WorldWideScience

Sample records for strong ionic bonding

  1. All-in-One: Achieving Robust, Strongly Luminescent and Highly Dispersible Hybrid Materials by Combining Ionic and Coordinate Bonds in Molecular Crystals.

    Science.gov (United States)

    Liu, Wei; Zhu, Kun; Teat, Simon J; Dey, Gangotri; Shen, Zeqing; Wang, Lu; O'Carroll, Deirdre M; Li, Jing

    2017-07-12

    Extensive research has been pursued to develop low-cost and high-performance functional inorganic-organic hybrid materials for clean/renewable energy related applications. While great progress has been made in the recent years, some key challenges remain to be tackled. One major issue is the generally poor stability of these materials, which originates from relatively fragile/weak bonds between inorganic and organic constituents. Herein, we report a unique "all-in-one" (AIO) approach in constructing robust structures with desired properties. Such approach allows formation of both ionic and coordinate bonds within a molecular cluster, which greatly enhances structural stability while maintaining the molecular identity of the cluster and its high luminescence. The novel AIO structures are composed of various anionic (Cu m I m+n ) n- clusters and cationic N-ligands. They exhibit high luminescence efficiency, significantly improved chemical, thermal and moisture stability, and excellent solution processability. Both temperature dependent photoluminescence experiments and DFT calculations are performed to investigate the luminescence origin and emission mechanism of these materials, and their suitability as energy-saving LED lighting phosphors is assessed. This study offers a new material designing strategy that may be generalized to many other material classes.

  2. Strong Stretching of Poly(ethylene glycol) Brushes Mediated by Ionic Liquid Solvation.

    Science.gov (United States)

    Han, Mengwei; Espinosa-Marzal, Rosa M

    2017-09-07

    We have measured forces between mica surfaces coated with a poly(ethylene glycol) (PEG) brush solvated by a vacuum-dry ionic liquid, 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, with a surface forces apparatus. At high grafting density, the solvation mediated by the ionic liquid causes the brush to stretch twice as much as in water. Modeling of the steric repulsion indicates that PEG behaves as a polyelectrolyte; the hydrogen bonding between ethylene glycol and the imidazolium cation seems to effectively charge the polymer brush, which justifies the strong stretching. Importantly, under strong polymer compression, solvation layers are squeezed out at a higher rate than for the neat ionic liquid. We propose that the thermal fluctuations of the PEG chains, larger in the brush than in the mushroom configuration, maintain the fluidity of the ionic liquid under strong compression, in contrast to the solid-like squeezing-out behavior of the neat ionic liquid. This is the first experimental study of the behavior of a polymer brush solvated by an ionic liquid under nanoconfinement.

  3. Molecular and ionic hydrogen bond formation in fluorous solvents.

    Science.gov (United States)

    O'Neal, Kristi L; Weber, Stephen G

    2009-01-08

    There are only a few studies of noncovalent association in fluorous solvents and even fewer that are quantitative. A full understanding, particularly of stoichiometry and binding strength of noncovalent interactions in fluorous solvents could be very useful in improved molecular-receptor-based extractions, advancements in sensor technologies, crystal engineering, and supramolecular chemistry. This work investigates hydrogen bonding between heterocyclic bases and a perfluoropolyether with a terminal carboxylic acid group (Krytox 157FSH (1)), chiefly in FC-72 (a mixture of perfluorohexanes). In particular, we were interested in whether or not proton transfer occurs, and if so, under what conditions in H-bonded complexes. Continuous variations experiments show that in FC-72 weaker bases (pyrazine, pyrimidine, and quinazoline) form 1:1 complexes with 1, whereas stronger bases (quinoline, pyridine, and isoquinoline) form 1:3 complexes. Ultraviolet and infrared spectral signatures reveal that the 1:1 complexes are molecular (B.HA) whereas the 1:3 complexes are ionic (BH+.A-HAHA). Infrared spectra of 1:3 ionic complexes are discussed in detail. Literature and experimental data on complexes between N-heterocyclic bases and carboxylic acids in a range of solvents are compiled to compare solvent effects on proton transfer. Polar solvents support ionic hydrogen bonds at a 1:1 mol ratio. In nonpolar organic solvents, ionic hydrogen bonds are only observed in complexes with 1:2 (base/acid) stoichiometries. In fluorous solvents, a larger excess of acid, 1:3, is necessary to facilitate proton transfer in hydrogen bonds between carboxylic acids and the bases studied.

  4. Strong and weak hydrogen bonds in drug–DNA complexes

    Indian Academy of Sciences (India)

    The dataset was extracted from the protein data bank (PDB). The analysis was performed with an in-house software, hydrogen bond analysis tool (HBAT). In addition to strong hydrogen bonds such as O−H···O and N−H···O, the ubiquitous presence of weak hydrogen bonds such as C−H···O is implicated in molecular ...

  5. Hydrogen-bond acidity of ionic liquids: an extended scale.

    Science.gov (United States)

    Kurnia, Kiki A; Lima, Filipa; Cláudio, Ana Filipa M; Coutinho, João A P; Freire, Mara G

    2015-07-15

    One of the main drawbacks comprising an appropriate selection of ionic liquids (ILs) for a target application is related to the lack of an extended and well-established polarity scale for these neoteric fluids. Albeit considerable progress has been made on identifying chemical structures and factors that influence the polarity of ILs, there still exists a high inconsistency in the experimental values reported by different authors. Furthermore, due to the extremely large number of possible ILs that can be synthesized, the experimental characterization of their polarity is a major limitation when envisaging the choice of an IL with a desired polarity. Therefore, it is of crucial relevance to develop correlation schemes and a priori predictive methods able to forecast the polarity of new (or not yet synthesized) fluids. In this context, and aiming at broadening the experimental polarity scale available for ILs, the solvatochromic Kamlet-Taft parameters of a broad range of bis(trifluoromethylsulfonyl)imide-([NTf2](-))-based fluids were determined. The impact of the IL cation structure on the hydrogen-bond donating ability of the fluid was comprehensively addressed. Based on the large amount of novel experimental values obtained, we then evaluated COSMO-RS, COnductor-like Screening MOdel for Real Solvents, as an alternative tool to estimate the hydrogen-bond acidity of ILs. A three-parameter model based on the cation-anion interaction energies was found to adequately describe the experimental hydrogen-bond acidity or hydrogen-bond donating ability of ILs. The proposed three-parameter model is also shown to present a predictive capacity and to provide novel molecular-level insights into the chemical structure characteristics that influence the acidity of a given IL. It is shown that although the equimolar cation-anion hydrogen-bonding energies (EHB) play the major role, the electrostatic-misfit interactions (EMF) and van der Waals forces (EvdW) also contribute

  6. Moving beyond Definitions: What Student-Generated Models Reveal about Their Understanding of Covalent Bonding and Ionic Bonding

    Science.gov (United States)

    Luxford, Cynthia J.; Bretz, Stacey Lowery

    2013-01-01

    Chemistry students encounter a variety of terms, definitions, and classification schemes that many instructors expect students to memorize and be able to use. This research investigated students' descriptions of ionic and covalent bonding beyond definitions in order to explore students' knowledge about chemical bonding. Using Johnstone's Multiple…

  7. The relationship between bond ionicity, lattice energy, coefficient of thermal expansion and microwave dielectric properties of Nd(Nb(1-x)Sb(x))O4 ceramics.

    Science.gov (United States)

    Zhang, Ping; Zhao, Yonggui; Wang, Xiuyu

    2015-06-28

    The crystalline structure refinement, chemical bond ionicity, lattice energy and coefficient of thermal expansion were carried out for Nd(Nb(1-x)Sb(x))O4 ceramics with a monoclinic fergusonite structure to investigate the correlations between the crystalline structure, phase stability, bond ionicity, lattice energy, coefficient of thermal expansion, and microwave dielectric properties. The bond ionicity, lattice energy, and coefficient of thermal expansion of Nd(Nb(1-x)Sb(x))O4 ceramics were calculated using a semiempirical method based on the complex bond theory. The phase structure stability varied with the lattice energy which was resulted by the substitution constant of Sb(5+). With the increasing of the Sb(5+) contents, the decrease of Nb/Sb-O bond ionicity was observed, which could be contributed to the electric polarization. The ε(r) had a close relationship with the Nb/Sb-O bond ionicity. The increase of the Q×f and |τ(f)| values could be attributed to the lattice energy and the coefficient of thermal expansion. The microwave dielectric properties of Nd(Nb(1-x)Sb(x))O4 ceramics with the monoclinic fergusonite structure were strongly dependent on the chemical bond ionicity, lattice energy and coefficient of thermal expansion.

  8. NMR and IR investigations of strong intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Spanget-Larsen, Jens

    2017-01-01

    For the purpose of this review, strong hydrogen bonds have been defined on the basis of experimental data, such as OH stretching wavenumbers, vOH, and OH chemical shifts, dOH (in the latter case after correction for ring current effects). Limits for O–H···Y systems are taken as 2800 > vOH > 1800 ...

  9. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials.

    Science.gov (United States)

    Mukhopadhyay, Saikat; Sun, Jifeng; Subedi, Alaska; Siegrist, Theo; Singh, David J

    2016-05-19

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. This different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.

  10. Light and neutron scattering study of strongly interacting ionic micelles

    International Nuclear Information System (INIS)

    Degiorgio, V.; Corti, M.; Piazza, R.

    1989-01-01

    Dilute solutions of ionic micelles formed by biological glycolipids (gangliosides) have been investigated at various ionic strengths by static and dynamic light scaterring and by small-angle neutron scattering. The size and shape of the micelle is not appreciably affected by the added salt concentration in the range 0-100 mM NaCL. From the measured intensity of scattered light we derive the electric charge Z of the micelle by fitting the data to a theoretical calculation which uses a screened Coulomb potential for the intermicellar interaction, and the hypernetted chain approximation for the calculation of the radial distribution function. The correlation function derived from dynamic light scattering shows the long time contribution typical of concentrated polydisperse systems (author). 15 refs.; 6 figs

  11. Female chacma baboons form strong, equitable, and enduring social bonds.

    Science.gov (United States)

    Silk, Joan B; Beehner, Jacinta C; Bergman, Thore J; Crockford, Catherine; Engh, Anne L; Moscovice, Liza R; Wittig, Roman M; Seyfarth, Robert M; Cheney, Dorothy L

    2010-11-01

    Analyses of the pattern of associations, social interactions, coalitions, and aggression among chacma baboons (Papio hamadryas ursinus) in the Okavango Delta of Botswana over a 16-year period indicate that adult females form close, equitable, supportive, and enduring social relationships. They show strong and stable preferences for close kin, particularly their own mothers and daughters. Females also form strong attachments to unrelated females who are close to their own age and who are likely to be paternal half-sisters. Although absolute rates of aggression among kin are as high as rates of aggression among nonkin, females are more tolerant of close relatives than they are of others with whom they have comparable amounts of contact. These findings complement previous work which indicates that the strength of social bonds enhances the fitness of females in this population and support findings about the structure and function of social bonds in other primate groups.

  12. Superfluorinated Ionic Liquid Crystals Based on Supramolecular, Halogen-Bonded Anions.

    Science.gov (United States)

    Cavallo, Gabriella; Terraneo, Giancarlo; Monfredini, Alessandro; Saccone, Marco; Priimagi, Arri; Pilati, Tullio; Resnati, Giuseppe; Metrangolo, Pierangelo; Bruce, Duncan W

    2016-05-17

    Unconventional ionic liquid crystals in which the liquid crystallinity is enabled by halogen-bonded supramolecular anions [Cn F2 n+1 -I⋅⋅⋅I⋅⋅⋅I-Cn F2 n+1 ](-) are reported. The material system is unique in many ways, demonstrating for the first time 1) ionic, halogen-bonded liquid crystals, and 2) imidazolium-based ionic liquid crystals in which the occurrence of liquid crystallinity is not driven by the alkyl chains of the cation. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. Hirshfeld atom refinement for modelling strong hydrogen bonds.

    Science.gov (United States)

    Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon

    2014-09-01

    High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.

  14. Durable Anti-Superbug Polymers: Covalent Bonding of Ionic Liquid onto the Polymer Chains.

    Science.gov (United States)

    Guan, Jipeng; Wang, Yanyuan; Wu, Shilu; Li, Yongjin; Li, Jingye

    2017-12-11

    Here, we fabricated the ionic liquid (IL) grafted poly(vinylidene fluoride) (PVDF) (PVDF-g-IL) via electron-beam irradiation to fight common bacteria and multidrug-resistant "superbugs". Two types of ILs, 1-vinyl-3-butylimmidazolium chloride (IL (Cl)) and 1-vinyl-3-ethylimidazolium tetrafluoroborate (IL (BF 4 )), were used. It was found that the PVDF-g-IL exhibited superior antibacterial performance, with almost the same mechanical and thermal performance as unmodified PVDF. Nonwovens and films made from PVDF-g-IL materials exhibited broad-spectrum antimicrobial activity against common bacteria and "superbugs" with the strong electrostatic interactions between ILs and microbial cell membranes. With extremely low IL loading (0.05 wt %), the cell reduction of PVDF-g-IL (Cl) nonwovens improved from 0.2 to 4.4 against S. aureus. Moreover, the antibacterial activity of PVDF-g-IL nonwovens was permanent for the covalent bonds between ILs and polymer chains. The work provides a simple strategy to immobilize ionic antibacterial agents onto polymer substrates, which may have great potential applications in healthcare and household applications.

  15. Is there any fundamental difference between ionic, covalent, and others types of bond? A canonical perspective on the question.

    Science.gov (United States)

    Walton, Jay R; Rivera-Rivera, Luis A; Lucchese, Robert R; Bevan, John W

    2017-06-21

    The concept of chemical bonding is normally presented and simplified through two models: the covalent bond and the ionic bond. Expansion of the ideal covalent and ionic models leads chemists to the concepts of electronegativity and polarizability, and thus to the classification of polar and non-polar bonds. In addition, the intermolecular interactions are normally viewed as physical phenomena without direct correlation to the chemical bond in any simplistic model. Contrary to these traditional concepts of chemical bonding, recently developed canonical approaches demonstrate a unified perspective on the nature of binding in pairwise interatomic interactions. This new canonical model, which is a force-based approach with a basis in fundamental molecular quantum mechanics, confirms much earlier assertions that in fact there are no fundamental distinctions among covalent bonds, ionic bonds, and intermolecular interactions including the hydrogen bond, the halogen bond, and van der Waals interactions.

  16. NMR and IR Investigations of Strong Intramolecular Hydrogen Bonds

    Directory of Open Access Journals (Sweden)

    Poul Erik Hansen

    2017-03-01

    Full Text Available For the purpose of this review, strong hydrogen bonds have been defined on the basis of experimental data, such as OH stretching wavenumbers, νOH, and OH chemical shifts, δOH (in the latter case, after correction for ring current effects. Limits for O–H···Y systems are taken as 2800 > νOH > 1800 cm−1, and 19 ppm > δOH > 15 ppm. Recent results as well as an account of theoretical advances are presented for a series of important classes of compounds such as β-diketone enols, β-thioxoketone enols, Mannich bases, proton sponges, quinoline N-oxides and diacid anions. The O···O distance has long been used as a parameter for hydrogen bond strength in O–H···O systems. On a broad scale, a correlation between OH stretching wavenumbers and O···O distances is observed, as demonstrated experimentally as well as theoretically, but for substituted β-diketone enols this correlation is relatively weak.

  17. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity.

    Science.gov (United States)

    Ji, Wen-Xin; Xu, Wei; Schwarz, W H Eugen; Wang, Shu-Guang

    2015-03-15

    Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.

  18. Supramolecular assembly of Yin(IV) porphyrin cations stabilized by ionic hydrogen bonding interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hwa Jin; Kim, Sung Hyun; Kim, Hee Joon [Dept. of Applied Chemistry, Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2015-09-15

    Our concern for hydrogen-bonded supramolecular assembly with metalloporphyrins led us to exploiting ionic hydrogen bonds, a special class of hydrogen bonds formed between ions and molecules. Because these interactions have up to a third of the strength of covalent bonds, they are expected to be very useful in self-assembly in supramolecular chemistry and molecular crystals. Here we report the preparation and supramolecular assembly of highly charged tin(IV) porphyrin cations stabilized by ionic hydrogen-bonding interactions. We demonstrated that tin(IV) porphyrin cations such as [Sn(OH{sub 2}){sub 2}(T{sup H}PyP)]{sup 6+} can be a useful three-dimensional building block for the construction of porous porphyrin materials. Our X-ray structural analysis revealed that [Sn(OH{sub 2}){sub 2}(T{sup H}PyP)]{sup 6+} cations act as ionic hydrogen-bonding donors possessing electro-deficient six protons from the two axially coordinated aqua ligands and the four equatorial pyridinium peripheral groups.

  19. Short, strong hydrogen bonds on enzymes: NMR and mechanistic studies

    Science.gov (United States)

    Mildvan, A. S.; Massiah, M. A.; Harris, T. K.; Marks, G. T.; Harrison, D. H. T.; Viragh, C.; Reddy, P. M.; Kovach, I. M.

    2002-09-01

    The lengths of short, strong hydrogen bonds (SSHBs) on enzymes have been determined with high precision (±0.05 Å) from the chemical shifts ( δ), and independently from the D/ H fractionation factors ( φ) of the highly deshielded protons involved. These H-bond lengths agree well with each other and with those found by protein X-ray crystallography, within the larger errors of the latter method (±0.2 to±0.8 Å) [Proteins 35 (1999) 275]. A model dihydroxynaphthalene compound shows a SSHB of 2.54±0.04 Å based on δ=17.7 ppm and φ=0.56±0.04, in agreement with the high resolution X-ray distance of 2.55±0.06 Å. On ketosteroid isomerase, a SSHB is found (2.50±0.02 Å), based on δ=18.2 ppm and φ=0.34, from Tyr-14 to the 3-O - of estradiol, an analog of the enolate intermediate. Its strength is ˜7 kcal/mol. On triosephosphate isomerase, SSHBs are found from Glu-165 to the 1-NOH of phosphoglycolohydroxamic acid (PGH), an analog of the enolic intermediate (2.55±0.05 Å), and from His-95 to the enolic-O - of PGH (2.62±0.02 Å). In the methylglyoxal synthase-PGH complex, a SSHB (2.51±0.02 Å) forms between Asp-71 and the NOH of PGH with a strength of ≥4.7 kcal/mol. When serine proteases bind mechanism-based inhibitors which form tetrahedral Ser-adducts analogous to the tetrahedral intermediates in catalysis, the Asp⋯His H-bond of the catalytic triad becomes a SSHB [Proc. Natl Acad. Sci. USA 95 (1998) 14664], 2.49-2.63 Å in length. Similarly, on the serine-esterase, butyrylcholinesterase complexed with the mechanism-based inhibitor m-( N, N, N-trimethylammonio)-2,2,2-trifluoroacetophenone, a SSHB forms between Glu-327 and His-438 of the catalytic triad, 2.61±0.04 Å in length, based on δ=18.1 ppm and φ=0.65±0.10. Very similar results are obtained with (human) acetylcholinesterase. The strength of this SSHB is at least 4.9 kcal/mol.

  20. Reversible CO2 Capture by Conjugated Ionic Liquids through Dynamic Covalent Carbon-Oxygen Bonds.

    Science.gov (United States)

    Pan, Mingguang; Cao, Ningning; Lin, Wenjun; Luo, Xiaoyan; Chen, Kaihong; Che, Siying; Li, Haoran; Wang, Congmin

    2016-09-08

    The strong chemisorption of CO2 is always accompanied by a high absorption enthalpy, and traditional methods to reduce the absorption enthalpy lead to decreased CO2 capacities. Through the introduction of a large π-conjugated structure into the anion, a dual-tuning approach for the improvement of CO2 capture by anion-functionalized ionic liquids (ILs) resulted in a high capacity of up to 0.96 molCO2  mol-1IL and excellent reversibility. The increased capacity and improved desorption were supported by quantum chemical calculations, spectroscopic investigations, and thermogravimetric analysis. The increased capacity may be a result of the strengthened dynamic covalent bonds in these π-electron-conjugated structures through anion aggregation upon the uptake of CO2 , and the improved desorption originates from the charge dispersion of interaction sites through the large π-electron delocalization. These results provide important insights into effective strategies for CO2 capture. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Linear finite-difference bond graph model of an ionic polymer actuator

    Science.gov (United States)

    Bentefrit, M.; Grondel, S.; Soyer, C.; Fannir, A.; Cattan, E.; Madden, J. D.; Nguyen, T. M. G.; Plesse, C.; Vidal, F.

    2017-09-01

    With the recent growing interest for soft actuation, many new types of ionic polymers working in air have been developed. Due to the interrelated mechanical, electrical, and chemical properties which greatly influence the characteristics of such actuators, their behavior is complex and difficult to understand, predict and optimize. In light of this challenge, an original linear multiphysics finite difference bond graph model was derived to characterize this ionic actuation. This finite difference scheme was divided into two coupled subparts, each related to a specific physical, electrochemical or mechanical domain, and then converted into a bond graph model as this language is particularly suited for systems from multiple energy domains. Simulations were then conducted and a good agreement with the experimental results was obtained. Furthermore, an analysis of the power efficiency of such actuators as a function of space and time was proposed and allowed to evaluate their performance.

  2. Correlations of acute toxicity of metal ions and the covalent/ionic character of their bonds

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.E.; Williams, M.W.; Jacobson, K.B.; Hingerty, B.E.

    1984-01-01

    We have investigated correlations between physicochemical properties of 24 metal ions and their acute toxicity in mice and Drosophila. A high correlation for a softness parameter suggests that the relative covalent/ionic character of the bonds formed by the metal ions may be important in determining their toxicity. This hypothesis is reinforced by model calculations of metal binding to dinucleotides in water. Since the nature of bonds depends on ligand electronegativity, we searched for correlations involving this parameter. Although electronegativity is useful for interpreting some aspects of metal-ion behavior related to toxicity, it does not yield improved correlations. 8 refs., 3 figs., 1 tab.

  3. Self-Healing Gelatin Hydrogels Cross-Linked by Combining Multiple Hydrogen Bonding and Ionic Coordination.

    Science.gov (United States)

    Zhang, Guangzhao; Lv, Lei; Deng, Yonghong; Wang, Chaoyang

    2017-06-01

    Self-healing hydrogels have been studied by many researchers via multiple cross-linking approaches including physical and chemical interactions. It is an interesting project in multifunctional hydrogel exploration that a water soluble polymer matrix is cross-linked by combining the ionic coordination and the multiple hydrogen bonds to fabricate self-healing hydrogels with injectable property. This study introduces a general procedure of preparing the hydrogels (termed gelatin-UPy-Fe) cross-linked by both ionic coordination of Fe 3+ and carboxyl group from the gelatin and the quadruple hydrogen bonding interaction from the ureido-pyrimidinone (UPy) dimers. The gelatin-UPy-Fe hydrogels possess an excellent self-healing property. The effects of the ionic coordination of Fe 3+ and quadruple hydrogen bonding of UPy on the formation and mechanical behavior of the prepared hydrogels are investigated. In vitro drug release of the gelatin-UPy-Fe hydrogels is also observed, giving an intriguing glimpse into possible biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hydrogen Bonding in Ion-pair Molecules in Vapors over ionic liquids, studied by Raman Spectroscopy and ab initio Calculations

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    The hydrogen bonding interactions in selected archetypal vapor molecules formed in the gas phase over protic ionic liquids are discussed, based on Raman spectroscopy assisted with ab initio molecular orbital DFT-type quantum mechanical calculations (B3LYP with 6-311+G(d,p) basis sets) on assumed...... Ionic Liquid, To be submitted for J. Phys. Chem. A (2009)....

  5. Strong and weak hydrogen bonds in drug–DNA complexes: A ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    The metrics for strong hydrogen bonds are consistent with established trends. The geometries are variable for weak hydrogen bonds. .... 'moderate'. Jeffrey's terminology is in keeping with the biological literature where bonds such ... to minimization keeping the heavy atoms rigid. This was carried out in MOE with the MMFFx ...

  6. Strong and weak hydrogen bonds in drug–DNA complexes: A ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    The analysis was performed with an in-house software, hydrogen bond analysis tool (HBAT). In addition to strong hydrogen bonds such as O−H···O and N−H···O, the ubiquitous presence of weak hydrogen bonds such as C−H···O is implicated in molecular recognition. On an average, there are 1.4 weak hydrogen bonds.

  7. Development of the Bonding Representations Inventory to Identify Student Misconceptions about Covalent and Ionic Bonding Representations

    Science.gov (United States)

    Luxford, Cynthia J.; Bretz, Stacey Lowery

    2014-01-01

    Teachers use multiple representations to communicate the concepts of bonding, including Lewis structures, formulas, space-filling models, and 3D manipulatives. As students learn to interpret these multiple representations, they may develop misconceptions that can create problems in further learning of chemistry. Interviews were conducted with 28…

  8. Phonon driven proton transfer in crystals with short strong hydrogen bonds

    NARCIS (Netherlands)

    Fontaine-Vive, F.; Johnson, M.R.; Kearley, G.J.; Cowan, J.A.; Howard, J.A.K.; Parker, S.F.

    2006-01-01

    Recent work on understanding why protons migrate with increasing temperature in short, strong hydrogen bonds is extended here to three more organic, crystalline systems. Inelastic neutron scattering and density functional theory based simulations are used to investigate structure, vibrations, and

  9. Ether bond effects in quaternary ammonium and phosphonium ionic liquid-propanol solutions

    Science.gov (United States)

    Kishimura, Hiroaki; Kohki, Erica; Nakada, Ayumu; Tamatani, Kentaro; Abe, Hiroshi

    2018-03-01

    The liquid-liquid equilibria (LLE) of quaternary ammonium and phosphonium ionic liquid (IL)-propanol solutions were examined. The ILs contained cations with or without ether bonds; the anion in all the ILs was bis(trifluoromethanesulfonyl)imide (TFSI-). The cations without ether groups are tributylmethyl ammonium (N4441+), triethylpentyl phosphonium (P2225+), triethyloctyl phosphonium (P2228+), and tributylmethyl phosphonium (P4441+). The cations containing ether groups are N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium, (N122(2O1)+), triethyl(methoxymethyl) phosphonium (P222(1O1)+), and triethyl(2-methoxyethyl) phosphonium, (P222(2O1)+). Propanol isomer effect was observed to affect the LLEs, reflecting the geometrical factors and hydrophobicities of 1-propanol and 2-propanol. According to Raman spectroscopy, the TFSI- anion conformers in the mixtures were altered in the presence of ether bonds in the cations. The universal quasichemical (UNIQUAC) interaction parameters are consistent with significant factors affecting IL-propanol solutions, such as the type of cation (ammonium or phosphonium), ether bonds, TFSI- conformers, and propanol isomer effects.

  10. Solvation of apolar compounds in protic ionic liquids: the non-synergistic effect of electrostatic interactions and hydrogen bonds.

    Science.gov (United States)

    Sedov, I A; Magsumov, T I; Salikov, T M; Solomonov, B N

    2017-09-27

    The solvation properties of protic ionic liquids such as alkylammonium salts are still virtually uncharacterized. Both electrostatic interactions between charged particles and hydrogen bond networks in a solvent are known to hinder the solubility of apolar species. Protic ionic liquids can be a priori expected to dissolve hydrocarbons worse than aprotic ionic liquids which do not form hydrogen bonds between the ions. We measured the limiting activity coefficients of several alkanes and alkylbenzenes in propylammonium and butylammonium nitrates at 298 K. Surprisingly, we observed the tendency of higher solubility than for the same compounds in aprotic ionic liquids with a similar molar volume. The calculations of the excess Gibbs free energies using test particle insertions into the snapshots of molecular dynamics trajectories reproduced lower values in protic rather than in aprotic ionic liquids for both methane molecules and hard sphere solutes. This can be explained by the favorable solvation of apolar species in the apolar domain of nanostructured PILs. For the first time, we point out at the essential difference between the solvation properties of two types of ionic liquids and prove that it arises from the cavity formation term.

  11. Strong impact of ionic strength on the kinetics of fibrilar aggregation of bovine beta-lactoglobulin

    NARCIS (Netherlands)

    Arnaudov, L.N.; Vries, de R.J.

    2006-01-01

    We investigate the effect of ionic strength on the kinetics of heat-induced fibrilar aggregation of bovine -lactoglobulin at pH 2.0. Using in situ light scattering we find an apparent critical protein concentration below which there is no significant fibril formation for all ionic strengths studied.

  12. Hydrogen bonding in protic ionic liquids: structural correlations, vibrational spectroscopy, and rotational dynamics of liquid ethylammonium nitrate

    Science.gov (United States)

    Zentel, Tobias; Overbeck, Viviane; Michalik, Dirk; Kühn, Oliver; Ludwig, Ralf

    2018-02-01

    The properties of the hydrogen bonds in ethylammonium nitrate (EAN) are analyzed by using molecular dynamics simulations and infrared as well as nuclear magnetic resonance experiments. EAN features a flexible three-dimensional network of hydrogen bonds with moderate strengths, which makes it distinct from related triethylammonium-based ionic liquids. First, the network’s flexibility is manifested in a not very pronounced correlation of the hydrogen bond geometries, which is caused by rapid interchanges of bonding partners. The large flexibility of the network also leads to a substantial broadening of the mid-IR absorption band, with the contributions due to N–H stretching motions ranging from 2800 to 3250 cm‑1. Finally, the different dynamics are also seen in the rotational correlation of the N–H bond vector, where a correlation time as short as 16.1 ps is observed.

  13. NMR studies of strong hydrogen bonds in enzymes and in a model compound

    Science.gov (United States)

    Harris, T. K.; Zhao, Q.; Mildvan, A. S.

    2000-09-01

    Hydrogen bond lengths on enzymes have been derived with high precision (≤±0.05 Å) from both the proton chemical shifts (δ) and the fractionation factors (φ) of the proton involved and were compared with those obtained from protein X-ray crystallography. Hydrogen bond lengths derived from proton chemical shifts were obtained from a correlation of 59 O-H⋯O hydrogen bond lengths, measured by small molecule high resolution X-ray crystallography, with chemical shifts determined by solid-state NMR in the same crystals [A. McDermott, C.F. Ridenour, Encyclopedia of NMR, Wiley, Sussex, England, 1996, 3820pp]. Hydrogen bond lengths were independently obtained from fractionation factors which yield distances between the two proton wells in quartic double minimum potential functions [M.M. Kreevoy, T.M. Liang, J. Am. Chem. Soc. 102 (1980) 3315]. The high precision hydrogen bond lengths derived from their corresponding NMR-measured proton chemical shifts and fractionation factors agree well with each other and with those reported in protein X-ray structures within the larger errors (±0.2-0.8 Å) in lengths obtained by protein X-ray crystallography. The increased precision in measurements of hydrogen bond lengths by NMR has provided insight into the contributions of short, strong hydrogen bonds to catalysis for several enzymes including ketosteroid isomerase, triosephosphate isomerase, and serine proteases. The O-H⋯O hydrogen bond length derived from the proton chemical shift in a model dihydroxy-naphthalene compound in aqueous solution agreed well with lengths of such hydrogen bonds determined by high resolution, small molecule X-ray diffraction.

  14. Strong and weak hydrogen bonds in drug–DNA complexes: A ...

    Indian Academy of Sciences (India)

    ... in the list of 70 complexes mentioned above, and 19 inhibitors for which the drug–DNA complex crystal structures are unknown. The virtual geometries so generated correlate well with published activities for these 26 inhibitors, justifying our assumption that strong and weak hydrogen bonds are optimized in the active site.

  15. Vibrational signatures of cation-anion hydrogen bonding in ionic liquids: a periodic density functional theory and molecular dynamics study.

    Science.gov (United States)

    Mondal, Anirban; Balasubramanian, Sundaram

    2015-02-05

    Hydrogen bonding in alkylammonium based protic ionic liquids was studied using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Normal-mode analysis within the harmonic approximation and power spectra of velocity autocorrelation functions were used as tools to obtain the vibrational spectra in both the gas phase and the crystalline phases of these protic ionic liquids. The hydrogen bond vibrational modes were identified in the 150-240 cm(-1) region of the far-infrared (far-IR) spectra. A blue shift in the far-IR mode was observed with an increasing number of hydrogen-bonding sites on the cation; the exact peak position is modulated by the cation-anion hydrogen bond strength. Sub-100 cm(-1) bands in the far-IR spectrum are assigned to the rattling motion of the anions. Calculated NMR chemical shifts of the acidic protons in the crystalline phase of these salts also exhibit the signature of cation-anion hydrogen bonding.

  16. Strongly Phosphorescent Transition Metal π-Complexes of Boron-Boron Triple Bonds.

    Science.gov (United States)

    Braunschweig, Holger; Dellermann, Theresa; Dewhurst, Rian D; Hupp, Benjamin; Kramer, Thomas; Mattock, James D; Mies, Jan; Phukan, Ashwini K; Steffen, Andreas; Vargas, Alfredo

    2017-04-05

    Herein are reported the first π-complexes of compounds with boron-boron triple bonds with transition metals, in this case Cu I . Three different compounds were isolated that differ in the number of copper atoms bound to the BB unit. Metalation of the B-B triple bonds causes lengthening of the B-B and B-C NHC bonds, as well as large upfield shifts of the 11 B NMR signals, suggesting greater orbital interactions between the boron and transition metal atoms than those observed with recently published diboryne/alkali metal cation complexes. In contrast to previously reported fluorescent copper(I) π-complexes of boron-boron double bonds, the Cu n -π-diboryne compounds (n = 2, 3) show intense phosphorescence in the red to near-IR region from their triplet excited states, according to their microsecond lifetimes, with quantum yields of up to 58%. While the Cu diborene bond is dominated by electrostatic interactions, giving rise to S 1 and T 1 states of pure IL(π-π*) nature, DFT studies show that the Cu I π-complexes of diborynes reported herein exhibit enhanced metal d orbital contributions to HOMO and HOMO-1, which results in S 1 and T 1 having significant MLCT character, enabling strong spin-orbit coupling for highly efficient intersystem-crossing S 1 → T n and phosphorescence T 1 → S 0 .

  17. Probing electron density of H-bonding between cation-anion of imidazolium-based ionic liquids with different anions by vibrational spectroscopy.

    Science.gov (United States)

    Gao, Yan; Zhang, Liqun; Wang, Yong; Li, Haoran

    2010-03-04

    Attenuated total reflection infrared spectroscopy and density functional theory calculation have been employed to study the spectral properties of imidazolium-based ionic liquids (ILs) with different anions. ILs based on 1-butyl-3-methylimidazolium cation with different anions, OH(-), CF(3)CO(2)(-), HSO(4)(-), H(2)PO(4)(-), Cl(-), PF(6)(-), and BF(4)(-), are investigated in the present work. It has been shown that the C(2)-H stretching vibration of the imidazolium ring is closely related to the electron density of H-bonding between the two closest cations and anions for pure ILs. The electron density of H-bonding between cation and anion with different anions decreases in the order [OH](-) > [H(2)PO(4)](-) > [HSO(4)](-) > [CF(3)CO(2)](-) > [Cl](-) > [BF(4)](-) > [PF(6)](-). For aqueous ILs, with increasing water content, the aromatic C-H stretching vibration of the imidazolium cation showed systematic blue-shifts. Especially for BmimOH, the nu(C(2))(-H) undergoes a drastic blue-shift by 58 cm(-1), suggesting that the formation of the strong hydrogen bonds O-H...O may greatly weaken the electron density of H-bonding between the cation and anion of ILs.

  18. A dense and strong bonding collagen film for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Sheng; Li, Hejun, E-mail: lihejun@nwpu.edu.cn; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-30

    Graphical abstract: - Highlights: • Significantly enhancement of biocompatibility on C/C composites by preparing a collagen film. • The dense and continuous collagen film had a strong bonding strength with C/C composites after dehydrathermal treatment (DHT) crosslink. • Numerous oxygen-containing functional groups formed on the surface of C/C composites without matrix damage. - Abstract: A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H{sub 2}O{sub 2} solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  19. Intermolecular and very strong intramolecular C-SeO/N chalcogen bonds in nitrophenyl selenocyanate crystals.

    Science.gov (United States)

    Wang, Hui; Liu, Ju; Wang, Weizhou

    2018-02-14

    Single-crystal X-ray diffraction reveals that polymorphic ortho-nitrophenyl selenocyanate (o-NSC, crystals 1a and 1b) and monomorphic para-nitrophenyl selenocyanate (p-NSC, crystal 2) crystals are all stabilized mainly by intermolecular and very strong intramolecular C-SeO/N chalcogen bonds, as well as by other different interactions. Thermogravimetric (TG) and differential scanning calorimetry thermogram (DSC) analyses show that the starting decomposition temperatures and melting points of the three crystals are different, following the order 1b > 1a > 2, which is consistent with the structural characteristics of the crystals. In addition, atoms in molecules (AIM) and natural bond orbital (NBO) analyses indicate that the total strengths of the C-SeO and C-SeN chalcogen bonds decrease in the order 1b > 1a > 2. This study could be significant for engineering functional crystals based on robust C-SeO and C-SeN chalcogen bonds, and for designing drugs containing selenium as well as understanding their interaction in biosystems.

  20. Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography.

    Science.gov (United States)

    Qiao, Lizhen; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2015-05-29

    Two tricationic ionic liquids were prepared and then bonded onto the surface of supporting silica materials through "thiol-ene" click chemistry as new stationary phases for high-performance liquid chromatography. The obtained columns of tricationic ionic liquids were evaluated respectively in the reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode, and possess ideal column efficiency of 80,000 plates/m in the RPLC mode with naphthalene as the test solute. The tricationic ionic liquid stationary phases exhibit good hydrophobic and shape selectivity to hydrophobic compounds, and RPLC retention behavior with multiple interactions. In the HILIC mode, the retention and selectivity were evaluated through the efficient separation of nucleosides and bases as well as flavonoids, and the typical HILIC retention behavior was demonstrated by investigating retention changes of hydrophilic solutes with water volume fraction in mobile phase. The results show that the tricationic ionic liquid columns possess great prospect for applications in analysis of hydrophobic and hydrophilic samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Double salt ionic liquids based on 1-ethyl-3-methylimidazolium acetate and hydroxyl-functionalized ammonium acetates: strong effects of weak interactions.

    Science.gov (United States)

    Pereira, Jorge F B; Barber, Patrick S; Kelley, Steven P; Berton, Paula; Rogers, Robin D

    2017-10-11

    The properties of double salt ionic liquids based on solutions of cholinium acetate ([Ch][OAc]), ethanolammonium acetate ([NH 3 (CH 2 ) 2 OH][OAc]), hydroxylammonium acetate ([NH 3 OH][OAc]), ethylammonium acetate ([NH 3 CH 2 CH 3 ][OAc]), and tetramethylammonium acetate ([N(CH 3 ) 4 ][OAc]) in 1-ethyl-3-methylimidazolium acetate ([C 2 mim][OAc]) were investigated by NMR spectroscopy and X-ray crystallography. Through mixture preparation, the solubility of [N(CH 3 ) 4 ][OAc] is the lowest, and [Ch][OAc] shows a 3-fold lower solubility than the other hydroxylated ammonium acetate-based salts in [C 2 mim][OAc] at room temperature. NMR and X-ray crystallographic studies of the pure salts suggest that the molecular-level mechanisms governing such miscibility differences are related to the weaker interactions between the -NH 3 groups and [OAc] - , even though three of these salts possess the same strong 1 : 1 hydrogen bonds between the cation -OH group and the [OAc] - ion. The formation of polyionic clusters between the anion and those cations with unsatisfied hydrogen bond donors seems to be a new tool by which the solubility of these salts in [C 2 mim][OAc] can be controlled.

  2. Hydrogen Bonding, (1)H NMR, and Molecular Electron Density Topographical Characteristics of Ionic Liquids Based on Amino Acid Cations and Their Ester Derivatives.

    Science.gov (United States)

    Rao, Soniya S; Bejoy, Namitha Brijit; Gejji, Shridhar P

    2015-08-13

    Amino acid ionic liquids (AAILs) have attracted significant attention in the recent literature owing to their ubiquitous applications in diversifying areas of modern chemistry, materials science, and biosciences. The present work focuses on unraveling the molecular interactions underlying AAILs. Electronic structures of ion pairs consisting of amino acid cations ([AA(+)], AA = Gly, Ala, Val, Leu, Ile, Pro, Ser, Thr) and their ester substituted derivatives [AAE(+)] interacting with nitrate anion [NO3(-)] have been obtained from the dispersion corrected M06-2x density functional theory. The formation of ion pair is accompanied by the transfer of proton from quaternary nitrogen to anion facilitated via hydrogen bonding. The [Ile], [Pro], [Ser], and [Thr] and their esters reveal relatively strong inter- as well as intramolecular hydrogen-bonding interactions. Consequently, the hierarchy in binding energies of [AA][NO3] ion pairs and their ester analogues turns out to be [Gly] > [Ala] > [Ser] ∼ [Val] ∼ [Ile] > [Leu] ∼ [Thr] > [Pro]. The work underlines how the interplay of intra- as well as intermolecular hydrogen-bonding interactions in [AA]- and [AAE]-based ILs manifest in their infrared and (1)H NMR spectra. Substitution of -OCH3 functional group in [AA][NO3] ILs lowers the melting point attributed to weaker hydrogen-bonding interactions, making them suitable for room temperature applications. As opposed to gas phase structures, the presence of solvent (DMSO) does not bring about any proton transfer in the ion pairs or their ester analogues. Calculated (1)H NMR chemical shifts of the solvated structures agree well with those from experiment. Correlations of decomposition temperatures in [AA]- and [AAE]-based ILs with binding energies and electron densities at the bond critical point(s) in molecular electron density topography, have been established.

  3. Observation of neutral, ionic and intermediate states in lamotrigine-acid complexes- inference from crystallographic bond geometries

    Science.gov (United States)

    Sridhar, Balasubramanian; Nanubolu, Jagadeesh Babu; Ravikumar, Krishnan

    2014-09-01

    The anticonvulsant and antiepileptic drug lamotrigine was crystallized with three aromatic acids viz., 2,5-dihydroxybenzoic acid (I), para-toluenesulfonic acid (II) and 4-bromobenzoic acid (III), with the objective of understanding the formation of a salt or co-crystal in the solid state. Single crystal X-ray diffraction and FT-infrared spectroscopic measurements were carried out for all of them. The asymmetric units of I and II contain two lamotriginium cations and two anions (2,5-dihydroxybenzoate in I and para-toluenesulfonate in II), respectively, and additionally II contains one water molecule. The asymmetric unit of III comprises one lamotriginium cation, one 4-bromobenzoate anion and one dimethylformamide (DMF) solvate. In all three complexes the protonation occurs at the N2 atom of the triazine ring. In I and II, the complete proton transfer is observed. However in III, only partial proton transfer is inferred from O to N because of the acidic H atom disorder. The protonation of lamotrigine is also confirmed by the unambiguous location of H atom from the difference Fourier map and as well as from the geometrical bond analysis. Further, various lamotrigine-acid complexes from the CSD were analyzed to establish a correlation between different ionization states (neutral, intermediate and ionic) and changes in the geometrical parameters. The bond angles of triazine ring in lamotrigine and bond distances of carboxylic acid are found to be the best descriptors for distinguishing all three ionization states, whereas, the bond angles of carboxylic acid have to failed to distinguish intermediate state from ionic. From hydrogen bonding point of view, only the lamotrigine-acid heterosynthon is observed in I and II, whereas in III, both lamotrigine-lamotrigine homosynthon and lamotrigine-acid heterosynthon are observed. In I, the cation-anion and anion-anion interactions form a supramolecular two-dimension hydrogen-bonded square grid network, while the water molecule

  4. Thermodynamics of hydrogen bonding and van der Waals interactions of organic solutes in solutions of imidazolium based ionic liquids: “Structure-property” relationships

    International Nuclear Information System (INIS)

    Varfolomeev, Mikhail A.; Khachatrian, Artashes A.; Akhmadeev, Bulat S.; Solomonov, Boris N.

    2016-01-01

    Highlights: • Solution enthalpies of organic solutes in imidazolium based ionic liquids were measured. • van der Waals interactions scale of imidazolium based ionic liquids was proposed. • Enthalpies of solvation of organic solutes in ionic liquids were determined. • Hydrogen bond enthalpies of organic solutes with ionic liquids were calculated. • Relationships between structure of ionic liquids and thermochemical data were obtained. - Abstract: In the present work thermochemistry of intermolecular interactions of organic compounds in solutions of imidazolium based ionic liquids (ILs) has been studied using solution calorimetry method. Enthalpies of solution at infinite dilution of non-polar (alkanes, aromatic hydrocarbons) and polar (alcohols, amides, and etc.) organic solutes in two ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium trifluoromethanesulfonate were measured at 298.15 K. The scale of van der Waals interactions of imidazolium based ILs has been proposed on the basis of solution enthalpies of n-alkanes in their media. The effect of the cation and anion structure of ILs on the enthalpies of solvation was analyzed. Enthalpies of hydrogen bonding of organic solutes with imidazolium based ILs were determined. It has been shown that these values are close to zero for proton acceptor solutes. At the same time, enthalpies of hydrogen bonding of proton donor solutes with ionic liquids are increased depending the anion: tetrafluoroborate ≈ bis(trifluoromethylsulfonyl)imide < 2-(2-methoxyethoxy)ethyl sulfate < trifluoromethanesulfonate. Enthalpies of van der Waals interactions and hydrogen bonding in the solutions of imidazolium based ionic liquids were compared with the same data for molecular solvents.

  5. Charge-Shift Corrected Electronegativities and the Effect of Bond Polarity and Substituents on Covalent-Ionic Resonance Energy.

    Science.gov (United States)

    James, Andrew M; Laconsay, Croix J; Galbraith, John Morrison

    2017-07-13

    Bond dissociation energies and resonance energies for H n A-BH m molecules (A, B = H, C, N, O, F, Cl, Li, and Na) have been determined in order to re-evaluate the concept of electronegativity in the context of modern valence bond theory. Following Pauling's original scheme and using the rigorous definition of the covalent-ionic resonance energy provided by the breathing orbital valence bond method, we have derived a charge-shift corrected electronegativity scale for H, C, N, O, F, Cl, Li, and Na. Atomic charge shift character is defined using a similar approach resulting in values of 0.42, 1.06, 1.43, 1.62, 1.64, 1.44, 0.46, and 0.34 for H, C, N, O, F, Cl, Li, and Na, respectively. The charge-shift corrected electronegativity values presented herein follow the same general trends as Pauling's original values with the exception of Li having a smaller value than Na (1.57 and 1.91 for Li and Na respectively). The resonance energy is then broken down into components derived from the atomic charge shift character and polarization effects. It is then shown that most of the resonance energy in the charge-shift bonds H-F, H 3 C-F, and Li-CH 3 and borderline charge-shift H-OH is associated with polarity rather than the intrinsic atomic charge-shift character of the bonding species. This suggests a rebranding of these bonds as "polar charge-shift" rather than simply "charge-shift". Lastly, using a similar breakdown method, it is shown that the small effect the substituents -CH 3 , -NH 2 , -OH, and -F have on the resonance energy (<10%) is mostly due to changes in the charge-shift character of the bonding atom.

  6. Nonuniform Internal Structure of Fibrin Fibers: Protein Density and Bond Density Strongly Decrease with Increasing Diameter

    Directory of Open Access Journals (Sweden)

    Wei Li

    2017-01-01

    Full Text Available The major structural component of a blood clot is a meshwork of fibrin fibers. It has long been thought that the internal structure of fibrin fibers is homogeneous; that is, the protein density and the bond density between protofibrils are uniform and do not depend on fiber diameter. We performed experiments to investigate the internal structure of fibrin fibers. We formed fibrin fibers with fluorescently labeled fibrinogen and determined the light intensity of a fiber, I, as a function of fiber diameter, D. The intensity and, thus, the total number of fibrin molecules in a cross-section scaled as D1.4. This means that the protein density (fibrin per cross-sectional area, ρp, is not homogeneous but instead strongly decreases with fiber diameter as D-0.6. Thinner fibers are denser than thicker fibers. We also determined Young’s modulus, Y, as a function of fiber diameter. Y decreased strongly with increasing D; Y scaled as D-1.5. This implies that the bond density, ρb, also scales as D-1.5. Thinner fibers are stiffer than thicker fibers. Our data suggest that fibrin fibers have a dense, well-connected core and a sparse, loosely connected periphery. In contrast, electrospun fibrinogen fibers, used as a control, have a homogeneous cross-section.

  7. Bond Lengths and Bond Strengths in Weak and Strong Chemisorption: N2, CO, and CO/H on Nickel Surfaces

    OpenAIRE

    Sayago, David I.; Hoeft, Jon T.; Polcik, Martin; Kittel, Martin; Toomes, Rachel L.; Robinson, J.; Woodruff, David Phillip; Pascal, Mathieu; Lamont, Christine L.A.; Nisbet, Gareth

    2003-01-01

    New chemical-state-specific scanned-energy mode photoelectron diffraction experiments and density functional theory calculations, applied to CO, CO/H, and N2 adsorption on Ni(100), show that chemisorption bond length changes associated with large changes in bond strength are small, but those associated with changes in bond order are much larger, and are similar to those found in molecular systems. Specifically, halving the bond strength of atop CO to Ni increases the Ni-C distance by 0.06 Å...

  8. About angular dependence of intensity of absent-minded radiation in approach of the strong dissipation of colliding ionic-sound waves

    International Nuclear Information System (INIS)

    Solikhov, D.K.

    2015-01-01

    Present article is devoted to angular dependence of intensity of absent-minded radiation in approach of the strong dissipation of colliding ionic-sound waves. The operation angular dependence of dimensionless of intensity of absent-minded radiation in two-dimensional field of localisation of a wave of a rating in approach of the strong dissipation of passers is ionic-sound waves is viewed. (author)

  9. Electrophilic reactions at single bonds. Ionic chlorination of hydrocarbons catalyzed by silica gel

    International Nuclear Information System (INIS)

    Gonzalez, A.G.; La Fuente, G. de; Trujillo, J.

    1985-01-01

    Chlorination of adamantane, bicyclo(3.3.1)nonane, bicyclo(2.2.2)octane, bicyclo(3.2.1)octane, norbornane and 2,5-dimethylhexane, absorbed on silica gel with chlorine, was studied. High yield of ionic chlorination at bridgehead carbon was achieved with the less-strained hydrocarbons. (author)

  10. Micro- and nanophase separations in hierarchical self-assembly of strongly amphiphilic block copolymer-based ionic supramolecules

    DEFF Research Database (Denmark)

    Ayoubi, Mehran Asad; Zhu, Kaizheng; Nyström, Bo

    2013-01-01

    By a selective complexation between different alkyltrimethylammonium amphiphiles (C8, C12 and C16) and three different diblock copolymer systems of poly(styrene)-b-poly(methacrylic acid) at various grafting densities X (X = number of alkyl chains per acidic group of the poly(methacrylic acid) PMAA...... block), a class of ionic supramolecules are successfully synthesized whose molecular architecture consists of a poly(styrene) PS block (Linear block) covalently connected to a strongly amphiphilic comb-like block (AmphComb block), i.e. Linear-b-AmphComb. In the melt state, these ionic supramolecules can...... show simultaneous microphase (between Linear and AmphComb blocks) and nanophase (within the AmphComb blocks) separations. This leads to the formation of various structure-in-structure two-scale hierarchical self-assemblies, including S-in-SLL, S-in-SBCC, S-in-C, S-in-L and C-in-L, where S, SLL, SBCC, C...

  11. Ultra-Stretchable Ionic Nanocomposites: From Dynamic Bonding to Multi-Responsive Behavior

    KAUST Repository

    Odent, Jeremy

    2017-06-12

    Although multi-responsive materials have the potential to revolutionize a wide spectrum of technologies, the design of systems that combine a range of responses to a variety of different external changes without the associated property trade-offs has remained elusive. We herein demonstrate a new family of multi-responsive nanocomposites that leverage the dynamic and reversible nature of electrostatic interactions present in ionic systems with the reinforcement ability of nanoparticles in nanocomposites. This new design leads to a unique property profile that combines simultaneous improvements in stiffness, toughness and extensibility. In addition to their exceptional stretchability, the new, ionic nanocomposites exhibit unique strain-dependent behavior (i.e. the deformation increases with increasing strain rate) and return to normal state after deformation including shape-memory and scratching recovery.

  12. Analysis of the radical hydrogen transfer pathway for cleaving strong bonds in coal

    Energy Technology Data Exchange (ETDEWEB)

    Autrey, S.T.; Camaioni, D.M.; Ferris, K.F.; Franz, J.A.

    1993-09-01

    Hydrogen transfer processes involving radical intermediates are of key importance in the liquefaction of coal. While the primary function of donor solvents is to transfer H{lg_bullet} to coal-derived radicals that form when weak bonds are cleaved thermolytically, growing evidence suggests that the donor solvent can play a role in promoting cleavage of strong {alpha}-bonds. McMillen and Malhotra have explained the results in terms of a single-step mechanism referred to as radical H-transfer (RHT). Mechanistic kinetic models have been used to suggest the importance of RHT pathways in anthracene- and pyrene-based solvent systems. However, we question the reliability of these approaches because little experimental data exists to support the 16.5 kcal/mol intrinsic barriers they assume for RHT reactions. Unambiguous evidence for RHT is very difficult to obtain experimentally because at the temperatures required to activate the RHT reaction, a suite of multistep reactions can occur, which yield the same products, i.e. H-elimination from hydroaryl radicals followed by ipso addition. For this reason, we have sought to gain insight to barrier heights for RHT from theory. This paper reports our use of Marcus theory in combination with ab initio and semiempirical molecular orbital methods to show how the intrinsic barriers for RHT reactions depend on structural and thermodynamic properties of the reacting partners. In addition, reactions thought to be mediated by RHT are reexamined using mechanistic kinetic modeling (MKM) to determine the extent to which these reactions can be explained by conventional pathways.

