature of the damage signal transmitted to bystander cells including the expression of several connexins in the bystander response, and the extent to which the enhanced oxidative metabolism observed in bystander cells may relate to the nature of the transmitted bystander signal; 3) to utilize a genome-wide approach to examine the genetic basis for the hypersensitivity to ionization we have observed in unaffected parents of patients with hereditary retinoblastoma, as well as from a group of apparently normal individuals that show similar radiosensitivity; 4) to complete studies concerning the induction of high frequencies of cells with massive chromosome damage in clonal derivatives of p53 and p21 knockout mouse cell lines; in particular to examine the role of telomere changes in this phenomenon. Overall, the results of these studies should enhance our understanding of the risk of low-dose exposures to ionizing radiation, including human populations to residential radon as well as occupational exposures.

  17. Orientation and impact-parameter dependence of dissociative ionization of H{sub 2} by slow ion impact

    Energy Technology Data Exchange (ETDEWEB)

    Afaneh, F [Physics Department, Hashemite University, PO Box 150459, Zarqa 13115 (Jordan); Schmidt, L Ph H [Institut fuer Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany); Schoeffler, M [Institut fuer Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany); Stiebing, K E [Institut fuer Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Al-Jundi, J [Physics Department, Hashemite University, PO Box 150459, Zarqa 13115 (Jordan); Schmidt-Boecking, H [Institut fuer Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany); Doerner, R [Institut fuer Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany)

    2007-09-14

    We have used the cold target recoil ion momentum spectroscopy imaging technique to investigate dissociative ionization of H{sub 2} by 25 keV proton impact. A kinematically complete picture of the dissociative ionization dynamics for slow proton collision has been obtained. The results show a strong impact-parameter dependence of the fragmentation process of H{sub 2}. This clearly emerged in the energy distributions of the H{sup +} ions generated for different impact parameters. At large impact parameters the H{sup +} ions equally share the energy liberated in the collision whereas at small impact parameters, the energy sharing is quite asymmetric. We also observed a strong dependence of the electron emission on molecular alignment. The momentum distribution of the emitted electron generated for a fixed-in-space H{sub 2} molecule displays that the electrons are more likely to be emitted perpendicular to the molecular axis.

  18. The high intensity approximation applied to multiphoton ionization

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1980-08-01

    It is shown that the most commonly used high intensity approximations as applied to ionization by strong electromagnetic fields are related. The applicability of the steepest descent method in these approximations, and the relation between them and first-order perturbation theory, are also discussed. (Author) [pt

  19. (KNa)Br phosphor for ionizing radiation dosimetry

    Indian Academy of Sciences (India)

    Lyoluminescence; γ-ray dose; radiation dosimetry; phosphor; (KNa)Br. 1. Introduction. The measurement of radiation dose has become a science of ever increasing importance due to the estimation of risk and benefits inherent to the uses and to the exposure of ionizing radiation. When strongly energized, crystals are ...

  20. Detoxification of snake venom using ionizing radiation

    International Nuclear Information System (INIS)

    Rogero, J.R.; Nascimento, N.

    1995-01-01

    It is generally recognized that energy absorbed by ionizing radiation (gamma rays) can inactivate biological material in tow ways. A direct effects occurs when the primary event, i.e., ionization, is produced in the molecule itself. This is the case when a compound is irradiated in dry state. When a compound is irradiated in a solution, the indirect effect joins the direct. Since water is the most abundant constituent of biological material, it is important to consider the species produced by excitation and ionization of water itself, and the reaction of these species with the target molecules of biological importance. This indirect effect results from the reactions among the studied molecules and the products of radiation interaction with water or other solvents. Highly reactive compounds, the so-called free radicals, which are formed many reactions among themselves, with the dissolved gas, and with other molecules in the solution. With water, the excitation is less important than ionization which is followed within picosecond by the formation of free hydroxyl radicals and hydrated electrons. Alexander and Hamilton showed that irradiation of proteins has revealed damage to aminoacid side chains, production of new groups, splitting of peptide bonds and formation of intramolecular and intermolecular cross-links. With these results it would be possible to use ionizing radiation to change those proteins molecules in order to improve some of their properties according to the necessity. On the other hand, it is recognized that venoms in general are poorly immunogenic, yet fairly toxic. This cause problems because serotherapy is the treatment of choice in snakebite envenomations, and horse antivenom availability is dependent upon. (author)

  1. <strong>PRAYER INDUCED ANALGESIAstrong>

    DEFF Research Database (Denmark)

    Jegindø, Else-Marie Elmholdt

    moderators (personality, absorption and coping) and mediators (expectations, desire for pain relief and anxiety) were included in the study design in order to explore the influence of psychological mechanisms involved in the potential analgesic effect of prayer as a coping strategy. RESULTS: TBA (it...

  2. Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization

    Science.gov (United States)

    Lu, I.-Chung; Lee, Chuping; Lee, Yuan-Tseh; Ni, Chi-Kung

    2015-07-01

    In past studies, mistakes in determining the ionization mechanism in matrix-assisted laser desorption/ionization (MALDI) were made because an inappropriate ion-to-neutral ratio was used. The ion-to-neutral ratio of the analyte differs substantially from that of the matrix in MALDI. However, these ratios were not carefully distinguished in previous studies. We begin by describing the properties of ion-to-neutral ratios and reviews early experimental measurements. A discussion of the errors committed in previous theoretical studies and a comparison of recent experimental measurements follow. We then describe a thermal proton transfer model and demonstrate how the model appropriately describes ion-to-neutral ratios and the total ion intensity. Arguments raised to challenge thermal ionization are then discussed. We demonstrate how none of the arguments are valid before concluding that thermal proton transfer must play a crucial role in the ionization process of MALDI.

  3. Doubly excited helium. From strong correlation to chaos

    International Nuclear Information System (INIS)

    Jiang, Yuhai

    2006-03-01

    In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I 15 , and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I 5 to I 9 and I 7 , respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I 4 were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I 4 by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)

  4. Doubly excited helium. From strong correlation to chaos

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yuhai

    2006-03-15

    In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I{sub 15}, and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I{sub 5} to I{sub 9} and I{sub 7}, respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I{sub 4} were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I{sub 4} by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)

  5. Pulsed helium ionization detection system

    Science.gov (United States)

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  6. Charge correlation effects on ionization of weak polyelectrolytes

    International Nuclear Information System (INIS)

    Panagiotopoulos, A Z

    2009-01-01

    Ionization curves of weak polyelectrolytes were obtained as a function of the charge coupling strength from Monte Carlo simulations. In contrast to many earlier studies, the present work treats counterions explicitly, thus allowing the investigation of charge correlation effects at strong couplings. For conditions representing typical weak polyelectrolytes in water near room temperature, ionization is suppressed because of interactions between nearby dissociated groups, as also seen in prior work. A novel finding here is that, for stronger couplings, relevant for non-aqueous environments in the absence of added salt, the opposite behavior is observed-ionization is enhanced relative to the behavior of the isolated groups due to ion-counterion correlation effects. The fraction of dissociated groups as a function of position along the chain also behaves non-monotonically. Dissociation is highest near the ends of the chains for aqueous polyelectrolytes and highest at the chain middle segments for non-aqueous environments. At intermediate coupling strengths, dissociable groups appear to behave in a nearly ideal fashion, even though chain dimensions still show strong expansion effects due to ionization. These findings provide physical insights on the impact of competition between acid/base chemical equilibrium and electrostatic attractions in ionizable systems.

  7. Strong Arcwise Connectedness

    OpenAIRE

    Espinoza, Benjamin; Gartside, Paul; Kovan-Bakan, Merve; Mamatelashvili, Ana

    2012-01-01

    A space is `n-strong arc connected' (n-sac) if for any n points in the space there is an arc in the space visiting them in order. A space is omega-strong arc connected (omega-sac) if it is n-sac for all n. We study these properties in finite graphs, regular continua, and rational continua. There are no 4-sac graphs, but there are 3-sac graphs and graphs which are 2-sac but not 3-sac. For every n there is an n-sac regular continuum, but no regular continuum is omega-sac. There is an omega-sac ...

  8. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally......'s scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims....

  9. Ionization of amphiphilic acidic block copolymers.

    Science.gov (United States)

    Colombani, Olivier; Lejeune, Elise; Charbonneau, Céline; Chassenieux, Christophe; Nicolai, Taco

    2012-06-28

    The ionization behavior of an amphiphilic diblock copolymer poly(n-butyl acrylate(50%)-stat-acrylic acid(50%))(100)-block-poly(acrylic acid)(100) (P(nBA(50%)-stat-AA(50%))(100)-b-PAA(100), DH50) and of its equivalent triblock copolymer P(nBA(50%)-stat-AA(50%))(100)-b-PAA(200)-b-P(nBA(50%)-stat-AA(50%))(100) (TH50) were studied by potentiometric titration either in pure water or in 0.5 M NaCl. These polymers consist of a hydrophilic acidic block (PAA) connected to a hydrophobic block, P(nBA(50%)-stat-AA(50%))(100), whose hydrophobic character has been mitigated by copolymerization with hydrophilic units. We show that all AA units, even those in the hydrophobic block could be ionized. However, the AA units within the hydrophobic block were less acidic than those in the hydrophilic block, resulting in the preferential ionization of the latter block. The preferential ionization of PAA over that of P(nBA(50%)-stat-AA(50%))(100) was stronger at higher ionic strength. Remarkably, the covalent bonds between the PAA and P(nBA(50%)-stat-AA(50%))(100) blocks in the diblock or the triblock did not affect the ionization of each block, although the self-association of the block copolymers into spherical aggregates modified the environment of the PAA blocks compared to when PAA was molecularly dispersed.

  10. The role of multiple ionization and subshell coupling effects in L-shell ionization of Au by oxygen ions

    International Nuclear Information System (INIS)

    Banas, D.; Braziewicz, J.; Pajek, M.; Semaniak, J.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Kretschmer, W.; Mukoyama, T.; Trautmann, D.

    2002-01-01

    The ionization of L-subshell electrons in gold by the impact of 0.4-2.2 MeV amu -1 O ions was studied by observing excited Lγ(L-N, O) x-rays. We demonstrate that both the multiple ionization in outer M- and N-shells as well as the coupling effects in the L-shell play an important role in understanding the measured L-subshell ionization cross sections. The multiple ionization was found to be important in two aspects: first, the analysis of x-ray energy shifts and line broadening was crucial for proper interpretation of measured x-ray spectra; second, the additional vacancies in the M- and N-shells substantially influenced the L 1 -subshell fluorescence and Coster-Kronig (CK) yields, mainly by closing strong L 1 -L 3 M 4,5 CK transitions. The data are compared with the simplified coupled-channels calculations using the 'coupled-subshell model' (CSM) based on the semiclassical approximation (SCA), which describes both direct Coulomb ionization as well as the L-subshell couplings within the same theoretical approach. A good agreement of the present data with the theoretical predictions based on the discussed SCA-CSM approach is observed. Present findings partly explain the long-standing problem of inadequate theoretical description of L-shell ionization by heavy ion impact. (author)

  11. Role of high-order dispersion on strong-field laser-molecule interactions

    Science.gov (United States)

    Dantus, Marcos; Nairat, Muath

    2016-05-01

    Strong-field (1012- 1016 W/ cm2) laser-matter interactions are characterized by the extent of fragmentation and charge of the resulting ions as a function of peak intensity and pulse duration. Interactions are influenced by high-order dispersion, which is difficult to characterize and compress. Fourth-order dispersion (FOD) causes a time-symmetric pedestal, while third-order dispersion (TOD) causes a leading (negative) or following (positive) pedestal. Here, we report on strong-field interactions with pentane and toluene molecules, tracking the molecular ion and the doubly charged carbon ion C2+ yields as a function of TOD and FOD for otherwise transform-limited (TL) 35fs pulses. We find TL pulses enhance molecular ion yield and suppress C2+ yield, while FOD reverses this trend. Interestingly, the leading pedestal in negative TOD enhances C2+ yield compared to positive TOD. Pulse pedestals are of particular importance in strong-field science because target ionization or alignment can be induced well before the main pulse arrives. A pedestal following an intense laser pulse can cause sequential ionization or accelerate electrons causing cascaded ionization. Control of high-order dispersion allows us to provide strong-field measurements that can help address the mechanisms responsible for different product ions in the presence and absence of pedestals. Financial support of this work comes from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, DOE SISGR (DE-SC0002325)

  12. Design, construction and characterization of special ionization chambers for X radiation beams monitoring

    International Nuclear Information System (INIS)

    Yoshizumi, Maira Tiemi

    2010-01-01

    X radiation equipment may show fluctuations in the radiation beam intensity, as they are connected to the power net. These intensity variations can, in turn, modify the air kerma rate produced by this radiation beam. In a calibration laboratory, where radiation detectors (from clinics and hospital services) are calibrated, variations in the radiation beam intensity may cause an error in the absorbed dose determination. The monitor ionization chambers are used to verify the radiation beam intensity constancy, and to provide a correction for possible fluctuations. In this work, monitor ionization chambers for X radiation beams were designed, assembled and characterized. The developed ionization chambers have an innovative design, ring-shaped, with aluminium or graphite electrodes. These ring-shaped ionization chambers have the advantage of not interfering in the direct radiation beams. A double-volume ionization chamber with graphite electrodes was also developed. This ionization chamber is similar to the commercial monitor ionization chamber used in the Calibration Laboratory of the Instituto de Pesquisas Energeticas e Nucleares. All developed ionization chambers were tested in several standardized radiation beams and their performances were compared with those of commercial ionization chambers. The results show that two of the four ionization chambers developed showed performance comparable to that of the commercial ionization chambers tested. Besides presenting good results, the ionization chambers were designed and manufactured using low cost materials, which are easily found on the Brazilian market. (author)

  13. Determination of the first ionization potential of actinides by resonance ionization mass spectroscopy

    International Nuclear Information System (INIS)

    Koehler, S.; Albus, F.; Dibenberger, R.; Erdmann, N.; Funk, H.; Hasse, H.; Herrmann, G.; Huber, G.; Kluge, H.; Nunnemann, M.; Passler, G.; Rao, P.M.; Riegel, J.; Trautmann, N.; Urban, F.

    1995-01-01

    Resonance ionization mass spectroscopy (RIMS) is used for the precise determination of the first ionization potential of transuranium elements. The first ionization potentials (IP) of americium and curium have been measured for the first time to IP Am =5.9738(2) and IP Cm =5.9913(8) eV, respectively, using only 10 12 atoms of 243 Am and 248 Cm. The same technique was applied to thorium, neptunium, and plutonium yielding IP T H =6.3067(2), IP N P =6.2655(2), and IP Pu =6.0257(8) eV. The good agreement of our results with the literature data proves the precision of the method which was additionally confirmed by the analysis of Rydberg seris of americium measured by RIMS. copyright American Institute of Physics 1995

  14. Comparison between radiological protection against ionizing radiation and non-ionizing radiation

    International Nuclear Information System (INIS)

    Jammet, H.P.

    1988-01-01

    The comparison of doctrines concerning protection against ionizing and non-ionizing radiation is a difficult task, because of the many areas in which it is applied. Radiological pollution has grown during the century, but its evolution has not been concomitant. This has resulted in a distortion that can be identified in the successive steps of the evaluation and protection against such radiation. For a better understanding, this discussion deals with the differences in interaction with matter and the induction of the related risks, on the varieties of protection systems and monitoring procedures

  15. Modeling of Plutonium Ionization Probabilities for Use in Nuclear Forensic Analysis by Resonance Ionization Mass Spectrometry

    Science.gov (United States)

    2016-12-01

    and identifying sources of smuggled nuclear material; however, it may also be used to determine a material’s origin in analysis of post detonation...RIMS analysis . Within this equation from [10], the desired cross section for ionization is contained. 21 U ion A ex N e N σ ω −  = −     18... analysis : 21 U ion A ex N e N σ ω −  = −     After the curve fitting was complete, the ionization probability model was executed and the results

  16. Oxygen ionization rates at Mars and Venus - Relative contributions of impact ionization and charge exchange

    Science.gov (United States)

    Zhang, M. H. G.; Luhmann, J. G.; Nagy, A. F.; Spreiter, J. R.; Stahara, S. S.

    1993-01-01

    Oxygen ion production rates above the ionopauses of Venus and Mars are calculated for photoionization, charge exchange, and solar wind electron impact ionization processes. The latter two require the use of the Spreiter and Stahara (1980) gas dynamic model to estimate magnetosheath velocities, densities, and temperatures. The results indicate that impact ionization is the dominant mechanism for the production of O(+) ions at both Venus and Mars. This finding might explain both the high ion escape rates measured by Phobos 2 and the greater mass loading rate inferred for Venus from the bow shock positions.

  17. Resonance Ionization Laser Ion Sources

    CERN Document Server

    Marsh, B

    2013-01-01

    The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

  18. Physics of partially ionized plasmas

    CERN Document Server

    Krishan, Vinod

    2016-01-01

    Plasma is one of the four fundamental states of matter; the other three being solid, liquid and gas. Several components, such as molecular clouds, diffuse interstellar gas, the solar atmosphere, the Earth's ionosphere and laboratory plasmas, including fusion plasmas, constitute the partially ionized plasmas. This book discusses different aspects of partially ionized plasmas including multi-fluid description, equilibrium and types of waves. The discussion goes on to cover the reionization phase of the universe, along with a brief description of high discharge plasmas, tokomak plasmas and laser plasmas. Various elastic and inelastic collisions amongst the three particle species are also presented. In addition, the author demonstrates the novelty of partially ionized plasmas using many examples; for instance, in partially ionized plasma the magnetic induction is subjected to the ambipolar diffusion and the Hall effect, as well as the usual resistive dissipation. Also included is an observation of kinematic dynam...

  19. Response of streamer tubes to higly ionizing particles

    International Nuclear Information System (INIS)

    Battistoni, G.; Bloise, C.; Liberatori, L.; Satta, L.

    1987-01-01

    The charge response of streamer tubes has been measured as a function of ionization power by exposure to relativistic ions. The results are discussed in view of the use of streamer tubes in the search for magnetic monopoles

  20. The primary processes by impact of ionizing radiations with water

    International Nuclear Information System (INIS)

    Znamirovschi, V.; Mastan, I.; Cozar, O.

    1976-01-01

    The problem concerning primary processes in radiolysis of water is discussed. The results on the excitation and ionization of water molecule, dissociation of the parent-molecular ion of water and dissociation of excited molecule of water are presented. (author)

  1. Effects of buffer ionization in protein transition volumes.

    Science.gov (United States)

    Lee, Soyoung; Heerklotz, Heiko; Chalikian, Tigran V

    2010-05-01

    Protein denaturation events are generally associated with a change in the state of ionization of abnormally titrating groups and, therefore, are coupled with changes in buffer ionization/neutralization equilibria. Consequently, buffer ionization should influence the measured change in volume accompanying protein denaturation. Changes in volume accompanying protein denaturation reflect the differential packing and hydration of polypeptide chains in their native and denatured conformations while also describing the pressure stability of proteins. A characteristic feature of conformational transitions of globular proteins is a near zero change in volume that is comparable in magnitude with the volume of ionization of biologically relevant buffers. Thus, the impact of buffer ionization on the volume of protein denaturation could be very significant with the potential to affect not only its magnitude but also its sign. To investigate this point quantitatively, we performed pressure perturbation calorimetric (PPC) studies of lysozyme and ribonuclease A at pH 3.0 in four buffers differing in their ionization volumes. Our results identify buffer ionization as an important determinant of protein transition volume that needs to be carefully taken into account. We emphasize that the importance of our results is not limited to PPC measurements but is more general and applies to all volumetric investigations, in particular, extending to the derivation of the pressure-temperature phase diagram of protein stability.

  2. Exposure to non ionizing radiations

    International Nuclear Information System (INIS)

    Campanella, L.; Dragone, R.; Pastorelli, A.

    2001-01-01

    In the last years the exposure levels to electric, magnetic and electromagnetic fields of workers and citizens have dramatically increased due to the technological development as in the exemplar case of cellular phones. The object of this research concerns the biological evaluation of the risk from exposure to non ionizing radiations (NIR) by an opportunely designed biosensor based on immobilized Saccharomyces cerevisiae cells and by an amperometric transducer (Clark oxygen electrode). The results have been obtained by comparing the respiratory activities of exposed and not exposed yeast cells to NIR (at 900 MHz, frequency of the first generation cellular phones). The measurements have been performed by irradiation of the cells in a G-TEM chamber. The obtained results clearly show a decrease of the respiration activity of the irradiation cells in comparison with blank. This variation results to be proportional to the exposure time. Concerning reversibility of the damage it seems that the recovery of the initial conditions begins after 4 hours since the end of exposition and is complete within the following 48 hrs [it

  3. CERI: Ionizing Radiation Calibration Centre

    International Nuclear Information System (INIS)

    Bouteiller, E.

    1979-01-01

    The CERI has been granted by the National Bureau of Metrology (BNM) as an Ionizing Radiation Calibration Centre and as an Estimation and Qualification Centre for the ionizing radiation measurement devices. This article gives some information on the scope covered by the BNM's grant and on the various equipment on which the laboratory relies. It describes the calibration and estimation activities and mentions many kinds of services which are offered to the users mainly in the medical and industrial fields [fr

  4. Ionizing radiation and cancer prevention.

    OpenAIRE

    Hoel, D G

    1995-01-01

    Ionizing radiation long has been recognized as a cause of cancer. Among environmental cancer risks, radiation is unique in the variety of organs and tissues that it can affect. Numerous epidemiological studies with good dosimetry provide the basis for cancer risk estimation, including quantitative information derived from observed dose-response relationships. The amount of cancer attributable to ionizing radiation is difficult to estimate, but numbers such as 1 to 3% have been suggested. Some...

  5. Electronic transport in partially ionized water plasmas

    Science.gov (United States)

    French, Martin; Redmer, Ronald

    2017-09-01

    We use ab initio simulations based on density functional theory to calculate the electrical and thermal conductivities of electrons in partially ionized water plasmas at densities above 0.1 g/cm3. The resulting conductivity data are then fitted to analytic expressions for convenient application. For low densities, we develop a simple and fully analytic model for electronic transport in low-density plasmas in the chemical picture using the relaxation-time approximation. In doing so, we derive a useful analytic expression for electronic transport cross sections with neutral particles, based on a model potential. In the regime of thermal ionization, electrical conductivities from the analytic model agree with the ab initio data within a factor of 2. Larger deviations are observed for the thermal conductivity, and their origin is discussed. Our results are relevant for modeling the interior and evolution of water-rich planets as well as for technical plasma applications.

  6. Near-Threshold Ionization of Argon by Positron Impact

    Science.gov (United States)

    Babij, T. J.; Machacek, J. R.; Murtagh, D. J.; Buckman, S. J.; Sullivan, J. P.

    2018-03-01

    The direct single-ionization cross section for Ar by positron impact has been measured in the region above the first ionization threshold. These measurements are compared to semiclassical calculations which give rise to a power law variation of the cross section in the threshold region. The experimental results appear to be in disagreement with extensions to the Wannier theory applied to positron impact ionization, with a smaller exponent than that calculated by most previous works. In fact, in this work, we see no difference in threshold behavior between the positron and electron cases. Possible reasons for this discrepancy are discussed.

  7. Ionization and scintillation of nuclear recoils in gaseous xenon

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J., E-mail: jrenner@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Gehman, V.M.; Goldschmidt, A.; Matis, H.S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C.A.B.; Shuman, D. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Álvarez, V. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Borges, F.I.G. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Cárcel, S. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Castel, J.; Cebrián, S. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Cervera, A. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Conde, C.A.N. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); and others

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  8. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  9. Control and dynamics of attosecond electron wave packets in strong laser fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier; Lopez-Martens, R.; Valentin, C.; Balcou, P.; Kazamias, S.; Mauritsson, J.; Gaarde, M.B.; Schafer, K.J.; Mairess, Y.; Wabnitz, H.; Boutu, W.; Salieres, P.

    2005-01-01

    of 160 as duration. In the second experiment, we use these pulses to create electron wave packets of duration 180 as in argon and study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. At the zero crossings of the laser field, a significant energy (∼ 20 eV) is transferred from the IR field to the electrons resulting in dramatically enhanced above-threshold-ionization in conditions where the IR field alone does not induce any significant ionization of the medium. Further, by increasing the pulse length of the individual attosecond pulses, using a different thickness of the aluminum filter, a clear effect is seen in the delay-dependence of the photoelectron spectrum. In conclusion, the manipulations of the XUV amplitudes and phases that we have performed are the first step towards the production of arbitrary attosecond waveforms, which will facilitate broadband coherent control in the XUV range. Using these pulses as the injection mechanism of electron wave packets through ionization, we have studied the interaction between the EWPs and a strong IR field. With the pulse parameters used, the ionization is dominated by the APT, and tunable ATI plateaus appear as an effect of the dressing field. The strong delay dependence seen for these ATI spectra, is a direct consequence of the temporal localization of the EWPs to a time range much shorter than the period of the IR field. Because both the energy and duration of the EWPs can be varied independent of the IR laser, they should be very useful for the study and control of strong field processes. Refs. 2 (author)

  10. Extremely-high vacuum pressure measurement by laser ionization

    International Nuclear Information System (INIS)

    Kokubun, Kiyohide

    1991-01-01

    Laser ionization method has the very high sensitivity for detecting atoms and molecules. Hurst et al. successfully detected a single Cs atom by means of resonance ionization spectroscopy developed by them. Noting this high sensitivity, the authors have attempted to apply the laser ionization method to measure gas pressure, particularly in the range down to extremely high vacuum. At present, hot cathode ionization gauges are used for measuring gas pressure down to ultrahigh vacuum, however, those have a number of disadvantages. The pressure measurement using lasers does not have such disadvantages. The pressure measurement utilizing the laser ionization method is based on the principle that when laser beam is focused through a lens, the amount of atom or molecule ions generated in the focused space region is proportional to gas pressure. In this paper, the experimental results are presented on the nonresonant multiphoton ionization characteristics of various kinds of gases, the ion detection system with high sensitivity and an extremely high vacuum system prepared for the laser ionization experiment. (K.I.)

  11. Dissociative Ionization of Argon Dimer by Intense Femtosecond Laser Pulses.

    Science.gov (United States)

    Cheng, Qian; Xie, Xiguo; Yuan, Zongqiang; Zhong, Xunqi; Liu, Yunquan; Gong, Qihuang; Wu, Chengyin

    2017-05-25

    We experimentally and theoretically studied dissociative ionization of argon dimer driven by intense femtosecond laser pulses. In the experiment, we measured the ion yield and the angular distribution of fragmental ions generated from the dissociative ionization channels of (1,1) (Ar 2 2+ → Ar + + Ar + ) and (2,1) (Ar 2 3+ → Ar 2+ + Ar + ) using a cold target recoil ion momentum spectroscopy. The channel ratio of (2,1)/(1,1) is 4.5-7.5 times of the yield ratio of double ionization to single ionization of argon monomer depending on the laser intensity. The measurement verified that the ionization of Ar + is greatly enhanced if there exists a neighboring Ar + separated by a critical distance. In addition, the fragmental ions exhibit an anisotropic angular distribution with the peak along the laser polarization direction and the full width at half maximum becomes broader with increasing laser intensity. Using a full three-dimensional classical ensemble model, we calculated the angle-dependent multiple ionization probability of argon dimer in intense laser fields. The results show that the experimentally observed anisotropic angular distribution of fragmental ions can be attributed to the angle-dependent enhanced ionization of the argon dimer in intense laser fields.

  12. Health consequences of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Dalci, D.; Dorter, G.; Guclu, I.

    2004-01-01

    The increasing use of ionizing radiations all over the world induces an ever increasing interest of the professionals as well as of the whole society in health protection and the risk due to these practices. Shortly after its discovery, it was recognized that ionizing radiation can have adverse health effects and knowledge of its detrimental effects has accumulated. The fact that ionizing radiation produces biological damage has been known for many years. The biological effects of ionizing radiation for radiation protection considerations are grouped into two categories: The deterministic and the stochastic ones. Deterministic radiation effects can be clinically diagnosed in the exposed individual and occur when above a certain 'threshold' an appropriately high dose is absorbed in the tissues and organs to cause the death of a large number of cells and consequently to impair tissue or organ functions early after exposure. A clinically observable biological effect (Acute Radiation Syndromes, ARS) that occurs days to months after an acute radiation dose. ARS is a complex of acute injury manifestations that occur after a sufficiently large portion of a person's body is exposed to a high dose of ionizing radiation. Such irradiation initially injures all organs to some extent, but the timing and extent of the injury manifestations depend upon the type, rate, and dose of radiation received. Stochastic radiation effects are the chronic effects of radiation result from relatively low exposure levels delivered over long periods of time. These are sort of effects that might result from occupational exposure, or to the background exposure levels (includes radioactive pollution). Such late effects might be the development of malignant (cancerous) disease and of the hereditary consequences. These effects may be observed many years after the radiation exposure. There is a latent period between the initial radiation exposure and the development of the biological effect. In this

  13. Numerical solutions of differential equations of an ionization chamber: plane-parallel and spherical geometry

    International Nuclear Information System (INIS)

    Novkovic, D.; Tomasevic, M.; Subotic, K.