  13. Analytic properties of the OCP and ionic mixtures in the strongly coupled fluid state

    International Nuclear Information System (INIS)

    DeWitt, H.E.

    1993-01-01

    Exact results for the Madelung constants and first order anharmonic energies are given for the inverse power potentials with the Coulomb potential as the softest example. Similar exact results are obtained using the analysis of Rosenfeld on the Γ → ∞ limit for the OCP internal energy, direct correlation function, screening function, and bridge functions. Knowing these exact limits for the fluid phase of the OCP allows one to determine the nature of the thermal corrections to the strongly coupled results. Solutions of the HNC equation modified with the hard sphere bridge function give an example

  14. Associations Between Participant Ratings of PREP for Strong Bonds and Marital Outcomes 1 Year Postintervention.

    Science.gov (United States)

    Allen, Elizabeth S; Post, Kristina M; Markman, Howard J; Rhoades, Galena K; Stanley, Scott M

    2017-07-01

    After completing a relationship education program, collecting participant evaluations of the program is common practice. These are generally used as an index of "consumer satisfaction" with the program, with implications for feasibility and quality. Rarely have these ratings been used as predictors of changes in marital quality, although such feedback may be the only data providers collect or have immediate access to when considering the success of their efforts. To better understand the utility of such ratings to predict outcomes, we evaluated links between participant ratings and changes in self-reported marital satisfaction and communication scores one year later for a sample of 191 Army couples who had participated in a relationship education program delivered by Army chaplains (PREP for Strong Bonds). Overall ratings of general satisfaction with the program and the leader did not predict changes in marital outcomes one year later, whereas higher ratings of how much was learned, program helpfulness, increased similarity in outlook regarding Army life, and helpfulness of communication skills training predicted greater change in communication skills one year later. Higher ratings of items reflecting intent to invest more time in the relationship, and increased confidence in constructive communication and working as a team with the spouse predicted greater increases in both marital satisfaction and communication skills one year later. The constructs of intention and confidence (akin to perceived behavioral control) suggest that the Theory of Planned Behavior may be particularly useful when considering which Army couples will show ongoing benefit after relationship education.

  15. Strongly perturbed Rydberg series originating from KrII 4p45s ionic states

    International Nuclear Information System (INIS)

    Petrov, I.D.; Demekhin, Ph.V.; Lagutin, B.M.; Sukhorukov, V.L.; Kammer, S.; Mickat, S.; Schartner, K.-H.; Ehresmann, A.; Klumpp, S.; Werner, L.; Schmoranzer, H.

    2005-01-01

    Photoionization cross-sections for the 4p 4 ( 3 P) 5s 4 P 5/2,3/2,1/2 satellites and 4s, 4p main levels of Kr II in the exciting-photon energy range between 28.48 and 28.70-bar eV with extremely narrow bandwidth (1.7-bar meV at 28.55-bar eV) of the monochromatized synchrotron radiation were measured utilizing the photon-induced fluorescence spectroscopy. The observed resonances were assigned to the 4p 4 5s( 4 P 1/2 )n p and 4p 4 5s( 2 P 3/2 )n p Rydberg series on the basis of calculations performed with taking into account core relaxation and interaction between many resonances and many continua. The calculation shows that the resonance structure in the photoionization channels exists due to 4p 4 ( 1 D) 5s 2 D 5/2 6p 3/2 promoter state which also strongly perturbs the above Rydberg series.

  16. Influence of hydrogen bond accepting ability of anions on the adsorption performance of ionic liquid surface molecularly imprinted polymers.

    Science.gov (United States)

    Zhu, Guifen; Gao, Xia; Wang, Xiaolong; Wang, Jianji; Fan, Jing

    2018-01-12

    To illuminate the influence mechanism of anionic structure of ionic liquids (ILs) on the adsorption performance of surface molecularly imprinted polymers (MIPs), in this work, six newly designed MIPs were prepared on the surface of amino-poly(styrene-divinylbenzene) particles by using imidazolium ILs with the same cation [C 4 mim] + but different anions (Cl, CH 3 SO 3 , PF 6 , BF 4 , C 4 F 7 O 2 , C 4 F 9 SO 3 ) as template molecules, methacrylic acid as functional monomer, and ethylene dimethacrylate as cross-linker. The resulting MIP materials were characterized by IR and SEM, and the influence of hydrogen bond accepting ability of anions on the adsorption performance of the MIPs for the ILs was investigated in acetonitrile. It was found that adsorption capacity of the MIPs towards the ILs decreased in the order MIP [C4mim][Cl]  > MIP [C4mim][C4F7O2]  ≥ MIP [C4mim][BF4] and MIP [C4mim][CH3SO3]  > MIP [C4mim][C4F9SO3]  > MIP [C4mim][PF6] , which is in good agreement with the ability of anions of the ILs to form hydrogen bonds. Ultraviolet, 1 H-NMR and 35 Cl-NMR spectroscopy was then used to study the interactions of anions of the ILs with the functional monomer. It was found that the hydrogen bond interaction between anions of the ILs and acidic proton of the functional monomer was the main driving force for the high adsorption selectivity of the imprinted polymers, and the stronger hydrogen bond interaction indicates higher binding capacity and higher selectivity of the polymers towards the ILs. It was also verified that the ILs with stronger hydrogen bond accepting ability of anions could be selectively extracted by the corresponding IL-MIPs. These results may provide new insight into the recognition mechanism of MIPs for ILs, and are also useful for the rational design of this new class of imprinting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Intramolecular interactions in dimedone and phenalen-1,3-dione adducts of 2(4)-pyridinecarboxaldehyde: Enol-enol and ring-chain tautomerism, strong hydrogen bonding, zwitterions

    Science.gov (United States)

    Sigalov, Mark; Shainyan, Bagrat; Krief, Pnina; Ushakov, Igor; Chipanina, Nina; Oznobikhina, Larisa

    2011-12-01

    The 2:1 adducts of dimedone and phenalen-1,3-dione with 2- and 4-pyridine carboxaldehyde, in spite of similar chemical behavior of their diketone precursors, have quite different tautomeric structure both in solid state and in solution. 2,2'-(Pyridin-2-ylmethanediyl)-bis(5,5-dimethyl-cyclohexane-1,3-dione) 5 exists as an equilibrium mixture of its dienol tautomer 5а' with two intramolecular H-bonds ОН⋯О dbnd С and OH ⋯N and the epimeric products of its reversible cyclization, that is, 4a-hydroxy-9-(pyridin-2-yl)-2,3,4,4a,6,7,9,9a-octahydro-5-H-xanthene-1,8-diones 5b (major) and 5c (minor), the latter appears only in polar media like DMSO. 2,2'-(Pyridin-4-ylmethanediyl)bis(5,5-dimethylcyclohexane-1,3-dione) 4, like other 2:1 dimedone-aldehyde adducts, both in solution and in solid state exists as dienol with two intramolecular H-bonds ОН ⋯О dbnd С. 4-[Bis(1H-phenalen-1,3(2H)-dione)methyl]pyridine 6 in nonpolar media like chloroform exists as dienol, but crystallizes from this solvent as zwitter-ion 6b with one very strong ionic hydrogen bond O sbnd H ⋯O sbnd and protonated pyridine nitrogen. The same zwitterion is formed in polar media (DMSO). For 2-[bis(1H-phenalen-1,3(2H)-dione)-methyl]-pyridine 7, fast exchange between its dienol tautomer 7a and zwitter-ion 7b occurs even in CD2Cl2, whereas in DMSO the equilibrium shifts towards zwitter-ion 7b.

  18. Contributions of the Model of Modelling Diagram to the Learning of Ionic Bonding: Analysis of A Case Study

    Science.gov (United States)

    Mendonça, Paula Cristina Cardoso; Justi, Rosária

    2011-08-01

    Current proposals for science education recognise the importance of students' involvement in activities aimed at favouring the understanding of science as a human, dynamic and non-linear construct. Modelling-based teaching is one of the alternatives through which to address such issues. Modelling-based teaching activities for ionic bonding were introduced. This topic was chosen because of both the high incidence of students' alternative conceptions and its abstract nature, which justify the need for understanding complex models. The diagram Model of Modelling was used as a theoretical construct during the development of the teaching activities, which were implemented in a Brazilian medium level public school class (16-18 years old students). The data collected were the written material and models produced by the students, the content-knowledge tests, the video-recording of the lessons, and the observations and field notes of both the teacher and the researcher who observed the lessons. The analysis of such data enabled the production of case studies for each of the student groups. In this paper, we analyse one of the case studies, looking for evidence about the way that specific elements of the teaching strategy supported students' learning. It supported our belief in the use of the Model of Modelling diagram as a theoretical construct with which to develop and analyse modelling-based teaching activities.

  19. Rotational and translational dynamics and their relation to hydrogen bond lifetimes in an ionic liquid by means of NMR relaxation time experiments and molecular dynamics simulation

    Science.gov (United States)

    Strate, Anne; Neumann, Jan; Overbeck, Viviane; Bonsa, Anne-Marie; Michalik, Dirk; Paschek, Dietmar; Ludwig, Ralf

    2018-05-01

    We report a concerted theoretical and experimental effort to determine the reorientational dynamics as well as hydrogen bond lifetimes for the doubly ionic hydrogen bond +OH⋯O- in the ionic liquid (2-hydroxyethyl)trimethylammonium bis(trifluoromethylsulfonyl)imide [Ch][NTf2] by using a combination of NMR relaxation time experiments, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. Due to fast proton exchange, the determination of rotational correlation times is challenging. For molecular liquids, 17O-enhanced proton relaxation time experiments have been used to determine the rotational correlation times for the OH vectors in water or alcohols. As an alternative to those expensive isotopic substitution experiments, we employed a recently introduced approach which is providing access to the rotational dynamics from a single NMR deuteron quadrupolar relaxation time experiment. Here, the deuteron quadrupole coupling constants (DQCCs) are obtained from a relation between the DQCC and the δ1H proton chemical shifts determined from a set of DFT calculated clusters in combination with experimentally determined proton chemical shifts. The NMR-obtained rotational correlation times were compared to those obtained from MD simulations and then related to viscosities for testing the applicability of popular hydrodynamic models. In addition, hydrogen bond lifetimes were derived, using hydrogen bond population correlation functions computed from MD simulations. Here, two different time domains were observed: The short-time contributions to the hydrogen lifetimes and the reorientational correlation times have roughly the same size and are located in the picosecond range, whereas the long-time contributions decay with relaxation times in the nanosecond regime and are related to rather slow diffusion processes. The computed average hydrogen bond lifetime is dominated by the long-time process, highlighting the importance and longevity of

  20. Effect of inter-fibre bonding on the fracture of fibrous networks with strong interactions

    DEFF Research Database (Denmark)

    Goutianos, Stergios; Mao, Rui; Peijs, Ton

    2017-01-01

    Abstract The mechanical response of cellulose nanopaper composites is investigated using a three-dimensional (3D) finite element fibrous network model with focus on the effect of inter-fibre bonds. It is found that the Young’s modulus and strength, for fixed fibre properties, are mainly controlle...

  1. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds

    Science.gov (United States)

    Guan, Zhibin; Lu, Yixuan

    2015-09-15

    A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact with a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.

  2. How strong is it? The interpretation of force and compliance constants as bond strength descriptors.

    Science.gov (United States)

    Brandhorst, Kai; Grunenberg, Jörg

    2008-08-01

    Knowledge about individual covalent or non-covalent bond strengths is the Holy Grail of many modern molecular sciences. Recent developments of new descriptors for such interaction strengths based on potential constants are summarised in this tutorial review. Several publications for and against the use of compliance matrices (inverse force constants matrix) have appeared in the literature in the last few years. However the mathematical basis for understanding, and therefore interpreting, compliance constants is still not well developed. We therefore summarise the theoretical foundations and point to the advantages and disadvantages of the use of force constants versus compliance constants for the description of both non-covalent and covalent interactions.

  3. Microscopic models for proton transfer in water and strongly hydrogen-bonded complexes with a single-well proton potential

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    A new mechanism and formalism for proton transfer in donor-acceptor complexes with long hydrogen bonds introduced recently [1], is applied to a proton transfer in liquid water. "Structural diffusion" of hydroxonium ions is regarded as totally adiabatic process, with synchronous hindered translation...... of two closest water molecules to and from the reaction complex as crucial steps. The water molecules induce a "gated" shift of the proton from the donor to the acceptor in the double-well potential with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor...... and acceptor. The short-range and long-range proton transfer as "structural diffusion" of Zundel complexes is also considered. The theoretical formalism is illustrated with the use of Morse, exponential, and harmonic molecular potentials. This approach is extended to proton transfer in strongly hydrogen...

  4. Solid-State17O NMR Reveals Hydrogen-Bonding Energetics: Not All Low-Barrier Hydrogen Bonds Are Strong.

    Science.gov (United States)

    Lu, Jiasheng; Hung, Ivan; Brinkmann, Andreas; Gan, Zhehong; Kong, Xianqi; Wu, Gang

    2017-05-22

    While NMR and IR spectroscopic signatures and structural characteristics of low-barrier hydrogen bond (LBHB) formation are well documented in the literature, direct measurement of the LBHB energy is difficult. Here, we show that solid-state 17 O NMR spectroscopy can provide unique information about the energy required to break a LBHB. Our solid-state 17 O NMR data show that the HB enthalpy of the O⋅⋅⋅H⋅⋅⋅N LBHB formed in crystalline nicotinic acid is only 7.7±0.5 kcal mol -1 , suggesting that not all LBHBs are particularly strong. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Reorientational dynamics of charged and neutral solutes in 1-alkyl-3-methylimidazoilum bis(trifluoromethylsulfonyl)imide ionic liquids: Realization of ionic component of hydrogen bond

    Science.gov (United States)

    Sahu, Prabhat Kumar; Sarkar, Moloy

    2016-05-01

    Role of electrostatic interaction on rotational relaxation dynamics of two charged solutes, sodium 8-methoxypyrene-1,3,6-trisulfonate (MPTS), 1-pyrenesulfonic acid sodium salt (1-PSA) and neutral perylene has been studied in two structurally similar but chemically distinguishable imidazolium-based ionic liquids (ILs). Analysis of the results reveals that rotational relaxation of MPTS is significantly hindered even in the IL where acidic C2-H of the imidazolium moiety is replaced by the methyl group. Moreover, rotational relaxation of neutral perylene is found to be faster than mononegative 1-PSA which is again observed to be faster than that of tri-negative MPTS in the same ILs.

  6. Functional ionic liquids

    International Nuclear Information System (INIS)

    Baecker, Tobias

    2012-01-01

    In the thesis at hand, new functional ionic liquids were investigated. Main focus was attended to their structure property relations and the structural features leading to a decrease of the melting point. New compounds of the type 1-butyl-3-methylimidazolium tris(N,Ndialkyldithiocarbamato) uranylate with variously substituated dithiocarbamato ligands were synthesized and characterized. Ligands with asymmetrical substitution pattern proved to be most suitable for ionic liquid formation. The single-crystal X-ray structures revealed the interactions in the solid state. Here, the first spectroscopic investigation of the U-S bond in sulfur donated uranyl complexes, up to now only observed in single-crystal X-ray structures, is presented, and the participation of the uranium f-orbitals is shown by theoretical calculations. Electrochemical investigations showed the accessibility of the respective U V O 2 + compounds. As well, ionic liquids with [FeCl 4 ] - and [Cl 3 FeOFeCl 3 ] 2- as anion were synthesized. Both of these anions contain high-spin Fe(III) centres in distorted tetrahedral environment, but exhibit different magnetic behaviour. The tetrachloroferrates show the usual paramagnetism, the m-oxobis(trichloroferrate) exhibits unexpectedly strong antiferromagnetic coupling, as was observed by NMR experiments and susceptibility measurements. To investigate structure-property relations in functionalized ionic liquids, a set of protic, primary alkylammonium and aprotic, quarternary trimethylalkylammonium based ionic liquids was synthesized, and characterized. The length of the alkyl chain was systematically varied, and all compounds were synthesized with and without hydroxyl group, as well as formate and bis(triflyl)amide salts, aiming at getting insight into the influence of the different structure parts on the respective ionic liquid's properties.

  7. A Relativity Enhanced, Medium-Strong Au(I)···H-N Hydrogen Bond in a Protonated Phenylpyridine-Gold(I) Thiolate.

    Science.gov (United States)

    Berger, Raphael J F; Schoiber, Jürgen; Monkowius, Uwe

    2017-01-17

    Gold is an electron-rich metal with a high electronegativity comparable to that of sulfur. Hence, hydrogen bonds of the Au(I)···H-E (E = electronegative element) type should be possible, but their existence is still under debate. Experimental results are scarce and often contradictory. As guidance for possible preparative work, we have theoretically investigated (ppyH)Au(SPh) (ppy = 2-phenylpyridine) bearing two monoanionic ligands which are not strongly electronegative at the same time to further increase the charge density on the gold(I) atom. The protonated pyridine nitrogen atom in ppy is geometrically ideally suited to place a proton in close proximity to the gold atom in a favorable geometry for a classical hydrogen bond arrangement. Indeed, the results of the calculations indicate that the hydrogen bonded conformation of (ppyH)Au(SPh) represents a minimum geometry with bond metrics in the expected range for medium-strong hydrogen bonds [r(N-H) = 1.043 Å, r(H···Au) = 2.060 Å, a(N-H···Au) = 141.4°]. The energy difference between the conformer containing the H···Au bond and another conformer without a hydrogen bond amounts to 7.8 kcal mol -1 , which might serve as an estimate of the hydrogen bond strength. Spectroscopic properties were calculated, yielding further characteristics of such hydrogen bonded gold species.

  8. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    International Nuclear Information System (INIS)

    Bahk, Yeon Kyoung; He, Xu; Gitsis, Emmanouil; Kuo, Yu-Ying; Kim, Nayoung; Wang, Jing

    2015-01-01

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH 3 CO 2 NH 4 ) and sodium acetate (CH 3 CO 2 Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example

  9. NMR studies of solid pentachlorophenol-4-methylpyridine complexes exhibiting strong OHN hydrogen bonds: geometric H/D isotope effects and hydrogen bond coupling cause isotopic polymorphism.

    Science.gov (United States)

    Ip, Brenda C K; Shenderovich, Ilya G; Tolstoy, Peter M; Frydel, Jaroslaw; Denisov, Gleb S; Buntkowsky, Gerd; Limbach, Hans-Heinrich

    2012-11-26

    We have studied the hydrogen bond interactions of (15)N labeled 4-methylpyridine (4-MP) with pentachlorophenol (PCP) in the solid state and in polar solution using various NMR techniques. Previous spectroscopic, X-ray, and neutron crystallographic studies showed that the triclinic 1:1 complex (4-MPPCP) exhibits the strongest known intermolecular OHN hydrogen bond in the solid state. By contrast, deuteration of the hydrogen bond gives rise to the formation of a monoclinic structure exhibiting a weaker hydrogen bond. By performing NMR experiments at different deuterium fractions and taking advantage of dipolar (1)H-(15)N recoupling under combined fast MAS and (1)H decoupling, we provide an explanation of the origin of the isotopic polymorphism of 4-MPPCP and improve previous chemical shift correlations for OHN hydrogen bonds. Because of anharmonic ground state vibrations, an ODN hydrogen bond in the triclinic form exhibits a shorter oxygen-hydron and a longer oxygen-nitrogen distance as compared to surrounding OHN hydrogen bonds, which also implies a reduction of the local dipole moment. The dipole-dipole interaction between adjacent coupled OHN hydrogen bonds which determines the structure of triclinic 4-MPPCP is then reduced by deuteration, and other interactions become dominant, leading to the monoclinic form. Finally, the observation of stronger OHN hydrogen bonds by (1)H NMR in polar solution as compared to the solid state is discussed.

  10. Strong-field ionization of xenon dimers: The effect of two-equivalent-center interference and of driving ionic transitions

    Science.gov (United States)

    Zhang, C.; Feng, T.; Raabe, N.; Rottke, H.

    2018-02-01

    Strong-field ionization (SFI) of the homonuclear noble gas dimer Xe2 is investigated and compared with SFI of the Xe atom and of the ArXe heteronuclear dimer by using ultrashort Ti:sapphire laser pulses and photoelectron momentum spectroscopy. The large separation of the two nuclei of the dimer allows the study of two-equivalent-center interference effects on the photoelectron momentum distribution. Comparing the experimental results with a new model calculation, which is based on the strong-field approximation, actually reveals the influence of interference. Moreover, the comparison indicates that the presence of closely spaced gerade and ungerade electronic state pairs of the Xe2 + ion at the Xe2 ionization threshold, which are strongly dipole coupled, affects the photoelectron momentum distribution.

  11. Luminescent hybrid materials of lanthanide β-diketonate and mesoporous host through covalent and ionic bonding with anion metathesis.

    Science.gov (United States)

    Li, Qiu-Ping; Yan, Bing

    2012-07-28

    Luminescent mesoporous materials were prepared by performing an anion metathesis reaction on ionic liquid modified SBA15, which has imidazolium chloride bridging units. The lanthanide β-diketonate complex anion was successfully anchored onto the SBA15 framework after the anion metathesis reaction. The resulting materials were characterized by FTIR, TEM, TGA, small-angle X-ray powder diffraction (SAXRD) and nitrogen adsorption-desorption isotherms. The photoluminescent properties of these materials were investigated in detail, and the results reveal that these hybrid mesoporous SBA15, prepared through this preparation approach, present favorable photoluminescent behavior such as high luminescent quantum efficiencies and long luminescent lifetimes.

  12. Size-dependent Young’s modulus in ZnO nanowires with strong surface atomic bonds

    Science.gov (United States)

    Fan, Shiwen; Bi, Sheng; Li, Qikun; Guo, Qinglei; Liu, Junshan; Ouyang, Zhongliang; Jiang, Chengming; Song, Jinhui

    2018-03-01

    The mechanical properties of size-dependent nanowires are important in nano-electro-mechanical systems (NEMSs), and have attracted much research interest. Characterization of the size effect of nanowires in atmosphere directly to broaden their practical application instead of just in high vacuum situations, as reported previously, is desperately needed. In this study, we systematically studied the Young’s modulus of vertical ZnO nanowires in atmosphere. The diameters ranged from 48 nm to 239 nm with a resonance method using non-contact atomic force microscopy. The values of Young’s modulus in atmosphere present extremely strong increasing tendency with decreasing diameter of nanowire due to stronger surface atomic bonds compared with that in vacuum. A core-shell model for nanowires is proposed to explore the Young’s modulus enhancement in atmosphere, which is correlated with atoms of oxygen occurring near the nanowire surface. The modified model is more accurate for analyzing the mechanical behavior of nanowires in atmosphere compared with the model in vacuum. Furthermore, it is possible to use this characterization method to measure the size-related elastic properties of similar wire-sharp nanomaterials in atmosphere and estimate the corresponding mechanical behavior. The study of the size-dependent Young’s modulus in ZnO nanowires in atmosphere will improve the understanding of the mechanical properties of nanomaterials as well as providing guidance for applications in NEMSs, nanogenerators, biosensors and other related areas.

  13. Experimental and numerical study of a modified ASTM C633 adhesion test for strongly-bonded coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bernardie, Raphaëlle; Berkouch, Reda; Valette, Stéphane; Absi, Joseph; Lefort, Pierre [University of Limoges, Limoges Cedex (France)

    2017-07-15

    When coatings are strongly bonded to their substrates it is often difficult to measure the adhesion values. The proposed method, which is suggested naming “silver print test”, consists in covering the central part of the samples with a thin layer of silver paint, before coating. The process used for testing this new method was the Air plasma spraying (APS), and the materials used were alumina coatings on C35 steel substrates, previously pre-oxidized in CO{sub 2}. The silver painted area was composed of small grains that did not oxidize but that significantly sintered during the APS process. The silver layer reduced the surface where the coating was linked to the substrate, which allowed its debonding, using the classical adhesion test ASTM C633-13, while the direct use of this test (without silver painting) led to ruptures inside the glue used in this test. The numerical modelling, based on the finite element method with the ABAQUS software, provided results in good agreement with the experimental measurements. This concordance validated the used method and allowed accessing to the values of adherence when the experimental test ASTM C633-13 failed, because of ruptures in the glue. After standardization, the “silver print test” might be used for other kinds of deposition methods, such as PVD, CVD, PECVD.

  14. Design and Characterization of Liquidlike POSS-Based Hybrid Nanomaterials Synthesized via Ionic Bonding and Their Interactions with CO 2

    KAUST Repository

    Petit, Camille

    2013-10-01

    Liquidlike nanoparticle organic hybrid materials (NOHMs) were designed and synthesized by ionic grafting of polymer chains onto nanoscale silica units called polyhedral oligomeric silsesquioxane (POSS). The properties of these POSS-based NOHMs relevant to CO2 capture, in particular thermal stability, swelling, viscosity, as well as their interactions with CO 2, were investigated using thermogravimetric analyses, differential scanning calorimetry, and NMR and ATR FT-IR spectroscopies. The results indicate that POSS units significantly enhance the thermal stability of the hybrid materials, and their porous nature also contributes to the overall CO 2 capture capacity of NOHMs. The viscosity of the synthesized NOHMs was comparable to those reported for ionic liquids, and rapidly decreased as the temperature increased. The sorption of CO2 in POSS-based NOHMs also reduced their viscosities. The swelling behavior of POSS-based NOHMs was similar to that of previously studied nanoparticle-based NOHMs, and this generally resulted in less volume increase in NOHMs compared to their corresponding polymers for the same amount of CO2 loading. © 2013 American Chemical Society.

  15. Isotope dependent, temperature regulated, energy repartitioning in a low-barrier, short-strong hydrogen bonded cluster

    NARCIS (Netherlands)

    Li, X. H.; Oomens, J.; Eyler, J. R.; Moore, D. T.; Iyengar, S. S.

    2010-01-01

    We investigate and analyze the vibrational properties, including hydrogen/deuterium isotope effects, in a fundamental organic hydrogen bonded system using multiple experimental (infrared multiple photon dissociation and argon-tagged action spectroscopy) and computational techniques. We note a

  16. Properties and reactions of manganese methylene complexes in the gas phase. The importance of strong metal: carbene bonds for effective olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A.E.; Beauchamp, J.L.

    1979-10-10

    In this communication the formation, properties and reactions of the gas phase carbenes MnCH/sub 2//sup +/, (CO)/sub 5/MnCH/sub 2//sup +/, and (CO)/sub 4/MnCH/sub 2//sup +/ are described. Reported results include observation of metathesis and abstraction reactions of the methylene ligand with olefins and the first experimental determination of metal-carbene bond dissociation energies. Important points are that: (a) metal-methylene bond energies are extremely strong; and (b) the Mn/sup +/-methylene bond energy is decreased substantially on addition of five carbonyls to the metal center. If the metal-carbene bond energy exceeds 100 kcal/mol, then transfer of the carbene to an olefin to give a cyclopropane or new olefin will be endothermic and thus will not compete with the metathesis reaction. In order to avoid low turnover numbers resulting from consumption of carbene intermediates, strong metal-carbene bonds are a desirable feature of practical metathesis catalysts. (DP)

  17. The role of hydrogen bonds in the melting points of sulfonate-based protic organic salts

    DEFF Research Database (Denmark)

    Luo, Jiangshui

    2016-01-01

    there is evidence of bond formation [6]. Hydrogen bonds in the solid state fall into the classification of strong, moderate, and weak hydrogen bonds [7]. In molecular systems like H2O (vs. H2S) or NH3 (vs. PH3), strong hydrogen bonds lead to higher melting points. However, in organic salts, the situation may......There are three main types of interactions inside organic salts - electrostatic interaction, hydrogen bonding and van der Waals force [1-4]. While van der Waals force is relatively weak, it is hydrogen bonding and particularly electrostatic interaction that determine the lattice energies of ionic...

  18. Respiratory chain strongly oxidizes the CXXC motif of DsbB in the Escherichia coli disulfide bond formation pathway.

    OpenAIRE

    Kobayashi, T; Ito, K

    1999-01-01

    Escherichia coli DsbB has four essential cysteine residues, among which Cys41 and Cys44 form a CXXC redox active site motif and the Cys104-Cys130 disulfide bond oxidizes the active site cysteines of DsbA, the disulfide bond formation factor in the periplasm. Functional respiratory chain is required for the cell to keep DsbA oxidized. In this study, we characterized the roles of essential cysteines of DsbB in the coupling with the respiratory chain. Cys104 was found to form the inactive comple...

  19. Novel Polymeric Materials With Superior Mechanical Properties via Ionic Interactions

    National Research Council Canada - National Science Library

    Hara, Masanori

    2000-01-01

    We have developed novel liquid crystalline polymer (LCP) in which ionic groups (ionic bonds) are incorporated. A base polymer of ionic LCPs is a wholly aromatic polyester, better known as Vectra of Hoechst-Celanese...

  20. New Raman method for aqueous solutions: xi-function dispersion evidence for strong F(-)-water H-bonds in aqueous CsF and KF solutions.

    Science.gov (United States)

    Walrafen, George E

    2005-08-15

    The Raman xi-function dispersion method recently elucidated for the strong H-bond breaker, ClO4-, in water [G. E. Walrafen, J. Chem. Phys. 122, 094510 (2005)] is extended to the strongly H-bond forming ion, F-. Measuring the xi function is analogous to measuring DeltaG from the thermodynamic activity of the water, aH2O, as the stoichiometric mol fraction of the water in the solution decreases due to addition of an electrolyte or nonelectrolyte. xi is the derivative of the OH-stretching part of the Gibbs free energy with respect to the water mol fraction; xiomega identical with-RT[ partial differential ln(Iomega/IREF) partial differentialX2](T,P). I is the Raman intensity at omega (omega=Raman shift in cm-1); IREF, that at an arbitrary reference omega; and, X2 is the water mol fraction (X1=CsF or KF mol fraction). ln(Iomega/IREF) was found to be linear in X2 for the complete range of OH-stretching omega's, with correlation coefficients as large as 0.999 96. Linearity of ln(Iomega/IREF) versus X2 is an experimental fact for all omega's throughout the spontaneous Raman OH-stretching contour; this fact cannot be negated by relative contributions of ultrafast/fast, homogeneous/inhomogeneous processes which may underlie this linearity. Linearity in ln(Iomega/IREF) versus 1T, or in ln(Iomega/IREF) versus P, was also observed for the Raman H-bond energy DeltaE and pair volume DeltaV dispersions, respectively. A low-frequency maximum (MAX) and a high-frequency minimum (MIN) were observed in the xi function dispersion curve. Deltaxi=xiMIN-xiMAX values of -7000+/-800-cal/mol H2O for CsF, and the experimentally equal Deltaxi=-6400+/-1000-cal/mol H2O for KF, were obtained. These Deltaxi's are opposite in sign but have nearly the same absolute magnitude as the Deltaxi value for NaClO4 in water; Deltaxi=+8050+/-100-cal/mol H2O. A positive Deltaxi corresponds to a water-water H-bond breaker; a negative Deltaxi to a H-bond former; specifically, a F--water H-bond former, in the

  1. Effects of strong inter-hydrogen bond dynamical couplings in the polarized IR spectra of adipic acid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Flakus, Henryk T., E-mail: flakus@ich.us.edu.pl [Institute of Chemistry, University of Silesia, 9 Szkolna Street, Pl-40-006 Katowice (Poland); Tyl, Aleksandra; Jablonska, Magdalena [Institute of Chemistry, University of Silesia, 9 Szkolna Street, Pl-40-006 Katowice (Poland)

    2009-10-16

    This paper presents the results of the re-investigation of polarized IR spectra of adipic acid and of its d{sub 2}, d{sub 8} and d{sub 10} deuterium derivative crystals. The spectra were measured at 77 K by a transmission method using polarized light for two different crystalline faces. Theoretical analysis concerned linear dichroic effects and H/D isotopic effects observed in the spectra of the hydrogen and deuterium bonds in adipic acid crystals at the frequency ranges of the {nu}{sub O-H} and the {nu}{sub O-D} bands. The two-branch fine structure pattern of the {nu}{sub O-H} and {nu}{sub O-D} bands and the basic linear dichroic effects characterizing them were ascribed to the vibronic mechanism of vibrational dipole selection rule breaking for IR transitions in centrosymmetric hydrogen bond dimers. It was proved that for isotopically diluted crystalline samples of adipic acid, a non-random distribution of protons and deuterons occurs in the dimers (H/D isotopic 'self-organization' effect). This effect results from the dynamical co-operative interactions involving the dimeric hydrogen bonds.

  2. Effects of strong inter-hydrogen bond dynamical couplings in the polarized IR spectra of adipic acid crystals

    Science.gov (United States)

    Flakus, Henryk T.; Tyl, Aleksandra; Jablońska, Magdalena

    2009-10-01

    This paper presents the results of the re-investigation of polarized IR spectra of adipic acid and of its d2, d8 and d10 deuterium derivative crystals. The spectra were measured at 77 K by a transmission method using polarized light for two different crystalline faces. Theoretical analysis concerned linear dichroic effects and H/D isotopic effects observed in the spectra of the hydrogen and deuterium bonds in adipic acid crystals at the frequency ranges of the νO-H and the νO-D bands. The two-branch fine structure pattern of the νO-H and νO-D bands and the basic linear dichroic effects characterizing them were ascribed to the vibronic mechanism of vibrational dipole selection rule breaking for IR transitions in centrosymmetric hydrogen bond dimers. It was proved that for isotopically diluted crystalline samples of adipic acid, a non-random distribution of protons and deuterons occurs in the dimers (H/D isotopic " self-organization" effect). This effect results from the dynamical co-operative interactions involving the dimeric hydrogen bonds.

  3. Effect of the Co-C(C60(-)) bond formation on magnetic properties of the ionic complex {cryptand[2,2,2] x (Na+)} x {Co(II)TPP x (C60(-))} x (C6H4Cl2)2.

    Science.gov (United States)

    Konarev, Dmitri V; Khasanov, Salavat S; Otsuka, Akihiro; Saito, Gunzi; Lyubovskaya, Rimma N

    2009-08-28

    A new ionic complex {cryptand[2,2,2] x (Na(+))} x {Co(II)TPP x (C(60)(-))} x (C(6)H(4)Cl(2))(2) has been obtained as single crystals by a diffusion technique. It involves coordination {Co(II)TPP x u(C(60)(-))} units and bulky {cryptand[2,2,2] x (Na(+))} cations. The Co-C(C(60)(-)) coordination bond is short (2.262(2) A at 100 K) which provides ordering in the C(60)(-) anions. This is the first ordered structure of {Co(II)TPP x (C(60)(-))}. The coordination bonds weaken upon heating to be 2.316(4) A at 250 K. As a result, the C(60)(-) anions begin to rotate at 250 K about the Co-C bond between two orientations. The complex is diamagnetic from 4 up to 320 K. The Co-C bonds dissociate above 320 K only to form unbound paramagnetic Co(II)TPP and C(60)(*-) species. The process is accompanied by the reversible increase in magnetic susceptibility of the complex and the appearance of a new broad EPR signal with g = 2.1187 and a linewidth of approximately 120 mT (350 K). The signal was attributed to both paramagnetic Co(II)TPP and C(60)(*-), which showed strong exchange interaction.

  4. Intercalation chemistry and chemical bonding

    Science.gov (United States)

    Hagenmuller, Paul

    In contrast to amphoteric graphite, the layer-type oxides or chalcogenides generally play the role of acceptors in chemical or electrochemical intercalation reactions. Due to the more ionic character of the MO bonds, the structural evolution of the oxides may usually be explained on hand of electrostatic considerations, or in terms of cation oxido-reduction. For the more covalent chalcogenides, the occupancy of higher energy levels in the band structure by the transferred electrons constitute mostly a prevailing factor, giving rise to structural changes but also to modifications of the physical properties. The ionic character of the MO bonds accounts for the strong tendency of the oxides to undergo 2D→3D transformations as a result of intercalation processes. Such features are determining for the choice of the electrode materials for lithium-ion batteries as far as users require high electrode capacity, stability, and cyclability.

  5. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    International Nuclear Information System (INIS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-01-01

    Highlights: • Paraffin has a risk of losing thermal coupling during cooling down. • We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. • The coil is tightly bonded to cooling members by epoxy resin without the degradation. • We made a REBCO racetrack coil with the same outer dimension as the Maglev magnet. - Abstract: The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed

  6. Unravelling the secrets of Cs controlled secondary ion formation: Evidence of the dominance of site specific surface chemistry, alloying and ionic bonding

    Science.gov (United States)

    Wittmaack, Klaus

    2013-03-01

    implantation can be evaluated as a function of Cs coverage. The summarised results imply that secondary ions are commonly not formed by charge transfer between an escaping atom and the electronic system of the sample but are already emitted as ions. The probability of ion formation appears to be controlled by the local ionic character of the alkali-target atom bonds, i.e., by the difference in electronegativity between the involved elements as well as by the electron affinity and the ionisation potential of the departing atom. This idea is supported by the finding that Si- yields exhibit the same very strong dependence on Cs coverage as Si+ and O- yields on the oxygen fraction in oxygen loaded Si. Most challenging to theoreticians is the finding that the ionisation probability is independent of the emission velocity of sputtered ions. This phenomenon cannot be rationalised along established routes of thinking. Different concepts need to be explored. An old, somewhat exotic idea takes account of the heavy perturbation created for a very short period of time at the site of ion emission (dynamic randomisation). Molecular dynamics simulations are desirable to clarify the issue. Ultimately it may be possible to describe all phenomena of enhanced or suppressed secondary ion formation, produced either by surface loading with alkali atoms or by enforced surface oxidation, on the basis of a single universal model. There is plenty of room for exciting new studies.

  7. Unusually strong H-bonding to the heme ligand and fast geminate recombination dynamics of the carbon monoxide complex of Bacillus subtilis truncated hemoglobin.

    Science.gov (United States)

    Feis, Alessandro; Lapini, Andrea; Catacchio, Bruno; Brogioni, Silvia; Foggi, Paolo; Chiancone, Emilia; Boffi, Alberto; Smulevich, Giulietta

    2008-01-22

    The active site of the oxygen-avid truncated hemoglobin from Bacillus subtilis has been characterized by infrared absorption and resonance Raman spectroscopies, and the dynamics of CO rebinding after photolysis has been investigated by picosecond transient absorption spectroscopy. Resonance Raman experiments on the CO bound adduct revealed the presence of two Fe-CO stretching bands at 545 and 520 cm-1, respectively. Accordingly, two C-O stretching bands at 1924 and 1888 cm-1 were observed in infrared absorption and resonance Raman measurements. The very low C-O stretching frequency at 1888 cm-1 (corresponding to the extremely high RR stretching frequency at 545 cm-1) indicates unusually strong hydrogen bonding between CO and distal residues. On the basis of a comparison with other truncated hemoglobin it is envisaged that the two CO conformers are determined by specific interactions with the TrpG8 and TyrB10 residues. Mutation of TrpG8 to Leu deeply alters the hydrogen-bonding network giving rise mainly to a CO conformer characterized by a Fe-CO stretching band at 489 cm-1 and a CO stretching band at 1958 cm-1. Picosecond laser photolysis experiments carried out on the CO bound adduct revealed dynamical processes that take place within a few nanoseconds after photolysis. Picosecond dynamics is largely dominated by CO geminate rebinding and is consistent with strong H-bonding contributions of TyrB10 and TrpG8 to ligand stabilization.

  8. Strong Coupling between Nanofluidic Transport and Interfacial Chemistry: How Defect Reactivity Controls Liquid-Solid Friction through Hydrogen Bonding.

    Science.gov (United States)

    Joly, Laurent; Tocci, Gabriele; Merabia, Samy; Michaelides, Angelos

    2016-04-07

    Defects are inevitably present in nanofluidic systems, yet the role they play in nanofluidic transport remains poorly understood. Here, we report ab initio molecular dynamics (AIMD) simulations of the friction of liquid water on defective graphene and boron nitride sheets. We show that water dissociates at certain defects and that these "reactive" defects lead to much larger friction than the "nonreactive" defects at which water molecules remain intact. Furthermore, we find that friction is extremely sensitive to the chemical structure of reactive defects and to the number of hydrogen bonds they can partake in with the liquid. Finally, we discuss how the insight obtained from AIMD can be used to quantify the influence of defects on friction in nanofluidic devices for water treatment and sustainable energy harvesting. Overall, we provide new insight into the role of interfacial chemistry on nanofluidic transport in real, defective systems.

  9. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids

    Science.gov (United States)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2018-04-01

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features

  10. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Science.gov (United States)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  11. Electronic bond structure of the H2+ ion in a strong magnetic field: A study of the parallel configuration

    International Nuclear Information System (INIS)

    Kappes, U.; Schmelcher, P.

    1995-01-01

    A large number of magnetically dressed states of the hydrogen molecular ion for parallel internuclear and magnetic field axes are investigated. The numerical calculations of the molecular states and potential-energy curves in the fixed-nuclei approximation are based on a recently established and optimized atomic orbital basis set. We study electronic states within the range 0≤|m|≤10 of magnetic quantum numbers and for several field strengths. In particular, we also investigate many excited states within a subspace for fixed magnetic quantum number and parity. In order to understand the influence of the magnetic field on theof excited molecular states, we perform a detailed comparison of the electronic probability distributions and potential-energy curves in the field-free space with those in the presence of a magnetic field. As a major result we observe the existence of two different classes of strongly bound, i.e., stable, magnetically dressed states whose corresponding counterparts in the field-free space exhibit purely repulsive potential-energy curves, i.e., are unstable. Corrections which are going beyond the fixed-nuclei approach, i.e., the coupling of the center of mass to the electronic motion, as well as the mass corrections are investigated in order to ensure the physical validity of our results

  12. Proton dynamics in the strong chelate hydrogen bond of crystalline picolinic acid N-oxide. A new computational approach and infrared, raman and INS study.

    Science.gov (United States)

    Stare, Jernej; Panek, Jarosław; Eckert, Juergen; Grdadolnik, Joze; Mavri, Janez; Hadzi, Dusan

    2008-02-21

    Infrared, Raman and INS spectra of picolinic acid N-oxide (PANO) were recorded and examined for the location of the hydronic modes, particularly O-H stretching and COH bending. PANO is representative of strong chelate hydrogen bonds (H-bonds) with its short O...O distance (2.425 A). H-bonding is possibly well-characterized by diffraction, NMR and NQR data and calculated potential energy functions. The analysis of the spectra is assisted by DFT frequency calculations both in the gas phase and in the solid state. The Car-Parrinello quantum mechanical solid-state method is also used for the proton dynamics simulation; it shows the hydron to be located about 99% of time in the energy minimum near the carboxylic oxygen; jumps to the N-O acceptor are rare. The infrared spectrum excels by an extended absorption (Zundel's continuum) interrupted by numerous Evans transmissions. The model proton potential functions on which the theories of continuum formation are based do not correspond to the experimental and computed characteristics of the hydrogen bond in PANO, therefore a novel approach has been developed; it is based on crystal dynamics driven hydronium potential fluctuation. The envelope of one hundred 0 --> 1 OH stretching transitions generated by molecular dynamics simulation exhibits a maximum at 1400 cm-1 and a minor hump at approximately 1600 cm-1. These positions square well with ones predicted for the COH bending and OH stretching frequencies derived from various one- and two-dimensional model potentials. The coincidences with experimental features have to be considered with caution because the CPMD transition envelope is based solely on the OH stretching coordinate while the observed infrared bands correspond to heavily mixed modes as was previously shown by the normal coordinate analysis of the IR spectrum of argon matrix isolated PANO, the present CPMD frequency calculation and the empirical analysis of spectra. The experimental infrared spectra show some

  13. High ionic strength depresses muscle contractility by decreasing both force per cross-bridge and the number of strongly attached cross-bridges.

    Science.gov (United States)

    Wang, Li; Bahadir, Anzel; Kawai, Masataka

    2015-06-01

    An increase in ionic strength (IS) lowers Ca(2+) activated tension in muscle fibres, however, its molecular mechanism is not well understood. In this study, we used single rabbit psoas fibres to perform sinusoidal analyses. During Ca(2+) activation, the effects of ligands (ATP, Pi, and ADP) at IS ranging 150-300 mM were studied on three rate constants to characterize elementary steps of the cross-bridge cycle. The IS effects were studied because a change in IS modifies the inter- and intra-molecular interactions, hence they may shed light on the molecular mechanisms of force generation. Both the ATP binding affinity (K1) and the ADP binding affinity (K 0) increased to 2-3x, and the Pi binding affinity (K5) decreased to 1/2, when IS was raised from 150 to 300 mM. The effect on ATP/ADP can be explained by stereospecific and hydrophobic interaction, and the effect on Pi can be explained by the electrostatic interaction with myosin. The increase in IS increased cross-bridge detachment steps (k2 and k-4), indicating that electrostatic repulsion promotes these steps. However, IS did not affect attachment steps (k-2 and k4). Consequently, the equilibrium constant of the detachment step (K2) increased by ~100%, and the force generation step (K4) decreased by ~30%. These effects together diminished the number of force-generating cross-bridges by 11%. Force/cross-bridge (T56) decreased by 26%, which correlates well with a decrease in the Debye length that limits the ionic atmosphere where ionic interactions take place. We conclude that the major effect of IS is a decrease in force/cross-bridge, but a decrease in the number of force generating cross-bridge also takes place. The stiffness during rigor induction did not change with IS, demonstrating that in-series compliance is not much affected by IS.

  14. Coupled cluster valence bond theory for open-shell systems with application to very long range strong correlation in a polycarbene dimer.

    Science.gov (United States)

    Small, David W; Head-Gordon, Martin

    2017-07-14

    The Coupled Cluster Valence Bond (CCVB) method, previously presented for closed-shell (CS) systems, is extended to open-shell (OS) systems. The theoretical development is based on embedding the basic OS CCVB wavefunction in a fictitious singlet super-system. This approach reveals that the OS CCVB amplitude equations are quite similar to those of CS CCVB, and thus that OS CCVB requires the same level of computational effort as CS CCVB, which is an inexpensive method. We present qualitatively correct CCVB potential energy curves for all low-lying spin states of P 2 and Mn 2 + . CCVB is successfully applied to the low-lying spin states of some model linear polycarbenes, systems that appear to be a hindrance to standard density functionals. We examine an octa-carbene dimer in a side-by-side orientation, which, in the monomer dissociation limit, exhibits maximal strong correlation over the length of the polycarbene.

  15. Functional ionic liquids; Funktionelle ionische Fluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Baecker, Tobias

    2012-07-01

    In the thesis at hand, new functional ionic liquids were investigated. Main focus was attended to their structure property relations and the structural features leading to a decrease of the melting point. New compounds of the type 1-butyl-3-methylimidazolium tris(N,Ndialkyldithiocarbamato) uranylate with variously substituated dithiocarbamato ligands were synthesized and characterized. Ligands with asymmetrical substitution pattern proved to be most suitable for ionic liquid formation. The single-crystal X-ray structures revealed the interactions in the solid state. Here, the first spectroscopic investigation of the U-S bond in sulfur donated uranyl complexes, up to now only observed in single-crystal X-ray structures, is presented, and the participation of the uranium f-orbitals is shown by theoretical calculations. Electrochemical investigations showed the accessibility of the respective U{sup V}O{sub 2}{sup +} compounds. As well, ionic liquids with [FeCl{sub 4}]{sup -} and [Cl{sub 3}FeOFeCl{sub 3}]{sup 2-} as anion were synthesized. Both of these anions contain high-spin Fe(III) centres in distorted tetrahedral environment, but exhibit different magnetic behaviour. The tetrachloroferrates show the usual paramagnetism, the m-oxobis(trichloroferrate) exhibits unexpectedly strong antiferromagnetic coupling, as was observed by NMR experiments and susceptibility measurements. To investigate structure-property relations in functionalized ionic liquids, a set of protic, primary alkylammonium and aprotic, quarternary trimethylalkylammonium based ionic liquids was synthesized, and characterized. The length of the alkyl chain was systematically varied, and all compounds were synthesized with and without hydroxyl group, as well as formate and bis(triflyl)amide salts, aiming at getting insight into the influence of the different structure parts on the respective ionic liquid's properties.

  16. Microstructures and dynamics of tetraalkylphosphonium chloride ionic liquids

    Science.gov (United States)

    Wang, Yong-Lei; Li, Bin; Sarman, Sten; Laaksonen, Aatto

    2017-12-01

    Atomistic simulations have been performed to investigate the effect of aliphatic chain length in tetraalkylphosphonium cations on liquid morphologies, microscopic ionic structures, and dynamical quantities of tetraalkylphosphonium chloride ionic liquids. The liquid morphologies are characterized by sponge-like interpenetrating polar and apolar networks in ionic liquids consisting of tetraalkylphosphonium cations with short aliphatic chains. The lengthening aliphatic chains in tetraalkylphosphonium cations lead to polar domains consisting of chloride anions and central polar groups in cations being partially or totally segregated in ionic liquid matrices due to a progressive expansion of apolar domains in between. Prominent polarity alternation peaks and adjacency correlation peaks are observed at low and high q range in total X-ray scattering structural functions, respectively, and their peak positions gradually shift to lower q values with lengthening aliphatic chains in tetraalkylphosphonium cations. The charge alternation peaks registered in the intermediate q range exhibit complicated tendencies due to a cancellation of peaks and anti-peaks in partial structural functions for ionic subcomponents. The particular microstructures and liquid morphologies in tetraalkylphosphonium chloride ionic liquids intrinsically contribute to distinct dynamics characterized by mean square displacements, van Hove correlation functions, and non-Gaussian parameters for ionic species in the heterogeneous ionic environment. Most tetraalkylphosphonium cations have higher translational mobilities than their partner anions due to strong coordination of chloride anions with central polar groups in tetraalkylphosphonium cations through strong Coulombic and hydrogen bonding interactions. The increase of aliphatic chain length in tetraalkylphosphonium cations leads to a concomitant shift of van Hove correlation functions and non-Gaussian parameters to larger radial distances and longer time

  17. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil

    2010-01-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like). © 2010 The Royal Society of Chemistry.

  18. Covalently bonded ionic liquid onto cellulose for fast adsorption and efficient separation of Cr(VI): Batch, column and mechanism investigation.

    Science.gov (United States)

    Dong, Zhen; Zhao, Long

    2018-06-01

    Combining the advantages of both cellulose and ionic liquid, ionic liquid functionalized cellulose (ILFC) as adsorbent was prepared through radiation grafting glycidyl methacrylate onto cellulose microsphere following by reaction with ionic liquid 1-aminopropyl-3-methyl imidazolium nitrate. Its adsorption properties towards Cr(VI) were investigated in batch and column experiments. In batch experiments, the adsorption kinetics was well fitted with pseudo-second-order mode with equilibrium time of 2 h and the adsorption capacity reached 181.8 mg/g at pH 2 calculated from Langmuir model. In fixed column, both Yoon-Nelson and Thomas models gave satisfactory fit to experimental data and breakthrough curves, and equilibrium adsorption capacity calculated by Thomas model was 161.0 mg/g. Moreover, ILFC exhibited high selectivity towards Cr(VI) even in synthetic chrome-plating wastewater. Besides, adsorption/desorption test revealed ILFC can be regenerated and reused several times without obvious decrease in adsorbed amount. The adsorption process was demonstrated to anion exchange-reduction mechanism via XPS analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  20. Topology of electron charge density for chemical bonds from valence bond theory: a probe of bonding types.

    Science.gov (United States)

    Zhang, Lixian; Ying, Fuming; Wu, Wei; Hiberty, Philippe C; Shaik, Sason

    2009-01-01

    To characterize the nature of bonding we derive the topological properties of the electron charge density of a variety of bonds based on ab initio valence bond methods. The electron density and its associated Laplacian are partitioned into covalent, ionic, and resonance components in the valence bond spirit. The analysis provides a density-based signature of bonding types and reveals, along with the classical covalent and ionic bonds, the existence of two-electron bonds in which most of the bonding arises from the covalent-ionic resonance energy, so-called charge-shift bonds. As expected, the covalent component of the Laplacian at the bond critical point is found to be largely negative for classical covalent bonds. In contrast, for charge-shift bonds, the covalent part of the Laplacian is small or positive, in agreement with the weakly attractive or repulsive character of the covalent interaction in these bonds. On the other hand, the resonance component of the Laplacian is always negative or nearly zero, and it increases in absolute value with the charge-shift character of the bond, in agreement with the decrease of kinetic energy associated with covalent-ionic mixing. A new interpretation of the topology of the total density at the bond critical point is proposed to characterize covalent, ionic, and charge-shift bonding from the density point of view.

  1. Learning Ionic

    CERN Document Server

    Ravulavaru, Arvind

    2015-01-01

    This book is intended for those who want to learn how to build hybrid mobile applications using Ionic. It is also ideal for people who want to explore theming for Ionic apps. Prior knowledge of AngularJS is essential to complete this book successfully.

  2. Collective dynamic dipole moment and orientation fluctuations, cooperative hydrogen bond relaxations, and their connections to dielectric relaxation in ionic acetamide deep eutectics: Microscopic insight from simulations

    Science.gov (United States)

    Das, Suman; Biswas, Ranjit; Mukherjee, Biswaroop

    2016-08-01

    The paper reports a detailed simulation study on collective reorientational relaxation, cooperative hydrogen bond (H-bond) fluctuations, and their connections to dielectric relaxation (DR) in deep eutectic solvents made of acetamide and three uni-univalent electrolytes, lithium nitrate (LiNO3), lithium bromide (LiBr), and lithium perchlorate (LiClO4). Because cooperative H-bond fluctuations and ion migration complicate the straightforward interpretation of measured DR timescales in terms of molecular dipolar rotations for these conducting media which support extensive intra- and inter-species H-bonding, one needs to separate out the individual components from the overall relaxation for examining the microscopic origin of various timescales. The present study does so and finds that reorientation of ion-complexed acetamide molecules generates relaxation timescales that are in sub-nanosecond to nanosecond range. This explains in molecular terms the nanosecond timescales reported by recent giga-Hertz DR measurements. Interestingly, the simulated survival timescale for the acetamide-Li+ complex has been found to be a few tens of nanosecond, suggesting such a cation-complexed species may be responsible for a similar timescale reported by mega-Hertz DR measurements of acetamide/potassium thiocyanate deep eutectics near room temperature. The issue of collective versus single particle relaxation is discussed, and jump waiting time distributions are determined. Dependence on anion-identity in each of the cases has been examined. In short, the present study demonstrates that assumption of nano-sized domain formation is not required for explaining the DR detected nanosecond and longer timescales in these media.

  3. Unimolecular Solvolyses in Ionic Liquid: Alcohol Dual Solvent Systems

    Directory of Open Access Journals (Sweden)

    Elizabeth D. Kochly

    2016-01-01

    Full Text Available A study was undertaken of the solvolysis of pivaloyl triflate in a variety of ionic liquid:alcohol solvent mixtures. The solvolysis is a kΔ process (i.e., a process in which ionization occurs with rearrangement, and the resulting rearranged carbocation intermediate reacts with the alcohol cosolvent via two competing pathways: nucleophilic attack or elimination of a proton. Five different ionic liquids and three different alcohol cosolvents were investigated to give a total of fifteen dual solvent systems. 1H-NMR analysis was used to determine relative amounts of elimination and substitution products. It was found, not surprisingly, that increasing the bulkiness of alcohol cosolvent led to increased elimination product. The change in the amount of elimination product with increasing ionic liquid concentration, however, varied greatly between ionic liquids. These differences correlate strongly, though not completely, to the Kamlet–Taft solvatochromic parameters of the hydrogen bond donating and accepting ability of the solvent systems. An additional factor playing into these differences is the bulkiness of the ionic liquid anion.

  4. Thermodynamic evaluation of the impact of strongly swelling polymer hydrogels with ionic silver on the water retention capacity of sandy substrate

    Science.gov (United States)

    Smagin, A. V.

    2017-01-01

    The impact of two types of strongly swelling polymer hydrogel (SSPH) on the water retention capacity of quartz sand in pure water and Ag+ solutions (10-100 mg/l) has been studied by using a centrifugation method in a wide range of thermodynamic water potential (Gibbs energy) from 0 to 3030 J/kg. The experimental data for the water retention curves (WRC) were estimated by the van Genuchten model. Both hydrogels - the Aquasorb preparation (Germany) with hydrophilic properties and high degree of swelling in pure water (700-1000 g H2O/g) and the new Russian amphiphilic SSPH with a peat filler (degree of swelling 500-700 g H2O/g) were very effective as water adsorbing soil conditioners in relatively small doses from 0.05 to 0.3% per mass of dry (105°C) soil substrate. The water retention capacity of sandy substrate increases under the influence of SSPH with 2-3 times up to the level of native loamy sands and loams. Adding Ag+ to the water solution results just for the highest concentration of SSPH (0.3%) and iconic silver (100 mg/l) in a significant decrease of the water retention in the soil-gel compositions.

  5. Collapsed tetragonal phase as a strongly covalent and fully nonmagnetic state: Persistent magnetism with interlayer As-As bond formation in Rh-doped Ca0 .8Sr0 .2Fe2As2

    Science.gov (United States)

    Zhao, K.; Glasbrenner, J. K.; Gretarsson, H.; Schmitz, D.; Bednarcik, J.; Etter, M.; Sun, J. P.; Manna, R. S.; Al-Zein, A.; Lafuerza, S.; Scherer, W.; Cheng, J. G.; Gegenwart, P.

    2018-02-01

    A well-known feature of the CaFe2As2 -based superconductors is the pressure-induced collapsed tetragonal phase that is commonly ascribed to the formation of an interlayer As-As bond. Using detailed x-ray scattering and spectroscopy, we find that Rh-doped Ca0.8Sr0.2Fe2As2 does not undergo a first-order phase transition and that local Fe moments persist despite the formation of interlayer As-As bonds. Our density functional theory calculations reveal that the Fe-As bond geometry is critical for stabilizing magnetism and the pressure-induced drop in the c lattice parameter observed in pure CaFe2As2 is mostly due to a constriction within the FeAs planes. The collapsed tetragonal phase emerges when covalent bonding of strongly hybridized Fe 3 d and As 4 p states completely wins out over their exchange splitting. Thus the collapsed tetragonal phase is properly understood as a strong covalent phase that is fully nonmagnetic with the As-As bond forming as a by-product.

  6. The role of London dispersion interactions in strong and moderate intermolecular hydrogen bonds in the crystal and in the gas phase

    Science.gov (United States)

    Katsyuba, Sergey A.; Vener, Mikhail V.; Zvereva, Elena E.; Brandenburg, J. Gerit

    2017-03-01

    Two variants of density functional theory computations have been applied to characterization of hydrogen bonds of the 1-(2-hydroxylethyl)-3-methylimidazolium acetate ([C2OHmim][OAc]), i.e. with and without inclusion of dispersion interactions. A comparison of the results demonstrates that London dispersion interactions have very little impact on the energetical, geometrical, infrared spectroscopic and electron density parameters of charge-assisted intermolecular hydrogen bonds functioning both in the crystal of the [C2OHmim][OAc] and in the isolated [C2OHmim]+ [OAc]- ion pairs.

  7. Ionic conduction, bond valence analysis of structure–property relationships of NaHoP{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Béjaoui, Anis, E-mail: bejaoui-anis@hotmail.fr; Horchani-Naifer, Karima; Férid, Mokhtar

    2013-08-15

    Single crystals of NaHoP{sub 2}O{sub 7} diphosphate have been prepared by the flux method and its structural and physical properties have been investigated. It crystallizes in the monoclinic system with the space group P2{sub 1}/n and its parameters are: a=8.6796(4) Å, b=5.3677(2) Å, c=13.6904(6) Å, β=106.120° (2), V=612.75 (5) Å{sup 3}, Z=4. The structure of NaHoP{sub 2}O{sub 7} consists of a three-dimensional framework of HoO{sub 6} octahedra, linked by P{sub 2}O{sub 7} diphosphate units, forming tunnels running parallel to [0 1 0], which are occupied by Na atoms. The infrared and Raman vibrational spectra have been investigated. Activation energy was obtained from Arrhenius plots (Ln σT versus 1000/T) and found to be 1.27 eV. The coupling of the structural analysis with the BVS model for NaHoP{sub 2}O{sub 7} has better interpret the measurements of the ionic conductivity and the most probably transport pathway model was determined. - Graphical abstract: Schematic representation of the structural arrangement of NaHoP{sub 2}O{sub 7} shows the sodium conduction pathway along the [0 1 0] direction. Highlights: • Single crystals of NaHoP{sub 2}O{sub 7} were prepared by flux method and characterized by single-crystal X-ray data. • The conductivity and loss spectra were analysed in order explain the mechanism of conduction. • The most probably conduction pathway are determined.

  8. The chemical bond in inorganic chemistry the bond valence model

    CERN Document Server

    Brown, I David

    2016-01-01

    The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.

  9. Nine supramolecular assemblies from 5,7-dimethyl-1,8-naphthyridine-2-amine and carboxylic acids by strong classical H-bonds and other noncovalent associations

    Science.gov (United States)

    Ding, Aihua; Jin, Shouwen; Jin, Shide; Guo, Ming; Liu, Hui; Guo, Jianzhong; Wang, Daqi

    2017-12-01

    This article demonstrates 5,7-dimethyl-1,8-naphthyridine-2-amine based organic salt formation in nine crystalline solids 1-9, in which the carboxylates have been integrated. Addition of equivalents of the COOH to the solution of 5,7-dimethyl-1,8-naphthyridine-2-amine generates the singly protonated cationic species which direct the carboxylates. The nine compounds crystallize as their organic salts with the COOH proton transferred to the aromatic N of the 5,7-dimethyl-1,8-naphthyridine-2-amine. All salts have been characterized by IR, mp, EA and XRD technique. The major driving force in 1-9 is the classical H-bonds from 5,7-dimethyl-1,8-naphthyridine-2-amine and the acids, here the Nsbnd H⋯O H-bonds were found in all salts. Other extensive non-covalent interactions also exhibit great functions in space association of the molecular counterparts in relevant crystals. Except 4, all salts had the CHsbnd O, or CH3sbnd O interactions or both. Except 9, the common R22 (8) graph set has been observed in all salts due to the H-bonds and the non-covalent associations. For the synergistic interactions of the classical H-bonds and the various non-covalent associations, the salts displayed 1D-3D structures.

  10. Evaluation of ionic liquid epoxy carbon fiber composites in a cryogenic environment

    Science.gov (United States)

    Lyne, Christopher T.; Henry, Christopher R.; Kaukler, William F.; Grugel, R. N.

    2018-03-01

    A novel ionic liquid epoxy (ILE) was used to fabricate carbon fiber composite discs which were then subjected to biaxial strain testing in liquid nitrogen. The ILE composite showed a greater strain-to-failure at cryogenic temperatures when compared to a commercial epoxy. This result is likely an effect, as shown in micrographs, of the strong ILE bonding with the carbon fibers as well as it exhibiting plastic deformation at the fracture surface.

  11. Ionic Liquid Epoxy Resin Monomers

    Science.gov (United States)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  12. Average and extreme multi-atom Van der Waals interactions: Strong coupling of multi-atom Van der Waals interactions with covalent bonding

    Directory of Open Access Journals (Sweden)

    Finkelstein Alexei V

    2007-07-01

    Full Text Available Abstract Background The prediction of ligand binding or protein structure requires very accurate force field potentials – even small errors in force field potentials can make a 'wrong' structure (from the billions possible more stable than the single, 'correct' one. However, despite huge efforts to optimize them, currently-used all-atom force fields are still not able, in a vast majority of cases, even to keep a protein molecule in its native conformation in the course of molecular dynamics simulations or to bring an approximate, homology-based model of protein structure closer to its native conformation. Results A strict analysis shows that a specific coupling of multi-atom Van der Waals interactions with covalent bonding can, in extreme cases, increase (or decrease the interaction energy by about 20–40% at certain angles between the direction of interaction and the covalent bond. It is also shown that on average multi-body effects decrease the total Van der Waals energy in proportion to the square root of the electronic component of dielectric permittivity corresponding to dipole-dipole interactions at small distances, where Van der Waals interactions take place. Conclusion The study shows that currently-ignored multi-atom Van der Waals interactions can, in certain instances, lead to significant energy effects, comparable to those caused by the replacement of atoms (for instance, C by N in conventional pairwise Van der Waals interactions.

  13. Ionic Liquids as a Basis Context for Developing High school Chemistry Teaching Materials

    Science.gov (United States)

    Hernani; Mudzakir, A.; Sumarna, O.

    2017-02-01

    This research aims to produce a map of connectedness highschool chemical content with the context of the modern chemical materials applications based on ionic liquids. The research method is content analysis of journal articles related to the ionic liquid materials and the textbooks of high school chemistry and textbooks of general chemistry at the university. The instrument used is the development format of basic text that connect and combine content and context. The results showed the connectedness between: (1) the context lubricants ionic liquid with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, the elements of main group, the elements of transition group, and the classification of macromolecules; (2) the context of fuel cell electrolite with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, Volta cell, and electrolysis cell; (3) the contect of nanocellulose with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, colloid, carbon compound, and the classification of macromolecules; and (4) the context of artificial muscle system with the content of ionic bond, covalent bond, metal bonding, interaction between the particles of matter, hydrocarbons, electrolytes and non-electrolytes, and the classification of macromolecules. Based on the result of this content analysis, the context of ionic liquid is predicted can be utilized for the enrichment of high school chemistry and has the potential to become teaching material’s context of high school chemistry in the future.

  14. The importance of play in promoting healthy child development and maintaining strong parent-child bond: focus on children in poverty.

    Science.gov (United States)

    Milteer, Regina M; Ginsburg, Kenneth R

    2012-01-01

    Play is essential to the social, emotional, cognitive, and physical well-being of children beginning in early childhood. It is a natural tool for children to develop resiliency as they learn to cooperate, overcome challenges, and negotiate with others. Play also allows children to be creative. It provides time for parents to be fully engaged with their children, to bond with their children, and to see the world from the perspective of their child. However, children who live in poverty often face socioeconomic obstacles that impede their rights to have playtime, thus affecting their healthy social-emotional development. For children who are underresourced to reach their highest potential, it is essential that parents, educators, and pediatricians recognize the importance of lifelong benefits that children gain from play.

  15. Theoretical Analysis of Thermal Transport in Graphene Supported on Hexagonal Boron Nitride: The Importance of Strong Adhesion Due to π -Bond Polarization

    Science.gov (United States)

    Pak, Alexander J.; Hwang, Gyeong S.

    2016-09-01

    One important attribute of graphene that makes it attractive for high-performance electronics is its inherently large thermal conductivity (κ ) for the purposes of thermal management. Using a combined density-functional theory and classical molecular-dynamics approach, we predict that the κ of graphene supported on hexagonal boron nitride (h -BN) can be as large as 90% of the κ of suspended graphene, in contrast to the significant suppression of κ (more than 70% reduction) on amorphous silica. Interestingly, we find that this enhanced thermal transport is largely attributed to increased lifetimes of the in-plane acoustic phonon modes, which is a notable contrast from the dominant contribution of out-of-plane acoustic modes in suspended graphene. This behavior is possible due to the charge polarization throughout graphene that induces strong interlayer adhesion between graphene and h -BN. These findings highlight the potential benefit of layered dielectric substrates such as h -BN for graphene-based thermal management, in addition to their electronic advantages. Furthermore, our study brings attention to the importance of understanding the interlayer interactions of graphene with layered dielectric materials which may offer an alternative technological platform for substrates in electronics.

  16. Fluctuating hydrodynamics for ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)

    2017-04-25

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.

  17. Radiation Chemistry and Photochemistry of Ionic Liquids

    International Nuclear Information System (INIS)

    Wishart, J.F.; Takahaski, K.

    2010-01-01

    As our understanding of ionic liquids and their tunable properties has grown, it is possible to see many opportunities for ionic liquids to contribute to the sustainable use of energy. The potential safety and environmental benefits of ionic liquids, as compared to conventional solvents, have attracted interest in their use as processing media for the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry of ionic liquids is still a relatively unexplored topic although there has been a significant increase in the number of researchers in the field recently. This article provides a brief introduction to ionic liquids and their interesting properties, and recent advances in the radiation chemistry and photochemistry of ionic liquids. In this article, we will mainly focus on excess electron dynamics and radical reaction dynamics. Because solvation dynamics processes in ionic liquids are much slower than in molecular solvents, one of the distinguishing characteristics is that pre-solvated electrons play an important role in ionic liquid radiolysis. It will be also shown that the reaction dynamics of radical ions is significantly different from that observed in molecular solvents because of the Coulombic screening effects and electrostatic interactions in ionic liquids.

  18. Temperature-dependent ionic conductivity and transport properties ...

    Indian Academy of Sciences (India)

    Administrator

    the ionic transport. The observed high ionic conductivity is driven by local and segmental motions of the polymer chains, which assist the breaking and reforming of the bonds with the cation.13. A systematic study of LiClO4-doped PVA/mCellulose composite to understand the ion transport behaviour in polymers, the physical ...

  19. Ionic copolyesters and their nanocomposites: synthesis, characterization and properties

    OpenAIRE

    Bautista Betancur, Mayka Irina

    2015-01-01

    A polymer containing small amounts of ionic groups either along the polymer backbone chains or as pendant groups is defined as ionomer. As originally proposed by Eisenberg, the interaction between ionic groups leads to the formation of multiplets containing a small number of ion pairs, and also to ionic clusters, which constitute a second phase made of many multiplets as well as portions of the hydrocarbon chains. These ionic structures have been shown to act as strong electrostatic cross-lin...

  20. Thermotropic Ionic Liquid Crystals

    Science.gov (United States)

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986

  1. Thermotropic Ionic Liquid Crystals.

    Science.gov (United States)

    Axenov, Kirill V; Laschat, Sabine

    2011-01-14

    The last five years' achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  2. Thermotropic Ionic Liquid Crystals

    OpenAIRE

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  3. Instant tough bonding of hydrogels for soft machines and electronics

    Science.gov (United States)

    Wirthl, Daniela; Pichler, Robert; Drack, Michael; Kettlguber, Gerald; Moser, Richard; Gerstmayr, Robert; Hartmann, Florian; Bradt, Elke; Kaltseis, Rainer; Siket, Christian M.; Schausberger, Stefan E.; Hild, Sabine; Bauer, Siegfried; Kaltenbrunner, Martin

    2017-01-01

    Introducing methods for instant tough bonding between hydrogels and antagonistic materials—from soft to hard—allows us to demonstrate elastic yet tough biomimetic devices and machines with a high level of complexity. Tough hydrogels strongly attach, within seconds, to plastics, elastomers, leather, bone, and metals, reaching unprecedented interfacial toughness exceeding 2000 J/m2. Healing of severed ionic hydrogel conductors becomes feasible and restores function instantly. Soft, transparent multilayered hybrids of elastomers and ionic hydrogels endure biaxial strain with more than 2000% increase in area, facilitating soft transducers, generators, and adaptive lenses. We demonstrate soft electronic devices, from stretchable batteries, self-powered compliant circuits, and autonomous electronic skin for triggered drug delivery. Our approach is applicable in rapid prototyping and in delicate environments inaccessible for extended curing and cross-linking. PMID:28691092

  4. Making Weak Bonds (cooling) and Breaking Strong Bonds (heating ...

    Indian Academy of Sciences (India)

    ... THE MOLECULES · Slide 34 · High Temperature Chemical Kinetics Laboratory today · Slide 36 · Ignition delay studies · CH emission and pressure rise to measure ignition delay! JP10 · Log vs 1/T plot · Arrhenius parameters for JP10 and JP10-TEA mixture · triethylamine · CONCLUSIONS · Thank you all for listening.

  5. Ionic conducting poly-benzimidazoles

    International Nuclear Information System (INIS)

    Jouanneau, J.

    2006-11-01

    Over the last years, many research works have been focused on new clean energy systems. Hydrogen fuel cell seems to be the most promising one. However, the large scale development of this technology is still limited by some key elements. One of them is the polymer electrolyte membrane 'Nafion' currently used, for which the ratio performance/cost is too low. The investigations we carried out during this thesis work are related to a new class of ionic conducting polymer, the sulfonated poly-benzimidazoles (sPBI). Poly-benzimidazoles (PBI) are aromatic heterocyclic polymers well-known for their excellent thermal and chemical stability. Ionic conduction properties are obtained by having strong acid groups (sulfonic acid SO 3 H) on the macromolecular structure. For that purpose, we first synthesized sulfonated monomers. Their poly-condensation with an appropriate non-sulfonated co-monomer yields to sPBI with sulfonation range from 0 to 100 per cent. Three different sPBI structures were obtained, and verified by appropriate analytical techniques. We also showed that the protocol used for the synthesis resulted in high molecular weights polymers. We prepared ionic conducting membrane by casting sPBI solutions on glass plates. Their properties of stability, water swelling and ionic conductivity were investigated. Surprisingly, the behaviour of sPBI was quite different from the other sulfonated aromatic polymers with same amount of SO 3 H, their stability was much higher, but their water swelling and ionic conductivity were quite low. We attributed these differences to strong ionic interactions between the sulfonic acid groups and the basic benzimidazole groups of our polymers. However, we managed to solve this problem synthesizing very highly sulfonated PBI, obtaining membranes with a good balance between all the properties necessary. (author)

  6. Dissimilar Impact Welding of 6111-T4, 5052-H32 Aluminum Alloys to 22MnB5, DP980 Steels and the Structure-Property Relationship of a Strongly Bonded Interface

    Science.gov (United States)

    Liu, Bert; Vivek, Anupam; Presley, Michael; Daehn, Glenn S.

    2018-03-01

    The ability to weld high-strength aluminum to high-strength steel is highly desired for vehicle lightweighting but difficult to attain by conventional means. In this work, vaporizing foil actuator welding was used to successfully weld four Al/Fe combinations consisting of high-strength alloys: AA5052-H32, AA6111-T4, DP980, and 22MnB5. Flyer velocities up to 727 m/s were reached using 10 kJ input energy. In lap-shear testing, samples primarily failed in base aluminum near the aluminum's native strength, showing that the welds were stronger than a base metal and that the base metal was not significantly weakened by the welding process. A particularly strong weld area was studied by transmission electron microscopy to shed light on the microstructural features of strong impact welds. It was found to be characterized by a continuously bonded, fully crystalline interface, extremely fine (nanoscale) grains, mesoscopic as well as microscopic wavy features, and lack of large continuous intermetallic compounds.

  7. SU-8-Induced Strong Bonding of Polymer Ligands to Flexible Substrates via in Situ Cross-Linked Reaction for Improved Surface Metallization and Fast Fabrication of High-Quality Flexible Circuits.

    Science.gov (United States)

    Hu, Mingjun; Guo, Qiuquan; Zhang, Tengyuan; Zhou, Shaolin; Yang, Jun

    2016-02-01

    On account of in situ cross-linked reaction of epoxy SU-8 with poly(4-vinylpyridine) (P4VP) and its strong reactive bonding ability with different pretreated substrates, we developed a simple universal one-step solution-based coating method for fast surface modification of various objects. Through this method, a layer of P4VP molecules with controllable thickness can be tethered tightly onto substrates with the assistance of SU-8. P4VP molecules possess a lot of pyridine ligands to immobilize transitional metal ions that can behave as the catalyst of electroless copper plating for surface metallization while functioning as the adhesion-promoting layer between the substrate and deposited metal. Attributed to interpenetrated entanglement of P4VP molecules and as-deposited metal, ultrathick (>7 μm) strongly adhesive high-quality copper layer can be formed on flexible substrates without any delamination. Then through laser printer to print toner mask, a variety of designed circuits can be easily fabricated on modified flexible PET substrate.

  8. Dissimilar Impact Welding of 6111-T4, 5052-H32 Aluminum Alloys to 22MnB5, DP980 Steels and the Structure-Property Relationship of a Strongly Bonded Interface

    Science.gov (United States)

    Liu, Bert; Vivek, Anupam; Presley, Michael; Daehn, Glenn S.

    2018-01-01

    The ability to weld high-strength aluminum to high-strength steel is highly desired for vehicle lightweighting but difficult to attain by conventional means. In this work, vaporizing foil actuator welding was used to successfully weld four Al/Fe combinations consisting of high-strength alloys: AA5052-H32, AA6111-T4, DP980, and 22MnB5. Flyer velocities up to 727 m/s were reached using 10 kJ input energy. In lap-shear testing, samples primarily failed in base aluminum near the aluminum's native strength, showing that the welds were stronger than a base metal and that the base metal was not significantly weakened by the welding process. A particularly strong weld area was studied by transmission electron microscopy to shed light on the microstructural features of strong impact welds. It was found to be characterized by a continuously bonded, fully crystalline interface, extremely fine (nanoscale) grains, mesoscopic as well as microscopic wavy features, and lack of large continuous intermetallic compounds.

  9. Definition of a multicentral bond index

    International Nuclear Information System (INIS)

    Giambiagi, M.; Giambiagi, M.S. de; Mundim, K.C.

    1989-01-01

    The tensor character of the first-order density matrix leads to the definition of an MO multicentral bond index for closed-shell systems. It is here applied to three-center bonds. Satisfactory results are obtained for compounds involving 'secondary' bonds, strong and normal hydrogen bonds; the index for the peptide bond is found to be similar to that of strong hydrogen bonds. (author) [pt

  10. Recent development of ionic liquid stationary phases for liquid chromatography.

    Science.gov (United States)

    Shi, Xianzhe; Qiao, Lizhen; Xu, Guowang

    2015-11-13

    Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, π-π, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Noble metal ionic catalysts.

    Science.gov (United States)

    Hegde, M S; Madras, Giridhar; Patil, K C

    2009-06-16

    more expensive Pt and Rh metals are not necessary in exhaust catalysts. We have also grown these nanocrystalline ionic catalysts on ceramic cordierite and have reproduced the results we observed in powder material on the honeycomb catalytic converter. Oxygen in a CeO(2) lattice is activated by the substitution of Ti ion, as well as noble metal ions. Because this substitution creates longer Ti-O and M-O bonds relative to the average Ce-O bond within the lattice, the materials facilitate high oxygen storage and release. The interaction among M(0)/M(n+), Ce(4+)/Ce(3+), and Ti(4+)/Ti(3+) redox couples leads to the promoting action of CeO(2), activation of lattice oxygen and high oxygen storage capacity, metal support interaction, and high rates of catalytic activity in exhaust catalysis.

  12. Collision-Induced Dissociation Study of Strong Hydrogen-Bonded Cluster Ions Y-(HF) n (Y=F, O2) Using Atmospheric Pressure Corona Discharge Ionization Mass Spectrometry Combined with a HF Generator.

    Science.gov (United States)

    Sakamoto, Kenya; Sekimoto, Kanako; Takayama, Mitsuo

    2017-01-01

    Hydrogen fluoride (HF) was produced by a homemade HF generator in order to investigate the properties of strong hydrogen-bonded clusters such as (HF) n . The HF molecules were ionized in the form of complex ions associated with the negative core ions Y - produced by atmospheric pressure corona discharge ionization (APCDI). The use of APCDI in combination with the homemade HF generator led to the formation of negative-ion HF clusters Y - (HF) n (Y=F, O 2 ), where larger clusters with n ≥4 were not detected. The mechanisms for the formation of the HF, F - (HF) n , and O 2 - (HF) n species were discussed from the standpoints of the HF generator and APCDI MS. By performing energy-resolved collision-induced dissociation (CID) experiments on the cluster ions F - (HF) n ( n =1-3), the energies for the loss of HF from F - (HF) 3 , F - (HF) 2 , and F - (HF) were evaluated to be 1 eV or lower, 1 eV or higher, and 2 eV, respectively, on the basis of their center-of-mass energy ( E CM ). These E CM values were consistent with the values of 0.995, 1.308, and 2.048 eV, respectively, obtained by ab initio calculations. The stability of [O 2 (HF) n ] - ( n =1-4) was discussed on the basis of the bond lengths of O 2 H-F - (HF) n and O 2 - H-F(HF) n obtained by ab initio calculations. The calculations indicated that [O 2 (HF) 4 ] - separated into O 2 H and F - (HF) 3 .

  13. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  14. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  15. Finding the best density functional approximation to describe interaction energies and structures of ionic liquids in molecular dynamics studies

    Science.gov (United States)

    Perlt, Eva; Ray, Promit; Hansen, Andreas; Malberg, Friedrich; Grimme, Stefan; Kirchner, Barbara

    2018-05-01

    Ionic liquids raise interesting but complicated questions for theoretical investigations due to the fact that a number of different inter-molecular interactions, e.g., hydrogen bonding, long-range Coulomb interactions, and dispersion interactions, need to be described properly. Here, we present a detailed study on the ionic liquids ethylammonium nitrate and 1-ethyl-3-methylimidazolium acetate, in which we compare different dispersion corrected density functional approximations to accurate local coupled cluster data in static calculations on ionic liquid clusters. The efficient new composite method B97-3c is tested and has been implemented in CP2K for future studies. Furthermore, tight-binding based approaches which may be used in large scale simulations are assessed. Subsequently, ab initio as well as classical molecular dynamics simulations are conducted and structural analyses are presented in order to shed light on the different short- and long-range structural patterns depending on the method and the system size considered in the simulation. Our results indicate the presence of strong hydrogen bonds in ionic liquids as well as the aggregation of alkyl side chains due to dispersion interactions.

  16. Hydrogenation of Cinnamaldehyde over an Ionic Cobalt Promoted ...

    African Journals Online (AJOL)

    NICO

    selectivity of Pd towards the formation of saturated carbonyls as products, is explained by the preferred adsorption of the. C=C bond on Pd.14. It has been shown that promotion of metallic catalysts with an ionic compound increase the hydrogenation rate of the. C=O bond of unsaturated aldehydes,15 due to the activation of.

  17. Determination of the ionic charge of semiquinones by pulsed conductivity and ESR techniques

    International Nuclear Information System (INIS)

    Mukherjee, T.; Dodd, N.J.F.; Swallow, A.J.

    1987-01-01

    Microsecond pulsed conductivity and ESR techniques have been used for unambiguous determination of the ionic charge on semiquinones derived from one-electron reduction of hydroxy-quinones such as juglone, naphthazarin, sodium quinizarin-2-sulphonate and adriamycin. Irrespective of the presence of other charges elsewhere in the molecule, the radical centres of all the semiquinones have been shown to be mono-anionic at around neutral pH. The importance and significance of strong intramolecular H- bonding have been highlighted. Results on one-electron oxidation of naphthazarin have also been briefly discussed. (author)

  18. Reusable task-specific ionic liquids for a clean ε-caprolactam synthesis under mild conditions.

    Science.gov (United States)

    Turgis, Raphaël; Estager, Julien; Draye, Micheline; Ragaini, Vittorio; Bonrath, Werner; Lévêque, Jean-Marc

    2010-12-17

    Brønsted-acidic ionic liquids that bear a sulfonic acid group, known as Forbes acids, show a good catalytic activity for the Beckmann rearrangement, used to prepare ε-caprolactam, which is a precursor of Nylon 6. The activity essentially stems from the acidity of the sulfonic acid group. Although these task specific ionic liquids suffer from a high viscosity, this drawback can be circumvented at higher temperatures. A combination of the hydrogen sulfate anion and the sulfonic acid group of the cation is needed to obtain the rearrangement product rapidly under mild conditions. When using an excess of ionic liquid, we postulate that the internal pressure of the ionic medium, generated by the high viscosity and the high number of hydrogen-bonds, is strong enough to contribute to a decrease of the thermodynamic barrier. In accordance with the "Principles of Green Chemistry," we have developed a synthesis of ε-caprolactam that requires no additional chemicals except cyclohexanone oxime and the reusable TSIL.

  19. Thermotropic Ionic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Sabine Laschat

    2011-01-01

    Full Text Available The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  20. Crystallography aided by atomic core-level binding energies: proton transfer versus hydrogen bonding in organic crystal structures.

    Science.gov (United States)

    Stevens, Joanna S; Byard, Stephen J; Seaton, Colin C; Sadiq, Ghazala; Davey, Roger J; Schroeder, Sven L M

    2011-10-10

    Ionic bond or hydrogen bridge? Brønsted proton transfer to nitrogen acceptors in organic crystals causes strong N1s core-level binding energy shifts. A study of 15 organic cocrystal and salt systems shows that standard X-ray photoelectron spectroscopy (XPS) can be used as a complementary method to X-ray crystallography for distinguishing proton transfer from H-bonding in organic condensed matter. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparison of soft tissue effects of conventional ionic, low osmolar ionic and nonionic iodine containing contrast material in experimental animals

    International Nuclear Information System (INIS)

    McAlister, W.H.; Kissane, J.M.

    1990-01-01

    Conventional, low osmolar, and non-ionic iodine containing contrast media and saline controls were placed in the paws, muscles, and subcutaneous tissues of Sprague-Dawley rat thighs. The paw injections were observed and photographed, while the thighs were examined histologically. Results showed that although the low osmolar and non-ionic agents did produce inflammatory reactions and focal necrosis in the soft tissues, they were much better tolerated than were the conventional ionic agents. A non-ionic or low osmolar ionic contrast agent should be strongly considered when a possibility for extravasation exists. (orig.)

  2. Divergent trend in density versus viscosity of ionic liquid/water mixtures: a molecular view from guanidinium ionic liquids.

    Science.gov (United States)

    Singh, Akhil Pratap; Gardas, Ramesh L; Senapati, Sanjib

    2015-10-14

    Ionic liquids (ILs) have shown great potential in the dissolution and stability of biomolecules when a low-to-moderate quantity of water is added. Hence, determining the thermophysical properties and understanding these novel mixtures at the molecular level are of both fundamental and practical importance. In this context, here we report the synthesis of two nontoxic guanidinium cation based ILs, tetramethylguanidinium benzoate [TMG][BEN] and tetramethylguanidinium salicylate [TMG][SAL], and present a detailed comparison of their thermophysical properties in the presence of water. The results show that the [TMG][SAL]/water mixtures have higher density and higher apparent molar volume, but a lower viscosity and higher compressibility than the [TNG][BEN]/water mixtures. The measured viscosity and compressibility data are explained from ab initio quantum mechanical calculations and liquid-phase molecular dynamics simulations, where salicylate anions of denser [TMG][SAL]/water were found to exist as isolated ions due to intramolecular H-bonding. On the contrary, intermolecular H-bonding among the benzoate anions and their strong tendency to form an extended H-bonding network with water made [TMG][BEN]/water solutions more viscous and less compressible. This study shows the importance of probing these emerging solvents at the molecular-to-atomic level, which could be helpful in their optimal usage for task-specific applications.

  3. Lipid processing in ionic liquids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2007-01-01

    Ionic liquids (ILs) have been touted as “green” alternatives to traditional molecular solvents and have many unique properties which make them extremely desirable substitutes. Among their most attractive properties are their lack of vapour pressure, broad liquid range, strong solvating power...... and the ability to tailor properties of individual ILs to meet specific requirements. This article highlights current research as well as the vast potential of ILs for use as media for reactions, separation and processing in the lipid area....

  4. Fluctuating hydrodynamics for ionic liquids

    Science.gov (United States)

    Lazaridis, Konstantinos; Wickham, Logan; Voulgarakis, Nikolaos

    2017-04-01

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau-Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids.

  5. Interactions of ionic liquids and acetone: thermodynamic properties, quantum-chemical calculations, and NMR analysis.

    Science.gov (United States)

    Ruiz, Elia; Ferro, Victor R; Palomar, Jose; Ortega, Juan; Rodriguez, Juan Jose

    2013-06-20

    The interactions between ionic liquids (ILs) and acetone have been studied to obtain a further understanding of the behavior of their mixtures, which generally give place to an exothermic process, mutual miscibility, and negative deviation of Raoult's law. COSMO-RS was used as a suitable computational method to systematically analyze the excess enthalpy of IL-acetone systems (>300), in terms of the intermolecular interactions contributing to the mixture behavior. Spectroscopic and COSMO-RS results indicated that acetone, as a polar compound with strong hydrogen bond acceptor character, in most cases, establishes favorable hydrogen bonding with ILs. This interaction is strengthened by the presence of an acidic cation and an anion with dispersed charge and non-HB acceptor character in the IL. COSMO-RS predictions indicated that gas-liquid and vapor-liquid equilibrium data for IL-acetone systems can be finely tuned by the IL selection, that is, acting on the intermolecular interactions between the molecular and ionic species in the liquid phase. NMR measurements for IL-acetone mixtures at different concentrations were also carried out. Quantum-chemical calculations by using molecular clusters of acetone and IL species were finally performed. These results provided additional evidence of the main role played by hydrogen bonding in the behavior of systems containing ILs and HB acceptor compounds, such as acetone.

  6. Fundamentals of fiber bonding in thermally point-bonded nonwovens

    Science.gov (United States)

    Chidambaram, Aparna

    Thermal point bonding (TPB) uses heat and pressure to bond a web of fibers at discrete points imparting strength to the manufactured fabric. This process significantly reduces the strength and elongation of the bridging fibers between bond points while strengthening the web. Single fiber experiments were performed with four structurally different polypropylene fibers to analyze the inter-relationships between fiber structure, fiber properties and bonding process. Two fiber types had a low birefringence sheath or surface layer while the remaining had uniform birefringence profiles through their thickness. Bonds were formed between isolated pairs of fibers by subjecting the fibers to a calendering process and simulating TPB process conditions. The dependence of bond strength on bonding temperature and on the type of fiber used was evaluated. Fiber strengths before and after bonding were measured and compared to understand the effect of bonding on fiber strength. Additionally, bonded fiber strength was compared to the strength of single fibers which had experienced the same process conditions as the bonded pairs. This comparison estimated the effect of mechanical damage from pressing fibers together with steel rolls while creating bonds in TPB. Interfiber bond strength increased with bonding temperature for all fiber types. Fiber strength decreased with increasing bonding temperature for all fiber types except for one type of low birefringent sheath fibers. Fiber strength degradation was unavoidable at temperatures required for successful bonding. Mechanical damage from compression of fibers between rolls was an insignificant factor in this strength loss. Thermal damage during bonding was the sole significant contributor to fiber strength degradation. Fibers with low birefringence skins formed strong bonds with minimal fiber strength loss and were superior to fibers without such surface layers in TPB performance. A simple model to predict the behavior of a two-bond

  7. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes

    Science.gov (United States)

    Raschka, Sebastian; Wolf, Alex J.; Bemister-Buffington, Joseph; Kuhn, Leslie A.

    2018-02-01

    Understanding how proteins encode ligand specificity is fascinating and similar in importance to deciphering the genetic code. For protein-ligand recognition, the combination of an almost infinite variety of interfacial shapes and patterns of chemical groups makes the problem especially challenging. Here we analyze data across non-homologous proteins in complex with small biological ligands to address observations made in our inhibitor discovery projects: that proteins favor donating H-bonds to ligands and avoid using groups with both H-bond donor and acceptor capacity. The resulting clear and significant chemical group matching preferences elucidate the code for protein-native ligand binding, similar to the dominant patterns found in nucleic acid base-pairing. On average, 90% of the keto and carboxylate oxygens occurring in the biological ligands formed direct H-bonds to the protein. A two-fold preference was found for protein atoms to act as H-bond donors and ligand atoms to act as acceptors, and 76% of all intermolecular H-bonds involved an amine donor. Together, the tight chemical and geometric constraints associated with satisfying donor groups generate a hydrogen-bonding lock that can be matched only by ligands bearing the right acceptor-rich key. Measuring an index of H-bond preference based on the observed chemical trends proved sufficient to predict other protein-ligand complexes and can be used to guide molecular design. The resulting Hbind and Protein Recognition Index software packages are being made available for rigorously defining intermolecular H-bonds and measuring the extent to which H-bonding patterns in a given complex match the preference key.

  8. Constructing Models in Teaching of Chemical Bonds: Ionic Bond, Covalent Bond, Double and Triple Bonds, Hydrogen Bond and Molecular Geometry

    Science.gov (United States)

    Uce, Musa

    2015-01-01

    Studies in chemistry education show that chemistry topics are considered as abstract, complicated and hard to understand by students. For this reason, it is important to develop new materials and use them in classes for better understanding of abstract concepts. Moving from this point, a student-centered research guided by a teacher was conducted…

  9. Characterization and Functionality of Immidazolium Ionic Liquids Modified Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ying Li

    2013-01-01

    Full Text Available 1,3-Dialkylimidazolium-based ionic liquids were chemically synthesized and bonded on the surface of magnetic nanoparticles (MNPs with easy one-step reaction. The obtained six kinds of ionic liquid modified MNPs were characterized with transmission electron microscopy, thermogravimetric analysis, magnetization, and FTIR, which owned the high adsorption capacity due to the nanometer size and high-density modification with ionic liquids. Functionality of MNPs with ionic liquids greatly influenced the solubility of the MNPs with organic solvents depending on the alkyl chain length and the anions of the ionic liquids. Moreover, the obtained MNPs showed the specific extraction efficiency to organic pollutant, polycyclic aromatic hydrocarbons, while superparamagnetic property of the MNPs facilitated the convenient separation of MNPs from the bulks water samples.

  10. The Transition from Hydrogen Bonding to Ionization in (HCI)n(NH3)n and (HCI)n(H2O)n Clusters: Consequences for Anharmonic Vibrational Spectroscopy

    Science.gov (United States)

    Chaban, Galina M.; Gerber, R. Benny; Janda, Kenneth C.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Anharmonic vibrational frequencies and intensities are calculated for 1:1 and 2:2 (HCl)(sub n)(NH3)(sub n) and (HCl)(sub n)(H2O)(sub n) complexes, employing the correlation-corrected vibrational self-consistent field method with ab initio potential surfaces at the MP2/TZP computational level. In this method, the anharmonic coupling between all vibrational modes is included, which is found to be important for the systems studied. For the 4:4 (HCl)(sub n)(H2O)(sub n) complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Just as the (HCl)(sub n)(NH3)(sub n) structure switches from hydrogen-bonded to ionic for n=2, the (HCl)(sub n)(H2O)(sub n) switches to ionic structure for n=4. For (HCl)2(H2O)2, the lowest energy structure corresponds to the hydrogen-bonded form. However, configurations of the ionic form are separated from this minimum by a barrier of less than an O-H stretching quantum. This suggests the possibility of experiments on ionization dynamics using infrared excitation of the hydrogen-bonded form. The strong cooperative effects on the hydrogen bonding, and concomitant transition to ionic bonding, makes an accurate estimate of the large anharmonicity crucial for understanding the infrared spectra of these systems. The anharmonicity is typically of the order of several hundred wave numbers for the proton stretching motions involved in hydrogen or ionic bonding, and can also be quite large for the intramolecular modes. In addition, the large cooperative effects in the 2:2 and higher order (HCl(sub n)(H2O)(sub n) complexes may have interesting implications for solvation of hydrogen halides at ice surfaces.

  11. Metal Nanoparticles in Ionic Liquids.

    Science.gov (United States)

    Wegner, Susann; Janiak, Christoph

    2017-08-01

    During the last years ionic liquids (ILs) were increasingly used and investigated as reaction media, hydrogen sources, catalysts, templating agents and stabilizers for the synthesis of (monometallic and bimetallic) metal nanoparticles (M-NPs). Especially ILs with 1,3-dialkyl-imidazolium cations featured prominently in the formation and stabilization of M-NPs. This chapter summarizes studies which focused on the interdependencies of the IL with the metal nanoparticle and tried to elucidate, for example, influences of the IL-cation, -anion and alkyl chain length. Qualitatively, the size of M-NPs was found to increase with the size of the IL-anion. The influence of the size of imidazolium-cation is less clear. The M-NP size was both found to increase and to decrease with increasing chain lengths of the 1,3-dialkyl-imidazolium cation. It is evident from such reports on cation and anion effects of ILs that the interaction between an IL and a (growing) metal nanoparticle is far from understood. Factors like IL-viscosity, hydrogen-bonding capability and the relative ratio of polar and non-polar domains of ILs may also influence the stability of nanoparticles in ionic liquids and an improved understanding of the IL-nanoparticle interaction would be needed for a more rational design of nanomaterials in ILs. Furthermore, thiol-, ether-, carboxylic acid-, amino- and hydroxyl-functionalized ILs add to the complexity by acting also as coordinating capping ligands. In addition imidazolium cations are precursors to N-heterocyclic carbenes, NHCs which form from imidazolium-based ionic liquids by in situ deprotonation at the acidic C2-H ring position as intermediate species during the nanoparticle seeding and growth process or as surface coordinating ligand for the stabilization of the metal nanoparticle.

  12. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock

    2014-08-01

    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  13. Sealing Penetrating Eye Injuries Using Photoactivated Bonding

    Science.gov (United States)

    2014-10-01

    thresholds.33 Collagens type I and III provide multiple positively charged lysines and arginines that may be sites for ionic bonding with negatively...idized histidine then reacts with certain amino acids, mainly lysine , to form protein-protein crosslinks. Photoexcited RB may also transfer an... lysines , which are frequently involved in protein crosslinks, did not alter the PTB- induced bond strength. These results indicate that PTB may be a

  14. The chemical bond as an emergent phenomenon.

    Science.gov (United States)

    Golden, Jon C; Ho, Vinh; Lubchenko, Vassiliy

    2017-05-07

    We first argue that the covalent bond and the various closed-shell interactions can be thought of as symmetry broken versions of one and the same interaction, viz., the multi-center bond. We use specially chosen molecular units to show that the symmetry breaking is controlled by density and electronegativity variation. We show that the bond order changes with bond deformation but in a step-like fashion, regions of near constancy separated by electronic localization transitions. These will often cause displacive transitions as well so that the bond strength, order, and length are established self-consistently. We further argue on the inherent relation of the covalent, closed-shell, and multi-center interactions with ionic and metallic bonding. All of these interactions can be viewed as distinct sectors on a phase diagram with density and electronegativity variation as control variables; the ionic and covalent/secondary sectors are associated with on-site and bond-order charge density wave, respectively, the metallic sector with an electronic fluid. While displaying a contiguity at low densities, the metallic and ionic interactions represent distinct phases separated by discontinuous transitions at sufficiently high densities. Multi-center interactions emerge as a hybrid of the metallic and ionic bond that results from spatial coexistence of delocalized and localized electrons. In the present description, the issue of the stability of a compound is that of the mutual miscibility of electronic fluids with distinct degrees of electron localization, supra-atomic ordering in complex inorganic compounds coming about naturally. The notions of electronic localization advanced hereby suggest a high throughput, automated procedure for screening candidate compounds and structures with regard to stability, without the need for computationally costly geometric optimization.

  15. Solder extrusion pressure bonding process and bonded products produced thereby

    Science.gov (United States)

    Beavis, Leonard C.; Karnowsky, Maurice M.; Yost, Frederick G.

    1992-01-01

    Production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about -40.degree. C. and 110.degree. C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  16. Photophysics of ionic biochromophores

    CERN Document Server

    Brøndsted Nielsen, Steen

    2014-01-01

    This concise guide to studying ionic biochromophores features the first integrated overview of the photophysics of differing classes of biomolecules, from single amino acids to DNA. It includes an appraisal of the latest theories and experimental techniques.

  17. Resonating Valence Bond wavefunctions for electronic simulations

    Science.gov (United States)

    Sorella, Sandro

    2007-03-01

    We discuss several progress for the simulation of strongly correlated electrons, based on an efficient implementation of the Resonating Valence Bond (RVB) theory with Quantum Monte Carlo (QMC). Due to very important advances[1] in the energy optimization of strongly correlated variational wave functions, it is now possible to optimize several variational parameters with remarkable efficiency even within a stochastic approach such as QMC. In this way it is possible to describe very accurately the electronic correlation by a first principle many-body wave function, that can be extended to fairly large electronic systems. Indeed a remarkable improvement of the Hartree-Fock theory is provided by the so called RVB wave function introduced by P.W. Anderson in the context of High-Tc superconductivity[2]. For instance, by means of this paradigm, it has been possible to perform a realistic and accurate simulation of the benzene dimer, where we have found that the RVB correlation of the benzene ring plays a crucial role in the dimer bonding[3,4]. Finally we consider the still controversial low-temperature and high-pressure phase diagram of Hydrogen by using the same RVB wavefunction. We use a novel second order Langevin dynamics by introducing a consistent friction tensor, allowing to remain in thermal equilibrium even with very noisy forces, namely determined by QMC with very short runs. This allows us to simulate finite temperature systems (˜100 H) with very high efficiency, while the variational parameters are consistently optimized during the ionic dynamics. *[1] See C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella and R. G. Hennig, cond-mat/0611094 and references therein. *[2] P. W. Anderson Science 235, 1196 (1987). *[3] M. Casula, C. Attaccalite and S. Sorella J. Chem. Phys. 121 7110 (2004). *[4] S. Sorella, M. Casula and D. Rocca in preparation. *[5] C. Attaccalite and S. Sorella in preparation.

  18. Predictions of flavonoid solubility in ionic liquids by COSMO-RS: experimental verification, structural elucidation, and solvation characterization

    DEFF Research Database (Denmark)

    Guo, Zheng; Lue, Bena-Marie; Thomsen, Kaj

    2007-01-01

    Predictions of the solubility of flavonoids in a large variety of ionic liquids (ILs) with over 1800 available structures were examined based on COSMO-RS computation. The results show that the solubilities of flavonoids are strongly anion-dependent. Experimental measurement of the solubilities...... of esculin and rutin in 12 ILs with varying anions and cations show that predicted and experimental results generally have a good agreement. Based on the sound physical basis of COSMO-RS, the solubility changes of flavonoids were quantitatively associated with solvation interactions and structural...... characteristics of ILs. COSMO-RS derived parameters, i.e. misfit, H-bonding and van der Waals interaction energy, are shown to be capable of characterizing the complicated multiple interactions in the IL system effectively. H-bonding interaction is the most dominant interaction for ILs (followed by misfit and van...

  19. Water Contaminant Mitigation in Ionic Liquid Propellant

    Science.gov (United States)

    Conroy, David; Ziemer, John

    2009-01-01

    Appropriate system and operational requirements are needed in order to ensure mission success without unnecessary cost. Purity requirements applied to thruster propellants may flow down to materials and operations as well as the propellant preparation itself. Colloid electrospray thrusters function by applying a large potential to a room temperature liquid propellant (such as an ionic liquid), inducing formation of a Taylor cone. Ions and droplets are ejected from the Taylor cone and accelerated through a strong electric field. Electrospray thrusters are highly efficient, precise, scaleable, and demonstrate low thrust noise. Ionic liquid propellants have excellent properties for use as electrospray propellants, but can be hampered by impurities, owing to their solvent capabilities. Of foremost concern is the water content, which can result from exposure to atmosphere. Even hydrophobic ionic liquids have been shown to absorb water from the air. In order to mitigate the risks of bubble formation in feed systems caused by water content of the ionic liquid propellant, physical properties of the ionic liquid EMI-Im are analyzed. The effects of surface tension, material wetting, physisorption, and geometric details of the flow manifold and electrospray emitters are explored. Results are compared to laboratory test data.

  20. Thermal Stability Limits of Imidazolium Ionic Liquids Immobilized on Metal-Oxides.

    Science.gov (United States)

    Babucci, Melike; Akçay, Aslı; Balci, Volkan; Uzun, Alper

    2015-08-25

    Thermal stability limits of 33 imidazolium ionic liquids (ILs) immobilized on three of the most commonly used high surface area metal-oxides, SiO2, γ-Al2O3, and MgO, were investigated. ILs were chosen from a family of 13 cations and 18 anions. Results show that the acidity of C2H of an imidazolium ring is one of the key factors controlling the thermal stability. An increase in C2H bonding strength of ILs leads to an increase in their stability limits accompanied by a decrease in interionic energy. Systematic changes in IL structure, such as changes in electronic structure and size of anion/cation, methylation on C2 site, and substitution of alkyl groups on the imidazolium ring with functional groups have significant effects on thermal stability limits. Furthermore, thermal stability limits of ILs are influenced strongly by acidic character of the metal-oxide surface. Generally, as the point of zero charge (PZC) of the metal-oxide increases from SiO2 to MgO, the interactions of IL and metal-oxide dominate over interionic interactions, and metal-oxide becomes the significant factor controlling the stability limits. However, thermal stability limits of some ILs show the opposite trend, as the chemical activities of the cation functional group or the electron donating properties of the anion alter IL/metal-oxide interactions. Results presented here can help in choosing the most suitable ILs for materials involving ILs supported on metal-oxides, such as for supported ionic liquid membranes (SILM) in separation applications or for solid catalyst with ionic liquid layer (SCILL) and supported ionic liquid phase (SILP) catalysts in catalysis.