    1998-01-01

    A system of reduced differential equations generally valid for plane-parallel, cylindrical and spherical ionization chambers, which is appropriate for numerical solution, has been derived. The system has been solved numerically for plane-parallel and spherical ionization chambers filled with air. The comparison of the calculated results of Armstrong and Tate, for plane-parallel ionization chambers, and Sprinkle and Tate, for spherical ionization chambers, with the present calculations has shown a good agreement. The calculated values for ionization chambers filled with CO 2 were also in good agreement with the experimental data of Moriuchi et al. (author)

  14. Ionization of Gas-Phase Polycyclic Aromatic Hydrocarbons in Electrospray Ionization Coupled with Gas Chromatography.

    Science.gov (United States)

    Cha, Eunju; Jeong, Eun Sook; Han, Sang Beom; Cha, Sangwon; Son, Junghyun; Kim, Sunghwan; Oh, Han Bin; Lee, Jaeick

    2018-03-20

    Herein, gas-phase polycyclic aromatic hydrocarbons (PAHs) as nonpolar compounds were ionized to protonated molecular ions [M + H] + without radical cations and simultaneously analyzed using gas chromatography (GC)/electrospray ionization (ESI)-tandem mass spectrometry (MS/MS). The ionization profile, dissociation, and sensitivity were first investigated to understand the significant behavior of gas-phase PAHs under ESI. The formation of protonated molecular ions of PAHs was distinguished according to the analyte phase and ESI spray solvents. The protonated PAHs exhibited characteristic dissociations, such as H-loss, H 2 -loss, and acetylene-loss, via competition of internal energy. In addition, GC/ESI-MS/MS resulted in relatively lower concentration levels (better sensitivity) for the limits-of-detection (LODs) of PAHs than liquid chromatography (LC)/ESI-MS/MS, and it seems to result from the characteristic ionization mechanism of the gas-phase analyte under ESI. Furthermore, the LODs of gas-phase PAHs depended on molecular weight and proton affinity (PA). Consequently, we demonstrated the relationship among the analyte phases, sensitivities, and structural characteristics (molecular weight and PA) under ESI. The gas-phase PAHs provided enhanced protonation efficiency and sensitivity using GC/ESI-MS/MS, as their molecular weight and PA increased. Based on these results, we offered important information regarding the behavior of gas-phase analytes under ESI. Therefore, the present GC/ESI-MS/MS method has potential as an alternative method for simultaneous analysis of PAHs.

  15. Resonance ionization scheme development for europium

    CERN Document Server

    Chrysalidis, K; Fedosseev, V N; Marsh, B A; Naubereit, P; Rothe, S; Seiffert, C; Kron, T; Wendt, K

    2017-01-01

    Odd-parity autoionizing states of europium have been investigated by resonance ionization spectroscopy via two-step, two-resonance excitations. The aim of this work was to establish ionization schemes specifically suited for europium ion beam production using the ISOLDE Resonance Ionization Laser Ion Source (RILIS). 13 new RILIS-compatible ionization schemes are proposed. The scheme development was the first application of the Photo Ionization Spectroscopy Apparatus (PISA) which has recently been integrated into the RILIS setup.

  16. Resonance ionization scheme development for europium

    Energy Technology Data Exchange (ETDEWEB)

    Chrysalidis, K., E-mail: katerina.chrysalidis@cern.ch; Goodacre, T. Day; Fedosseev, V. N.; Marsh, B. A. [CERN (Switzerland); Naubereit, P. [Johannes Gutenberg-Universität, Institiut für Physik (Germany); Rothe, S.; Seiffert, C. [CERN (Switzerland); Kron, T.; Wendt, K. [Johannes Gutenberg-Universität, Institiut für Physik (Germany)

    2017-11-15

    Odd-parity autoionizing states of europium have been investigated by resonance ionization spectroscopy via two-step, two-resonance excitations. The aim of this work was to establish ionization schemes specifically suited for europium ion beam production using the ISOLDE Resonance Ionization Laser Ion Source (RILIS). 13 new RILIS-compatible ionization schemes are proposed. The scheme development was the first application of the Photo Ionization Spectroscopy Apparatus (PISA) which has recently been integrated into the RILIS setup.

  17. Metal Cationization Extractive Electrospray Ionization Mass Spectrometry of Compounds Containing Multiple Oxygens

    Science.gov (United States)

    Swanson, Kenneth D.; Spencer, Sandra E.; Glish, Gary L.

    2017-06-01

    Extractive electrospray ionization is an ambient ionization technique that allows real-time sampling of liquid samples, including organic aerosols. Similar to electrospray ionization, the composition of the electrospray solvent used in extractive electrospray ionization can easily be altered to form metal cationized molecules during ionization simply by adding a metal salt to the electrospray solvent. An increase in sensitivity is observed for some molecules that are lithium, sodium, or silver cationized compared with the protonated molecule formed in extractive electrospray ionization with an acid additive. Tandem mass spectrometry of metal cationized molecules can also significantly improve the ability to identify a compound. Tandem mass spectrometry of lithium and silver cationized molecules can result in an increase in the number and uniqueness of dissociation pathways relative to [M + H]+. These results highlight the potential for extractive electrospray ionization with metal cationization in analyzing complex aerosol mixtures. [Figure not available: see fulltext.

  18. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling

    Science.gov (United States)

    Holley, W. R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the

  19. Ionization due to the interaction between two Rydberg atoms

    International Nuclear Information System (INIS)

    Robicheaux, F

    2005-01-01

    Using a classical trajectory Monte Carlo method, we have computed the ionization resulting from the interaction between two cold Rydberg atoms. We focus on the products resulting from close interaction between two highly excited atoms. We give information on the distribution of ejected electron energies, the distribution of internal atom energies and the velocity distribution of the atoms and ions after the ionization. If the potential for the atom is not purely Coulombic, the average interaction between two atoms can change from attractive to repulsive giving a Van de Graaff-like mechanism for accelerating atoms. In a small fraction of ionization cases, we find that the ionization leads to a positive molecular ion where all of the distances are larger than 1000 Bohr radii

  20. Strong interaction and QFD

    International Nuclear Information System (INIS)

    Ebata, T.

    1981-01-01

    With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)

  1. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: jetea@fac.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2011-09-19

    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  2. Ambient ionization mass spectrometry: A tutorial

    International Nuclear Information System (INIS)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu; Shiea, Jentaie

    2011-01-01

    Highlights: → Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. → We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. → The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  3. Biological Effects of Ionizing Radiation

    International Nuclear Information System (INIS)

    Durand, J.L.

    2000-01-01

    The aim of this work is to verify the existence of the adaptive response phenomenon induced by low doses of ionizing radiation in living cells.A wild-type yeast Saccharomyces cerevisiae (Baker's yeast) was chosen as the biological target.As a parameter to quantify the sensibility of the target to radiation, the Lethal Dose 50 (LD50 ) was observed. In our experimental condition a value of (60 ± 1) Gy was measured for LD50 with Dose Rate of (0.44 ± 0.03) Gy/min. The method employed to show up the adaptive response phenomenon consisted in exposing the sample to low ''conditioning'' doses, which would initiate these mechanisms. Later the samples with and without conditioning were exposed to higher ''challenging'' doses (such as LD50), and the surviving fractions were compared. In order to maximize the differences, the doses and the time between irradiations were varied. The best results were obtained with both a conditioning dose of (0.44 ± 0.03) Gy and a waiting time of 2 hs until the application of the challenging dose. Following this procedures the 80% of the conditioned samples has survived, after receiving the application of the LD50. The adaptive response phenomenon was also verified for a wide range of challenging doses

  4. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  5. Angular dependence of the parallel plate ionization chambers of Ipen

    International Nuclear Information System (INIS)

    Albuquerque, M. da P.P.; Caldas, L.

    1989-08-01

    The ionization chambers with parallel plates designed and constructed at IPEN for the dosimetry of soft X-radiation fields were studied in relation to thein angular dependence between O and +- 90 0 . The objective of this study is to verify the chambers response variation for small positioning errors during the field dosimetry used in Radiotherapy. The results were compared with those of commercial parallel plate ionization chambers used as secondary and testiary standards. (author) [pt

  6. Laser post-ionization secondary neutral mass spectroscopy

    International Nuclear Information System (INIS)

    Gruen, D.M.; Pellin, M.J.; Calaway, W.F.; Young, C.E.

    1987-01-01

    Three different instruments using laser ionization techniques will be described. Results from the SARISA instrument with a demonstrated figure of merit of .05 (atoms detected/atoms sputtered) for resonance ionization; detection of Fe at the sub-part-per-billion level in ultrapure Si; and features of the instrument such as energy and angle refocusing time-of-flight (EARTOF) mass spectrometer and multiplexing for simultaneous detection of secondary ions and neutrals. 12 refs., 3 figs

  7. Health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Pathak, B.

    1989-12-01

    Ionizing radiation is energy that travels through space as electromagnetic waves or a stream of fast moving particles. In the workplace, the sources of ionizing radiation are radioactive substances, nuclear power plants, x-ray machines and nuclear devices used in medicine, research and industry. Commonly encountered types of radiation are alpha particles, beta particles and gamma rays. Alpha particles have very little penetrating power and pose a risk only when the radioactive substance is deposited inside the body. Beta particles are more penetrating than alpha particles and can penetrate the outer body tissues causing damage to the skin and the eyes. Gamma rays are highly penetrating and can cause radiation damage to the whole body. The probability of radiation-induced disease depends on the accumulated amount of radiation dose. The main health effects of ionizing radiation are cancers in exposed persons and genetic disorders in the children, grandchildren and subsequent generations of the exposed parents. The fetus is highly sensitive to radiation-induced abnormalities. At high doses, radiation can cause cataracts in the eyes. There is no firm evidence that ionizing radiation causes premature aging. Radiation-induced sterility is highly unlikely for occupational doses. The data on the combined effect of ionizing radiation and other cancer-causing physical and chemical agents are inconclusive

  8. Display of charged ionizing particles

    International Nuclear Information System (INIS)

    Cano S, D.; Ortiz A, M. D.; Amarillas S, L. E.; Vega C, H. R.

    2017-10-01

    The human being is exposed to sources of ionizing and non-ionizing radiation, both of natural or anthropogenic origin. None of these, except non-ionizing such as visible light and infrared radiation, can be detected by the sense of sight and touch respectively. The sun emits charged particles with speeds close to the light that interact with the atoms of the gases present in the atmosphere, producing nuclear reactions that in turn produce other particles that reach the surface of the Earth and reach the living beings. On Earth there are natural radioisotopes that, when they disintegrate, emit ionizing radiation that contributes to the dose we receive. A very old system that allows the visualization of the trajectories of the charged ionizing particles is the Fog Chamber that uses a saturated steam that when crossed by particles with mass and charge, as alpha and beta particles produce condensation centers along its path leaves a trace that can be seen. The objective of this work was to build a fog chamber using easily accessible materials. To measure the functioning of the fog chamber, cosmic rays were measured, as well as a source of natural metal uranium. The fog chamber allowed seeing the presence of traces in alcohol vapor that are produced in a random way. Introducing the uranium foil inside the fog chamber, traces of alpha particles whose energy varies from 4 to 5 MeV were observed. (Author)

  9. Profile distortion by beam space-charge in Ionization Profile Monitors

    CERN Document Server

    Vilsmeier, D; Wettig, T

    Measuring the transverse beam size in the Large Hadron Collider by using Ionization Profile Monitors is a difficult task for energies above injection during the energy ramp from 450 GeV to 6.5TeV. The beam size decreases from around 1mm to 200um and the brightness of the beam is high enough to destroy the structure of any form of interacting matter. While the electron trajectories are confined by an external electro-magnetic field which forces the electrons accordingly on helix paths with certain gyroradii, this gyration is heavily increased under the influence of the electric field of the beam. Smaller beam sizes, which go hand in hand with increased bunch electric fields, lead to larger gyroradii of the ionized electrons, which results in strongly distorted profiles. In addition, this distortion becomes more visible for smaller beam sizes as the extent of gyration grows compared to the actual beam size. Depending on the initial momentum distribution of the electrons, emerging from the ionization process wit...

  10. Energetic particles and ionization in the nighttime middle and low latitude ionosphere

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.

    1977-01-01

    Seven Nike Apache rockets, each equipped with an energetic particle spectrometer (12 E 80 keV) and electron-density experiments, were launched from Wallops Island, Virginia and Chilca, Peru, under varying geomagnetic conditions near midnight. At Wallops Island the energetic particle flux (E 40 keV) is found to be strongly dependent on Kp. The pitch-angle distribution is asymmetrical about a peak at 90 D signifying a predominately quasi-trapped flux and explaining the linear increase of count rate with altitute in the altitude region 120 to 200 km. The height-averaged ionization rates derived from the electron-density profiles are consistent with the rates calculated from the observed total particle flux for magnetic index Kp 3. In the region 90 to 110 km it is found that the nighttime ionization is primarily a result of Ly-beta radiation from the geocorona and interplanetary hydrogen for even very disturbed conditions. Below 90 km during rather disturbed conditions energetic electrons can be a significant ionization source. Two energetic particle precipitation zones have been identified at midlatitudes.

  11. Ionizing radiation processing and its potential in advancing biorefining and nanocellulose composite materials manufacturing

    Science.gov (United States)

    Postek, Michael T.; Poster, Dianne L.; Vládar, András E.; Driscoll, Mark S.; LaVerne, Jay A.; Tsinas, Zois; Al-Sheikhly, Mohamad I.

    2018-02-01

    Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. Through utilization of a biorefinery concept, nanocellulose can be produced in large volumes from wood at relatively low cost via ionizing radiation processing. Ionizing radiation causes significant break down of the polysaccharide and leads to the production of potentially useful gaseous products such as H2 and CO. The application of radiation processing to the production of nanocellulose from woody and non-wood sources, such as field grasses, bio-refining by-products, industrial pulp waste, and agricultural surplus materials remains an open field, ripe for innovation and application. Elucidating the mechanisms of the radiolytic decomposition of cellulose and the mass generation of nanocellulose by radiation processing is key to tapping into this source of nanocelluose for the growth of nanocellulostic-product development. More importantly, understanding the structural break-up of the cell walls as a function of radiation exposure is a key goal and only through careful, detailed characterization and dimensional metrology can this be achieved at the level of detail that is needed to further the growth of large scale radiation processing of plant materials. This work is resulting from strong collaborations between NIST and its academic partners who are pursuing the unique demonstration of applied ionizing radiation processing to plant materials as well as the development of manufacturing metrology for novel nanomaterials.