  1. Gas phase hydration of halogenated benzene cations. Is it hydrogen or halogen bonding?

    Science.gov (United States)

    Mason, Kyle A; Pearcy, Adam C; Attah, Isaac K; Platt, Sean P; Aziz, Saadullah G; El-Shall, M Samy

    2017-07-19

    Halogen bonding (XB) non-covalent interactions can be observed in compounds containing chlorine, bromine, or iodine which can form directed close contacts of the type R1-XY-R2, where the halogen X acts as a Lewis acid and Y can be any electron donor moiety including electron lone pairs on hetero atoms such as O and N, or π electrons in olefin double bonds and aromatic conjugated systems. In this work, we present the first evidence for the formation of ionic halogen bonds (IXBs) in the hydration of bromobenzene and iodobenzene radical cations in the gas phase. We present a combined thermochemical investigation using the mass-selected ion mobility (MSIM) technique and density functional theory (DFT) calculations of the stepwise hydration of the fluoro, chloro, bromo, and iodobenzene radical cations. The binding energy associated with the formation of an IXB in the hydration of the iodobenzene cation (11.2 kcal mol -1 ) is about 20% higher than the typical unconventional ionic hydrogen bond (IHB) of the CH δ+ OH 2 interaction. The formation of an IXB in the hydration of the iodobenzene cation involves a significant entropy loss (29 cal mol -1 K -1 ) resulting from the formation of a more ordered structure and a highly directional interaction between the oxygen lone pair of electrons of water and the electropositive region around the iodine atom of the iodobenzene cation. In comparison, the hydration of the fluorobenzene and chlorobenzene cations where IHBs are formed, -ΔS° = 18-21 cal mol -1 K -1 consistent with the formation of less ordered structures and loose interactions. The electrostatic potentials on the lowest energy structures of the hydrated halogenated benzene radical cations show clearly that the formation of an IXB is driven by a positively charged σ-hole on the external side of the halogen atom X along the C-X bond axis. The size of the σ-hole increases significantly in bromobenzene and iodobenzene radical cations which results in strong

  2. The role of weak hydrogen bonds in chiral recognition.

    Science.gov (United States)

    Scuderi, Debora; Le Barbu-Debus, Katia; Zehnacker, A

    2011-10-28

    Chiral recognition has been studied in neutral or ionic weakly bound complexes isolated in the gas phase by combining laser spectroscopy and quantum chemical calculations. Neutral complexes of the two enantiomers of lactic ester derivatives with chiral chromophores have been formed in a supersonic expansion. Their structure has been elucidated by means of IR-UV double resonance spectroscopy in the 3 μm region. In both systems described here, the main interaction ensuring the cohesion of the complex is a strong hydrogen bond between the chromophore and methyl-lactate. However, an additional hydrogen bond of much weaker strength plays a discriminative role between the two enantiomers. For example, the 1:1 heterochiral complex between R-(+)-2-naphthyl-ethanol and S-(+) methyl-lactate is observed, in contrast with the 1:1 homochiral complex which lacks this additional hydrogen bond. On the other hand, the same kind of insertion structures is formed for the complex between S-(±)-cis-1-amino-indan-2-ol and the two enantiomers of methyl-lactate, but an additional addition complex is formed for R-methyl-lactate only. This selectivity rests on the formation of a weak CHπ interaction which is not possible for the other enantiomer. The protonated dimers of Cinchona alkaloids, namely quinine, quinidine, cinchonine and cinchonidine, have been isolated in an ion trap and studied by IRMPD spectroscopy in the region of the ν(OH) and ν(NH) stretch modes. The protonation site is located on the alkaloid nitrogen which acts as a strong hydrogen bond donor in all the dimers studied. While the nature of the intermolecular hydrogen bond is similar in the homochiral and heterochiral complexes, the heterochiral complex displays an additional weak CHO hydrogen bond located on its neutral part, which results in slightly different spectroscopic fingerprints in the ν(OH) stretch region. This first spectroscopic evidence of chiral recognition in protonated dimers opens the way to the

  3. Environmentally dependent bond-order potentials: New ...

    Indian Academy of Sciences (India)

    Environmentally dependent bond-order potentials: New developments and applications ... for modelling amorphous structure we found that the and bond integrals are not only transferable between graphite and diamond structures but they are also strongly anisotropic due to inter-plan bonding between graphite sheets.

  4. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  5. Functionalized ionic liquids and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Hariprakasha, Humcha Krishnamurthy; Rangan, Krishnaswamy Kasthuri; Sudarshan, Tirumalai Srinivas

    2018-01-16

    Disclosure of functionalized ionic liquids. Use of disclosed ionic liquids as solvent for carbon dioxide. Use of disclosed ionic liquids as flame retardant. Use of disclosed ionic liquids for coating fabric to obtain flame retardant fabric.

  6. Emergent property of high hardness for C-rich ruthenium carbides: partial covalent Ru-Ru bonds.

    Science.gov (United States)

    Xu, Chunhong; Yu, Hongyu; Kuo, Bao; Ma, Shuailing; Xiao, Xuehui; Li, Da; Duan, Defang; Jin, Xilian; Liu, Bingbing; Cui, Tian

    2018-02-28

    Hard materials are being investigated all the time by combining transition metals with light elements. Combining a structure search with first-principles functional calculations, we first discovered three stable stoichiometric C-rich ruthenium carbides in view of three synthesis routes, namely, the ambient phases of Ru 2 C 3 and RuC, and two high pressure phases of RuC 4 . There is a phase transition of RuC 4 from the P3[combining macron]m1 structure to the R3[combining macron]m structure above 98 GPa. The calculations of elastic constants and phonon dispersions show their mechanical and dynamical stability. The large elastic modulus, high Debye temperature and the estimated hardness values suggest that these hard ruthenium carbides have good mechanical properties. The analyses of electronic structure and chemical bonding indicate that chemical bonding, not carbon content, is the key factor for the hardness in these metallic C-rich ruthenium carbides. The partial covalent Ru-C bonds and strong covalent C-C bonds are responsible for the high hardness. Moreover, the emergence of partial covalent Ru-Ru bonds can enhance the hardness of RuC, while the ionic Ru-Ru bonds can weaken the hardness of Ru 2 C 3 .

  7. Immobilization induced molecular compression of ionic liquid in ordered mesoporous matrix

    Science.gov (United States)

    Tripathi, Alok Kumar; Singh, Rajendra Kumar

    2018-02-01

    In this work, ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide ([EMIM][FSI]) has been immobilized into ordered mesoporous silica MCM-41 by a physical imbibition process. Transmission electron microscopy confirms the filling of mesopores of MCM-41. The effect of IL content in MCM-41 was probed in terms of thermal stability, chemical interactions, and dielectric properties. N2-sorption results indicate the compression of the IL in the nanopores of MCM-41, which contributes to an increase of the melting point probed by differential scanning calorimetry. The quantum chemical calculations confirmed that the ion–ion interaction in ion-pairs of IL were preferred over the hydrogen bonding interaction in the presence of SiO2 molecules, and these interactions probably compress the molecular size in the nanopores of MCM-41. Strong interactions between IL and porous MCM-41 were suggested as the mechanism of this immobilization, which was characterized by FTIR and dielectric spectroscopy.

  8. Constant time INEPT CT-HSQC (CTi-CT-HSQC) – A new NMR method to measure accurate one-bond J and RDCs with strong 1H–1H couplings in natural abundance

    NARCIS (Netherlands)

    Yu, B.; van Ingen, H.|info:eu-repo/dai/nl/297054651; Freedberg, D.I.

    2013-01-01

    Strong (1)H-(1)H coupling can significantly reduce the accuracy of (1)J(CH) measured from frequency differences in coupled HSQC spectra. Although accurate (1)J(CH) values can be extracted from spectral simulation, it would be more convenient if the same accurate (1)J(CH) values can be obtained

  9. Ionic smoke detectors

    CERN Document Server

    2002-01-01

    Ionic smoke detectors are products incorporating radioactive material. This article summarises the process for their commercialization and marketing, and how the activity is controlled, according to regulations establishing strict design and production requisites to guarantee the absence of radiological risk associated both with their use and their final handling as conventional waste. (Author)

  10. Synthesis of ionic liquids

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  11. Positrons in ionic crystals

    International Nuclear Information System (INIS)

    Pareja, R.

    1988-01-01

    Positron annihilation experiments in ionic crystals are reviewed and their results are arranged. A discussion about the positron states in these materials is made in the light of these results and the different proposed models. The positronium in alkali halides is specially considered. (Author)

  12. Ionic transport properties in AgCl under high pressures

    Science.gov (United States)

    Wang, Jia; Zhang, Guozhao; Liu, Hao; Wang, Qinglin; Shen, Wenshu; Yan, Yalan; Liu, Cailong; Han, Yonghao; Gao, Chunxiao

    2017-07-01

    Ionic transport behaviors of silver chloride (AgCl) have been revealed with impedance spectra measurement under high pressures up to 20.4 GPa. AgCl always presented ionic conducting under experimental pressures, but electronic conduction can coexist with ionic conduction within the pressure range from 6.7 to 9.3 GPa. The ionic conductivity of AgCl decreases by three orders of magnitude under compression, indicating that Ag+ ion migrations are suppressed by high pressure. A parameter, fW, was defined as the starting frequency at which Ag+ ions begin to show obvious long-distance diffusion in AgCl. fW showed a similar trend with the ionic conductivity under high pressures, indicating that the speed of Ag+ ion diffusion slows down as the pressure increases. Unlike AgI, Ag+ ion diffusion in AgCl is controlled by the indirect-interstitial mechanism. Due to stronger ionic bonds and larger lattice deformation, Ag+ ion diffusion in the rigid Cl- lattice is more difficult than in the I- lattice under high pressures.

  13. Structural and Physical Properties of Ionic Liquid Mixtures

    Science.gov (United States)

    Cha, Seoncheol; Kim, Doseok

    Ionic liquids are the materials consisting of only cations and anions and existing at liquid phase below 100 °C. They are called designer solven as the physical properties of the materials can be tuned by changing their constituent ions. Mixing ionic liquids is a new way of maximizing this advantage because the material properties can be changed continuously in the mixture. The excess molar volumes, a difference between the molar volumes of the mixtures and a linear interpolation between the volumes of pure components, have been found to differ significantly for some ionic liquid mixtures, but the origin of this difference is not well understood. The different microstructures of the mixtures, which can range from a simple mixture of two different consisting ionic liquids to a different structure from those of pure materials, have been suggested as the origin of this difference. We investigated ionic liquid mixture systems by IR spectroscopy by utilizing a particular peak in the IR spectrum for the moiety participating in the hydrogen bonding (νC(2)-H) that changes sensitively with the change of the anion in the ionic liquid. The absorbance of νC(2)-H changed proportionally to the composition for the mixtures consisting of halide anion. By contrast, the absorbance changed nonlinearly for the mixtures of which one of the anion had multiple interaction sites

  14. Impact of disorder on ionic charge in spinel compounds

    Energy Technology Data Exchange (ETDEWEB)

    Surble, Suzy [Materiaux fonctionnels pour l' energie, CEA - CNRS - Ecole Centrale Paris, CEA/DEN/SRMA 91191 Gif-sur-Yvette and SPMS, 92295 Chatenay-Malabry (France)], E-mail: suzy.surble@ecp.fr; Baldinozzi, Gianguido; Simeone, David; Gosset, Dominique [Materiaux fonctionnels pour l' energie, CEA - CNRS - Ecole Centrale Paris, CEA/DEN/SRMA 91191 Gif-sur-Yvette and SPMS, 92295 Chatenay-Malabry (France); Thome, Lionel [CSNSM, CNRS - Universite d' Orsay, 91405 Orsay (France)

    2008-06-15

    In order to obtain a correlation between the ionic charge and the local environment, the evolution of valence charges of cations in different 2-3 spinel compounds was investigated as a function of the temperature. The evolution of the structural parameters in normal (MgAl{sub 2}O{sub 4}), mixed (MgGa{sub 2}O{sub 4}) and inverse (MgIn{sub 2}O{sub 4}) spinels as a function of the temperature was extracted from X-ray diffraction patterns collected during different thermal annealings. The evolution of these structural parameters as a function of the disorder is analyzed within the bond valence shell model: large variations of the cation valence are observed in these three spinel compounds. From this analysis, a strong correlation between the change of the cation valence and the local disorder is pointed out. Including this dependence in the microscopic models may provide a better agreement between experimental observations and simulations.

  15. Diffusion bonding

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1976-01-01

    A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions

  16. Theoretical description of metal-ligand bonding within f-element complexes: A successful and necessary interplay between theory and experiment

    International Nuclear Information System (INIS)

    Maldivi, P.; Petit, L.; Vetere, V.; Petit, L.; Adamo, C.

    2007-01-01

    The quantum chemical study presented here shows various aspects of the bonding of lanthanide (La 3+ , Gd 3+ ) and actinide (U 3+ , Am 3+ , Cm 3+ ) ions with N-heterocyclic ligands (poly-azines, BTP: bis(1,2,4-triazinyl)-2,6-pyridine). Several families of complexes, differing by their coordination sphere, have been examined. Clearly, the lanthanide complexes always show a purely ionic bonding. The behaviour of U(III) is also well defined with a more or less strong back bonding interaction whatever the complex is. In contrast, the heavy actinides (Am 3+ and Cm 3+ ) are changeable, with a weak covalent character, going from donation to back donation, depending on the coordination sphere of the complex. (authors)

  17. Effect of water presence on choline chloride-2urea ionic liquid and coating platings from the hydrated ionic liquid

    Science.gov (United States)

    Du, Cuiling; Zhao, Binyuan; Chen, Xiao-Bo; Birbilis, Nick; Yang, Haiyan

    2016-07-01

    In the present study, hygroscopicity of the choline chloride-urea (ChCl-2Urea) ionic liquid (IL) was confirmed through Karl-Fisher titration examination, indicating that the water content in the hydrated ChCl-2Urea IL was exposure-time dependent and could be tailored by simple heating treatment. The impact of the absorbed water on the properties of ChCl-2Urea IL, including viscosity, electrical conductivity, electrochemical window and chemical structure was investigated. The results show that water was able to dramatically reduce the viscosity and improve the conductivity, however, a broad electrochemical window could be persisted when the water content was below ~6 wt.%. These characteristics were beneficial for producing dense and compact coatings. Nickel (Ni) coatings plating from hydrated ChCl-2Urea IL, which was selected as an example to show the effect of water on the electroplating, displayed that a compact and corrosion-resistant Ni coating was plated from ChCl-2Urea IL containing 6 wt.% water doped with 400 mg/L NA at a moderate temperature. As verified by FTIR analysis, the intrinsic reason could be ascribed that water was likely linked with urea through strong hydrogen bond so that the water decomposition was suppressed during plating. Present study may provide a reference to prepare some similar water-stable ILs for plating.

  18. IONIC LIQUIDS: PREPARATIONS AND LIMITATIONS

    Directory of Open Access Journals (Sweden)

    Dzulkefly Kuang Abdullah

    2010-11-01

    Full Text Available Ionic liquids are considered as an ideal alternative to volatile organic solvents and chemical industries in the future,because they are non-volatile. Ionic liquids are also considered as new novel chemical agents and widely regarded as agreener alternative to many commonly used solvents. Ionic liquids have been studied for a wide range of syntheticapplications and have attracted considerable interest for use as electrolytes in the areas of organic synthesis, catalysis,solar cell, fuel cells, electrodeposition and supercapacitors. However, some ionic liquids suffer from more or less somedrawbacks such as toxicity, preparation and high cost in the process for use. Most recently, three types of ionic liquidsare attracted much attentions specifically traditional ionic liquid, protic ionic liquid and deep eutectic solvent, wheretheir preparation, mechanism and limitation were differentiated. However, those liquids are having their ownadvantages and limitations based on applications. Traditional ionic liquid and protic ionic liquid are highly cost andtoxic for applied engineering research, but they consist of micro-biphasic systems composed of ionic compounds whichhave more varieties in the applications. The deep eutectic solvent is very economic for large-scale possessing but thereare only limited ionic mixtures to certain application such as electrochemistry.

  19. Dissolving Polymers in Ionic Liquids.

    Science.gov (United States)

    Hoagland, David; Harner, John

    2009-03-01

    Dissolution and phase behavior of polymers in ionic liquids have been assessed by solution characterization techniques such as intrinsic viscosity and light scattering (static and dynamic). Elevated viscosity proved the greatest obstacle. As yet, whether principles standard to conventional polymer solutions apply to ionic liquid solutions is uncertain, especially for polymers such as polyelectrolytes and hydrophilic block copolymers that may specifically interact with ionic liquid anions or cations. For flexible polyelectrolytes (polymers releasing counterions into high dielectric solvents), characterization in ionic liquids suggests behaviors more typical of neutral polymer. Coil sizes and conformations are approximately the same as in aqueous buffer. Further, several globular proteins dissolve in a hydrophilic ionic liquid with conformations analogous to those in buffer. General principles of solubility, however, remain unclear, making predictions of which polymer dissolves in which ionic liquid difficult; several otherwise intractable polymers (e.g., cellulose, polyvinyl alcohol) dissolve and can be efficiently functionalized in ionic liquids.

  20. On the concept of ionicity in ionic liquids.

    Science.gov (United States)

    MacFarlane, Douglas R; Forsyth, Maria; Izgorodina, Ekaterina I; Abbott, Andrew P; Annat, Gary; Fraser, Kevin

    2009-07-07

    Ionic liquids are liquids comprised totally of ions. However, not all of the ions present appear to be available to participate in conduction processes, to a degree that is dependent on the nature of the ionic liquid and its structure. There is much interest in quantifying and understanding this 'degree of ionicity' phenomenon. In this paper we present transport data for a range of ionic liquids and evaluate the data firstly in terms of the Walden plot as an approximate and readily accessible approach to estimating ionicity. An adjusted Walden plot that makes explicit allowance for differences in ion sizes is shown to be an improvement to this approach for the series of ionic liquids described. In some cases, where diffusion measurements are possible, it is feasible to directly quantify ionicity via the Nernst-Einstein equation, confirming the validity of the adjusted Walden plot approach. Some of the ionic liquids studied exhibit ionicity values very close to ideal; this is discussed in terms of a model of a highly associated liquid in which the ion correlations have similar impact on both the diffusive and conductive motions. Ionicity, as defined, is thus a useful measure of adherence to the Nernst-Einstein equation, but is not necessarily a measure of ion availability in the chemical sense.

  1. The influence of like-charge attraction on the structure and dynamics of ionic liquids: NMR chemical shifts, quadrupole coupling constants, rotational correlation times and failure of Stokes-Einstein-Debye.

    Science.gov (United States)

    Strate, Anne; Overbeck, Viviane; Lehde, Viktoria; Neumann, Jan; Bonsa, Anne-Marie; Niemann, Thomas; Paschek, Dietmar; Michalik, Dirk; Ludwig, Ralf

    2018-02-21

    Ion pairing is one of the most fundamental atomic interactions in chemistry and biology. In contrast, pairing between like-charged ions remains an elusive concept. So far, this phenomenon was observed only for large-scaled structures, assemblies, stabilizing frameworks, or in aqueous solution wherein like-charge attraction is supported by mediating water molecules. Recently, we reported the formation of cationic clusters in pure ionic liquids (ILs) which all include hydroxyl groups (OH) for possible hydrogen bonding. In such structures like-charge repulsion is overcome by cooperative hydrogen bonds. The vibrational bands in the OH-stretch region of the infrared spectra can be clearly assigned to H-bonded ion pairs (c-a) or to H-bonded cationic clusters (c-c). The equilibrium between both types of ionic clusters can be controlled by using the same cation but differently strong interacting anions. In the present work, we study the influence of the cationic cluster formation on structural and dynamical NMR properties of ionic liquids, where we know that they form cationic clusters to different extent. First, we measure proton chemical shifts, δ 1 H, and determine deuteron quadrupole coupling constants, χ D , from a calculated relation between both NMR properties. Reliable χ D values for the liquid phase are a prerequisite for calculating reorientational correlation times, τ OH , from measured deuteron relaxation times, T 1 . It is shown that the correlation times are significantly influenced by the amount of cationic clusters present in the IL. The Stokes-Einstein-Debye (SED) relation is valid for the ILs wherein H-bonded ion pairs (c-a) are the dominant species. With increasing cationic cluster (c-c) formation of e.g. cyclic tetramers, SED breaks down because of the structural heterogeneities.

  2. Super ionic conductive glass

    Science.gov (United States)

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  3. Nanoscale Ionic Materials

    KAUST Repository

    Rodriguez, Robert

    2008-11-18

    Polymer nanocomposites (nanoparticles dispersed in a polymer matrix) have been the subject of intense research for almost two decades in both academic and industrial settings. This interest has been fueled by the ability of nanocomposites to not only improve the performance of polymers, but also by their ability to introduce new properties. Yet, there are still challenges that polymer nanocomposites must overcome to reach their full potential. In this Research News article we discuss a new class of hybrids termed nanoparticle ionic materials (NIMS). NIMS are organic-inorganic hybrid materials comprising a nanoparticle core functionalized with a covalently tethered ionic corona. They are facilely engineered to display flow properties that span the range from glassy solids to free flowing liquids. These new systems have unique properties that can overcome some of the challenges facing nanocomosite materials. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

  4. Thermodynamic estimation: Ionic materials

    International Nuclear Information System (INIS)

    Glasser, Leslie

    2013-01-01

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  5. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  6. The Nature of the Hydrogen Bond Outline of a Comprehensive Hydrogen Bond Theory

    CERN Document Server

    Gilli, Gastone

    2009-01-01

    Hydrogen bond (H-bond) effects are known: it makes sea water liquid, joins cellulose microfibrils in trees, shapes DNA into genes and polypeptide chains into wool, hair, muscles or enzymes. Its true nature is less known and we may still wonder why O-H...O bond energies range from less than 1 to more than 30 kcal/mol without apparent reason. This H-bond puzzle is re-examined here from its very beginning and presented as an inclusive compilation of experimental H-bond energies andgeometries.New concepts emerge from this analysis: new classes of systematically strong H-bonds (CAHBs and RAHBs: cha

  7. High-capacity hollow porous dummy molecular imprinted polymers using ionic liquid as functional monomer for selective recognition of salicylic acid.

    Science.gov (United States)

    Xiang, Haiyan; Peng, Mijun; Li, Hui; Peng, Sheng; Shi, Shuyun

    2017-01-30

    The existence of strong intramolecular hydrogen bond in salicylic acid (SA) weakens its intermolecular hydrogen bonding with functional monomer, then it is a challenge work to fabricate molecularly imprinted polymers (MIPs) for SA recognition with high capacity and good selectivity. Here, hollow porous dummy MIPs (HPDMIPs) were prepared using benzoic acid (BA) as dummy template, ionic liquid (i.e. 1-vinyl-3-methylimidazolium chloride) as functional monomer, and MCM-48 as sacrificial support. Factors that affected adsorption, such as type of template and porogen, mole ratio of template-functional monomer-cross-linker and type of binding solvent, were optimized in detail. Multiple strong interactions between SA and ionic liquid in HPDMIPs deduced higher binding capacity (29.75mg/g), imprinting factor (5.61) and selectivity than any previously reported MIPs by traditional or surface imprinting technology. The large surface area (543.9m 2 /g) with hollow porous structure resulted in faster kinetic binding (25min). The equilibrium data fitted well to Freundlich equation and the adsorption process could be described by pseudo-second order model. Finally, HPDMIPs were successfully applied to selectively extract and enrich SA from Actinidia chinensis with a relatively high recovery (84.6-94.5%). Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Reactive bonding mediated high mass loading of individualized single-walled carbon nanotubes in an elastomeric polymer

    Science.gov (United States)

    Zhao, Liping; Li, Yongjin; Qiu, Jishan; You, Jichun; Dong, Wenyong; Cao, Xiaojun

    2012-09-01

    A reactive chemical bonding strategy was developed for the incorporation of a high mass loading of individual single-wall carbon nanotubes (SWCNTs) into an elastomeric matrix using a reactive ionic liquid as a linker. This method simultaneously prevented the agglomeration of SWCNTs and caused strong interfacial bonding, while the electronic properties of the SWCNTs remained intact. As a result, the high conductivity of the carbon nanotubes (CNTs) and the flexibility of the elastomeric matrix were retained, producing optimum electrical and mechanical properties. A composite material with a loading of 20 wt% SWCNTs was fabricated with excellent mechanical properties and a high conductivity (9500 S m-1). The method could be used to form transparent thin conductive films that could tolerate over 800 bend cycles at a bending angle of 180° while maintaining a constant sheet resistance.A reactive chemical bonding strategy was developed for the incorporation of a high mass loading of individual single-wall carbon nanotubes (SWCNTs) into an elastomeric matrix using a reactive ionic liquid as a linker. This method simultaneously prevented the agglomeration of SWCNTs and caused strong interfacial bonding, while the electronic properties of the SWCNTs remained intact. As a result, the high conductivity of the carbon nanotubes (CNTs) and the flexibility of the elastomeric matrix were retained, producing optimum electrical and mechanical properties. A composite material with a loading of 20 wt% SWCNTs was fabricated with excellent mechanical properties and a high conductivity (9500 S m-1). The method could be used to form transparent thin conductive films that could tolerate over 800 bend cycles at a bending angle of 180° while maintaining a constant sheet resistance. Electronic supplementary information (ESI) available: Conductivity test of the SEBS-SWCNTs film, transmission spectra and sheet resistance for the spin-coated SEBS-SWCNTs thin films on PET slides. See DOI: 10

  9. Ionic liquid processing of cellulose.

    Science.gov (United States)

    Wang, Hui; Gurau, Gabriela; Rogers, Robin D

    2012-02-21

    Utilization of natural polymers has attracted increasing attention because of the consumption and over-exploitation of non-renewable resources, such as coal and oil. The development of green processing of cellulose, the most abundant biorenewable material on Earth, is urgent from the viewpoints of both sustainability and environmental protection. The discovery of the dissolution of cellulose in ionic liquids (ILs, salts which melt below 100 °C) provides new opportunities for the processing of this biopolymer, however, many fundamental and practical questions need to be answered in order to determine if this will ultimately be a green or sustainable strategy. In this critical review, the open fundamental questions regarding the interactions of cellulose with both the IL cations and anions in the dissolution process are discussed. Investigations have shown that the interactions between the anion and cellulose play an important role in the solvation of cellulose, however, opinions on the role of the cation are conflicting. Some researchers have concluded that the cations are hydrogen bonding to this biopolymer, while others suggest they are not. Our review of the available data has led us to urge the use of more chemical units of solubility, such as 'g cellulose per mole of IL' or 'mol IL per mol hydroxyl in cellulose' to provide more consistency in data reporting and more insight into the dissolution mechanism. This review will also assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate 'greenness' of any process (142 references).

  10. Highly efficient diglycolamide-based task specific ionic liquids: synthesis, unusual extraction behaviour irradiation and fluorescence studies

    NARCIS (Netherlands)

    Mohapatra, Prasanta K.; Sengupta, A.; Iqbal, M.; Huskens, Jurriaan; Verboom, Willem

    2013-01-01

    Two new diglycolamide-based task-specific ionic liquids (DGA[BOND]TSILs) were evaluated for the extraction of actinides and lanthanides from acidic feed solutions. These DGA[BOND]TSILs were capable of exceptionally high extraction of trivalent actinide ions, such as Am3+, and even higher extraction

  11. Equation of state of strongly coupled plasma mixtures

    International Nuclear Information System (INIS)

    DeWitt, H.E.

    1984-01-01

    Thermodynamic properties of strongly coupled (high density) plasmas of mixtures of light elements have been obtained by Monte Carlo simulations. For an assumed uniform charge background the equation of state of ionic mixtures is a simple extension of the one-component plasma EOS. More realistic electron screening effects are treated in linear response theory and with an appropriate electron dielectric function. Results have been obtained for the ionic pair distribution functions, and for the electric microfield distribution

  12. [Dependence of rigor tension developed by skinned rabbit psoas fibers on the ionic strength of solution].

    Science.gov (United States)

    Lednev, V V; Srebnitskaia, L K; Khromov, A S

    1983-01-01

    The magnitude of isometric tension developed by a bundle of skinned rabbit psoas fibers when it is transferred from relaxing to rigor solution strongly depends on the ionic strength value of the bathing rigor solution. Upon elevation of the ionic strength from 0.04 to 0.34 the rigor tension declines about 2.3 times.

  13. Are Stock and Corporate Bond Markets Integrated?

    OpenAIRE

    van Zundert, J.; Driessen, Joost

    2017-01-01

    This study explores the cross-sectional integration of stock and corporate bond markets by comparing a firm’s expected stock return, as implied by corporate bond spreads, to its realized stock return. We compute expected corporate bond returns by correcting credit spreads for expected losses due to default, which are then transformed into expected stock returns. We find, surprisingly, a strong negative cross-sectional relation between these expected and realized stock returns over the period ...

  14. Diffusionless bonding of aluminum to type 304 stainless steel

    International Nuclear Information System (INIS)

    Watson, R.D.

    1963-03-01

    High strength diffusionless bonds can be produced between 1S aluminum and oxidized 304 stainless steel by hot pressing and extrusion bonding. Both the hot pressing and extrusion bonding techniques have been developed to a point where consistently good bonds can be obtained. Although the bonding is performed at elevated temperatures (about 510 o C) a protective atmosphere is not required to produce strong bonds. The aluminum-stainless steel bonded specimens can be used to join aluminum and stainless steel by conventional welding. Welding close to the bond zone does not appear to affect the integrity of the bond. The extrusion bonding technique is covered by Canadian patent 702,438 January 26, 1965 and the hot press bonding technique by Canadian patent application 904,548 June 6, 1964. (author)

  15. Orientational dynamics in a room temperature ionic liquid: Are angular jumps predominant?

    Science.gov (United States)

    Das, Suman; Mukherjee, Biswaroop; Biswas, Ranjit

    2018-05-01

    Reorientational dynamics of the constituent ions in a room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), are explored via molecular dynamics simulations, and several features of orientation dynamics are summarized. The anion, [PF6]-, not only exhibits a higher propensity to orientation jumps than the cation, [BMIM]+ but also accesses a wider jump angle distribution and larger peak-angle. Jump and waiting time distributions for both the ions depict power-law dependences, suggesting temporally heterogeneous dynamics for the medium. This heterogeneity feature is further highlighted by the finding that the simulated first rank (ℓ = 1) and second rank (ℓ = 2) average reorientational correlation times reflect a severe break-down of Debye's ℓ(ℓ + 1) law for orientational diffusion in an isotropic homogeneous medium. Simulated average H-bond lifetime resides between the mean orientation jump and waiting times, while the structural H-bond relaxation suggests, as in normal liquids, a pronounced presence of translational motion of the partnering ions. Average simulated jump trajectories reveal a strong rotation-translation coupling and indicate relatively larger changes in spatial and angular arrangements for the anion during an orientation jump. In fact, a closer inspection of all these results points toward more heterogeneous dynamics for [PF6]- than [BMIM]+. This is a new observation and may simply be linked to the ion-size. However, such a generalization warrants further study.

  16. Understanding Bonds - Denmark

    DEFF Research Database (Denmark)

    Rimmer, Nina Røhr

    2016-01-01

    a specified rate of interest during the life of the bond and to repay the face value of the bond (the principal) when it “matures,” or comes due. Among the types of bonds you can choose from are: Government securities, municipal bonds, corporate bonds, mortgage and asset-backed securities, federal agency...

  17. Chemical bonding and charge density distribution analysis of ...

    Indian Academy of Sciences (India)

    The mid bond electron density values revealed the enhancement of covalent nature between titanium and oxygen ions and predominant ionic nature between barium and oxygen ions. Average grain sizes were estimated for the undoped and doped samples. SEM investigations showed the existence of smaller grains with ...

  18. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    Science.gov (United States)

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-03-23

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. IONIC LIQUIDS MATERIAL AS MODERN CONTEXT OF CHEMISTRY IN SCHOOL

    Directory of Open Access Journals (Sweden)

    Hernani Hernani

    2016-04-01

    Full Text Available One way to improve students’ chemistry literacy which is demanded in the modernization of modern technology-based chemistry learning is by studying ionic liquids. Low level of scientific literacy of students in Indonesia as revealed in the PISA in 2012 was the main reason of the research. Ionic liquids-based technology are necessary to be applied as a context for learning chemistry because: (1 the attention of the scientific an technology community in the use of ionic liquids as a new generation of green solvent, electrolyte material and fluidic engineering in recent years becomes larger, in line with the strong demands of the industry for the provision of new materials that are reliable, safe, and friendly for various purposes; (2 scientific explanations related to the context of the ionic liquid contains a lot of facts, concepts, principles, laws, models and theories can be used to reinforce the learning content as a media to develop thinking skill (process/competence as demanded by PISA; (3 The modern technology-based ionic liquid can also be used as a discourse to strengthen scientific attitude. The process of synthesis of ionic liquid involves fairly simple organic reagents, so it deserves to be included in the chemistry subject in school.

  20. Phase Behavior and Ionic Conductivity of Concentrated Solutions of Polystyrene-Poly(ethylene oxide) Diblock Copolymers in an Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Peter M.; Lodge, Timothy P.; (UMM)

    2010-03-16

    Concentrated solutions of poly(styrene-b-ethylene oxide) (PS-PEO) diblock copolymers were prepared using the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMI][TFSI] as the solvent. The self-assembled microstructures adopted by the copolymer solutions have been characterized using small-angle X-ray scattering. Lyotropic mesophase transitions were observed, with a progression from hexagonally packed cylinders of PEO, to lamellae, to hexagonally packed cylinders of PS upon increasing [EMI][TFSI] content. The change in lamellar domain spacing with ionic liquid concentration was found to be comparable to that reported for other block copolymers in strongly selective solvents. The ionic conductivity of the concentrated PS-PEO/[EMI][TFSI] solutions was measured via impedance spectroscopy, and ranged from 1 x 10{sup -7} to 1 x 10{sup -3} S/cm at temperatures from 25-100 C. Additionally, the ionic conductivity of the solutions was found to increase with both ionic liquid concentration and molecular weight of the PEO blocks. The ionic conductivity of PEO homopolymer/[EMI][TFSI] solutions was also measured in order to compare the conductivity of the PS-PEO solutions to the expected limit for a lamellar sample with randomly oriented microstructure grains.

  1. Ultradurable Dye-Sensitized Solar Cells under 120°C Using Cross-Linkage Dye and Ionic-Liquid Electrolyte

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2013-01-01

    Full Text Available A double-bond-edged Ru dye (code name: SG1051 has been studied as a novel sensitizing dye for ultradurable dye-sensitized solar cells (DSCs. The SG1051 Ru dye showed the quick dye-uptake time (1 h for the optimized condition: η=9.2%, using volatile electrolyte and the strong adsorption strength compared with standard Ru dyes (N719 and Z907, which was checked by successive dipping of dye-adsorbed nanocrystalline-TiO2 electrodes into NaOH aqueous. solution and acetonitrile. The resulting DSCs using SG1051 Ru dye and ionic-liquid electrolyte survived the durability test at 120°C for 480 h, which can be the strong interest of the industrial groups.

  2. Polyanions in liquid ionic alloys : A decade of research

    NARCIS (Netherlands)

    vanderLugt, W

    1996-01-01

    The occurrence of polyanions in a group of liquid ionic alloys, viz alloys of the alkali metals with 13, 14, 15 and 16 elements (post-transition-metal groups 3, 4, 5 and 6), is discussed. It is shown that there are strong parallels with the corresponding crystalline phases, in which polyanions such

  3. Diffusion, Ion Pairing and Aggregation in 1-Ethyl-3-Methylimidazolium-Based Ionic Liquids Studied by 1 H and 19 F PFG NMR: Effect of Temperature, Anion and Glucose Dissolution.

    Science.gov (United States)

    D'Agostino, Carmine; Mantle, Mick D; Mullan, Claire L; Hardacre, Christopher; Gladden, Lynn F

    2018-01-31

    In this work, using 1 H and 19 F PFG NMR, we probe the effect of temperature, ion size/type and glucose dissolution on the rate of transport in 1-ethyl-3-methylimidazolium ([EMIM] + )-based ionic liquids by measuring self-diffusion coefficients. Using such data, we are able to establish the degree of ion pairing and quantify the extent of ionic aggregation during diffusion. For the neat 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) a strong degree of ion pairing is observed. The substitution of the [OAc] - anion with the bis{(trifluoromethyl)sulfonyl}imide ([TFSI] - ) anion reduces the pairing between the ions, which is attributed to a lower electric charge density on the [TFSI] - anion, hence a weaker electric interaction with the [EMIM] + cation. The effect of glucose, important for applications of ionic liquids as extracting media, on the strongly paired [EMIM][OAc] sample was also investigated and it is observed that the carbohydrate decreases the degree of ion pairing, which is attributed to the ability of glucose to disrupt inter-ionic interactions by forming hydrogen bonding, particularly with the [OAc] - anion. Calculations of aggregation number from diffusion data show that the [OAc] - anion diffuses as a part of larger aggregates compared to the [EMIM] + cation. The results and analysis presented here show the usefulness of PFG NMR in studies of ionic liquids, giving new insights into ion pairing and aggregation and the factors affecting these parameters. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Atomic charges of sulfur in ionic liquids: experiments and calculations.

    Science.gov (United States)

    Fogarty, Richard M; Rowe, Rebecca; Matthews, Richard P; Clough, Matthew T; Ashworth, Claire R; Brandt, Agnieszka; Corbett, Paul J; Palgrave, Robert G; Smith, Emily F; Bourne, Richard A; Chamberlain, Thomas W; Thompson, Paul B J; Hunt, Patricia A; Lovelock, Kevin R J

    2017-12-14

    Experimental near edge X-ray absorption fine structure (NEXAFS) spectra, X-ray photoelectron (XP) spectra and Auger electron spectra are reported for sulfur in ionic liquids (ILs) with a range of chemical structures. These values provide experimental measures of the atomic charge in each IL and enable the evaluation of the suitability of NEXAFS spectroscopy and XPS for probing the relative atomic charge of sulfur. In addition, we use Auger electron spectroscopy to show that when XPS binding energies differ by less than 0.5 eV, conclusions on atomic charge should be treated with caution. Our experimental data provides a benchmark for calculations of the atomic charge of sulfur obtained using different methods. Atomic charges were computed for lone ions and ion pairs, both in the gas phase (GP) and in a solvation model (SMD), with a wide range of ion pair conformers considered. Three methods were used to compute the atomic charges: charges from the electrostatic potential using a grid based method (ChelpG), natural bond orbital (NBO) population analysis and Bader's atoms in molecules (AIM) approach. By comparing the experimental and calculated measures of the atomic charge of sulfur, we provide an order for the sulfur atoms, ranging from the most negative to the most positive atomic charge. Furthermore, we show that both ChelpG and NBO are reasonable methods for calculating the atomic charge of sulfur in ILs, based on the agreement with both the XPS and NEXAFS spectroscopy results. However, the atomic charges of sulfur derived from ChelpG are found to display significant, non-physical conformational dependence. Only small differences in individual atomic charge of sulfur were observed between lone ion (GP) and ion pair IL(SMD) model systems, indicating that ion-ion interactions do not strongly influence individual atomic charges.

  5. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  6. Hydrogen Bonding to Alkanes: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen; Olesen, Solveig Gaarn

    2009-01-01

    The structural, vibrational, and energetic properties of adducts of alkanes and strong cationic proton donors were studied with composite ab initio calculations. Hydrogen bonding in [D-H+ H-alkyl] adducts contributes to a significant degree to the interactions between the two components, which...... are stronger in adducts of isobutane and in adducts of stronger acids. Intramolecular hydrogen bonding in protonated long-chain alcohols manifests itself in the same manner as intermolecular hydrogen bonding and can be equally strong. Udgivelsesdato: 12 juni 2009...

  7. DETERMINANTS OF ORI001 TYPE GOVERNMENT BOND

    Directory of Open Access Journals (Sweden)

    Yosandi Yulius

    2011-09-01

    Full Text Available The need to build a strong bond market is amenable, especially after the 1997 crises. This paper analyzes the influence of deposit interest rate, foreign exchange rates, and Composite Stock Price Index on yield-to-maturity of Bond Series Retail ORI001, employing monthly data from Bloomberg information service, 2006(8 to 2008(12, using Generalized Autoregressive Conditional Heteroscedasticity type models. It finds the evidence that deposit interest rate and exchange rate have positive significant influence on the bond, and that stock index has a negative significant influence on the bond. It also finds that Deposit Interest Rate, exchange rate, and the stock index significantly influence the bond altogether.Keywords: Interest rate, exchange rate, composite stock price index, yield-to-maturity, bondJEL classification numbers: G12, G15

  8. Ionic Liquid Crystals: Versatile Materials.

    Science.gov (United States)

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

  9. X hydrogen bonds

    Indian Academy of Sciences (India)

    sigma electrons, can be hydrogen bond acceptors.11–14. The recent IUPAC report and recommendation on hydro gen bond have recognised the diverse nature of hydro- gen bond donors and acceptors.13,14. Unlike methane, hydrogen bonding by higher alkanes has not received much attention. One of the earlier works.

  10. Solvent effects in ionic liquids: empirical linear energy-density relationships.

    Science.gov (United States)

    Cerda-Monje, A; Aizman, A; Tapia, R A; Chiappe, C; Contreras, R

    2012-07-28

    Multiparameter linear energy-density relationships to model solvent effects in room temperature ionic liquids (RTILs) are introduced and tested. The model incorporates two solvent dependent and two specific solute-solvent parameters represented by a set of electronic indexes derived from the conceptual density functional theory. The specific solute-solvent interactions are described in terms of the electronic chemical potential for proton migration between the anion or cation and the transition state structure of a specific reaction. These indexes provide a quantitative estimation of the hydrogen bond (HB) acceptor basicity and the hydrogen bond donor acidity of the ionic solvent, respectively. A sound quantitative scale of HB strength is thereby obtained. The solvent dependent contributions are described by the global electrophilicity of the cation and nucleophilicity of the anion forming the ionic liquid. The model is illustrated for the kinetics of cycloaddition of cyclopentadiene towards acrolein. In general, cation HB acidity outweighs the remaining parameters for this reaction.

  11. A mixed Ni(II) ionic complex containing V-shaped water trimer ...

    Indian Academy of Sciences (India)

    A mixed Ni(II) ionic complex containing V-shaped water trimer: Synthesis, spectral, structural and ... bonding interaction between three lattice water molecule forms a V-shaped trimer (H2O)3 which gives rise to a. 1-D polymeric structure in the ... with organic ligands should be handled with care as they can cause explosion.

  12. Adhesive wafer bonding

    Science.gov (United States)

    Niklaus, F.; Stemme, G.; Lu, J.-Q.; Gutmann, R. J.

    2006-02-01

    Wafer bonding with intermediate polymer adhesives is an important fabrication technique for advanced microelectronic and microelectromechanical systems, such as three-dimensional integrated circuits, advanced packaging, and microfluidics. In adhesive wafer bonding, the polymer adhesive bears the forces involved to hold the surfaces together. The main advantages of adhesive wafer bonding include the insensitivity to surface topography, the low bonding temperatures, the compatibility with standard integrated circuit wafer processing, and the ability to join different types of wafers. Compared to alternative wafer bonding techniques, adhesive wafer bonding is simple, robust, and low cost. This article reviews the state-of-the-art polymer adhesive wafer bonding technologies, materials, and applications.

  13. Biopolymer Processing Using Ionic Liquids

    Science.gov (United States)

    2014-08-07

    reaction and degradation products of the conversion of chitin and chitosan, and 3) investigate the effects of various reaction conditions, such as...reaction temperature, and catalyst loading, on the reaction rate and degradation products from the depolymerization of chitin and chitosan. 15. SUBJECT... based ionic liquid for the dissolution of chitin and a sulfonic acid functionalized ionic liquid, chitin can be hydrolyzed into its monomer unit, N

  14. Mechanical heterogeneity in ionic liquids

    Science.gov (United States)

    Veldhorst, Arno A.; Ribeiro, Mauro C. C.

    2018-05-01

    Molecular dynamics (MD) simulations of five ionic liquids based on 1-alkyl-3-methylimidazolium cations, [CnC1im]+, have been performed in order to calculate high-frequency elastic moduli and to evaluate heterogeneity of local elastic moduli. The MD simulations of [CnC1im][NO3], n = 2, 4, 6, and 8, assessed the effect of domain segregation when the alkyl chain length increases, and [C8C1im][PF6] assessed the effect of strength of anion-cation interaction. Dispersion curves of excitation energies of longitudinal and transverse acoustic, LA and TA, modes were obtained from time correlation functions of mass currents at different wavevectors. High-frequency sound velocity of LA modes depends on the alkyl chain length, but sound velocity for TA modes does not. High-frequency bulk and shear moduli, K∞ and G∞, depend on the alkyl chain length because of a density effect. Both K∞ and G∞ are strongly dependent on the anion. The calculation of local bulk and shear moduli was accomplished by performing bulk and shear deformations of the systems cooled to 0 K. The simulations showed a clear connection between structural and elastic modulus heterogeneities. The development of nano-heterogeneous structure with increasing length of the alkyl chain in [CnC1im][NO3] implies lower values for local bulk and shear moduli in the non-polar domains. The mean value and the standard deviations of distributions of local elastic moduli decrease when [NO3]- is replaced by the less coordinating [PF6]- anion.

  15. Toward understanding solute-solvent interaction in room-temperature mono- and dicationic ionic liquids: a combined fluorescence spectroscopy and mass spectrometry analysis.

    Science.gov (United States)

    Sahu, Prabhat Kumar; Das, Sudhir Kumar; Sarkar, Moloy

    2014-02-20

    Rotational relaxation dynamics of nonpolar perylene, dipolar coumarin 153, and a negatively charged probe, sodium 8-methoxypyrene-1,3,6-sulfonate (MPTS), have been investigated in a dicationic ionic liquid, 1,6-bis-(3-methylimidazolium-1-yl)hexane bis-(trifluoromethylsulfonyl)amide ([C6(MIm)2][NTf2]2), and a structurally similar monocationic ionic liquid, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C6MIm][NTf2]), to have a comprehensive and a quantitative understanding on the solute-solvent interaction in these media. Analysis of the rotational relaxation dynamics data by Stokes-Einstein-Debye (SED) hydrodynamic theory reveals that perylene rotation is found to be the fastest compared to the other two probes and shows slip to sub-slip behavior, coumarin 153 rotation lies between the stick and slip boundary, and MPTS shows a superstick behavior in [C6MIm][NTf2]. Interestingly, MPTS exhibits a normal SED hydrodynamics in dicationic [C6(MIm)2][NTf2]2, in spite of the fact that dicationic ionic liquid contains two cationic sites bearing acidic hydrogen (C2-H) which may be available to form stronger interaction with the negatively charged MPTS. The difference in the rotational diffusion behavior of these three probes is a reflection of their location in different distinct environments of these ILs. Superstick behavior of MPTS in monocationic IL has been attributed to its specific hydrogen bonding interaction with the corresponding imidazolium cation. The relatively faster rotational behavior of MPTS in dicationic IL has been explained by resorting to mass spectrometry. Mass spectral analysis demonstrates that positively charged (imidazolium) sites in dicationic IL are strongly associated with negatively charged bis-(trifluoromethylsulfonyl)amide anion (NTf2(-)), which in turn makes it difficult for imidazolim cation to have stronger hydrogen bonding interaction with bulkier negatively charged molecule MPTS.

  16. Maillard reaction products from chitosan-xylan ionic liquid solution.

    Science.gov (United States)

    Luo, Yuqiong; Ling, Yunzhi; Wang, Xiaoying; Han, Yang; Zeng, Xianjie; Sun, Runcang

    2013-10-15

    A facile method is reported to prepare Maillard reaction products (MRPs) from chitosan and xylan in co-solvent ionic liquid. UV absorbance and fluorescence changes were regarded as indicators of the occurrence of Maillard reaction. FT-IR, NMR, XRD and TG were used to investigate the structure of chitosan-xylan conjugate. The results revealed that when chitosan reacted with xylan in ionic liquid, the hydrogen bonds in chitosan were destroyed, the facts resulted in the formation of chitosan-xylan MRPs. Moreover, when the mass ratio of chitosan to xylan was 1:1, the Maillard reaction proceeded easily. In addition, relatively high antioxidant property was also noted for the chitosan-xylan conjugate with mass ratio 1:1. So the obtained chitosan-xylan MRP is a promising antioxidant agent for food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Structural, electronic properties and intra-atomic bonding in new ThCr 2Si 2-like arsenides SrRu 2As 2, BaRu 2As 2, SrRh 2As 2 and BaRh 2As 2 from first principles calculations

    Science.gov (United States)

    Shein, I. R.; Ivanovskii, A. L.

    2009-11-01

    Based on first-principle FLAPW-GGA calculations, we have investigated the systematic trends in structural and electronic properties of a newly discovered group of ThCr 2Si 2-like arsenides: SrRu 2As 2, BaRu 2As 2, SrRh 2As 2 and BaRh 2As 2. Our results show that the replacement of an alkaline earth metal (Sr ↔ Ba) and 4d metal (Ru ↔ Rh) leads to various types of anisotropic deformations of the crystal structure caused by strong anisotropy of inter-atomic bonds. The band structure, density of states and Fermi surfaces have been evaluated and discussed. Appreciable changes in the near-Fermi bands and the Fermi surface topology found as going from (Sr,Ba)Ru 2As 2 to (Sr,Ba)Rh 2As 2 reflect the growth of the 3D-like type of dispersion for these systems, which is accompanied by an increase in the near-Fermi density of states. The inter-atomic bonding in (Sr,Ba)(Ru,Rh) 2As 2 phases adopts a complex anisotropic character, where the bonding in [ (Ru,Rh) 2As 2] blocks is of a mixed metallic-ionic-covalent type whereas between adjacent [ (Ru,Rh) 2As 2] blocks and (Sr, Ba) atomic sheets, ionic interactions emerge; thus these systems may be classified as ionic metals.

  18. Electroreduction Property and MD Simulation of Nitrobenzene in Ionic Liquid [BMim][Tf2N]/[BMim][BF4

    International Nuclear Information System (INIS)

    Zeng, Jianping; Zhang, Yinxu; Sun, Ruyao; Chen, Song

    2014-01-01

    energies between nitrobenzene and different ionic liquids with and without water is little difference. The variation trend of diffusion coefficients in different composite ionic liquids is consistent with that of interaction energies. Analyzing pair correlation functions showed that the bonding and nonbonding interactions are formed between the N, S and O atoms of ionic liquid and the N and O atoms of nitrobenzene. The diffusion is mainly caused by the nonbonding interaction between nitrobenzene and composite ionic liquid, and the interactions with water molecules are obviously greater than that without water. The conclusion is consistent with the experimental results

  19. Variation of ionic conductivity in a plastic-crystalline mixture

    Science.gov (United States)

    Reuter, D.; Geiß, C.; Lunkenheimer, P.; Loidl, A.

    2017-09-01

    Ionically conducting plastic crystals (PCs) are possible candidates for solid-state electrolytes in energy-storage devices. Interestingly, the admixture of larger molecules to the most prominent molecular PC electrolyte, succinonitrile, was shown to drastically enhance its ionic conductivity. Therefore, binary mixtures seem to be a promising way to tune the conductivity of such solid-state electrolytes. However, to elucidate the general mechanisms of ionic charge transport in plastic crystals and the influence of mixing, a much broader database is needed. In the present work, we investigate mixtures of two well-known plastic-crystalline systems, cyclohexanol and cyclooctanol, to which 1 mol. % of Li ions were added. Applying differential scanning calorimetry and dielectric spectroscopy, we present a thorough investigation of the phase behavior and the ionic and dipolar dynamics of this system. All mixtures reveal plastic-crystalline phases with corresponding orientational glass-transitions. Moreover, their conductivity seems to be dominated by the "revolving-door" mechanism, implying a close coupling between the ionic translational and the molecular reorientational dynamics of the surrounding plastic-crystalline matrix. In contrast to succinonitrile-based mixtures, there is no strong variation of this coupling with the mixing ratio.

  20. Lattice model of ionic liquid confined by metal electrodes

    Science.gov (United States)

    Girotto, Matheus; Malossi, Rodrigo M.; dos Santos, Alexandre P.; Levin, Yan

    2018-05-01

    We study, using Monte Carlo simulations, the density profiles and differential capacitance of ionic liquids confined by metal electrodes. To compute the electrostatic energy, we use the recently developed approach based on periodic Green's functions. The method also allows us to easily calculate the induced charge on the electrodes permitting an efficient implementation of simulations in a constant electrostatic potential ensemble. To speed up the simulations further, we model the ionic liquid as a lattice Coulomb gas and precalculate the interaction potential between the ions. We show that the lattice model captures the transition between camel-shaped and bell-shaped capacitance curves—the latter characteristic of ionic liquids (strong coupling limit) and the former of electrolytes (weak coupling). We observe the appearance of a second peak in the differential capacitance at ≈0.5 V for 2:1 ionic liquids, as the packing fraction is increased. Finally, we show that ionic size asymmetry decreases substantially the capacitance maximum, when all other parameters are kept fixed.

  1. Electrotunable lubricity with ionic liquids: the influence of nanoscale roughness.

    Science.gov (United States)

    David, Alessio; Fajardo, Oscar Y; Kornyshev, Alexei A; Urbakh, Michael; Bresme, Fernando

    2017-07-01

    The properties of ionic liquids can be modified by applying an external electrostatic potential, providing a route to control their performance in nanolubrication applications. Most computational studies to date have focused on the investigation of smooth surfaces. Real surfaces are generally inhomogeneous and feature roughness of different length scales. We report here a study of the possible effects that surface roughness may have on electrotunable lubricity with ionic liquids, performed here by means of non-equilibrium molecular dynamics simulations. In order to advance our understanding of the interplay of friction and substrate structure we investigate coarse grained models of ionic liquids confined in model surfaces with nanometer roughness. The friction is shown to depend on the roughness of the substrate and the direction of shear. For the investigated systems, the friction coefficient is found to increase with roughness. These results are in contrast with previous studies, where roughness induced reduction of friction was reported, and they highlight the strong sensitivity of the friction process to the structure of the surfaces. The friction force features a maximum at a specific surface charge density. This behaviour is reminiscent of the one reported in ionic liquids confined by flat surfaces, showing the generality of this physical effect in confined ionic liquids. We find that an increase of the substrate-liquid dispersion interactions shifts the maximum to lower surface charges. This effect opens a route to control electrotunable friction phenomena by tuning both the electrostatic potential and the composition of the confining surfaces.