  12. Cross-Field Current Instabilities in Thin Ionization Layers and the Enhanced Aurora

    International Nuclear Information System (INIS)

    Johnson, Jay R.; Okuda, Hideo

    2008-01-01

    Nearly half of the time, auroral displays exhibit thin, bright layers known as 'enhanced aurora'. There is a substantial body of evidence that connects these displays with thin, dense, heavy ion layers in the E-region. Based on the spectral characteristics of the enhanced layers, it is believed that they result when wave-particle interaction heats ambient electrons to energies at or just above the 17 eV ionization energy of N2. While there are several possible instabilities that could produce suprathermal electrons in thin layers, there has been no clear theoretical investigation which examines in detail how wave instabilities in the thin ionization layers could develop and produce the suprathermal electrons. We examine instabilities which would occur in thin, dense, heavy ion layers using extensive analytical analysis combined with particle simulations. We analyze a cross field current instability that is found to be strongly unstable in the heavy ion layers. Electrostatic simulations show that substantial heating of the ambient electrons occurs with energization at or above the N2 ionization energy.

  13. Chemical selectivity in the dissociative ionization of organic molecules by low-energy positrons

    International Nuclear Information System (INIS)

    Xu, J.; Hulett, L.D. Jr.; Lewis, T.A.; McLuckey, S.A.

    1995-01-01

    The ionization and dissociation, induced by positrons having kinetic energies in the range 0.3--3 eV, of a large number of organic molecules have been studied. The required energies for ionization and dissociation are supplied through the annihilation of electrons by the positrons. Cross sections for these interactions are strong functions of molecular size, molecular structure, and bond type. Fragmentation usually occurs between atoms linked by σ bonds. Multiple bonds tend to stabilize the molecules against fragmentation. Fragmentation induced under the low-energy process occurs preferably in the linear groups of molecules rather than in ring structures. Ionization and dissociation cross sections of large alkane molecules are higher than those of smaller molecules. A possible explanation of the fragmentation phenomena is that positrons annihilate electrons in energy levels below the highest occupied molecular orbital (HOMO), leaving the molecules in excited states. Multiple bonds in molecules tend to promote higher populations near the HOMO state; annihilation of electrons near the HOMO state does not result in fragmentation

  14. Lithium atoms on helium nanodroplets: Rydberg series and ionization dynamics

    Science.gov (United States)

    Lackner, Florian; Krois, Günter; Ernst, Wolfgang E.

    2017-11-01

    The electronic excitation spectrum of lithium atoms residing on the surface of helium nanodroplets is presented and analyzed employing a Rydberg-Ritz approach. Utilizing resonant two-photon ionization spectroscopy, two different Rydberg series have been identified: one assigned to the nS(Σ) series and the other with predominantly nP(Π) character. For high Rydberg states, which have been resolved up to n = 13, the surrounding helium effectively screens the valence electron from the Li ion core, as indicated by the apparent red-shift of Li transitions and lowered quantum defects on the droplet with respect to their free atom counterparts. For low n states, the screening effect is weakened and the prevailing repulsive interaction gives rise to strongly broadened and blue-shifted transitions. The red-shifts originate from the polarization of nearby He atoms by the positive Li ion core. As a consequence of this effect, the ionization threshold is lowered by 116 ± 10 cm-1 for Li on helium droplets with a radius of about 40 Å. Upon single-photon ionization, heavy complexes corresponding to Li ions attached to intact helium droplets are detected. We conclude that ionization close to the on-droplet ionization threshold triggers a dynamic process in which the Li ion core undergoes a transition from a surface site into the droplet.

  15. Ar I as a tracer of ionization evolution

    Science.gov (United States)

    Vladilo, G.; Centurión, M.; D'Odorico, V.; Péroux, C.

    2003-05-01

    We present a study of Ar abundances in 15 damped Ly alpha systems (DLAs) in the redshift interval 2.3 HIRES/Keck observations). The majority of DLAs show significant underabundances of Ar relative to other alpha -capture elements with common nucleosynthetic origin. We show that neither dust depletion nor intervening H Ii regions inside DLAs offer a viable justification to these underabundances. A natural explanation is found in the framework of photoionization models of H I regions embedded in an ionizing continuum with varying spectral distribution. At z ~ 2.5 the observed Ar deficiencies are large, [Ar/alpha ] =~ -0.6/-0.8 dex, suggestive of a hard, QSO-dominated spectrum. At z >~ 3 the deficiencies are instead small, suggestive of a soft, stellar-type spectrum, though more data are needed to generalize this high-z result. Should the change of Ar abundances with redshift be governed by the evolution of the UV stellar emission internal to DLAs, a synchronization of the star formation in DLAs would be required, with a strong stellar emission at z > 3, but weak at z external background must become softer at z > 3. The former requirement is consistent with the modest evolution of DLAs abundances and the lack of Ly alpha and H alpha emissions associated with DLAs. The latter requirement is consistent with the observed evolution of Si Iv/C Iv ratios in the IGM, the claims of high escape fraction of UV photons from Ly-break galaxies at z >~ 3, and the recent finding that the He Ii re-ionization seems to occur between z ~ 3.4 and z ~ 3. Comparison with results from local interstellar studies indicates that Ar abundances can be used to trace the evolution of the ionization history of the universe down to z=0, where [Ar/alpha ] ~ -0.2 dex. We predict a rise of Ar abundances in the redshift range from z =~ 2.3 to z=0, at the epoch at which the metagalactic field of galaxies overcomes that of quasars. Based on observations made with the ESO 8.2 m Kueyen telescope operated on

  16. Spectroscopy of highly ionized atoms

    International Nuclear Information System (INIS)

    Livingston, A.E.

    1987-01-01

    The atomic structure and decay characteristics of excited states in multiply ionized atoms represent a fertile testing ground for atomic calculations ranging from accurate ab initio theory for few-electron systems to practical semi-empirical approaches for many-electron species. Excitation of fast ions by thin foils generally produces the highest ionization stages for heavy ions in laboratory sources. The associated characteristics of spectroscopic purity and high time resolution provide unique capabilities for studying the atomic properties of highly-ionized atoms. This report is limited to a brief discussion of three classes of atomic systems that are experiencing current theoretical and experimental interest: precision structure of helium-like ions, fine structure of doubly-excited states, and lifetimes of metastable states. Specific measurements in each of these types of systems are mentioned, with emphasis on the relation to studies involving slow, highly-charged ions

  17. Ionization detectors in environmental analysis

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    1982-01-01

    Ionization detectors (IDs) use the information contained in the radiation-produced ionization current regarding the chemical composition of gas mixtures. The radionuclide radiation sources, 3 H, 55 Fe, 63 Ni, 85 Kr, 90 Sr, 241 Am, are used to produce carriers. Using recombination effects and carrier multiplication by electrical fields the response of IDs can be improved. There are electron capture detectors, cross-section detectors and noble-gas detectors, mainly used in gas chromatographic devices, and continuously working aerosol ionization detectors. Halocarbons, metal chelates, metal organic and inorganic compounds, pesticides, herbicides, insecticides, but also SO 2 , AsH 3 , ClCN, HCN, HF, NH 3 , CO, CO 2 , H 2 O, can be determined within the pp10 9 range. They are used in automatic systems to control air pollution around industrial plants, in hospitals and factories, but also to prevent high levels of pesticides in agriculture products. (author)

  18. Fokker-Planck model for nonlocal impact ionization in semiconductors

    Science.gov (United States)

    Jacob, Biju; Robson, P. N.; David, J. P. R.; Rees, G. J.

    2001-08-01

    The probability distribution function (PDF) for impact ionization path length is a crucial quantity for understanding and modeling the low noise behavior of avalanche photodiodes with short multiplication regions. In such devices the ionization coefficient is no longer in equilibrium with the local electric field but depends on the carrier's history. The high electric fields needed to produce avalanche gain narrow the PDF, thereby reducing the randomness in ionization position and hence the noise in the multiplication. In this article we present a method for calculating PDFs using a Fokker-Planck model. The results are compared with those obtained from an equivalent Monte Carlo simulation employing a parabolic energy band, deformation potential optical phonon scattering, and a hard energy threshold for impact ionization.

  19. Long-term effects to ionizing radiation in crustacean Daphnia magna

    International Nuclear Information System (INIS)

    Sarapul'tseva, E.I.

    2016-01-01

    The results of this study have provided strong evidence for the trans generational effects of parental exposure to ionizing radiation in crustacean Daphnia magna. To establish whether parental irradiation can affect the survival, life span and fertility of directly exposed organisms and their non-exposed offspring, D. magna were given 10, 100, 1000 and 10,000 mGy of acute γ-rays. MTT-assay was first applied for the investigation in vivo of the mechanisms of trans generational low doses effects of radiation and development of stress in Daphnia. Our dates strongly support MTT assay results as a good bio marker of survival and fertility effects at D. magna. (authors)

  20. Making MUSIC: A multiple sampling ionization chamber

    International Nuclear Information System (INIS)

    Shumard, B.; Henderson, D.J.; Rehm, K.E.; Tang, X.D.

    2007-01-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction

  1. Ionization photophysics and spectroscopy of cyanoacetylene

    International Nuclear Information System (INIS)

    Leach, Sydney; Champion, Norbert; Garcia, Gustavo A.; Fray, Nicolas; Gaie-Levrel, François; Mahjoub, Ahmed; Bénilan, Yves; Gazeau, Marie-Claire; Schwell, Martin

    2014-01-01

    Photoionization of cyanoacetylene was studied using synchrotron radiation over the non-dissociative ionization excitation range 11–15.6 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of cyanoacetylene was measured as 11.573 ± 0.010 eV. A detailed analysis of photoelectron spectra of HC 3 N involves new aspects and new assignments of the vibrational components to excitation of the A 2 Σ + and B 2 Π states of the cation. Some of the structured autoionization features observed in the 11.94 to 15.5 eV region of the total ion yield (TIY) spectrum were assigned to two Rydberg series converging to the B 2 Π state of HC 3 N + . A number of the measured TIY features are suggested to be vibrational components of Rydberg series converging to the C 2 Σ + state of HC 3 N + at ≈17.6 eV and others to valence shell transitions of cyanoacetylene in the 11.6–15 eV region. The results of quantum chemical calculations of the cation electronic state geometries, vibrational frequencies and energies, as well as of the C–H dissociation potential energy profiles of the ground and electronic excited states of the ion, are compared with experimental observations. Ionization quantum yields are evaluated and discussed and the problem of adequate calibration of photoionization cross-sections is raised

  2. Ionization photophysics and spectroscopy of cyanoacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Sydney; Champion, Norbert [LERMA UMR CNRS 8112, Observatoire de Paris-Meudon, 5 place Jules-Jansen, 92195 Meudon (France); Garcia, Gustavo A.; Fray, Nicolas; Gaie-Levrel, François [Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, B.P. 48, 91192, Gif-sur-Yvette Cedex (France); Mahjoub, Ahmed; Bénilan, Yves; Gazeau, Marie-Claire; Schwell, Martin [LISA UMR CNRS 7583, Université Paris Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général de Gaulle, 94010 Créteil (France)

    2014-05-07

    Photoionization of cyanoacetylene was studied using synchrotron radiation over the non-dissociative ionization excitation range 11–15.6 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of cyanoacetylene was measured as 11.573 ± 0.010 eV. A detailed analysis of photoelectron spectra of HC{sub 3}N involves new aspects and new assignments of the vibrational components to excitation of the A{sup 2}Σ{sup +} and B{sup 2}Π states of the cation. Some of the structured autoionization features observed in the 11.94 to 15.5 eV region of the total ion yield (TIY) spectrum were assigned to two Rydberg series converging to the B{sup 2}Π state of HC{sub 3}N{sup +}. A number of the measured TIY features are suggested to be vibrational components of Rydberg series converging to the C{sup 2}Σ{sup +} state of HC{sub 3}N{sup +} at ≈17.6 eV and others to valence shell transitions of cyanoacetylene in the 11.6–15 eV region. The results of quantum chemical calculations of the cation electronic state geometries, vibrational frequencies and energies, as well as of the C–H dissociation potential energy profiles of the ground and electronic excited states of the ion, are compared with experimental observations. Ionization quantum yields are evaluated and discussed and the problem of adequate calibration of photoionization cross-sections is raised.

  3. Making MUSIC: A multiple sampling ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Shumard, B. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)]. E-mail: shumard@phy.anl.gov; Henderson, D.J. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Rehm, K.E. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Tang, X.D. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)

    2007-08-15

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the ({alpha}, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for ({alpha}, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only ({alpha}, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the ({alpha}, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the ({alpha}, p) reaction to reach the anode segment below the reaction.

  4. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  5. Development of a Portable Single Photon Ionization-Photoelectron Ionization Time-of-Flight Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    Yunguang Huang

    2015-01-01

    Full Text Available A vacuum ultraviolet lamp based single photon ionization- (SPI- photoelectron ionization (PEI portable reflecting time-of-flight mass spectrometer (TOFMS was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX, SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1 with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear.

  6. Development of a Portable Single Photon Ionization-Photoelectron Ionization Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Huang, Yunguang; Li, Jinxu; Tang, Bin; Zhu, Liping; Hou, Keyong; Li, Haiyang

    2015-01-01

    A vacuum ultraviolet lamp based single photon ionization- (SPI-) photoelectron ionization (PEI) portable reflecting time-of-flight mass spectrometer (TOFMS) was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE) below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX), SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1) with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear. PMID:26587023

  7. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Detian; Cheng, Yongjun [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Wang, Yongjun, E-mail: wyjlxlz@163.com [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Zhang, Huzhong [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Dong, Changkun [Institute of Micro-Nano Structures and Optoelectronics, Wenzhou University, Wenzhou 325035 (China); Li, Da [Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2016-03-01

    Graphical abstract: - Highlights: • The high quality CNT arrays were successfully grown on conductive stainless steel substrates. • The CNT array grown on stainless steel substrate exhibited superior field emission properties. • A high vacuum level about 10–8 Pa was measured by resultant CNT-based ionization gauge. • The ionization gauge with CNT cathode demonstrated a high stability. - Abstract: Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10{sup −8} Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  8. Ionization of molecular hydrogen in ultrashort intense laser pulses

    International Nuclear Information System (INIS)

    Vanne, Yulian V.

    2010-01-01

    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H 2 performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H 2 and D 2 in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  9. Ionization of molecular hydrogen in ultrashort intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Vanne, Yulian V.