  2. Ionic conducting poly-benzimidazoles; Polybenzimidazoles conducteurs ioniques

    Energy Technology Data Exchange (ETDEWEB)

    Jouanneau, J

    2006-11-15

    Over the last years, many research works have been focused on new clean energy systems. Hydrogen fuel cell seems to be the most promising one. However, the large scale development of this technology is still limited by some key elements. One of them is the polymer electrolyte membrane 'Nafion' currently used, for which the ratio performance/cost is too low. The investigations we carried out during this thesis work are related to a new class of ionic conducting polymer, the sulfonated poly-benzimidazoles (sPBI). Poly-benzimidazoles (PBI) are aromatic heterocyclic polymers well-known for their excellent thermal and chemical stability. Ionic conduction properties are obtained by having strong acid groups (sulfonic acid SO{sub 3}H) on the macromolecular structure. For that purpose, we first synthesized sulfonated monomers. Their poly-condensation with an appropriate non-sulfonated co-monomer yields to sPBI with sulfonation range from 0 to 100 per cent. Three different sPBI structures were obtained, and verified by appropriate analytical techniques. We also showed that the protocol used for the synthesis resulted in high molecular weights polymers. We prepared ionic conducting membrane by casting sPBI solutions on glass plates. Their properties of stability, water swelling and ionic conductivity were investigated. Surprisingly, the behaviour of sPBI was quite different from the other sulfonated aromatic polymers with same amount of SO{sub 3}H, their stability was much higher, but their water swelling and ionic conductivity were quite low. We attributed these differences to strong ionic interactions between the sulfonic acid groups and the basic benzimidazole groups of our polymers. However, we managed to solve this problem synthesizing very highly sulfonated PBI, obtaining membranes with a good balance between all the properties necessary. (author)

  3. Release Mechanism Between Ion Osmotic Pressure and Drug Release in Ionic-Driven Osmotic Pump Tablets (I).

    Science.gov (United States)

    Cheng, Lizhen; Gao, Siqi; Ouyang, Defang; Wang, Haiying; Wang, Yongfei; Pan, Weisan; Yang, Xinggang

    2018-02-01

    The objective of this study was to develop an authentic ionic-driven osmotic pump system and investigate the release mechanism, simultaneously exploring the in vitro and in vivo correlation of the ionic-driven osmotic pump tablet. A comparison of the ionic-driven and conventional theophylline osmotic pump, the influence of pH and the amount of sodium chloride on drug release, the relationship between the ionic osmotic pressure and the drug release, and the pharmacokinetics experiment in beagle dogs were investigated. Consequently, the similarity factor (f 2 ) between the novel and conventional theophylline osmotic pump tablet was 60.18, which indicated a similar drug-release behavior. Also, the release profile fitted a zero-order kinetic model. The relative bioavailability of the ionic-driven osmotic pump to the conventional osmotic pump calculated from the AUC (0-∞) was 93.6% and the coefficient (R = 0.9945) confirmed that the ionic-driven osmotic pump exhibited excellent IVIVC. The driving power of the ionic-driven osmotic pump was produced only by ions, which was strongly dependent on the ion strength, and a novel formula for the ionic-driven osmotic pump was derived which indicated that the drug-release rate was proportional to the ionic osmotic pressure and the sodium chloride concentration. Significantly, the formula can predict the drug-release rate and release characteristics of theophylline ionic-driven osmotic pumps, guiding future modification of the ionic osmotic pump.

  4. The Nature of the Idealized Triple Bonds Between Principal Elements and the σ Origins of Trans-Bent Geometries-A Valence Bond Study.

    Science.gov (United States)

    Ploshnik, Elina; Danovich, David; Hiberty, Philippe C; Shaik, Sason

    2011-04-12

    We describe herein a valence bond (VB) study of 27 triply bonded molecules of the general type X≡Y, where X and Y are main element atoms/fragments from groups 13-15 in the periodic table. The following conclusions were derived from the computational data: (a) Single π-bond and double π-bond energies for the entire set correlate with the "molecular electronegativity", which is the sum of the X and Y electronegativites for X≡Y. The correlation with the molecular electronegativity establishes a simple rule of periodicity: π-bonding strength generally increases from left to right in a period and decreases down a column in the periodic table. (b) The σ frame invariably prefers trans bending, while π-bonding gets destabilized and opposes the trans distortion. In HC≡CH, the π-bonding destabilization overrides the propensity of the σ frame to distort, while in the higher row molecules, the σ frame wins out and establishes trans-bent molecules with 2(1)/2 bonds, in accord with recent experimental evidence based on solid state (29)Si NMR of the Sekiguchi compound. Thus, in the trans-bent molecules "less bonds pay more". (c) All of the π bonds show significant bonding contributions from the resonance energy due to covalent-ionic mixing. This quantity is shown to correlate linearly with the corresponding "molecular electronegativity" and to reflect the mechanism required to satisfy the equilibrium condition for the bond. The π bonds for molecules possessing high molecular electronegativity are charge-shift bonds, wherein bonding is dominated by the resonance energy of the covalent and ionic forms, rather than by either form by itself.

  5. Ionic Conductivity of Polyelectrolyte Hydrogels.

    Science.gov (United States)

    Lee, Chen-Jung; Wu, Haiyan; Hu, Yang; Young, Megan; Wang, Huifeng; Lynch, Dylan; Xu, Fujian; Cong, Hongbo; Cheng, Gang

    2018-02-14

    Polyelectrolytes have many important functions in both living organisms and man-made applications. One key property of polyelectrolytes is the ionic conductivity due to their porous networks that allow the transport of water and small molecular solutes. Among polyelectrolytes, zwitterionic polymers have attracted huge attention for applications that involve ion transport in a polyelectrolyte matrix; however, it is still unclear how the functional groups of zwitterionic polymer side chains affect their ion transport and swelling properties. In this study, zwitterionic poly(carboxybetaine acrylamide), poly(2-methacryloyloxyethyl phosphorylcholine), and poly(sulfobetaine methacrylate) hydrogels were synthesized and their ionic conductivity was studied and compared to cationic, anionic, and nonionic hydrogels. The change of the ionic conductivity of zwitterionic and nonionic hydrogels in different saline solutions was investigated in detail. Zwitterionic hydrogels showed much higher ionic conductivity than that of the widely used nonionic poly(ethylene glycol) methyl ether methacrylate hydrogel in all tested solutions. For both cationic and anionic hydrogels, the presence of mobile counterions led to high ionic conductivity in low salt solutions; however, the ionic conductivity of zwitterionic hydrogels surpassed that of cationic and ionic hydrogels in high salt solutions. Cationic and anionic hydrogels showed much higher water content than that of zwitterionic hydrogels in deionized water; however, the cationic hydrogels shrank significantly with increasing saline concentration. This work provides insight into the effects of polyelectrolyte side chains on ion transport. This can guide us in choosing better polyelectrolytes for a broad spectrum of applications, including bioelectronics, neural implants, battery, and so on.

  6. Energy decomposition analysis of single bonds within Kohn-Sham density functional theory.

    Science.gov (United States)

    Levine, Daniel S; Head-Gordon, Martin

    2017-11-28

    An energy decomposition analysis (EDA) for single chemical bonds is presented within the framework of Kohn-Sham density functional theory based on spin projection equations that are exact within wave function theory. Chemical bond energies can then be understood in terms of stabilization caused by spin-coupling augmented by dispersion, polarization, and charge transfer in competition with destabilizing Pauli repulsions. The EDA reveals distinguishing features of chemical bonds ranging across nonpolar, polar, ionic, and charge-shift bonds. The effect of electron correlation is assessed by comparison with Hartree-Fock results. Substituent effects are illustrated by comparing the C-C bond in ethane against that in bis(diamantane), and dispersion stabilization in the latter is quantified. Finally, three metal-metal bonds in experimentally characterized compounds are examined: a [Formula: see text]-[Formula: see text] dimer, the [Formula: see text]-[Formula: see text] bond in dizincocene, and the Mn-Mn bond in dimanganese decacarbonyl.

  7. Spectacular Rate Enhancement of the Diels-Alder Reaction at the Ionic Liquid/n-Hexane Interface.

    Science.gov (United States)

    Beniwal, Vijay; Manna, Arpan; Kumar, Anil

    2016-07-04

    The use of the ionic liquid/n-hexane interface as a new class of reaction medium for the Diels-Alder reaction gives large rate enhancements of the order of 10(6) to 10(8) times and high stereoselectivity, as compared to homogeneous media. The rate enhancement is attributed to the H-bonding abilities and polarities of the ionic liquids, whereas the hydrophobicity of ionic liquids was considered to be the factor in controlling stereoselectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Microstructures of the Sulfonic Acid-Functionalized Ionic Liquid/Sulfuric Acid and Their Interactions: A Perspective from the Isobutane Alkylation.

    Science.gov (United States)

    Zheng, Weizhong; Huang, Chizhou; Sun, Weizhen; Zhao, Ling

    2018-02-01

    The all-atom force field for concentrated sulfuric acid (98.30 wt %) was developed in this work based on ab initio calculations. The structural and dynamical properties of sulfuric acid and the mixing behaviors of sulfuric acid with ionic liquids (ILs), i.e., SFIL (1-methyl-3-(propyl-3-sulfonate) imidazolium bisulfate ([PSMim][HSO 4 ])) and non-SFIL (1-methyl-3-propyl imidazolium bisulfate ([PMim][HSO 4 ])), were investigated using a molecular dynamics simulation. For sulfuric acid, most H 3 O + ions were found beside HSO 4 - ions, forming a contact ion pair with the HSO 4 - ions, and three-dimensional hydrogen-bonding networks existed in the sulfuric acid. Analyses indicate that both ILs could be miscible with sulfuric acid with a strong exothermic character. The new strong interaction site between the sulfonic acid group of SFIL and an H 2 SO 4 molecule through a strong hydrogen-bonding interaction was observed, which was beneficial to the catalytic activity and stability of the sulfuric acid. This observation is in good agreement with the experimental results that indicate SFILs could enhance the reusability of sulfuric acid for the isobutane alkylation about 4-fold compared to that of non-SFILs. Hopefully this work will provide insights into the screening and designing of new isobutane alkylation catalysts based on sulfuric acid and SFILs.

  9. Shear bond strength of four commercial bonding systems to cp Ti.

    Science.gov (United States)

    Fujishima, A; Fujishima, Y; Ferracane, J L

    1995-03-01

    The purpose of this study was to evaluate the bond strength of veneering composite to commercially pure titanium (cp Ti) using several different bonding systems and a post-cure heat treatment. Four commercial bonding systems (Cesead, Kuraray; New Metacolor, Sun Medical; Silicaoater MD, Kulzer; Termoresin LC II, GC) were evaluated. Bonding was attempted with the opaque resin provided by each bonding system as well as with the New Metacolor opaque resin. New Metacolor resin composite was used for the veneering composite. Half of the specimens were subjected to a post-cure heat treatment at 100 degrees C for 30 min. The shear bond strengths were tested after aging the specimens in water at 37 degrees C for 1 d and also after thermocycling for 16.5 d (20,000 cycles). Strong bonds, exceeding 20 MPa, were achieved with all of the bonding systems with the exception of Thermoresin LC II, which is designed for noble metals. Bond strengths were only increased by the post-cure heat treatment for the New Metacolor system. Thermocycling caused a significant reduction in bond strength for the New Metacolor adn the Thermoresin LC II systems. The use of the New Metacolor opaque resin produced increased bonding for the Silicoater MD and the opaque resin produced increased bonding for the Silicoater MD and the Cesead systems, but the effect was eliminated after thermocycling. Strong, durable bonds can be achieved between composite and sandblasted cp Ti, thus enhancing the usefulness of this metal for esthetic resin-veneered crowns and other fixed prosthetics.

  10. Ionic conductivity in irradiated KCL

    International Nuclear Information System (INIS)

    Vignolo Rubio, J.

    1979-01-01

    The ionic conductivity of X and gamma irradiated KCL single crystals has been studied between room temperature and 600 degree centigree. the radiation induced damage resulting in a decrease of the conductivity heals by thermal annealing in two steps which are at about 350 and 550 degree centigree respectively. It has been found that the radiation induced colour centres are not involved in the observed decrease of the ionic conductivity. However. It has been observed that the effects of quenching and plastic deformation on the conductivity of the samples are very similar to the effect induced by irradiation. It is suggested that, samples radiation induced dislocation loops might cause the ionic conductivity decrease observed in irradiated samples. (Author)

  11. Ionic conductivity in irradiated KCL

    International Nuclear Information System (INIS)

    Vignolo Rubio, J.

    1979-01-01

    The ionic conductivity of X and gamma irradiated KCl single crystals has been studied between room temperature and 600 deg C. The radiation induced damage resulting in a decrease of the conductivity heals by thermal annealing in two steps which are at about 350 and 550 deg C respectively. It has been found that the radiation induced colour centres are not involved in the observed decrease of the ionic conductivity. Howewer, it has been observed that the effects of quenching and plastic deformation on the conductivity of the samples are very similar to the effect induced by irradiation. It is suggested that small radiation induced dislocation loops might cause the ionic conductivity decrease observed in irradiated samples. (auth)

  12. Self-assembled structures of amphiphilic ionic block copolymers: Theory, self-consistent field modeling and experiment

    NARCIS (Netherlands)

    Borisov, O.V.; Zhulina, E.B.; Leermakers, F.A.M.; Muller, A.H.E.

    2011-01-01

    We present an overview of statistical thermodynamic theories that describe the self-assembly of amphiphilic ionic/hydrophobic diblock copolymers in dilute solution. Block copolymers with both strongly and weakly dissociating (pH-sensitive) ionic blocks are considered. We focus mostly on structural

  13. Australia's Bond Home Bias

    OpenAIRE

    Anil V. Mishra; Umaru B. Conteh

    2014-01-01

    This paper constructs the float adjusted measure of home bias and explores the determinants of bond home bias by employing the International Monetary Fund's high quality dataset (2001 to 2009) on cross-border bond investment. The paper finds that Australian investors' prefer investing in countries with higher economic development and more developed bond markets. Exchange rate volatility appears to be an impediment for cross-border bond investment. Investors prefer investing in countries with ...

  14. Variance Risk Premia on Stocks and Bonds

    DEFF Research Database (Denmark)

    Mueller, Philippe; Sabtchevsky, Petar; Vedolin, Andrea

    Investors in fixed income markets are willing to pay a very large premium to be hedged against shocks in expected volatility and the size of this premium can be studied through variance swaps. Using thirty years of option and high-frequency data, we document the following novel stylized facts......: First, exposure to bond market volatility is strongly priced with a Sharpe ratio of -1.8, 20% higher than what is observed in the equity market. Second, while there is strong co-movement between equity and bond market variance risk, there are distinct periods when the bond variance risk premium...... is different from the equity variance risk premium. Third, the conditional correlation between stock and bond market variance risk premium switches sign often and ranges between -60% and +90%. We then show that these stylized facts pose a challenge to standard consumption-based asset pricing models....

  15. Local fields in ionic crystals

    International Nuclear Information System (INIS)

    Claro, F.

    1981-08-01

    Local fields arising from the electronic distortion in perfect ionic crystals are described in terms of multipolar excitations. Field factors for the alkali halides and chalcogenide ions are found to differ significantly from the Lorentz value of 4π/3, the correction size following an exponential dependence on the difference in ionic radii. Local fields are only slightly modified by these corrections however, and together with the Clausius-Mossotti relation may be regarded as accurate to within 2% if the Lorentz value is adopted. (author)

  16. Lithium ion conducting ionic electrolytes

    Science.gov (United States)

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  17. Ion mixing, hydration, and transport in aqueous ionic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tse, Ying-Lung Steve; Voth, Gregory A., E-mail: gavoth@uchicago.edu [Department of Chemistry, James Franck Institute, and Computation Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Witten, Thomas A., E-mail: t-witten@uchicago.edu [Department of Physics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-05-14

    The enhancement effect on the ion mobility of fluoride (and that of chloride) in a polycationic system, as the chloride content increases, is shown to also exist in other more simple ionic systems with cations such as the cesium ion and an organic ammonium ion. As the chloride content increases, in addition to the finding that there is more unbound water associated with the cation, we also observe that the average lifetime of a hydrogen bond decreases. This change to the hydrogen bonds is correlated to significant changes to both the structural and dynamical properties of water. The more disordered water structure and faster water dynamics are hypothesized to be also responsible for the enhanced ion mobilities. Furthermore, when either the chloride content or hydration level is changed, the self-diffusion constant of each co-ion changes by almost the same factor, implying the existence of a single universal transport mechanism that determines ion mobilities.

  18. Ion mixing, hydration, and transport in aqueous ionic systems

    Science.gov (United States)

    Tse, Ying-Lung Steve; Voth, Gregory A.; Witten, Thomas A.

    2015-05-01

    The enhancement effect on the ion mobility of fluoride (and that of chloride) in a polycationic system, as the chloride content increases, is shown to also exist in other more simple ionic systems with cations such as the cesium ion and an organic ammonium ion. As the chloride content increases, in addition to the finding that there is more unbound water associated with the cation, we also observe that the average lifetime of a hydrogen bond decreases. This change to the hydrogen bonds is correlated to significant changes to both the structural and dynamical properties of water. The more disordered water structure and faster water dynamics are hypothesized to be also responsible for the enhanced ion mobilities. Furthermore, when either the chloride content or hydration level is changed, the self-diffusion constant of each co-ion changes by almost the same factor, implying the existence of a single universal transport mechanism that determines ion mobilities.

  19. Chirality-selected phase behaviour in ionic polypeptide complexes

    Science.gov (United States)

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; Kade, Matthew J.; Priftis, Dimitrios; Black, Katie A.; Wong, Derek; Klein, Ryan A.; Pierce, Charles F.; Margossian, Khatcher O.; Whitmer, Jonathan K.; Qin, Jian; de Pablo, Juan J.; Tirrell, Matthew

    2015-01-01

    Polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with a β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation. PMID:25586861

  20. Surface tension of ionic liquids and ionic liquid solutions.

    Science.gov (United States)

    Tariq, Mohammad; Freire, Mara G; Saramago, Benilde; Coutinho, João A P; Lopes, José N Canongia; Rebelo, Luís Paulo N

    2012-01-21

    Some of the most active scientific research fronts of the past decade are centered on ionic liquids. These fluids present characteristic surface behavior and distinctive trends of their surface tension versus temperature. One way to explore and understand their unique nature is to study their surface properties. This critical review analyses most of the surface tension data reported between 2001 and 2010 (187 references).

  1. Chemical bond fundamental aspects of chemical bonding

    CERN Document Server

    Frenking, Gernot

    2014-01-01

    This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica

  2. Ionic liquid-tolerant cellulase enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John; Park, Joshua; Singer, Steven; Simmons, Blake; Sale, Ken

    2017-10-31

    The present invention provides ionic liquid-tolerant cellulases and method of producing and using such cellulases. The cellulases of the invention are useful in saccharification reactions using ionic liquid treated biomass.

  3. Electric Current Fluctuations, Entropy and Ionic Conductivity

    OpenAIRE

    Zhang, Yong-Jun

    2016-01-01

    This paper reports a relation between ionic conductivity and electric current fluctuations. The relation was derived using statistical analysis and entropy approach. The relation can be used to calculate ionic conductivity.

  4. Determinants Of Ori001 Type Government Bond

    OpenAIRE

    Yulius, Yosandi

    2011-01-01

    The need to build a strong bond market is amenable, especially after the 1997 crises. This paper analyzes the influence of deposit interest rate, foreign exchange rates, and Composite Stock Price Index on yield-to-maturity of Bond Series Retail ORI001, employing monthly data from Bloomberg information service, 2006(8) to 2008(12), using Generalized Autoregressive Conditional Heteroscedasticity type models. It finds the evidence that deposit interest rate and exchange rate have positive signif...

  5. Shear bond strength evaluation of resin composite bonded to glass-ionomer cement using self-etching bonding agents with different pH: In vitro study

    Science.gov (United States)

    Kandaswamy, Deivanayagam; Rajan, Karunamoorthy Jeyavel; Venkateshbabu, Nagendrababu; Porkodi, Ilango

    2012-01-01

    Aim: To evaluate the bonding ability of composite to unset glass-ionomer cement (GIC) using different self-etching bonding systems. Materials and Methods: One hundred samples of composite bonded to unset GIC were prepared and were divided into four groups. In Group A, composite was bonded to unset GIC employing a strong (pH 1) self-etch primer was used. In Group B, intermediary strong (pH 1.4) self-etch primer was employed. In Group C and D, mild (pH 2) and (pH 2.2) self-etch primer was employed. Shear bond strength analysis was performed at a cross-head speed of 0.5 mm/min. Results: Statistical analysis performed with one way analysis of variance and Tukey's test showed that the bond strength of composite to unset GIC was significantly higher for the mild self-etch primer group. In addition, energy dispersive x-ray (EDX) analysis was used to determine the composition of various structural phases identified by FE-SEM along the GIC-bonding agent interfaces. Conclusion: Hence this present study concludes that clinically the use of mild self-etching bonding agent over unset GIC has improved bond strength compared to the use of strong and intermediate self-etching bonding agent. PMID:22368331

  6. Effect of protic ionic liquid and surfactant structure on partitioning of polyoxyethylene non-ionic surfactants.

    Science.gov (United States)

    Topolnicki, Inga L; FitzGerald, Paul A; Atkin, Rob; Warr, Gregory G

    2014-08-25

    The partitioning constants and Gibbs free energies of transfer of poly(oxyethylene) n-alkyl ethers between dodecane and the protic ionic liquids (ILs) ethylammonium nitrate (EAN) and propylammonium nitrate (PAN) are determined. EAN and PAN have a sponge-like nanostructure that consists of interpenetrating charged and apolar domains. This study reveals that the ILs solvate the hydrophobic and hydrophilic parts of the amphiphiles differently. The ethoxy groups are dissolved in the polar region of both ILs by means of hydrogen bonds. The environment is remarkably water-like and, as in water, the solubility of the ethoxy groups in EAN decreases on warming, which underscores the critical role of the IL hydrogen-bond network for solubility. In contrast, amphiphile alkyl chains are not preferentially solvated by the charged or uncharged regions of the ILs. Rather, they experience an average IL composition and, as a result, partitioning from dodecane into the IL increases as the cation alkyl chain is lengthened from ethyl to propyl, because the IL apolar volume fraction increases. Together, these results show that surfactant dissolution in ILs is related to structural compatibility between the head or tail group and the IL nanostructure. Thus, these partitioning studies reveal parameters for the effective molecular design of surfactants in ILs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  8. Aqueous electrolyte surfaces in strong electric fields: molecular insight into nanoscale jets and bridges

    Science.gov (United States)

    Jirsák, Jan; Moučka, Filip; Škvor, Jiří; Nezbeda, Ivo

    2015-04-01

    Exposing aqueous surfaces to a strong electric field gives rise to interesting phenomena, such as formation of a floating water bridge or an eruption of a jet in electrospinning. In an effort to account for the phenomena at the molecular level, we performed molecular dynamics simulations using several protocols on both pure water and aqueous solutions of sodium chloride subjected to an electrostatic field. All simulations consistently point to the same mechanisms which govern the rearrangement of the originally planar surface. The results show that the phenomena are primarily governed by an orientational reordering of the water molecules driven by the applied field. It is demonstrated that, for pure water, a sufficiently strong field yields a columnar structure parallel to the field with an anisotropic arrangement of the water molecules with their dipole moments aligned along the applied field not only in the surface layer but over the entire cross section of the column. Nonetheless, the number of hydrogen bonds per molecule does not seem to be affected by the field regardless of its strength and molecule's orientation. In the electrolyte solutions, the ionic charge is able to overcome the effect of the external field tending to arrange the water molecules radially in the first coordination shell of an ion. The ion-water interaction interferes thus with the water-electric field interaction, and the competition between these two forces (i.e., strength of the field versus concentration) provides the key mechanism determining the stability of the observed structures.

  9. The nature of chemical bonds from PNOF5 calculations.

    Science.gov (United States)

    Matxain, Jon M; Piris, Mario; Uranga, Jon; Lopez, Xabier; Merino, Gabriel; Ugalde, Jesus M

    2012-06-18

    Natural orbital functional theory (NOFT) is used for the first time in the analysis of different types of chemical bonds. Concretely, the Piris natural orbital functional PNOF5 is used. It provides a localization scheme that yields an orbital picture which agrees very well with the empirical valence shell electron pair repulsion theory (VSEPR) and Bent's rule, as well as with other theoretical pictures provided by valence bond (VB) or linear combination of atomic orbitals-molecular orbital (LCAO-MO) methods. In this context, PNOF5 provides a novel tool for chemical bond analysis. In this work, PNOF5 is applied to selected molecules that have ionic, polar covalent, covalent, multiple (σ and π), 3c-2e, and 3c-4e bonds. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effects of Sublattice Symmetry and Frustration on Ionic Transport in Garnet Solid Electrolytes

    Science.gov (United States)

    Kozinsky, Boris; Akhade, Sneha A.; Hirel, Pierre; Hashibon, Adham; Elsässer, Christian; Mehta, Prateek; Logeat, Alan; Eisele, Ulrich

    2016-02-01

    We use rigorous group-theoretic techniques and molecular dynamics to investigate the connection between structural symmetry and ionic conductivity in the garnet family of solid Li-ion electrolytes. We identify new ordered phases and order-disorder phase transitions that are relevant for conductivity optimization. Ionic transport in this materials family is controlled by the frustration of the Li sublattice caused by incommensurability with the host structure at noninteger Li concentrations, while ordered phases explain regions of sharply lower conductivity. Disorder is therefore predicted to be optimal for ionic transport in this and other conductor families with strong Li interaction.

  11. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  12. Green and social bonds - A promising tool

    International Nuclear Information System (INIS)

    Blanc, Dominique; Barochez, Aurelie de; Cozic, Aela

    2013-11-01

    Issues of green bonds, socially responsible bonds and climate bonds are on the rise. Novethic estimates that some Euro 5 billion in such bonds has been issued since the start of 2013 by development banks, the main issuers of this type of debt. The figure is equal to over half of their total issues since 2007. Including local authorities, corporations and banks, a total Euro 8 billion of these bonds has been issued thus far in 2013. Given the size of the bond market, which the OECD estimated at Euro 95,000 billion in 2011, green and social bonds are still something of a niche but have strong growth potential. A number of large issues, from Euro 500 million to Euro 1 billion, were announced at the end of the year. Unlike conventional bonds, green and social bonds are not intended to finance all the activities of the issuer or refinance its debt. They serve instead to finance specific projects, such as producing renewable energy or adapting to climate change, the risk of which is shouldered by the issuer. This makes them an innovative instrument, used to earmark investments in projects with a direct environmental or social benefit rather than simply on the basis of the issuer's sustainable development policy. With financing being sought for the ecological transition, green and social bonds are promising instruments, sketching out at global level the shape of tools adapted to the financing of a green economy. On the strength of these advantages, the interest of responsible investors - the main target of green and social bond issuers - is growing fast. Judging by issuer press releases and the most commonly used currencies, the main subscribers today are US investors, among them CalSTRS and fund managers like Calvert Investment Management and Trillium Asset Management. European asset owners are also starting to focus on green and social bonds. A Novethic survey shows that 13% of them have already subscribed to such an issue or plan to do so. The present study

  13. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes

    KAUST Repository

    Moganty, Surya S.

    2010-10-22

    A new class of solventless electrolytes was created by tethering ionic liquids to hard inorganic ZrO2 nanostructures (see picture; NIM=nanoscale ionic material). These hybrid fluids exhibit exceptional redox stability windows, excellent thermal stability, good lithium transference numbers, long-term interfacial stability in the presence of a lithium anode and, when doped with lithium salt, reasonable ionic conductivities.

  14. Continuum electrostatics for ionic solutions with non-uniform ionic sizes

    International Nuclear Information System (INIS)

    Li Bo

    2009-01-01

    This work concerns electrostatic properties of an ionic solution with multiple ionic species of possibly different ionic sizes. Such properties are described by the minimization of an electrostatic free-energy functional of ionic concentrations. Bounds are obtained for ionic concentrations with low electrostatic free energies. Such bounds are used to show that there exists a unique set of equilibrium ionic concentrations that minimizes the free-energy functional. The equilibrium ionic concentrations are found to depend sorely on the equilibrium electrostatic potential, resembling the classical Boltzmann distributions that relate the equilibrium ionic concentrations to the equilibrium electrostatic potential. Unless all the ionic and solvent molecular sizes are assumed to be the same, explicit formulae of such dependence are, however, not available in general. It is nevertheless proved that in equilibrium the ionic charge density is a decreasing function of the electrostatic potential. This determines a variational principle with a convex functional for the electrostatic potential

  15. Phase behavior of ionic microemulsions

    NARCIS (Netherlands)

    Lekkerkerker, H.N.W.; Kegel, W.K.; Overbeek, J.Th.G.

    1996-01-01

    Non-polar oils and water can form thermodynamically stable quasi-homogeneous (colloidal) mixtures (called microemulsions) in the presence of relatively large amounts (several %) of ionic surfactants. If the surfactant contains a single hydrocarbon chain (e.g. Sodium Dodecyl Sulphate) the presence of

  16. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities

    Science.gov (United States)

    2017-01-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced, is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, cedIP, where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, cedC+A, where the ionic vapour constituents are isolated ions. A cedIP dataset is presented for 64 ILs. For the first time an experimental cedC+A, a measure of the strength of the total intermolecular interaction for an IL, is presented. cedC+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between cedIP and the inverse of the molecular volume. A good linear correlation is found between IL cedIP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to cedIP. These findings show that cedIP is very important for understanding IL intermolecular interactions, in spite of cedIP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined. PMID:29308254

  17. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities.

    Science.gov (United States)

    Lovelock, Kevin R J

    2017-12-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced , is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, ced IP , where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, ced C+A , where the ionic vapour constituents are isolated ions. A ced IP dataset is presented for 64 ILs. For the first time an experimental ced C+A , a measure of the strength of the total intermolecular interaction for an IL, is presented. ced C+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between ced IP and the inverse of the molecular volume. A good linear correlation is found between IL ced IP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to ced IP . These findings show that ced IP is very important for understanding IL intermolecular interactions, in spite of ced IP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined.

  18. Screening of ionic cores in partially ionized plasmas within linear response

    International Nuclear Information System (INIS)

    Gericke, D. O.; Vorberger, J.; Wuensch, K.; Gregori, G.

    2010-01-01

    We employ a pseudopotential approach to investigate the screening of ionic cores in partially ionized plasmas. Here, the effect of the tightly bound electrons is condensed into an effective potential between the (free) valence electrons and the ionic cores. Even for weak electron-ion coupling, the corresponding screening clouds show strong modifications from the Debye result for elements heavier than helium. Modifications of the theoretically predicted x-ray scattering signal and implications on measurements are discussed.

  19. Real space in situ bond energies: toward a consistent energetic definition of bond strength.

    Science.gov (United States)

    Menéndez-Crespo, Daniel; Costales, Aurora; Francisco, Evelio; Martin Pendas, Angel

    2018-04-14

    A rigorous definition of intrinsic bond strength based on the partitioning of a molecule into real space fragments is presented. Using the domains provided by the quantum theory of atoms in molecules (QTAIM) together with the interacting quantum atoms (IQA) energetic decomposition, we show how an in situ bond strength, matching all the requirements of an intrinsic bond energy, can be defined between each pair of fragments. Total atomization or fragmentation energies are shown to be equal to the sum of these in situ bond energies (ISBEs) if the energies of the fragments are measured with respect to their in-the-molecule state. These energies usually lie above the ground state of the isolated fragments by quantities identified with the standard fragment relaxation or deformation energies, which are also provided by the protocol. Deformation energies bridge dissociation energies with ISBEs, and can be dissected using well-known tools of real space theories of chemical bonding. Similarly, ISBEs can be partitioned into ionic and covalent contributions, and this feature adds to the chemical appeal of the procedure. All the energetic quantities examined are observable and amenable, in principle, to experimental determination. Several systems, exemplifying the role of each energetic term herein presented are used to show the power of the approach. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ionic Liquids as Catalysts for the Radical Acrylate Polymerization Co-initiated by Imine Bases

    International Nuclear Information System (INIS)

    Polenz, I; Spange, S

    2014-01-01

    The catalysis of the imine base acrylate (IBA) polymerization by Ionic Liquids (ILs) is reported. Addition of IL traces (∼10-50 mM) to an imine base / acrylate mixture leads to both a significant decrease of the activation temperature (40 °C) required for the IBA polymerization process and an increase in the polymerization rate by a factor of 5-40 depending on the IL species. The radical character of the polymerization is proved by copolymerization experiments using methyl methacrylate (MMA) and methacrylonitrile (MAN) and comparison with literature known values of copolymerization parameters r MMA and r MAN of these co-monomers. The influence of the IL on the polymerization kinetics is quantified by the polymerization rate law; the order referring to the IL is 1 indicating its crucial impact on the monomer activation. The IBA activation properties are strongly dependent on the IL interaction strengths with the IBA components verified by the KAMELT-TAFT hydrogen bond donating ability α. The stronger the interaction (higher α) is, the less the IBA polymerization activation. The temperature dependence of four different IL catalysed IBA polymerization is investigated, allows a classification and anomalous non-ARRHENIUS regimes are discussed. Activation energies E A,P span over 20 and 50 kJ·mol −1 , which is between the values of thermal- (∼80 kJ·mol −1 ) and photo-initiation (∼20 kJ·mol −1 )

  1. Dependence of the length of the hydrogen bond on the covalent and cationic radii of hydrogen, and additivity of bonding distances

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2006-01-01

    Roč. 432, č. 1-3 (2006), s. 348-351 ISSN 0009-2614 R&D Projects: GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507 Keywords : length of the hydrogen bond * ionic radius * Golden ratio Subject RIV: BO - Biophysics Impact factor: 2.462, year: 2006

  2. Shape-Memory Behavior of Polylactide/Silica Ionic Hybrids

    KAUST Repository

    Odent, Jérémy

    2017-03-27

    Commercial polylactide (PLA) was converted and endowed with shape-memory properties by synthesizing ionic hybrids based on blends of PLA with imidazolium-terminated PLA and poly[ε-caprolactone-co-d,l-lactide] (P[CL-co-LA]) and surface-modified silica nanoparticles. The electrostatic interactions assist with the silica nanoparticle dispersion in the polymer matrix. Since nanoparticle dispersion in polymers is a perennial challenge and has prevented nanocomposites from reaching their full potential in terms of performance we expect this new design will be exploited in other polymers systems to synthesize well-dispersed nanocomposites. Rheological measurements of the ionic hybrids are consistent with the formation of a network. The ionic hybrids are also much more deformable compared to the neat PLA. More importantly, they exhibit shape-memory behavior with fixity ratio Rf ≈ 100% and recovery ratio Rr = 79%, for the blend containing 25 wt % im-PLA and 25 wt % im-P[CL-co-LA] and 5 wt % of SiO2–SO3Na. Dielectric spectroscopy and dynamic mechanical analysis show a second, low-frequency relaxation attributed to strongly immobilized polymer chains on silica due to electrostatic interactions. Creep compliance tests further suggest that the ionic interactions prevent permanent slippage in the hybrids which is most likely responsible for the significant shape-memory behavior observed.

  3. Dissolution of agro-waste in ionic liquids

    International Nuclear Information System (INIS)

    Lee, Kiat Moon; Ngoh, Gek Cheng; Chua, Adeline Seak May

    2010-01-01

    Full text: There are abundant of agro-wastes being produced in Malaysia. One of the largely produced agro wastes is the sago hampas. It is known as a strong environmental pollutant due to its cellulosic fibrous material. However, the presence of the starch, cellulose and hemicelluloses in the hampas can be converted into valuable products such as reducing sugars. Hence, this study was performed to investigate the ability of ionic liquids in hydrolysing the ligno celluloses biomass into reducing sugars. Three types of ionic liquids were used, 1-butyl-3-methylimidazolium chloride (BMIM Cl), 1-ethyl-3- methylimidazolium acetate (EMIM Ac) and 1-ethyl-3-methylimidazolium diethyl phosphate (EMIM DEP). The reaction was performed by heating the reaction mixture of sago hampas and ionic liquids at 100 degree Celsius. The concentrations of reducing sugars in the hydrolysates were determined by DNS method. Maximum concentration of reducing sugars were 0.424, 0.299, 0.260 mg/ml for BmimCl, EmimAc and EmimDEP respectively. These concluded that the selected ionic liquids were inefficient in hydrolysing the sago hampas to reducing sugars. (author)

  4. Two-Dimensional FTIR as a Tool to Study the Chemical Interactions within Cellulose-Ionic Liquid Solutions

    Directory of Open Access Journals (Sweden)

    Kalyani Kathirgamanathan

    2015-01-01

    Full Text Available In this study two-dimensional FTIR analysis was applied to understand the temperature effects on processing cellulose solutions in imidazolium-based ionic liquids. Analysis of the imidazolium ion νC2–H peak revealed hydrogen bonding within cellulose solutions to be dynamic on heating and cooling. The extent of hydrogen bonding was stronger on heating, consistent with greater ion mobility at higher temperature when the ionic liquid network structure is broken. At ambient temperatures a blue shifted νC2–H peak was indicative of greater cation-anion interactions, consistent with the ionic liquid network structure. Both cellulose and water further impact the extent of hydrogen bonding in these solutions. The FTIR spectral changes appeared gradual with temperature and contrast shear induced rheology changes which were observed on heating above 70°C and cooling below 40°C. The influence of cellulose on solution viscosity was not distinguished on initial heating as the ionic liquid network structure dominates rheology behaviour. On cooling, the quantity of cellulose has a greater influence on solution rheology. Outcomes suggest processing cellulose in ionic liquids above 40°C and to reduce the impacts of cation-anion effects and enhance solubilisation, processing should be done at 70°C.

  5. Tuning smart microgel swelling and responsive behavior through strong and weak polyelectrolyte pair assembly.

    Science.gov (United States)

    Costa, Eunice; Lloyd, Margaret M; Chopko, Caroline; Aguiar-Ricardo, Ana; Hammond, Paula T

    2012-07-03

    The layer-by-layer (LbL) assembly of polyelectrolyte pairs on temperature and pH-sensitive cross-linked poly(N-isopropylacrylamide)-co-(methacrylic acid), poly(NIPAAm-co-MAA), microgels enabled a fine-tuning of the gel swelling and responsive behavior according to the mobility of the assembled polyelectrolyte (PE) pair and the composition of the outermost layer. Microbeads with well-defined morphology were initially prepared by synthesis in supercritical carbon dioxide. Upon LbL assembly of polyelectrolytes, interactions between the multilayers and the soft porous microgel led to differences in swelling and thermoresponsive behavior. For the weak PE pairs, namely poly(L-lysine)/poly(L-glutamic acid) and poly(allylamine hydrochloride)/poly(acrylic acid), polycation-terminated microgels were less swollen and more thermoresponsive than native microgel, whereas polyanion-terminated microgels were more swollen and not significantly responsive to temperature, in a quasi-reversible process with consecutive PE assembly. For the strong PE pair, poly(diallyldimethylammonium chloride)/poly(sodium styrene sulfonate), the differences among polycation and polyanion-terminated microgels are not sustained after the first PE bilayer due to extensive ionic cross-linking between the polyelectrolytes. The tendencies across the explored systems became less noteworthy in solutions with larger ionic strength due to overall charge shielding of the polyelectrolytes and microgel. ATR FT-IR studies correlated the swelling and responsive behavior after LbL assembly on the microgels with the extent of H-bonding and alternating charge distribution within the gel. Thus, the proposed LbL strategy may be a simple and flexible way to engineer smart microgels in terms of size, surface chemistry, overall charge and permeability.

  6. Ionic conductivity studies of gel polyelectrolyte based on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cha, E.H. [The Faculty of Liberal Arts (Chemistry), Hoseo University, Asan Choongnam 336-795 (Korea); Lim, S.A. [Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Park, J.H. [Department of Herbal Medicine, Hoseo University, Asan Choongnam 336-795 (Korea); Kim, D.W. [Department of Chemical Technology, Han Bat National University, Daejon 305-719 (Korea); Macfarlane, D.R. [School of Chemistry, Monash University, Clayton, Vic. 3800 (Australia)

    2008-04-01

    Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N,N-dimethyl-N-propyl-N-butyl ammonium tricyanomethanide (N{sub 1134}TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 x 10{sup -3} S cm{sup -1} at 25 C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 x 10{sup -3} S cm{sup -1} at 25 C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N{sub 1134}TCM (2.48 x 10{sup -3} S cm{sup -1}). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N{sub 1134}TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species. (author)

  7. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  8. How ionic species structure influences phase structure and transitions from protic ionic liquids to liquid crystals to crystals.

    Science.gov (United States)

    Greaves, Tamar L; Broomhall, Hayden; Weerawardena, Asoka; Osborne, Dale A; Canonge, Bastien A; Drummond, Calum J

    2017-12-14

    The phase behaviour of n-alkylammonium (C6 to C16) nitrates and formates has been characterised using synchrotron small angle and wide angle X-ray scattering (SAXS/WAXS), differential scanning calorimetry (DSC), cross polarised optical microscopy (CPOM) and Fourier transform infrared spectroscopy (FTIR). The protic salts may exist as crystalline, liquid crystalline or ionic liquid materials depending on the alkyl chain length and temperature. n-Alkylammonium nitrates with n ≥ 6 form thermotropic liquid crystalline (LC) lamellar phases, whereas n ≥ 8 was required for the formate series to form this LC phase. The protic ionic liquid phase showed an intermediate length scale nanostructure resulting from the segregation of the polar and nonpolar components of the ionic liquid. This segregation was enhanced for longer n-alkyl chains, with a corresponding increase in the correlation length scale. The crystalline and liquid crystalline phases were both lamellar. Phase transition temperatures, lamellar d-spacings, and liquid correlation lengths for the n-alkylammonium nitrates and formates were compared with those for n-alkylammonium chlorides and n-alkylamines. Plateau regions in the liquid crystalline to liquid phase transition temperatures as a function of n for the n-alkylammonium nitrates and formates are consistent with hydrogen-bonding and cation-anion interactions between the ionic species dominating alkyl chain-chain van der Waals interactions, with the exception of the mid chained hexyl- and heptylammonium formates. The d-spacings of the lamellar phases for both the n-alkylammonium nitrates and formates were consistent with an increase in chain-chain layer interdigitation within the bilayer-based lamellae with increasing alkyl chain length, and they were comparable to the n-alkylammonium chlorides.

  9. Neural mechanisms of mother-infant bonding and pair bonding: Similarities, differences, and broader implications

    Science.gov (United States)

    Numan, Michael; Young, Larry J.

    2015-01-01

    Mother-infant bonding is a characteristic of virtually all mammals. The maternal neural system may have provided the scaffold upon which other types of social bonds in mammals have been built. For example, most mammals exhibit a polygamous mating system, but monogamy and pair bonding between mating partners occurs in ∼5% of mammalian species. In mammals, it is plausible that the neural mechanisms that promote mother-infant bonding have been modified by natural selection to establish the capacity to develop a selective bond with a mate during the evolution of monogamous mating strategies. Here we compare the details of the neural mechanisms that promote mother-infant bonding in rats and other mammals with those that underpin pair bond formation in the monogamous prairie vole. Although details remain to be resolved, remarkable similarities and a few differences between the mechanisms underlying these two types of bond formation are revealed. For example, amygdala and nucleus accumbens-ventral pallidum (NA-VP) circuits are involved in both types of bond formation, and dopamine and oxytocin action within NA appears to promote the synaptic plasticity that allows either infant or mating partner stimuli to persistently activate NA-VP attraction circuits, leading to an enduring social attraction and bonding. Further, although the medial preoptic area is essential for maternal behavior, its role in pair bonding remains to be determined. Our review concludes by examining the broader implications of this comparative analysis, and evidence is provided that the maternal care system may have also provided the basic neural foundation for other types of strong social relationships, beyond pair bonding, in mammals, including humans. PMID:26062432

  10. Ionic conductivity in poly(vinyl butyral) based polymeric electrolytes. Effect of solvents and salts

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Shaleen; Agnihotry, S.A. [National Physical Laboratory, New Delhi (India); Gupta, V.D. [Lucknow University, Lucknow (India)

    1996-10-29

    Li{sup +} conductive solid polymeric electrolytes (SPEs) have been prepared by complexing Li salts LiX (X=I, SCN, CLO4, CF3SO3) with poly (vinyl butyral) (PVB) an amorphous polymer with a low T{sub g} value and well known for its outstanding laminating properties. These self-supporting SPEs have been prepared by the solution cast technique using cyclohexanone, tetrahydrofuran, and n-butyl alcohol as solvents. The XRD and DSC investigations correlated to measured ionic conductivities have revealed that in addition to the amorphous nature of the resulting complex, its T{sub g} value, the concentration and the values of the lattice energies of the complexing salts, the solvent used in making the SPEs also govern the value of ionic conductivity. Highest ionic conductivity values attained in SPEs made with n-butyl alcohol are explained in terms of the interception of the hydrogen bonding due to solvation

  11. Amphiphile Meets Amphiphile: Beyond the Polar-Apolar Dualism in Ionic Liquid/Alcohol Mixtures.

    Science.gov (United States)

    Russina, Olga; Sferrazza, Alessio; Caminiti, Ruggero; Triolo, Alessandro

    2014-05-15

    The mesoscopic morphology of binary mixtures of ethylammonium nitrate (EAN), the protic ionic liquid par excellence, and methanol is explored using neutron/X-ray diffraction and computational techniques. Both compounds are amphiphilic and characterized by an extended hydrogen bonding network: surprisingly, though macroscopically homogeneous, these mixtures turn out to be mesoscopically highly heterogeneous. Our study reveals that even in methanol-rich mixtures, a wide distribution of clusters exists where EAN preserves its bulk, sponge-like morphology. Accordingly methanol does not succeed in fully dissociating the ionic liquid that keeps on organizing in a bulk-like fashion. This behavior represents the premises to the more dramatic phenomenology observed with longer alcohols that eventually phase separate from EAN. These results challenge the commonly accepted polar and apolar moieties segregation in ionic liquids/molecular liquids mixtures and the current understanding of technologically relevant solvation processes.

  12. Electrochemical study of insulating properties of dental amalgam bonding polymers

    Energy Technology Data Exchange (ETDEWEB)

    Toumelin-Chemla, Florence; Degrange, Michel [Faculte de Chirurgie Dentaire de Paris V, Montrouge (France)

    1998-06-01

    The standard techniques used for amalgam restorations often result in a lack of adhesion to mineralized dental tissues. The bonding of amalgam with polymer has been suggested to improve its adaptation to dental tissues. Moreover the polymer involved in the bonding should inhibit the corrosion and the diffusion of metallic ions. The aim of this study was to evaluate in vitro the capacity of bonded amalgam to prevent ionic diffusion and migration. In this respect, an original method employing electrochemical techniques was used to determine the leakage current of bonded amalgam restorations. The electrochemical behaviour of conventional and bonded amalgam restorations was compared using a potentiostat driven by a computerized system (Voltamaster, Radiometer Analytical) with software for specific applications such as chronoamperometry or cyclic voltammetry. Samples of recently extracted teeth of young patients were first examined, and then the results were checked by other experimental assays using protected and unprotected copper sticks. The measurements obtained with chronoamperometry (E=+300 mV/SCE) in Ringer's solution at 37 deg. C showed that after polarization for 30 h the oxidation current decreased threefold for bonded samples (10 {mu}A cm{sup -2}) as compared with the unprotected samples (35 {mu}A cm{sup -2}). These results, as well as those obtained with the copper wires, demonstrated that even with two layers of adhesive the bonded joint is permeable to ions probably as a result of the hydrophylic properties of HEMA, a component of the adhesive. However, using five layers of adhesive reduced the ionic current by a factor as large as 10{sup 6}. (author)

  13. Destination bonding: Hybrid cognition using Instagram

    Directory of Open Access Journals (Sweden)

    Arup Kumar Baksi

    2015-01-01

    Full Text Available Empirical research has identified the phenomenon of destination bonding as a result of summated physical and emotional values associated with the destination. Physical values, namely natural landscape & other physical settings and emotional values, namely the enculturation processes, have a significant role to play in portraying visitors’ cognitive framework for destination preference. The physical values seemed to be the stimulator for bonding that embodies action or behavior tendencies in imagery. The emotional values were the conditions that lead to affective bonding and are reflected in attitudes for a place which were evident in text narratives. Social networking on virtual platforms offers the scope for hybrid cognitive expression using imagery and text to the visitors. Instagram has emerged as an application-window to capture these hybrid cognitions of visitors. This study focuses on assessing the relationship between hybrid cognition of visitors expressed via Instagram and their bond with the destination. Further to this, the study attempts to examine the impact of hybrid cognition of visitors on the behavioral pattern of prospective visitors to the destination. The study revealed that sharing of visual imageries and related text by the visitors is an expression of the physico-emotional bonding with the destination. It was further established that hybrid cognition strongly asserts destination bonding and has been also found to have moderating impact on the link between destination bonding and electronic-word-of-mouth.

  14. Direct Capture of Organic Acids From Fermentation Media Using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T.

    2004-11-03

    Several ionic liquids have been investigated for the extraction of organic acids from fermentation broth. Partitioning of representative organic acids (lactic, acetic, and succinic) between aqueous solution and nine hydrophobic ionic liquids was measured. The extraction efficiencies were strongly dependent on pH of the aqueous phase. Distribution coefficient was very good (approximately 60) at low succinic acid concentrations for one of the ionic liquids (trihexyltetradecylphosphonium methanesulfonate) at neutral pH. However, this ionic liquid had to be diluted with nonanol due to its high viscosity in order to be useful. A diluent (trioctylamine) was also added to this mixture. The results suggest that an extraction system based on ionic liquids may be feasible for succinic acid recovery from fermentation broth and that two ideal extraction stages are needed to reduce the concentration from 33 g/L to 1 g/L of succinic acid. Further studies are needed to evaluate other issues related to practical applications, including ionic liquid loss in the process, toxicity effects of ionic liquids during simultaneous fermentation and extractions.

  15. Partitioning of acidic, basic and neutral amino acids into imidazolium-based ionic liquids.

    Science.gov (United States)

    Absalan, Ghodratollah; Akhond, Morteza; Sheikhian, Leila

    2010-06-01

    In this paper, partitioning behaviors of typical neutral (Alanine), acidic (Glutamic acid) and basic (Lysine) amino acids into imidazolium-based ionic liquids [C(4)mim][PF(6)], [C(6)mim][PF(6)], [C(8)mim][PF(6)], [C(6)mim][BF(4)] and [C(8)mim][BF(4)] as extracting solvents were examined. [C(6)mim][BF(4)] showed the best efficiency for partitioning of amino acids. The partition coefficients of amino acids in ionic liquids were found to depend strongly on pH of the aqueous solution, amino acid and ionic liquid chemical structures. Different chemical forms of amino acids in aqueous solutions were pH dependent, so the pH value of the aqueous phase was a determining factor for extraction of amino acids into ionic liquid phase. Both water content of ionic liquids and charge densities of their anionic and cationic parts were important factors for partitioning of cationic and anionic forms of amino acids into ionic liquid phase. Extracted amino acids were back extracted into phosphate buffer solutions adjusted on appropriate pH values. The results showed that ionic liquids could be used as suitable modifiers on the stationary phase of an HPLC column for efficient separation of acidic, basic, and neutral amino acids.

  16. Ionic Liquids to Replace Hydrazine

    Science.gov (United States)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  17. Enhanced ionic diffusion in ionomer-filled nanopores

    International Nuclear Information System (INIS)

    Allahyarov, Elshad; Taylor, Philip L.; Löwen, Hartmut

    2015-01-01

    Coarse-grained simulations in the united-atom-model approximation are used to investigate confinement-induced morphological changes in Nafion-like ionomers. The system we study models a cylindrical pore in a hydrophobic matrix of supporting material with pore diameters that vary from 0.7 to 3.96 nm. Simulation results indicate a strong dependence of the equilibrium ionomer structures both on the pore diameter and on the sulfonate concentration in the pore. In the case of larger pores, the ionic clustering has the shape of a branched wire-like network oriented parallel to the pore axis. In the case of narrow pores, the ionic clusters occupy the pore center and exhibit strong density modulations both along the pore axis and across the pore diameter. The calculated diffusion coefficients for the ions indicate a sharp increase within the narrow pores. This finding is explained by ballistic-type ionic motion at shorter times and by the collective motion of ions in hydrophilic clusters. The influence of the hydrophobic walls on the distribution of ions and solvent molecules is discussed

  18. Note: Anodic bonding with cooling of heat-sensitive areas

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Olsen, Jakob Lind; Henriksen, Toke Riishøj

    2010-01-01

    Anodic bonding of silicon to glass always involves heating the glass and device to high temperatures so that cations become mobile in the electric field. We present a simple way of bonding thin silicon samples to borosilicate glass by means of heating from the glass side while locally cooling heat......-sensitive areas from the silicon side. Despite the high thermal conductivity of silicon, this method allows a strong anodic bond to form just millimeters away from areas essentially at room temperature....

  19. Shape Bonding method

    Science.gov (United States)

    Pontius, James T. (Inventor)

    2010-01-01

    The present invention is directed to a method of bonding at least two surfaces together. The methods step of the present invention include applying a strip of adhesive to a first surface along a predefined outer boundary of a bond area and thereby defining a remaining open area there within. A second surface, or gusset plate, is affixed onto the adhesive before the adhesive cures. The strip of adhesive is allowed to cure and then a second amount of adhesive is applied to cover the remaining open area and substantially fill a void between said first and second surfaces about said bond area. A stencil may be used to precisely apply the strip of adhesive. When the strip cures, it acts as a dam to prevent overflow of the subsequent application of adhesive to undesired areas. The method results in a precise bond area free of undesired shapes and of a preferred profile which eliminate the drawbacks of the prior art bonds.

  20. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael

    2015-01-01

    Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... to think in alternative ways such as issuing corporate bonds. A market for corporate bonds exists in countries such as Norway, Germany, France, the United Kingdom and the United States, while Denmark is still behind in this trend. Some large Danish corporations have instead used foreign corporate bonds...... markets. However, NASDAQ OMX has introduced the First North Bond Market in December 2012 and new regulatory framework came into place in 2014, which may contribute to a Danish based corporate bond market. The purpose of this article is to present the regulatory changes in Denmark in relation to corporate...

  1. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael

    2015-01-01

    Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... markets. However, NASDAQ OMX has introduced the First North Bond Market in December 2012 and new regulatory framework came into place in 2014, which may contribute to a Danish based corporate bond market. The purpose of this article is to present the regulatory changes in Denmark in relation to corporate...... bonds. The purpose is further to analyse the tax consequences of issuing bonds in both a direct issue of bonds and through securitization....

  2. β-cyclodextrin-ionic liquid polymer based dynamically coating for simultaneous determination of tetracyclines by capillary electrophoresis.

    Science.gov (United States)

    Zhou, Chunyan; Deng, Jingjing; Shi, Guoyue; Zhou, Tianshu

    2017-04-01

    Tetracyclines are a group of broad spectrum antibiotics widely used in animal husbandry to prevent and treat diseases. However, the improper use of tetracyclines may result in the presence of their residues in animal tissues or waste. Recently, great attention has been drawn towards the green solvents ionic liquids. Ionic liquids have been employed as a coating material to modify the electroosmotic flow in capillary electrophoresis. In this study, a functionalized ionic liquid, mono-6-deoxy-6-(3-methylimidazolium)-β-cyclodextrin tosylate, was synthesized and used for the simultaneous separation and quantification of tetracyclines by capillary electrophoresis. Good separation efficiency could be achieved due to the multiple functions of β-cyclodextrin derived ionic liquid, including the electrostatic interaction, the hydrogen bonding, and the cavity structure in β-cyclodextrin ionic liquid which can entrap the tetracyclines to form inclusion complex. After optimization, baseline separation achieved in 25 min with the running buffer consisted of 10 mmol/L, pH 7.2 phosphate buffer and 20 mmol/L β-cyclodextrin ionic liquid. The satisfied result demonstrated that the β-cyclodextrin ionic liquid is an ideal background electrolyte modifier in the separation of tetracyclines with high stability and good reproducibility. And it is an effective strategy to design and synthesize specific ILs as additive applied in separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Concentration Effects of Silver Ions on Ionic Conductivities of Molten Silver Halides

    Directory of Open Access Journals (Sweden)

    Okada T.

    2011-05-01

    Full Text Available Ionic conductivities of molten (RbXc(AgX1-c (X = Cl and I mixtures were measured to clarify the concentration effects of silver ions on ionic conductivities of molten silver halides. It is found that the addition of RbX to molten AgX rapidly reduces the ionic conductivity with 0 ≤ c ≤ 0.4. It suggests that strong Ag-Ag correlation is necessary to fast conduction of Ag ions in molten state. The absolute values of ionic conductivity for (RbClc(AgCl1-c are larger than those for (RbIc(AgI1-c mixtures at all compositions. These differences might relate to difference of diffusion constant between Cl- and I- and difference of effective charge carried by an ion between molten AgCl and AgI

  4. Frequency dependent dynamical electromechanical response of mixed ionic-electronic conductors

    Science.gov (United States)

    Morozovska, A. N.; Eliseev, E. A.; Bravina, S. L.; Ciucci, Francesco; Svechnikov, G. S.; Chen, Long-Qing; Kalinin, S. V.

    2012-01-01

    Frequency dependent dynamic electromechanical response of the mixed ionic-electronic conductor film to a periodic electric bias is analyzed for different electronic and ionic boundary conditions. Dynamic effects of mobile ions concentration (stoichiometry contribution), charge state of acceptors (donors), electron concentration (electron-phonon coupling via the deformation potential), and flexoelectric effect contribution are discussed. A variety of possible nonlinear dynamic electromechanical responses of mixed electronic ionic conductors (MIEC) films including quasi-elliptic curves, asymmetric hysteresis-like loops with pronounced memory window, and butterfly-like curves are calculated. The electromechanical response of ionic semiconductor is predicted to be a powerful descriptor of local valence states, band structure and electron-phonon correlations thatcan be readily measured in the nanoscale volumes and in the presence of strong electronic conductivity.

  5. Destabilization Mechanism of Ionic Surfactant on Curcumin Nanocrystal against Electrolytes

    Directory of Open Access Journals (Sweden)

    Heni Rachmawati

    2016-10-01

    Full Text Available We have successfully developed curcumin nanosuspension intended for oral delivery. The main purpose is to improve bioavailability through enhancing its solubility. The nanoparticles were stabilized using various stabilizers, including polyvinyl pyrrolidone (PVP, polyvinyl alcohol (PVA, sodium carboxymethylcellulose (Na-CMC, d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS, and sodium dodecyl sulfate (SDS. The average diameter of particles, microscopic appearance, and sedimentation of each preparation was observed and compared. Each stabilizer demonstrated a different degree of inhibition of particle aggregation under electrolyte-containing simulated gastrointestinal (GIT fluid. Non-ionic stabilizers (PVA, PVP, and TPGS were shown to preserve the nanosuspension stability against electrolytes. In contrast, strong ionic surfactants such as SDS were found to be very sensitive to electrolytes. The results can provide useful information for the formulators to choose the most suitable stabilizers by considering the nature of stabilizers and physiological characteristics of the target site of the drug.

  6. The Bonding Situation in Metalated Ylides.

    Science.gov (United States)

    Scharf, Lennart T; Andrada, Diego M; Frenking, Gernot; Gessner, Viktoria H

    2017-03-28

    Quantum chemical calculations have been carried out to study the electronic structure of metalated ylides particularly in comparison to their neutral analogues, the bisylides. A series of compounds of the general composition Ph 3 P-C-L with L being either a neutral or an anionic ligand were analyzed and the impact of the nature of the substituent L and the total charge on the electronics and bonding situation was studied. The charge at the carbon atom as well as the dissociation energies, bond lengths, and Wiberg bond indices strongly depend on the nature of L. Here, not only the charge of the ligand but also the position of the charge within the ligand backbone plays an important role. Independent of the substitution pattern, the NBO analysis reveals the preference of unsymmetrical bonding situations (P=C-L or P-C=L) for almost all compounds. However, Lewis structures with two lone-pair orbitals at the central carbon atom are equally valid for the description of the bonding situation. This is confirmed by the pronounced lone-pair character of the frontier orbitals. Energy decomposition analysis mostly reveals the preference of several bonding situations, mostly with dative and ylidic electron-sharing bonds (e.g., P→C - -L). In general, the anionic systems show a higher preference of the ylidic bonding situations compared to the neutral analogues. However, in most of the cases different resonance structures have to be considered for the description of the "real" bonding situation. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Impact of water dilution and cation tail length on ionic liquid characteristics: Interplay between polar and non-polar interactions

    Science.gov (United States)

    Hegde, Govind A.; Bharadwaj, Vivek S.; Kinsinger, Corey L.; Schutt, Timothy C.; Pisierra, Nichole R.; Maupin, C. Mark

    2016-08-01

    The recalcitrance of lignocellulosic biomass poses a major challenge that hinders the economical utilization of biomass for the production of biofuel, plastics, and chemicals. Ionic liquids have become a promising solvent that addresses many issues in both the pretreatment process and the hydrolysis of the glycosidic bond for the deconstruction of cellulosic materials. However, to make the use of ionic liquids economically viable, either the cost of ionic liquids must be reduced, or a less expensive solvent (e.g., water) may be added to reduce the overall amount of ionic liquid used in addition to reducing the viscosity of the binary liquid mixture. In this work, we employ atomistic molecular dynamics simulations to investigate the impact of water dilution on the overall liquid structure and properties of three imidazolium based ionic liquids. It is found that ionic liquid-water mixtures exhibit characteristics that can be grouped into two distinct regions, which are a function of the ionic liquid concentration. The trends observed in each region are found to correlate with the ordering in the local structure of the ionic liquid that arises from the dynamic interactions between the ion pairs. Simulation results suggest that there is a high level of local ordering in the molecular structure at high concentrations of ionic liquids that is driven by the aggregation of the cationic tails and the anion-water interactions. It is found that as the concentration of ionic liquids in the binary mixture is decreased, there is a point at which the competing self and cross interaction energies between the ionic liquid and water shifts away from a cation-anion dominated regime, which results in a significant change in the mixture properties. This break point, which occurs around 75% w/w ionic liquids, corresponds to the point at which water molecules percolate into the ionic liquid network disrupting the ionic liquids' nanostructure. It is observed that as the cationic alkyl

  8. Strongly Correlated Topological Insulators

    Science.gov (United States)

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  9. Redshift or adduct stabilization -- a computational study of hydrogen bonding in adducts of protonated carboxylic acids

    DEFF Research Database (Denmark)

    Olesen, Solveig Gaarn; Hammerum, Steen

    2009-01-01

    changes and the redshift favor the Z OH group, matching the results of NBO and AIM calculations. This reflects that the thermochemistry of adduct formation is not a good measure of the hydrogen bond strength in charged adducts, and that the ionic interactions in the E and Z adducts of protonated...

  10. Strong Cosmic Censorship

    Science.gov (United States)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  11. Electrophoretic efficiency of an ionic toothbrush:

    OpenAIRE

    Gaberšček, Miran; Klemenc, Franek

    2006-01-01

    The eventual electrophoretic effects during application of an ionic toothbrushare examined. Firstly, the electrical conditions to which the teeth are exposed during application of the ionic tootbrush are determined. Secondly, a method for monitoring the change of bacteria number density on thesurface of extracted teeth under the influence of external electric field is presented. After a regular application of the ionic toothbrush this change is detectable, but - from the practical point - neg...

  12. Enzyme catalysis with small ionic liquid quantities.

    Science.gov (United States)

    Fischer, Fabian; Mutschler, Julien; Zufferey, Daniel

    2011-04-01

    Enzyme catalysis with minimal ionic liquid quantities improves reaction rates, stereoselectivity and enables solvent-free processing. In particular the widely used lipases combine well with many ionic liquids. Demonstrated applications are racemate separation, esterification and glycerolysis. Minimal solvent processing is also an alternative to sluggish solvent-free catalysis. The method allows simplified down-stream processing, as only traces of ionic liquids have to be removed.

  13. Reassigning hydrogen-bond centering in dense ice

    International Nuclear Information System (INIS)

    Benoit, Magali; Romero, Aldo H.; Marx, Dominik

    2002-01-01

    Hydrogen bonds in H 2 O ice change dramatically upon compression. Thereby a hydrogen-bonded molecular crystal, ice VII, is transformed to an atomic crystal, ice X. Car-Parrinello simulations reproduce the features of the x-ray diffraction spectra up to about 170 GPa but allow for analysis in real space. Starting from molecular ice VII with static orientational disorder, dynamical translational disordering occurs first via creation of ionic defects, which results in a systematic violation of the ice rules. As a second step, the transformation to an atomic solid and thus hydrogen-bond centering occurs around 110 GPa at 300 K and no novel phase is found up to at least 170 GPa

  14. Density functional theory, natural bond orbital and quantum theory of ...

    Indian Academy of Sciences (India)

    The sign of Hb depends on which contribution, potential or kinetic, will locally prevail on the BCP. The Lapla- cian is negative if the modulus of the potential energy outweighs two times the kinetic energy, which implies the covalent character of interaction, and it may con- cern covalent bonds as well as very strong H-bonds.

  15. Control and identification of strong field dissociative channels in CO2+ via molecular alignment

    International Nuclear Information System (INIS)

    Oppermann, M; Weber, S J; Marangos, J P; Morales, F; Richter, M; Patchkovskii, S; Ivanov, M; Smirnova, O; Csehi, A; Vibók, Á

    2014-01-01

    The dissociative excitation of CO 2 + was studied in the molecular frame as a function of probe laser intensity, ellipticity and polarization with respect to the molecular bond at laser wavelengths of 800 nm and 1350 nm. This allowed the identification of the main excitation pathway consisting of tunnel ionization from HOMO-2 followed by a parallel dipole transition from the second excited state B to the predissociating, third excited state C. Recollision excitation was shown to play a negligible role. Using laser induced impulsive alignment, the strong field induced coupling at 800 nm and 1350 nm of the ionic states B and C could thus be controlled by the laser polarization. This leads to a suppression of the fragmentation yield of up to 70% when the laser polarization was perpendicular to the molecular axis compared to parallel polarization. We have performed simulations of various ionization channels of CO 2 . Our simulations reflect the experimental findings and show that dissociation of CO 2 + is induced by tunnelling from deeper molecular orbitals HOMO-1, HOMO-2, HOMO-3, followed by laser driven hole dynamics in the ion. (paper)

  16. Membrane separation of ionic liquid solutions

    Science.gov (United States)

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  17. Improved Ionic Liquids as Space Lubricants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ionic liquids are candidate lubricant materials. However for application in low temperature space mechanisms their lubrication performance needs to be enhanced. UES...

  18. Ionic, paramagnetic and photophysical properties of a new biohybrid material incorporating copper perchlorate

    International Nuclear Information System (INIS)

    Leones, R.; Donoso, J.P.; Magon, C.J.; Silva, I.D.A.; Camargo, A.S.S. de; Pawlicka, A.; Silva, M.M.

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •Poly(ϵ-caprolactone)/siloxane biohybrids electrolytes were prepared by sol-gel method. •The polymer electrolytes were doped with copper perchlorate salt. •The ionic, paramagnetic and photophysical properties of the samples were evaluated. •The samples were analyzed by means of impedance spectroscopy, electron paramagnetic resonance (EPR) and photoluminescence spectroscopy. -- Abstract: The sol-gel method was employed in the synthesis of di-urethane cross-linked poly(ϵ-caprolactone) (d-PCL(530)/siloxane biohybrid ormolytes incorporating copper perchlorate (Cu(ClO 4 ) 2 ). The highest ionic conductivity of the d-PCL(530)/siloxane n Cu(ClO 4 ) 2 system is that with n = 10 (1.4 × 10 −7 and 1.4 × 10 −5 S cm −1 , at 25 and 100 °C, respectively). In an attempt to understand the ionic conductivity/ionic association relationship, we decided to inspect the chemical environment experienced by the Cu 2+ ions in the d-PCL(530)/siloxane medium. The observed EPR spectra are typical of isolated monomeric Cu 2+ ions in axially distorted sites. The molecular orbital coefficients obtained from the EPR spin Hamiltonian parameters and the optical absorption band suggests that bonding between the Cu 2+ and its ligand in the ormolytes are moderately ionic. Investigation by photoluminescence spectroscopy did not evidence or allow selective excitation of transitions corresponding to complexed Cu 2+ species

  19. Titanium Alloy Strong Back for IXO Mirror Segments

    Science.gov (United States)

    Byron, Glenn P.; Kai-Wang, Chan

    2011-01-01

    A titanium-alloy mirror-holding fixture called a strong back allows the temporary and permanent bonding of a 50 degree D263 glass x-ray mirror (IXO here stands for International X-ray Observatory). The strong back is used to hold and position a mirror segment so that mounting tabs may be bonded to the mirror with ultra-low distortion of the optical surface. Ti-15%Mo alloy was the material of choice for the strong back and tabs because the coefficient of thermal expansion closely matches that of the D263 glass and the material is relatively easy to machine. This invention has the ability to transfer bonded mounting points from a temporary location on the strong back to a permanent location on the strong back with minimal distortion. Secondly, it converts a single mirror segment into a rigid body with an acceptable amount of distortion of the mirror, and then maneuvers that rigid body into optical alignment such that the mirror segment can be bonded into a housing simulator or mirror module. Key problems are that the mirrors are 0.4-mm thick and have a very low coefficient of thermal expansion (CTE). Because the mirrors are so thin, they are very flexible and are easily distorted. When permanently bonding the mirror, the goal is to achieve a less than 1-micron distortion. Temperature deviations in the lab, which have been measured to be around 1 C, have caused significant distortions in the mirror segment.

  20. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...... non-linear fracture mechanics. The results indicated a good correlation between theory and tests. Furthermore, the model is suggested as theoretical base for determining load capacity of bonded anchorages with transverse pressure, in externally reinforced concrete structures....

  1. Ionic Structure at Dielectric Interfaces

    Science.gov (United States)

    Jing, Yufei

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric

  2. Strong van der Waals attractive forces in nanotechnology

    Science.gov (United States)

    Reimers, Jeffrey

    The Dobson classification scheme for failure of London-like expressions for describing dispersion is reviewed. New ways to measure using STM data and calculate by first principles free energies of organic self-assembly processes from solution will be discussed, considering tetraalkylporphyrins on graphite. How strong van der Waals forces can compete against covalent bonding to produce new molecular isomers and reaction pathways will also be demonstrated, focusing on golds-sulfur bonds for sensors and stabilizing nanoparticles.

  3. Strong Arcwise Connectedness

    OpenAIRE

    Espinoza, Benjamin; Gartside, Paul; Kovan-Bakan, Merve; Mamatelashvili, Ana

    2012-01-01

    A space is `n-strong arc connected' (n-sac) if for any n points in the space there is an arc in the space visiting them in order. A space is omega-strong arc connected (omega-sac) if it is n-sac for all n. We study these properties in finite graphs, regular continua, and rational continua. There are no 4-sac graphs, but there are 3-sac graphs and graphs which are 2-sac but not 3-sac. For every n there is an n-sac regular continuum, but no regular continuum is omega-sac. There is an omega-sac ...

  4. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally......'s scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims....

  5. Chemisorption bonding and catalysis

    International Nuclear Information System (INIS)

    Danese, J.B.; Schrieffer, J.R.

    1976-01-01

    The general features of the LCAO--MO, Green's function, and multiple-scattering chi α methods and their applications to surfaces and surface-related problems are discussed. Emphasis is placed on the localization of bonding in surface complexes

  6. Tile-bonding tool

    Science.gov (United States)

    Haynie, C. C.; Holt, J. W.

    1978-01-01

    Device applies uniform, constant, precise pressure to hold tiles in place during bonding. Tool consists of pressure bladders supported by adjustable pole. Pole can accomodate single or multiple bladders. Tiles can be flat or contoured.

  7. Bond markets in Africa

    Directory of Open Access Journals (Sweden)

    Yibin Mu

    2013-07-01

    Full Text Available African bond markets have been steadily growing in recent years, but nonetheless remain undeveloped. African countries would benefit from greater access to financing and deeper financial markets. This paper compiles a unique set of data on government securities and corporate bond markets in Africa. It then applies an econometric model to analyze the key determinants of African government securities market and corporate bond market capitalization. Government securities market capitalization is directly related to better institutions and interest rate volatility, and inversely related to smaller fiscal deficits, higher interest rate spreads, exchange rate volatility, and current and capital account openness. Corporate bond market capitalization is directly linked to economic size, the level of development of the economy and financial markets, better institutions, and interest rate volatility, and inversely related to higher interest rate spreads and current account openness. Policy implications follow.

  8. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.

    1992-01-01

    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  9. Handbook of wafer bonding

    CERN Document Server

    Ramm, Peter; Taklo, Maaike M V

    2011-01-01

    Written by an author and editor team from microsystems companies and industry-near research organizations, this handbook and reference presents dependable, first-hand information on bonding technologies.In the first part, researchers from companies and institutions around the world discuss the most reliable and reproducible technologies for the production of bonded wafers. The second part is devoted to current and emerging applications, including microresonators, biosensors and precise measuring devices.

  10. Diffusion bonding techniques

    International Nuclear Information System (INIS)

    Peters, R.D.

    1978-01-01

    The applications of diffusion bonding at the General Electric Neutron Devices Department are briefly discussed, with particular emphasis on the gold/gold or gold/indium joints made between metallized alumina ceramic parts in the vacuum switch tube and the crystal resonator programs. Fixtures which use the differential expansion of dissimilar metals are described and compared to one that uses hydraulic pressure to apply the necessary bonding force

  11. Regio and stereoselectivity in ionic cycloadditions

    Indian Academy of Sciences (India)

    WINTEC

    Though the reactions have both electrostatic control and frontier orbital control the former dominates in the initial stages of the reaction. Keywords. Stereoselectivity; ionic cycloaddition; density functional theory; acridizinium ion; methyl vinyl ether; 2,3-dimethylisoquinolinium ion. 1. Introduction. In polar or ionic cycloadditions ...

  12. Improved ionic model of liquid uranium dioxide

    NARCIS (Netherlands)

    Gryaznov, [No Value; Iosilevski, [No Value; Yakub, E; Fortov, [No Value; Hyland, GJ; Ronchi, C

    The paper presents a model for liquid uranium dioxide, obtained by improving a simplified ionic model, previously adopted to describe the equation of state of this substance [1]. A "chemical picture" is used for liquid UO2 of stoichiometric and non-stoichiometric composition. Several ionic species

  13. Aqueous solutions of ionic liquids: microscopic assembly

    NARCIS (Netherlands)

    Vicent-Luna, J.M.; Dubbeldam, D.; Gómez-Álvarez, P.; Calero, S.

    2016-01-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level

  14. Ionic strength sensing in living cells

    NARCIS (Netherlands)

    Liu, Boqun; Poolman, Bert; Boersma, Arnold J

    Knowledge of the ionic strength in cells is required to understand the in vivo biochemistry of the charged biomacromolecules. Here, we present the first sensors to determine the ionic strength in living cells, by designing protein probes based on Förster resonance energy transfer (FRET). These

  15. Ionic conduction in the solid state

    Indian Academy of Sciences (India)

    Solid state ionic conductors are important from an industrial viewpoint. A variety of such conductors have been found. In order to understand the reasons for high ionic conductivity in these solids, there have been a number of experimental, theoretical and computational studies in the literature. We provide here a survey of ...

  16. Diffusion, Coulombic interactions and multicomponent ionic transport of charged species in saturated porous media

    DEFF Research Database (Denmark)

    Rolle, Massimo; Muniruzzaman, Muhammad

    of their aqueous diffusion coefficients also the electrostatic interactions significantly affect solute displacement. We investigated electrostatic interactions between ionic species under flow-through conditions resulting in multicomponent ionic dispersion: the dispersive fluxes of the different ions in the pore...... water are cross-coupled due to the effects of Coulombic interactions. Such effects are illustrated in flow-through experiments in saturated porous media. Simple strong electrolytes (i.e., salts and strong acid solutions) were selected as tracers and their transport was studied under different advection......-dominated conditions in homogeneous and heterogeneous porous media [2-3]. The model-based interpretation of the experimental results is challenging since it requires a multicomponent ionic formulation with an accurate description of local hydrodynamic dispersion and explicitly accounting for the cross...

  17. Modeling of ionic transport in solid polymer electrolytes

    International Nuclear Information System (INIS)

    Cheang, P L; Teo, L L; Lim, T L

    2010-01-01

    A Monte Carlo model describing the ionic trans port in solid polyme relectrolyte is developed. Single cation simulation is carried out using hopping rate to study the transport mechanism of a thermally activated ion in solid polymer electrolyte. In our model, the ion is able to hop along a polymer chain and to jump between different chains, surmounting energy barriers that consist of polymer's activation energy and the externally applied electric field. The model is able to trace the motion of ion across polymer electrolyte. The mean hopping distance is calculated based on the available open bond in the next nearest side. Random numbers are used to determine the hopping distances, free flight times, final energy and direction of the cation after successful hop. Drift velocity and energy of cation are simulated in our work. The model is expected to be able to simulate the lithium-polymer battery in future.

  18. Nuclear Magnetic Resonance Study of Nanoscale Ionic Materials

    KAUST Repository

    Oommen, Joanna Mary

    2010-08-13

    Nanoscale ionic materials (NIMs) are a new class of nanomaterials that exhibit interesting properties including negligible vapor pressures and tunable physical states, among others. In this study, we analyzed the temperature-wise performance of NIMs using nuclear magnetic resonance (NMR) spectroscopy. NIMs are relatively stable over a temperature range from 300 to 383 K, rendering them usable in high temperature applications. We confirmed the presence of covalent bonds between the SiO2 core and the sulfonate group and determined relative concentrations of aromatic and aliphatic hydrocarbons. These findings serve as first hand proof-of-concept for the usefulness of NMR analyses in further studies on the diffusive properties of NIMs. © 2010 The Electrochemical Society.

  19. Ionic conductivity in aqueous solutions: deuterium isotope effect

    International Nuclear Information System (INIS)

    Samanta, Alok; Ghosh, Swapan K.

    1997-01-01

    A simple theoretical investigation of the calculation of ionic conductivity in aqueous solution is presented. The dipolar hard sphere model for the solvent which has been successful elsewhere has been employed here and it has been possible to reproduce the experimental results quite accurately for both water and heavy water using only two parameters. In a more detailed theoretical approach one should employ better models for water with proper account of its vibrations, liberations and also hydrogen bonding. It is also of interest to study the temperature effect and the concentration dependence of the conductivity. The time-dependent friction can also be calculated from the present formalism and be used for the study of isotope effect in proton transfer reactions or other aspects of chemical dynamics

  20. Polyelectrolyte brushes in mixed ionic medium studied via intermolecular forces

    Science.gov (United States)

    Farina, Robert; Laugel, Nicolas; Pincus, Philip; Tirrell, Matthew

    2011-03-01

    The vast uses and applications of polyelectrolyte brushes make them an attractive field of research especially with the growing interest in responsive materials. Polymers which respond via changes in temperature, pH, and ionic strength are increasingly being used for applications in drug delivery, chemical gating, etc. When polyelectrolyte brushes are found in either nature (e.g., surfaces of cartilage and mammalian lung interiors) or commercially (e.g., skin care products, shampoo, and surfaces of medical devices) they are always surrounded by mixed ionic medium. This makes the study of these brushes in varying ionic environments extremely relevant for both current and future potential applications. The polyelectrolyte brushes in this work are diblock co-polymers of poly-styrene sulfonate (N=420) and poly-t-butyl styrene (N=20) which tethers to a hydrophobic surface allowing for a purely thermodynamic study of the polyelectrolyte chains. Intermolecular forces between two brushes are measured using the SFA. As multi-valent concentrations are increased, the brushes collapse internally and form strong adhesion between one another after contact (properties not seen in a purely mono-valent environment).

  1. Mussel byssus-inspired engineering of synergistic nanointerfacial interactions as sacrificial bonds into carbon nanotube-reinforced soy protein/nanofibrillated cellulose nanocomposites: Versatile mechanical enhancement

    Science.gov (United States)

    Wang, Zhong; Zhao, Shujun; Kang, Haijiao; Zhang, Wei; Zhang, Shifeng; Li, Jianzhang

    2018-03-01

    Achieving flexible and stretchable biobased nanocomposites combining high strength and toughness is still a very challenging endeavor. Herein, we described a novel and versatile biomimetic design for tough and high-performance TEMPO-oxidized nanofibrillated cellulose (TONFC)/soy protein isolate (SPI) nanocomposites, which are triggered by catechol-mimetic carbon nanotubes (PCT) and iron ions (Fe(III)) to yield a strong yet sacrificial metal-ligand motifs into a chemically cross-linked architecture network. Taking advantage of self-polymerization of catechol-inspired natural tannic acid, PCT nanohybrid was prepared through adhering reactive poly-(tannic acid) (PTA) layer onto surfaces of carbon nanotubes via a simple dip-coating process. The high-functionality PCT induced the formation of the metal-ligand bonds through the ionic coordinates between the catechol groups in PCT and -COOH groups of TONFC skeleton with Fe(III) mediation that mimicked mussel byssus. Upon stretching, this tailored TONFC-Fe(III)-catechol coordination bonds served as sacrificial bonds that preferentially detach prior to the covalent network, which gave rise to efficient energy dissipation that the nanocomposites integrity was survived. As a result of these kind of synergistic interfacial interactions (sacrificial and covalent bonding), the optimal nanocomposite films processed high tensile strength (ca. 11.5 MPa), large elongation (ca. 79.3%), remarkable toughness (ca. 6.9 MJ m-3), and favorable water resistance as well as electrical conductivity. The proposed bioinspired strategy for designing plant protein-based materials enables control over their mechanical performance through the synergistic engineering of sacrificial bonds into the composite interface.

  2. Application of Ionic Liquids in Hydrometallurgy

    Directory of Open Access Journals (Sweden)

    Jesik Park

    2014-08-01

    Full Text Available Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry.

  3. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    International Nuclear Information System (INIS)

    Lichtenberger, D.L.

    1991-10-01

    The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies has been developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. This relationship has been used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. We have been able to obtain a direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal. The ionization energies have also been used to correlate the rates of carbonyl substitution reactions of (η 5 -C 5 H 4 X)Rh(CO) 2 complexes, and to reveal the electronic factors that control the stability of the transition state. The extent that the electronic features of these bonding interactions transfer to other chemical systems is being investigated in terms of the principle of additivity of ligand electronic effects. Specific examples under study include metal- phosphines, metal-halides, and metallocenes. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C 60 molecule, buckminsterfullerene, and its interaction with a metal surface. The high-resolution valence ionizations in the gas phase reveal the high symmetry of the molecule, and studies of thin films of C 60 reveal weak intermolecular interactions. Scanning tunneling and atomic force microscopy reveal the arrangement of spherical molecules on gold substrates, with significant delocalization of charge from the metal surface. 21 refs

  4. Surface activated room-temperature bonding in Ar gas ambient for MEMS encapsulation

    Science.gov (United States)

    Takagi, Hideki; Kurashima, Yuichi; Takamizawa, Akifumi; Ikegami, Takeshi; Yanagimachi, Shinya

    2018-02-01

    Surface activated room-temperature bonding of Si and sapphire wafers in high-purity inert gas ambient was examined. Although surface activated bonding has been mainly performed in high vacuum, Si and sapphire wafers were successfully bonded in Ar gas ambient up to 90 kPa, which is almost atmospheric pressure. The dicing test proved that the bonding prepared in Ar gas ambient was strong enough for MEMS packaging, although the bonding strength was slightly decreased compared with that prepared in vacuum. Transmission electron microscope observation revealed that the bonding interface prepared in Ar gas ambient is almost the same as that prepared in vacuum. It means that Ar atoms in the bonding ambient do not hamper the interatomic bond formation at the bonding interface. Room-temperature bonding in gas ambient enables hermetic packaging of MEMS devices, such as inertia sensors, MEMS switches, and Cs vapor cells for MEMS atomic clocks at various pressures.

  5. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  6. Ultrafiltration modeling of non-ionic microgels.

    Science.gov (United States)

    Roa, Rafael; Zholkovskiy, Emiliy K; Nägele, Gerhard

    2015-05-28

    Membrane ultrafiltration (UF) is a pressure driven process allowing for the separation and enrichment of protein solutions and dispersions of nanosized microgel particles. The permeate flux and the near-membrane concentration-polarization (CP) layer in this process is determined by advective-diffusive dispersion transport and the interplay of applied and osmotic transmembrane pressure contributions. The UF performance is thus strongly dependent on the membrane properties, the hydrodynamic structure of the Brownian particles, their direct and hydrodynamic interactions, and the boundary conditions. We present a macroscopic description of cross-flow UF of non-ionic microgels modeled as solvent-permeable spheres. Our filtration model involves recently derived semi-analytic expressions for the concentration-dependent collective diffusion coefficient and viscosity of permeable particle dispersions [Riest et al., Soft Matter, 2015, 11, 2821]. These expressions have been well tested against computer simulation and experimental results. We analyze the CP layer properties and the permeate flux at different operating conditions and discuss various filtration process efficiency and cost indicators. Our results show that the proper specification of the concentration-dependent transport coefficients is important for reliable filtration process predictions. We also show that the solvent permeability of microgels is an essential ingredient to the UF modeling. The particle permeability lowers the particle concentration at the membrane surface, thus increasing the permeate flux.

  7. Unusual H-Bond Topology and Bifurcated H-bonds in the 2-Fluoroethanol Trimer.

    Science.gov (United States)

    Thomas, Javix; Liu, Xunchen; Jäger, Wolfgang; Xu, Yunjie

    2015-09-28

    By using a combination of rotational spectroscopy and ab initio calculations, an unusual H-bond topology was revealed for the 2-fluoroethanol trimer. The trimer exhibits a strong heterochiral preference and adopts an open OH⋅⋅⋅OH H-bond topology while utilizing two types of bifurcated H-bonds involving organic fluorine. This is in stark contrast to the cyclic OH⋅⋅⋅OH H-bond topology adopted by trimers of water and other simple alcohols. The strengths of different H-bonds in the trimer were analyzed by using the quantum theory of atoms in molecules. The study showcases a remarkable example of a chirality-induced switch in H-bond topology in a simple transient chiral fluoroalcohol. It provides important insight into the H-bond topologies of small fluoroalcohol aggregates, which are proposed to play a key role in protein folding and in enantioselective reactions and separations where fluoroalcohols serve as a (co)solvent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  9. Hydrogen fluoride capture by imidazolium acetate ionic liquid

    Science.gov (United States)

    Chaban, Vitaly

    2015-04-01

    Extraction of hydrofluoric acid (HF) from oils is a drastically important problem in petroleum industry, since HF causes quick corrosion of pipe lines and brings severe health problems to humanity. Some ionic liquids (ILs) constitute promising scavenger agents thanks to strong binding to polar compounds and tunability. PM7-MD simulations and hybrid density functional theory are employed here to consider HF capture ability of ILs. Discussing the effects and impacts of the cation and the anion separately and together, we evaluate performance of imidazolium acetate and outline systematic search guidelines for efficient adsorption and extraction of HF.

  10. Cloud Point Extraction of Parabens Using Non-Ionic Surfactant with Cylodextrin Functionalized Ionic Liquid as a Modifier

    Directory of Open Access Journals (Sweden)

    Md Saleh Noorashikin

    2013-12-01

    Full Text Available A cloud point extraction (CPE process using non-ionic surfactant (DC193C to extract selected paraben compounds from water samples was investigated using reversed phase high performance liquid chromatography (RP-HPLC. The CPE process with the presence of β-cyclodextrin (βCD functionalized ionic liquid as a modifier (CPE-DC193C-βCD-IL is a new extraction technique that has been applied on the optimization of parameters, i.e., pH, βCD-IL concentration and phase volume ratio. This CPE-DC193C-βCD-IL method is facilitated at 30 °C, showing great losses of water content in the surfactant-rich phase, resulting in a high pre-concentration factor and high distribution coefficient. The developed method CPE-DC193C-βCD-IL did show enhanced properties compared to the CPE method without the modifier (CPE-DC193C. The developed method of CPE-DC193C-βCD-IL gives an excellent performance on the detection of parabens from water samples with the limit of detection falling in the range of 0.013–0.038 µg mL−1. Finally, the inclusion complex formation, hydrogen bonding, and π–π interaction between the βCD-IL, benzyl paraben (ArP, and DC 193C were proven using 1H NMR and 2D NOESY spectroscopy.

  11. Cloud Point Extraction of Parabens Using Non-Ionic Surfactant with Cylodextrin Functionalized Ionic Liquid as a Modifier

    Science.gov (United States)

    Noorashikin, Md Saleh; Raoov, Muggundha; Mohamad, Sharifah; Abas, Mhd Radzi

    2013-01-01

    A cloud point extraction (CPE) process using non-ionic surfactant (DC193C) to extract selected paraben compounds from water samples was investigated using reversed phase high performance liquid chromatography (RP-HPLC). The CPE process with the presence of β-cyclodextrin (βCD) functionalized ionic liquid as a modifier (CPE-DC193C-βCD-IL) is a new extraction technique that has been applied on the optimization of parameters, i.e., pH, βCD-IL concentration and phase volume ratio. This CPE-DC193C-βCD-IL method is facilitated at 30 °C, showing great losses of water content in the surfactant-rich phase, resulting in a high pre-concentration factor and high distribution coefficient. The developed method CPE-DC193C-βCD-IL did show enhanced properties compared to the CPE method without the modifier (CPE-DC193C). The developed method of CPE-DC193C-βCD-IL gives an excellent performance on the detection of parabens from water samples with the limit of detection falling in the range of 0.013–0.038 μg mL−1. Finally, the inclusion complex formation, hydrogen bonding, and π–π interaction between the βCD-IL, benzyl paraben (ArP), and DC 193C were proven using 1H NMR and 2D NOESY spectroscopy. PMID:24351832

  12. 46 CFR Sec. 10 - Bonds.

    Science.gov (United States)

    2010-10-01

    ... open penalty type. (e) No repair voucher (progress or final) where bond coverage is required shall be... awarded work and the furnishing of the performance and payment bonds required by Article 14 of the NSA...) shall be used. (b) In compliance with the perform- ance bond and payment bond requirements of Article 14...

  13. Structural, electronic properties, and chemical bonding in quaternary layered titanium pnictide-oxides Na2Ti2Pn2O and BaTi2Pn2O (Pn = As, Sb) from FLAPW–GGA calculations

    International Nuclear Information System (INIS)

    Suetin, D.V.; Ivanovskii, A.L.

    2013-01-01

    Highlights: •Layered Na 2 Ti 2 Pn 2 O and BaTi 2 Pn 2 O (Pn = As, Sb) are probed from first principles. •Structural, electronic properties and Fermi surfaces are evaluated. •Chemical bonding is analyzed. -- Abstract: By means of the first-principles FLAPW–GGA calculations, we have investigated the main trends in structural, electronic properties, and chemical bonding for a series of quaternary titanium pnictide-oxides: Na 2 Ti 2 As 2 O, Na 2 Ti 2 Sb 2 O, BaTi 2 As 2 O, and BaTi 2 Sb 2 O, which attracted now much attention as parent phases for a novel group of layered Fe-free superconducting materials. Our results cover the optimized lattice parameters and atomic positions, electronic bands, Fermi surface topology, total and partial density of electronic states. Besides, Bader analysis and the charge density maps are used to discuss the chemical bonding for the examined materials. We find that the atomic substitutions lead to anisotropic deformation of the crystal structure; this effect is related to strong anisotropy of inter-atomic bonds, which are of a mixed (covalent-ionic-metallic) type – in blocks [Ti 2 Pn 2 O], whereas the bonding between blocks [Ti 2 Pn 2 O] and atomic sheets of Na, Ba ions is of an ionic type. The actual effective atomic charges differ from the formal ionic charges due to covalency in blocks [Ti 2 Pn 2 O]. The near-Fermi electronic bands, which are responsible for metallic-like behavior of these materials and will be involved in the formation of superconducting state, arise mainly from the Ti 3d xy , d x2−y2 , and d z2 states of the blocks [Ti 2 Pn 2 O], which define also the anisotropic character of conduction happening mainly in these blocks. The differences in the topology of the multi-sheet Fermi surfaces of these materials are discussed

  14. Science and technology of plasma activated direct wafer bonding

    Science.gov (United States)

    Roberds, Brian Edward

    This dissertation studied the kinetics of silicon direct wafer bonding with emphasis on low temperature bonding mechanisms. The project goals were to understand the topological requirements for initial bonding, develop a tensile test to measure the bond strength as a function of time and temperature and, using the kinetic information obtained, develop lower temperature methods of bonding. A reproducible surface metrology metric for bonding was best described by power spectral density derived from atomic force microscopy measurements. From the tensile strength kinetics study it was found that low annealing temperatures could be used to obtain strong bonds, but at the expense of longer annealing times. Three models were developed to describe the kinetics. A diffusion controlled model and a reaction rate controlled model were developed for the higher temperature regimes (T > 600sp°C), and an electric field assisted oxidation model was proposed for the low temperature range. An in situ oxygen plasma treatment was used to further enhance the field-controlled mechanism which resulted in dramatic increases in the low temperature bonding kinetics. Multiple internal transmission Fourier transform infrared spectroscopy (MIT-FTIR) was used to monitor species evolution at the bonded interface and a capacitance-voltage (CV) study was undertaken to investigate charge distribution and surface states resulting from plasma activation. A short, less than a minute, plasma exposure prior to contacting the wafers was found to obtain very strong bonds for hydrophobic silicon wafers at very low temperatures (100sp°C). This novel bonding method may enable new technologies involving heterogeneous material systems or bonding partially fabricated devices to become realities.

  15. Infrared spectroscopy of ionic clusters

    International Nuclear Information System (INIS)

    Price, J.M.

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm -1 region. The species studied include: the hydrated hydronium ions, H 3 O + (H 2 O) 3 -10 , ammoniated ammonium ions, NH 4 + (NH 3 ) 1 -10 and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH 4 + (NH 3 ) n (H 2 O) m (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs

  16. Infrared spectroscopy of ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  17. Ionic liquids: radiation chemistry, solvation dynamics and reactivity patterns

    International Nuclear Information System (INIS)

    Wishart, J.F.; Funston, A.M.; Szreder, T.

    2006-01-01

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of energy production, chemical industry and environmental applications. Pulse radiolysis of [R 4 N][NTf 2 ] [R 4 N][N(CN) 2 ], and [R 4 P][N(CN) 2 ] ionic liquids produces solvated electrons that absorb over a broad range in the near infrared and persisting for hundreds of nanoseconds. Systematic cation variation shows that solvated electron's spectroscopic properties depend strongly on the lattice structure of the ionic liquid. Very early in our radiolysis studies it became evident that

  18. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  19. Strong interaction and QFD

    International Nuclear Information System (INIS)

    Ebata, T.

    1981-01-01

    With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)

  20. The A Priori Design and Selection of Ionic Liquids as Solvents for Active Pharmaceutical Ingredients

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Weber, Cameron C.; Rogers, Robin D.

    2017-01-01

    . These results indicated that the 18 APIs could be classified into three distinct categories based on their relative hydrogen bond donating or accepting ability, with similar optimal IL solvent predictions within each class. Informed by these results, a family of strongly hydrogen bond donating ILs based...

  1. Recent development of ionic liquid membranes

    Directory of Open Access Journals (Sweden)

    Junfeng Wang

    2016-04-01

    Full Text Available The interest in ionic liquids (IL is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquid–liquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes (ILMs and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive overview on the recent applications of ILMs for the separation of various compounds, including organic compounds, mixed gases, and metal ions. Firstly, ILMs was classified into supported ionic liquid membranes (SILMs and quasi-solidified ionic liquid membranes (QSILMs according to the immobilization method of ILs. Then, preparation methods of ILMs, membrane stability as well as applications of ILMs in the separation of various mixtures were reviewed. Followed this, transport mechanisms of gaseous mixtures and organic compounds were elucidated in order to better understand the separation process of ILMs. This tutorial review intends to not only offer an overview on the development of ILMs but also provide a guide for ILMs preparations and applications. Keywords: Ionic liquid membrane, Supported ionic liquid membrane, Qusai-solidified ionic liquid membrane, Stability, Application

  2. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  3. Hydrogen bonded supramolecular materials

    CERN Document Server

    Li, Zhan-Ting

    2015-01-01

    This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed

  4. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  5. A density functional theory study on the interactions between dibenzothiophene and tetrafluoroborate-based ionic liquids.

    Science.gov (United States)

    Lin, Jin; Lü, Renqing; Wu, Chongchong; Xiao, Ye; Liang, Fei; Famakinwa, Temilola

    2017-04-01

    The interactions between dibenzothiophene (DBT) and N-butyl-N-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), N-butyl-N-methylmorpholinium tetrafluoroborate ([Bmmorpholinium][BF 4 ]), N-butyl-N-methylpiperdinium tetrafluoroborate ([BMPiper][BF 4 ]), N-butyl-N-methylpyrrolidinium tetrafluoroborate ([BMPyrro][BF 4 ]), and N-butylpyridinium tetrafluoroborate ([BPY][BF 4 ]) were investigated using density functional theory approach. Geometric, electron, and topological properties were analyzed using natural bond orbital, atoms in molecules theory, and noncovalent interaction methods in order to understand intermolecular interactions between DBT and ionic liquids. The result shows that hydrogen bond and van der Waals interactions are widespread in all the ionic liquids-DBT systems. Ion-π interactions between DBT and cation or anion are also observed, while π + -π interactions are only found in the [BMIM][BF 4 ]-DBT and [BPY][BF 4 ]-DBT systems. The order of interaction energy is [BPY][BF4]-DBT > [BMIM][BF 4 ]-DBT > [BMPiper][BF 4 ]-DBT > [BMPyrro][BF 4 ]-DBT > [BMmorpholinum][BF 4 ]-DBT. The energies between DBT and the two ionic liquids containing aromatic cations are significantly higher.

  6. Synthesis of hetero ionic compounds using dialkylcarbonate quaternization

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2018-04-03

    Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.

  7. Dielectric response and transport properties of alkylammonium formate ionic liquids

    Science.gov (United States)

    Nazet, Andreas; Buchner, Richard

    2018-05-01

    Dielectric relaxation spectra of three members of the alkylammonium formate family of protic ionic liquids (PILs), namely, ethylammonium formate (EAF), n-butylammonium formate (BuAF), and n-pentylammonium formate (PeAF), as well as the pseudo-PIL triethylamine + formic acid (molar ratio 1:2; TEAF) have been studied over a wide frequency (50 MHz to 89 GHz) and temperature range (5-65 °C), complemented by measurements of their density, viscosity, and conductivity. It turned out that the dominating relaxation of EAF, BuAF, and PeAF arises from both cation and anion reorientations which are synchronized in their dynamics due to hydrogen bonding. Amplitudes and relaxation times of this mode reflect the—compared to nitrate—different nature of H bonding between the formate anion and ethylammonium cation, as well as increasing segregation of the PIL structure into polar and non-polar domains. The TEAF data suggest that its dominating relaxation is due to the rotation of the complex triethylamineṡ(formic acid)2 in which no significant proton transfer to an ion pair occurred. Weak dissociation of this complex into ions was postulated to account for the high conductivity of TEAF.

  8. Cytotoxicity of dentin bonding agents.

    Science.gov (United States)

    Cal, Ebru; Guneri, Pelin; Atay, Ayse; Cetintas, Vildan Bozok

    2014-01-01

    This study sought to evaluate the cytotoxicity of 5 dentin bonding agents (Admira Bond, Adper Single Bond Plus, Clearfil SE Bond, Clearfil S3 Bond, and Heliobond) by XTT assay using human gingival fibroblast cells. Samples of dentin bonding agents were prepared on a black 96-well microplate, and the cytotoxicity of each bonding material was measured every 24 hours for 7 days, then on Days 14, 21, and 28. One-way ANOVA and Bonferroni post hoc tests were used for statistical analyses. All 5 materials were evaluated as severely cytotoxic (P agents showed severe cytotoxicity with viability results exception of Adper Single Bond Plus, toxicity continued to Day 28 for all compounds. The utmost care must be considered during the clinical utilization of dentin bonding agents to keep them within the area of restoration and prevent their contact with adjacent tissues.

  9. Photochemical tissue bonding

    Science.gov (United States)

    Redmond, Robert W [Brookline, MA; Kochevar, Irene E [Charlestown, MA

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  10. Removal of radioactive cesium from soil by ammonium citrate solution and ionic liquid

    International Nuclear Information System (INIS)

    Ishiwata, Shunji; Kitakouji, Manabu; Taga, Atsushi; Ogata, Fumihiko; Ouchi, Hidekazu; Yamanishi, Hirokuni; Inagaki, Masayo

    2015-01-01

    Radioactive cesium has strongly bound soil as time proceeded, which could not be cleaved in mild condition. We have found that serial treatment of ammonium citrate solution and ionic liquid removed radioactive cesium from soil effectively. The sequence of the treatment is crucial, since inverse serial treatment or mixture of two kinds of solution did not show such an effect, which suggested that ammonium citrate unlocked trapped cesium in soil and ionic liquid solved it. We also found that repeating serial treatment and prolonged treatment time additively removed cesium from soil. (author)

  11. The potential for ionic liquid electrolytes to stabilise the magnesium interface for magnesium/air batteries

    International Nuclear Information System (INIS)

    Khoo, Timothy; Howlett, Patrick C.; Tsagouria, Maureen; MacFarlane, Douglas R.; Forsyth, Maria

    2011-01-01

    Magnesium/air batteries are a possible high-energy density power source that, to date, have not received strong commercial interest due to issues with the corrosion of the magnesium and evaporation of the electrolyte. In this work we report on the use of ionic liquid based electrolytes to stabilise the metal/electrolyte interface and their impact on the electrochemical performance. Galvanostatic measurements indicate that the water content of the ionic liquid electrolyte plays an important role in the cell discharge characteristics. Surface characterisation using EIS, ATR-FTIR and powder diffraction examined the unique properties of the surface film formed on the magnesium anode.

  12. Incorporation of Hyperbranched Supramolecules into Nafion Ionic Domains via Impregnation and In-Situ Photopolymerization

    Directory of Open Access Journals (Sweden)

    Hiruto Kudo

    2011-11-01

    Full Text Available Nafion membranes were impregnated with photocurable supramolecules, viz., hyperbranched polyester having pendant functional carboxylic acid groups (HBPEAc-COOH by swelling in methanol and subsequently photocured in-situ after drying. Structure-property relationships of the HBPEAc-COOH impregnated Nafion membranes were analyzed on the basis of Fourier transform infrared (FTIR spectroscopy, solid-state nuclear magnetic resonance (SSNMR and dynamic mechanical analysis (DMA. FTIR and SSNMR investigations revealed that about 7 wt % of HBPEAc-COOH was actually incorporated into the ionic domains of Nafion. The FTIR study suggests possible complexation via inter-species hydrogen bonding between the carboxylic groups of HBPEAc-COOH and the sulfonate groups of Nafion. The α-relaxation peak corresponding to the glass transition temperature of the ionic domains of the neat Nafion-acid form was found to increase from ~100 to ~130 °C upon impregnation with enhanced modulus afforded by the cured polyester network within the ionic domains. The AC impedance fuel cell measurement of the impregnated membrane exhibited an increasing trend of proton conductivity with increasing temperature, which eventually surpassed that of neat Nafion above 100 °C. Of particular importance is that the present paper is the first to successfully incorporate polymer molecules/networks into the Nafion ionic domains by means of impregnation with hyperbranched supramolecules followed by in-situ photopolymerization.

  13. Non-orthogonal and orthogonal valence bond wavefunctions in the hydrogen molecule: the diabatic view

    Science.gov (United States)

    Angeli, Celestino; Cimiraglia, Renzo; Malrieu, Jean-Paul

    2013-07-01

    The ability of the valence bond (VB) approach to describe a molecular system in 'chemical terms' finds its theoretical justification in the fact that the VB wavefunctions are supposed to be diabatic, i.e. with a well-defined nature, not depending on the nuclear geometry. The intimate nature of the VB wavefunctions is here analysed by computing the non-adiabatic coupling for the simple, paradigmatic case of the hydrogen (H2) molecule. This analysis reveals that the neutral and ionic VB wavefunctions cannot be considered as diabatic states, given that they present a large non-adiabatic coupling. The diabatic states, obtained by a suitable transformation of the VB wavefunctions, are found to be the wavefunctions of the orthogonal VB (OVB) approach, which therefore gains a legitimacy in the analysis of the composition of the adiabatic wavefunctions. Such an analysis has some bearing on the description of the nature of the chemical bond in H2: the neutral structure gives a dissociative curve and the bond is due to the stabilisation brought by the ionic structure that mixes together with the neutral structure in the ground state wavefunction at short internuclear distances. The ability of the (at first glance) neutral VB wavefunction based on the 1s orbitals to describe in a compact way the ground state (and therefore the chemical bond) is ascribed to an almost optimal mixing in this wavefunction of the diabatic neutral and ionic states at all internuclear distances.

  14. Selective gas absorption by ionic liquids

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Kegnæs, Søren; Due-Hansen, Johannes

    2010-01-01

    processes for flue gas cleaning. The results show that CO 2, NO and SO2 can be reversible and selective absorbed using different ILs and that Supported Ionic Liquid-Phase (SILP) absorbers are promising materials for industrial flue gas cleaning. Absorption/desorption dynamics can be tuned by temperatures......Reversible absorption performance for the flue gas components CO 2, NO and SO2 has been tested for several different ionic liquids (ILs) at different temperatures and flue gas compositions. Furthermore, different porous, high surface area carriers have been applied as supports for the ionic liquids...... to obtain Supported Ionic Liquid-Phase (SILP) absorber materials. The use of solid SILP absorbers with selected ILs were found to significantly improve the absorption capacity and sorption dynamics at low flue gas concentration, thus making the applicability of ILs viable in technical, continuous flow...

  15. Phosphonium-based ionic liquids and uses

    Science.gov (United States)

    Del Sesto, Rico E; Koppisch, Andrew T; Lovejoy, Katherine S; Purdy, Geraldine M

    2014-12-30

    Phosphonium-based room temperature ionic liquids ("RTILs") were prepared. They were used as matrices for Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry and also for preparing samples of dyes for analysis.

  16. Ionic Liquid Epoxy Composite Cryotanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this work is to determine the optimal process for manufacturing lightweight linerless cryogenic storage tanks using ionic liquid epoxy composite...

  17. Thioimidazolium Ionic Liquids as Tunable Alkylating Agents.

    Science.gov (United States)

    Guterman, Ryan; Miao, Han; Antonietti, Markus

    2018-01-19

    Alkylating ionic liquids based on the thioimidazolium structure combine the conventional properties of ionic liquids, including low melting point and nonvolatility, with the alkylating function. Alkyl transfer occurs exclusively from the S-alkyl position, thus allowing for easy derivatization of the structure without compromising specificity. We apply this feature to tune the electrophilicty of the cation to profoundly affect the reactivity of these alkylating ionic liquids, with a caffeine-derived compound possessing the highest reactivity. Anion choice was found to affect reaction rates, with iodide anions assisting in the alkylation reaction through a "shuttling" process. The ability to tune the properties of the alkylating agent using the toolbox of ionic liquid chemistry highlights the modular nature of these compounds as a platform for alkylating agent design and integration in to future systems.