    2010-03-18

    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H{sub 2} performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H{sub 2} and D{sub 2} in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  10. The dosimetry of ionizing radiation

    CERN Document Server

    Bjaerngard, Bengt E; Kase, Kenneth R

    1987-01-01

    The Dosimetry of Ionizing Radiation, Volume II, attempts to fill the need for updated reference material on the field of radiation dosimetry. This book presents some broad topics in dosimetry and a variety of radiation dosimetry instrumentation and its application. The book opens with a chapter that extends and applies the concepts of microdosimetry to biological systems. This is followed by separate chapters on the state- of-the-art equipment and techniques used to determine neutron spectra; studies to determine recombination effects in ionization chambers exposed to high-intensity pulsed ra

  11. Ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    2010-01-01

    resolution and high sensitivity are necessary. For exact dosimetry which is done using ionization chambers (ICs), the recombination taking place in the IC has to be known. Up to now, recombination is corrected phenomenologically and more practical approaches are currently used. Nevertheless, Jaff´e's theory...... of columnar recombination was designed to model the detector efficiency of an ionization chamber. Here, we have shown that despite the approximations and simplification made, the theory is correct for the LETs typically found in clinical radiotherapy employing particles from protons to carbon ions...

  12. Prenatal exposition on ionizing radiations

    International Nuclear Information System (INIS)

    2001-01-01

    The Sessions on Prenatal Exposition on Ionizing Radiations was organized by the Argentine Radioprotection Society, in Buenos Aires, between 8 and 9, November 2001. In this event, were presented papers on: biological effects of ionizing radiation; the radiation protection and the pregnant woman; embryo fetal development and its relationship with the responsiveness to teratogens; radioinduced delayed mental; neonatal irradiation: neurotoxicity and modulation of pharmacological response; pre implanted mouse embryos as a model of uranium toxicity studies; hereditary effects of the radiation and new advances from the UNSCEAR 2001; doses estimation in embryo

  13. Extracting Structure Parameters of Dimers for Molecular Tunneling Ionization Model

    Science.gov (United States)

    Zhao, Song-Feng; Huang, Fang; Wang, Guo-Li; Zhou, Xiao-Xin

    2016-03-01

    We determine structure parameters of the highest occupied molecular orbital (HOMO) of 27 dimers for the molecular tunneling ionization (so called MO-ADK) model of Tong et al. [Phys. Rev. A 66 (2002) 033402]. The molecular wave functions with correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials which are numerically created using the density functional theory. We examine the alignment-dependent tunneling ionization probabilities from MO-ADK model for several molecules by comparing with the molecular strong-field approximation (MO-SFA) calculations. We show the molecular Perelomov–Popov–Terent'ev (MO-PPT) can successfully give the laser wavelength dependence of ionization rates (or probabilities). Based on the MO-PPT model, two diatomic molecules having valence orbital with antibonding systems (i.e., Cl2, Ne2) show strong ionization suppression when compared with their corresponding closest companion atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11164025, 11264036, 11465016, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  14. S-matrix analysis of vibrational and alignment effects in intense-field multiphoton ionization of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Requate, A.

    2007-03-15

    Theoretical analysis of the vibrational excitation of small molecules during multiphoton ionization in intense laser fields of optical and infrared frequencies. Analysis of the alignment dependence of the electron impact ionization of diatomic molecules in the presence of an intense laser field as the final step in the process of Nonsequential Double Ionization. Quantum mechanical description using S-matrix theory in Strong Field Approximation (SFA), i.e. beyond perturbation theory. (orig.)

  15. Saturation curves of Tandem ionization chambers for Hp(10) measurement

    International Nuclear Information System (INIS)

    Vivolo, Vitor; Caldas, Linda V.E.

    2005-01-01

    It is very important that the radiation detectors measure doses with high precision and accuracy. The verification of the standard dosemeters such as ionization chambers is a very important step in quality control programs of calibration laboratories and in radioprotection procedures. In this work the polarity effect and ionic recombination of two ionization chambers were studied. Saturation curves were obtained using two identical in shape, parallel-plate ionization chambers developed at IPEN (radioprotection level), with collecting electrodes made of different materials (to obtain different energy dependences of their responses) in standard X radiation beams of low and medium energies. The tests were performed following international standard recommendations (IEC 60731). The results show that both ionization chambers were approved in the tests; the variation on the readings were lower than 1%, for bias voltage between - 400V and + 400V. The results of the polarity tests of the ionization chambers show that the response variation is within the standard IEC 60731 limits. The determined ionic recombination agrees with the recommendation of IAEA (TRS 398). Therefore, the ionization chambers tested in this work were approved. (author)

  16. Electronegative Plasma Equilibria with Spatially-Varying Ionization

    Science.gov (United States)

    Lieberman, M. A.; Kawamura, E.; Lichtenberg, A. J.

    2012-10-01

    Electronegative inductive discharges in higher pressure ranges typically exhibit localized ionization near the coil structure, with decay of the ionization into the central discharge. We use a two-dimensional fluid code [1] with chlorine feedstock to determine the spatial profiles of the plasma parameters in a cylindrical transformer-coupled plasma device excited by a planar coil. To compare with one-dimensional (1D) analytic modeling, the results are area-averaged. The ionization is found to decay roughly exponentially along the axial direction, allowing the ansatz of an exponentially decaying ionization to be used in a 1D computational model. The model captures the main features of the axial variations of the area-averaged fluid simulation, indicating that the main diffusion mechanisms act along the axial direction. A simple analytic global discharge model is developed, accounting for the asymmetric density and ionization profiles. The global model gives the scalings with power and pressure of volume-averaged densities, electron temperature, and ionization decay rate, also in reasonable agreement with the scalings obtained by averaging the simulation results. [4pt] [1] E. Kawamura, D.B. Graves, and M.A. Lieberman, Plasma Sources Sci. Technol. 20, 035009 (2012)

  17. Non-ionizing radiation

    International Nuclear Information System (INIS)

    Tyrrell, R.M.; Pourzand, C.; Zhong, J.L.

    2003-01-01

    The ultraviolet A (320 - 380 nm) component of sunlight generates an oxidative stress in skin which contributes to both the acute (sunburn) and chronic (aging, skin cancer) effects of sunlight. The damaging effects occur via generation of active oxygen species and will be exacerbated by the presence of catalytically reactive iron so that the observation that UVA radiation causes an immediate release of 'free' iron in human skin fibroblasts and keratinocytes via the proteolysis of ferritin is likely to be biologically significant. UVA radiation also breaks down heme-containing proteins in the microsomal membrane to release free heme. The well-characterised activation of heme oxygenase 1 by UVA radiation will lead to breakdown of heme and further release of iron. Overall these interactions generate a strong oxidative stress on cells. Both the basal and UVA-induced levels of labile iron are 2-4 times higher in fibroblasts than keratinocytes and this is consistent with the higher resistance of keratinocytes to UVA-induced necrotic cell death. Modulating cellular iron levels by hemin (to enhance the levels) or iron chelators (to reduce the levels) has the predicted effect on levels of necrotic cell death. Overall these studies further illustrate the potent oxidising nature of UVA radiation. A series of genes activated by UVA radiation including heme oxygenase 1 (HO-1), ferritin and superoxide dismutase (SOD) may be involved in protection against the damaging effects of this oxidising carcinogen. HO will act by removing free heme and possibly by promoting the efflux of free iron, ferritin will bind free iron and SOD will remove superoxide anion. The strong response of HO-1 to oxidants in human skin fibroblasts provides a useful molecular model to study this inducible enzyme which appears to play a major role in anti-inflammatory activity in mammals and could play a significant role in preventing atherosclerosis. Several indirect lines of evidence support the role of UVA

  18. John Strong (1941 - 2006)

    CERN Multimedia

    Wickens, F

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

  19. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  20. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.

    1989-01-01

    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  1. Mottled Protoplanetary Disk Ionization by Magnetically Channeled T Tauri Star Energetic Particles

    Science.gov (United States)

    Fraschetti, F.; Drake, J. J.; Cohen, O.; Garraffo, C.

    2018-02-01

    The evolution of protoplanetary disks is believed to be driven largely by angular momentum transport resulting from magnetized disk winds and turbulent viscosity. The ionization of the disk that is essential for these processes has been thought to be due to host star coronal X-rays but could also arise from energetic particles produced by coronal flares, or traveling shock waves, and advected by the stellar wind. We have performed test-particle numerical simulations of energetic protons propagating into a realistic T Tauri stellar wind, including a superposed small-scale magnetostatic turbulence. The isotropic (Kolmogorov power spectrum) turbulent component is synthesized along the individual particle trajectories. We have investigated the energy range [0.1–10] GeV, consistent with expectations from Chandra X-ray observations of large flares on T Tauri stars and recent indications by the Herschel Space Observatory of a significant contribution of energetic particles to the disk ionization of young stars. In contrast with a previous theoretical study finding a dominance of energetic particles over X-rays in the ionization throughout the disk, we find that the disk ionization is likely dominated by X-rays over much of its area, except within narrow regions where particles are channeled onto the disk by the strongly tangled and turbulent magnetic field. The radial thickness of such regions is 5 stellar radii close to the star and broadens with increasing radial distance. This likely continues out to large distances from the star (10 au or greater), where particles can be copiously advected and diffused by the turbulent wind.

  2. Space-charge-limited ion flow through an ionizing neutral layer

    International Nuclear Information System (INIS)

    Duvall, R.E.; Litwin, C.; Maron, Y.

    1993-01-01

    Space-charge-limited ion flow through an ionizing layer of neutral atoms is studied. The ion flow is between two parallel conducting plates (anode and cathode) with an externally applied voltage between them. An expanding layer of neutral atoms is adjacent to the anode surface, extending a finite distance into the anode--cathode gap. All ions originate either from the anode surface or from the ionization of neutrals; electrons originate only from ionization. Electrons are strongly magnetized by an externally applied, time-independent direct current (dc) magnetic field directed across the ion flow. The ions are unmagnetized, all motion being perpendicular to the conducting plates. Two different models of the anode layer were used to analyze this problem: a multifluid steady-state model and a single fluid time-dependent model. From both models it was found that the anode surface becomes shielded after the ion flux from the ionizing layer becomes larger than the space-charge-limited flux of the reduced gap between the neutral layer and cathode. Comparison was made between the time-dependent model and results from magnetically insulated ion beam diode (MID) experiments. Using an initial areal density of neutral hydrogen and carbon equal to the final observed electron areal density, comparison was made between calculated plasma shielding times and upper bounds on the shielding time observed in experiments. It was found that a layer of neutral hydrogen must contain a minimum of 15% carbon (by number density) to explain the rapid electric field screening observed in experiments

  3. Correlation effects in the valence ionization spectra of large conjugated molecules: p-Benzoquinone, anthracenequinone and pentacenequinone

    Energy Technology Data Exchange (ETDEWEB)

    Knippenberg, S. [Institut fuer Physikalische und Theoretische Chemie, Johann Wolfgang Goethe Universitaet Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main (Germany); Research Group Theoretical Chemistry, Department SBG, Hasselt University, Agoralaan, Gebouw D, B-3590 Diepenbeek (Belgium); Deleuze, M.S., E-mail: michael.deleuze@uhasselt.b [Research Group Theoretical Chemistry, Department SBG, Hasselt University, Agoralaan, Gebouw D, B-3590 Diepenbeek (Belgium)

    2010-05-15

    A review of an extensive series of theoretical studies of the valence one-electron and shake-up ionization spectra of polycyclic aromatic hydrocarbons is presented, along with new results for three planar quinone derivatives, obtained using one-particle Green's function (1p-GF) theory along with the so-called third-order algebraic diagrammatic construction [ADC(3)] scheme and the outer-valence Green's function (OVGF) approximation. These results confirm both for the pi- and sigma-band systems the rapid spreading, upon increasing system size, of many shake-up lines with significant intensities at outer-valence energies. Linear regressions demonstrate that with large conjugated molecules the location of the shake-up onset in the pi-band system is merely determined by the energy of the frontier (HOMO, LUMO) orbitals. Electron pair removal effects are found to almost compensate the electron relaxation effects induced by ionization of pi-levels, whereas the latter effects strongly dominate the ionization of more localized lone-pair (n) levels, and may lead to inversions of the energy order of Hartree-Fock (HF) orbitals. Therefore, although it increases upon a lowering of the HF band gap, and thus upon an increase of system size, the dependence of the one-electron ionization energies onto the quality of the basis set is lesser for pi-levels than for sigma-levels relating to electron lone pairs (n). Basis sets of triple- and quadruple-zeta quality are therefore required for treatments of the outermost pi- and n-ionization energies approaching chemical accuracy [1 kcal/mol, i.e. 0.04 eV]. When 1p-GF theory invalidates Koopmans' theorem and the energy order of HF orbitals, a comparison with Kohn-Sham orbital energies confirms the validity of the meta-Koopmans' theorem for density functional theory.

  4. Biopositive Effects of Ionizing Radiation?

    International Nuclear Information System (INIS)

    Broda, E.

    1972-01-01

    This paper was written for a talk given by E. Broda in Vienna for an event organised by the chemical physical society, the Austrian biochemical society and the Austrian biophysical society in December 1972. In this paper Broda analyses the question of biopositive effects of ionizing radiation. (nowak)

  5. Negative chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Smit, A.L.C.

    1979-01-01

    This thesis describes some aspects of Negative Chemical Ionization (NCI) mass spectrometry. The reasons for the growing interest in NCI are: (i) to extend the basic knowledge of negative ions and their reactions in the gas phase; (ii) to investigate whether or not this knowledge of negative ions can be used successfully to elucidate the structure of molecules by mass spectrometry. (Auth.)

  6. Natural sources of ionizing radiations

    International Nuclear Information System (INIS)

    Marej, A.N.

    1984-01-01

    Natural sources of ionizing radiations are described in detail. The sources are subdivided into sources of extraterrestrial origin (cosmic radiation) and sources of terrestrial origin. Data on the concentration of different nuclides in rocks, various soils, ground waters, atmospheric air, tissues of plants and animals, various food stuffs are presented. The content of natural radionuclides in environmental objects, related to human activities, is discussed

  7. Food irradiation with ionizing radiation

    International Nuclear Information System (INIS)

    Hrudkova, A.; Pohlova, M.; Sedlackova, J.

    1974-01-01

    Application possibilities are discussed of ionizing radiation in inhibiting plant germination, in radiopasteurization and radiosterilization of food. Also methods of combining radiation with thermal food sterilization are discussed. The problems of radiation doses and of hygienic purity of irradiated foodstuffs are dealt with. (B.S.)

  8. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multi-photon ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photo-electron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photo-ionization signal. For both ns and np states the ''field induced'' MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength

  9. On the Saha Ionization Equation

    Indian Academy of Sciences (India)

    Abstract. We revisit the Saha Ionization Equation in order to highlightthe rich interdisciplinary content of the equation thatstraddles distinct areas of spectroscopy, thermodynamics andchemical reactions. In a self-contained discussion, relegatedto an appendix, we delve further into the hidden message ofthe equation in terms ...