  18. Modeling electrokinetics in ionic liquids: General

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA; Bao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA USA; Pan, Wenxiao [Department of Mechanical Engineering, University of Wisconsin-Madison, Madison WI USA; Sun, Xin [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA

    2017-04-07

    Using direct numerical simulations we provide a thorough study on the electrokinetics of ionic liquids. In particular, the modfied Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects that are the characteristics of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with the Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel plates, charging dynamics in a 2D straight-walled pore, electro-osmotic ow in a nano-channel, electroconvective instability on a plane ion-selective surface, and electroconvective ow on a curved ion-selective surface. We discuss how the crowding and overscreening effects and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.

  19. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  20. Supported Ionic Liquid Phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco

    2006-01-01

    Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling but util......Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling...... concept is surveyed by presenting results for the continuous gas-phase hydroformylation of propene, as a reaction example. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006....

  1. 1,2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells

    DEFF Research Database (Denmark)

    Luo, Jiangshui; Jensen, Annemette Hindhede; Brooks, Neil R.

    2015-01-01

    weakening of hydrogen bonds at 82 C seems to be coupled with the onset of orientational or rotational disorder of the ions. The temperature dependence of ionic conductivity in the solid and molten states is measured via impedance spectroscopy and current interruption technique, respectively. The Arrhenius...

  2. Understanding the large solubility of lidocaine in 1-n-butyl-3-methylimidazolium based ionic liquids using molecular simulation

    Science.gov (United States)

    Ley, Ryan T.; Paluch, Andrew S.

    2016-02-01

    Room temperature ionic liquids have been proposed as replacement solvents in a wide range of industrial separation processes. Here, we focus on the use of ionic liquids as solvents for the pharmaceutical compound lidocaine. We show that the solubility of lidocaine in seven common 1-n-butyl-3-methylimidazolium based ionic liquids is greatly enhanced relative to water. The predicted solubility is greatest in [BMIM]+[CH3CO2]-, which we find results from favorable hydrogen bonding between the lidocaine amine hydrogen and the [CH3CO2]- oxygen, favorable electrostatic interactions between the lidocaine amide oxygen with the [BMIM]+ aromatic ring hydrogens, while lidocaine does not interfere with the association of [BMIM]+ with [CH3CO2]-. Additionally, by removing functional groups from the lidocaine scaffold while maintaining the important amide group, we found that as the van der Waals volume increases, solubility in [BMIM]+[CH3CO2]- relative to water increases.

  3. John Strong (1941 - 2006)

    CERN Multimedia

    Wickens, F

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

  4. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  5. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.

    1989-01-01

    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  6. Superbase-derived protic ionic liquids

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Baker, Gary A.

    2013-09-03

    Protic ionic liquids having a composition of formula (A.sup.-)(BH.sup.+) wherein A.sup.- is a conjugate base of an acid HA, and BH.sup.+ is a conjugate acid of a superbase B. In particular embodiments, BH.sup.+ is selected from phosphazenium species and guanidinium species encompassed, respectively, by the general formulas: ##STR00001## The invention is also directed to films and membranes containing these protic ionic liquids, with particular application as proton exchange membranes for fuel cells.

  7. Study of thioglycosylation in ionic liquids

    Directory of Open Access Journals (Sweden)

    Ragauskas Arthur

    2006-06-01

    Full Text Available Abstract A novel, green chemistry, glycosylation strategy was developed based upon the use of ionic liquids. Research studies demonstrated that thiomethyl glycosides could readily be activated with methyl trifluoromethane sulfonate, using 1-butyl-3-methylimidazolium tetrafluoroborate as a solvent. This green chemistry glycosylation strategy provided disaccharides with typical yields averaging 75%. The ionic liquid solvent could be readily reused for five sequential glycosylation reactions with no impact on product yield.

  8. Metathesis and hydroformylation reactions in ionic liquids.

    OpenAIRE

    2008-01-01

    Ionic liquids (ILs), consisting of ions that are liquid at ambient temperatures, can act as solvents for a broad spectrum of chemical processes. These ionic liquids are attracting increasing attention from industry because they promise significant environmental as well as product and process benefits. ILs were used as solvents for two industrially important homogeneous reactions namely metathesis of 1-octene and the hydroformylation of vinyl acetate. In the metathesis of 1-octene, several rea...

  9. Fast Ignition and Sustained Combustion of Ionic Liquids

    Science.gov (United States)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)

    2016-01-01

    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  10. Supported ionic liquid membrane in membrane reactor

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-01-01

    Membrane reactor is a device that integrates membrane based separation and (catalytic) chemical reaction vessel in a single device. Ionic liquids, considered to be a relatively recent magical chemical due to their unique properties, have a large variety of applications in all areas of chemical industries. Moreover, the ionic liquid can be used as membrane separation layer and/or catalytically active site. This paper will review utilization of ionic liquid in membrane reactor related applications especially Fischer-Tropsch, hydrogenation, and dehydrogenation reaction. This paper also reviews about the capability of ionic liquid in equilibrium reaction that produces CO2 product so that the reaction will move towards the product. Water gas shift reaction in ammonia production also direct Dimethyl Ether (DME) synthesis that produces CO2 product will be discussed. Based on a review of numerous articles on supported ionic liquid membrane (SILM) indicate that ionic liquids have the potential to support the process of chemical reaction and separation in a membrane reactor.

  11. Covalency in the f-element-chalcogen bond

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Kieran I.M. [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Kaltsoyannis, Nikolas [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)], E-mail: n.kaltsoyannis@ucl.ac.uk; Gaunt, Andrew J.; Neu, Mary P. [Inorganic, Isotope and Actinide Chemistry (C-IIAC), Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2007-10-11

    The geometric and electronic structures of the title complexes have been studied using gradient corrected density functional theory. Excellent agreement is observed between computed r(M-E) and experimental values in analogous {sup i}Pr complexes. Natural charge analysis indicates that the M-E bond becomes less ionic in the order O>S>S> Te, and that this decrease is largest for U and smallest for La. Natural and Mulliken overlap populations suggest increasing M-E covalency as group 16 is descended, and also in the order Labonding, while that from La to Pu and U stems from larger 5f orbital involvement compared with 4f.

  12. The structure of ionic liquids

    CERN Document Server

    Gontrani, Lorenzo

    2014-01-01

    This volume describes the most recent findings on the structure of ILs interpreted through cutting-edge experimental and theoretical methods. Research in the field of ionic liquids (ILs) keeps a fast and steady pace. Since these new-generation molten salts first appeared in the chemistry and physics landscape, a large number of new compounds has been synthesized. Most of them display unexpected behaviour and possess stunning properties. The coverage in this book ranges from the mesoscopic structure of ILs to their interaction with proteins. The reader will learn how diffraction techniques (small and large angle X-Ray and neutron scattering, powder methods), X-Ray absorption spectroscopies (EXAFS/XANES), optical methods (IR, RAMAN), NMR and calorimetric methods can help the study of ILs, both as neat liquids and in mixtures with other compounds. It will enable the reader to choose the best method to suit their experimental needs. A detailed survey of theoretical methods, both quantum-chemical and classical, ...

  13. Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids

    International Nuclear Information System (INIS)

    Xie, Yujiao; Zhang, Yingying; Lu, Xiaohua; Ji, Xiaoyan

    2014-01-01

    Highlights: • CO 2 solubility in imidazolium-based ionic liquids was surveyed and evaluated. • CO 2 absorption enthalpy was calculated based on thermodynamic model. • The effects of cation and anion on CO 2 absorption enthalpy were discussed. • Energy consumption for a CO 2 separation process was investigated. - Abstract: CO 2 solubility in ionic liquids has been measured extensively in order to develop ionic liquid-based technology for CO 2 separation. However, the energy consumption analysis has not been investigated well for such technology. In order to carry out the energy consumption analysis for CO 2 separation using ionic liquids based on available experimental data, in this work, the experimental data of the CO 2 solubility in imidazolium-based ionic liquids at pressures below 10 MPa was surveyed and evaluated by a semi-empirical thermodynamic model firstly. Based on the reliable experimental solubility data, the enthalpy of CO 2 absorption was further calculated by the thermodynamic model. The results show that the CO 2 absorption enthalpy in the studied ionic liquids is dominated by the enthalpy of CO 2 dissolution and the contribution of excess enthalpy increases with increasing CO 2 solubility in ionic liquids. The magnitude of the CO 2 absorption enthalpy decreases with increasing chain length in cation and strongly depends on the anion of ionic liquids. Furthermore, the energy consumption for a CO 2 separation process by pressure swing and/or temperature swing was investigated. For the pressure swing process, the Henry’s constant of CO 2 in ionic liquids is an important factor for energy consumption analysis; If CO 2 is absorbed at 298 K and 1 MPa and ionic liquid is regenerated by decreasing the pressure to 0.1 MPa at the same temperature, among the studied ionic liquids, [emim][EtSO 4 ] is the solvent with the lowest energy consumption of 9.840 kJ/mol CO 2 . For the temperature swing process, the heat capacity of ionic liquids plays a more

  14. Evolution of the bonding mechanism of ZnO under isotropic compression: A first-principles study

    International Nuclear Information System (INIS)

    Zhou, G.C.; Sun, L.Z.; Wang, J.B.; Zhong, X.L.; Zhou, Y.C.

    2008-01-01

    The electronic structure and the bonding mechanism of ZnO under isotropic pressure have been studied by using the full-potential linear augmented plane wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation (EXC) potential. We used the theory of Atoms in Molecules (AIM) method to analyze the change of the charge transfer and the bonding strength under isotropic pressure. The results of the theoretical analysis show that charge transfer between Zn and O atomic basins nearly linearly increases with the increasing pressure. Charge density along the Zn-O bond increases under the high pressure. The bonding strength and the ionicity of Zn-O bond also increase with the increasing pressure. The linear evolution process of the bonding mechanism under isotropic pressure was shown clearly in the present paper

  15. Comparison of shear bond strength of the stainless steel metallic brackets bonded by three bonding systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ravadgar

    2013-09-01

    Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP; in the second group, TBXT composite was bonded with the conventional method of acid etching; and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.

  16. Impact of multicomponent ionic transport on pH fronts propagation in saturated porous media

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2015-01-01

    transport simulations were performed to interpret the laboratory experiments. The simulations were based on a multicomponent ionic formulation accurately capturing the Coulombic interactions between the transported ions in the flow-through system. The results of purely forward simulations show a very good......We investigate the propagation of pH fronts during multicomponent ionic transport in saturated porous media under flow-through conditions. By performing laboratory bench-scale experiments combined with numerical modeling, we show the important influence of Coulombic effects on proton transport...... in the presence of ionic admixtures. The experiments were performed in a quasi two-dimensional flow-through setup under steady-state flow and transport conditions. Dilute solutions of hydrochloric acid with MgCl2 (1:2 strong electrolyte) were used as tracer solutions to experimentally test the effect...

  17. Electron density analysis of 1-butyl-3-methylimidazolium chloride ionic liquid.

    Science.gov (United States)

    del Olmo, Lourdes; Morera-Boado, Cercis; López, Rafael; García de la Vega, José M

    2014-06-01

    An analysis of the electron density of different conformers of the 1-butyl-3-methylimidazolium chloride (bmimCl) ionic liquid by using DFT through the BVP86 density functional has been obtained within the framework of Bader's atom in molecules (AIM), localized orbital locator (LOL), natural bond orbital (NBO), and deformed atoms in molecules (DAM). We also present an analysis of the reduced density gradients that deliver the non-covalent interaction regions and allow to understand the nature of intermolecular interactions. The most polar conformer can be characterized as ionic by AIM, LOL, and DAM methods while the most stable and the least polar shows shared-type interactions. The NBO method allows to comprehend what causes the stabilization of the most stable conformer based on analysis of the second-order perturbative energy and the charge transferred among the natural orbitals involved in the interaction.

  18. Nonlinear optical constants of ionic conductors: a study based on the Sheik-Bahae equation

    International Nuclear Information System (INIS)

    Ikeda, Shosuke; Aniya, Masaru

    2012-01-01

    Guided by the prediction of the bond fluctuation model of superionic conductors, the relation between the nonlinear optical constants and the ion transport properties in ionic conductors has been studied. Since the measured values of nonlinear optical constants in ionic conductors are very limited, they have been evaluated through the Sheik-Bahae equation. Using such values, it is shown that the activation energy of ion transport and the superionic transition temperature decrease with the increase of the nonlinear refractive index. It is also pointed out that the band gap energy and the linear refractive index in superionic conductors are relatively weakly correlated when compared with non-superionic materials. The development of a new field of study that could be called photoionics is suggested (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Calorimetric Studies and Structural Aspects of Ionic Liquids in Designing Sorption Materials for Thermal Energy Storage.

    Science.gov (United States)

    Brünig, Thorge; Krekić, Kristijan; Bruhn, Clemens; Pietschnig, Rudolf

    2016-11-02

    The thermal properties of a series of twenty-four ionic liquids (ILs) have been determined by isothermal titration calorimetry (ITC) with the aim of simulating processes involving water sorption. For eleven water-free ILs, the molecular structures have been determined by X-ray crystallography in the solid state, which have been used to derive the molecular volumes of the ionic components of the ILs. Moreover, the structures reveal a high prevalence of hydrogen bonding in these compounds. A relationship between the molecular volumes and the experimentally determined energies of dilution could be established. The highest energies of dilution observed in this series were obtained for the acetate-based ILs, which underlines their potential as working fluids in sorption-based thermal energy storage systems. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 2008 Gordon Research Conference on Molecular and Ionic Clusters [Conference summary report

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, Jeremy M.

    2009-09-21

    The Gordon Research Conference on Molecular and Ionic Clusters was held at Centre Paul Langevin, Aussois, France, September 7-12, 2008. The Conference was well-attended with 129 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. The conference covered the spectroscopy, dynamics, and reactivity of a wide range of cluster types and sizes, including helium nanodroplets, metal clusters, ionic clusters, hydrogen-bonded networks, and clusters involving biological molecules. Special sessions on cold-molecule collisions and aerosols are also planned. Both experimental and theoretical aspects of cluster science will be well-represented at the conference.

  1. Predictions of glass transition temperature for hydrogen bonding biomaterials.

    Science.gov (United States)

    van der Sman, R G M

    2013-12-19

    We show that the glass transition of a multitude of mixtures containing hydrogen bonding materials correlates strongly with the effective number of hydroxyl groups per molecule, which are available for intermolecular hydrogen bonding. This correlation is in compliance with the topological constraint theory, wherein the intermolecular hydrogen bonds constrain the mobility of the hydrogen bonded network. The finding that the glass transition relates to hydrogen bonding rather than free volume agrees with our recent finding that there is little difference in free volume among carbohydrates and polysaccharides. For binary and ternary mixtures of sugars, polyols, or biopolymers with water, our correlation states that the glass transition temperature is linear with the inverse of the number of effective hydroxyl groups per molecule. Only for dry biopolymer/sugar or sugar/polyol mixtures do we find deviations due to nonideal mixing, imposed by microheterogeneity.

  2. Bond yield curve construction

    Directory of Open Access Journals (Sweden)

    Kožul Nataša

    2014-01-01

    Full Text Available In the broadest sense, yield curve indicates the market's view of the evolution of interest rates over time. However, given that cost of borrowing it closely linked to creditworthiness (ability to repay, different yield curves will apply to different currencies, market sectors, or even individual issuers. As government borrowing is indicative of interest rate levels available to other market players in a particular country, and considering that bond issuance still remains the dominant form of sovereign debt, this paper describes yield curve construction using bonds. The relationship between zero-coupon yield, par yield and yield to maturity is given and their usage in determining curve discount factors is described. Their usage in deriving forward rates and pricing related derivative instruments is also discussed.

  3. Highly stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis.

    Science.gov (United States)

    Banerjee, Abhinandan; Theron, Robin; Scott, Robert W J

    2012-01-09

    Gold and palladium nanoparticles were prepared by lithium borohydride reduction of the metal salt precursors in tetraalkylphosphonium halide ionic liquids in the absence of any organic solvents or external nanoparticle stabilizers. These colloidal suspensions remained stable and showed no nanoparticle agglomeration over many months. A combination of electrostatic interactions between the coordinatively unsaturated metal nanoparticle surface and the ionic-liquid anions, bolstered by steric protection offered by the bulky alkylated phosphonium cations, is likely to be the reason behind such stabilization. The halide anion strongly absorbs to the nanoparticle surface, leading to exceptional nanoparticle stability in halide ionic liquids; other tetraalkylphosphonium ionic liquids with non-coordinating anions, such as tosylate and hexafluorophosphate, show considerably lower affinities towards the stabilization of nanoparticles. Palladium nanoparticles stabilized in the tetraalkylphosphonium halide ionic liquid were stable, efficient, and recyclable catalysts for a variety of hydrogenation reactions at ambient pressures with sustained activity. Aerial oxidation of the metal nanoparticles occurred over time and was readily reversed by re-reduction of oxidized metal salts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ionic liquids influence on the surface properties of electron beam irradiated wood

    International Nuclear Information System (INIS)

    Croitoru, Catalin; Patachia, Silvia; Doroftei, Florica; Parparita, Elena; Vasile, Cornelia

    2014-01-01

    Highlights: • Wood veneers impregnated with three imidazolium-based ionic liquids and irradiated with electron beam were studied by FTIR-ATR, SEM/EDX, AFM, contact angle and image analysis. • ILs preserve the surface properties of the wood (surface energy, roughness, color) upon irradiation, in comparison with the reference wood, but the surface composition is changed by treatment with IL-s, mainly with 1-butyl-3-methylimidazolium tetrafluoroborate. • Under electron beam irradiation covalent bonding of the imidazolium moiety to wood determines a higher resistance to water penetration and spreading on the surface. - Abstract: In this paper, the influence of three imidazolium-based ionic liquids (1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-hexyl-3-methylimidazolium chloride) on the structure and surface properties of sycamore maple (Acer pseudoplatanus) veneers submitted to electron beam irradiation with a dose of 50 kGy has been studied by using Fourier transform infrared spectroscopy, as well as image, scanning electron microscopy/SEM/EDX, atomic force microscopy and contact angle analysis. The experimental results have proven that the studied ionic liquids determine a better preservation of the structural features of wood (cellulose crystallinity index and lignin concentration on the surface) as well as some of surface properties such as surface energy, roughness, color upon irradiation with electron beam, in comparison with the reference wood, but surface composition is changed by treatment with imidazolium-based ionic liquids mainly with 1-butyl-3-methylimidazolium tetrafluoroborate. Also, under electron beam irradiation covalent bonding of the imidazolium moiety to wood determines a higher resistance to water penetration and spreading on the surface

  5. Safe and Liquid Mortgage Bonds

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Gyntelberg, Jacob; Lund, Jesper

    eliminates credit risk from the investor's perspective. Similar to other safe bonds, funding liquidity becomes the main driver of mortgage bond liquidity and this creates commonality in liquidity across markets and countries. These findings have implications for how to design a robust mortgage bond system...

  6. Ionic liquids behave as dilute electrolyte solutions

    Science.gov (United States)

    Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.

    2013-01-01

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin–Landau–Verwey–Overbeek theory with an additive repulsive steric (entropic) ion–surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high–free-ion density ionic liquids and ionic liquid blends. PMID:23716690

  7. The human-animal bond in academic veterinary medicine.

    Science.gov (United States)

    Rowan, Andrew N

    2008-01-01

    This article outlines the development of academic veterinary interest in the human-animal bond (HAB) and provides short summaries of the various centers currently studying the HAB at North American universities. Although most of these centers are at veterinary schools, the level of involvement by veterinarians is surprisingly low, considering how important a strong HAB is for the average veterinary practitioner (the stronger the bond, the more the client will be willing to pay for veterinary services).

  8. An assessment of bonding characteristics of a newly introduced bonding agent: "beauty ortho bond"

    Directory of Open Access Journals (Sweden)

    Padmashree Veeramachineni

    2010-01-01

    Conclusion: Although Transbond XT had higher bond strength, the BOB and FOLC showed clinically acceptable bond strengths. However, clean-up after debonding would be easier with the two latter materials.

  9. Green Imidazolium Ionics-From Truly Sustainable Reagents to Highly Functional Ionic Liquids.

    Science.gov (United States)

    Tröger-Müller, Steffen; Brandt, Jessica; Antonietti, Markus; Liedel, Clemens

    2017-09-04

    We report the synthesis of task-specific imidazolium ionic compounds and ionic liquids with key functionalities of organic molecules from electro-, polymer-, and coordination chemistry. Such products are highly functional and potentially suitable for technology applications even though they are formed without elaborate reactions and from cheap and potentially green reagents. We further demonstrate the versatility of the used synthetic approach by introducing different functional and green counterions to the formed ionic liquids directly during the synthesis or after metathesis reactions. The influence of different cation structures and different anions on the thermal and electrochemical properties of the resulting ionic liquids is discussed. Our goal is to make progress towards economically competitive and sustainable task-specific ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. BOND: Bayesian Oxygen and Nitrogen abundance Determinations

    Science.gov (United States)

    Vale Asari, N.; Stasinska, G.; Morisset, C.; Cid Fernandes, R.

    2018-01-01

    BOND determines oxygen and nitrogen abundances in giant H II regions by comparison with a large grid of photoionization models. The grid spans a wide range in O/H, N/O and ionization parameter U, and covers different starburst ages and nebular geometries. Unlike other statistical methods, BOND relies on the [Ar III]/[Ne III] emission line ratio to break the oxygen abundance bimodality. By doing so, it can measure oxygen and nitrogen abundances without assuming any a priori relation between N/O and O/H. BOND takes into account changes in the hardness of the ionizing radiation field, which can come about due to the ageing of H II regions or the stochastically sampling of the IMF. The emission line ratio He I/Hβ, in addition to commonly used strong lines, constrains the hardness of the ionizing radiation field. BOND relies on the emission line ratios [O III]/Hβ, [O II]/Hβ and [N II]/Hβ, [Ar III]/Hβ, [Ne III]/Hβ, He I/Hβ as its input parameters, while its output values are the measurements and uncertainties for O/H and N/O.

  11. Thermodynamics of dilute aqueous solutions of imidazolium based ionic liquids

    International Nuclear Information System (INIS)

    Singh, Tejwant; Kumar, Arvind

    2011-01-01

    Research highlights: → The thermodynamic behaviour of aqueous imidazolium ILs has been investigated. → Volumetric and ultrasonic results indicated the hydrophobic hydration of ILs. → Viscometric studies revealed studied ionic liquids as water-structure makers. → Hydration number increased with increase in alkyl chain length of the cation. - Abstract: Experimental measurements of density ρ, speed of sound u, and viscosity η of aqueous solutions of various 1-alkyl-3-methylimidazolium based ionic liquid (IL) solutions have been performed in dilute concentration regime at 298.15 K to get insight into hydration behaviour of ILs. The investigated ILs are based on 1-alkyl-3-methylimidazolium cation, [C n mim] having [BF 4 ] - , [Cl] - , [C 1 OSO 3 ] - , and [C 8 OSO 3 ] - as anions where n = 4 or 8. Several thermodynamic parameters like apparent molar volume φ V , isentropic compressibility β s , and viscosity B-coefficients have been derived from experimental data. Limiting value of apparent molar volume has been discussed in terms of intrinsic molar volume (V int ) molar electrostriction volume (V elec ), molar disordered (V dis ), and cage volume (V cage ). Viscosity B-coefficients have been used to quantify the kosmotropic or chaotropic nature of ILs. Hydration number of ILs obtained using elctrostriction volume, isentropic compressibility, viscosity, and differential scanning calorimetry have been found to be comparative within the experimental error. The hydrophobic hydration has found to play an important role in hydration of ILs as compared to hydration due to hydrogen bonding and electrostriction. Limiting molar properties, hydration numbers, and B-coefficients have been discussed in terms of alkyl chain length of cation or nature of anion.

  12. Optimal Investment in Structured Bonds

    DEFF Research Database (Denmark)

    Jessen, Pernille; Jørgensen, Peter Løchte

    The paper examines the role of structured bonds in the optimal portfolio of a small retail investor. We consider the typical structured bond essentially repacking an exotic option and a zero coupon bond, i.e. an investment with portfolio insurance. The optimal portfolio is found when the investment...... opportunities consist of a risky reference fund, a risk-free asset and a structured bond. Key model elements are the trading strategy and utility function of the investor. Our numerical results indicate structured bonds do have basis for consideration in the optimal portfolio. The product holdings...

  13. Low frequency dielectric relaxation processes and ionic conductivity of montmorillonite clay nanoparticles colloidal suspension in poly(vinyl pyrrolidone−ethylene glycol blends

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available The dielectric dispersion behaviour of montmorillonite (MMT clay nanoparticles colloidal suspension in poly(vinyl pyrrolidone-ethylene glycol (PVP-EG blends were investigated over the frequency range 20 Hz to 1 MHz at 30°C. The 0, 1, 2, 3, 5 and 10 wt% MMT clay concentration of the weight of total solute (MMT+PVP were prepared in PVP-EG blends using EG as solvent. The complex relative dielectric function, alternating current (ac electrical conductivity, electric modulus and impedance spectra of these materials show the relaxation processes corresponding to the micro-Brownian motion of PVP chain, ion conduction and electrode polarization phenomena. The real part of ac conductivity spectra of these materials obeys Jonscher power law σ′(ω =σdc + Aωn in upper frequency end of the measurement, whereas dispersion in lower frequency end confirms the presence of electrode polarization effect. It was observed that the increase of clay concentration in the PVP-EG blends significantly increases the ac conductivity values, and simultaneously reduces the ionic conductivity relaxation time and electric double layer relaxation time, which suggests that PVP segmental dynamics and ionic motion are strongly coupled. The intercalation of EG structures in clay galleries and exfoliation of clay sheets by adsorption of PVP-EG structures on clay surfaces are discussed by considering the hydrogen bonding interactions between the hydroxyl group (–OH of EG molecules, carbonyl group (C=O of PVP monomer units, and the hydroxylated aluminate surfaces of the MMT clay particles. Results suggest that the colloidal suspension of MMT clay nano particles in the PVP-EG blends provide a convenient way to obtain an electrolyte solution with tailored electrical conduction properties.

  14. Enormous Hydrogen Bond Strength Enhancement through π-Conjugation Gain: Implications for Enzyme Catalysis.

    Science.gov (United States)

    Wu, Chia-Hua; Ito, Keigo; Buytendyk, Allyson M; Bowen, K H; Wu, Judy I

    2017-08-22

    Surprisingly large resonance-assistance effects may explain how some enzymes form extremely short, strong hydrogen bonds to stabilize reactive oxyanion intermediates and facilitate catalysis. Computational models for several enzymic residue-substrate interactions reveal that when a π-conjugated, hydrogen bond donor (XH) forms a hydrogen bond to a charged substrate (Y - ), XH can become significantly more π-electron delocalized, and this "extra" stabilization may boost the [XH···Y - ] hydrogen bond strength by ≥15 kcal/mol. This reciprocal relationship departs from the widespread pK a concept (i.e., the idea that short, strong hydrogen bonds form when the interacting moieties have matching pK a values), which has been the rationale for enzymic acid-base reactions. The findings presented here provide new insight into how short, strong hydrogen bonds could form in enzymes.

  15. Additional disulfide bonds in insulin

    DEFF Research Database (Denmark)

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper

    2015-01-01

    The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B......-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had...... in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus...

  16. Oxytocin and mutual communication in mother-infant bonding

    Directory of Open Access Journals (Sweden)

    Miho eNagasawa

    2012-02-01

    Full Text Available Mother-infant bonding is universal to all mammalian species. In this review, we describe the manner in which reciprocal communication between the mother and infant leads to mother-infant bonding in rodents. In rats and mice, mother-infant bond formation is reinforced by various social stimuli, such as tactile stimuli and ultrasonic vocalizations from the pups to the mother, and feeding and tactile stimulation from the mother to the pups. Some evidence suggests that mother and infant can develop a cross-modal sensory recognition of their counterpart during this bonding process. Neurochemically, oxytocin in the neural system plays a pivotal role in each side of the mother-infant bonding process, although the mechanisms underlying bond formation in the brains of infants has not yet been clarified. Impairment of mother-infant bonding, that is, deprivation of social stimuli from the mother, strongly influences offspring sociality, including maternal behavior toward their own offspring in their adulthood, implying a non-genomic transmission of maternal environment, even in rodents. The comparative understanding of cognitive functions between mother and infants, and the biological mechanisms involved in mother-infant bonding may help us understand psychiatric disorders associated with mother-infant relationships.

  17. Fitting the pieces of the puzzle: the δ bond.

    Science.gov (United States)

    Falvello, Larry R; Foxman, Bruce M; Murillo, Carlos A

    2014-09-15

    The development of our understanding of the δ bond and its role in quadruple metal-metal bonding is described in terms of the conceptual advances and experimental and theoretical results achieved through a 50-year period beginning with the seminal report by Cotton and co-workers in 1964. The work behind the original discovery is described, along with the qualitative orbital description of the components of the quadruple bond. The effect of torsion about the metal-metal axis on the metal-metal bond length is described, together with the conclusion that this accords with a progressive loss of the δ component of the metal-metal bond. The important role of photoelectron spectroscopy in characterizing the loss of electrons from the metal-metal bonding orbitals is reviewed, as are the electron paramagnetic resonance results that establish that unpaired electrons, when present, populate metal-based orbitals. Other important results are described: destabilization of the metal-metal bond to produce strong reducing agents, exceptions to the expected orbital ordering, and the use of chiroptical properties to reveal additional information about the electronic structure of the metal-metal bond.

  18. Chemical Pressure Maps of Molecules and Materials: Merging the Visual and Physical in Bonding Analysis.

    Science.gov (United States)

    Osman, Hussien H; Salvadó, Miguel A; Pertierra, Pilar; Engelkemier, Joshua; Fredrickson, Daniel C; Recio, J Manuel

    2018-01-09

    The characterization of bonding interactions in molecules and materials is one of the major applications of quantum mechanical calculations. Numerous schemes have been devised to identify and visualize chemical bonds, including the electron localization function, quantum theory of atoms in molecules, and natural bond orbital analysis, whereas the energetics of bond formation are generally analyzed in qualitative terms through various forms of energy partitioning schemes. In this Article, we illustrate how the chemical pressure (CP) approach recently developed for analyzing atomic size effects in solid state compounds provides a basis for merging these two approaches, in which bonds are revealed through the forces of attraction and repulsion acting between the atoms. Using a series of model systems that include simple molecules (H 2 , CO 2 , and S 8 ), extended structures (graphene and diamond), and systems exhibiting intermolecular interactions (ice and graphite), as well as simple representatives of metallic and ionic bonding (Na and NaH, respectively), we show how CP maps can differentiate a range of bonding phenomena. The approach also allows for the partitioning of the potential and kinetic contributions to the interatomic interactions, yielding schemes that capture the physical model for the chemical bond offered by Ruedenberg and co-workers.

  19. Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles.

    Science.gov (United States)

    Chambers, Bryant A; Afrooz, A R M Nabiul; Bae, Sungwoo; Aich, Nirupam; Katz, Lynn; Saleh, Navid B; Kirisits, Mary Jo

    2014-01-01

    In this study, we comprehensively evaluate chloride- and ionic-strength-mediated changes in the physical morphology, dissolution, and bacterial toxicity of silver nanoparticles (AgNPs), which are one of the most-used nanomaterials. The findings isolate the impact of ionic strength from that of chloride concentration. As ionic strength increases, AgNP aggregation likewise increases (such that the hydrodynamic radius [HR] increases), fractal dimension (Df) strongly decreases (providing increased available surface relative to suspensions with higher Df), and the release of Ag(aq) increases. With increased Ag(+) in solution, Escherichia coli demonstrates reduced tolerance to AgNP exposure (i.e., toxicity increases) under higher ionic strength conditions. As chloride concentration increases, aggregates are formed (HR increases) but are dominated by AgCl(0)(s) bridging of AgNPs; relatedly, Df increases. Furthermore, AgNP dissolution strongly increases under increased chloride conditions, but the dominant, theoretical, equilibrium aqueous silver species shift to negatively charged AgClx((x-1)-) species, which appear to be less toxic to E. coli. Thus, E. coli demonstrates increased tolerance to AgNP exposure under higher chloride conditions (i.e., toxicity decreases). Expression measurements of katE, a gene involved in catalase production to alleviate oxidative stress, support oxidative stress in E. coli as a result of Ag(+) exposure. Overall, our work indicates that the environmental impacts of AgNPs must be evaluated under relevant water chemistry conditions.

  20. 26 CFR 1.144-1 - Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds.

    Science.gov (United States)

    2010-04-01

    ... student loan bonds, and qualified redevelopment bonds. (a) Overview. Interest on a private activity bond... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds. 1.144-1 Section 1.144-1 Internal Revenue INTERNAL...

  1. Fluorine-enhanced low-temperature wafer bonding of native-oxide covered Si wafers

    Science.gov (United States)

    Tong, Q.-Y.; Gan, Q.; Fountain, G.; Enquist, P.; Scholz, R.; Gösele, U.

    2004-10-01

    The bonding energy of bonded native-oxide-covered silicon wafers treated in the HNO3/H2O/HF or the HNO3/HF solution prior to room-temperature contact is significantly higher than bonded standard RCA1 cleaned wafer pairs after low-temperature annealing. The bonding energy reaches over 2000mJ/m2 after annealing at 100 °C. The very slight etching and fluorine in the chemically grown oxide are believed to be the main contributors to the enhanced bonding energy. Transmission-electron-microscopic images have shown that the chemically formed native oxide at bonding interface is embedded with many flake-like cavities. The cavities can absorb the by-products of the interfacial reactions that result in covalent bond formation at low temperatures allowing the strong bond to be retained.

  2. Bonding and nondestructive evaluation of graphite/PEEK composite and titanium adherends with thermoplastic adhesives

    Science.gov (United States)

    Hodges, W. T.; Tyeryar, J. R.; Berry, M.

    1985-01-01

    Bonded single overlap shear specimens were fabricated from Graphite/PEEK (Polyetheretherketone) composite adherends and titanium adherends. Six advanced thermoplastic adhesives were used for the bonding. The specimens were bonded by an electromagnetic induction technique producing high heating rates and high-strength bonds in a few minutes. This contrasts with conventionally heated presses or autoclaves that take hours to process comparable quality bonds. The Graphite/PEEK composites were highly resistant to delamination during the testing. This allowed the specimen to fail exclusively through the bondline, even at very high shear loads. Nondestructive evaluation of bonded specimens was performed ultrasonically by energizing the entire thickness of the material through the bondline and measuring acoustic impedance parameters. Destructive testing confirmed the unique ultrasonic profiles of strong and weak bonds, establishing a standard for predicting relative bond strength in subsequent specimens.

  3. Stable states in a strong IR field

    Science.gov (United States)

    Zhong, Changchun; Robicheaux, Francis

    2015-05-01

    It is found that 10% of atoms stay in the quasi-stable states after being exposed to intense laser or microwave (MW) pulses, even though the pulses' intensity is much stronger than that needed for static fields ionization. The reason why atoms survive those strong pulses has attracted growing attentions. A. Arakelyan et al. have observed the optical spectra of the surviving Lithium atoms after interaction with intense 38-GHz MW fields for more than 1000 cycles, and the spectra exhibit a periodic train of peaks 38 GHz apart. It suggests that those weakly bound Rydberg electrons seldom go back to the ionic core, where the cycle average energy exchange happens. In this study, we are interested in the electron behavior in the presence of intense infrared fields with a much shorter wavelength (1000 nm). By solving the full 3D time dependent Schrodinger equation, we calculate the spectra of the surviving atoms under intense IR fields. Our numerical calculations show atoms survive the intense field in quasi-stable states for a long time, and the optical spectra are obviously modulated by the IR frequency. Through tuning the ponderomotive energy, we see how field parameters affect the behavior of electrons. Different atoms, such as Hydrogen, Helium, Lithium, and Sodium, are tested to see how atom's energy structures influence the results.

  4. Collision Induced Dissociation Products of Disulfide-Bonded Peptides: Ions Result from the Cleavage of More Than One Bond

    Science.gov (United States)

    Clark, Daniel F.; Go, Eden P.; Toumi, Melinda L.; Desaire, Heather

    2011-03-01

    Disulfide bonds are a post-translational modification (PTM) that can be scrambled or shuffled to non-native bonds during recombinant expression, sample handling, or sample purification. Currently, mapping of disulfide bonds is not easy because of various sample requirements and data analysis difficulties. One step towards facilitating this difficult work is developing a better understanding of how disulfide-bonded peptides fragment during collision induced dissociation (CID). Most automated analysis algorithms function based on the assumption that the preponderance of product ions observed during the dissociation of disulfide-bonded peptides result from the cleavage of just one peptide bond, and in this report we tested that assumption by extensively analyzing the product ions generated when several disulfide-bonded peptides are subjected to CID on a quadrupole time of flight (QTOF) instrument. We found that one of the most common types of product ions generated resulted from two peptide bond cleavages, or a double cleavage. We found that for several of the disulfide-bonded peptides analyzed, the number of double cleavage product ions outnumbered those of single cleavages. The influence of charge state and precursor ion size was investigated, to determine if those parameters dictated the amount of double cleavage product ions formed. It was found in this sample set that no strong correlation existed between the charge state or peptide size and the portion of product ions assigned as double cleavages. These data show that these ions could account for many of the product ions detected in CID data of disulfide bonded peptides. We also showed the utility of double cleavage product ions on a peptide with multiple cysteines present. Double cleavage products were able to fully characterize the bonding pattern of each cysteine where typical single b/ y cleavage products could not.

  5. Individual SWCNT based ionic field effect transistor

    Science.gov (United States)

    Pang, Pei; He, Jin; Park, Jae Hyun; Krstic, Predrag; Lindsay, Stuart

    2011-03-01

    Here we report that the ionic current through a single-walled carbon nanotube (SWCNT) can be effectively gated by a perpendicular electrical field from a top gate electrode, working as ionic field effect transistor. Both our experiment and simulation confirms that the electroosmotic current (EOF) is the main component in the ionic current through the SWCNT and is responsible for the gating effect. We also studied the gating efficiency as a function of solution concentration and pH and demonstrated that the device can work effectively in the physiological relevant condition. This work opens the door to use CNT based nanofluidics for ion and molecule manipulation. This work was supported by the DNA Sequencing Technology Program of the National Human Genome Research Institute (1RC2HG005625-01, 1R21HG004770-01), Arizona Technology Enterprises and the Biodesign Institute.

  6. CPE OF URANIUM (VI USING IONIC LIQUID

    Directory of Open Access Journals (Sweden)

    SANAA NAÏT-TAHAR

    2016-07-01

    Full Text Available Cloud point extraction (CPE was used to extract uranium (VI from an aqueous solution in acetate media. The methodology used is based on the formation of uranyl-ionic liquid (I complexes and uranyl-D2EHPA soluble in a micellar phase of non-ionic surfactant (Triton X-100. The uranium (VI complexes are then extracted into the surfactant-rich phase at ambient temperature. The ionic liquid (IL used as a chelating agent was synthesized and characterized in this study. It is composed of N-butyl N’-triethoxy methyl imidazolium cation and diethylhexylphosphate (D2EHPA-H as anion. The effect of the IL on the extraction efficiency was studied in presence and in absence of IL’s cation in acetate medium.

  7. Selective Ionic Transport Pathways in Phosphorene.

    Science.gov (United States)

    Nie, Anmin; Cheng, Yingchun; Ning, Shoucong; Foroozan, Tara; Yasaei, Poya; Li, Wen; Song, Boao; Yuan, Yifei; Chen, Lin; Salehi-Khojin, Amin; Mashayek, Farzad; Shahbazian-Yassar, Reza

    2016-04-13

    Despite many theoretical predictions indicating exceptionally low energy barriers of ionic transport in phosphorene, the ionic transport pathways in this two-dimensional (2D) material has not been experimentally demonstrated. Here, using in situ aberration-corrected transmission electron microscopy (TEM) and density functional theory, we studied sodium ion transport in phosphorene. Our high-resolution TEM imaging complemented by electron energy loss spectroscopy demonstrates a precise description of anisotropic sodium ions migration along the [100] direction in phosphorene. This work also provides new insight into the effect of surface and the edge sites on the transport properties of phosphorene. According to our observation, the sodium ion transport is preferred in zigzag edge rather than the armchair edge. The use of this highly selective ionic transport property may endow phosphorene with new functionalities for novel chemical device applications.

  8. Synthesis and characterization of new ionic liquids

    International Nuclear Information System (INIS)

    Oliveira, L.M.C. de; Mattedi, S.; Boaventura, J.S.; Iglesias, M.; Universidad de Santiago de Compostela

    2010-01-01

    In recent years, ionic liquids have been highlighted for its potential in various industrial applications. Among them, the salts of Broensted has a promising profile for the low toxicity, low cost and simple synthesis. This paper presents the synthesis and characterization of new salts of Bronsted with branched (lactate) or large chain anions (oleate) for future use as additives promoters of proton conductivity in fuel cells of ethanol. Experimental data were measured for density, sound velocity and conductivity of pure ionic liquids and mixtures. The density decreases linearly with increasing temperature, and sound velocity shows a similar trend, but not linear. The conductivity increases according to the Arrhenius model with activation energy less than 10 J/mol. Tests NMR, FTIR and TGA confirm ionic structure and thermal stability up to 165 deg C. (author)

  9. Key Developments in Ionic Liquid Crystals.

    Science.gov (United States)

    Alvarez Fernandez, Alexandra; Kouwer, Paul H J

    2016-05-16

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  10. Key Developments in Ionic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Alexandra Alvarez Fernandez

    2016-05-01

    Full Text Available Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  11. Lattice mechanics of ionic crystals - unified study

    International Nuclear Information System (INIS)

    Sengupta, S.; Roy, D.; Basu, A.N.

    1979-01-01

    The up-to-date situation in the understanding of the mechanical properties of ionic solids is reviewed. These properties are determined by the Born-Oppenheimer (B-O) potential energy function. For ionic crystals this potential energy function can be written down with some precision. To keep the expression tractable, the dominant electron deformation, the dipolar deformation, is treated as an adiabatic variable and the energy then becomes a function of both the nuclear coordinates and the ionic dipole moments. All the well known models for ionic crystals are discussed in terms of the energy expression they imply. This makes the comparison straight forward and brings out the essential difference between the models clearly. Next various quantum mechanical treatments for ionic crystals are reviewed. An attempt is made to obtain the B-O potential energy expression using a Heitler-London approach. By comparing the various models one can arrive at some definitive conclusions about the degree of validity and the assumptions underlying these models. Finally a comprehensive review of the results of actual computation on various ionic crystals done by different authors is undertaken. The crucial quantitative results are examined and the success and shortcoming of each calculation are critically analysed. The guiding principle in this part is the unified approach. i.e. to see how far a model with a given set of parameters accounts for both the dynamic and static properties. The discussion is divided in three sections for crystals with sodium chloride, cesium chloride and zinc sulfide structures. Outstanding problems and difficulties in the present understanding are pointed out. (auth.)

  12. Thermoelectric Generators Based on Ionic Liquids

    Science.gov (United States)

    Laux, Edith; Uhl, Stefanie; Jeandupeux, Laure; López, Pilar Pérez; Sanglard, Pauline; Vanoli, Ennio; Marti, Roger; Keppner, Herbert

    2018-03-01

    Looking at energy harvesting using body or waste heat for portable electronic or on-board devices, Ionic liquids are interesting candidates as thermoactive materials in thermoelectric generators (TEGs) because of their outstanding properties. Two different kinds of ionic liquid, with alkylammonium and choline as cations, were studied, whereby different anions and redox couples were combined. This study focussed on the intention to find non-hazardous and environmentally friendly ionic liquids for TEGs to be selected among the thousands that can potentially be used. Seebeck coefficients (SEs) as high as - 15 mV/K were measured, in a particular case for an electrode temperature difference of 20 K. The bottleneck of our TEG device is still the abundance of negative SE liquids matching the internal resistance with the existing positive SE-liquids at series connections. In this paper, we show further progress in finding increased negative SE liquids. For current extraction from the TEG, the ionic liquid must be blended with a redox couple, allowing carrier exchange in a cyclic process under a voltage which is incuced by the asymmetry of the generator in terms of hot and cold electrodes. In our study, two types of redox pairs were tested. It was observed that a high SE of an ionic liquid/redox blend is not a sufficient condition for high power output. It appears that more complex effects between the ionic liquid and the electrode determine the magnitude of the final current/power output. The physico-chemical understanding of such a TEG cell is not yet available.

  13. Water-free rare-earth-metal ionic liquids/ionic liquid crystals based on hexanitratolanthanate(III) anion.

    Science.gov (United States)

    Ji, Shun-Ping; Tang, Meng; He, Ling; Tao, Guo-Hong

    2013-04-02

    The hexanitratolanthanate anion (La(NO(3))(6)(3-)) is an interesting symmetric anion suitable to construct the component of water-free rare-earth-metal ionic liquids. The syntheses and structural characterization of eleven lanthanum nitrate complexes, [C(n)mim](3)[La(NO(3))(6)] (n=1, 2, 4, 6, 8, 12, 14, 16, 18), including 1,3-dimethylimidazolium hexanitratolanthanate ([C(1)mim](3)[La(NO(3))(6)], 1), 1-ethyl-3-methylimidazolium hexanitratolanthanate ([C(2)mim](3)[La(NO(3))(6)], 2), 1-butyl-3-methylimidazolium hexanitratolanthanate ([C(4)mim](3)[La(NO(3))(6)], 3), 1-isobutyl-3-methylimidazolium hexanetratolanthanate ([isoC(4)mim](3)[La(NO(3))(6)], 4), 1-methyl-3-(3'-methylbutyl)imidazolium hexanitratolanthanate ([MC(4)mim](3)[La(NO(3))(6)], 5), 1-hexyl-3-methylimidazolium hexanitratolanthanate ([C(6)mim](3)[La(NO(3))(6)], 6), 1-methyl-3-octylimidazolium hexanitratolanthanate ([C(8)mim](3)[La(NO(3))(6)], 7), 1-dodecyl-3-methylimidazolium hexanitratolanthanate ([C(12)mim](3)[La(NO(3))(6)], 8), 1-methyl-3-tetradecylimidazolium hexanitratolanthanate ([C(14)mim](3)[La-(NO(3))(6)], 9), 1-hexadecyl-3-methylimid-azolium hexanitratolanthanum ([C(16)dmim](3)[La(NO(3))(6)], 10), and 1-methyl-3-octadecylimidazolium hexanitratolanthanate ([C(18)mim](3)[La(NO(3))(6)], 11) are reported. All new compounds were characterized by (1)H and (13)C NMR, and IR spectroscopy as well as elemental analysis. The crystal structure of compound 1 was determined by using single-crystal X-ray diffraction, giving the following crystallographic information: monoclinic; P2(1)/c; a=15.3170 (3), b=14.2340 (2), c=13.8954(2) Å; β=94.3453(15)°, V=3020.80(9) Å(3), Z=4, ρ=1.764 g cm(-3). The coordination polyhedron around the lanthanum ion is rationalized by six nitrate anions with twelve oxygen atoms. No hydrogen-bonding network or water molecule was found in 1. The thermodynamic stability of the new complexes was investigated by using thermogravimetric analysis (TGA). The water

  14. Inadvertent intrathecal use of ionic contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Leede, H. van der; Jorens, P.G. [Department of Intensive Care Medicine, University Hospital of Antwerp, Wilrijkstraat 10, 2650 Edegem (Belgium); Parizel, P. [Department of Radiology, University Hospital of Antwerp, Wilrijkstraat 10, 2650 Edegem (Belgium); Cras, P. [Department of Neurology, University Hospital of Antwerp, Wilrijkstraat 10, 2650 Edegem (Belgium)

    2002-07-01

    Intrathecal administration of ionic contrast media may cause severe and fatal neurotoxic reactions due to their hyperosmolarity and ionic nature. They are therefore strictly contraindicated for all radiologic applications involving the central nervous system (e.g., myelography). We present a case in which ioxitalamate was accidentally injected intrathecally. The patient recovered completely due to a combination of the different therapeutic options reported in the literature, including early mechanical ventilation and neuromuscular paralysis, aggressive control of seizures, elevation of head and trunk to prevent cephalad migration of contrast, steroids, cerebrospinal fluid drainage and lavage and prophylactic antibiotics. (orig.)

  15. Electrode potential and selective ionic adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Alexe-Ionescu, A.L. [University Politehnica of Bucharest, Faculty of Applied Sciences, Splaiul Independentei 313, 060042 Bucharest (Romania); Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Laboratory for Engineering of the Neuromuscular System, and Dipartimento di Elettronica, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Barbero, G. [Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)], E-mail: giovanni.barbero@polito.it; Merletti, R. [Laboratory for Engineering of the Neuromuscular System, and Dipartimento di Elettronica, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2009-04-27

    A simple description of the electrode potential based on the selective ionic adsorption is proposed. It is shown that if the adsorption-desorption coefficients entering in the Langmuir kinetic equation for the adsorption at the limiting surfaces are not identical, a difference of potential between the electrode and the bulk of the solution exists. In the case where the thickness of the sample is large with respect to the length of Debye, this difference of potential depends only on the adsorption-desorption coefficients and on the length of Debye of the ionic solution.

  16. Inadvertent intrathecal use of ionic contrast agent

    International Nuclear Information System (INIS)

    Leede, H. van der; Jorens, P.G.; Parizel, P.; Cras, P.

    2002-01-01

    Intrathecal administration of ionic contrast media may cause severe and fatal neurotoxic reactions due to their hyperosmolarity and ionic nature. They are therefore strictly contraindicated for all radiologic applications involving the central nervous system (e.g., myelography). We present a case in which ioxitalamate was accidentally injected intrathecally. The patient recovered completely due to a combination of the different therapeutic options reported in the literature, including early mechanical ventilation and neuromuscular paralysis, aggressive control of seizures, elevation of head and trunk to prevent cephalad migration of contrast, steroids, cerebrospinal fluid drainage and lavage and prophylactic antibiotics. (orig.)

  17. Functional Materials from Polymeric Ionic Liquids

    Science.gov (United States)

    Segalman, Rachel; Sanoja, Gabriel; Michenfelder-Schauser, Nicole; Mitragotri, Samir; Seshadri, Ram

    Ionic liquids (IL's) have been suggested for applications as diverse as solubilizing cellulose, antimicrobial treatments, and electrolytes in batteries due to their molten salt properties. A polymeric cation (such as imidazolium) is an excellent host for any associated anion. As a result, polymerized ionic liquids are not just solid counterparts to IL's, but are shown to be vectors for the inclusion of a wide variety of functionalities ranging from multi-valent ions to magnetic anions. Moreover, PIL block copolymers allow orthogonal control over mechanical and morphological properties, ultimately leading to a conceptual framework for processable, tunable, multifunctional materials.

  18. Pair copula constructions to determine the dependence structure of Treasury bond yields

    Directory of Open Access Journals (Sweden)

    Marcelo Brutti Righi

    2015-12-01

    Full Text Available We estimated the dependence structure of US Treasury bonds through a pair copula construction. As a result, we verified that the variability of the yields decreases with a longer time of maturity of the bond. The yields presented strong dependence with past values, strongly positive bivariate associations between the daily variations, and prevalence of the Student's t copula in the relationships between the bonds. Furthermore, in tail associations, we identified relevant values in most of the relationships, which highlights the importance of risk management in the context of bonds diversification.

  19. Physical Chemistry of Reaction Dynamics in Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Maroncelli, Mark [Pennsylvania State Univ., University Park, PA (United States)

    2016-10-02

    Work completed over the past year mainly involves finishing studies related to solvation dynamics in ionic liquids, amplifying and extending our initial PFG-NMR work on solute diffusion, and learning how to probe rotational dynamics in ionic liquids.

  20. Applications of ionic liquids in polymer science and technology

    CERN Document Server

    2015-01-01

    This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents.  The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive...

  1. Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutions.

    Science.gov (United States)

    Cognigni, Alice; Gaertner, Peter; Zirbs, Ronald; Peterlik, Herwig; Prochazka, Katharina; Schröder, Christian; Bica, Katharina

    2016-05-21

    A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions.

  2. Better Bonded Ethernet Load Balancing

    Energy Technology Data Exchange (ETDEWEB)

    Gabler, Jason

    2006-09-29

    When a High Performance Storage System's mover shuttles large amounts of data to storage over a single Ethernet device that single channel can rapidly become saturated. Using Linux Ethernet channel bonding to address this and similar situations was not, until now, a viable solution. The various modes in which channel bonding could be configured always offered some benefit but only under strict conditions or at a system resource cost that was greater than the benefit gained by using channel bonding. Newer bonding modes designed by various networking hardware companies, helpful in such networking scenarios, were already present in their own switches. However, Linux-based systems were unable to take advantage of those new modes as they had not yet been implemented in the Linux kernel bonding driver. So, except for basic fault tolerance, Linux channel bonding could not positively combine separate Ethernet devices to provide the necessary bandwidth.

  3. Synthetic Organic Electrochemistry in Ionic Liquids: The Viscosity Question

    Directory of Open Access Journals (Sweden)

    Scott T. Handy

    2011-07-01

    Full Text Available Ionic liquids are obvious candidates for use in electrochemical applications due to their ionic character. Nevertheless, relatively little has been done to explore their application in electrosynthesis. We have studied the Shono oxidation of arylamines and carbamates using ionic liquids as recyclable solvents and have noted that the viscosity of the medium is a major problem, although with the addition of sufficient co-solvent, good results and excellent recovery and recycling of the ionic liquid can be achieved.