  10. Single Photon Double Ionization of Atomic Oxygen

    Science.gov (United States)

    Wickramarathna, Madhushani; Gorczyca, Thomas; Ballance, Connor; Stolte, Wayne

    2017-04-01

    Single photon double ionization cross sections are calculated using an R-matrix with pseudostates (RMPS) method which was recently applied by Gorczyca et al. for the double photoionization of helium. With the convergence of these theoretical calculations for the simple case of helium, we extend this methodology to consider the more complex case of oxygen double photoionization. We compare our calculated results with recent measurements at the Advanced Light Source, as well as earlier experimental measurements. Our RMPS results agree well, qualitatively, with the experimental measurements, but there exist outstanding discrepancies to be addressed. This project is supported by NASA APRA award NNX17AD41G.

  11. Electron ionization and dissociation of aliphatic amino acids

    Science.gov (United States)

    Papp, P.; Shchukin, P.; Kočíšek, J.; Matejčík, Š.

    2012-09-01

    We present experimental and theoretical study of electron ionization and dissociative ionization to the gas phase amino acids valine, leucine, and isoleucine. A crossed electron/molecular beams technique equipped with quadrupole mass analyzer has been applied to measure mass spectra and ion efficiency curves for formation of particular ions. From experimental data the ionization energies of the molecules and the appearance energies of the fragment ions were determined. Ab initio calculations (Density Functional Theory and G3MP2 methods) were performed in order to calculate the fragmentation paths and interpret the experimental data. The experimental ionization energies of parent molecules [P]+ 8.91 ± 0.05, 8.85 ± 0.05, and 8.79 ± 0.05 eV and G3MP2 ionization energies (adiabatic) of 8.89, 8.88, and 8.81 eV were determined for valine, leucine, and isoleucine, respectively, as well as the experimental and theoretical threshold energies for dissociative ionization channels. The comparison of experimental data with calculations resulted in identification of the ions as well as the neutral fragments formed in the dissociative reactions. Around 15 mass/charge ratio fragments were identified from the mass spectra by comparison of experimental appearance energies with calculated reaction enthalpies for particular dissociative reactions.

  12. Theoretical investigation of the secondary ionization in krypton and xenon

    International Nuclear Information System (INIS)

    Saffo, M.E.

    1986-01-01

    A theoretical investigation of the secondary ionization processes that responsible for the pre-breakdown ionization current growth in a uniform electric field was studied in krypton and xenon gases, especially at low values of E/P 0 which is corresponding to high values of pressure, since there are a number of possible secondary ionization processes. It is interesting to carry out a quantitative analysis for the generalized secondary ionization coefficient obtained previously by many workers in terms of the production of excited states and their diffusion to the cathode and their destruction rate in the gas body. From energy balance equation for the electrons in the discharge, the fractional percentage energy losses of ionization, excitation, and elastic collisions to the total energy gained by the electron from the field has been calculated for krypton and xenon, as a result of such calculations; the conclusion drawn is that at low values of E/P 0 the main energy loss of electrons are in excited collision. Therefore, we are adopting a theoretical calculation for W/α under the assumption that the photo-electron emission at the cathode is the predominated secondary ionization process. 14 tabs.; 12 figs.; 64 refs

  13. Immobilized aptamer paper spray ionization source for ion mobility spectrometry.

    Science.gov (United States)

    Zargar, Tahereh; Khayamian, Taghi; Jafari, Mohammad T

    2017-01-05

    A selective thin-film microextraction based on aptamer immobilized on cellulose paper was used as a paper spray ionization source for ion mobility spectrometry (PSI-IMS), for the first time. In this method, the paper is not only used as an ionization source but also it is utilized for the selective extraction of analyte, based on immobilized aptamer. This combination integrates both sample preparation and analyte ionization in a Whatman paper. To that end, an appropriate sample introduction system with a novel design was constructed for the paper spray ionization source. Using this system, a continuous solvent flow works as an elution and spray solvent simultaneously. In this method, analyte is adsorbed on a triangular paper with immobilized aptamer and then it is desorbed and ionized by elution solvent and applied high voltage on paper, respectively. The effects of different experimental parameters such as applied voltage, angle of paper tip, distance between paper tip and counter electrode, elution solvent type, and solvent flow rate were optimized. The proposed method was exhaustively validated in terms of sensitivity and reproducibility by analyzing the standard solutions of codeine and acetamiprid. The analytical results obtained are promising enough to ensure the use of immobilized aptamer paper-spray as both the extraction and ionization techniques in IMS for direct analysis of biomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Experimental characterization of a strongly coupled solid density plasma generated in a short-pulse laser target interaction

    International Nuclear Information System (INIS)

    Gregori, G.; Hansen, S.B.; Key, M.H.; King, J.; Mackinnon, A.J.; Park, H.; Patel, P.K.; Shepard, R.; Snavely, R.A.; Wilks, S.C.; Glenzer, S.H.

    2005-01-01

    We have measured high resolution copper Kα spectra from a picosecond high intensity laser produced plasma. By fitting the shape of the experimental spectra with a self-consistent-field model which includes all the relevant line shifts from multiply ionized atoms, we are able to infer time and spatially averaged electron temperatures (T e ) and ionization state (Z) in the foil. Our results show increasing values for T e and Z when the overall mass of the target is reduced. In particular, we measure temperatures in excess of 200 eV with Z ∼ 13-14. For these conditions the ion-ion coupling constant is Λ ii ∼ 8-9, thus suggesting the achievement of a strongly coupled plasma regime

  15. Characterization of Nitrogen-Containing Species in Coal and Petroleum-Derived Products by Ammonia Chemical Ionization-High Resolution Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Veloski, Garret A. [Pittsburgh Energy Technology Center, Pittsburgh, PA (United States); Lynn, Ronald J. [Pittsburgh Energy Technology Center, Pittsburgh, PA (United States); Sprecher, Richard F. [Pittsburgh Energy Technology Center, Pittsburgh, PA (United States)

    1997-01-01

    A coal-derived light distillate and a petroleum-derived residuum have been studied by high resolution mass spectrometry using both low-pressure ammonia chemical ionization and low-voltage electron impact ionization. A mass calibration mixture for use with ammonia chemical ionization has been developed. Selective ionization of the basic nitrogen-containing compounds by ammonia chemical ionization and compound type characterization of the resulting quasi-molecular species has been demonstrated. Several homologous series of nitrogen-containing compounds were identified in a basic extract by electron impact ionization and compared with quasimolecular analogs identified by ammonia chemical ionization.

  16. Peas in a Pod: Environment and Ionization in Green Pea Galaxies

    Science.gov (United States)

    Kurtz, Heather; Jaskot, Anne; Drew, Patrick; Pare, Dylan; Griffin, Jon; Petersen, Michael

    2016-01-01

    The Green Peas are extreme, highly ionized, starburst galaxies with strong [OIII] 5007 emission. Using the Sloan Digital Sky Survey, we present statistics on the environment of Green Peas and investigate its effects on their ionized gas properties. Although most dwarf starburst galaxies are in low-density environments, we identify a sample of Green Peas in dense environments. Emission line observations with the WIYN 0.9-meter telescope at Kitt Peak reveal that one cluster Green Pea is more highly ionized in the direction of the cluster center. Ram pressure stripping likely generates this ionization gradient. We explore the role of the environment in enhancing star formation rates and ionization, and we compare the nebular properties of Green Peas in high-density environments to those in low-density environments.

  17. UV Ionizer for Neutral Wind Mass Spectrometers

    Data.gov (United States)

    National Aeronautics and Space Administration — Current neutral particle instrumentation relies on hot cathode filaments or an electron gun for ionizing the target medium.  These ionization sources represent a...

  18. Ideal gas behavior of a strongly coupled complex (dusty) plasma.

    Science.gov (United States)

    Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry

    2013-07-05

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  19. Cosmological Halos: A Search for the Ionized Intergalactic Medium

    OpenAIRE

    Geller, Robert M.; Sault, Robert J.; Antonucci, Robert; Killeen, Neil E. B.; Ekers, Ron; Desai, Ketan

    1998-01-01

    Standard big bang nucleosynthesis predicts the average baryon density of the Universe to be a few percent of the critical density. Only about one tenth of the predicted baryons have been seen. A plausible respository for the missing baryons is in a diffuse ionized intergalactic medium (IGM). In an attempt to measure the IGM we searched for Thomson-scattered halos around strong high redshift radio sources. Observations of the radio source 1935-692 were made with the Australia Telescope Compact...

  20. 29 CFR 1926.53 - Ionizing radiation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards for...

  1. Communication: Strong laser alignment of solvent-solute aggregates in the gas-phase

    Science.gov (United States)

    Trippel, Sebastian; Wiese, Joss; Mullins, Terry; Küpper, Jochen

    2018-03-01

    Strong quasi-adiabatic laser alignment of the indole-water-dimer clusters, an amino-acid chromophore bound to a single water molecule through a hydrogen bond, was experimentally realized. The alignment was visualized through ion and electron imaging following strong-field ionization. Molecular-frame photoelectron angular distributions showed a clear suppression of the electron yield in the plane of the ionizing laser's polarization, which was analyzed as strong alignment of the molecular cluster with ⟨cos2 θ2D⟩ ≥ 0.9.

  2. Ionizing radiation sources. Ionizing radiation interaction with matter

    International Nuclear Information System (INIS)

    Popits, R.

    1976-01-01

    Fundamentals of nuclear physics are reviewed under the headings: obtaining of X-rays and their properties; modes of radioactive decay of natural or man-made radionuclides; radioactive neutron sources; nuclear fission as basis for devising nuclear reactors and weapons; thermonuclear reactions; cosmic radiation. Basic aspects of ionizing radiation interactions with matter are considered with regard to charged particles, photon radiation, and neutrons. (A.B.)

  3. Position-sensitive ionization detectors for ionizing beams diagnostics

    CERN Document Server

    Artemiev, A N; Mikhailov, V; Rezvov, V; Yudin, L

    2002-01-01

    Ionizing detectors for on-line non-destructive monitoring of the geometric parameters of ionizing beams have been proposed. Such a detector can be used on a beamline with a residual gas pressure of about 10 sup - sup 3 -10 sup - sup 6 Torr. It measures the product of ionization of the residual gas by the beam under investigation. An electric field moves the ions through a narrow slit into an analyzer. The analyzer field transforms the energy distribution of the ions into a two-dimensional space distribution on the outer analyzer plane. An Open Image Converter Tube (ICT) with an amplifier consisting of two Micro Channel Plates (MCP) forms an image of the real beam cross-section. This image is registered by a video camera, processed and stored on a computer. The detectors were successfully tested on beams of charged particles with wide energy and intensity ranges and on synchrotron radiation beams. Codes developed give the distribution of the beam density along its cross-section, beam profiles, the position of ...

  4. State-resolved attosecond reversible and irreversible dynamics in strong optical fields

    Science.gov (United States)

    Sabbar, Mazyar; Timmers, Henry; Chen, Yi-Jen; Pymer, Allison K.; Loh, Zhi-Heng; Sayres, Scott G.; Pabst, Stefan; Santra, Robin; Leone, Stephen R.

    2017-02-01

    Strong-field ionization (SFI) is a key process for accessing real-time quantum dynamics of electrons on the attosecond timescale. The theoretical foundation of SFI was pioneered in the 1960s, and later refined by various analytical models. While asymptotic ionization rates predicted by these models have been tested to be in reasonable agreement for a wide range of laser parameters, predictions for SFI on the sub-laser-cycle timescale are either beyond the scope of the models or show strong qualitative deviations from full quantum-mechanical simulations. Here, using the unprecedented state specificity of attosecond transient absorption spectroscopy, we follow the real-time SFI process of the two valence spin-orbit states of xenon. The results reveal that the irreversible tunnelling contribution is accompanied by a reversible electronic population that exhibits an observable spin-orbit-dependent phase delay. A detailed theoretical analysis attributes this observation to transient ground-state polarization, an unexpected facet of SFI that cannot be captured by existing analytical models that focus exclusively on the production of asymptotic electron/ion yields.

  5. Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas

    Science.gov (United States)

    Hu, S. X.

    2017-08-01

    Continuum lowering is a well known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal- or pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K -edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics calculations based on the all-electron density-functional theory. The resulting K -edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of "single-atom-in-box," developed in this work, accurately predicts K -edge locations as ab initio calculations provide.

  6. Adiabatic theory of strong-field photoelectron momentum distributions near a backward rescattering caustic

    Science.gov (United States)

    Morishita, Toru; Tolstikhin, Oleg I.

    2017-11-01

    We present a comprehensive treatise on the derivation of the factorization formula describing strong-field photoelectron momentum distributions near the outermost backward rescattering caustic within the adiabatic theory and its validation by calculations. The formula derived holds for ionization by linearly polarized laser pulses of sufficiently low frequency and becomes exact as the frequency tends to zero for a fixed pulse amplitude. The convergence of the results obtained from the formula to accurate photoelectron momentum distributions obtained by solving the time-dependent Schrödinger equation is demonstrated. The formula is shown to work quantitatively in both tunneling and over-the-barrier regimes of ionization for finite-range potentials as well as potentials with a Coulomb tail. This paves the way for future applications of the present theory in strong-field physics. In particular, the explicit analytical form of the returning photoelectron wave packet given here enables one to extract differential cross sections for elastic scattering of a photoelectron on the parent ion from experimental photoelectron momentum distributions.

  7. Extreme Ultraviolet Spectra of Few-Times Ionized Tungsten for Divertor Plasma Diagnostics

    Directory of Open Access Journals (Sweden)

    Joel Clementson

    2015-09-01

    Full Text Available The extreme ultraviolet (EUV emission from few-times ionized tungsten atoms has been experimentally studied at the Livermore electron beam ion trap facility. The ions were produced and confined during low-energy operations of the EBIT-I electron beam ion trap. By varying the electron-beam energy from around 30–300 eV, tungsten ions in charge states expected to be abundant in tokamak divertor plasmas were excited, and the resulting EUV emission was studied using a survey spectrometer covering 120–320 Å. It is found that the emission strongly depends on the excitation energy; below 150 eV, it is relatively simple, consisting of strong isolated lines from a few charge states, whereas at higher energies, it becomes very complex. For divertor plasmas with tungsten impurity ions, this emission should prove useful for diagnostics of tungsten flux rates and charge balance, as well as for radiative cooling of the divertor volume. Several lines in the 194–223 Å interval belonging to the spectra of five- and seven-times ionized tungsten (Tm-like W VI and Ho-like W VIII were also measured using a high-resolution spectrometer.