  4. PEG-bis phosphonic acid based ionic supramolecular structures

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Skov, Anne Ladegaard; Hvilsted, Søren

    2014-01-01

    . The resulting ionic assemblies are very comprehensively characterized by ATR-FTIR, proton, and carbon-13 NMR spectroscopy that unequivocally demonstrate the ionic network formation through ammonium phophonates. The resulting salt and ionic networks are additionally analyzed by differential scanning calorimetry...... and thermogravimetric analysis. The conclusion is that mixing the virgin components at room temperature spontaneously form either a salt or ionic supramolecular networks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  5. Strong H...F hydrogen bonds as synthons in polymeric quantum magnets: structural, magnetic, and theoretical characterization of [Cu(HF2)(pyrazine)2]SbF6, [Cu2F(HF)(HF2)(pyrazine)4](SbF6)2, and [CuAg(H3F4)(pyrazine)5](SbF6)2.

    Science.gov (United States)

    Manson, Jamie L; Schlueter, John A; Funk, Kylee A; Southerland, Heather I; Twamley, Brendan; Lancaster, Tom; Blundell, Stephen J; Baker, Peter J; Pratt, Francis L; Singleton, John; McDonald, Ross D; Goddard, Paul A; Sengupta, Pinaki; Batista, Cristian D; Ding, Letian; Lee, Changhoon; Whangbo, Myung-Hwan; Franke, Isabel; Cox, Susan; Baines, Chris; Trial, Derek

    2009-05-20

    -F...H...F-Cu), while chi vs T for 1b could be well reproduced by a spin-1/2 Heisenberg uniform chain model for g = 2.127(1), J(1) = -3.81(1), and zJ(2) = -0.48(1) K, where J(1) and J(2) are the intra- and interchain exchange couplings, respectively, which considers the number of magnetic nearest-neighbors (z). The M(B) data for 1b could not be satisfactorily explained by the chain model, suggesting a more complex magnetic structure in the ordered state and the need for additional terms in the spin Hamiltonian. The observed variation in magnetic behaviors is driven by differences in the H...F hydrogen-bonding motifs.

  6. The influence of adherent surface preparation on bond durability

    International Nuclear Information System (INIS)

    Rider, A.N.; Arnott, D.R.; Olsson-Jacques, C.L.

    1999-01-01

    Full text: One of the major factors limiting the use of adhesive bonding is the problem associated with the production of adhesive joints that can maintain their initial strength over long periods of time in hostile environments. It is well known that the adherent surface preparation method is critical to the formation of a durable adhesive bond. Work presented in this paper focuses on the critical aspects of the surface preparation of aluminium employed for the manufacture of aluminium-epoxy joints. The surface preparation procedure examined is currently employed by the RAAF for repairs requiring metal to adhesive bonding. The influence of each step in the surface preparation on the ultimate bond durability performance of the adhesive joint is examined by a combination of methods. Double cantilever wedge style adhesive joints are loaded in mode 1 opening and then exposed to a humid environment. X-ray photoelectron spectroscopy (XPS) and contact angle measurements of the aluminium adherent before bonding provides information about the adherent surface chemistry. XPS is also employed to analyse the surfaces of the bonded specimens post failure to establish the locus of fracture. This approach provides important information regarding the properties influencing bond durability as well as the bond failure mechanisms. A two step bond degradation model was developed to qualitatively describe the observed bond durability performance and fracture data. The first step involves controlled moisture ingress by stress induced microporosity of the adhesive in the interfacial region. The second step determines the locus of fracture through the relative dominance of one of three competitive processes, viz: oxide degradation, polymer desorption, or polymer degradation. A key element of the model is the control exercised over the interfacial microporosity by the combined interaction of stress and the relative densities of strong and weak linkages at the metal to adhesive interface

  7. What is a hydrogen bond?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is a hydrogen bond? Precise definition of a hydrogen bond is still elusive!1. Several criteria are listed usually for X-H•••Y, X and Y initially thought to be F, O and N only1. Structural: The X-Y bond length is less than the sum of their van der Waals radii. X-H•••Y is ...

  8. Composite interlayer for diffusion bonding

    International Nuclear Information System (INIS)

    1976-01-01

    A ductile interlayer is described, which is useful for transient liquid phase diffusion bonding of metallic articles; the interlayer consisting of a melting point depressant and a plurality of ductile lamellae which are free from carbides, aluminides and borides. The composition and fabrication of the lamellae, and the process for bonding the metallic articles, depend on the composition of the metals to be bonded, and are exemplified in the specification. (U.K.)

  9. Overview of the phase diagram of ionic magnetic colloidal dispersions

    International Nuclear Information System (INIS)

    Cousin, F.; Dubois, E.; Cabuil, V.; Boue, F.; Perzynski, R.

    2001-01-01

    We study ionic magnetic colloidal dispersions, which are constituted of γ-Fe 2 O 3 nanoparticles dispersed in water, and stabilized with electrostatic interparticle repulsion. The phase diagram PV versus Φ (P: osmotic pressure, V: particle volume, Φ: particle volume fraction) is explored, especially in the range of high Π and high Φ. The osmotic pressure P of the colloidal dispersion is known either by a measurement either because it is imposed during the sample preparation by osmotic compression. The structure of the colloidal dispersion is determined from Small Angle Neutron Scattering. Two regimes can be distinguished. At high pressure, fluid and solid phases can exist. Their structure is governed by strong electrostatic repulsion, the range of which is here evaluated. At low pressure, gas, liquid and glassy solids can exist. Their structure results from a sticky hard sphere potential. (author)

  10. Magnetic ionic liquids in analytical chemistry: A review.

    Science.gov (United States)

    Clark, Kevin D; Nacham, Omprakash; Purslow, Jeffrey A; Pierson, Stephen A; Anderson, Jared L

    2016-08-31

    Magnetic ionic liquids (MILs) have recently generated a cascade of innovative applications in numerous areas of analytical chemistry. By incorporating a paramagnetic component within the cation or anion, MILs exhibit a strong response toward external magnetic fields. Careful design of the MIL structure has yielded magnetoactive compounds with unique physicochemical properties including high magnetic moments, enhanced hydrophobicity, and the ability to solvate a broad range of molecules. The structural tunability and paramagnetic properties of MILs have enabled magnet-based technologies that can easily be added to the analytical method workflow, complement needed extraction requirements, or target specific analytes. This review highlights the application of MILs in analytical chemistry and examines the important structural features of MILs that largely influence their physicochemical and magnetic properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    Science.gov (United States)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  12. Ionic Liquids in Polymer Design: From Energy to Health

    Science.gov (United States)

    2016-10-19

    is to identify and highlight emerging materials that combine ionic liquids and polymer chemistry and the unique properties that arise from this...combination. This symposium covers all aspects of ionic liquids in polymers from synthesis, properties , and applications. The research should be...ionic liquids 2. Synthesis and Processing 3. Structure- Property Relationships 4. New materials and emerging Applications 5. Energy and Environmental

  13. Ionic fluxes in erythrocyte membranes of sickle cell anaemia ...

    African Journals Online (AJOL)

    Ionic fluxes in erythrocyte membranes of sickle cell anaemia subjects at different tonicities. ... Journal of African Association of Physiological Sciences ... The aim of this study was to investigate ionic fluxes in membrane of erythrocytes at different tonicities with a view to highlighting any selective ionic-fluxing potential of ...

  14. Evidence for high ionic conductivity in lithium–lanthanum titanate,

    Indian Academy of Sciences (India)

    The high bulk ionic conductivity is reported as 1·12 ×. 10−3 S cm−1 at room temperature. D.C. conductivity measurements indicate that the compound is a good ionic conductor. Keywords. Perovskite; ionic conductivity; electrolyte. 1. Introduction. Among various rechargeable batteries, lithium-ion recharge- able batteries are ...

  15. A simplified indirect bonding technique

    Directory of Open Access Journals (Sweden)

    Radha Katiyar

    2014-01-01

    Full Text Available With the advent of lingual orthodontics, indirect bonding technique has become an integral part of practice. It involves placement of brackets initially on the models and then their transfer to teeth with the help of transfer trays. Problems encountered with current indirect bonding techniques used are (1 the possibility of adhesive flash remaining around the base of the brackets which requires removal (2 longer time required for the adhesive to gain enough bond strength for secure tray removal. The new simplified indirect bonding technique presented here overcomes both these problems.

  16. Wafer bonding applications and technology

    CERN Document Server

    Gösele, Ulrich

    2004-01-01

    During the past decade direct wafer bonding has developed into a mature materials integration technology. This book presents state-of-the-art reviews of the most important applications of wafer bonding written by experts from industry and academia. The topics include bonding-based fabrication methods of silicon-on-insulator, photonic crystals, VCSELs, SiGe-based FETs, MEMS together with hybrid integration and laser lift-off. The non-specialist will learn about the basics of wafer bonding and its various application areas, while the researcher in the field will find up-to-date information about this fast-moving area, including relevant patent information.

  17. The material combining conducting polymer and ionic liquid: hydrogen bonding interactions between polyaniline and imidazolium salt

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Dybal, Jiří; Trchová, Miroslava

    2014-01-01

    Roč. 197, November (2014), s. 168-174 ISSN 0379-6779 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : conducting polymer * conductivity * imidazolium salt Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.252, year: 2014

  18. Preparation of novel, nanocomposite stannoxane-based organic-inorganic epoxy polymers containing ionic bonds

    Czech Academy of Sciences Publication Activity Database

    Strachota, Adam; Ribot, F.; Matějka, Libor; Whelan, P.; Starovoytova, Larisa; Pleštil, Josef; Steinhart, Miloš; Šlouf, Miroslav; Hromádková, Jiřina; Kovářová, Jana; Špírková, Milena; Strachota, Beata

    2012-01-01

    Roč. 45, č. 1 (2012), s. 221-237 ISSN 0024-9297 R&D Projects: GA AV ČR IAA400500701; GA ČR GAP108/11/2151 Institutional research plan: CEZ:AV0Z40500505 Keywords : stannoxane * organic-inorganic hybrid * epoxy Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.521, year: 2012

  19. Human Bond Communication

    DEFF Research Database (Denmark)

    Prasad, Ramjee

    2016-01-01

    Modern dexterous communication technology is progressively enabling humans to communicate their information through them with speech (aural) and media (optical) as underpinning essence. Humans realize this kind of aural and optical information by their optical and auditory senses. However, due...... to certain constraints, the ability to incorporate the other three sensory features namely, olfactory, gustatory, and tactile are still far from reality. Human bond communication is a novel concept that incorporates olfactory, gustatory, and tactile that will allow more expressive and holistic sensory...... information exchange through communication techniques for more human sentiment centric communication. This concept endorses the need of inclusion of other three senses and proposes an innovative approach of holistic communication for future communication network....

  20. Reactions of Starch in Ionic Liquids

    Science.gov (United States)

    We found that starches are found to be soluble at 80 ºC in ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-butyl-3-methylimidazolium dicyanamide (BMIMdca) in concentration up to 10% (w/w). Higher concentrations of biopolymers in these novel solvents resulted in solutions w...

  1. Functionalized dicationic ionic liquids: Green and efficient ...

    Indian Academy of Sciences (India)

    biodiesel through transesterification from cottonseed oil,23 and esterification of organic acids with ethanol was carried out in the presence of a dicationic ionic liquid.24 A group of imidazolium-based DCILs have been used for esterification of alcohols by carboxylic acids.25 In these reactions, researchers have focused on.

  2. Ionic liquid based multifunctional double network gel

    Science.gov (United States)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  3. Tilts and Ionic Shifts in Rhombohedral Perovskites

    NARCIS (Netherlands)

    Noheda, Beatriz; Duan, Ning; Cereceda, Noé; Gonzalo, Julio A.

    1998-01-01

    We make a comparative analysis of rhombohedral perovskites (ABO3) with/without oxygen rotations and ionic shifts, within the framework of a generalised effective field approach. We analyse available data on LaAlO3 and LiTaO3 and new data on Zr-rich PZT, examples of three different ways of structural

  4. SANS analysis of aqueous ionic perfluoropolyether micelles

    CERN Document Server

    Gambi, C M C; Chittofrati, A; Pieri, R; Baglioni, P; Teixeira, J

    2002-01-01

    Preliminary SANS results of ionic chlorine terminated perfluoropolyether micelles in water are given. The experimental spectra have been analyzed by a two-shell ellipsoidal model for the micellar form factor and a screened Coulombic plus hard-sphere repulsion potential for the structure factor. (orig.)

  5. Ionic conduction in the solid state

    Indian Academy of Sciences (India)

    Unknown

    Ionic conduction; solid state; atomistic computer simulations; NASICON structure. 1. Introduction. There exist many solids with .... The other skeleton structures examined in- cludes that of the high-pressure-stabilized cubic Im3 ..... volves solution of the coupled differential equations. (11) and (12). This gives the time evolution ...

  6. Catalytic Alkene Metathesis in Ionic Liquids

    Science.gov (United States)

    Fischmeister, Cédric

    Olefin metathesis has found a tremendous number of application in the past 25 years. Immobilisation of olefin metathesis (pre)catalysts in room temperature ionic liquids (RTILs) offers the opportunity to recover and reuse the catalyst and also to reduce the level of ruthenium (Ru) contaminants in the products.

  7. Supported ionic liquid-phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Wasserscheid, P.

    2005-01-01

    The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalytic...

  8. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1993-01-01

    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated...

  9. Analysis of ionic conductance of carbon nanotubes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Bazant, M.Z.

    2016-01-01

    We use space-charge (SC) theory (also called the capillary pore model) to describe the ionic conductance, G, of charged carbon nanotubes (CNTs). Based on the reversible adsorption of hydroxyl ions to CNT pore walls, we use a Langmuir isotherm for surface ionization and make calculations as a

  10. Ionic effects in collapse of polyelectrolyte brushes.

    Science.gov (United States)

    Jiang, Tao; Wu, Jianzhong

    2008-07-03

    We investigated the effect of counterion valence on the structure and swelling behavior of polyelectrolyte brushes using a nonlocal density functional theory that accounts for the excluded-volume effects of all ionic species and intrachain and electrostatic correlations. It was shown that charge correlation in the presence of multivalent counterions results in collapse of a polyelectrolyte brush at an intermediate polyion grafting density. At high grafting density, the brush reswells in a way similar to that in a monovalent ionic solution. In the presence of multivalent counterions, the nonmonotonic swelling of a polyelectrolyte brush in response to the increase of the grafting density can be attributed to a competition of the counterion-mediated electrostatic attraction between polyions with the excluded-volume effect of all ionic species. While a polyelectrolyte brush exhibits an "osmotic brush" regime at low salt concentration and a "salted brush" regime at high salt concentration regardless of the counterion valence, we found a smoother transition as the valence of the counterions increases. As observed in recent experiments, a quasi-power-law dependence of the brush thickness on the concentration ratio can be identified when the monovalent counterions are replaced with trivalent counterions at a fixed ionic strength.

  11. Polypyrrole for Artificial Muscles: Ionic Mechanisms

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2006-01-01

    is centered on polypyrrole (PPy), which is the material most used and studied. The tetraethyl ammonium cation (TEA) is shown to be able to move in and out of PPy(DBS) polymer films, in contrast to expectations. There is a switching between ionic mechanisms during cycling in TEACl electrolyte....

  12. 'Ionic crystals' consisting of trinuclear macrocations and ...

    Indian Academy of Sciences (India)

    T Arumuganathan

    'Ionic crystals' consisting of trinuclear macrocations and polyoxometalate anions exhibiting single crystal to single crystal transformation: breathing of crystals. †. T ARUMUGANATHANa, ASHA SIDDIKHAb and SAMAR K DASb,∗. aDepartment of Chemistry, Thiagarajar College, Madurai 625 009, Tamilnadu, India. bSchool ...

  13. Regio and stereoselectivity in ionic cycloadditions

    Indian Academy of Sciences (India)

    WINTEC

    to be more reactive than DMIQ as a diene and as a dienophile MVE is found to be more reactive than PY. Computed bond orders establish that the syn 2 ... of many carbocycles, heterocycles, less reactive π systems and heteromultiple bonds. 2 ... been calculated from the Wiberg. 16 indices using NBO analysis and from ...

  14. Ionic Liquid-Based Vacuum Microwave-Assisted Extraction Followed by Macroporous Resin Enrichment for the Separation of the Three Glycosides Salicin, Hyperin and Rutin from Populus Bark

    OpenAIRE

    Fengli Chen; Kailin Mo; Zhaizhi Liu; Fengjian Yang; Kexin Hou; Shuangyang Li; Yuangang Zu; Lei Yang

    2014-01-01

    An effective ionic liquid vacuum microwave-assisted method was developed for extraction of the thermo- and oxygen-sensitive glycosides salicin, hyperin and rutin from Populus bark due to the strong solvating effects of ionic liquids on plant cell walls. In this study, [C4mim]BF4 solution was selected as the extracting solution for extraction of the target analytes. After optimization by single factor experiments and response surface methodology, the optimum condition parameters were achieved,...

  15. 30 CFR 281.33 - Bonds and bonding requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Bonds and bonding requirements. 281.33 Section 281.33 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF MINERALS OTHER THAN OIL, GAS, AND SULPHUR IN THE OUTER CONTINENTAL SHELF Financial Considerations § 281.33...

  16. Silver particle-decorated carbon paste electrode based on ionic liquid for improved determination of nitrite

    OpenAIRE

    Menart, Eva; Jovanovski, Vasko; Hočevar, Samo B.

    2015-01-01

    A simple silver particle-modified carbon paste electrode is proposed for the determination of low concentration levels of nitrite ions. The electrode consists of a carbon powder decorated with silver sub-micrometre particles (AgPs) and a hydrophobic ionic liquid trihexyltetradecylphosphonium chloride as a binder. It has been shown that AgPs exhibit a strong electrocatalytic effect on the nitrite oxidation. For optimal electroanalytical performance the electrode was conditioned via silver oxid...

  17. VOC and HAP recovery using ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy

  18. Low-temperature wafer direct bonding of silicon and quartz glass by a two-step wet chemical surface cleaning

    Science.gov (United States)

    Wang, Chenxi; Xu, Jikai; Zeng, Xiaorun; Tian, Yanhong; Wang, Chunqing; Suga, Tadatomo

    2018-02-01

    We demonstrate a facile bonding process for combining silicon and quartz glass wafers by a two-step wet chemical surface cleaning. After a post-annealing at 200 °C, strong bonding interfaces with no defects or microcracks were obtained. On the basis of the detailed surface and bonding interface characterizations, the bonding mechanism was explored and discussed. The amino groups terminated on the cleaned surfaces might contribute to the bonding strength enhancement during the annealing. This cost-effective bonding process has great potentials for silicon- and glass-based heterogeneous integrations without requiring a vacuum system.

  19. Inner-shell excitation and ionic fragmentation of molecules

    International Nuclear Information System (INIS)

    Hitchcock, A.P.; Tyliszczak, T.; Cavell, R.G.

    1997-01-01

    Inner-shell excitation and associated decay spectroscopies are site specific probes of electronic and geometrical structure and photoionization dynamics. X-ray absorption probes the geometric and electronic structure, while time-of-flight mass spectrometry with multi-coincidence detection provides information on the photofragmentation dynamics of the initially produced inner-shell state. Auger decay of inner-shell excited and ionised states is an efficient source of multiply charged ions. The charge separation and fragmentation of these species, studied by photoelectron-photoion-photoion coincidence (also called charge separation mass spectrometry) gives insights into bonding and electronic structure. In molecules, the dependence of the fragmentation process on the X-ray energy can reveal cases of site and/or state selective fragmentation. At the ALS the authors have examined the soft X-ray spectroscopy and ionic fragmentation of a number of molecules, including carboranes, silylenes, phosphorus halides, SF 6 and CO 2 . Their work is illustrated using results from the carborane and PF 3 studies

  20. Method of making ionic liquid mediated sol-gel sorbents

    Science.gov (United States)

    Malik, Abdul; Shearrow, Anne M.

    2017-01-31

    Ionic liquid (IL)-mediated sol-gel hybrid organic-inorganic materials present enormous potential for effective use in analytical microextraction. One obstacle to materializing this prospect arises from high viscosity of ILs significantly slowing down sol-gel reactions. A method was developed which provides phosphonium-based, pyridinium-based, and imidazolium-based IL-mediated advanced sol-gel organic-inorganic hybrid materials for capillary microextraction. Scanning electron microscopy results demonstrate that ILs can serve as porogenic agents in sol-gel reactions. IL-mediated sol-gel coatings prepared with silanol-terminated polymers provided up to 28 times higher extractions compared to analogous sol-gel coatings prepared without any IL in the sol solution. This study shows that IL-generated porous morphology alone is not enough to provide effective extraction media: careful choice of the organic polymer and the precursor with close sol-gel reactivity must be made to ensure effective chemical bonding of the organic polymer to the created sol-gel material to be able to provide the desired sorbent characteristics.

  1. Inner-shell excitation and ionic fragmentation of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A.P.; Tyliszczak, T. [McMaster Univ., Hamilton, Ontario (Canada); Cavell, R.G. [Univ. of Alberta, Edmonton (Canada)] [and others

    1997-04-01

    Inner-shell excitation and associated decay spectroscopies are site specific probes of electronic and geometrical structure and photoionization dynamics. X-ray absorption probes the geometric and electronic structure, while time-of-flight mass spectrometry with multi-coincidence detection provides information on the photofragmentation dynamics of the initially produced inner-shell state. Auger decay of inner-shell excited and ionised states is an efficient source of multiply charged ions. The charge separation and fragmentation of these species, studied by photoelectron-photoion-photoion coincidence (also called charge separation mass spectrometry) gives insights into bonding and electronic structure. In molecules, the dependence of the fragmentation process on the X-ray energy can reveal cases of site and/or state selective fragmentation. At the ALS the authors have examined the soft X-ray spectroscopy and ionic fragmentation of a number of molecules, including carboranes, silylenes, phosphorus halides, SF{sub 6} and CO{sub 2}. Their work is illustrated using results from the carborane and PF{sub 3} studies.

  2. Social-bond strength influences vocally mediated recruitment to mobbing.

    Science.gov (United States)

    Kern, Julie M; Radford, Andrew N

    2016-11-01

    Strong social bonds form between individuals in many group-living species, and these relationships can have important fitness benefits. When responding to vocalizations produced by groupmates, receivers are expected to adjust their behaviour depending on the nature of the bond they share with the signaller. Here we investigate whether the strength of the signaller-receiver social bond affects response to calls that attract others to help mob a predator. Using field-based playback experiments on a habituated population of wild dwarf mongooses (Helogale parvula), we first demonstrate that a particular vocalization given on detecting predatory snakes does act as a recruitment call; receivers were more likely to look, approach and engage in mobbing behaviour than in response to control close calls. We then show that individuals respond more strongly to these recruitment calls if they are from groupmates with whom they are more strongly bonded (those with whom they preferentially groom and forage). Our study, therefore, provides novel evidence about the anti-predator benefits of close bonds within social groups. © 2016 The Author(s).

  3. Charge-scaling effect in ionic liquids from the charge-density analysis of N,N'-dimethylimidazolium methylsulfate.

    Science.gov (United States)

    Beichel, Witali; Trapp, Nils; Hauf, Christoph; Kohler, Oliver; Eickerling, Georg; Scherer, Wolfgang; Krossing, Ingo

    2014-03-17

    The charge scaling effect in ionic liquids was explored on the basis of experimental and theoretical chargedensity analyses of [C1MIM][C1SO4] employing the quantum theory of atoms in molecules (QTAIM) approach. Integrated QTAIM charges of the experimental (calculated) charge density of the cation and anion resulted in non-integer values of ±0.90 (±0.87) e. Efficient charge transfer along the bond paths of the hydrogen bonds between the imidazolium ring and the anion was considered as the origin of these reduced charges. In addition, a detailed QTAIM analysis of the bonding situation in the [C1SO4]- anion revealed the presence of negative πO→σ*S-O hyperconjugation.

  4. Strongly nonlinear dynamics of electrolytes in large ac voltages

    DEFF Research Database (Denmark)

    Olesen, Laurits Højgaard; Bazant, Martin Z.; Bruus, Henrik

    2010-01-01

    , ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two features—significant salt depletion...... in the electrolyte near the electrodes and, at very large voltage, the breakdown of the quasiequilibrium structure of the double layers. The former leads to the prediction of “ac capacitive desalination” since there is a time-averaged transfer of salt from the bulk to the double layers, via oscillating diffusion...... to suppress the strongly nonlinear regime in the limit of concentrated electrolytes, ionic liquids, and molten salts. Beyond the model problem, our reduced equations for thin double layers, based on uniformly valid matched asymptotic expansions, provide a useful mathematical framework to describe additional...

  5. Thermal stability, swelling behavior and CO 2 absorption properties of Nanoscale Ionic Materials (NIMs)

    KAUST Repository

    Andrew Lin, Kun-Yi

    2014-11-11

    © The Royal Society of Chemistry 2015. Nanoscale Ionic Materials (NIMs) consist of a nanoscale core, a corona of charged brushes tethered on the surface of the core, and a canopy of the oppositely charged species linked to the corona. Unlike conventional polymeric nanocomposites, NIMs can display liquid-like behavior in the absence of solvents, have a negligible vapor pressure and exhibit unique solvation properties. These features enable NIMs to be a promising CO2 capture material. To optimize NIMs for CO2 capture, their structure-property relationships were examined by investigating the roles of the canopy and the core in their thermal stability, and thermally- and CO2-induced swelling behaviors. NIMs with different canopy sizes and core fractions were synthesized and their thermal stability as well as thermally- and CO2-induced swelling behaviors were determined using thermogravimetry, and ATR FT-IR and Raman spectroscopies. It was found that the ionic bonds between the canopy and the corona, as well as covalent bonds between the corona and the core significantly improved the thermal stability compared to pure polymer and polymer/nanofiller mixtures. A smaller canopy size and a larger core fraction led to a greater enhancement in thermal stability. This thermal stability enhancement was responsible for the long-term thermal stability of NIMs over 100 temperature swing cycles. Owing to their ordered structure, NIMs swelled less when heated or when they adsorbed CO2 compared to their corresponding polymers. This journal is

  6. Studies of IBL wire bonds operation in a ATLAS-like magnetic field.

    CERN Document Server

    Alvarez Feito, D; Mandelli, B

    2015-01-01

    At the Large Hadron Collider (LHC) experiments, most of silicon detectors use wire bonds to connect front-end chips and sensors to circuit boards for the data and service trans- missions. These wire bonds are operated in strong magnetic field environments and if time varying currents pass through them with frequencies close to their mechanical resonance frequency, strong resonant oscillations may occur. Under certain conditions, this effect can lead to fatigue stress and eventually breakage of wire bonds. During the first LHC Long Shutdown, the ATLAS Pixel Detector has been upgraded with the addition of a fourth innermost layer, the Insertable B-Layer (IBL), which has more than 50000 wire bonds operated in the ATLAS 2 T magnetic field. The results of systematic studies of operating wire bonds under IBL-like conditions are presented. Two different solutions have been investigated to minimize the oscillation amplitude of wire bonds.

  7. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  8. Phase Behavior of Mixtures of Ionic Liquids and Organic Solvents

    DEFF Research Database (Denmark)

    Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.

    2010-01-01

    are implemented, leading to an entirely predictive method for densities of mixed compressed ionic liquids. Quantitative agreement with experimental data is obtained over wide ranges of conditions. Previously, the method has been applied to solubilities of sparingly soluble gases in ionic liquids and in organic......A corresponding-states form of the generalized van der Waals equation, previously developed for mixtures of an ionic liquid and a supercritical solute, is here extended to mixtures including an ionic liquid and a solvent (water or organic). Group contributions to characteristic parameters...... solvents. Here we show results for heavier and more-than-sparingly solutes such as carbon dioxide and propane in ionic liquids....

  9. Anomalous H/D isotope effect in hydrogen bonded systems: H-bonded cyclic structures and transfers of protons

    International Nuclear Information System (INIS)

    Marechal, Y.

    1993-01-01

    The systematic H/D substitution is a precious tool to obtain information on the dynamics of H-bonds. It is particularly useful in IR spectroscopy where H-bonds are at the origin of particularly intense and specific bands and where the particularly great value for the m D /m H ratio ensures strongly marked effects. In most H-bonded systems the effects of these substitutions are normal, in the sense that they are at the origin of bands having intensities, centers (of intensity) and widths smaller in D-bonds by a factor close to √2 as compared to H-bonds. In some systems as carboxylic acid dimers, however, anomalous ratios of intensities are found upon such a substitution. Their origin is still obscure. Experimental results suggest that such anomalous ratios have much to do with the cyclic structure of these systems. It leads to stressing an important property of H-bonded cyclic structures which is that they seem necessary for having transfers of protons between molecules through H-bonds in a neutral aqueous medium (p H =7) at room temperature. The mechanism of such transfers of protons is still poorly known, but these transfers are now suspected to play a fundamental role in such widespread reactions as hydrolysis, peptide synthesis, etc... which may make them soon appear as being a crucial basic mechanism for reactivity of aqueous systems, particularly biological systems

  10. Ice VII from aqueous salt solutions: From a glass to a crystal with broken H-bonds

    Science.gov (United States)

    Klotz, S.; Komatsu, K.; Pietrucci, F.; Kagi, H.; Ludl, A.-A.; Machida, S.; Hattori, T.; Sano-Furukawa, A.; Bove, L. E.

    2016-08-01

    It has been known for decades that certain aqueous salt solutions of LiCl and LiBr readily form glasses when cooled to below ≈160 K. This fact has recently been exploited to produce a « salty » high-pressure ice form: When the glass is compressed at low temperatures to pressures higher than 4 GPa and subsequently warmed, it crystallizes into ice VII with the ionic species trapped inside the ice lattice. Here we report the extreme limit of salt incorporation into ice VII, using high pressure neutron diffraction and molecular dynamics simulations. We show that high-pressure crystallisation of aqueous solutions of LiCl•RH2O and LiBr•RH2O with R = 5.6 leads to solids with strongly expanded volume, a destruction of the hydrogen-bond network with an isotropic distribution of water-dipole moments, as well as a crystal-to-amorphous transition on decompression. This highly unusual behaviour constitutes an interesting pathway from a glass to a crystal where translational periodicity is restored but the rotational degrees of freedom remaining completely random.

  11. Physics of Resonating Valence Bond Spin Liquids

    Science.gov (United States)

    Wildeboer, Julia Saskia

    This thesis will investigate various aspects of the physics of resonating valence bond spin liquids. After giving an introduction to the world that lies beyond Landau's priciple of symmetry breaking, e.g. giving an overview of exotic magnetic phases and how they can be described and (possibly) found, we will study a spin-rotationally invariant model system with a known parent Hamiltonian, and argue its ground state to lie within a highly sought after exotic phase, namely the Z2 quantum spin liquid phase. A newly developed numerical procedure --Pfaffian Monte Carlo-- will be introduced to amass evidence that our model Hamiltonian indeed exhibits a Z2 quantum spin liquid phase. Subsequently, we will prove a useful mathematical property of the resonating valence bond states: these states are shown to be linearly independent. Various lattices are investigated concerning this property, and its applications and usefullness are discussed. Eventually, we present a simplified model system describing the interplay of the well known Heisenberg interaction and the Dzyaloshinskii-Moriya (DM) interaction term acting on a sawtooth chain. The effect of the interplay between the two interaction couplings on the phase diagram is investigated. To do so, we employ modern techniques such as the density matrix renormalization group (DMRG) scheme. We find that for weak DM interaction the system exhibits valence bond order. However, a strong enough DM coupling destroys this order.

  12. The mechanochemical production of phenyl cations through heterolytic bond scission.

    Science.gov (United States)

    Shiraki, Tomohiro; Diesendruck, Charles E; Moore, Jeffrey S

    2014-01-01

    High mechanical forces applied to polymeric materials typically induce unselective chain scission. For the last decade, mechanoresponsive molecules, mechanophores, have been designed to harness the mechanical energy applied to polymers and provide a productive chemical response. The selective homolysis of chemical bonds was achieved by incorporating peroxide and azo mechanophores into polymer backbones. However, selective heterolysis in polymer mechanochemistry is still mostly unachieved. We hypothesized that highly polarized bonds in ionic species are likely to undergo heterolytic bond scission. To test this, we examined a triarylsulfonium salt (TAS) as a mechanophore. Poly(methyl acrylate) possessing TAS at the center of the chain (PMA-TAS) is synthesized by a single electron transfer living radical polymerization (SET-LRP) method. Computational and experimental studies in solution reveal the mechanochemical production of phenyl cations from PMA-TAS. Interestingly, the generated phenyl cation reacts with its counter-anion (trifluoromethanesulfonate) to produce a terminal trifluoromethyl benzene structure that, to the best of our knowledge, is not observed in the photolysis of TAS. Moreover, the phenyl cation can be trapped by the addition of a nucleophile. These findings emphasize the interesting reaction pathways that become available by mechanical activation.

  13. Breaking Rules – Making Bonds

    Indian Academy of Sciences (India)

    IAS Admin

    RESONANCE | January 2016. GENERAL | ARTICLE. Breaking Rules – Making Bonds. A G Samuelson. Boron-containing molecules discovered recently have new types of dative bonds between carbenes and borylenes. At the same time, they show that traditional thumb rules regarding acids and bases are no longer valid.

  14. Why are Hydrogen Bonds Directional?

    Indian Academy of Sciences (India)

    Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore,. Karnataka 560 012, India e-mail: ... Lewis succeeded in explaining the 'chemical bonds' that held the neutral molecules together. The covalent bonding has dominated chemistry so much over the last century and most chemists appear ...

  15. O hydrogen bonds in alkaloids

    Indian Academy of Sciences (India)

    An overview of general classification scheme, medicinal importance and crystal structure analysis with emphasis on the role of hydrogen bonding in some alkaloids is presented in this paper. The article is based on a general kind of survey while crystallographic analysis and role of hydrogen bonding are limited to only ...

  16. Distance criterion for hydrogen bond

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Distance criterion for hydrogen bond. In a D-H ...A contact, the D...A distance must be less than the sum of van der Waals Radii of the D and A atoms, for it to be a hydrogen bond.

  17. Why are Hydrogen Bonds Directional?

    Indian Academy of Sciences (India)

    for an interaction to be characterized as a hydro- gen bond but does not provide any rationale for the same. This article reports a rationale for limiting the angle, based on the electron density topology using the quantum theory of atoms in molecules. Electron density topol- ogy for common hydrogen bond donors HF, HCl, ...

  18. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices.

    Science.gov (United States)

    Black, Jennifer M; Come, Jeremy; Bi, Sheng; Zhu, Mengyang; Zhao, Wei; Wong, Anthony T; Noh, Joo Hyon; Pudasaini, Pushpa R; Zhang, Pengfei; Okatan, Mahmut Baris; Dai, Sheng; Kalinin, Sergei V; Rack, Philip D; Ward, Thomas Zac; Feng, Guang; Balke, Nina

    2017-11-22

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal-insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment and theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.

  19. Effect of surface bilayer charges on the magnetic field around ionic channels

    Energy Technology Data Exchange (ETDEWEB)

    Gomes Soares, Marília Amável [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Cortez, Celia Martins, E-mail: ccortezs@ime.uerj.br [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Applied Mathematics, Rio de Janeiro State University (Brazil); Oliveira Cruz, Frederico Alan de [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Physics, Rural Federal University of Rio de Janeiro (Brazil); Silva, Dilson [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Applied Mathematics, Rio de Janeiro State University (Brazil)

    2017-01-01

    In this work, we present a physic-mathematical model for representing the ion transport through membrane channels, in special Na{sup +} and K{sup +}-channels, and discuss the influence of surface bilayer charges on the magnetic field behavior around the ionic current. The model was composed of a set of equations, including: a nonlinear differential Poisson-Boltzmann equation which usually allows to estimate the surface potentials and electric potential profile across membrane; equations for the ionic flux through channel and the ionic current density based on Armstrong's model for Na{sup +} and K{sup +} permeability and other Physics concepts; and a magnetic field expression derived from the classical Ampère equation. Results from computational simulations using the finite element method suggest that the ionic permeability is strongly dependent of surface bilayer charges, the current density through a K{sup +}-channel is very less sensible to temperature changes than the current density through a Na{sup +}- channel, active Na{sup +}-channels do not directly interfere with the K{sup +}-channels around, and vice-versa, since the magnetic perturbation generated by an active channel is of short-range.

  20. A high-voltage and non-corrosive ionic liquid electrolyte used in rechargeable aluminum battery.

    Science.gov (United States)

    Wang, Huali; Gu, Sichen; Bai, Ying; Chen, Shi; Wu, Feng; Wu, Chuan

    2016-10-03

    As a promising post-lithium battery, rechargeable aluminum battery has the potential to achieve a three-electron reaction with fully use of metal aluminum. Alternative electrolytes are strongly needed for further development of rechargeable aluminum batteries, since typical AlCl3-contained imidazole-based ionic liquids are moisture sensitive, corrosive, and with low oxidation voltage. In this letter, a kind of non-corrosive and water-stable ionic liquid obtained by mixing 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM]OTF) with the corresponding aluminum salt (Al(OTF)3) is studied. This ionic liquid electrolyte has a high oxidation voltage (3.25V vs Al3+/Al) and high ionic conductivity, and a good electrochemical performance is also achieved. A new strategy, which first use corrosive AlCl3-based electrolyte to construct a suitable passageway on the Al anode for Al3+, and then use non-corrosive Al(OTF)3-based electrolyte to get stable Al/electrolyte interface, is put forward.

  1. Speciation of cobalt-chloride-based ionic liquids and electrodeposition of Co wires

    International Nuclear Information System (INIS)

    Hsieh, Yi-Ting; Lai, Mei-Chun; Huang, Hsin-Liang; Sun, I.-Wen

    2014-01-01

    Highlights: • Template-free electrodeposition of cobalt nanowires arrays can be achieved from Lewis acidic CoCl 2 -EMIC ionic liquids. • SEM and TEM images reveal the diameter of the nanowire is around 200 nm, and the XPS data shows that cobalt oxide is formed at the surface of the nanowire. • MALDI-TOF-MS, XAS, and UV-vis spectroscopy results show that the coordination number and the mean Co-Cl bond length are depending on the molar ratio of CoCl 2 and EMIC. - Abstract: The speciation and coordination of cobalt-chloride-based ionic liquids with various mole percentages of CoCl 2 were investigated using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), X-ray absorption spectroscopy (XAS), ultraviolet-visible absorption spectroscopy, and cyclic voltammetry. The coordination number and the mean Co-Cl bond length decreases with increasing CoCl 2 concentration, indicating that various Co(II) chloride compounds such as CoCl 4 2- , Co 2 Cl 5 - , and Co 3 Cl 7 − are formed depending on the molar ratio of CoCl 2 and EMIC in the melt. While the [CoCl 4 ] 2− complex formed in the Lewis basic melts and is electrochemically inactive within the electrochemical window of the melt, the other coordination-unsaturated cobalt chloride compounds formed in Lewis acidic melts can be electrochemically reduced to cobalt metal. The template-free electrodeposition of Co nanowires can be achieved from 40-60 mol% and 50-50 mol% CoCl 2 -EMIC (1-ethyl-3-methylimidazolium chloride) ionic liquids without any additives. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface of the deposits

  2. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Wenlong [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M2S + (0.1 Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga2S3 + 0.9 GeS2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M2S + (0.1Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na2S + B2S3 (x ≤ 0.2) glasses by neutron and synchrotron x-ray diffraction

  3. Hydrogen production from glucose in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Assenbaum, D.W.; Taccardi, N.; Berger, M.E.M.; Boesmann, A.; Enzenberger, F.; Woelfel, R.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer chemische Reaktionstechnik

    2010-07-01

    technologies suffer from the fact that the overall reaction rates are often restricted by mass and heat transport problems. Lastly, there are severe limitations concerning the feedstock selection as for some important substrates, such as e.g. glucose, the process can only be operated in very diluted systems to avoid rapid tar formation [22,23,24]. In this contribution we describe for the first time a catalytic reaction system producing hydrogen from glucose in astonishingly high selectivities using a single reaction step under very mild conditions. The catalytic reaction system is characterized by its homogeneous nature and comprises a Ru-complex catalyst dissolved and stabilized in an ionic liquid medium. Ionic liquids are salts of melting points below 100 C [25]. These liquid materials have attracted much interest in the last decade as solvents for catalytic reactions [26] and separation technologies (extraction, distillation) [27,28,29,30,31,32]. Besides, these liquids have found industrial applications as process fluids for mechanic [33] and electrochemical applications [34]. Finally, from the pioneering work of Rogers and co-workers, it is known that ionic liquids are able to dissolve significant amounts of water-insoluble biopolymers (such as e.g. cellulose and chitin)[35] and even complex biopolymer mixtures, such as e.g. wood, have been completely dissolved in some ionic liquids [36]. In our specific application, the role of the ionic liquid is threefold: a) the ionic liquid dissolves the carbohydrate starting material thus expanding the range of applicable carbohydrate to water insoluble polymers; b) the ionic liquid provides a medium to dissolve and stabilize the catalyst; c) the ionic liquid dissolves hydrogen at a very low level, so inhibiting any possible collateral hydrogen-consuming process (detailed investigation of the hydrogen solubility in ionic liquids have been reported by e.g. Brennecke and coworkers [37]). (orig.)

  4. Effects of hydrogen bonds on solid state TATB, RDX, and DATB under high pressures

    International Nuclear Information System (INIS)

    Guo Feng; Hu Hai-Quan; Zhang Hong; Cheng Xin-Lu

    2014-01-01

    To probe the behavior of hydrogen bonds in solid energetic materials, we conduct ReaxFF and SCC–DFTB molecular dynamics simulations of crystalline TATB, RDX, and DATB. By comparing the intra- and inter-molecular hydrogen bonding rates, we find that the crystal structures are stabilized by inter-molecular hydrogen bond networks. Under high-pressure, the inter- and intra-molecular hydrogen bonds in solid TATB and DATB are nearly equivalent. The hydrogen bonds in solid TATB and DATB are much shorter than in solid RDX, which suggests strong hydrogen bond interactions existing in these energetic materials. Stretching of the C–H bond is observed in solid RDX, which may lead to further decomposition and even detonation. (condensed matter: structural, mechanical, and thermal properties)

  5. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    Science.gov (United States)

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  6. SOCIAL BONDING: REGULATION BY NEUROPEPTIDES

    Directory of Open Access Journals (Sweden)

    Claudia eLieberwirth

    2014-06-01

    Full Text Available Affiliative social relationships (e.g., among spouses, family members, and friends play an essential role in human society. These relationships affect psychological, physiological, and behavioral functions. As positive and enduring bonds are critical for the overall well-being of humans, it is not surprising that considerable effort has been made to study the neurobiological mechanisms that underlie social bonding behaviors. The present review details the involvement of the nonapeptides, oxytocin (OT and arginine vasopressin (AVP, in the regulation of social bonding in mammals including humans. In particular, we will discuss the role of OT and AVP in the formation of social bonds between partners of a mating pair as well as between parents and their offspring. Furthermore, the role of OT and AVP in the formation of interpersonal bonding involving trust is also discussed.

  7. Strong WW Interaction at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, Jose R

    1998-12-14

    We present a brief pedagogical introduction to the Effective Electroweak Chiral Lagrangians, which provide a model independent description of the WW interactions in the strong regime. When it is complemented with some unitarization or a dispersive approach, this formalism allows the study of the general strong scenario expected at the LHC, including resonances.

  8. Application of an immobilized ionic liquid for the passive sampling of perfluorinated substances in water.

    Science.gov (United States)

    Wang, Lei; Gong, Xinying; Wang, Ruonan; Gan, Zhiwei; Lu, Yuan; Sun, Hongwen

    2017-09-15

    Ionic liquids have been used to efficiently extract a wide range of polar and nonpolar organic contaminants from water. In this study, imidazole ionic liquids immobilized on silica gel were synthesized through a chemical bonding method, and the immobilized dodecylimidazolium ionic liquid was selected as the receiving phase material in a POCIS (polar organic chemical integrative sampler) like passive sampler to monitor five perfluoroalkyl substances (PFASs) in water. Twenty-one days of integrative accumulation was conducted in laboratory scale experiments, and the accumulated PFASs in the samplers were eluted and analyzed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The partitioning coefficients of most PFASs between sampler sorbents and water in the immobilized ionic liquid (IIL)-sampler were higher than those in the HLB-sampler, especially for compounds with shorter alkyl chains. The effects of flow velocity, temperature, dissolved organic matter (DOM) and pH on the uptake of these analytes were also evaluated. Under the experimental conditions, the uptake of PFASs in the IIL-sampler slightly increased with the flow velocity and temperature, while different influences of DOM and pH on the uptake of PFAS homologues with short or long chains were observed. The designed IIL-samplers were applied in the influent and effluent of a wastewater treatment plant. All five PFASs could be accumulated in the samplers, with concentrations ranging from 6.5×10 -3 -3.6×10 -1 nmol/L in the influent and from 1.3×10 -2 -2.2×10 -1 nmol/L in the effluent. The calculated time-weighted average concentrations of most PFASs fit well with the detected concentrations of the active sampling, indicating the applicability of the IIL-sampler in monitoring these compounds in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Improved ionic conductivity of lithium-zinc-tellurite glass-ceramic electrolytes

    Directory of Open Access Journals (Sweden)

    W. Widanarto

    Full Text Available An enhancement in the secondary battery safety demands the optimum synthesis of glass-ceramics electrolytes with modified ionic conductivity. To achieve improved ionic conductivity and safer operation of the battery, we synthesized Li2O included zinc-tellurite glass-ceramics based electrolytes of chemical composition (85-xTeO2·xLi2O·15ZnO, where x = 0, 5, 10, 15 mol%. Samples were prepared using the melt quenching method at 800 °C followed by thermal annealing at 320 °C for 3 h and characterized. The effects of varying temperature, alternating current (AC frequency and Li2O concentration on the structure and ionic conductivity of such glass-ceramics were determined. The SEM images of the annealed glass-ceramic electrolytes displayed rough surface with a uniform distribution of nucleated crystal flakes with sizes less than 1 μm. X-ray diffraction analysis confirmed the well crystalline nature of achieved electrolytes. Incorporation of Li2O in the electrolytes was found to generate some new crystalline phases including hexagonal Li6(TeO6, monoclinic Zn2Te3O8 and monoclinic Li2Te2O5. The estimated crystallite size of the electrolyte was ranged from ≈40 to 80 nm. AC impedance measurement revealed that the variation in the temperatures, Li2O contents, and high AC frequencies have a significant influence on the ionic conductivity of the electrolytes. Furthermore, electrolyte doped with 15 mol% of Li2O exhibited the optimum performance with an ionic conductivity ≈2.4 × 10−7 S cm−1 at the frequency of 54 Hz and in the temperature range of 323–473 K. This enhancement in the conductivity was attributed to the sizable alteration in the ions vibration and ruptures of covalent bonds in the electrolytes network structures. Keywords: Zinc-tellurite, Glass-ceramics, X-ray diffraction, Ionic conductivity, Lithium oxide

  10. Ionic liquid-doped polyaniline and its redox activities in the zwitterionic biological buffer MOPS

    International Nuclear Information System (INIS)

    Qu, Ke; Zeng, Xiangqun

    2016-01-01

    The electropolymerization of aniline in several common imidazolium-based ionic liquids has been accomplished successfully with the potentiodynamic method. Considering the fact that imidazolium-based ionic liquids are acidic, they have been selected as the electrolyte for the electropolymerization of aniline, eliminating the usage of extra inorganic or organic acids. The ionic liquids not only serve as the reaction media, exerting the unique favorable π-π interactions between the imidazolium rings and benzene rings of aniline monomer or the growing polymer, but also act as the dopants to render different properties to the resulting polyaniline. Among the tested imidazolium-based ionic liquids, [BMIM][BF 4 ], [BMIM][PF 6 ], [BMIM][NTf 2 ], [EMIM][ES] and [HMIM][FAP], polyaniline doped by the hydrophilic ionic liquid [BMIM][BF 4 ] displays the good electrochemical responses in the biologically important MOPS (3-(N-Morpholino)-propanesulfonic acid) solution with 2.34 × 10 −3 M of sulfuric acid additive. NMR, UV–vis and electrochemical impedance experiments were performed to further characterize the polyaniline/[BMIM][BF 4 ] composite. In contrast, polyaniline that is doped by the hydrophobic ionic liquid [BMIM][PF 6 ] is electroactive in the MOPS solution in the absence of the acid additive, with a pH of 5, extending the working pH range of polyaniline, which is typically electroactive in the solutions with the pH values less than 3. It is suggested that the effective hydrogen bonding interactions between BF 4 anion and water facilitate its hydrolysis in the microenvironment of the polymer backbone to provide the acidic protons, which are beneficial to the adjustment of the microenvironments of the polyaniline system and thus renders its observed well-resolved reversible pair of redox peaks in the MOPS solution. PF 6 anion, on the other hand, with its larger size and less basicity, has the weaker interaction with water, thus releasing the protons in a relatively

  11. Catalytic Ionic-Liquid Membranes: The Convergence of Ionic-Liquid Catalysis and Ionic-Liquid Membrane Separation Technologies.

    Czech Academy of Sciences Publication Activity Database

    Izák, Pavel; Bobbink, F.D.; Hulla, M.; Klepic, M.; Friess, K.; Hovorka, Š.; Dyson, P.J.

    2018-01-01

    Roč. 83, č. 1 (2018), s. 7-18 ISSN 2192-6506 R&D Projects: GA ČR(CZ) GA17-00089S; GA ČR GA17-05421S Institutional support: RVO:67985858 Keywords : heterogeneous catalysis * ionic liquids * membranes Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.797, year: 2016

  12. Catalytic Ionic-Liquid Membranes: The Convergence of Ionic-Liquid Catalysis and Ionic-Liquid Membrane Separation Technologies.

    Czech Academy of Sciences Publication Activity Database

    Izák, Pavel; Bobbink, F.D.; Hulla, M.; Klepic, M.; Friess, K.; Hovorka, Š.; Dyson, P.J.

    2018-01-01

    Roč. 83, č. 1 (2018), s. 7-18 ISSN 2192-6506 R&D Projects: GA ČR(CZ) GA17-00089S; GA ČR GA17-05421S Institutional support: RVO:67985858 Keywords : heterogeneous catalysis * ionic liquid s * membranes Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.797, year: 2016

  13. Strong-back safety latch

    International Nuclear Information System (INIS)

    DeSantis, G.N.

    1995-01-01

    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch

  14. Strong-back safety latch

    Energy Technology Data Exchange (ETDEWEB)

    DeSantis, G.N.

    1995-03-06

    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch.

  15. The Microstructure of the European Sovereign Bond Market

    DEFF Research Database (Denmark)

    Pelizzon, Loriana; Subrahmanyam, Marti G.; Tomio, Davide

    We explore the interaction between credit risk and liquidity, during the Euro-zone crisis, in the Italian sovereign bond market, using a unique tick-by-tick dataset, from the period June 2011-December 2012. We document a strong, dynamic relationship between changes in sovereign credit risk and ma...

  16. Dentin-bonding agents

    Directory of Open Access Journals (Sweden)

    João Carlos Gomes

    2008-01-01

    Full Text Available New dental restorative materials have been developed to meet not only the functional demands, but esthetics as well, and in the last few years an enormous range of new materials has appeared for use in dentistry. Among them, several adhesive systems, and different operative techniques for each group materials. Therefore, is indispensable for the professional to know about the properties, characteristics, and association of these materials with the dental structures, in order to select and use them correctly. Should conventional self-etching adhesive systems be used? This question encouraged this literature review to be conducted, with the aim of comparing the conventional adhesive systems with the self-etching systems and to look for scientific data that would help professionals to choose which adhesive system to use. When compared to conventional systems, it was noted that the self-etching systems show less sensitivity to technique, especially as regards errors the operator could commit. The self-etching systems, particularly the 2-step type, have shown equivalent values of bond strength, marginal microleakage and performance, therefore, will be an option for direct composite resin restorations in posterior teeth.

  17. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Directory of Open Access Journals (Sweden)

    Jarosław Poznański

    Full Text Available Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  18. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Science.gov (United States)

    Poznański, Jarosław; Poznańska, Anna; Shugar, David

    2014-01-01

    Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  19. Atomically Bonded Transparent Superhydrophobic Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, Tolga [ORNL

    2015-08-01

    Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity, hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.

  20. The noncovalent bonding of antibiotics to a polytetrafluoroethylene-benzalkonium graft

    International Nuclear Information System (INIS)

    Harvey, R.A.; Greco, R.S.

    1981-01-01

    This study evaluates the noncovalent bonding of anionic antibiotics to polytetrafluoroethylene grafts using benzalkonium chloride as a cationic anchor. The binding of radiolabeled surfactants and antibiotics was evaluated by liquid scintillation and in an in vitro microbiologic assay against Staphylococcus aureus. Significant quantities of antibiotic were bound when the grafts were pretreated with benzalkonium in ethanol or aqueous solution at elevated temperature. Bound antibiotic is stable in aqueous salt solutions, but slowly dissociates in the presence of blood or serum. The ionic nature of the bonding process is clarified by the use of a variety of antibiotics and surfactants with complementary charges. The ability of the benzalkonium treated grafts to adsorb antibiotic from blood is, likewise, demonstrated and the possibility of concomitantly binding heparin and antibiotic simultaneously is evaluated. These studies support the ability to noncovalently bond antibiotics to polytetrafluoroethylene surfaces and form the basis of eventually utilizing these surfaces in the prevention of vascular prosthetic infections