  8. Resonance ionization in a gas cell: a feasibility study for a laser ion source

    International Nuclear Information System (INIS)

    Qamhieh, Z.N.; Vandeweert, E.; Silverans, R.E.; Duppen, P. van; Huyse, M.; Vermeeren, L.

    1992-01-01

    A laser ion source based on resonance photo-ionization in a gas cell is proposed. The gas cell, filled with helium, consists of a target chamber in which the recoil products are stopped and neutralized, and an ionization chamber where the atoms of interest are selectively ionized by the laser light. The extraction of the ions from the ionization chamber through the exit hole-skimmer setup is similar to the ion-guide system. The conditions to obtain an optimal system are given. The results of a two-step one-laser resonance photo-ionization of nickel and the first results of laser ionization in a helium buffer gas cell are presented. (orig.)

  9. Gas-Phase Stability of Negatively Charged Organophosphate Metabolites Produced by Electrospray Ionization and Matrix-Assisted Laser Desorption/Ionization

    Science.gov (United States)

    Asakawa, Daiki; Mizuno, Hajime; Toyo'oka, Toshimasa

    2017-12-01

    The formation mechanisms of singly and multiply charged organophosphate metabolites by electrospray ionization (ESI) and their gas phase stabilities were investigated. Metabolites containing multiple phosphate groups, such as adenosine 5'-diphosphate (ADP), adenosine 5'-triphosphate (ATP), and D- myo-inositol-1,4,5-triphosphate (IP3) were observed as doubly deprotonated ions by negative-ion ESI mass spectrometry. Organophosphates with multiple negative charges were found to be unstable and often underwent loss of PO3 -, although singly deprotonated analytes were stable. The presence of fragments due to the loss of PO3 - in the negative-ion ESI mass spectra could result in the misinterpretation of analytical results. In contrast to ESI, matrix-assisted laser desorption ionization (MALDI) produced singly charged organophosphate metabolites with no associated fragmentation, since the singly charged anions are stable. The stability of an organophosphate metabolite in the gas phase strongly depends on its charge state. The fragmentations of multiply charged organophosphates were also investigated in detail through density functional theory calculations. [Figure not available: see fulltext.

  10. The physics of the ionized media

    International Nuclear Information System (INIS)

    Gresillon, D.; Virmont, J.

    1988-01-01

    The 1988 progress report of the laboratory of the Ionized Media Physics (Polytechnic School, France), is presented. The most important results are obtained on the field of waves: the study of the conversion of a proper mode into another one, by means of the electromagnetic wave scattering. The research program involves the following topics: plasma nonlinear physics, fluctuations and transport phenomena in magnetic fusion plasmas, plasmas and negatif ion beams, beam and plasma radiations, atomic physics and spectroscopic plasma diagnostics, The published papers, the congress communications, the thesis and the patents are listed [fr

  11. The Ionizing Radiation Environment on the Moon

    Science.gov (United States)

    Adams, J. H., Jr.; Bhattacharya, M.; Lin, Zi-Wei; Pendleton, G.

    2006-01-01

    The ionizing radiation environment on the moon that contributes to the radiation hazard for astronauts consists of galactic cosmic rays, solar energetic particles and albedo particles from the lunar surface. We will present calculations of the absorbed dose and the dose equivalent to various organs in this environment during quiet times and during large solar particle events. We will evaluate the contribution of solar particles other than protons and the contributions of the various forms of albedo. We will use the results to determine which particle fluxes must be known in order to estimate the radiation hazard.

  12. Signal processing for liquid ionization calorimeters

    International Nuclear Information System (INIS)

    Cleland, W.E.; Stern, E.G.

    1992-01-01

    We present the results of a study of the effects of thermal and pileup noise in liquid ionization calorimeters operating in a high luminosity calorimeters operating in a high luminosity environment. The method of optimal filtering of multiply-sampled signals which may be used to improve the timing and amplitude resolution of calorimeter signals is described, and its implications for signal shaping functions are examined. The dependence of the time and amplitude resolution on the relative strength of the pileup and thermal noise, which varies with such parameters as luminosity, rapidity and calorimeter cell size, is examined

  13. Genetic and chromosomal effects of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The genetic and chromosomal effects of ionizing radiations deal with those effects in the descendants of the individuals irradiated. The information base concerning genetic and chromosomal injury to humans from radiation is less adequate than is the information base for cancer and leukemia. As a result, it is not possible to make the kinds of quantitative estimates that have been made for carcinogenesis in previous chapters of this book. The chapter includes a detailed explanation of various types of genetic injuries such as chromosomal diseases, x-linked diseases, autosomal dominant diseases, recessive diseases, and irregularly inherited diseases. Quantitative estimates of mutation rates and incidences are given based on atomic bomb survivors data

  14. Monitoring occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Button, J.B.C.

    1997-01-01

    A brief overview is presented of methods of monitoring occupational exposure to ionizing radiation together with reasons for such monitoring and maintaining dose histories of radiation occupationally exposed persons. The various Australian providers of external radiation monitoring services and the types of dosemeters they supply are briefly described together with some monitoring results. Biological monitoring methods, are used to determine internal radiation dose. Whole body monitors, used for this purpose are available at Australian Radiation Lab., ANSTO and a few hospitals. Brief mention is made of the Australian National Radiation Dose Register and its objectives

  15. Large N baryons, strong coupling theory, quarks

    International Nuclear Information System (INIS)

    Sakita, B.

    1984-01-01

    It is shown that in QCD the large N limit is the same as the static strong coupling limit. By using the static strong coupling techniques some of the results of large N baryons are derived. The results are consistent with the large N SU(6) static quark model. (author)

  16. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.

    1985-01-01

    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  17. Physically sound parameterization of incomplete ionization in aluminum-doped silicon

    Directory of Open Access Journals (Sweden)

    Heiko Steinkemper

    2016-12-01

    Full Text Available Incomplete ionization is an important issue when modeling silicon devices featuring aluminum-doped p+ (Al-p+ regions. Aluminum has a rather deep state in the band gap compared to boron or phosphorus, causing strong incomplete ionization. In this paper, we considerably improve our recent parameterization [Steinkemper et al., J. Appl. Phys. 117, 074504 (2015]. On the one hand, we found a fundamental criterion to further reduce the number of free parameters in our fitting procedure. And on the other hand, we address a mistake in the original publication of the incomplete ionization formalism in Altermatt et al., J. Appl. Phys. 100, 113715 (2006.

  18. Estimate of electrical potential difference between plasmas with different degrees of ionization

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-12

    The electrical potential difference has been estimated across the mixing region of two plasmas with different degrees of ionization. The estimation has been carried out in two different contexts of a charge neutral mixing region and a charge non-neutral sheath. Ion energy gained due to the potential difference has also been estimated. In both analyses, ion energy gain is proportional to the degree of ionization, and a fairly large ionization appears to be needed for overcoming the potential energy barrier of strongly coupled plasmas.

  19. Quantum theory of strong-field frustrated tunneling

    Science.gov (United States)

    Popruzhenko, S. V.

    2018-01-01

    We show how the strong-field approximation, widely used for description of multiphoton and tunneling ionization, can be extended to analyse the excitation of bound states in intense low-frequency laser pulses. The proposed theory is based on the formalism of quantum trajectories and fills the gap between the numerical solution of the time-dependent Schrödinger equation and classical simulations. In particular, it allows identifying non-adiabatic and interference effects in strong-field excitation of Rydberg states.

  20. HPV16 DNA status is a strong prognosticator of loco-regional control after postoperative radiochemotherapy of locally advanced oropharyngeal carcinoma: results from a multicentre explorative study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG).

    Science.gov (United States)

    Lohaus, Fabian; Linge, Annett; Tinhofer, Inge; Budach, Volker; Gkika, Eleni; Stuschke, Martin; Balermpas, Panagiotis; Rödel, Claus; Avlar, Melanie; Grosu, Anca-Ligia; Abdollahi, Amir; Debus, Jürgen; Bayer, Christine; Belka, Claus; Pigorsch, Steffi; Combs, Stephanie E; Mönnich, David; Zips, Daniel; von Neubeck, Cläre; Baretton, Gustavo B; Löck, Steffen; Thames, Howard D; Krause, Mechthild; Baumann, Michael

    2014-12-01

    To investigate the impact of HPV status in patients with locally advanced head and neck squamous cell carcinoma (HNSCC), who received surgery and cisplatin-based postoperative radiochemotherapy. For 221 patients with locally advanced squamous cell carcinoma of the hypopharynx, oropharynx or oral cavity treated at the 8 partner sites of the German Cancer Consortium, the impact of HPV DNA, p16 overexpression and p53 expression on outcome were retrospectively analysed. The primary endpoint was loco-regional tumour control; secondary endpoints were distant metastases and overall survival. In the total patient population, univariate analyses revealed a significant impact of HPV16 DNA positivity, p16 overexpression, p53 positivity and tumour site on loco-regional tumour control. Multivariate analysis stratified for tumour site showed that positive HPV 16 DNA status correlated with loco-regional tumour control in patients with oropharyngeal carcinoma (p=0.02) but not in the oral cavity carcinoma group. Multivariate evaluation of the secondary endpoints in the total population revealed a significant association of HPV16 DNA positivity with overall survival (p<0.01) but not with distant metastases. HPV16 DNA status appears to be a strong prognosticator of loco-regional tumour control after postoperative cisplatin-based radiochemotherapy of locally advanced oropharyngeal carcinoma and is now being explored in a prospective validation trial. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. LONGITUDINAL IONIZATION COOLING WITHOUT WEDGES

    International Nuclear Information System (INIS)

    BERG, J.S.

    2001-01-01

    The emittance of a muon beam must be reduced very rapidly due to the finite lifetime of the muons. The most effective known way to accomplish this is ionization cooling. It is straightforward to reduce transverse emittance through ionization cooling, but the reducing the longitudinal emittance is more challenging. Longitudinal cooling is necessary for a muon collider, and would be helpful for a neutrino factory. The method traditionally proposed for longitudinal cooling is emittance exchange involving wedges of absorber material: the longitudinal emittance is reduced at the cost of increased transverse emittance. The larger transverse emittance can then be reduced straightforwardly. An alternative method is proposed here, which does not require wedges of material but instead makes slight modifications to the standard transverse cooling lattice. We demonstrate a lattice which is a slight modification to a standard Super FOFO transverse cooling lattice, which has linear eigenvalues all of which have magnitude less than one

  2. Ionization potentials some variations, implications and applications

    CERN Document Server

    Ahrens, L H

    1983-01-01

    Ionization Potentials: Some Variations, Implications and Applications covers several aspects of ionization potential that is a highly significant parameter in controlling the properties of electric discharge. Comprised of 17 chapters, the book covers topic relevant to ionization potentials, such as properties, concepts, and applications, in order to understand and fully comprehend all aspects of ionization potential. The opening chapter is a review of ionization potentials and a discussion of trends and features. The succeeding chapters then tackle complex topics such as the s and p electrons;

  3. Lethal concentration (CL50) of un-ionized ammonia for pejerrey larvae in acute exposure

    OpenAIRE

    Piedras, Sérgio Renato Noguez; Pouey, Juvêncio Luís Osório Fernandes; Moraes, Paulo Roberto Rocha; Cardoso, Daniela Fençon

    2006-01-01

    Ammonia results from decomposition of effluents organic matter, e.g. feed wastes and fish faeces. Its un-ionized form can be toxic because diffuses easily through fish respiratory membranes, damaging gill epithelium and impairing gas exchanges. The objective of this work was determining the 96-hour CL50 of un-ionized ammonia for newly hatched pejerrey Odontesthes bonariensis larvae. Trials were set up completely randomized design, with three different concentration of un-ionized ammonia (0.57...

  4. Understanding single-color multiphoton ionization spectra by pump--probe technique

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, K.; Manohar, K.G.; Bajaj, P.N.; Suri, B.M.; Talukdar, R.K.; Chakraborti, P.K.; Rao, P.R.K.

    1988-06-01

    A simple but elegant spectroscopic technique using two narrow-band dye lasers has been demonstrated for analyzing single-color resonant multi-photon-ionization spectra of atoms. This technique provides a direct identification of the starting level of the multi-photon-ionization pathway. This method can also be used to determine intermediate levels, which play an important role in the ionization process. Some typical results for uranium are presented.

  5. Establishment of a tandem ionization chamber system in standard mammography beams

    International Nuclear Information System (INIS)

    Silva, Jonas O. da; Caldas, L.V.E.

    2011-01-01

    A double-faced tandem ionization chamber system was developed at the Calibration Laboratory of IPEN. It has different collecting electrode materials: aluminium and graphite. The response repeatability and reproducibility and the energy dependence test of this tandem ionization chamber were evaluated. The chamber response stability is within the ±3% limit recommended in international standards. The energy dependence test of the ionization chamber system using the tandem curve obtained, presented agreement with literature results. (author)

  6. Evaluation of the operational characteristics of a CT ionization chamber

    International Nuclear Information System (INIS)

    Maia, Ana F.; Caldas, Linda V.E.

    2006-01-01

    The most common ionization chamber used in computed tomography dosimetry is the 'pencil ionization chamber'. It is a special cylindrical dosimeter developed for attending computed tomography beams particularities. In this study, a Victoreen pencil ionization chamber was submitted to a set of tests for a detailed evaluation of its operational characteristics. Such as many kinds of detectors, especially field instruments, this ionization chamber had originally a preamplifier to keep it electrically more stable. In this study, the performance of the chamber was analyzed with the original preamplifier and after its removal, and the results were compared. The objective of the preamplifier removal was to enable connecting the chamber to other kinds of electrometers available in laboratories. The behavior of the pencil ionization chamber before and after the removal of the preamplifier was very similar, and the results obtained were always within the limits of international recommendations. The results obtained in both situations allow, if necessary, the preamplifier removal of the system without lack of precision in the measurements

  7. Ionizing radiation perception by insects

    International Nuclear Information System (INIS)

    Campanhola, C.

    1980-04-01

    The proof of the existence of a perception for ionizing radiation by insects was aimed at, as well as the determination of its processing mechanism. It was tried also to check if such perception induces the insects to keep away from the radiation source, proving therefore a protection against the harms caused by ionizing radiation, or else the stimulus for such behaviour is similar to that caused by light radiations. 60 Co and 241 Am were used as gamma radiation sources, the 60 Co source of 0.435mCi and the 241 Am of 99.68mCi activity. Adult insects were used with the following treatments : exposure to 60 Co and 241 Am radiation and non-exposure (control). A total of approximately 50 insects per replication was released in the central region of an opaque white wooden barrier divided into 3 sections with the same area - 60.0 cm diameter and 7.5 cm height - covered with a nylon screen. 5 replications per treatment were made and the distribution of the insects was evaluated by photographs taken at 15, 30, 45, and 60 minutes after release. Sitophilus oryzae (l., 1763) and Ephestia cautella (Walker, 1864) showed some response to 241 Am gamma radiation, i.e. negative tactism. It was concluded that ionizing radiations can be detected by insects through direct visual stimulus or by visual stimulus reslting from interaction of radiation-Cerenkov radiation - with some other occular component with a refraction index greater than water. Also, the activity of the radioactive source with regard to perception for ionizing radiation, is of relevance in comparison with the energy of the radiation emitted by same, or in other words, what really matters is the radiation dose absorbed. (Author) [pt

  8. The dosimetry of ionizing radiation

    CERN Document Server

    1990-01-01

    A continuation of the treatise The Dosimetry of Ionizing Radiation, Volume III builds upon the foundations of Volumes I and II and the tradition of the preceeding treatise Radiation Dosimetry. Volume III contains three comprehensive chapters on the applications of radiation dosimetry in particular research and medical settings, a chapter on unique and useful detectors, and two chapters on Monte Carlo techniques and their applications.

  9. Characterization of a homemade ionization chamber for radiotherapy beams

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Lucio P., E-mail: lpneves@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo (Brazil); Perini, Ana P., E-mail: aperini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo (Brazil); Santos, Gelson P. dos, E-mail: gpsantos@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo (Brazil); Xavier, Marcos, E-mail: mxavier@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.br [Universidade Federal de Pernambuco, Departamento de Energia Nuclear, Av. Prof. Luiz Freire 1000, 50740-540 Recife (Brazil); Caldas, Linda V.E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo (Brazil)

    2012-07-15

    A homemade cylindrical ionization chamber was studied for routine use in therapy beams of {sup 60}Co and X-rays. Several characterization tests were performed: leakage current, saturation, ion collection efficiency, polarity effect, stability, stabilization time, chamber orientation and energy dependence. All results obtained were within international recommendations. Therefore the homemade ionization chamber presents usefulness for routine dosimetric procedures in radiotherapy beams. - Highlights: Black-Right-Pointing-Pointer A homemade ionization chamber was studied for routine use in radiotherapy. Black-Right-Pointing-Pointer Several characterization tests were performed and the results were satisfactory. Black-Right-Pointing-Pointer This chamber was compared to commercial ones and the results were similar. Black-Right-Pointing-Pointer This chamber is suitable for calibration procedures in {sup 60}Co beams.

  10. Novel target configurations for selective ionization state studies in molybdenum

    International Nuclear Information System (INIS)

    Ilcisin, K.J.; Feldman, U.; Schwob, J.L.; Wouters, A.; Suckewer, S.; Princeton Univ., NJ

    1990-03-01

    Details of experiments aimed at achieving low ionization state selectivity in molybdenum are presented. Targets are excited with a 10 J CO 2 laser and the resultant VUV spectrum (300--700 Angstrom) has been studied. Combinations of focal spot size, target depth, and target geometries are compared. Simple attenuation of energy is shown not to vary ionization stage composition significantly. Experiments conducted with grazing incidence targets result only in a hot plasma. Modular targets with cooling cylinders of various radii demonstrated good selectivity of the ionization states, but with low absolute signals. Finally, results from combinations of focal spot adjustment and radiative cooling illustrate increased control over desired plasma temperature and density for spectroscopic studies of molybdenum. 7 refs., 14 figs

  11. Ionization of H Rydberg atoms

    International Nuclear Information System (INIS)

    Hillermier, C.F.; Bluemental, R.; Smilansky, U.

    1991-07-01

    Concepts from the theory of transient chaos are applied to study the classical ionization process of one dimensional model of kicked hydrogen Rydberg atoms. The phase-space dynamics is represented by a mapping T which is proved to be hyperbolic. The fraction of atoms not ionized after time t, P B (t), decays asymptotically according to P B (t)∼t -α with α ∼ 1.65. The observed algebraic decay, which seems to contradict the hyperbolicity of T, is explained by (i) the symbolic dynamics of T consists of a countably infinite number of symbols and (ii) the invariant manifold of phase-space points which never ionize is an anomalously scaling fractal. Therefore, the one-dimensional kicked hydrogen atom provides a counterexample to the hypothesis that algebraic decay marks regular dynamics, whereas hyperbolic systems decay exponentially. The algebraic decay is reproduced by an analytically solvable diffusion model which predicts α = 3/2. Replacing zero-width δ-kicks by smooth finite-width pulses, the mapping T is no longer completely hyperbolic, and a subset of phase-space is regular. For this case we observe that P B (t) shows a transition between two power-law decays with α ∼ 1.65 for short times and α ∼ 2.1 for long times where the effect of the regular domain is felt. (author)

  12. Ionization-based detectors for gas chromatography.

    Science.gov (United States)

    Poole, Colin F

    2015-11-20

    The gas phase ionization detectors are the most widely used detectors for gas chromatography. The column and makeup gases commonly used in gas chromatography are near perfect insulators. This facilitates the detection of a minute number of charge carriers facilitating the use of ionization mechanisms of low efficiency while providing high sensitivity. The main ionization mechanism discussed in this report are combustion in a hydrogen diffusion flame (flame ionization detector), surface ionization in a plasma (thermionic ionization detector), photon ionization (photoionization detector and pulsed discharge helium ionization detector), attachment of thermal electrons (electron-capture detector), and ionization by collision with metastable helium species (helium ionization detector). The design, response characteristics, response mechanism, and suitability for fast gas chromatography are the main features summarized in this report. Mass spectrometric detection and atomic emission detection, which could be considered as ionization detectors of a more sophisticated and complex design, are not discussed in this report. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. On the ionization of interstellar magnesium

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.

    1977-01-01

    It has been shown that two concentric ionization zones of interstellar magnesium must exist around each star: internal, with a radius coinciding with that of the zone of hydrogen ionization Ssub(H); and external, with a radius greater than Ssub(H), by one order. Unlike interstellar hydrogen, interstellar magnesium is ionized throughout the Galaxy. It also transpires that the ionizing radiation of ordinary hot stars cannot provide for the observed high degree of ionization of interstellar magnesium. The discrepance can be eliminated by assuming the existence of circumstellar clouds or additional ionization sources of interstellar magnesium (X-ray background radiation, high-energy particles, etc.). Stars of the B5 and BO class play the main role in the formation of ionization zones of interstellar magnesium; the contribution of O class stars is negligible (<1%). (Auth.)

  14. Loss of ions in cavity ionization chambers

    International Nuclear Information System (INIS)

    Takata, N.; Tran, N.T.; Kim, E.; Marsoem, P.; Kurosawa, T.; Koyama, Y.

    2005-01-01

    Ion losses due to initial recombination, volume recombination, and back diffusion were each determined by measurements and calculations for different size cylindrical ionization chambers and spherical ionization chambers. By measuring signal currents from these ionization chambers irradiated with 60 Co gamma rays, two groups of ion losses were obtained. (Group 1) Ion loss due to initial recombination and diffusion, which changes proportionally to the inverse of the voltage applied to the ionization chambers; (and group 2) ion loss due to volume recombination, which changes proportionally to the inverse of the square of the applied voltage. The diffusion loss was obtained separately by computing electric field distributions in the ionization chambers. It was found that diffusion loss is larger than initial recombination loss for the cylindrical ionization chambers and vise versa for the spherical ionization chambers

  15. Kinetics of a plasma streamer ionization front

    Science.gov (United States)

    Taccogna, Francesco; Pellegrini, Fabrizio

    2018-02-01

    A streamer is a non-linear and non-local gas breakdown mode. Its large-scale coherent structures, such as the ionization front, are the final results of a hierarchical cascade starting from the single particle dynamics. Therefore, this phenomenon covers, by definition, different space and time scales. In this study, we have reproduced the ionization front formation and development by means of a particle-based numerical methodology. The physical system investigated concerns of a high-voltage ns-pulsed surface dielectric barrier discharge. Different reduced electric field regimes ranging from 50 to 500 Td have been considered for two gases: pure atomic Ar and molecular N2. Results have shown the detailed structure of the negative streamer: the leading edge, the head, the interior and the tail. Its dynamical evolution and the front propagation velocity have been calculated for the different cases. Finally, the deviation of the electron energy distribution function from equilibrium behavior has been pointed out as a result of a fast and very localized phenomenon.

  16. Development of special ionization chambers for a quality control program in mammography

    International Nuclear Information System (INIS)

    Silva, Jonas Oliveira da

    2013-01-01

    Mammography is an imaging method that uses X-rays. The use of ionization chambers in mammography quality control programs presents an essential role which is to verify whether the parameters of the patient exposure are correct. However, the commercial ionization chambers for dosimetry in mammography represent a high cost for small and medium size clinics that wish to have this equipment or for professionals that work with quality control programs. The innovative feature of this work was to develop ionization chambers for this purpose. In this work ionization chambers for X radiation beams in the mammography energy range were designed, constructed and characterized. The ionization chambers were tested in standard X radiation beams at the LCI/IPEN. The main characterization tests performed with the ionization chambers were: saturation curve, linearity of response, angular and energy dependence. The response stability tests of the ionization chambers were also conducted at the LCI, presenting results within 2.0 % for long-term stability. The results of the remaining tests are in accordance with international standards. These ionization chambers were also submitted to quality control tests of mammography equipment: linearity of the air kerma rates, determination of half-value layers and mean glandular doses. The results for air kerma rate linearity were less than 10 %, as recommended in international standards. The mean glandular dose obtained with the developed chambers presented values comparable to those of commercial ionization chambers tested, with an estimated variation within international standards. (author)

  17. A link between solar events and congenital malformations: Is ionizing radiation enough to explain it?

    Science.gov (United States)

    Overholt, Andrew C.; Melott, Adrian L.; Atri, Dimitra

    2015-03-01

    Cosmic rays are known to cause biological effects directly and through ionizing radiation produced by their secondaries. These effects have been detected in airline crews and other specific cases where members of the population are exposed to above average secondary fluxes. Recent work has found a correlation between solar particle events and congenital malformations. In this work we use the results of computational simulations to approximate the ionizing radiation from such events as well as longer-term increases in cosmic ray flux. We find that the amounts of ionizing radiation produced by these events are insufficient to produce congenital malformations under the current paradigm regarding muon ionizing radiation. We believe that further work is needed to determine the correct ionizing radiation contribution of cosmogenic muons. We suggest that more extensive measurements of muon radiation effects may show a larger contribution to ionizing radiation dose than currently assumed.

  18. Origins of the residual pulse height deficit in propane-filled gas ionization detectors

    International Nuclear Information System (INIS)

    Weijers-Dall, T.D.M.; Timmers, H.; Elliman, R.G.

    2005-01-01

    This work investigates the origins of the residual pulse height deficit in gas ionization detectors. It is motivated by the recent observation that the species dependence of gas detector response cannot be accounted for solely by considering the energy loss of the ions in the detector window and non-ionizing energy loss processes in the detector gas. It was found that the residual pulse height deficit is approximately proportional to the square of the ionization density. However, only a weak dependence of the residual deficit on gas pressure (in the range 70-120mbar) was observed. It is hypothesized that the residual pulse height deficit in gas ionization detectors results from the effect of multiple ionization of individual gas molecules at high ionization densities on the energy required to create an electron-ion pair

  19. Strong Plate, Weak Slab Dichotomy

    Science.gov (United States)

    Petersen, R. I.; Stegman, D. R.; Tackley, P.

    2015-12-01

    Models of mantle convection on Earth produce styles of convection that are not observed on Earth.Moreover non-Earth-like modes, such as two-sided downwellings, are the de facto mode of convection in such models.To recreate Earth style subduction, i.e. one-sided asymmetric recycling of the lithosphere, proper treatment of the plates and plate interface are required. Previous work has identified several model features that promote subduction. A free surface or pseudo-free surface and a layer of material with a relatively low strength material (weak crust) allow downgoing plates to bend and slide past overriding without creating undue stress at the plate interface. (Crameri, et al. 2012, GRL)A low viscosity mantle wedge, possibly a result of slab dehydration, decouples the plates in the system. (Gerya et al. 2007, Geo)Plates must be composed of material which, in the case of the overriding plate, are is strong enough to resist bending stresses imposed by the subducting plate and yet, as in the case of the subducting plate, be weak enough to bend and subduct when pulled by the already subducted slab. (Petersen et al. 2015, PEPI) Though strong surface plates are required for subduction such plates may present a problem when they encounter the lower mantle.As the subducting slab approaches the higher viscosity, lower mantle stresses are imposed on the tip.Strong slabs transmit this stress to the surface.There the stress field at the plate interface is modified and potentially modifies the style of convection. In addition to modifying the stress at the plate interface, the strength of the slab affects the morphology of the slab at the base of the upper mantle. (Stegman, et al 2010, Tectonophysics)Slabs that maintain a sufficient portion of their strength after being bent require high stresses to unbend or otherwise change their shape.On the other hand slabs that are weakened though the bending process are more amenable to changes in morphology. We present the results of

  20. Generation of polypeptide-templated gold nanoparticles using ionizing radiation.

    Science.gov (United States)

    Walker, Candace Rae; Pushpavanam, Karthik; Nair, Divya Geetha; Potta, Thrimoorthy; Sutiyoso, Caesario; Kodibagkar, Vikram D; Sapareto, Stephen; Chang, John; Rege, Kaushal

    2013-08-13

    Ionizing radiation, including γ rays and X-rays, are high-energy electromagnetic radiation with diverse applications in nuclear energy, astrophysics, and medicine. In this work, we describe the use of ionizing radiation and cysteine-containing elastin-like polypeptides (C(n)ELPs, where n = 2 or 12 cysteines in the polypeptide sequence) for the generation of gold nanoparticles. In the presence of C(n)ELPs, ionizing radiation doses higher than 175 Gy resulted in the formation of maroon-colored gold nanoparticle dispersions, with maximal absorbance at 520 nm, from colorless metal salts. Visible color changes were not observed in any of the control systems, indicating that ionizing radiation, gold salt solution, and C(n)ELPs were all required for nanoparticle formation. The hydrodynamic diameters of nanoparticles, determined using dynamic light scattering, were in the range of 80-150 nm, while TEM imaging indicated the formation of gold cores 10-20 nm in diameter. Interestingly, C2ELPs formed 1-2 nm diameter gold nanoparticles in the absence of radiation. Our results describe a facile method of nanoparticle formation in which nanoparticle size can be tailored based on radiation dose and C(n)ELP type. Further improvements in these polypeptide-based systems can lead to colorimetric detection of ionizing radiation in a variety of applications.